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Abstract

In this thesis we analyze images and detect edges using multivariate periodic
wavelets and multiresolution analysis. We present the congruence class of the
d-variate lattice ⇤(M) as the pattern P(M) of M for a regular integer matrix
M, which not necessarily is diagonal. By fixing the ordering of the pattern we
find a generating group, G(MT) of MT, and derive a variant of the fast Fourier
transform on P(M). Further, we explore the potential applications of these lattice
properties in performing a fast wavelet decomposition. Here, the inclusion of the
subpattern P(N) ✓ P(M), with M = JN, for regular integer matrices J,N, is
crucial. We show that a shift invariant space with respect toM can be subjected to
an orthogonal decomposition and decomposed into |detJ| spaces. The focus is on
the case when |detJ| = 2, that is V '

M = span{T (y)' : y 2 P(M),' 2 L2(Td)} =
V ⇠
N �W 

N, where T (y)' is the translation function. Additionally, the choice of J
is discussed in the context of characterizing the direction of the decomposition,
and fulfilling the inclusion property in the case where d = 2. Lastly, we provide
instances that emphasize the theoretical findings by implementing the wavelet
transform in the programming language Julia and when the orthonormal Dirichlet
kernel is used to generate V '

M.
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Samandrag

I denne masteren analyserer me bilete og oppdagar kantar ved hjelp av fleirdimen-
sjonale periodiske wavelets og fleirskala-analyse, p̊a engelsk multiresolusion analy-
sis. Me presanterer kongruensklassa til det d-variate gitteret ⇤(M) som mønsteret
P(M) av M for ei regulær heiltalsmatrise M, som ikkje nødvendigvis er diago-
nal. Ved å fastsetja rekkjefølgja til mønsteret finn me ei genererande gruppe,
G(MT) for M, og presenterer ein variant av den raske Fourier-transformasjonen
p̊a P(M). Vidare utforskar me dei potensielle bruksomr̊ada for eigenskapane
til gitteret for å utføra ein rask wavlet-transformasjon. Her er inklusjonen av
undermønsteret P(N) ✓ P(M), med M = JN, for regulære heiltalsmatriser
J,N, avgjerande. Me viser at eit forskyvingsinvariant rom med omsyn til M
kan underleggjast ei orthogonal dekomposisjon og verta dekomponert i |detJ|
rom. I denne oppg̊ava fokuserast det p̊a tilfellet kor |detJ| = 2, det vil seie
V '
M = span{T (y)' : y 2 P(M),' 2 L2(Td)} = V ⇠

N � W 
N, der T (y)' er

forskyvingsfunksjonen. Avslutningsvis vert det gjeve døme som understrekar
dei teoretiske funna ved å implementera wavelet-transformasjonen i programmer-
ingsspr̊aket Julia n̊ar den ortonormale Dirichlet-kjerna vert brukt til å generera
V '
M.
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CHAPTER 1

Introduction

The field of image processing plays a crucial role in various applications, ranging
from medical imaging to satellite imaging and computer vision. One of the im-
portant tasks in image processing is to detect edges in images and determine the
location of fine details. This is done by exposing variations in color or intensity,
which correspond to borders between objects or regions. A wavelet transform en-
ables the separation of details, the so called wavelets, from the overall structure of
the image. Prominent examples of wavelet transforms utilize the Morlet wavelet
[15], Daubechies wavelet [10] or the Meyer wavelet [19].

The focus of this thesis is to study the framework of multivariate periodic
wavelets, as detailed in [14, 20]. This is previously done in [18, 4, 5] by utilizing
the orthonormal Dirichlet kernel defined by a regular integer matrix. An other
function to consider in this framework is the de la Vallée Poussin function, as done
in [3].

Previously, this specific fast wavelet transform was implemented in MATLAB1

and Mathematica2 Our aim is to develop a code that is both e�cient and readable
in the sense that it aligns with the notation of the theory in this thesis, leveraging
both the speed and expressiveness of Julia language [6]. This process started
during the work of the specialization project [21], and is continued in this thesis.
Further, we aim to elaborate on the theory presented in [18] and [4] by providing
visualizations and additional details to some of the proofs. In addition, present
some numerical implementation of the fast wavelet transform.

The practical application wavelets have in the field of image processing is
valuable asset for a teacher in mathematics. It enables a demonstration of some
of the utilities of the subject, which can help motivate students to engage in
mathematics and the natural sciences. Moreover, knowledge of image processing
serves as a solid foundation for interdisciplinary initiatives involving both physics
and computer science.

1Code available at: https://github.com/kellertuer/MPAWL-Matlab.git
2Code available at: https://github.com/kellertuer/MPAWL.git

1

https://github.com/kellertuer/MPAWL-Matlab.git
https://github.com/kellertuer/MPAWL.git


2 CHAPTER 1. INTRODUCTION

Thesis structure

Chapter 2

This chapter includes a brief introduction to the function space L2(Td) and its
inner product. Additionally, it covers the concepts of the Fourier series and the
fast Fourier transform and some of their properties. The Smith normal form is
defined.

Chapter 3

This chapter introduces the pattern and the generating group, establishing their
foundational aspects. An ordering of the elements in the pattern and the gener-
ating group is presented, and the derivation of the fast Fourier transform on the
pattern is shown. Furthermore, the chapter defines a subpattern and expounds
upon its properties.

Chapter 4

The shift invariant space is introduced in this chapter, in addition to the func-
tion we employ to generate the space in order to exemplify the theory. Along
with outlining properties of the basis of the space, we show that the function of
choice fulfill these properties. We then establish the existence of an orthogonal
decomposition of the shift invariant space, and state a condition to determine if
the decomposition indeed is orthogonal. Lastly, a comprehensive description of
the fast decomposition algorithm, i.e., the wavelet transform, is provided.

Chapter 5

In this chapter we discuss the interpolation problem arising when sampling a
function on the pattern. We also delve into the numerical implementation of
the wavelet transform. Subsequently, a thorough exploration of the numerical
implementation of the wavelet transform is provided.

Chapter 6

The wavelet transform is first applied to three functions with discontinuities and
conduct a comparative analysis among them. Then a multi-level decomposition
is performed on one of the aforementioned functions. Lastly, we utilize the multi-
level decomposition to determine the direction of an edge within an image.

Chapter 7

This chapter provides a summary of the thesis and a short conclusion, in addition
to a brief discussion of possible future work.



CHAPTER 2

Preliminaries

2.1 Function Space and Fourier Series

The considered function space is the space all of square integrable functions on
torus, L2(Td), Td = [0, 2⇡)d. This space is the Hilbert space of 2⇡-periodic d-
variate functions, with respect to the inner product defined as

hf, giL2 :=
1

(2⇡)d

Z

Td

f(x)g(x)dx, for f, g 2 L2(Td),

where z denotes the complex conjugate of z 2 C. For any g 2 L2(Td), the induced
norm is given by kgk2L2 = hg, giL2 , see [16, Definition 5.2.7].

The ordered set {eik
Tx : k 2 Zd

}, where kT
x = (x1k1+ . . .+xdkd) and x 2 Td,

forms an orthonormal basis of L2(Td). Thus, any function f 2 L2(Td) can be
written as a linear combination in terms of this orthonormal basis as

f(x) ⇠
X

k2Zd

ck(f)e
ikTx, for f 2 L2(Td), x 2 Td, (2.1)

where ck(f) := hf, eik
T�
iL2 is the k-th Fourier coe�cient of f indexed by an integer

vector k 2 Zd, see [20, Section 4.1]. If f possesses a continuous derivative, i.e., f 2
L1(Td), an equality in (2.1) holds true, due to the implied pointwise convergence,
see [22, Theorem 2.1].

In the case where d = 1, we define the n-th partial Fourier sum of f as

Sn(f) :=
nX

k=�n

f̂ke
ikx =

nX

k=�n

hf, eikxieikx, for n 2 N, x 2 T.

If f is continuous, the partial sum Sn(f) converges uniformly to f for all x, see
[16, Sectoin 5.10]. The uniform convergence does not hold for the cases where f
is discontinuous. Instead, the partial sum Sn(f) overshoots or undershoots the
function f at the discontinuities by about 9 % for all finite numbers n, see [20,
Section 1.4.3]. This phenomenon is called Gibbs’ phenomenon and highlights the

3
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(a) S8(f) (b) S32(f)

Figure 2.1: Gibbs’ phenomenon visualized for a square wave and two di↵erent
partial sums of the Fourier series. The square wave is drawn in black, and the
partial sum is drawn in color.

inherent challenge of accurately representing discontinuities or abrupt changes in
a function using the partial sum of Fourier series, see [12, Section 1.6] where a
formal proof of the phenomenon is provided. The one dimensional partial sum
Sn(f) of the Fourier series can be generalized to the d-dimensional case as done
in [20, Section 8.1].

Example 2.1. Let f(x) = 1[0,1](x) be the square wave function, which has dis-
continuities at x = 0 and x = 1. We use the partial sum of the Fourier series
to approximate f , for n = 8 and n = 32. S8(f) and S32(f) along with f are
illustrated in Figure 2.1. We approximate f by the partial sumS8(f) and S32(f),
see Figure 2.1. The overshooting and undershooting occur near the discontinuities
for both approximations. Further, we observe the there are more In other words,
there are high frequent ripples close to the discontinuities as the partial sum Sn(f)
tries to represent the discontinuities.

We further introduce `2(Zd), the space all of square summable sequences a =
(ak)k2Zd . With respect to the inner product

ha,bi`2 :=
X

k2Zd

akbk, a,b 2 `2(Zd),

the space `2(Zd) forms a Hilbert space. Moreover, the norm kak
2
`2 = ha, ai`2 for

all a 2 `2(Zd) is induced by the preceding inner product, see [16, Section 5.3].
By [12, Theorem 1.3.3] there exists an isomorphism between L2(Td) and `2(Zd),

which is stated in the following theorem.

Theorem 2.2 (Parseval’s theorem, [20, Theorem 4.5]). For any pair of functions
f, g 2 L2(Td) the following equality holds true:

hf, giL2 = hc(f), c(g)i`2 =
X

k2Zd

ck (f) ck (g), for all f, g 2 L2(Td),

where c(f) = {ck(f)}k2Zd is the sequence of Fourier coe�cients of f .
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Given any y 2 Rd and f 2 L2(Td), the translation operator is defined by
T (y)f = f(� � 2⇡y). Note that

ck (T (y)f) =
1

(2⇡)d

Z

Td

f(x� 2⇡y)eikT(x�2⇡y)dx

=
1

(2⇡)d
e�2⇡ikTy

Z

Td

f(x)eikTxdx = e�2⇡ikTyck (f) .
(2.2)

For all k, z 2 Zd we have e�2⇡ikTz = 1. This justifies the restriction of y to any
shifted unit cube. In this thesis we consider the symmetric unit cube

⇥
�

1
2 ,

1
2

�d
.

2.2 The Fast Fourier Transform

In this sectionm, we provide a description of the fast Fourier transform, FFT. We
begin by introducing the discrete Fourier transform, DFT, in one dimension as a
motivation for the fast Fourier transform.

Given a vector b = (bj)
N�1
j=0 2 CN , for N 2 N, the discrete Fourier transform

of b, denoted as b̂ = (b̂k)
N�1
k=0 2 CN , is defined by

b̂k = (FN(b))k :=
N�1X

j=0

bje
�2⇡ikj/N , for k 2 Z, (2.3)

see [8, Definition 3.1]. Recovering the vector b from its Fourier transform b̂ is
done by the inverse discrete Fourier transform, i.e. b = F

�1
N (b̂), [8, Theorem 3.3].

Let the function f 2 L2(T) be sampled on a uniform grid {
2⇡j
N : j = 0, . . . , N�

1}, where N is an even natural number. To estimate ck(f) we employ the trape-
zoidal rule

ck(f) =
1

2⇡

Z 2⇡

0

f(t)eiktdt ⇡
1

N

N�1X

j=0

f(2⇡jN )eik
2⇡j
N = f̂k, (2.4)

where k 2 Z, see [20, Section 3.1.1]. The function value, or signal value, at each
k in the specified uniform lattice is denoted by fk. A function is said to be N -
periodic if fk+N = fk for any integer k. The Fourier coe�cients in Equation (2.4)
are N -periodic due to the property e2⇡ik = 1 for all k 2 Z.

When implementing the DFT, we multiply the sequence b of length N by
an N ⇥ N matrix FN , resulting in a computational complexity of O(N2), see
[8, Section 3.1.3]. However, this high computational complexity makes the DFT
impractical for large datasets. In contrast, the FFT exploits the structure of the
DFT to reduce the number of computations required, resulting in a significantly
faster algorithm. The complexity of the algorithm is reduced to O(N logN), see
[8, Section 3.1.3]. We will now provide a brief explanation of how the FFT is
derived in one dimension.

Suppose that N 2 Z is even, and let n 2 N represent the number of samplings
such that N = 2n = 2q, where q 2 N\{1}. Additionally, let b = (bj)

N�1
j=0 2 CN

denote a vector which is periodically extended with a period of N = 2n. We can
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then split the discrete Fourier transform, given in Equation (2.3), into even and
odd indices. Each entry looks like

b̂k =
n�1X

j=0

b2j!
2jk +

n�1X

j=0

b2j+1!
(2j+1)k, (2.5)

where k 2 {0, . . . , N�1} and ! = e2⇡i/N . Furthermore, introducing W := e2⇡i/n =
!2, allowing us to reformulate the foregoing sums as we reformulate the foregoing
sum as

b̂k =
n�1X

j=0

b2jW
jk
+ !k

 
n�1X

j=0

b2j+1W
jk

!
.

To simplify the notation, we use beven := (b0, b2, . . . , b2n�2) and bodd :=
(b1, b3, . . . , b2n�1) to represent the elements with even and odd indices, respec-
tively. Rewriting in terms of the new notation, yields

b̂k =
�
Fn · beven

�
k
+ !k

�
Fn · bodd

�
k

for k 2 {0, . . . , n� 1}.

Knowing that !k+n = !k
· e(�⇡i) = �!k and that both Fnbeven and Fnbodd are

n-periodic, facilitates further reduction of the preceding sum to

b̂k =
�
Fnbeven

�
k
+ !k

�
Fnbodd

�
k

(2.6a)

b̂k+N =
�
Fnbeven

�
k
� !k

�
Fnbodd

�
k
, (2.6b)

see [8, Section 3.1.3].
Iteratively, we can proceed to divide the two sums in Equation (2.6) in a

manner similar to Equation (2.5). In the q-th iteration, we employ a 1⇥ 1 Fourier
matrix for multiplication. By completing the successive divisions, we obtain the
result vector b̂, representing the discrete Fourier transform of b. This particular
algorithm has computational complexity O(N logN).

2.3 The Smith Normal Form

For a regular matrix M 2 Zd⇥d, the Smith normal form of M is given by the
decomposition

M = QER, Q,E,R 2 Zd⇥d, where E = diag
�
"1, . . . , "d

�
, (2.7)

where |detR| = |detQ| = 1 and "j 2 N are elementary divisors. The matrices
Q,E,R are regular matrices which are uniquely determined by the matrixM. The
theorem of elementary divisors guarantees the existence of the elementary divisors
and, consequently, the existence of the Smith normal decomposition [17, Chapter
10]. The property "j|"j+1 for j = 1, . . . , d � 1 holds for every elementary divisor
"j, see [9, Theorem 4.29]. If " = 1, we call them trivial elementary divisors. We
denote the number of non-trivial elementary divisors of M by dM := #{"j > 1}.

Example 2.3. For d = 2, we compute the Smith normal form for the matrix

A =


16 4
0 16

�
=


1 0
4 1

� 
4 0
0 64

� 
4 1
�1 0

�
= QER.

We see that the elementary divisors of A are "1 = 4 and "2 = 64, with "1 divides
"2. Further, no elementary divisors are trivial, leaving dA = 2.



CHAPTER 3

The Pattern and the Generating Group

3.1 Pattern and Generating Group

Let M be a regular matrix in Zd⇥d. Two vectors h,k 2 Zd are called congruent
with respect M if

h ⌘ k mod M , 9z 2 Zd : k = h+Mz, (3.1)

see [4, Section 2.2].
We define the lattice ⇤(M) of M as ⇤(M) := M

�1Zd = {y 2 Rd : My 2 Zd
}.

The lattice describes the equivalence relation with respect to mod I, where I is
the identity matrix of size d⇥ d if the size is not specified otherwise. The lattice
is 1-periodic [5, Section 2].

The pattern P(M) of M is defined as

P(M) : =
n
y 2

⇥
�

1
2 ,

1
2

�d
: My 2 Zd

o

=
�
M

�1Zd
�
\
⇥
�

1
2 ,

1
2

�d
= ⇤ (M) \

⇥
�

1
2 ,

1
2

�d
.

(3.2)

The pattern is a complete set of congruence classes of integer vectors mod I [4,
Section 2.2]. Thus, each unit cube of Rd contains exactly one element of P(M).

Further, the generating group G(M) of M is defined as

G(M) := MP(M) =
�
h 2 Zd : h = My,y 2 P(M)

 
.

Every element belonging the set G(M) is contained within the semi-open paral-

lelepiped M
⇥
�

1
2 ,

1
2

�d
, see [4, Section 2.2].

For the pattern, the addition operation +|P(M) is defined as (y+z)P(M) := y+z

mod I. Similarly, (k+ h)|G(M) := k+ h mod M, as described in Equation (3.1).
The sum of the terms is ensured to be contained within P(M) and G(M) due
to the addition operations +|P(M) and +|G(M), respectively. Additionally, the
map M� : P(M) ! G(M) is a group isomorphism between (P(M),+|P(M)) and
(G(M),+|G(M)).

7
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The matrices Q and R from Equation (2.7) are coordinate transform matrices
of Zd, that is, bijective maps on Zd. This results in G(M) and G(E) being isomor-
phic [18, Section 2.2]. The isomorphism gives rise to the generating group G(M)
being a direct product of cyclic groups C"j ,

G (M) ⇠= G(E) ⇠= C"1 ⌦ · · ·⌦ C"d ,
⇠= C"d�dM+1

⌦ · · ·⌦ C"d , (3.3)

where "j is the j-th elementary divisor and Cz = {0, 1, . . . , z � 1} with addition
modulo z 2 Z is the cyclic group Z/zZ, with order |C"j | = "j, see [18, Equation
7]. The right-hand side of (3.3) is a simplification for the cases when " = 1, that
is cycles of length 1.

Note that the transposed matrix M
T has the same elementary divisors as M,

i.e., when decomposing M
T into R

T
EQ

T, it has the same diagonal matrix E as
M. Consequently, G(M) and G(MT) are isomorphic, which justifies extending
(3.3) to

G(M) ⇠= G(MT) ⇠= G(E) ⇠= P(E) ⇠= P(M) ⇠= P(MT) ⇠= C"1 ⌦ · · ·⌦ C"d . (3.4)

The prior equivalence relation implies that

m := |detM| = |G(M)| = |G(MT)| = |P(MT)| = |P(M)| = "1 · · · · · "d, (3.5)

and denotes the number of elements in both the pattern and generating group of
M and M

T, see [11, Lemma 2.7].

Example 3.1. For d = 2, we consider the following regular integer matrices

A1 =


16 0
0 16

�
, A2 =


8 0
0 32

�
, A3 =


16 4
0 16

�
A4 =


16 0
�4 16

�
.

The patterns and the generating groups of the matrices are plotted in Figure 3.1a,
3.1b, 3.1c and 3.1d, respectively.

Recall from Example 2.3 that the Smith normal form of A = A3 is given by

A3 =


16 4
0 16

�
=


1 0
4 1

� 
4 0
0 64

� 
4 1
�1 0

�
= QER.

By (3.5), both P(A3) and G(A3) have |detA3| = |detE| = 4 · 64 = 256 elements.
This can be observed in Figure 3.1c. With E = diag(4, 64), we know that both
P(A3) and G(A3) are isomorphic to the direct product of the cyclic groups C4⌦C64,
i.e., consisting of four cycles of length 64.

Note that the diagonal matrices A1 and A2 generate squared and rectangular
generating groups, respectively, while A3 and A4 produce generating groups with
a shear in the second and first coordinate, respectively. The shear arises from the
fact that one of the o↵-diagonal entries is non-zero.

3.2 Basis of the Pattern and the Generating Group

The set {0, 1/N, . . . , (N � 1)/N} for N 2 N, i.e., the one-dimensional pattern
P(N), is equipped with a natural ordering. However, the elements of P(M) are
not ordered naturally. Therefore, we want to define a basis to establish an ordering
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(a) Plot of P(A1) and G(A1), respectively. (b) Plot of P(A2) and G(A2), respectively.

(c) Plot of P(A3) and G(A3), respectively. (d) Plot of P(A4) and G(A4), respectively.

Figure 3.1: Plots of the pattern and the generating group of the four example
matrices. Each matrix has a determinant of 256, but di↵erent looking patterns
and generating groups.

of its elements. Finding a basis for P(M) that is similar to the tensor product
in (3.4), allows us to fix an ordering of the elements of P(M), and analogous for
G(MT). First we need to show a lemma that is used to prove the main objectives
of this section.

If the two matrices generate the identical pattern P(M) = P(N), for M,N 2

Zd⇥d, we call the matrices equivalent. We denote equivalent matrices by M ⇠= N.

Lemma 3.2. Let M,N 2 Zd⇥d. The matrices M ⇠= N are equivalent if and only
if there exists a matrix U 2 Zd⇥d with |detU| = 1 and N = UM, see [18, Lemma
2.4].

Proof. First, assume M,N 2 Zd⇥d are equivalent matrices, i.e., P(M) = P(N).
Then given any element y 2 P(M), we have that y 2 P(N). By the definition
of the pattern, (3.2), we can write y = M

�1
z for some z 2 Zd. Further, the

equivalence of the matrices premits us to state y as y = NM
�1
z. When setting

U = NM
�1 it follows that U is regular, as both N and M

�1 are regular, [2,
Theorem 1.4.6]. By Equation (3.5), we have that |detM| = |detN|, which again
implies that |detU| = |detNM

�1
| = 1.

Conversely, if there exists a regular matrix U 2 Zd⇥d such that N = UM, we
have

P(N) = P(UM) = {y : UMy 2 Zd
} = {y : My 2 U

�1Zd = Zd
} = P(M).

Now, fix a regular matrix M 2 Zd⇥d. We define the set of vectors

yej := R
�1 1

"d�dM+j
ed�dM+j, j = 1, . . . , dM, (3.6)

where R is from the Smith normal form being M = QER, "j denotes the ele-
mentary divisors, as shown in Equation (2.7), and ej is the j-th unit vector [4,
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Equation 8]. The vectors yej are linearly independent since R is invertible by
construction.

By using Q with its property |detQ| = 1, from Equation (2.7), as a change of
basis combined with Lemma 3.2, the equality ⇤(M) = ⇤(ER) is justified. The
map f : ⇤(ER)! ⇤(E) given by f(y) = Ry is an isomorphism ⇤(ER) and ⇤(E).
This can be written as

⇤(M) = ⇤(ER) = {y : ERy 2 Zd
} ⇠= {x : Ex 2 Zd

} = ⇤(E).

The set {Ryej}
dM
j=1 forms a basis for P(E), which consists of scaled unit vectors.

This further implies that every element x 2 P(M) can be uniquely represented as

x =
dMX

j=1

�jyej

���
P(E)

=
dMX

j=1

�j
1

"d�dM+j
ed�dM+j

���
P(E)

, 0  �j < "d�dM+j. (3.7)

The remaining "j excluded in the equation above have the indices j  d � dM.
These indices corresponds to the trivial elementary divisors, and when subjected
to the modular reduction +|P(M), the vectors vanish, and is therefore omitted in
the expression.

We define the set of indices EM as

EM = {0, 1, . . . , "d�dM+1 � 1}⇥ · · ·⇥ {0, 1, . . . , "d � 1}, (3.8)

where "j are the elementary divisors of M and dM = #{"j > 1}.
By utilizing the lexicographical ordering on the set of indices EM, we derive

an ordering of the elements of P(M) based on the chosen basis in Equation (3.6),
resulting in

P(M) =
⇣ dMX

j=1

�jyej

���
P(M)

⌘"d�dM+1�1,...,"d�1

(�1,...,�dM )=0
, (3.9)

see [4, Sec 3].
Similarly, a basis for G(M) can be generated by left-multiplying each basis

vector yej from Equation (3.6) with the matrix M. Starting with P(MT), we
create a basis for G(MT), which is expressed as

hej := R
T
ed�dM+j, j = 1, . . . , dM. (3.10)

This gives the expression

G(MT) =
⇣ dMX

j=1

µjhej

���
G(MT)

⌘"d�dM+1�1,...,"d�1

(µ1,...,µdM
)=0

. (3.11)

Each basis vector xej for both the pattern and the generating group must span
a cycle of length "d�dM+j. This is why the ordering of the set of basis vectors is
pivotal, see [4, Remark 1]. Furthermore, this implies that the dimension of both
P(M) and G(M) is dM as they are spanned by exacly dM basis vectors. By the
isomorphism in Equation (3.4), we can address G(M) and G(MT) by the same set
of indices.
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Lemma 3.3 ([4, Lemma 1]). Let the matrix M 2 Zd⇥d be regular, yei be the basis
of P(M) and hej be the basis of G(MT), defined in Equation (3.6) and (3.10),
respectively. Then yei and hej are biorthogonal, i.e.,

hhej ,yeii`2 =

(
1

"d�dM+i
, i = j

0, i 6= j
, for all i, j = {1, . . . , dM}.

Proof. Using the definitions of the bases, we compute the inner product as follows

hhej ,yeii`2 =
⌦
R

T
ed�dM+j,R

�1 1

"d�dM+i
ed�dM+i

↵
`2

=
1

"d�dM+i
e
T
d�dM+jed�dM+i =

(
1

"d�dM+i
, i = j

0, i 6= j
.

Example 3.4. We continue to study the matrix A3 from Example 3.1 and aim
to determine the basis of P(A3) and G(AT

3 ). Referring to the Smith normal form
of A3, we recall having

E =


4 0
0 64

�
, R =


4 1
�1 0

�
,

i.e., the elementary divisors are "1 = 4 and "2 = 64. By utilizing the formulas in
Equation (3.6) and (3.10) we compute the basis for the pattern and the generating
group, respectively, we get the vectors

ye1 =
�
0, 14

�T
he1 =

�
4, 1

�T

ye2 =
�
�

1
64 ,

1
16

�T
he2 =

�
� 1, 0

�T
.

These basis vectors are visualized alongside the elements of P(A3) and G(AT
3 ) in

Figure 3.2. It is worth noting that the matrixR influences the step direction of the
basis vectors for both the pattern and the generating group, while the elementary
divisors determine the step length.

3.3 The Fourier Transform on the Pattern

Based on the previous section, we have establishd an ordering of the elements of
P(M) and G(MT), which are known to be biorthogonal. This allows us to define
the Fourier transform on the pattern, using P(M) as time domain and G(MT) as
the frequency domain. Before doing so, we aim to generalize the Fourier transform
from Section 2.2 to the d-variate case.

Consider the function f 2 L2(Td), sampled on the uniform grid {
2⇡
N n : n 2 Zd

},
where N 2 N is even. Here, we define IN = {0, . . . , N�1} and IdN = {n = (nj)dj=1 :
nj 2 IN}. By employing the multivariate trapezoidal rule, we can compute the
discrete Fourier coe�cients of f , denoted (ck(f))k2Zd , which are given by

ck (f) =
1

(2⇡)d

Z

Td

f (x) e�ikTxdx ⇡
1

Nd

X

n2IdN

f

✓
2⇡

N
n

◆
e�2⇡i(kTn)/N = f̂k,
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Figure 3.2: Plots of P(A3) and G(AT
3 ), respectively, including their basis vectors.

see [20, Section 4.4.1]. In the 1D case, discussed in Section 2.2, a step corresponds
to a segment of length 1

N , while in the d-variate case, a segment corresponds to a
hypercube with side lengths 1

N . By representing the vector n 2 Zd in the uniform
grid as a diagonal matrix D = diag(N, . . . , N) 2 Zd⇥d, we obtain an equivalent
matrix representation and can utilize the pattern P(D) as our grid.

To provide a connection to the 1D discrete Fourier transform and introduce
the use of the fast Fourier transform on the pattern, we focus on the case d = 2.
The discrete Fourier coe�cients are then given by

f̂k =
1

N2

N�1X

n1=0

N�1X

n2=0

f

✓
2⇡

N
n

◆
e�2⇡ikTn/N (3.12)

=
1

N2

N�1X

n1=0

N�1X

n2=0

f

✓
2⇡

N
(n1, n2)

T

◆
e�2⇡i(k1n1+k2n2)/N .

Rewriting the last expression yields

f̂k =
1

N2

N�1X

n1=0

e�2⇡ik1n1/N
N�1X

n2=0

f

✓
2⇡

N
(n1, n2)

T

◆
e�2⇡ik2n2/N .

By fixing n1 and performing a 1D Fourier transform iteratively through n2, we
obtain a sequence of values of f expressed as a function of the corresponding
values of 2⇡

N (n1, k)T for k = 0, . . . , N � 1. Subsequently, applying a 1D Fourier
transform to each fixed n1 of the obtained results yields the Fourier transform of
the elements n2 for a fixed n1. This approach allows for individual treatment of
dimensions by fixing n1, . . . , nd�1 followed by fixing n2, . . . , nd�2, nd, and so on.
As the 2D case breaks down to 1D Fourier transforms, the fast Fourier transform
can be employed for e�cient computations. This behavious also applies when
extending to the d-variate case.

Furthermore, the uniform grid can be generalized to possibly be non-uniform
or anisotropic. Consider N1, N2 2 N\{1}. We construct a grid similarly to before,
but now using the index set INj

:= {0, . . . , Nj � 1} for j = {1, 2}. The case when
N1 6= N2 makes the grid non-uniform. Moreover, the preceding procedure can be
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rephrased in terms of matrix multiplication. A matrix representation can be used
to express the general d-dimensional Fourier transform case [20, Section 4.4.3],
but here, we explicitly write it for d = 2. The 2D discrete Fourier transform of a
matrix A = (ak1,k2)

N1�1,N2�1
k1,k2=0 2 ZN1⇥N2 is given as

Â = (ân1,n2)
N1�1,N2�1
n1,n2=0 := FN1AF

T
N2
,

where FN is the Fourier matrix given in (2.3). The entries of the transformed
matrix Â are described in Equation (3.12). If we now represent the matrix A by
the vectors r = (rk1)k12IN1

2 ZN1 and c = (ck2)k22IN2
2 ZN2 such that A = rc

T,
then the Fourier transform of A can be expressed as

Â = FN1rc
T
F

T
N2

= (r̂n1 · ĉn2)n12IN1 ,n22IN2
.

This formulation illustrates the separability of the Fourier transform in matrix
representation, [20, Equation 4.53]. The separability allows for the Fourier trans-
form to be performed on the rows and columns of the matrix A separately, as
previously discussed.

The non-uniform 2D discrete Fourier transform is said to be (N1, N2)T-periodic,
which is shown by the fact that for all k, z 2 Z2, we have

ân = ân1+z1N1,n2+z2N2 , nj 2 INj , j = {1, 2},

see [20, Section 4.4.2].
To perform the Fourier transform on the pattern P(M), we follow a similar

approach as in previous cases. The Fourier transform on the pattern P(M) is
approximated by

ck(f) ⇡
1

|detM|

X

y2P(M)

f(2⇡y)e�2⇡ikTy = f̂k, k 2 Zd. (3.13)

By writing out the summands and expressing the elements y 2 P(M) in terms of
the basis vectors yej known by (3.6), we obtain

f̂k =
1

m

"d�dM
�1X

�1=0

. . .
"d�1X

�dM=0

f(2⇡y)e
�2⇡ikT(�1ye1+...+�dMyedM

)

=
1

m

"d�dM
�1X

�1=0

. . .

"d�1�1X

�dM�1=0

e
�2⇡ikT(�1ye1+...+�dM�1yedM�1 )

"d�1X

�dM=0

f(2⇡y)e
2⇡ikT(�dMyedM

)
,

(3.14)

where � 2 EM and k 2 Zd.
In a similar manner as for the 2D case, we now fix �1 to �dM�1 in Equa-

tion (3.14) and perform a 1D fast Fourier transform in �dM . We then fix �1 to
�dM�2 and �dM and perform a 1D fast Fourier transform in �dM�1, and so on. In
other words, we can compute the fast Fourier transform on the pattern by iterating
through one cycle at a time.
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The multivariate Fourier matrix is defined as

F(M) :=
1
p
m

⇣
e�2⇡ihTM�1g

⌘

h2G(MT), g2G(M)
2 Cm⇥m

=
1
p
m

⇣
e�2⇡ihTy

⌘

h2G(MT), y2P(M)
,

where h 2 G(MT) adresses the rows, while g 2 G(M) and y 2 P(M) adress the
columns. The last equality holds true only in the case where the elements of G(M)
and P(M) are ordered identically with respect to the bijection M�, as shown in
[4, Equation 6]. Moreover, the multivariate Fourier transform is MT-periodic. To
show this, take any z 2 Zd, then

f̂h+MTz =
1
p
m

X

y2P(M)

⇣
e�2⇡i(h+MTz)Ty

⌘

=
1
p
m

X

y2P(M)

⇣
e�2⇡ihTy

⌘⇣
e�2⇡i(MTz)Ty

⌘
= f̂h,

(3.15)

where h 2 G(MT), [3, Lemma 1.17].
Let a = (ay)y2P(M) 2 Cm be a vector sorted the same way as the columns of

the Fourier matrix. Then the Fourier transform of a is given by

â = (âh)h2G(MT) =
⇣ X

y2P(M)

aye
�2⇡ihTy

⌘

h2G(MT)
=
p
mF(M)a 2 Cm, (3.16)

as defined in [18, Equation 10]. Then â has the same ordering as the columns of
the Fourier matrix.

So far in this section, we have justified performing the Fourier transform along
the cycles of the pattern instead of the traditional rows and columns. This com-
putation can be expressed in a convenient matrix form, as shown in the following
lemma from [18, Lemma 2.1] where also a proof can be found.

Lemma 3.5. Let M 2 Zd⇥d be a regular matrix. Then there exists permutation
matrices Ph, Py on G(MT) and P(M), respectively, so that

F(M) = Ph

�
F"1 ⌦ F"2 ⌦ · · ·⌦ F"d

�
Py, (3.17)

where ⌦ denotes the Kronecker product, and

F" =
1
p
"

⇣
e�2⇡ih"�1g

⌘"�1

h,g=0
,

are the standard Fourier matrices indexed by the elementary divisors of the Smith
normal form of M as defined in Equation (2.7).

When using the ordering from (3.9) and (3.11) to construct the Fourier matrix
F(M), Theorem 1 in [4] proofs that the expression in (3.17) simplifies to

F(M) = F"d�dM+1
⌦ F"d�dM+2

⌦ · · ·⌦ F"d ,

as the sets of basis vectors are biorthogonal, [3, Theorem 3.9].
The computational complexity of the Fourier transform on P(M) isO(m logm)

[4, Theorem 2].
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3.4 Properties of Subpatterns

The following section deals with some of the properties of the pattern of M when
the matrix can be expressed as M = JN for J,N 2 Zd⇥d. The main results for
the section is the inclusion theorem for the subpattern of a decomposed matrix,
stated in the first theorem.

Theorem 3.6 ([18, Lemma 2.7]). Let M,N 2 Zd⇥d be regular matrices. Then
P(N) ✓ P(M) if and only if there exists a regular matrix J 2 Zd⇥d such that
M = JN.

Proof. First, assume P(N) ✓ P(M). Then, by definition of the pattern, we have
that y = N

�1
z 2 P(N) for some z 2 Zd. Additionally, y is an element of P(M)

by assumption, implying that y = M
�1
x for some x 2 Zd. Combinting the two

expressions yields y = MN
�1
z 2 Zd for some z. By setting J = MN

�1, we obtain
a regular matrix J 2 Zd⇥d since both M and N

�1 are regular.
Conversely, suppose there exists a regular matrix J 2 Zd⇥d such that M = JN.

If y 2 P(N), it implies Ny 2 Zd, which further implies JNy 2 Zd. Hence, if
y 2 P(N), then y 2 P(M), i.e., P(N) ✓ P(M), which concludes the proof.

Note that in general P(J) * P(M), due to the non-commutativity of matrix
multiplication.

Lemma 3.7 ([3, Lemma 1.5]). Let M and N be regular matrices in Zd⇥d related
by M = JN, with J 2 Zd⇥d. Then every element x 2 P(M) can be uniquely
expressed in terms of elements of the patterns P(N) and P(J) as follows

x =
�
y +N

�1
z
����

P(M)
, y 2 P(N), z 2 P(J).

Proof. By the definition of a lattice we have

⇤(M) = M
�1Zd = (JN)�1Zd = N

�1
J
�1Zd = N

�1⇤(J). (3.18)

Using the 1-periodicity of any lattice with ⇤(I) = Zd, we obtain

⇤(J) =
[

z2P(J)

⇤(I) + z.

Inserting this into the expression on the right-hand side of (3.18), we get

⇤(M) =
[

z2P(J)

N
�1⇤(I) +N

�1
z =

[

z2P(J)

⇤(N) +N
�1
z.

Intersecting with a unit cube, we arrive at a decomposed expression of the elements
x 2 P(M).

The uniqueness is achieved by the disjointness of the sets in the union. The
sets are disjoint because for an element z 2 P(J), the condition N

�1
z 2 P(N) is

true if and only if z = 0|P(N).
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Expressing an element h 2 G(MT) in terms of G(NT) and G(JT) requires
similar steps as in the preceding lemma. By following the procedure outlined

in the proof, we can express an element y 2 P(MT) as y =
�
x + J

�T
z
����

P(MT)

for x 2 P(JT) and z 2 P(NT). When now left-multiplying with M
T, we get

h 2 G(MT), and the decomposition is given by

h =
�
N

T
g + k

����
G(MT)

, for g 2 G(JT), k 2 G(NT). (3.19)

Example 3.8. We proceed with the investigation of A3, its pattern P(A3) and
generating group G(AT

3 ) from Example 3.1. In order to visualize the inclusion
P(N) ✓ P(A3) stated in Theorem 3.6, we consider various matrices J with
|detJ| = 2, such that A3 = JN. We study the matrices

J1 =


2 0
0 1

�
, J2 =


1 0
0 2

�
, J3 =


1 �1
1 1

�
, (3.20a)

J4 =


2 0
�1 1

�
, J5 =


2 0
1 1

�
, J6 =


1 �1
0 2

�
, J7 =


1 1
0 2

�
, (3.20b)

and collect them in the set J , as described in [3, Equation 4.3]. To avoid confusion
with the index of the matrix A3, we use the same index to relate the matrices Ji

and Ni in the context of A3 = JiNi. As an example, when examining the matrix
J3, the corresponding matrix N3 can be explicitly expressed as follows

N3 = J
�1
3 A3 =


1
2

1
2

�
1
2

1
2

� 
16 4
0 16

�
=


8 10
�8 6

�
.

The figures presented in Figure 3.3 demonstrate the relationship between the ma-
trices A3, Ni and the associated directions of the matrices Ji. Specifically, the
matrices J1 and J2 correspond to scaling along the x- and y-direction, respectively,
while J3 represents a scaling of 2�1/2 and rotation of 45�. On the other hand, J4

and J5 give sheared matrices N scaled in x-direction clockwise and counterclock-
wise, respectively. Similarly, J6 and J7 shear the corresopnding matrices N scaled
in y-direction counterclockwise and clockwise, respectively.

Remark 3.9. Apart from the matrices discussed in Example 3.8, there are several
other matrices J with a determinant of 2 that could have been considered. For
instance, we could investigate the matrices

J̃
±
1 =


2 ±1
0 1

�
or J̃

±
2 =


1 0
±1 2

�
,

which in fact are the transposed of the matrices in (3.20b).
Theorem 3.6 yields P(N) ✓ P(M), and thus G(JT) ✓ G(MT). By the non-

commutativity of the matrix multiplication and the ordering of JN reversing when
transposing M, the inclusion G(NT) ✓ G(MT) does not hold true in general. The
inclusion property can be rephrased to

J
�T
h
�

1

2
,
1

2

⌘d

✓

h
�

1

2
,
1

2

⌘d

. (3.21)
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(a) P(N1) ⇢ P(A3) and G(NT
1 ) ⇢ G(AT

3 ). (b) P(N2) ⇢ P(A3) and G(NT
2 ) ⇢ G(AT

3 ).

(c) P(N3) ⇢ P(A3) and G(NT
3 ) ⇢ G(AT

3 ).

(d) P(N4) ⇢ P(A3) and G(NT
4 ) ⇢ G(AT

3 ). (e) P(N5) ⇢ P(A3) and G(NT
5 ) ⇢ G(AT

3 ).

(f) P(N6) ⇢ P(A3) and G(NT
6 ) ⇢ G(AT

3 ). (g) P(N7) ⇢ P(A3) and G(NT
7 ) ⇢ G(AT

3 ).

Figure 3.3: P(N) is given in dark yellow, P(A3) in light yellow. G(N) is given in
dark green, G(AT

3 ) in light green.
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(a) (J̃+
1 )

�T
h
�

1
2 ,

1
2

⌘d
. (b) (J̃+

2 )
�T

h
�

1
2 ,

1
2

⌘d
. (c) J�T

4

h
�

1
2 ,

1
2

⌘d
.

Figure 3.4: Dashed square is [�1
2 ,

1
2)

2, while the grey rectangle is J�T[�1
2 ,

1
2)

2.

In contrast to the matrices J 2 J , J̃±
1 and J̃

±
2 do not possess the property in

Equation (3.21). Figure 3.4 portrayes this consept for the matrices J̃
+
1 , J̃

+
2 and

the matrix J4 2 J . We observe that the first two matrices shears too much for
the inclusion to be satisfied, whereas J4 yields a decomposition where (3.21) is
fulfilled.

Since we are interested in decomposing the frequency domain G(MT), we re-
quire G(NT) ✓ G(MT). Therefore, we are only interested in matrices J satisfying
this condition. In particular, the matrices J 2 J are the only matrices with a
determinant of 2 upholding the incusion property G(NT) ✓ G(MT). Wherefore,
these matrices are the only matrices of interest for this application.



CHAPTER 4

The Wavelet Transform

4.1 Shift Invariant Spaces

LetM 2 Zd⇥d be a regular matrix. A subspace V ✓ L2(Td) is called shift invariant
with respect to M, or M-shift invariant, if it is spanned by the translates of a
function ' 2 L2(Td), i.e.,

T (y)' := '(� � 2⇡y) 2 V, for all y 2 P(M),' 2 V.

see [5, Section 2]. The space of translates with respect to M of ' is denoted by

V '
M := span{T (y)' : y 2 P(M)}. (4.1)

The name of the space is due to the fact that the space is invariant under shift on
P(M) of the function '. It is also referred to as a translation invariant space.

Theorem 4.1 ([18, Theorem 3.1]). Let M 2 Zd⇥d be regular. Then the vector of
translates of ' 2 L2(Td) and the vectors of orthogonal splines, i.e.,

s'h(x) :=
X

z2Zd

ch+MTz(')e
i(h+MTz)Tx, for h 2 G(MT),

fulfill the equation
�
T (y)'

�
y2P(M)

=
p
mF(M)T

�
s'h
�
h2G(MT)

. (4.2)

Proof. By the definition of the Fourier series and a property of the translation
function, given in (2.1) and (2.2) respectively, we have

T (y)' =
X

k2Zd

ck
�
T (y)'

�
eik

Tx =
X

k2Zd

e�2⇡ikTyck(')e
ikTy.

Inserting k = h+M
T
z, where h 2 G(MT) and z 2 Zd are unique for each k and

further utilizing the fact that kT
My 2 Zd for y 2 P(M) yields

T (y)'(x) =
X

h2G(MT)

e2⇡ih
Tys'h(x).

19
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The proof is then completed, since the equation above is an arbitrary row of
Equation (4.2).

Corollary 4.2 ([3, Lemma 1.23c]). Let M 2 Zd⇥d be regular and ' 2

L2(Td). Then the M-invariant subspace V '
M is spanned by the orthogonal splines�

s'h
�
h2G(MT)

, i.e.,

V '
M = span{s'h : h 2 G(MT)}.

Proof. Let y 2 P(M). Writing the function T (y)' as a Fourier series (2.1) com-
bined with the property of the translation function (2.2) yields

T (y)' =
X

k2Zd

e�2⇡ikTyck(')e
ikT�.

For every k 2 Zd there exists a unique h 2 G(MT) and z 2 Zd such that
k = h + M

T
z. We apply this decomposition to each summand in the Fourier

series of T (y)'. Further, the theorem of Fubini [23, Theorem 1.7.21] justifies the
interchange of the sums as the terms are absolutely summable, which then gives

T (y)' =
X

h2G(MT)

e�2⇡ihTy
X

z2Zd

ch+MTz(')e
i(h+MTz)T� =

X

h2G(MT)

e�2⇡ihTys'h,

as e2⇡i(M
Tz)Ty = 1 for all z 2 Zd. Thus, for every y 2 P(M) the function T (y)' 2

V
s'h
M and therefore V '

M ✓ V
s'h
M .

Conversely, for an arbitrary h 2 G(MT), we have

X

y2P(M)

e�2⇡ihTyT (y)' =
X

k2G(MT)

X

y2P(M)

e�2⇡i(h�k)Ty
X

z2Zd

ck+MTz(')e
i(k+MTz)T�

= m
X

z2Zd

ck+MTz(')e
i(k+MTz)T�

= ms'h,

where the second step is satisfied follows from Equation 1.18 in [3]. Hence s'h 2 V '
M

for any h 2 G(MT) and the proof is completed.

Before we study the properties of the translation invariant space V '
M, we intro-

duce the function we will use as ' throughout this thesis. We start by defining a
general kernel function as

DM(x) =
X

k2G(MT)

↵ke
ikTx,

which in general is complex valued. By extending the sum over G(MT) to a
frequency domain which is symmetric, we can ensure that the kernel is real valued,
as all the imaginary parts will cancel out. Additionally, we require symmetry of
the Fourier coe�cients of the kernel. The symmetric frequency domain is defined
as

K(MT) = Zd
\M

TQ̄ = M
T(⇤(MT) \ Q̄) where Q̄ =

⇥
�

1
2 ,

1
2

⇤d
⇢ Rd.
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The symmetric frequency domain includes all boundary points of the paral-
lelepiped M

TQ̄. Note that G(MT) ✓ K(MT) by construction. Moreover, we want
the function to describe details in both time and frequency domain in addition to
have a certain localization in the time domain [3, Section 4].

We define the number of surficial planes of the parallelepiped M
TQ̄ that an

element k 2 K(MT) lies on as

r(k) = #
n
j :

��hT
M

�1
ej

�� = 1

2
, h ⌘ k mod M

T
o
, (4.3)

where ej is the j-th unit vector, see [18, Equation 36].

Lemma 4.3 ([18, Lemma 6.3]). Let k 2 K(MT). Then there are 2r(k) points of
the form k+M

T
z 2 K(MT), z 2 Zd and we have that r(k+M

T
z) = r(k).

Proof. Let j be given such that kT
M

�1
ej = ±

1
2 . Hence,

(k⌥M
T
ej)

T
M

�1
ej = k

T
M

�1
ej ⌥ e

T
j MM

�1
ej = k

T
M

�1
ej ⌥ 1 = ⌥

1

2
.

For j 6= i, the remaining components of (k ± M
T
ej)TM�1

ei = k
T
M

�1
ei are

unchanged. If we have j and i such that r(k) = 1, we have 2 possibilities for
k±M

T
ej. Further, if we have j and i such that r(k) = 2, we have 4 possibilities.

Then, by induction, we have 2r(k) elements on the form k+M
T
z 2 K(MT),

z 2 Zd.

Utilizing the symmetry of r(k) = r(�k) we define the orthonormal Dirichlet
kernel, D?

M : Td
! R, as

D?
M(x) =

1
p
m

X

k2K(MT)

2�r(k)/2eik
Tx, (4.4)

where m = |detM|, see [18, Equation 37]. Figure 4.1 visualizes the Dirichlet
kernel in 2D and 3D for the diagonal matrix M = A1.

Furthermore, the Fourier coe�cients of the orthonormal Dirichlet kernel are
given by

ck(D
?
M) =

(
1p
m2�r(k)/2 for k 2 K(MT),

0 otherwise,
(4.5)

where r(k) is from (4.3), see [4, Section 6.2].

Example 4.4. We study at the scaled
p
mck(D?

M) to see the powers of 2. For
d = 2 we have four di↵erent scenarios.

• k is an inner point of K(MT), leading to r(k) = 0 and
p
mck(D?

M) = 1.

• k is on one of the edges of K(MT), making r(k) = 1 and
p
mck(D?

M) = 1p
2
.

• k is a corner point of K(MT), resulting in r(k) = 2 and
p
mck(D?

M) = 1
2 .

• k /2 K(MT), which means
p
mck(D?

M) = 0.

The Fourier coe�cients are illustrated in Figure 4.2 for M = A1 and M = A3.
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(a) Surface plot of D?
A1

(x).

�4.7

0

4.7

·10�2

(b) 2D plot of D?
A1

(x).

Figure 4.1: Plots of the orthonormal Dirichlet kernel D?
M for M = A1.

(a)
p
mck(D?

A1
). (b)

p
mck(D?

A3
).

Figure 4.2: Plot of the Dirichlet kernel
p
mck(D?

M) for M = A1 and M = A3.
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Theorem 4.5 ([18, Theorem 3.3]). A function f 2 V '
M if and only if there exists a

vector a = (ay)y2P(M) where its discrete Fourier transform â = (âh)h2G(MT) fulfills

ch+MTk(f) = âhch+MTk(') for all h 2 G(MT), k 2 Zd.

Then the function f can be expressed in terms of the basis of V '
M as

f =
X

y2P(M)

ayT (y)'.

Proof. Assume f 2 V '
M, then by definition of V '

M in (4.1), there exists a vector
a = (ay)y2P(M) such that

f =
X

y2P(M)

ayT (y)',

which in Fourier domain is expressed as

ck(f) =
X

y2P(M)

aye
�2⇡ikTyck('),

by Equation (2.2). Then for a fixed but arbitrary k 2 Zd with a h = k|G(MT),
which is uniquely determined together with z 2 Zd such that k = h+M

T
z, yields

ch+MTz(f) =
X

y2P(M)

aye
2⇡i(h+MTz)Tych+MTz(')

=
X

y2P(M)

aye
�2⇡ihTych+MTz(')

= âhch+MTz('),

where the last equality holds by (3.16).
For the opposite case, assume that there exists a vector â = (âh)h2G(MT) sat-

isfying equation

ch+MTk(f) = âhch+MTk('), for all k 2 Zd.

Then the vector a = (ay)y2P(M) is uniquely determined by the inverse discrete
Fourier transform of â, making the coe�cients the weights of the translates of '
in the representation of f , which finishes the proof.

By the coe�cients â = (âh)h2G(MT) we can uniquely determine the function
f with respect to the basis of V '

M. When knowing the translates, the foregoing
theorem allows us to store the coe�cients, and not the function itself, in order to
determine the function. This is beneficial as the size of â is given by m, while the
size of ch+MTz('), h 2 G(MT), z 2 Zd might be bigger.

Theorem 4.6 ([18, Theorem 3.4]). Let ', 2 L2(Td) be two given functions.
Then the Gram matrix G =

�
hT (x)', T (y) i

�
x,y2P(M)

is circulant, and it holds

that
G = F(M)T diag

⇣
m
X

k2Zd

ch+MTk(')ch+MTk( )
⌘

h2G(MT)
F(M).
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Proof. The Gram matrix is given as

G =
�
hT (x)', T (y) i

�
x,y2P(M)

=
�
h', T (y � x) i

�
x,y2P(M)

,

where the last equality shows the property of G being circular. Thus, G = circ a,
where a = (ay)y2P(M) =

�
h', T (y) i

�
y2P(M)

. From [18, Lemma 2.3] we have the

assertion that circ a = F(M)T diag(â) F(M) for a = (ag)g2G(M). Combining
the equality with Parseval’s identity from Theorem 2.2, yields that for every for
h 2 G(MT) we have that

âh =
X

y2P(M)

h', T (y) ie�2⇡ihTy =
X

y2P(M)

e�2⇡ihTy
X

k2Zd

ck(')ck(T (y) )

=
X

k2Zd

ck(')ck( )
X

y2P(M)

e�2⇡i(h�k)Ty.

Knowing that

X

y2P(M)

e�2⇡i(h�k)Ty =

(
m if h ⌘ k mod M

T,

0 otherwise,

simplifies the expression to

âh = m
X

z2Zd

ch+MTz(')ch+MTz( ).

and the assertion of the theorem shown, [3, Lemma 1.23f].

Theorem 4.7 (Linear independence of translates, [18, Corollary 3.5]). The set of
translates {T (y)' : y 2 P(M)} is linearly independent if and only if

X

k2Zd

��ch+MTk(')
��2 > 0, for all h 2 G(MT). (4.6)

Proof. By Theorem 4.6 the Gram matrix G can be formulated as

G = F(M)T diag
⇣
m
X

k2Zd

��ch+MTk(')
��2
⌘

h2G(MT)
F(M).

Since both F(M) and F(M) are regular, we only need to consider the diagonal
is the matrix to ensure invertibility of G. The diagonal is matrix is invertible if
and only if Equation (4.6) holds true. The invertibility of G is equivalent to the
set of translates being linearly independent.

Note that the preceding theorem says that V '
M is spanned by |P(M)| = m

translates of ', which implies that dimV '
M = m, see [18, Section 3] and [1, Section

1].

Proposition 4.8 ([18, Lemma 6.1]). The set of translates {T (y)D?
M : y 2 P(M)}

spans an m-dimensional space V
D?

M
M .
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Proof. The Fourier coe�cients of D?
M in (4.5) are strictly positive for all h 2

G(MT) by definition because G(MT) ✓ K(MT). By Theorem 4.7, we obtain the
linear independence of the translates of D?

M, consequently leading to the spanning

of an m-dimensional space V
D?

M
M .

Theorem 4.9 ([18, Corollary 3.6]). The set of translates {T (y)' : y 2 P(M)}
are orthonormal if and only if

X

k2Zd

��ch+MTk(')
��2 = 1

m
, for all h 2 G(MT).

Proof. By the definition of the matrix inner product, the Gram matrix can be
written as

G = hT (x)', T (y)'ix,y2P(M) =
�
T (x)'

�T
x2P(M)

�
T (y)'

�
y2P(M)

.

Furthermore, the definition of an orthonormal matrix [2, Section 7.1] states that

the matrices
�
T (x)'

�T
x2P(M)

and
�
T (y)'

�
y2P(M)

are orthonormal if and only if

it equals the identity matrix, who’s eigenvalues are 1. From the assertion of
Theorem 4.6, the eigenvalues of the Gram matrix are determined by

m
X

k2Zd

��ch+MTk(')
��2, h 2 G(MT),

which are equal to 1 if and only if the assertion holds.

Proposition 4.10 ([18, Theorem 6.4]). The translates of D?
M are orthonormal to

each other.

Proof. Using the Fourier coe�cients in Equation (4.5) and Lemma 4.3 we have

X

z2Zd

|ch+MTz(D
?
M)|2 =

X

z2Zd

���
1
p
m
2�

r(h+MTz)
2

���
2

=
X

z2Zd

���
1
p
m
2�

r(h)
2

���
2

= 2r(h)ch(D
?
M)2 =

1

m

for all h 2 G(MT) ✓ K(MT). The equality on the first line holds for all h 2
G(MT), and since G(MT) ✓ K(MT) the simplification on the second line is valid.
By Theorem 4.9, this is equivalent to the translates of D?

M being orthonormal.

4.2 Orthogonal Decomposition on Fixed Patterns

In the following section we look into the decomposition of V '
M. Firstly, we establish

the existence of an orthogonal decomposition, followed by the formulation of a
condition for verifying that such a decomposition is orthogonal. Subsequently,
we demonstrate the orthogonal decomposition of the space into n-dimensional
subspaces, where n = |detN|, and discuss the requisite condition for achieving
this type of decomposition. Lastly, we analyze the properties of the decomposed
subspaces and provide a detailed description of the algorithm for implementing
this orthogonal decomposition.
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Theorem 4.11 (Existence of orthogonal decomposition, [18, Theorem 4.1]). Let
M = JN 2 Zd⇥d with J,N 2 Zd⇥d and |detM| = m. Further, let the function
' 2 L2(Td) generate the m-dimensional M-invariant space V '

M. Then there are
functions ⇠g 2 L2(Td), for g 2 G(JT) such that

X

k2Zd

|ch+NTk(⇠g)|
2 > 0, for all h 2 G(NT),

which gives rise to the orthogonal decomposition

V '
M =

M

g2G(JT)

V ⇠g
N .

Proof. By assumption, the M-invariant space V '
M is generated by the linearly in-

dependent translates of '. Additionally, the linear independence of the translates
is equivalent to Equation (4.6) from Theorem 4.7. For simplicity we denote the
sequence a

h = (ahk)k2Zd for h 2 G(MT), where

ahk =

(
ck(') if k ⌘ h mod M

T
2 Zd,

0 otherwise.

We can then express a basis of V '
M in terms of ah as

n X

k2Zd

ahke
ikT� : h 2 G(MT)

o

by using the notation from Corollary 4.2. Having heik
T
1 �, eik

T
2 �i = 0 when k1 6= k2,

and ah1
k ah2

k = 0 for h1 6= h2, implies that the basis is orthogonal. Utilizing the
unique decomposition h = N

T
g + h̃, for g 2 G(JT), h̃ 2 G(NT) from Equa-

tion (3.19), leads to

V '
M = span

n X

k2Zd

ahke
ikT� : h 2 G(MT)

o

=
M

g2G(JT)

span
n X

k2Zd

ah̃ke
ikT� : h̃ 2 G(NT) +N

T
g

o
.

=
M

g2G(JT)

span
n X

k2Zd

ch̃+NTg+MTk(')e
i(h̃+NTg+MTk)T� : h̃ 2 G(NT)

o
.

Now, for h̃ 2 G(NT), k 2 Zd and g1,g2 2 G(JT), we define the coe�cients

ch̃+NTg1+MTk(⇠g2) :=

(
ch̃+NTg1+MTk(') ,g1 = g2

0 ,g1 6= g2

This definition of ⇠g ensures the simplification of the expression of the basis of
V '
M, which now can be written as

V '
M =

M

g2G(JT)

span
n X

k2Zd

ch̃+NTk(⇠g)e
i(h̃+NTk)T� : h̃ 2 G(NT)

o

V '
M =

M

g2G(JT)

V ⇠g
N ,

which finishes the proof.
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Note that |detJ| determines the number of spaces into which V '
M is decom-

posed, while |detN| determines the dimension of each of the decomposed spaces
V ⇠g
N .

Lemma 4.12 ([3, Lemma 1.30]). Let M,N 2 Zd⇥d be regular with M = JN and
|detM| = m. Let ' 2 L2(Td) generate the m-dimensional M-invariant space V '

M.
Moreover, let the functions

⇠j =
X

y2P(M)

bj,yT (y)' 2 V '
M (4.7)

for j = 1, . . . , |detJ| be given. Then the following statements hold true:

(i) Let j 2 {1, . . . , |detJ|} be fixed. Then the set of translates {T (y)⇠j : y 2
P(N)} is linearly independent if and only if

X

g2G(JT)

|b̂j,h+NTg|
2 > 0, for all h 2 G(NT).

(ii) For arbitrary, but fixed j1 6= j2, the translates of ⇠j1 and ⇠j2 are orthogonal,
i.e., hT (x)⇠j1 , T (y)⇠j2i = 0 for all x,y 2 P(N), if and only if

X

g2G(JT)

b̂j1,h+NTg
¯̂bj2,h+NTg

X

k2Zd

|ch+NTg+MTk(')|
2 = 0, for all h 2 G(NT).

(iii) Fix j 2 {1, . . . , |detJ|}. If the translates {T (y)', y 2 P(M)} form an
orthonormal basis for V '

M, then the translates {T (x)⇠j : x 2 P(N)}, are
orthonormal if and only if

X

g2G(JT)

|b̂j,h+NTg|
2 = |detJ|, for all h 2 G(NT).

(iv) For a fixed j 2 {1, . . . , |detJ|} the vector of translates of ⇠j can be expressed
by

F(N)
�
T (y)⇠j

�
y2P(N)

=

r
n

m
BjF(M)

�
T (y)'

�
y2P(M)

,

where n = |detN| and

Bj :=
⇣
diag

�
b̂j,h+NTg0

�
k2G(NT)

. . . diag
�
b̂j,h+NTg|det J|�1

�
k2G(NT)

⌘
2 Cn⇥m.

(4.8)

Proof.

(i) Equation (4.7) implies by Theorem 4.5, that the Fourier coe�cients of ⇠j
can be written as ch+MTk(⇠j) = b̂j,hch+MTk(') for all h 2 G(MT), k 2 Zd

and a fixed j 2 {1, . . . , |detJ|}. Inserting this expression into the assertion
of Theorem 4.7, we obtain

X

k2Zd

|b̂j,h+MTk ch+MTk(') ch+MTk(')|
2 > 0, for all h 2 G(MT).
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Writing h 2 G(MT) in terms of elements form G(JT) and G(NT), expressed
in (3.19), simplifies the above expression to

X

g2G(JT)

|b̂j,h+NTg ch+NTg(') ch+NTg(')|
2 > 0, for all h 2 G(NT).

The linear independence of the translates of ', yields that

X

g2G(JT)

|b̂j,h+NTg|
2 > 0, for all h 2 G(NT).

(ii) The verification of orthogonality between the translates of ⇠j1 and ⇠j2 is
equivalent to examining whether their Gram matrix is equal to the zero
matrix. By employing Theorem 4.6 and expressing ⇠j1 and ⇠j2 using Equa-
tion (4.7), we establish the validity of the assertion.

(iii) By Theorem 4.9 we know the characteristics of orthonormal translates in
terms of Fourier coe�cients. Utilizing this knowledge in conjunction with
(i), we deduce that for all h 2 G(MT) the following equality holds

|detJ| =
m

n
= m

X

l2Zd

|ch+NTl(⇠j)|
2

= m
X

g2G(JT)

|b̂j,h+NTg|
2
X

z2Zd

|ch+NTg+MTz(')|
2

=
X

g2G(JT)

|b̂j,h+NTg|
2.

(iv) The assertion follows by Theorem 4.1 and ⇠j being a linear combination of
translates of '. Starting with the translates of ',

F(M)
�
T (y)'

�
y2P(M)

=
p
m
⇣X

z2Zd

ch+MTz(')e
i(h+NTz)T�

⌘
, for all h 2 G(MT).

Similarly, the translates of ⇠j can, be written as

F(N)
�
T (y)⇠j

�
y2P(N)

=
p
n
⇣X

z2Zd

ch+NTz(⇠j)e
i(h+NTz)T�

⌘

=
p
n
⇣ X

g2G(JT)

b̂j,h+NTg

X

z2Zd

ch+NTg+MTz(')e
i(h+NTg+MTz)T�

⌘

=

r
n

m

⇣ X

g2G(JT)

b̂j,h+NTg

⌘
F(M)

�
T (y)'

�
y2P(M)

for all h 2 G(NT). The second equality holds by Theorem 4.5. Setting

Bj =
X

g2G(JT)

b̂j,h+NTg,

with Bj as in (4.8), the proof is finished.
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Proposition 4.13 ([18, Lemma 6.5]). Let M = JN 2 Zd⇥d be regular matrices.

If d = 2 and J 2 {J1,J2,J3} from (3.20a), then D?
N 2 V

D?
M

M .

Proof. By (4.5) we have the Fourier coe�cients of both D?
M and D?

N. If D?
N 2

V
D?

M
M , then it holds that there exists (âh)h2G(MT) such that

ch+MTz(D
?
N) = âhch+MTz(D

?
M),

from Theorem 4.5. Thus, our goal is to show that the coe�cients âh exist for
all h 2 G(MT). By Lemma 4.3 we know that ch(D?

M) = ch+MTz(D
?
M) for

h,h+M
T
z 2 K(MT) and z 2 Zd. Additionally, since h,h+M

T
z 2 K(MT),

we have that rM(h) > 0 due to the construction. We choose to work with
Q = M

�T
K(MT) instead of K(MT), where one step M

T
hej corresponds to one

unit step ej for j = {1, 2} independent of M, where hej is the basis vector of
G(MT) in (3.10). Then consider an element v = M

�T
h 2 Q with h 2 K(MT),

that has at least one component modulus 1
2 , i.e., v lies on at least one border of

Q. Further, the problem of showing that ch(D?
N) = ch+MTz(D

?
N) is reduced to

showing that rN(h) = rN(h+M
T
z). This will be done separately for each of the

three matrices by verifying that when v is on a border of Q, then v ± ej is also
on the same number of borders of Q for j = {1, 2}.

Let J = J1. We first study the case where an arbitrary v whose second
component has a modulus of 1

2 , placing it on the horizontal border of Q. Then
v,v ± e2 2 Q and correspondingly h,h ±M

T
e2 2 K(MT). By evaluating rN(h)

and rN(h±M
T
e2), we obtain

h
T
N

�1
ej = v

T
MN

�1
ej = v

T
Jej

(h±M
T
e2)

T
N

�1
ej = v

T
Jej ± e

T
2 Jej,

For the last term, we have

e
T
2 Jej =

(
0 if j = 1,

1 if j = 2,

Thus, both h,h+M
T
e2 2 K(MT), implying that rN(h) = rN(h±M

T
e2). This

is illustrated in Figure 4.3a, where the green point represents v and the dashed
arrow indicates the unit step e2. We observe that after taking a single step e2,
we remain on the border of K(NT) and arrive at the other green point, v + e2.
We conclude that rN(h) = rN(h+M

T
z) = 1. In the scenario where the first

component of v has a modulus of 1
2 , placing v on the vertical border of Q, we

have M
T
v /2 K(NT). This case is represented by the yellow point in the same

figure. Consequently, ch+MTz(D
?
N) = 0 for all z 2 Zd. This completes the proof

for J1.
Considering J = J2 we argue in the same way, only with e1 and e2 changing

roles.
For J = J3, we only need to consider the corners of the rotated scaled square

J
�TQ. These corners are the only points that reside on the border ofQ, as depicted

in Figure 4.3b. The considered elements are characterized by one component
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(a) J = J1. (b) J = J3.

Figure 4.3: Dashed square is [�1
2 ,

1
2 ]

2, while the grey rectangle is J
�T[�1

2 ,
1
2 ]

2.
The green points represent an arbitrary v and v± ej for the case when it’s on the
boundary. The yellow point represents an arbitrary v on the vertical border of Q.

having a modulus of 1
2 and the other component being 0. By performing the same

calculations as before, while considering the additional property

e
T
k Jej =

(
1 if k = j

0 if k 6= j,

the equality rN(h) = rN(h+M
T
z) is validated for J3.

In the case where v is on no boundary of K(NT) for any of the given matrices
J, one unit step ej for j 2 {1, 2} will place the element outside of Q. Thus, ch(D?

N)
is zero for the corresponding h+M

T
ej, by definition.

Consequently, we can find a matrix â = (âh)h2G(MT) relating the coe�cients of
D?

N and D?
M as stated in Theorem 4.5. By rearranging the equality, we arrive at

âh =

(p
m
n 2

(rM(h)�rN(h))/2 if h 2 K(NT) \ G(MT),

0 otherwise.

Remark 4.14. For the matrices in Equation (3.20b) the inclusion D?
N 2 V

D?
M

N fails.
This is exemplified in Figure 4.4a, where we see that the periodicity rN(h) =
rN(h+M

T
z) does not hold for all v = N

�T
h, with h 2 K(NT) and J = J4.

We adapt the function D?
N to D̃?

N such that ch(D̃?
N) = ch+MTz(D̃

?
N) is obtained

for all h 2 K(NT). This allows us to use D̃?
N as a function to generate one of the

decomposed spaces of V
D?

M
M in Theorem 4.11, as D̃?

N 2 V
D?

M
M . A visualization of

this adaption is given in Figure 4.4b, where the yellow lines represent the extension
of the orthonormal Dirichlet kernel, taking the same value as its black neighbor
line. Note that these adapted functions are not proper Dirichlet kernels, as they
do not fulfill the definition in (4.5).
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(a) J = J4 (b) Adaption when using J4

Figure 4.4: Dashed square is [�1
2 ,

1
2 ]

2, while the grey rectangle is J�T[�1
2 ,

1
2 ]

2. The
green points represent an arbitrary v and v ± ej. The yellow lines represent the
extension of the orthonormal Dirichlet kernel D?

N to the adapted function D̃?
N.

While the Theorem 4.11 proves the existence of an orthogonal decomposition
of V '

M, the subsequent theorem presents a condition to verify whether a space V  
N

serves as the orthogonal complement of V ⇠
N in V '

M, specifically when |detJ| = 2.

Theorem 4.15 (Condition for orthogonal decomposition, [18, Theorem 4.3]).
Let the matrices M, N, J 2 Zd⇥d be regular, such that M = JN, with |detM| =
m, |detN| = n and m = 2n. Let the functions ', ⇠ 2 L2(Td) generate the
m-dimensional M-invariant space V '

M and the n-dimensional N-invariant space
V ⇠
N, respectively. Further, let ⇠ 2 V '

M with (âh)h2G(MT) such that ch+MTk(⇠) =
âhch+MTk(') for all h 2 G(MT), k 2 Zd. Then the space V ⌘

N is orthogonal
complement of V ⇠

N in V '
M, i.e., V '

M = V ⇠
N � V ⌘

N, if and only if there exist numbers
�h 2 C\{0} for h 2 G(MT) with

�h = ��h+NTg, for all g 2 G(JT)\{0}, (4.9)

satisfying

ck(⌘) =
�k mod MT ¯̂ak+NTg mod MTP

l2Zd

|ck+MTl(')|2
ck('), for all k 2 Zd. (4.10)

Proof. First, assume V ⌘
N is orthogonal complement of V ⇠

N in V '
Mwhich implies V '

M =
V ⌘
N � V ⇠

N. Theorem 4.5 guarantees the existence of a vector (b̂h)h2G(MT) such

that ch+MTk(⌘) = b̂hch+MTk(') for all h 2 G(MT). Further, we know that the
translates {T (y)⌘ : y 2 P(N)} are orthogonal to V ⇠

N by assumption. Thus, by
Theorem 4.12(ii), we can write for every h 2 G(MT) that

hT (y)⌘, T (x)⇠i =
X

g2G(JT)

âh+NTg
¯̂bh+NTg

X

k2Zd

|ch+NTg+MTk(')|
2 = 0,
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where x,y 2 P(N). Utilizing the uniqueness of the element g 2 G(JT)\{0},
because |detJ| = 2, we can express the above equation as follows

âh
¯̂bh

X

k2Zd

|ch+MTk(')|
2 + âh+NTg

¯̂bh+NTg

X

k2Zd

|ch+NTg+MTk(')|
2 = 0

holding for all h 2 G(NT). Complex conjugating the equation and rearranging it
when âh, âh+NTg 6= 0, we arrive at

b̂h
¯̂ah+NTg

X

k2Zd

|ch+MTk(')|
2 = �

b̂h+NTg

¯̂ah

X

k2Zd

|ch+NTg+MTk(')|
2.

Denoting the left-hand side by �h and the right-hand side as �h+NTg the required
condition in (4.9) is fulfilled with

�h =
b̂h

âh+NTg

X

k2Zd

|ch+MTk(')|
2 and �h+NTg =

b̂h+NTg

âh

X

k2Zd

|ch+NTg+MTk(')|
2.

For the case where either âh or âh+NTg is zero, the � that is well defined is
used to determine �h or �h+NTg using the condition in Equation (4.9). Both âh
and âh+NTg does not vanish simultaneously, which is ensured by the full rank of

V ⇠
N. This guarantees that either �h or �h+NTg is well defined when condition in

Equation (4.10) is fulfilled.
Conversely, we assume that there exists numbers �h satisfying (4.9) and pre-

form the reverse steps.

The preceding theorem lets us determine the coe�cients of ck(⌘) with respect
to the basis of V '

M, when ck(⇠) is fixed.

Corollary 4.16 ([18, Corollary 4.4]). Let M,J,N 2 Zd⇥d be regular matrices
with M = JN and |detJ| = 2. The orthogonal complement of V ⇠

N in V '
M is an

N-shift invariant space. Further, there is a function  2 L2(Td), the translates of
which form a basis of V '

M  V ⇠
N.

Proof. If we choose

�h = 1 h 2 G(NT) and �h+NTg = �1 h 2 G(NT) +N
T
g

with g 2 G(JT)\{0}, the statement holds true by Theorem 4.15.

To construct a so called wavelet  2 V ⌘
N we are free to choose the values �h

with h 2 G(NT) as long as (4.9) is fulfilled, yielding the rest of the coe�cients.
By applying the following theorem, we can construct a wavelet ⌘ who’s translates
are orthonormal.

Theorem 4.17 ([3, Theorem 1.34]). Let M,J,N 2 Zd⇥d be regular matrices with
M = JN and |detJ|. Let ', ⇠, ⌘ be related as in Theorem 4.15 with V '

M = V ⇠
N�V

⌘
N.

Let �h for h 2 G(MT) satisfy the condition in Equation (4.9). Further, let the
translates {T (x)' : x 2 P(M)} and {T (x)⇠ : y 2 P(N)} be orthonormal bases
for V '

M and V ⇠
N respectively. Then the translates of {T (y)⌘ : y 2 P(M)} are

orthonormal if and only if

|�h| =
1

m
, for all h 2 G(MT).
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Proof. Applying ch+MTz(⌘) = b̂hch+MTz(') and the equivalent assertion of or-
thonormality of translates stated in Theorem 4.9, to Equation (4.10), we get

b̂h =
�h âh+NTgP

k2Zd |ch+MTz(')|2
= m�hâh+NTg, h 2 G(MT).

Now, let g 2 G(JT)\{0}. By Lemma 4.12(iii) the set of translates {T (x)⌘ : x 2
P(M)} are orthonormal if and only if for all h 2 G(NT) it holds that

2 = |detJ| =
X

g2G(JT)

|b̂j,h+NTg|
2 = |b̂h|

2 + |b̂h+NTg|
2

= m2
|�h|

2(|âh+NTg|
2 + |âh|

2) = 2m2
|�h|

2,

which completes the proof.

Proposition 4.18 ([18, Theorem 6.6]). Let ' = D?
M and ⇠ = D?

N or D̃?
N with

coe�cients (ay)y2P(M) with respect to D?
M and use the setup from Theorem 4.15.

Further, choose

�h =
e�2⇡ihTN�1y

m
and �h+NTg =

e�2⇡i(h+NTg)TN�1y

m

for h 2 G(MT), g 2 G(JT)\{0} and y 2 P(J)\{0}. Then a wavelet  with
orthonormal translates is generated, whose Fourier coe�cients are given as

ck( ) =

(
âk+NTg mod MTe�2⇡ikTN�1yck(D?

M) for k 2 K(MT),

0 otherwise.

Proof. We show that the chosen �h satisfy the condition in (4.9) for all h 2 G(MT).

m�h+NTg = e�2⇡i(h+NTg)TN�1y = e�2⇡ihTN�1ye�2⇡igTNN�1y

= e�2⇡ihTN�1y
· (�1) = �m�h

The translates of D?
M and D?

N are known by Proposition 4.10 to be orthonor-
mal, and thus the orthonormality of the translates of  follows directly from
Theorem 4.17.

For the two functions D?
N and  to be orthonormal translates the following

must hold true

0 = hck(D
?
N), ck( )i =

X

k2Zd

ck(D
?
N)ck( )

=
X

h2G(MT)

âhb̂h
X

z2Zd

|ch+MTz(D
?
M)|2

=
X

h2G(MT)

âhb̂h.

Note that there are several ways of choosing the �h such that the condition in (4.9)
is satisfied and thus making the foregoing equation hold true, i.e., the constructed
wavelet  in the foregoing proposition is not unique.
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Example 4.19. We use the matrices M = A3, J = J2 and N = [ 8 2
0 16 ]. From the

notation of Theorem 4.15, let ' = D?
M, ⇠ = D?

N and ⌘ =  from Proposition 4.18.
We have the relation

ch+MTz(D
?
N) = âhch+MTz(D

?
M),

ch+MTz( ) = b̂hch+MTz(D
?
M),

h 2 G(MT), z 2 Zd.

In Figure 4.5 we see ck(D?
N) and real and imaginary parts of the wavelet ck( ) for

k 2 Zd. For the indices k 2 Zd which are not on the vertical border of K(NT), the
product of the coe�cients ck(D?

N) and ck( ) is zero as one of the coe�cients is
zero. Considering the indices k on the vertical border of K(NT), the corresponding
product of coe�cients of the indices k and k+N

T
g for g 2 G(JT)\{0}, have

opposite signs, i. e.

ck(D
?
N)ck( ) = �

�
ck+NTg(D

?
N)ck+NTg( )

�
.

This property is gained by construction of the wavelet  in Proposition 4.18, as it
then fulfills the condition in (4.9). We study one pair of indices on the border of
K(NT), and have that g = (0, 1)T which yields

k =(4,�6)T ck(D
?
N)ck( ) ⇡ 0.001495� 0.003609im

k+N
T
g =(�4,�8)T ck+NTg(D

?
N)ck+NTg( ) ⇡ �0.001495 + 0.003609im,

and we see that the sum of the two products is zero. This holds for every such
pair of indices k and k+N

T
g, and thus
X

k2Zd

ck(D
?
N)ck( ) = 0,

i.e., the space generated by the wavelet  is orthogonal to the space generated by
D?

N.

4.3 Properties of Multivariate Scaling

In this paragraph, we examine how we can characterize the subpattern P(N) when
we know P(M), additionally how we can extend a subpattern P(N) to P(M), with
M = JN. Throughout the section the bases of the patterns P(M), P(N) and
P(J) will be referred to as {xe1 , . . . ,xedM

}, {ye1 , . . . ,yedN
} and {ze1 , . . . , zedJ},

respectively and are known by (3.6).

Lemma 4.20 (Projection, [4, Lemma 2]). Let M,J,N 2 Zd⇥d be regular matrices
such that M = JN. Then there exists a matrix P 2 NdM⇥dN

0 such that for any
w 2 P(N) there exists µ 2 EN and � 2 EM such that

w =
dNX

k=1

µkyek =
dMX

l=1

�lxel , with � = Pµ.

Proof. Let M = JN. Then P(N) ⇢ P(M) implies that an element of P(N) also
is an element of P(M). By (3.7) we have that for an arbitrary w 2 P(N) can be
written as a linear combination of the basis vectors of P(N), i.e.,

w =
dNX

k=1

µkyek ,
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(a) (ck(D?
N))k2Zd . (b) (âh)h2G(NT).

(c) Re
�
(ck( ))k2Zd

�
. (d) Re

�
(b̂h)h2G(NT)

�
.

(e) Im
�
(ck( ))k2Zd

�
. (f) Im((b̂h)h2G(MT)).

Figure 4.5: To the left are the Fourier coe�cients of D?
N and  . To the right are

the coe�cients of D?
N and  N with respect to D?

M, in Fourier domain.
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for a unique vector of coe�cients µ 2 EN defined in (3.8). Since P(N) ⇢ P(M),
every basis vector yek of P(N) can be expressed in terms of a basis vector xek of
P(M), i.e., there exists

pk = (pl,k)
dM
l=1 2 NdM

0 such that yek =
dMX

l=1

pl,kxel , k = 1, . . . , dN.

Inserting this reformulation into the linear combination of w we get that

w =
dNX

k=1

µkyek =
dNX

k=1

µk

dMX

l=1

pl,kxel =
dMX

l=1

dNX

k=1

µkpl,kxel :=
dMX

l=1

�lxel .

The last equality provides the relation that � = Pµ, where P = (pl,k)
dM,dN
l=1,k=1 2

NdM⇥dN
0 .

Theorem 4.21 (Multivariate scaling property, [4, Theorem 3]). Let J,N 2 Zd⇥d

with M = JN such that the dimension dJ = 1. Further, let the elementary
divisors of M,N,J be denoted as "Mj , "Nj , "

J
j , respectively for j = 1, . . . , d. Then

it holds that

1) for N�1
ze1 /2 span{ye1 , . . . ,yedN

}, that

a) dM = dN + 1

b) there exists a xel 2 {xe1 , . . . ,xedM
} so that

N
�1
ze1 = �xel mod I, � 2 {1, . . . , "Jd � 1} and "Ml = "Jd .

2) for N�1
ze1 2 span{ye1 , . . . ,yedN

}, that

a) dM = dN

b) there exits decompositions

N
�1
ze1 =

dMX

l=1

�lxel , � 2 EM and N
�1
ze1 =

dNX

k=1

µkyek , µ 2 Qd

which fulfill

� =
1

"Jd
Pµ, P 2 NdM⇥dM

0 .

Proof. Since dJ = 1, we know that P(J) is spanned by one vector ze1 . N
�1
ze1 2

P(M) since Jze1 = MN
�1
ze1 2 Zd.

1) Let N�1
ze1 /2 span{ye1 , . . . ,yedN

}, i.e., we cannot write N
�1
ze1 as a linear

combination of the yej . Then the extension of the set

span{ye1 , . . . ,yedN
} ⇢ span{ye1 , . . . ,yedN

,N�1
ze1},

holds without an equality. Hence, the extended set is linearly independent
and the dimension of the extension is dM = dN + 1.
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This also applies when restricting the weighted sums to the prefactors from
the set of indices EN and EN⇥EJ, respectively. Further, we can decompose
an element x 2 P(M) by Lemma 3.7 and express it in terms of the basis
vectors of P(N) and P(J) as follows

x =
dNX

k=1

µkyek + �N�1
ze1 ,

for a unique µ 2 EN and � 2 EJ. As a result of dJ = 1, the second term is
comprised of a single summand. The inclusion P(N) ✓ P(M) implies that
all cycles of P(N) also is a cycle in P(M). Hence, there exists exacly one
basis vector xl which spans this new cycle.

2) On the other hand, let N
�1
ze1 2 span{ye1 , . . . ,yedN

}. Then the element
N

�1
ze1 2 {xe1 , . . . ,xedM

} can be written as

N
�1
ze1 = ✓

dNX

k=1

µkyek ,

for unique coe�cient vectors µ 2 EN and ✓ 2 EJ. This decomposition shows
that dM = dN.

By definition of the basis vectors, (3.6), and the construction of R from the
Smith normal from M = QER in Equation (2.7), we have that "Jdze1 2 Zd.
Furthermore, we have the decomposition

"JdN
�1
ze1 =

dNX

k=1

µkyek ,

for a unique µ 2 EN. Combining the precieding two equations yields

N
�1
ze1 =

dMX

l=1

�lxel =
1

"Jd

dNX

k=1

µkyek =
1

"Jd

dNX

k=0

µk

dMX

l=1

pl,kxel ,

for a unique � 2 EM. The last equation is exacly the expression in b) and
completes the proof.

The foregoing theorem provides insights into the extension of P(N) to P(M)
in the scenario where M = JN and dJ = 1. In the case where |detJ| = 2, a cycle
of length 2 is either appended to the existing cycles or one of the existing cycles
is doubled in length.

Example 4.22. We will now do an example for the two di↵erent cases of Theo-
rem 4.21. Both scenarios are visualized in Figure 4.6.

1) N
�1
ze1 /2 span{ye1 , . . . ,yedN

}:

Such a case arises for the matrices

J1 =


2 0
0 1

�
, N =


1 0
0 16

�
, such that M = JN =


2 0
0 16

�
.

This case is visualized in Figure 4.6a.
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(a) N�1ze1 /2 span{ye1 , . . . ,yedN
} (b) N�1ze1 2 span{ye1 , . . . ,yedN

}

Figure 4.6: Dark yellow is P(N). The light yellow and dark yellow is P(M). Red
vectors are the vectors N

�1
ze1 , the extended cycle. The black vectors represent

the basis vector of P(N), as does the blue vector in the figure on the right-hand
side.

a) We extend P(N) to P(M) using the vector N
�1
ze1 as a new basis

vector, thus dM = dN + 1.

Figure 4.6a shows that the pattern of P(N) has the dimension dN = 1
spanned by one vector (black), i.e., every element lies on a line. The
pattern P(M) is spanned by the additional vectorN�1

ze1 (red), making
the pattern of P(M) having dimension dM = 2.

b) For this case we have that the P(M) is spanned by span{xe1 ,xe2} =

span{
⇥
1
2 , 0

⇤T
,
⇥
0, 1

16

⇤T
}. For l = 1 it holds that

N
�1
ze1 =

⇥
�

1
2 , 0

⇤T
= �

⇥
1
2 , 0

⇤T
mod I, for � = 1,

and we have "M1 = "J2 = 2. This adds a second cycle and extends P(N)
to P(M).

2) N
�1
ze1 2 span{ye1 , . . . ,yedN

}:

The following situation occures for the matrices

J1 =


2 0
0 1

�
, N1 =


8 2
0 16

�
, such that M = JN =


16 4
0 16

�
= A3.

The basis vector of P(J) is ze1 = [�1
2 , 0]

T, yielding N
�1
ze1 =

⇥
�

1
16 , 0

⇤T
.

The case is visualized in Figure 4.6b.

a) The dimension of P(M) is dM = 2, as it is spanned by two vectors (black
and blue). Thus, the pattern of P(N) is not extended, as dN = dM
already.

b) We project the elements of P(N) onto P(M) by using Lemma 4.20.
This tells us how to write elements of P(N) in terms of P(M). In
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Figure 4.6b we observe that the pattern of P(N) is a subset of P(M),
this scenario scales an already existing cycle, illustrated by the red
vector.

4.4 The Fast Decomposition Algorithm

The matrix Bj in Lemma 4.12(iv) is a matrix representation of the fast decompo-
sition algorithm. In the following section we will describe this algorithm in greater
detail, as done in [4, Section 5.3].

Let M be a regular integer matrix with the given decomposition M = JN and
the functions ', ⇠1, . . . , ⇠|detJ| such that

V '
M =

|detJ|M

j=1

V
⇠j
N ,

⇠j =
X

y2P(M)

bj,yT (y)' 2 V '
M, j = 1, . . . , |detJ|.

Using any pair of bases {he1 , . . . ,hedM
} of G(MT) and {ke1 , . . . ,kedN

} of G(NT),
we can decompose any function

f =
X

y2P(M)

ayT (y)' 2 V '
M.

The decomposition consists of the following steps:

1) Calculate â =
p
mF(M)a and b̂j =

p
mF(M)bj for j = 1, . . . , |detJ|.

2) Determine the matrix P relating the two sets of basis vectors {he1 , . . . ,hedM
}

of G(MT) and {ke1 , . . . ,kedN
} of G(NT) by using the projection of

Lemma 4.20.

3) For each basis vector of the set {ge1 , . . . ,gedJ
} of G(JT), deduce the decom-

position

N
T
gel =

dMX

i=1

qi,lhei

�����
G(MT)

(qi,l)
dM
i=1 2 EM, l = 1, . . . , dJ.

Now, address NT
g 2 G(MT), g 2 G(JT) using �g 2 EM.

4) Iterating through all µ 2 EN and calculate � = Pµ|EM , with P from step
2, thus

d̂j,h =
1p

|detJ|

X

g2G(JT)

b̂j,h+NTgâh+NTg j = 1, . . . , |detJ|, h 2 G(NT).

Use �+�g|EM to address the indices of â and b̂ and µ to address the indices
of d̂j,h.
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5) Lastly, for each d̂j, perform the inverse Fourier transform, such that

f =
|detJ|X

j=1

X

y2P(N)

dj,yT (y)⇠j

and arrive at the decomposed functions of f .

When |detJ| = 2 the two functions ⇠1 and ⇠2 serve to characterize low and high
frequency components, respectively, i.e. a function g1 2 V ⇠1

N is the low frequency
part of f , while g2 2 V ⇠2

N is the high frequency part of f . This algorithm represents
a dyadic fast wavelet transform on a pattern. It is possbile to continue to further
decompose the space V ⇠1

N , then only step 2-4 are necessary to compute on b̂1.
Analogously, the function g1 can be further decomposed, using by using d̂1. This
process is called a multiresolusion analysis, and can be repeated until the desired
level of decomposition is reached. Multiresolusion analysis is discussed in greater
detail in Section 1.5 of [3].

Both the number of spaces |detJ| and the dimensionality of the problem d
have an impact on the complexity of the algorithm, even though they remain
constant with respect to m = |detM|. In the initial step, we execute |detJ| + 1
Fourier transforms on a pattern of size m. In the concluding stage, we carry
out |detJ| inverse Fourier transforms on a pattern of size n = m

|detJ| . According
to Section 3.3, the complexity of the Fourier transform on a pattern is given by
cFFTm logm, where cFFT is a constant dependent on the multiplication speed of
the specific machine. Combining the required number of arithmetic operations for
the Fourier transform in the first and last step yields a complexity of at most

(|detJ|+ 2)cFFTm logm.

Step 2 and 3 involve solving dN and dJ linear systems of equations with up to d
unknowns, respectively. The complexity of solving these linear systems is therefore
2c1d4 = O(d4), where c1 represents a constant the depends on the algorithm being
used.

Finally, in step 4 we compute |detJ||G(NT)| = m coe�cients. Each coe�cient
is obtained by summing |detJ| values. This summation process combines the
contributions from each of the |detJ| values to yield the final coe�cient value.
Considering the complexity of this step, it can be accomplished in c2|detJ|m =
O(m) compoutations.

Overall, the complexity of the algorithm of the fast wavelet transform is ex-
pressed as

(|detJ|+ 2)cFFTm logm+ 2c1d
4 + c2|detJ|m+O(m) = O(m logm),

where c1 and c2 are constants that rely on the specific implementation. Notably,
they are independent of m, |detJ|, d, and n.

In the case where the input data already is in Fourier domain and the output
is to be in Fourier domain, the first and last step of the algorithm is omitted. This
again reduces the complexity of the wavelet transform to be carried out in O(m)
calculation steps. To require the input and output to be in Fourier domain is
advantageous when performing a multiresolution analysis on the Fourier domain,
as this process also only requires repetition of step 2-4 [3, Section 3.3].
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Numerics

5.1 Interpolation

For a translation invariant space V '
M, an interpolation problem arises when we aim

to find a unique function � 2 V '
M, satisfying the condition f(2⇡y) = �(2⇡y) for all

y 2 P(M). The function f must take function values at minimum for the elements
on the pattern P(M), i.e., f(2⇡y) must exist for all y 2 P(M). Determining the
function � is equivalent to finding the coe�cients (ay)y2P(M), describing � 2 V '

M,
by solving a system of linear equations. Using the fundamental interpolant defined
in [3, Definition 2.1] as

IM(2⇡y) =

(
1, y = 0,

0, y 2 P(M) \ {0},

we can project the function f onto the space V '
M. The projection yields a system

of equations we can solve for the coe�cients (ay)y2P(M).
We first look at when the fundamental interpolant IM 2 V '

M exists and is
unique.

Lemma 5.1 ([3, Lemma 2.2]). LetM 2 Zd⇥d be a regular matrix, and ' 2 L2(Td).
Then the fundamental interpolant IM 2 V '

M exists and is unique if and only if

X

z2Zd

ch+MTz(') 6= 0, for all h 2 G(MT).

Proof. First, assume that the fundamental interpolant IM 2 V '
M exists. By Theo-

rem 4.5 the functions IM and ' are related by

ch+MTz(IM) = âhch+MTz('), h 2 G(MT), z 2 Zd.

Further it holds that
X

z2Zd

ch+MTz(IM) = âh
X

z2Zd

ch+MTz(').

41
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Applying the discrete Fourier transform in (3.13) and the Aliasing formula stated
in (3.15) to the definition of IM yields

X

z2Zd

ch+MTz(IM) =
1

m
. (5.1)

Combining the last two equations we arrive at the assertion of the lemma.
Conversely, assume that

P
z2Zd ch+MTz(') 6= 0, for all h 2 G(MT). Further,

let the Fourier coe�cients of a function g be given as

ck(g) =
ck(')

m
P
z2Zd

ch+MTz(')
, for all k 2 Zd. (5.2)

Then g 2 V '
M if

âh =
1

m
P
z2Zd

ch+MTz(')
, for all h 2 G(MT). (5.3)

Moreover, g is a fundamental interpolant IM to the pattern P(M) since it satisfies
Equation (5.1), which (5.2) also states to be unique.

Proposition 5.2. There exists a fundamental interpolant IM 2 V
D?

M
M .

Proof. Using a similar approach as in the proof of Proposition 4.10, we have that
for all h 2 G(MT)

X

z2Zd

ch+MTz(D
?
M) =

X

z2Zd

1
p
m
2�r(h+MTz)/2 =

X

z2Zd

1
p
m
2�r(h)/2

= 2r(h)/2ch(D
?
M) =

1
p
m
6= 0.

By Theorem 5.1 we conclude that there exists a fundamental interpolant IM 2

V
D?

M
M .

When given a function f sampled on at least the pattern P(M), Theorem 5.1
provides the change of basis of f from using the translates of IM as a basis, to the
translates of D?

M as a basis. This is expressed as

g(x) =
X

y2P(M)

ayT (y)IM(x) =
X

y2P(M)

ãyT (y)D
?
M(x) ⇡ f(x),

where (ãy)y2P(M) contains the coe�cients of f in terms of the translates of D?
M.

These coe�cients are calculated by Equation (5.3).
Under the assumption that the fundamental interpolant IM 2 V '

M exists, we
can define the interpolation operator LM as

LMf :=
X

y2P(M)

f(2⇡y)T (y)IM,

which holds for any f 2 L2(Td) when f(2⇡y) exists for all y 2 P(M). Further,
the Fourier coe�cients of the LMf are given by

ck(LMf) = m
�X

z2Zd

ck+MTz(f)
�
ck(IM), (5.4)

when using the same approach as in the previous lemma. For more on the inter-
polation and the interpolation error, see [3, Section 2.3].
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5.2 Implementation

We present the implementation of functions needed to execute the algorithm de-
scribed in Section 4.4 using the programming language Julia, v1.8.1, [6]. To
ensure the e�ciency of the code, we exploit existing packages. For the computation
of the Smith normal form, (2.7), we employ the IntegerSmithNormalForm.jl

1

package, v0.1.0, while for the fast Fourier transform, we use FFTW.jl, v1.6.0,
[13], and for o↵set arrays, we rely on O↵setArrays.jl, v1.12.9, [7]. Using these
packages reduces the risk of errors and ine�ciencies arising from the complexity
of the underlying algorithms.

The code developed for this thesis built upon the foundation estab-
lished during the earlier work of the specialization project [21]. Func-
tions like modM(x, M), pattern(M) and generating_group(M) were ini-
tially implemented during the specialization project and subsequently ex-
panded upon in this thesis. This includes introducing functions such as
coefficients_in_space!(M, ahat, ck_phi, ck_xi), generate_wavelet(N,

J, ahat, ck_phi) and wavelet_decomposition(M, J, ahat, ck_f, ck_phi)

along with auxiliary functions and plotting functions, to enhance the functionality
of the code. These functions are to be described in this section.

Prior to implementing the algorithm for the fast wavelet transform, we define
some auxiliary functions and compute the Fourier coe�cients of the function D?

M

from (4.4), whose translates span the translation invariant space V
D?

M
M from (4.1).

The function modM(x, M) computes an element of the generating group G(M)
of M. Given an input vector x belonging to the lattice ⇤(M) such that x = M

�1
k

for some k 2 Zd, we determine y = x mod 1, which is in the pattern P(M) of M,
by definition. Finally, we compute h = My, an element of the generating group
G(M) of M. To ensure compatibility with the code implementation, we convert
the components of h to integer values. This function, denoted by modM(x, M),
corresponds to the the modulo operation +|G(M) described in (3.1).

The function pattern(M) computes each element in the pattern P(M) of M,
as described in (3.9). It returns a matrix containing all the elements in the pattern
P(M) of M, sorted in lexicographical order, that is, the returned matrix is of size
"1, · · · , "d and each element of size d. Further, generating_group(M) elementwise
computes M * y for y in pattern(M) and returns a matrix containing all the
elements in the generating group G(M) of M, sorted in lexicographical order, that
is, the returned matrix is of the same form as pattern(M).

We define a function ck_Dirichlet_kernel(k, M), computing the val-
ues as specified in Equation (4.5). Additionally, we implement a function
ck_Dirichlet_kernel(M), which takes a regular integer matrix M as input. This
function constructs a rectangular matrix P, whose size is determined by

max
l��MT

⇥
±

1

2
,±

1

2

⇤
ej

��
m
+ 1 for j = {1, 2},

where dxe denotes the ceiling function and 1 is added as a precaution. Moreover,
we introduce the O↵setArray OP, which is derived from P. The O↵setArray changes
the indexing of the matrix P such that the center of the matrix now has the index

1Code available at: https://github.com/dmerkert/IntegerSmithNormalForm.jl.git

https://github.com/dmerkert/IntegerSmithNormalForm.jl.git
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[0,0]. This makes the indices of ck_Dirichlet_kernel(M) correspond to the
notation in (4.5).

Next, we write a function called coefficients_in_space!(M, ahat,

ck_phi, ck_xi) that computes the coe�cients of ck_xi with respect to ck_phi,
the Fourier coe�cient of the function spanning V '

M. The coe�cients are computed
in Fourier domain, using the formula from Theorem 4.5. The input parameter
ahat is included to fix the size of the output matrix a_hat. We rearrange the
formula from the theorem into the following

âk mod MT = âh =
ck(⇠)

ck(')
, for h 2 G(MT),

where k mod M
T is computed using the modM(k,M’) function, where M’ being

the transpose of the matrix M in Julia. The coe�cients are computed by iter-
ating through each index k of the matrix ck_Dirichlet_kernel(M). For each
index, we determine the corresponding vector h = k mod M

T and decompose
h into its basis vector using the decompose_into_basis(h, M’) function. This
decomposition yields the coe�cients µj described in (3.11). Finally, the Fourier
coe�cients âk mod MT of ⇠ with respect to ' are computed and returned using the
aforementioned formula.

In Remark 4.14 the matrices in (3.20b) were discussed, highlighting that they

do not generate proper Dirichlet kernels D?
N and thus are not contained in V

D?
M

M .
The behavior of coefficients_in_space!(M, ahat, ck_phi, ck_xi) can be
modified in two ways if the chosen ⇠ /2 V '

M. It can either be set to generate an
adapted version ⇠̃ of ⇠, such that ⇠̃ 2 V '

M holds true, or it can be set to raise an
error.

It is worth noting that the implemented functions mentioned thus far can me
applied to any function ' and ⇠ suitable for decomposition, as long as ⇠ 2 V '

M,
or alternatively ⇠̃ 2 V '

M. However, when it comes to generating the wavelet, it
depends on the specific choice of ' and ⇠. Therefore, the implemented function
generate_wavelet(N, J, ahat, ck_phi) is only applicable in the specific case
where ' = D?

M and ⇠ = D?
N or D̃?

N, in accordance with Proposition 4.18.
Using the �h from Proposition 4.18 to generate the wavelet ⌘ =  , we

compute the coe�cients of  in Fourier domain in the function denoted as
generate_wavelet(N, J, ahat, ck_phi). Similar to the previous function, we
iterate through the indices of the matrix ck_Dirichlet_kernel(M) and employ

Equation (4.10) to compute the coe�cients of  with respect to the basis for V
D?

M
M

in Fourier domain.
To reconstruct the function f from its Fourier coe�cients with respect to the

translates of ', we write a function denoted as fourier_coeff_xi(M, ahat,

ck_phi), where ahat is the coe�cients of f with respect to the translates of
ck_phi. The function performs the computations

ck(f) = âk mod MTck('),

for all indices k of the matrix ck_phi, by Theorem 4.5. The index
of ahat is computed by utilizing the functions h = modM(k, M’) and
decompose_into_basis(h, M’).
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To implement the interpolation scheme described in Section 5.1, we sam-
ple a given function f on the pattern ensuring the existence of the func-
tion values f(2⇡y) for y 2 P(M). We denote this sampling function
sample_on_pattern(M, f). Further, we perform the Fourier transform on these
coe�cients, naming the coe�cients ahat_f. Subsequently, we determine ck(f) us-
ing Equation (5.3), which yields the coe�cients â of f in the space V '

M, in Fourier
domain. Lastly, we multiply by m, according to (5.4) and get the correct scale.
We refer to the coe�cients with respect to the translates of ' as ahat_f_DM.

We now have the functions that are necessary to perform the decomposi-
tion of a function f 2 V '

M into g1 2 V ⇠
N and g2 2 V  

N , when ' = D?
M

and ⇠ = D?
N. The function carrying out the fast wavelet transform of f is

named wavelet_decomposition(M, J, ahat, ck_xi, ck_phi). For a given
function f , the function coefficients_in_space!(M, ahat, ck_phi, ck_xi)

is applied to ahat_f with respect to the basis of V
D?

M
M . We denote these coef-

ficients as b1hat. The coe�cients b2hat are determined by applying the func-
tion generate_wavelet(N, J, b1hat, ck_phi) with respect to the translates of
 . These computations correspond to the first step of the algorithm. The sub-
sequent three steps use the function decompose_into_basis to determine the
basis vectors of G(NT) and G(MT), and also to determine the � and �g for
g 2 G(JT)\{0}. Lastly, we determine the d̂1 and d̂2 by using b1hat and b2hat,
respectively, as described in step 4. These coe�cients are denoted as d1hat

and d2hat, respectively. The function wavelet_decomposition(M, J, ahat,

ck_xi, ck_phi) returns the four coe�cients b1hat, b2hat, d1hat and d2hat,
respectively, in Fourier domain, such that ck_xi = b1hat * ck_phi, ck_psi =

b2hat * ck_phi, ck_g1 = d1hat * ck_xi and ck_g2 = d2hat * ck_psi. The
coe�cients are returned in Fourier domain, enabling their direct utilization within
a multi-level decomposition scheme, as elaborated in Section 4.4. With this out-

put, we can construct the functions g1 2 V
D?

N
N and g2 2 V  

N .
Prior to performing step 5, i.e., the inverse Fourier transform, we zero pad the

Fourier coe�cients of functions g1 and g2. This process e↵ectively increases the
number of sampling points without altering the Fourier coe�cients. The purpose
of this technique is to achieve a higher resolution plot, providing more detailed
visual representation. The implemented function plot_f(ck_f, image_size),
where the matrix ck_f contains the Fourier coe�cients of a function f and
image_size is the size to which the input matrix is padded to, incorporates the
zero padding and the inverse Fourier transform.

In order to perform a multiresolution analysis, one update ahat_f to b1hat,
the matrix M to N and ck_Dirichlet_kernel(M) to ck_Dirichlet_kernel(N) in
the function wavelet_decomposition. An example of the implementation of both
a first-level wavelet transform and a second-level wavelet transform is provided in
Appendix A.
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CHAPTER 6

Examples

Using the notation from Theorem 4.15 we set ' = D?
M known by (4.4), ⇠ = D?

N

or D̃?
N as discussed in Remark 4.14, and ⌘ =  as stated in Proposition 4.18. For

simplicity, we rename the spaces

V
D?

M
M = VM, V

D?
Nj

Nj
= V i

Nj
, and V  

Nj
= W i

Nj
,

where j is the index of the corresponding matrix J with M = JjNj, and i repre-
sents the level of decomposition, being 1 if not specified.

Further, we investigate di↵erent functions to exemplify how the fast wavelet
transform from Section 4.4 is applied. First we look at how the shift invariant space
VM is a↵ected by the matrix M, and then how the decomposition is a↵ected by the
matrix Jj for three functions with various discontinuities by studying g2 2 WNj .
Continuing, we perform a multi-level decomposition to narrow down the direction
of the decomposition, and use this method to detect the direction of a rotated
step function. For all the examples, we use the interpolation scheme described in
Section 5.1 to interpolate the given function f on the pattern P(M).

To illustrate why we use M = 512I to generate D?
M whose translates span VM,

we use matrices with a smaller determinant to see how the matrices a↵ect the
basis of the shift invariant space VM. We consider the matrices

A1 =


16 0
0 16

�
, A2 =


8 0
0 32

�
, A3 =


16 4
0 16

�
, A5 =


8 0
0 8

�
.

Using these matrices with smaller determinants better reveal the variation of D?
M

when visualized, but the same principles hold for their multiples.
The functions D?

A1
and D?

A5
are sampled on uniform grids, leading to equal

levels of details in both directions for each function. Since D?
A1

is sampled on more
points, it contains more detail than D?

A5
. Hence, the set of translates of D?

A1
is a

better basis to describe detailed functions compared to when using D?
A5

.
On the other hand, A2 makes D?

A2
less detailed in y-direction, compared to

D?
A1

. When studying A2, recall from Figure 3.1b that G(AT
2 ) has more samples

in x-direction than y-direction. This makes D?
A2

more detailed in x-direction than

47
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�4.7

0

4.7

·10�2

(a) D?
A1

�4.4

0

4.4

·10�2

(b) D?
A2

�3.8

0

3.8

·10�2

(c) D?
A3

�7.3

0

7.3

·10�2

(d) D?
A5

Figure 6.1: Visualization of the Dirichlet kernel D?
Ai

for i = 1, 2, 3, 5 showing the
e↵ect of the di↵erent choices of the matrices defining the kernel.

in y-direction. Lastly, A3 generates a sheared Dirichlet kernel D?
A3

. By choosing
a matrix M being a multiple of the identity matrix I, we get a Dirichlet kernel
D?

M which is not rotated and is equally detailed in both directions. Furthermore,
|detM| = m not only a↵ects how much detail the space VM is able to describe,
but also the computational complexity of the fast wavelet transform, as discussed
in the last part of Section 4.4. Therefore, the matrix M should be chosen such
that it maintains a favorable trade-o↵ between precision and computational cost.
We choose the factor 512 such that M = 512I and the translates of D?

M provide
su�ciently much possibility to describe detailed functions.

6.1 Functions With Discontinuities

The function

f1(x) =

(
1 kxk`2 

3⇡
4 ,

0 else,
for x 2 Td,

is a circled step function of radius 3⇡
4 that is discontinuous in every direction. When

representing the function as a Fourier series, and not using infinitely many terms,
Gibbs’s phenomenon will occur at the discontinuities, as discussed in Section 2.2.
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(a) g2 2WN1 (b) g2 2WN2 (c) g2 2WN3

(d) g2 2WN4 (e) g2 2WN5 (f) g2 2WN6 (g) g2N7
2WN7

�0.48

0

0.48

Figure 6.2: Wavelets g2 of f1(x) for all J 2 J .

Further, the space WN is spanned by a function representing high frequency, mak-
ing the functions in WN suitable for representing high-frequent functions. We
decompose f1 2 VM into the functions g1 2 VNi and g2 2 WNi for the matrices
Ji 2 J in Equation (3.20) for M = 512I = JiNi using wavelet_decomposition

described in Section 5.2, i.e., the fast wavelet transform described in Section 4.4.
By doing so, the high frequent part of f1 is represented by the wavelet g2, makes
us able to detect the location of the discontinuities of f1 by studying the wavelet
g2. The wavelets are visualized in Figure 6.2 for the matrices J 2 J . The scale of
the wavelets is around 10�1. For all of the matrices J 2 J , the wavelet g2 detects
the discontinuities of f1 around nearly the entire circle. Similarly as in Exam-
ple 3.8, we see that the matrices J represent di↵erent directions, which becomes
apparent by where there the wavelet g2 is samples. Examining the wavelet of the
decomposition using J3 in Figure 6.2c, to exemplify, we perceive that g2 fluctuates
closer to the axes. This is due to there being fewer samples present close to the
axes, compared to those in closer proximity to the diagonal. A similar observation
can be made in the context of the pattern P(M) and subpattern P(N), with J3

depicted in Figure 3.3c. The same behavior is also evident for the wavelets of the
decomposition using J from Equation 3.20b at the bottom row of Figure 6.2.

Analyzing a function with a discontinuous first derivative, we define the func-
tion

f2(x) =

(
cos

�
2
3x
�
kxk`2 

3⇡
4 ,

0 else,
for x 2 Td.

As the first derivative of f2 is discontinuous, there is a sharp transition at kxk`2 =
3⇡
4 , illustrated in Figure 6.3a together with f2 itself. Similarly as for the disconti-
nuity of f1, we therefore expect the wavelet to appear around x = 3⇡

4 , by Gibbs’
phenomenon. We decompose f2 and visualize the wavelets in Figure 6.4 for all
J 2 J .
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(a) f2 and its derivative. (b) f3 and its derivatives.

Figure 6.3: Visualization of the function f2 and its discontinuous first derivative,
and f3 and its discontinuous second derivative, both for x 2 T1.

Note that the scale of f2’s wavelets is 10�3, while the wavelets of f1 had a
scale of 10�1. This di↵erence in amplitude is expected as f1 has a severe jump
compared to the transition of f2, which the partial Fourier sum more accurately
approximates.

We investigate the function

f3(x) =

(�
4
3⇡x� 1

�2� 4
3⇡x+ 1

�2
kxk`2 

3⇡
4 ,

0 else,
for x 2 Td.

The function’s derivatives are visualized in Figure 6.3b, where we see that the
second derivative is discontinuous at 3⇡

4 . Again, kxk`2 = 3⇡
4 is where we expect

the wavelets to become evident. We decompose f3 for J 2 J and present g2 in
Figure 6.5. The scale of these wavelets of f3 is 10�6, which is even smaller than
for f2. This is because the transition of f2 is sharper than that of f3.

6.2 Multiresolusion Analysis

In accordance with Section 4.4, we can continue do decompose the space VN1 ,
representing the low frequent part of VM. This procedure is exemplified by de-
composing f3, referred to as f henceforth, in five levels using the matrix M =
1024I = J1J5J5J1J2N, where N is such that the equality holds. The first de-
composition involves M and N1 = J5J5J1J2N and their orthonormal Dirichlet
kernels, in the second decomposition we use N1 and N2 = J5J1J2N, and so on.
A representation of the five-level decomposition of the spaces looks like this

VM �! V 1
N1
�! V 2

N2
�! V 3

N3
�! V 4

N4
�! V 5

N

& & & & &

W 1
N1

W 2
N2

W 3
N3

W 4
N4

W 5
N

By employing the above-mentioned decompositions of the spaces, we are able to
decompose the function f as follows

f �! g11 �! g21 �! g31 �! g41 �! g51
& & & & &

g12 g22 g32 g42 g52
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(a) g2N1
(b) g2N2

(c) g2N3

(d) g2N4
(e) g2N5

(f) g2N6
(g) g2N7

�1.3

0

1.3

·10�3

Figure 6.4: Wavelets g2 of f2(x) for all J 2 J , where red represents positive values
and blue represents negative values.

(a) g2N1
(b) g2N2

(c) g2N3

(d) g2N4
(e) g2N5

(f) g2N6
(g) g2N7

�2.8

0

2.8

·10�6

Figure 6.5: Wavelets g2 of f3(x) for all J 2 J , where red represents positive values
and blue represents negative values.
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(a) g12 2W 1
N1

�1.1

0

1.1

·10�5

(b) g22 2W 2
N2

�4.7

0

4.7

·10�5

(c) g32 2W 3
N3

�1.9

0

1.9

·10�4

(d) g42 2W 4
N4

�2.8

0

2.8

·10�6

(e) g52 2W 5
N

Figure 6.6: The wavelets g2 for each 5 level of decomposition of f3, when
M = 1024I = J1J5J5J1J2N.
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(a) First level decomposition. (b) Second level decomposition.

(c) Third level decomposition. (d) Fourth level decomposition.

(e) Fifth level decomposition.

Figure 6.7: Scheme of the multi-level decomposition when M = 1024I =
J1J5J5J1J2N. The light green represents the spaces V i

Nj
where the low frequent

part gi1 is, and the dark green represents W i
Nj

where the wavelet gi2 is present.
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Here, gi1 2 V i
Ni

and gi2 2 W i
Ni
, where i represents the level of decomposition.

Figure 6.6 showcases the wavelets gi2 at all five levels, while Figure 6.7 pro-
vides schematic representations of the decomposition process at each level. The
schematics visualize the cutting o↵ of indices of D?

M at each level of decomposition
corresponds to. Figure 4.5 visualizes the same concept, but in terms of the Fourier
coe�cients of the functions. Finally, this narrowing represents a smaller and more
specific range of directions compared to a 1-level decomposition.

In the first decomposition, where J = J1, Figure 6.7a demonstrates the exclu-
sion of information along the x-direction. In the second level of decomposition,
employing J = J5, Figure 6.7b shows the elimination of information in both the x-
and y-directions, specifically in a counterclockwise sheared direction. This is also
apparent in Figure 6.6b. Notably, the scales of the wavelet in Figure 6.6 increase
in the first four levels and decrease in the last level. This is due to narrowing down
the direction in a consistent manner for the initial four levels, resulting in larger
wavelet amplitude. As information is eliminated in a specific direction, fewer
Fourier coe�cients are available to compute both g1 and the wavelet g2. Conse-
quently, the wavelets become more spread out, particularly noticeable in level 4
as shown in Figure 6.6d. In the final level, we examine the highest frequencies of
the direction of total decomposition, with a scale matching the first level. At this
last level, we are able to observe the wavelet in the particular direction the total
decomposition represents, as shown in Figure 6.6e. Through the implementation
of a multi-level decomposition, we possess the capability to selectively scaling in
various directions, thereby refining the specific direction under investigation.

6.3 Rotated Step Function

Knowing that we can use multiresolusion analysis to detect a more restricted
direction of where an edge appears in an image, we now aim to use this method
on a similar function as the one we worked with in the project [21]. We introduce
the step function combined with a cosine as

�(x) =

(
0 x2  0,

cos(2⇡ · x2) x2 > 0.

Further, we rotate the function � by 42� using the rotation matrix R(↵) where ↵
is the angle of clockwise rotation. For simplicity, we call

h(x) = �(R(42)x)

and illustrate it in Figure 6.8.
To uncover the direction of the edge of h, our objective is to identify the matrix

combination of Js that corresponds to the direction orthogonal to the edge. In the
orthogonal case the edge is steepest, thereby yielding the highest amplitude of the
wavelet. Deviation from this specific direction will result in a lower amplitude of
the wavelet. This enables us to discern whether the direction of the edge has been
successfully identified, by studying the amplitude of the wavelets and compare it
to its neighboring directions. The scenario where we see the smallest jump is when
the direction of the decomposition is parallel to the direction of the edge.
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Figure 6.8: The step function h(x) rotated at 42� clockwise from the x-axis.

Figure 6.9: Explanation of how the angles are determined. The angle ↵ is rotated
clockwise from the x-axis. � is rotated clockwise from the y-axis.

The angle ↵ in Figure 6.9 is rotated clockwise from the x-axis and represents
the angle of the rotation of the function h. In the same figure, the angle � is
rotated clockwise from the y-axis and represents the desired average angle of the
decomposition. Our goal is to find the angle �, i.e., the angle corresponding to
the direction orthogonal to the edge of h.

At first we performed a 5-level decomposition of the function h and use M =
1024I to test di↵erent matrix combinations representing rotation and scaling in
x-direction, comparing the amplitudes of the corresponding wavelets. We found
that the matrix combination M = J4J4J4J1J2N and M = J4J4J4J4J2N, denoted
as 44412 and 44442, respectively, yield the highest amplitude of the wavelet |g52|.
Table 6.1 presents the maximum value of the wavelet |g52| and the related range of
angles, corresponding to � in Figure 6.9, for the two matrix combinations. Note
that the directions have a range of angles of approximately 4�. By performing yet
another level of decomposition, we refine the angle further, honing it to a narrower
range of possibilities. We anticipate that the direction aligned with the midpoint
of these angle ranges will coincide with our overall intended direction.

Table 6.1: The maximum value of |g52| for di↵erent matrix combinations and the
corresponding the angle � in Figure 6.9.

Matrix combination Maximum value of |g52| Angle �

44442 0.21160 43.10± 1.91�

44412 0.22166 41.12± 2.03�
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Table 6.2: The maximum value of |g62| for di↵erent matrix combinations and the
corresponding the angle � in Figure 6.9.

Matrix combination Maximum value of |g62| Angle �

441412 0.03268 39.08± 1.08�

441442 0.07235 40.14± 1.05�

444112 0.21715 41.17± 1.01�

444142 0.21138 42.17± 0.98�

444412 0.18279 43.14± 0.96�

444442 0.08181 44.08± 0.93�

Table 6.3: The maximum value of |g62| for di↵erent matrix combinations and the
corresponding the angle ↵ in Figure 6.9.

Matrix combination Maximum value of |g62| Angle ↵

772771 0.01315 40.14± 1.05�

777221 0.01151 41.17± 1.01�

777271 0.01561 42.17± 0.98�

777721 0.01871 43.14± 0.96�

We perform a 6-level decomposition of h, using M = 1024I. Table 6.2 presents
the maximum value of the wavelet |g62| and the related range of angles, corre-
sponding to � in Figure 6.9, for some interesting matrix combinations closely
related to the direction of the 5-level decomposition. Among these combinations,
M = J4J4J4J1J1J2N, yields the highest amplitude of |g62|. This specific direction
captures the high frequent part of h in the range of 41.19± 1.01�, with 42� being
included within this range.

On the other hand, the matrix combination 444142 yields the direction where
the average angle is closest to the angle being orthogonal to the edge of h. De-
spite this, the wavelet of this direction has a lower amplitude than the previously
discussed direction. The wavelet g62 for this particular decomposition is illustrated
in Figure 6.10a, with the corresponding schematic in Figure 6.10b. The location
of the wavelet of 444142 is compactly located close the edge of h. Also this ma-
trix combination represents a direction range including the angle of 42� clockwise
rotation from the y-axis.

The neighboring directions of 444112 and 444142 are 441442 counterclockwise
and 444412 clockwise. When considering these neighboring directions 441442 and
444412, we observe a significant decrease in the amplitude of the wavelet compared
to the aforementioned combinations 444112 and 444142. This suggests that the
neighboring directions are slightly o↵, and that the direction orthogonal to the
edge of h lies between these two directions. The angle ranges of 441442 and
444412 confirm this observation, in particular that the angle of � = 42� falls
slightly without the range captured by these decompositions.

The direction 777271 is the direction being the orthogonal to 444142. In Ta-
ble 6.3, we see that the maximum value of |g62| is lower for the matrix combination
777271 than for the other matrix combinations being close to ↵ = 42� clockwise
rotation from the y-axis. This indicates that the direction of the decomposition
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Figure 6.10: The sixth level wavelet |g62| of the function h and the schematic for
the matrix combination M = 1024I = J4J4J4J1J4J2N.
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Figure 6.11: The sixth level wavelet |g62| of the function h and the schematic for
the matrix combination M = 1024I = J7J7J7J2J7J1N.

is parallel to the direction of the edge of h. The wavelet g62 for this particular
decomposition is portrayed in Figure 6.11a where we observe a widely dispersed
wavelet. The corresponding schematic is depicted in Figure 6.10b. By studying
the neighboring directions of 777271, we see a increase in amplitude of the wavelet.
This again is in line with the parallel direction of the edge of h is the direction
corresponding to 777271.

By increasing the level of decomposition beyond 6, the accuracy of the angle
interval can be improved, leading to results with decreased uncertainty. However,
this enhancement in precision is accompanied by an increase in computational
complexity. The computational cost is a↵ected by the determinant of the matrix
M and subsequently influenced by the matrices Ni involved in the multi-level
decomposition process. Therefore, higher levels of decomposition entail greater
computational demands, which should be considered when deciding on the appro-
priate level for the analysis.
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CHAPTER 7

Closing remarks

As exemplified in our experiments in Chapter 6, the framework of multivariate
periodic wavelets can be used for edge detection in images. The fast wavelet trans-
form separates the image into a low frequency part and a high frequency part. By
Gibbs’ phenomenon, the high frequency part is primarily concentrated around the
edges present in the image. The method even enables detection of varying levels
of discontinuities. Furthermore, we continued the exploration of the influence of
the matrices J 2 J on the directionality of the decomposition process.

Through the utilization of multiresolution analysis, we showcased the ability to
refine the direction of an edge within an image. This methodology was employed
to ascertain the direction of a rotated edge at an angle of 42�. Our investiga-
tion encompassed the exploration of di↵erent matrix combinations corresponding
to various directions, both orthogonal and parallel to the edge of the rotated
function. We compared the angle range of a 5-level decomposition to a 6-level de-
composition, where a more constrained range of possible directions was observed
for the latter case. With a 6-level decomposition, the interval of directions was
narrowed down to approximately 2�. Additionally, it is important to note that
this increase in level of decomposition entails a rise in computational cost, necessi-
tating a careful balance between accuracy and computational e�ciency depending
on the application at hand.

One of the goals for this thesis was to develop an readable code for the fast
wavelet transform in Julia. Thus far, we have successfully written a functional
code. However, it is not yet to be considered user-friendly and requires further
refinement before publication. In order to achieve better usability, the functions
should be given more self-explanatory names to better clarify their purpose. A
review of the notation should be conducted to ensure consistency across functions.
It could also be beneficial to include validations to the input parameters of the
functions to ensure that the user is not able to input invalid parameters, such as
a non-square or non-integer matrix M or matrix combinations M 6= JN. Addi-
tionally, the documentation for the functions can be enhanced by providing more
details and greater precision. Moving forward, we plan to make the code available
as a Julia package.
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APPENDIX A

Code for the Fast Wavelet Transform

using PeriodicWavelets # Loads the implemented functions

using FFTW , LinearAlgebra

# Defining the matrices

first_J = [2 0; -1 1]; sec_J = [1 0; 0 2];

N1 = [256 0; 256 512]; N2 = [256 0; 128 256];

M = first_J * sec_J * N2;

m = abs(det(M));

# Defining the Dirichlet kernels

ckDM = PeriodicWavelets.ck_Dirichlet_kernel(M);

ckDN1 = PeriodicWavelets.ck_Dirichlet_kernel(N1);

# Defining the function to be decompose

f3(x) = x <= 3pi/4 ? (4x/(3pi) - 1)^2 * (4x/(3pi) + 1)^2 : 0;

f(x) = f3(norm(x));

# Sampling f on the pattern of M. Computing the coefficients of f

w.r.t the ckDM

af = PeriodicWavelets.sample_on_pattern(M, f);

ahat_f = fft(af);

ahat_f_DM = PeriodicWavelets.coeff_Fourier2space(

M, ahat_f , ckDM) .* m;

# Performing the wavelet transform of f

b1hat , b2hat , d1hat , d2hat =

PeriodicWavelets.wavelet_decomposition(

M, first_J , ahat_f_DM , ckDN1 , ckDM);

# Constructing the functions generating the decomposed shift

invariant spaces

ck_xi = PeriodicWavelets.fourier_coeff_xi(M, b1hat , ckDM);

ck_psi = PeriodicWavelets.fourier_coeff_xi(M, b2hat , ckDM);

# Constructing the decomposed functions of f

ck_g1 = PeriodicWavelets.fourier_coeff_xi(N1, d1hat , ck_xi);

ck_g2 = PeriodicWavelets.fourier_coeff_xi(N1, d2hat , ck_psi);
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# Optional: Visualize the wavelet

plt_g2 = PeriodicWavelets.plot_f(ck_g2 , (1024, 1024))

# If performing a multi -level decomposition , it is not necessary

to compute ck_psi and ck_g2.

# ------------------------------

# Second level decomposition

# ------------------------------

# Dirichlet kernel for the second decomposition

ckDN2 = PeriodicWavelets.ck_Dirichlet_kernel(N2);

# Perform second the wavelet decomposition

sec_b1hat , sec_b2hat , sec_d1hat , sec_d2hat =

PeriodicWavelets.wavelet_decomposition(

N1 , sec_J , d1hat , ckDN2 , ck_xi);

# Construct the functions generating the second level decomposed

shift invariant spaces

ck_xi_sec = PeriodicWavelets.fourier_coeff_xi(

N1 , sec_b1hat , ck_xi);

ck_psi_sec = PeriodicWavelets.fourier_coeff_xi(

N1 , sec_b2hat , ck_xi);

# Construct the second level decomposed functions

ck_g1_sec = PeriodicWavelets.fourier_coeff_xi(

N2 , sec_d1hat , ck_xi_sec);

ck_g2_sec = PeriodicWavelets.fourier_coeff_xi(

N2 , sec_d2hat , ck_psi_sec);
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