
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Ba
ch

el
or

’s
th

es
is

Artur Gwozdowicz
Danil Kalland

Kuka - Robot Assistant

Bachelor’s thesis in Automation and Intelligent Systems
Supervisor: Ottar Osen
Co-supervisor: Adam Leon Kleppe
June 2023

Artur Gwozdowicz
Danil Kalland

Kuka - Robot Assistant

Bachelor’s thesis in Automation and Intelligent Systems
Supervisor: Ottar Osen
Co-supervisor: Adam Leon Kleppe
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

1 Abstract

This report is based on the project carried out as a bachelor thesis in the spring semester of 2023.
Research, planning and implementation was conducted by Artur Andrzej Gwozdowicz and Danil
Kalland, two students of ‘Automatisering og intelligente systemer’ at NTNU Ålesund.

The objective of the thesis was to utilize the industrial robotic arm KUKA LBR IIWA as an assist-
ing tool, particularly, the workshop assistant. Conducted work revolved around developing a voice
controlled pick-and-place solution which allows for functionality expansion. It’s also shown how
several systems ranging from industry to consumer-grade can be integrated and operate together.

Growing demand on precise and sophisticated tools such as robotic arms is more frequently being
present outside the scope of industries and strictly professional applications. Having access to a vast
spectrum of tools and systems, both professional and consumer sectors naturally seek advancements
or improvements of quality of life in the form of process automation of any kind.

The idea was brought by the interest in managing the potential workplace and therefore increasing
the effectiveness of work.

i

2 Summary

The purpose of the project was to develop a tool-retrieval robot operated by voice commands.
Crucial part of the design was to involve uncertainty and avoid linear operations by implementing
non-static positioning of the tools which then the robot is asked to pick-and-place. The structure
of the robot assistant revolved around several non-related systems integrated together instead of
utilizing designated or existing solutions.

The solution of the project includes computer vision for tool recognition and speech recognition.
Computer vision part is built using the ”OpenCV” python library that can result in both being
a reliable and simple solution. Speech recognition part is built using the ”SpeechRecognition”
python library that uses Google Web Speech API. At the core of the project, a robotic arm,
KUKA LBR IIWA is used. The arm is a very versatile tool which allows for precise and flexible
control. The components are bound in the primary control unit Beckhoff CX5120, a powerful IPC
that supervises and commands any ongoing process in the system.

In the working process the team used different methods and techniques to achieve results for
different parts of the project. There were some technical challenges that occurred that slowed
down the working process. However, at the end, the project managed to provide a voice-operated
pick-and-place solution of multiple tools.

ii

3 Sammendrag

Hensikten med prosjektet var til å utvikle en robot som kunne hente verktøy ved å høre p̊a stemme
kommandoer. Avgjørende delen av design var å involvere usikkerhet og unng̊a lineære operasjoner.
Det kunne oppn̊as ved å implementere ikke statisk posisjonering av verktøy som roboten kan plukke
opp hvis han blir bedt om det. Strukturen av robot assistent dreide seg om flere ikke relaterte
systemer som er integrert sammen i stedet for å bruke m̊alrettede eller eksisterende løsninger.
Prosjektet er administrert til å gi stemmestyrt plukk-og-legg-p̊a-plass løsninger.

Løsningen til prosjektet best̊ar av datamaskin syn for verktøy gjenkjenning og tale gjenkjenning.
Datamaskin syn delen er laget ved bruk av OpenCV python bibliotek som kan gi b̊ade p̊alitelig og
enkel løsning. Tale gjenkjenning delen er bygd ved bruk av ”SpeechRecognition” python bibliotek
som bruker Google Web Speech API. KUKA LBR IIWA robot armen er brukt i kjernen av dette
prosjektet. Robot armen er veldig allsidig verktøy som gir mulighet til presis og fleksibel kontroll.
Komponentene are bundet i den primære enheten Beckhoff CX5120 som er et kraftig industriell
PC som overv̊aker og styrer enhver p̊ag̊aende prosess i systemet.

Under arbeidsprosessen, prosjektgruppen brukte ulike metoder og teknikker til å oppn̊a resultater
for forskjellige deler av prosjektet. Det var noen tekniske utfordringer som oppsto og som forsinket
arbeids prosessen. Men p̊a slutten klarte gruppen å lage et prosjekt som leverer stemme styrt,
plukke-og-plasser løsning av flere verktøy.

iii

Table of Contents

1 Abstract i

2 Summary ii

3 Sammendrag iii

List of Figures viii

List of Tables xii

4 Introduction 1

4.1 Project background . 1

4.2 Project task . 1

4.3 Definitions and abbreviations . 2

4.4 Structure of the thesis . 3

5 Materials and devices 4

6 Theory 5

6.1 Raspberry Pi board . 5

6.2 Speech Recognition . 5

6.3 Computer Vision . 6

6.3.1 Definition of computer vision . 6

6.3.2 Color detection using computer vision . 6

6.3.3 Color detection in BGR color model . 6

6.3.4 Color detection in HSV color model . 7

6.4 OpenCV - Contours and contour tracking . 7

6.5 OpenCV - Masking . 8

6.6 Robotiq 2F-85 gripper . 9

6.7 KUKA LBR IIWA 7 R800 . 9

6.8 Programmable Logic Controller . 11

6.8.1 IPC and Embedded PC . 12

6.8.2 Beckhoff CX5120 . 12

6.8.3 EL6695 - Beckhoff module . 13

6.9 Software . 13

6.9.1 Multithreading and multiprocessing . 13

6.9.2 Modbus RTU . 13

iv

6.9.3 TwinCAT 3 . 14

6.9.4 EtherCAT . 14

7 Materials and methods 15

7.1 Planning and design . 15

7.2 Initial meeting . 15

7.3 Pre-project . 15

7.4 System design . 15

7.4.1 KUKA LBR IIWA and CX5120 . 16

7.4.2 SpeechRecognition v3.10.0 library . 16

7.4.3 OpenCV, color band solution and Raspberry PI 16

7.4.4 Gripper, why Robotiq 2F-85 gripper . 16

7.4.5 Data flow chart . 17

7.4.6 Data exchange - KUKA LBR IIWA and Twincat 3 17

7.4.7 Data exchange - Twincat 3 and Python . 20

7.4.8 Data Exchange - Raspberry PI and Python (PC) 22

7.5 Communication . 22

7.5.1 Communication of PC to CX5120 . 23

7.5.2 Communication via Beckhoff EL6695 . 23

7.5.3 Communication via Pyads . 26

7.5.4 Communication and control of Robotiq 2F-85 gripper 27

7.6 Twincat 3 program . 28

7.6.1 Request Handling . 28

7.6.2 User input handling . 30

7.6.3 Task Handling . 32

7.6.4 Visualization and GUI . 34

7.7 KUKA LBR IIWA PROGRAM . 35

7.7.1 Initialization . 35

7.7.2 Real-time information . 36

7.7.3 Main program . 37

7.8 Speech Recognition application . 41

7.8.1 PyAudio SR libraries . 41

7.8.2 Speech Recognition Setup . 41

7.8.3 Speech Recognition application . 42

7.9 Server/Client communication between Raspberry and PC 44

v

7.10 Raspberry Pi and Tool recognition . 46

7.10.1 Practical setup . 46

7.10.2 Method of calculating angle for color bands 47

7.10.3 Python Code: Variable setup . 48

7.10.4 Creating color detection function . 49

7.10.5 Python Code: While loop . 54

7.11 3D models of tool stands . 55

8 Results 57

8.1 Engineering result . 57

8.1.1 Integration of devices . 57

8.1.2 Safety . 57

8.1.3 Commanding the KUKA LBR IIWA . 57

8.1.4 Speech recognition - results . 58

8.1.5 Computer Vision - results . 60

8.2 Administrative results . 62

8.2.1 Teamwork . 62

8.2.2 Sprints and planning . 62

9 Discussion 64

9.1 Expectations vs reality . 64

9.1.1 Computer Vision: Why some parts didn’t work? 64

9.1.2 Speech Recognition: Why didn’t it work perfectly? 64

9.2 Limitations . 64

9.2.1 Safety limitations . 65

9.2.2 Limited Hardware . 65

9.3 Challenges . 65

9.3.1 Safety . 65

9.3.2 Computer vision . 65

9.3.3 Speech Recognition . 66

9.4 Communication . 66

9.4.1 Internal . 66

9.4.2 How the team worked . 66

9.4.3 Project planning . 66

9.4.4 Collaboration using YouTrack and Confluence 66

vi

10 Conclusion and further work 68

10.1 Conclusions . 68

10.2 Further work (upgrade ideas) . 68

10.2.1 More organized hardware . 68

10.2.2 Collaborative robot . 68

10.2.3 Task queueing . 68

10.2.4 Better tool recognition . 69

10.2.5 Better speech recognition . 69

Bibliography 70

Appendix 72

A Project video link . 72

B Preliminary project report . 74

C Progress report . 87

D Time list . 90

E Raspberry Pi - code . 91

F PC - main code . 100

G TwinCAT 3 code . 104

H JAVA - code . 111

vii

List of Figures

1 Raspberry Pi 4 - a single board computer . 5

2 Colors represented in BGR format and example of colors which are the combination
of blue, red and green colors . 6

3 Two models of representing HSV color space . 7

4 Original image and contours tracked on the image 7

5 Image example of a yellow car . 8

6 Example code of setting up a mask for an image 8

7 Mask made for original image and mask that tracks the yellow color 9

8 Rootiq 2F-85 gripper used for industrial robots . 9

9 Kuka LBR iiwa 7 R800 industrial robot used in this project 10

10 Kuka sunrise cabinet . 10

11 Kuka smartPAD used for movement control of industrial Kuka robot 11

12 PLC system showing parts it can contain . 11

13 Beckhoff PLC used in this project . 12

14 EL6695 - Beckhoff PLC module . 13

15 Data flow chart for the system . 17

16 Variable declaration in EL6695 module in Twincat 3 18

17 Declaration of the variables as global variables in TwinCAT 3, together with linking
an exemplary variable . 18

18 initial configuration of Slave (EL6695) settings . 19

19 Variable mapping inside WorkVisual software . 19

20 Signal editor of the EL6695, where proper variable names can be assigned 20

21 Initialization of EL6695IOGroup as ‘io’ inside the Sunrise.OS software. 20

22 Figure presents exemplary use of the variables within the actual code. 21

23 Variables passed to TwinCAT 3. 21

24 Data exchange between Python and TwinCAT 3. 21

25 Creation of the objectData list and further converting it to string via joining ‘;’
symbol. 22

26 The final list is created, encoded and sent for processing in Python (PC) 22

27 The process of extracting the data from the encoded stringed list. 22

28 Router setup. 23

29 CX5120 IPC connected to the external PC. 23

30 EtherCAT bridge module used in the project . 24

31 Setup of Kuka Sunrise cabinet and Beckhoff PLC 24

32 the effect of device scan performed on connected CX5120 IPC 25

viii

33 Process data synchronization with the module by creating a new configuration. . 25

34 Setup of EL6695 in WorkVisual . 26

35 Communication with PLC from python using PyADS library 26

36 Connection of Robotiq gripper with serial to USB converter 27

37 The main program, KUKA OPERATION POU . 28

38 ‘HandleRequests’ Function block . 28

39 ‘HandleRequests’ Function block . 29

40 Speech Recognition and Coordinates request handling. 29

41 Task requesting in structured text . 30

42 Program finding a particular word within a string. 30

43 A program assigning values to operations and objects. 31

44 The program splitting command input into Operation and Object inputs. 31

45 The program assigning values based on corresponding string inputs. 32

46 The reset logic of inputs and outputs within manual mode. 32

47 Fail-proofing of the code regarding operation inputs 33

48 The code which passes through object information. 33

49 ObjectCoordinates Switch case code. 34

50 The code of KUKA Task Information Function block 34

51 Visualization of data and GUI of the Project. 35

52 InitializeRobotPosition() method within RobotUtil class. 36

53 Implementation of RobotCurrentInfo class. 36

54 PickupPrepare() method. 37

55 Pick up case. 37

56 Simple representation of the angle problem . 38

57 Angle transformation algorithm along with movements performed to prepare for
object grasping. 39

58 The case which controls the dropping sequence. 40

59 The code of Give operation . 40

60 The code of hold (idle) operation. 40

61 Printing python version in PyCharm IDE . 41

62 Installing SpeechRecognition library in python . 42

63 Installing PyAudio library in python . 42

64 Recognizing voice commands from microphone . 43

65 Speech recognition application waiting for the user to say something 43

66 Speech recognition application output with recognized words 43

ix

67 Simplified demonstration of server client communication 44

68 Python code for server that is run on Raspberry Pi 44

69 Raspberry Pi waiting for client device to connect 45

70 Python code for client that is run on local PC . 45

71 Output on Raspberry Pi showing that client is connected and client receiving data 45

72 Output on local PC showing that message is received 45

73 Three tools with color bands: hammer, screwdriver and pliars 46

74 Tools with mouse pad lying on table surface . 46

75 Camera stand made from aluminium profiles . 47

76 Sketch of angle calculation for tools . 47

77 Initialization of variables . 48

78 Initialization of variables . 49

79 Creating function MyTool() that will recognize objects 49

80 Definition of limits for an area of coordinates . 50

81 Black area for tool picking . 50

82 Python code part for creating a bounding box, angle calculation and offset coordinates 51

83 Angle calcualtion 90 to 180 degrees . 52

84 Angle calcualtion 0 to -90 degrees . 52

85 Angle calcualtion -90 to -180 degrees . 53

86 Offset part of the code that creates offset coordinates 53

87 Part of the function that prints coordinates at the output 54

88 First part of the while-loop . 54

89 Second part of the while-loop . 55

90 3D models of the tool stands made in Fusion 360 software 56

91 Tool stands made on 3D printer and mounted on the wall 56

92 Correct recognition of hammer command . 58

93 Incorrect recognition of hammer command . 58

94 Correct recognition of screwdriver command . 59

95 Correct recognition of pliers command . 59

96 Incorrect recognition of pliers command . 59

97 Incorrect recognition of pliers command . 60

98 Incorrect recognition of pliers command . 60

99 Example of tools recognized by webcamera using computer vision library ”OpenCV” 61

100 Example of computer vision application having difficulties to correctly calculate
angle of screwdriver . 61

x

101 Example of computer vision application having difficulties to correctly calculate
offset coordinates and angle for pliers . 61

102 Computer vision application prints out tool coordinates as an output 62

103 Example of planning tasks in YouTrack . 62

104 Example of planning tasks in YouTrack . 63

xi

List of Tables

1 List of devices used in the project . 4

xii

4 Introduction

4.1 Project background

Industrial robots today are used for various tasks in industry. Most of the industrial robots are
used for assembly of vehicles, construction and palletizing. There are still some areas in which
industrial robots are not commonly used. For example, robot assistants that are working in a lab
or a workshop by helping workers with picking up, placing tools by listening to voice commands.

4.2 Project task

This thesis will describe a project in which a Kuka LBR IIWA industrial robot is used as a workshop
and lab assistant. The project has a goal to create a robot assistant that will be able to recognize
different workshop tools such as hammer, screwdriver and pliers, and perform various actions by
receiving different voice commands from the user. There are different methods that are used in
this project to achieve this goal. In order to see different objects, the Kuka robot indirectly uses a
web camera. The commands from the user will be received through the microphone. More details
of the methods and techniques used in this project will be described in next chapters.

1

4.3 Definitions and abbreviations

IDE - Integrated Development Environment

CV - Computer Vision

RPI - Raspberry Pi

RTU - Remote Terminal Unit

CRC - Cyclic Redundancy Check

POU - Program organization unit

PLC - Programmable logic controller

UINT - unsigned integer

INT - Integer

IO - Input/Output

IPC - Industrial Personal Computer

GUI - Graphical user interface

RAD - Radians

2

4.4 Structure of the thesis

Theory

Theory part presents the technical foundation for different parts of the project. It covers all the
necessary theory of concepts and techniques that are useful for understanding of methods used in
the project.

Methods

This part of the report covers methods used to achieve a result for the project that will satisfy
all the requirements. It explains how different techniques are implemented and how independent
parts are integrated in a bigger system.

Results

This part of the report presents the final results achieved by the team for this project. It includes
both successful results and difficulties that occurred during the working process.

Discussion

This part presents the discussion around the results of the project’s work. It includes analysis of
the system’s flaws and strengths, expectations, limitations and challenges that either were at the
starting phase of the project or occurred during the development process. It also includes how
communication worked between team members during the development process.

Conclusion

Conclusion presents the summary of the work done in the project by the team. It discusses the
further work that could be done in the future such as upgrades of some parts of the system.

3

5 Materials and devices

Table 1: List of devices used in the project

Hardware and Soft-
ware

Quantity Short description

Raspberry Pi 4 1 Low cost computer
that can be used as
microcontroller or
as a computer for
web browsing, pro-
gramming etc.

Local PC 1 A PC used for run-
ning software and
programming

Logitech Webcam-
era

1 Webcamera that
can be plugged in
a computer using
USB port

Kuka iiwa robot 1 - Robot developed
by Kuka and
mostly used for
industrial applica-
tions

Beckhoff PLC
CX5120

1 - Embedded PC
with Intel Atom
processor

EL6695 Beckhoff
Module

1 - EtherCat bridge
module for Beck-
hoff PLC

TwinCAT 3 - Automation soft-
ware

Sunrise Workbench - Software for Kuka
robot programming

WorkVisual - Software used for
system configura-
tion of Kuka robot

Thonny - Python IDE which
is pre installed on
Raspberry Pi

4

6 Theory

6.1 Raspberry Pi board

Figure 1: Raspberry Pi 4 - a single board computer

Raspberry Pi, shown in figure 1, is a low cost, single board computer that can be used for program-
ming, computing or web browsing . Programming languages that are supported on the board are
C/C++, Scratch and Python. Since Raspberry Pi is a single board computer, it can be plugged
into a computer monitor or a TV screen. Mouse and keyboard can also be connected through USB
ports on the Raspberry Pi board. This board is widely used by hobbyists in digital projects such
as detectors, weather stations, birdhouses with infra-red cameras etc. Like any other computer,
it requires an operating system. Raspberry Pi OS is the operating system that is used by all the
boards from the Raspberry family [13].

6.2 Speech Recognition

”Speech Recognition” or also called ”speech-to-text” is the ability of a program to identify words
spoken by the user and convert them into text. Some of the simple speech recognition software is
able to recognize words only when they are spoken clearly. With more sophisticated software users
can convert speech with different accents and languages into text.

In order to process and interpret spoken words and convert them into text, speech recognition
systems use computer algorithms. The sound that is recorded by the microphone is turned into
text by a software program that both humans and computers can understand. The process of of
sound analysis can be divided in four steps:

1. Analysis of the audio input

2. Division into multiple parts

3. Digitization into computer-readable format

4. Use of algorithm to create a most suitable text representation

The algorithms that are used in speech recognition software are trained on different speaking
styles, dialects and accents. Speech recognition software is able to separate speech audio from the
background noise that is often present under audio recording. Speech recognition systems use two
types of models, acoustic models and language models. Acoustic models represent the relationship

5

between linguistic units of speech and audio signals. While in language models sounds are matched
with word sequences to distinguish between words that sound similar [23].

There are many ways of using speech recognition to understand recorded voices. For example,
speech recognition applications can be built using programming languages such as C, Python or
Java. Some of the programming languages already provide libraries that make the use of speech
recognition applications easier and doesn’t require training a model from ground up.

6.3 Computer Vision

6.3.1 Definition of computer vision

Computer vision is the field of computer science which enables computers to replicate the hu-
man visual system. Computer Vision is also a subset of artificial intelligence which can collect
information from digital videos or images and use that information to processes them and define
attributes. The process can involve such techniques as image acquiring, image screening, identify-
ing and analyzing.[10] The general idea and foundation of computer vision is to instruct computers
to interpret and comprehend images on a pixel-by-pixel basis. In the field of artificial intelligence,
computer vision is dedicated to development of automated systems that can interpret visual data
as closely as people can [34]. Computer vision applications can be used for face recognition, pose
estimation, object tracking, color detection, security and surveillance.

6.3.2 Color detection using computer vision

Color detection is an image process that involves differentiation between objects based on their
color. If an image contains multiple objects with different colors, the color detection methods can
return a binary image of the particular color where only the parts with relevant color are white,
while the rest is black. There exist multiple ways to detect color. [35]

6.3.3 Color detection in BGR color model

Figure 2: Colors represented in BGR format and example of colors which are the combination of
blue, red and green colors

6

In the concept of color detection in BGR-format, an image has each pixel in the image processing
a set of values for each of the 3 color channels. If there is a need for detection of a specific color
and it is possible to define the range of R-G-B values for that particular color, then software or
a program will look only for those pixels which have R-G-B values in the range that are defined
[24]. Figure 2 demonstrates how different combinations of BGR values can create different colors.

6.3.4 Color detection in HSV color model

(a) Cylindrical model of HSV color space (b) Conical model of HSV color space

Figure 3: Two models of representing HSV color space

HSV is an abbreviation of hue, saturation and value of the color. In the HSV color model, the
value represents intensity of the color, which is decoupled from the color information in the image.
The hue and saturation components are related to the way the human eye perceives a color [2].
Hue can vary from 0 to 1 and the corresponding colors vary from red, through yellow, green, cyan,
blue, and magenta, back to red. When saturation varies from 0 to 1, the corresponding colors vary
from unsaturated colors to saturated colors. Value can be seen as the brightness of the color and
varies from 0 to 1. When value is increasing, the colors become increasingly brighter. HSV color
space is more intuitive to how people experience color than the RGB color space. HSV is the best
use for color choice when a user is selecting color interactively [4]. HSV color space can also have
a range from 0 to 255 instead of 0 to 1.

HSV color space can be viewed as a cylinder, where the angle in interval from 0 to 360 degrees,
represents the hue. The distance from the center of the cylinder to the outer part of the cylinder
corresponds to saturation. The central vertical axis of the cylinder is value, ranging from black on
the bottom to fully white at the top [15]. Figure 3 demonstrates HSV color space in two different
models.

6.4 OpenCV - Contours and contour tracking

(a) Original image
(b) Contours tracked on the ori-
ginal image

Figure 4: Original image and contours tracked on the image

7

Contours have a big role in computer vision and are useful for any kind of image processing, shape
analysis or object detection. Contours can be seen as curves that join all the continuous points
along the boundary of the image [26]. In computer vision applications contour tracking is an edge
tracking process that traverses the border of a region completely. By applying contour tracking, it
obtains a boundary points sequence as the edge points which could be tracked. Contour tracking
is used in the fields of image recognition and libraries like ”OpenCV” offer ”cvFindContours()”
function that perform contour tracking [40]. Figure 4a and figure 4b show original image and
contours of the same image, respectively.

6.5 OpenCV - Masking

Masking is a useful technique in the field of computer vision. It allows highlighting of a specific
object from an image that interests the most [1]. To track a color on an image, the mask can be
defined in HSV color space using ”cv2.inRange()” command that passes lower and upper limits of
color values in HSV. To apply a mask to an image, ”cv2.bitwise and()” bitwise operation can be
computed between mask and image [16]. Figure 5 shows an original image of a yellow car as an
example.

Figure 5: Image example of a yellow car

Figure 6 shows a python code that imports an image, defines lower and upper limits of a color,
creates a mask and shows the result using ”bitwise-AND” operation. Figure 7a shows a mask
which tracks color and figure 7b color shows tracked yellow color in the input image.

Figure 6: Example code of setting up a mask for an image

8

(a) Mask made for original image
(b) Mask of original image that tracks yel-
low color

Figure 7: Mask made for original image and mask that tracks the yellow color

6.6 Robotiq 2F-85 gripper

Figure 8: Rootiq 2F-85 gripper used for industrial robots

Robotiq 2F-85 gripper on figure 8 is an adaptive gripper produced by Robotiq and is used for
industrial robots. Robotiq collaborates with a team from Universal Robots where the Robotiq
2F-85 gripper is widely used. Finger design of the gripper makes it possible to do both internal
and external gripping of objects. Robotiq 2f-85 is a robust gripper that has high pinch force and
payload. Such devices as wrist camera and force feedback modules can be attached to the gripper
to allow it perform more tasks on the assembly line [31]. The fingers on the Robotiq 2F-gripper
are under-actuated, which means they have fewer motors than the total number of joints. Such
configuration makes it easier for the gripper fingers to adapt to the shape of the object that they
grasp. The gripper can be controlled by Modbus RTU protocol over USB port using ”ACC-ADR-
USB-RS485” converter and controlled through ”Robotic User Interface”.[32].

6.7 KUKA LBR IIWA 7 R800

The Kuka LBR IIWA, shown at figure 9, is a collaborative robot designed for safe and efficient
human-robot interaction manufactured by KUKA Robotics. LBR stands for ‘Leichtbauroboter’
which translates to ‘Lightweight robots’ from German. IIWA is a code for ‘Intelligent industrial
work assistant’. The Robot, by its purpose, presents a lightweight and compact design. Its key
feature is the Seven Degrees of Freedom movement space which makes it agile and flexible enough
to conduct the majority of movement related operations. Being a precise and safe tool, KUKA
is equipped with sensitive joint torque sensors which make it possible to detect and respond to
collisions and other forces. Paired with precise control which allows sub-millimeter adjustments,
it makes a very versatile and safe product [21].

9

Figure 9: Kuka LBR iiwa 7 R800 industrial robot used in this project

KUKA LBR IIWA is only a part of a greater system, which requires integration with KUKA Sun-
rise Cabinet, a powerful controller, which holds the necessary power, control and communication
interfaces for the robot. Sunbrise cabinet is shown in figure 10. Cabinet provides several interfaces
for external I/O devices such as sensors and communication protocols like Ethernet and Fieldbus.
It supports various safety implementations like the stop buttons, safety relays and safety circuits
which ensure safe operation and compliance with safety standards. KUKA Sunrise Cabinet being
the primary control unit of the robot, contains Control software which is in principle, a user-
friendly programming environment. The two main Software are the Sunrise.Workbench and the
WorkVisual [20].

Sunrise.Workbench is a software that can be installed, typically on Windows-based computers
and communicate with the robot through network connection. Its main task revolves around
programming, particularly in the Java language. With built in libraries, users are able to use the
robot to its full potential [18].

WorkVisual is a stand-alone software providing more configurational features than Sunrise.Workbench.
Its primary feature is the system configuration and network communication of the robot. It allows
users to configure I/O interfaces, set up safety parameters and integrate external hardware into the
system. Workvisual also serves a purpose as a project management tool where one can simulate
the models and organize the structure of the project [19]. The software is complementary to other
products provided by KUKA as it relies on Import/Export features in order to deliver a solution.

Figure 10: Kuka sunrise cabinet

Sunrise Cabinet is additionally complemented by the KUKA SmartPAD which is shown in figure
11. It enables real-time monitoring of the robot, manual calibration and control of the robot. It is
a handheld control device with touchscreen interface connected directly to the Cabinet. In addition

10

to being the absolute control unit of the robot, it packs several safety features like buttons and
keys [22].

Figure 11: Kuka smartPAD used for movement control of industrial Kuka robot

6.8 Programmable Logic Controller

Abbreviated as PLC, is an industrial processing unit utilizing modular components designed
primarily for process automation. Controllers and its modules often provide inputs and outputs
for a variety of simple end devices, as well as specially tailored industrial equipment. PLCs are
choice devices for performing repetitive tasks and its robustness makes it viable for deployment in
most environments such as production plants, elevators or even smart homes.

Overview over PLC system is presented in figure 12:

Figure 12: PLC system showing parts it can contain

Typical PLC system consists of :

11

• Power supply - Electrical device that supplies electric power to an electrical load.

• Input modules - Components which receive signals from external devices such as sensors.

• Output modules - Components which send signals to external devices such as sensors.

• Central processing unit (CPU) - Supplied by the memory, runs the operating system on the
device and executes tasks in the form of a program.

• Programming device - External device, such as PC, which allows the user to create a program
to be run on the PLC [36].

6.8.1 IPC and Embedded PC

IPCs, short for Industrial Personal Computers, are devices specifically designed to be used in in-
dustrial environments. They offer a flexible architecture similar to a standard computer compared
to specifically tailored PLCs. They are more resilient than typical computers and cover areas
typically troubled by dust, abnormal temperature and vibration. Usually IPCs can be considered
Embedded PCs, which are computer systems integrated into a larger device or system. In terms
of industrial controllers, they are built to perform specific tasks, usually executed by their PLC
counterparts. However, such systems provide possibilities for running software applications, visual-
ization, data processing and communication which extends its use to areas such as data acquisition,
human-machine-interfaces or data logging. IPC offers a general-purpose CPU, memory and stor-
age, therefore they can run operating systems such as Windows or Linux which provide a wide
range of tools and programming languages for its users [14].

6.8.2 Beckhoff CX5120

Beckhoff CX5120, shown in figure 13 is an IPC or an Embedded PC which is part of Beckhoff
CX5100 series. It presents a compact, yet durable design fulfilling the industrial device require-
ments. It is powered by the low-power and low-cost general purpose CPU Intel Atom which finds
its usage in such embedded systems. CX5120 offers a variety of communication interfaces like the
Ethernet, USB and serial ports allowing it to communicate and integrate with a wide range of
devices and networks. Additionally, it can be supplied with extension modules for I/O control and
beyond. The CX5120 can be considered an IPC due to industrial-grade features and capabilities
and likewise as an embedded system for its special purpose and optimization within the industrial
environment [5].

Figure 13: Beckhoff PLC used in this project

12

6.8.3 EL6695 - Beckhoff module

The beckhoff EL6695 is a bridge module which is a part of Beckhoff’s EtherCAT Terminal System
designed to provide real-time data exchange between strands with different masters. Beckhoff
EL6695 module is shown in figure 14.

Figure 14: EL6695 - Beckhoff PLC module

The module acts as an interface between EtherCAT and other fieldbus systems, allowing for integra-
tion and communication between masters. It Provides a flexible CoE (CANopen over EtherCAT)
interface, which is used for parameter management of EtherCAT devices. The interface allows
for the integration of CANopen devices into EtherCAT network, therefore CANopen devices can
benefit from the high-speed communication and real-time performance of EtherCAT [6].

In AMS NetID, AMS stands for Automation Device Specification and NetID stands for network
identifier. It is a local address of the device in the TwinCAT network. AMS NetID consists of 6
bytes and must be assigned by the project planner. NetID should not be repeated in the TwinCAT
environment [7].

6.9 Software

6.9.1 Multithreading and multiprocessing

Multithreading, particularly in Java language, refers to the ability to execute multiple threads
simultaneously in a program sharing the same resources. Using such a method, it’s possible to
achieve concurrent and efficient program execution. Java supports multithreading through the
Thread class which allows for certain operations like Creating the thread, Starting, Scheduling and
synchronization [28].

Multiprocessing is another tool to achieve concurrent execution in a program with some key dif-
ferences in its architecture compared to multithreading. Multiprocessed tasks rely on their own
memory space and resources and may communicate with each other through more complex com-
munication methods like pipes or sockets. As a result of separate resources, multiprocessing can
efficiently use multiple CPU cores allowing for true parallelism [9].

Both multithreading and multiprocessing are utilized to achieve program parallelism and efficient
execution. Depending on the nature of the task, either one should be used as they both excel in
different environments.

6.9.2 Modbus RTU

Modbus RTU is an open serial industrial protocol which uses master/slave architecture and was
developed by Modicon. This serial protocol is widely used in industry because of its ease and

13

reliability. It can be used in ”Industrial Automation Systems” or within ”Building Management
Systems”. RTU stands for ”remote terminal unit” and is a version of Modbus that uses client/server
technique to communicate between devices. If there are devices or applications that use RTU
protocol then there will be at least one server and one client. [3].

Messages in an Modbus RTU protocol are based on data read or data write from the master to
the slave. Packets that read data include a slave node address, which is a node address that the
data will be read from, start address with the number of coils or registers to be read, and a 16 bit
CRC, which stands for Cyclic Redundancy Check. Reply from the server will contain a message
with the slave node number, command, number of bytes of data, data itself and 16 bit CRC [12].
Coils and registers are data types in Modbus. Coils can be seen as single bits which have value of
0 or 1. Coils can hold a state or a status of some physical input or output signal. Registers are 16
bit unsigned data that can have value from 0 to 65535 or 0 to FFFF in hexadecimal [3]. Modbus
RTU can be used in combination with such programming languages as C, java or Python to create
communication between devices.

6.9.3 TwinCAT 3

TwinCAT 3 is a software developed by Beckhoff Automation for controlling industrial automation
systems and programming them. It is used for controlling mainly the Beckhoff hardware and
managing its resources and capabilities. It also serves a purpose of visualization and simulation
environment.

Twincat 3 is based on several programming languages typical for programmable logic controllers
(PLC). The main languages are the Structure text(ST), Function Block Diagrams (FBD), and
ladder diagrams(LD) [8].

Structured text is a text-based language which resembles the syntax of C programming language.
It is designed to be intuitive to write and read [11].

Function block diagram is a construct or a modular unit of code which allows for creating graphical
representations of Function blocks and functions in the form of boxes. They are designed to promote
code reusability, modularity and scalability [38].

Ladder diagram is a programming method which in its form resembles the rungs of a ladder.
The ‘rungs’ contain various control elements of choice. Additionally, the resemblance of rung
representation to contact relay circuits was intended to aid programming by specialists familiar
with electrical diagrams [39].

6.9.4 EtherCAT

Abbreviated Ethernet for Control Automation Technology is an industrial Ethernet-based fieldbus
system developed by Beckhoff Automation widely used in industrial automation and control applic-
ations. EtherCAT utilizes the Slave-Master communication model with key features being its high
performance. Industrial Automation and control systems are considered real-time systems, where
low latency and data priority is the key to obtain an efficient and safe environment. EtherCAT
does that by the support of distributed clocks, ensuring synchronized operation of devices and
precise timing control across the network and its flexible topology which allows for easy network
expansion [30].

14

7 Materials and methods

This chapter presents methods that are used in the project to achieve a desired result. Methods
are presented as a guide on how the necessary software, components and libraries should be set
up. All the information is described using simple examples that would be referenced to in later
chapters.

7.1 Planning and design

The development process, as conducted by a two-man team required scrupulous planning, design,
milestone management and communication in order to be carried out correctly. Certain aspects of
the project structure were unexpectedly altered and demanded great team effort to counter.

7.2 Initial meeting

The first meeting was an introductory meeting at the NTNU University, where we got to know
each other and learn about each other’s backgrounds. We discussed what technologies and types
of work are of interest and decided on the future project idea. Thanks to early stage meetings,
either alone or with project coordinators, we were clearly able to establish a project culture and
team dynamics. Furthermore, it helped to mitigate certain risks as different visions for the project
development were presented. We managed to address any uncertainties and came to common
conclusions.

7.3 Pre-project

During the very early stage of the project planning, the pre-project plan was essential for going on
forward. Future milestones and expectations on how the project should proceed were required for
assigning the tasks and creating an overall roadmap.

The key parts of the pre-project were allocation and utilization of the resources and the risk
management. The group expected to require various hardware and technical support regarding
safety of the workplace. Moreover, it transpired to be significant to identify potential risks and
occurrences which can influence the development. Due to the nature of the project, where a great
number of physical hazards can take place, risk evaluation was indispensable for the beginning of
the work. The pre-project plan acted as a guidance for future plans for the project and greatly
helped the group achieve the intended outcome.

7.4 System design

The project required designing a system where several not-fully related components are supposed
to communicate and cooperate with each other. Design process has gone through several iterations,
where the most favorable version was picked. The final composition of the system consists of the
following parts:

• KUKA LBR IIWA robot

• Beckhoff CX5120 paired with the Beckhoff EL6695 bridge module

• Raspberry Pi 4

• Robotiq 2F-85 gripper

• Stationary Computer

15

Each component has their own distinctive communication methods and utilize various communic-
ation protocols. Roles, assignments and design procedures, will be described in further sections of
the report.

7.4.1 KUKA LBR IIWA and CX5120

KUKA LBR IIWA is undoubtedly at the core of the project. There are several reasons as to why
it was deployed and it proved itself superior to any other explored solution. Without any prior
knowledge to the system, the group was able to quickly identify the needs and possibilities of the
system. One of the key features of interest was the high precision and accuracy. It proves itself very
consistent in performing tasks and requested movements are very persistent. Another important
factor was flexibility and versatility. The robot utilizes seven degrees of freedom which is a very
important feature when picking up randomly placed objects. Lastly, KUKA Sunrise Cabinet allows
easy integration of external devices and seemingly simple programming through Java language.

To prepare a robot for external control and make it a part of a greater ecosystem with better
scalability , it requires a control device such as Beckhoff CX5120. The family of Beckhoff controllers
are irreplaceable when it comes to ease of integration with KUKA robots. The given model is
equipped with an etherCAT coupler, which paired with EL6695 module allows easy connection to
KUKA. The project was oriented around industrial appliances, therefore an industrial control unit
was necessary. The CX5120 shows superior modularity and PLC-like programming capabilities,
therefore was a perfect choice for the project.

7.4.2 SpeechRecognition v3.10.0 library

There are several ways of creating a speech recognition application. Speech recognition application
for this project will be established using the Python programming language. The application itself
is run on a stationary PC. “SpeechRecognition” library has been chosen for the project because of
its simplicity and easy setup in Python IDEs such as PyCharm. The application uses voice input
that comes from a microphone connected via USB port, and transforms it into a text. The text is
a string which can be sent as voice command to other devices. ”SpeechRecognition” library allows
to use all the functionality that is required for the project without using lots of hardware resources.

7.4.3 OpenCV, color band solution and Raspberry PI

To establish a computer vision for tool recognition, ”OpenCV” python library has been chosen for
this project. ”OpenCV” is an easy to use open source library that can be used both for simple and
complex tasks. For this project ”OpenCV” computer vision application is run on Raspberry Pi 4
board. The task of the project is the ability of web camera to detect tools and differentiate them
from one another. In addition, the webcamera should be able to calculate position and orientation
of each of the tools. For detection of the tools, color bands have been chosen as a possible solution
for this problem. Color bands for each tool have one primary bottom color, which is common for
all the tools, and upper secondary color, which is different for each of the tools. Tool detection can
also be done by training the computer vision model to recognize tools by using multiple images of
the objects. The reason color bands have been chosen as a solution is that it’s a simple solution
that is only based on color recognition and doesn’t require any training of the recognition model.
Computer vision application runs well on the Raspberry Pi 4 board and performs all the tasks that
were required for the project. Precision of the color detection can vary based on where the source
of light is.

7.4.4 Gripper, why Robotiq 2F-85 gripper

Robotiq 2F-85 adaptive gripper is selected as a gripper for Kuka iiwa robot. This gripper has
all the functionalities that can be useful for the project. Gripper is easy to connect and can be

16

controlled from a python environment using serial commands. In addition, Robotiq gripper’s finger
design allows it to pick up and adapt to size and shape of the objects.

7.4.5 Data flow chart

Data flow chart depicts the sequence and logic of the data flow. In order to communicate several
devices together, it required implementation of answer-request relation. Figure 15 presents the
data flow chart which presents the basis on which the devices cooperate.

Figure 15: Data flow chart for the system

Planning part of the project demanded scrupulous design choices, where the system will be perfectly
functional, yet not unnecessarily complicated. Following subsections go into detail about the
structure of exchanged data.

7.4.6 Data exchange - KUKA LBR IIWA and Twincat 3

Data exchange between the Robot Environment and Twincat 3 is established by implementing
the EL6695 module into the system. The logic and basis of the communication is solely based on
the master-slave principle, where CX5120 takes the initiative of ordering the robot, based on its
feedback, other external data and user inputs.

TwinCAT 3

In the project, the data type of choice was Unsigned Integer (UINT), a 16-bit data type which
records values from 0 to 65535. The variables must be created as a part of the EL6695 module in
Twincat 3 under ‘IO Inputs’ and ‘IO outputs’. Variables are given either KUKA or PLC prefixes
for better visibility and differentiability. The figure 16 shows variable declaration for EL6695 in
TwinCAT 3.

17

Figure 16: Variable declaration in EL6695 module in Twincat 3

Variables are further linked to their Global counterparts in the program in order to be handled.
In order to be properly assigned, they require correct initialization as either inputs or outputs.
Inputs are declared as ‘AT %I*’ and outputs are declared as ‘AT %Q*’ as shown on figure 17.

Figure 17: Declaration of the variables as global variables in TwinCAT 3, together with linking an
exemplary variable

WorkVisual

Similar process must be conducted on the second side, namely Sunrise Cabinet. External variable
declaration is handled by the software WorkVisual, which is the primary configuration tool for
the system. Assuming that the EL6695 integration, described in the Communication section was
carried out correctly, further configuration can take place.

First part of the setup requires prior knowledge of the future system design. WorkVisual requires
a known number and names of the variables which are going to be handled. Inputs and outputs
are declared as WORD, a 16-bit size, which matches with data size configured on the Twincat 3
side. Figure 18 demonstrates configuration of EL6695 settings.

18

Figure 18: initial configuration of Slave (EL6695) settings

Proceeding to the IO mapping, a special variable group under Sunrise I/O groups is created.
A Sunrise I/O group refers to the group of variables which are going to be utilized inside the
Sunrise.OS software, where the main programming takes part. After naming the variables after
their Twincat 3 counterparts, they can be assigned in the reverse manner - inputs as Twincat 3
outputs, and outputs as Twincat 3 inputs. Mapping of variables in WorkVisual is shown in figure
19 and signal editor of the EL6695 module is shown in figure 20.

Figure 19: Variable mapping inside WorkVisual software

19

Figure 20: Signal editor of the EL6695, where proper variable names can be assigned

TheWorkVisual project can be exported into the Sunrise.OS by utilizing the built in Import/Export
function under the File prompt. On the side of Sunrise.OS, a declared variable group named
‘EL6695IOGroup’ can be imported and used as shown in figure 21.

Figure 21: Initialization of EL6695IOGroup as ‘io’ inside the Sunrise.OS software.

7.4.7 Data exchange - Twincat 3 and Python

A great portion of data exchange happens between the Twincat 3 and Python script. The script,
run by choice, on the PyCharm software is responsible for receiving all of the data from the
raspberry PI and the gripper. Additionally the script controls the Speech Recognition algorithm,
as well as commanding the Robotiq Gripper. Code is executed on the PC due to better optimization
of the hardware which relieves the computing load and due to better networking possibilities. All
variables on the Python side contain the prefix ‘KUKA OPERATION POU’ which is an identifier
referring to primary POU run in the TwinCAT 3 Software.

Speech Recognition algorithm is handled by the Boolean request sent from Twincat 3, namely
KUKA OPERATION POU.RequestSpeech, which in return, after executing the algorithm over-
writes the variable KUKA OPERATION POU.sWord in Twincat 3 with the String containing
interpreted word.

The Gripper section of the python code is request based as well. The script receives in total
two Gripper related boolean variables, namely KUKA OPERATION POU.RequestGripClose and
KUKA OPERATION POU.RequestGripOpen. Based on those requests and execution, the code
produces a feedback which informs the user if the gripper is closed, opened and if it has detected an
object. In boolean variable form, they are named KUKA OPERATION POU.RPI Grip Closed,
KUKA OPERATION POU.RPI Grip Opened, KUKA OPERATION POU.ObjectDetected. Fig-
ure 22 shows a use of plc variables in python code.

20

Figure 22: Figure presents exemplary use of the variables within the actual code.

Object Detection is likewise handled by the boolean request call from Twincat named

KUKA OPERATION POU.RequestCoordinates. Upon receiving the call during a certain time
frame, it will return coordinates supplied by the Raspberry PI. Variables contain strictly integer
values as only such values can be passed further to the KUKA robot after conversion to UINT.
In addition, each variable, excluding ‘Angle’-related ones, corresponds to a position given in milli-
meters, therefore they behold the sufficient precision. Figure 23 shows variable that are passed to
ther TwinCAT 3.

Figure 23: Variables passed to TwinCAT 3.

Complete representation of data exchanged between Python script and Twincat is given as figure
24:

Figure 24: Data exchange between Python and TwinCAT 3.

21

7.4.8 Data Exchange - Raspberry PI and Python (PC)

Data exchange between Raspberry and PC occurs continuously and is completely non-request
based. In order to avoid unnecessary complexity, only one, encoded type of data is being sent.

On the Raspberry side, the data is composed in the form of lists containing both X and Y coordin-
ates and angles for each individual tool. Further, the list must be converted to string in order to
pass it through the encode() function of the python. It is achieved by joining a symbol ‘;’ for each
data index as showed on figure 25.

Figure 25: Creation of the objectData list and further converting it to string via joining ‘;’ symbol.

Before passing the data, all separate stringed lists are merged into one with one more separator
sign ‘%’ in between the lists. Once that is done, the stringed list containing data for the tools can
be encoded and sent through as shown in figure 26.

Figure 26: The final list is created, encoded and sent for processing in Python (PC)

On the other side, a reverse process is conducted. Data is decoded, separated firstly by the ‘%’
sign in order to produce three stringed lists and at last, each stringed list extracts the actual data
by separating for the ‘;’ sign. Indexes for the actual tools are predetermined in the Raspberry code
upon creation of ‘list’ where for example, ‘RedBlueData’ represents the hammer. The process of
data extraction is shown in figure 27

Figure 27: The process of extracting the data from the encoded stringed list.

7.5 Communication

Communication between devices is the primary requirement for a functional system. In the project,
various communication methods and protocols were used, through either direct connection, like
the robot to CX5120 or through the router. A router was utilized for several PCs conducting
development on different branches of the project. Limited number of connection ports of certain
devices were countered by utilizing DHCP routing through the router. Router setup is shown in
figure 28.

22

Figure 28: Router setup.

7.5.1 Communication of PC to CX5120

Establishing a connection with the CX5120 is the backbone of the project. CX5120 is the main
processing and logic unit utilized in the solution, therefore ensuring the proper communication is
required. The Beckhoff IPC runs the Windows operating system with Twincat 3 runnable.

The CX5120 can be connected to the PC simply via one of two RJ45 ports allowing for TCP/IP
communication. Each port can be configured manually on the machine for either static IP or
DHCP. For ease of use and problem-free routing through the router, the method of choice was
DHCP.

In the Twincat 3 software running on an external PC, the controller can be found using the routing
table and further used in the software. Status of the connection between CX5120 and PC is shown
in figure 29.

Figure 29: CX5120 IPC connected to the external PC.

7.5.2 Communication via Beckhoff EL6695

In order to create a communication between an external system and KUKA LBR IIWA, it is
required to communicate two master systems with each other. After securing necessary hardware
connections, EtherCAT communication can be established and data can be exchanged.

Hardware setup

23

Exact provided model of the EL6695 module is as shown in the picture below. It is a model
provided by the Beckhoff with its primary side being destined for the E-Bus connection through
the controller like CX5120. The secondary side of the module supplies two RJ45 connectors ready
for EtherCAT communication. The EtherCAT module is shown in figure 30.

Figure 30: EtherCAT bridge module used in the project

Connection with KUKA LBR IIWA occurs by connecting the Sunrise Cabinet via Extension bus
X65 to ‘IN’ port of the EL6695. Connector X65 allows for connection of EtherCAT slaves, such as
peripheral devices and controllers [17]. Figure 31a and figure 31b show setup of Kuka cabinet and
Beckhoff PLC, respectively.

(a) connection setup of the KUKA Sunrise Cabinet

(b) connection setup of the Beckhoff CX5120 with
Beckhoff EL6695 bridge.

Figure 31: Setup of Kuka Sunrise cabinet and Beckhoff PLC

Software and configuration

24

First software initialization of the Beckhoff EL6695 bridge occurs in the Twincat 3, run on the PC.
The device can be simply added by scanning for additional devices after the primary connection
to the controller has been established. Device scan is shown on figure 32.

Figure 32: the effect of device scan performed on connected CX5120 IPC

Once the device is clearly integrated in the Twincat environment, input and output variables can
be instantiated under the ‘IO Inputs’ and ‘IO outputs’. It is important to note that inputs and
outputs are created with reference to the controller and not the KUKA robot. Variables must be
created according to a predetermined data type which is supported by the Sunrise Cabinet for
receiving and sending. Once the proper variable setup is done, the configuration can be uploaded
to the bridge.

Figure 33: Process data synchronization with the module by creating a new configuration.

Second phase of the integration occurs on the KUKA side. In order to configure and integrate the
bridge into the Sunrise Cabinet, it is necessary to modify or create a new IO configuration in the
WorkVisual Development Environment as shown in figure 33.

It is achieved primarily by adding the correct controller in the software, namely KRC4 -8.3.0 in
this particular project. Further, it is possible to utilize the X65 Extension Interface as described
before, which directly gives access to SYS-X44 Extension Bus. Figure 34 presents setup of EL6695
module in WorkVisual.

25

Figure 34: Setup of EL6695 in WorkVisual

After the proper IO exchange setup, which was described in section 3.2.3, Communication should
be established properly.

7.5.3 Communication via Pyads

”PyADS” is a python library that is used for communication between the python environment
and TwinCAT devices. Python code with ”pyads” library is run on a stationary PC. The PC is
running both python code and TwinCAT application in the background while being connected to
the PLC via the router. Figure 35 shows python code that uses ”pyads” library to communicate
with TwinCAT devices:

Figure 35: Communication with PLC from python using PyADS library

At the beginning, the python code defines ”AMSNETID” of the device it tries to communicate
with. ”AMSNETID” for the device is ‘158.38.140.64.1.1’. Variable ‘plc’ establishes connection
to the TwinCAT device by using ”AMSNETID” of the device and port. “plc” variable opens a
connection and checks if it’s connected, then prints the status of the connection. Connection to
the PLC should be open before variable values can be changed.

By using the ”plc.write by name()” command, python changes the value of the target variable
“iNumber” in TwinCAT. Command ”plc.write by name()” writes a new value to the variable
given as ”MAIN.iNumber” in Beckhoff PLC. On the other hand, ”plc.read by name()” is used to
read a value of the variable from the Beckhoff PLC. At the end, python reads the new status of
the variable with command ”plc.read by name()”, prints the status of the variable and closes the
connection.

26

7.5.4 Communication and control of Robotiq 2F-85 gripper

Robotiq 2F-85 gripper

Robotiq 2F-85 adaptive gripper is connected to the USB port on local PC through ”ACC-ADR-
USB-RS485” serial to USB converter. Figure 36 illustrate wiring schematics of the 2F-85 gripper,
power supply and serial to signal converter:

Figure 36: Connection of Robotiq gripper with serial to USB converter

White signal and green signal wires on the Robotiq device cable should be connected to the port
”485+” and port ”485-” respectively on the signal converter. Bare wire is connected to the ”485
ground”. Red and black wires are connected to the power supply, 24V and 0V respectively. [33].

Software

The communication method of choice for the Robotiq Gripper yielded to be the Modbus RTU.
Sending and receiving direct serial commands proved itself sufficient and reliable enough to conduct
any desired operation.

A portion of commands and control principles were selected with reference to the products manual,
which contains necessary information about communicating through Modbus RTU.

The used commands were:

• Activation command - [0x09, 0x10, 0x03, 0xE8, 0x00, 0x03, 0x06, 0x00, 0x00, 0x00, 0x00,
0x00, 0x73, 0x30]) - Commands the gripper to Activate.

• Open command - [0x09, 0x10, 0x03, 0xE8, 0x00, 0x03, 0x06, 0x09, 0x00, 0x00, 0x00, 0xFF,
0xFF, 0x72, 0x19] - Commands the gripper to open

• Close command - [0x09, 0x10, 0x03, 0xE8, 0x00, 0x03, 0x06, 0x09, 0x00, 0x00, 0xFF, 0xFF,
0xFF, 0x42, 0x29] - Commands the gripper to close.

27

• Check command - [0x09, 0x03, 0x07, 0xD0, 0x00, 0x01, 0x85, 0xCF] - Command to receive
a feedback from the gripper.

• readline() function provided by the ‘serial’ module for python - to read current feedback from
the serial port.

7.6 Twincat 3 program

The CX5120 is without a doubt the center of the project. Combined with a complementary PC, it
connects all the nodes in a system. To carry out all of the designed procedures within the project,
an appropriate Twincat 3 program must be in place. It has shown that the request based solution
in such a diversified environment is an appropriate method of implementation.

The main program (POU) named ‘KUKA OPERATION POU’ consists of 5 Function blocks, which
handle all of the operations. Function blocks are distinct in their functionality and each of them
was created with a separate operational scope in mind. The main program is shonw in figure 37

Figure 37: The main program, KUKA OPERATION POU

7.6.1 Request Handling

The request handling is implemented in the form of a Function Block which joins all necessary
request variables across the system as shown in fiugure 38.

Figure 38: ‘HandleRequests’ Function block

Requests to be handled for the gripper are fairly trivial. The program should determine whether
to open or close the gripper based on the feedback coming from the Python script. Solution is

28

purely conditionary as KUKA LBR IIWA is responsible for knowing and informing the system
whether the gripper should be manipulated. Incoming request from the robot is an integer, either
0 or 1 contained in variable KUKA Gripper Request. Based on that, HandleRequests commands
a Python script to Close or Open the gripper by triggering boolean variables RequestGripOpen or
RequestGripClose.

As LBR IIWA is responsible for requesting the gripper action, it must receive feedback over the
GripStatus variable further linked to PLC Grip State. Handling of requests is shown in figure 39.

Figure 39: ‘HandleRequests’ Function block

Requesting the Speech Recognition input along with Tool coordinates from Raspberry PI is
triggered only after receiving IDLE status from KUKA robot. The IDLE status is sent straight
from the robot in the form of an UINT value named KUKA Current Operation, where value 0
depicts Idle state. Request handling for coordinates and speech recognition is shown in figure 40.

Figure 40: Speech Recognition and Coordinates request handling.

Similarly to handling external devices, the inner Twincat 3 program relies heavily on two particular
requests, requesting the object and requesting the operation to be performed. Both are considered
user inputs, however certain situations require only one or both of those inputs, therefore the pro-
gram must react accordingly and request proper inputs. In the program, both inputs are requested
during the IDLE state of the robot, however ObjectRequest additionally relies on Gripper’s object
detection in order to avoid commanding pick-up operations while already wielding a tool. Task
requesting is shown in figure 41.

29

Figure 41: Task requesting in structured text

7.6.2 User input handling

In the project, users can provide inputs through two separate methods. One of them is Speech
Recognition, which is the main idea of the project. Second option is manual input which yields
the solution operational as long as necessary components are running. It’s also a more convenient
way for debugging, testing and operating in loud environments.

For the purpose of the project, Speech recognition recognizes four different operation types and
three different tools and considers them inputs. The python script passes a string value to Twincat
3 for further processing. The value has a structure of sentence and a program should pick potential
input values and separate them into operations and objects. The method used to select a word of
interest is FIND() function, used in Structured Text language as shown in figure 42.

Figure 42: Program finding a particular word within a string.

Further, the program assigns correct OperationType value which ranges from 1 to 4 as shown in
figure 43. Additionally, Pick-up operation requires existing object input.

• 1 represents Pick-Up operation

• 2 represents Drop operation

• 3 represents Give operation

• 4 represents Hold (IDLE) operation

For objects:

• 1 represents screwdriver

• 2 represents hammer

• 3 represents pliers

30

Figure 43: A program assigning values to operations and objects.

Implementation of manual mode proceeds in a similar fashion, with mild modifications of the code.
It was considered that manual mode should be split into three separate inputs. One as a main
input for the users in the form of a single input string and two separate string inputs for operations
and objects for debugging and testing purposes. The three inputs were integrated together, such
that the user input splits and feeds two other inputs. This is done to maintain code clarity as no
unintended interferences were observed.

User input with a proper command, looks for a separator of a blank space using previously men-
tioned FIND() function, then the two values are determined based on their symbol index positions
in the string with respect to the separator. Operation type is assigned by looking left of the sep-
arator and Object type by the right. Naturally, if the separator does not exist, the full command
will be passed, as not every command requires an attached object. Figure 44 shows how program
splits command input into operation and object inputs.

Figure 44: The program splitting command input into Operation and Object inputs.

Furthermore, figure 45 shows how string outputs are determining corresponding operation and
object types.

31

Figure 45: The program assigning values based on corresponding string inputs.

Additionally, for users convenience and easier input handling, the inputs and outputs will reset to
empty strings and values of 0 as shown on figure 46. The robot does not follow commands while
performing a task, however once the command and necessary data are passed, it is crucial to not
order the same commands after successful execution. The solution of this safety related problem
is based on a timer which will reset inputs and outputs of the program after two seconds.

Figure 46: The reset logic of inputs and outputs within manual mode.

7.6.3 Task Handling

In the center of the Twincat 3 solution, as well as being the final step before commanding the Robot
is the task handling. Requesting, inputs and logical operations meet at the last Function block,
the ‘TaskHandling’. This particular Function block, serves a purpose of directly commanding
the robot, sending appropriate data and determining whether the inputs should be processed. It
involves certain security measures and makes sure that unintended events do not occur.

First feature of TaskHandling is to once again ensure that the Pick-up operation cannot be con-
ducted without an assigned object. In the request handling section, it is explained that the object
should be requested at the idle state without detected object. However in this situation, the pro-
gram makes sure that any input regarding picking up object operations, will be dismissed until the
object request comes first. Figure 47 shows fail-proofing of the code.

32

Figure 47: Fail-proofing of the code regarding operation inputs

Sending the object parameters is likely treated by fail-proofing. The code differentiates between
input types and ensures that the object type sent towards KUKA robot will reset if the picking up
operation is unsuccessful. It happens due to the fact that the robot sets its operation to IDLE after
performing the task and during that time, request checks are performed, which allows the code
to reset requested objects unless they were gripped properly. Figure 48 shows how code passes
through object information.

Figure 48: The code which passes through object information.

Lastly, the ObjectCoordinates switch-case, presented in figure 49, is responsible for extracting and
passing through the object coordinates and angle. Based on the object type chosen, the case will
assign correct values to the outputs which will be passed to KUKA robot. Coordinates and angles
are required to be only positive integers to be sent through, therefore range shift is performed.
Coordinates never exceed values over 900, therefore a 1000 is added to their original value and
angles can range from -180 to 180, therefore 180 is added to the value before sending.

33

Figure 49: ObjectCoordinates Switch case code.

7.6.4 Visualization and GUI

Visualization plays a big role in end-user experience. It represents all necessary data in one place
which allows users to take actions more efficiently and be more informed about the proceedings.
Together with input possibilities it forms a control panel from which the user can utilize and
observe the prime aspects of the project.

Feedback of the KUKA LBR IIWA contains several monitoring variables. These are mainly the
information about robots current coordinates X, Y, Z and the currently performed task. The
incoming coordinate data requires range shift as well. On the side of the robot, value is increased
by 1000 and decreased by 1000 on the Twincat 3 side. Furthermore, the current operation is
assigned corresponding string values for better understanding for the user. Figure 50 shows the
function block about task information.

Figure 50: The code of KUKA Task Information Function block

Graphical representation of the project, shown in the figure 51, serves the purpose of a compact
control panel with necessary control data and inputs. Control data displays real-time robot co-
ordinates, current performing tasks and grasped objects. In addition, it is paired with real-time
tracking of tools coordinates supplied by Raspberry PI and gripper information. Two remaining
panels are for observing and declaring inputs in either Speech Dashboard or Manual Mode.

34

Figure 51: Visualization of data and GUI of the Project.

7.7 KUKA LBR IIWA PROGRAM

KUKA LBR IIWA is the main subject of control within the project, as well as the end receiver of
commands put together by the rest of external devices. The main idea of the programming part is
for the robot to be fully under control of the user through the Twincat 3, yet have its own safety
measures and automatized internal controls and reactions.

The use of the robot is purely movement based. In the project, two different methods of executing
moves were used.

• PTP - point to point movement, utilized mainly to manipulate joints into certain configur-
ations or achieve specific coordinate position. Executed via built in ptp() functions of the
Sunrise Workbench

• Lin - linear motion, used to move linearly along one axis in cartesian space.

In order to ensure safety, motions are velocity limited on the software side. It is done through
setJointVelocityRel() method which is an attribute of movements.

As Java is an Object-oriented programming language, code is separated into classes based on their
area of use. The division of classes is as follows:

• Class RobotApplication - main program which controls the robot.

• Class RobotCurrentInfo - provides real-time information for Twincat 3.

• Class RobotUtil - contains movement sets and utility tools.

• Class RobotTestUtil - contains calibration, testing tools and experimental movement sets.

7.7.1 Initialization

One of the requirements for a safe operation is an initialization of the robot after closing the
program or fully shutting down the robot. A shutdown can occur at any position, during any
performed task while grasping any object. To counteract any potential hazard regarding the topic,
a method initializeRobotPosition() is always executed upon the start of the program.

35

The code in figure 52 creates a frame, which is a cartesian representation of a robot’s position in
space. The position is measured at the tip of the flange (gripper). Based on that frame it detects
any potentially hazardous position and commands the robot to move into safe space and into a
mechanical zero position. The movements are executed in slow linear fashion. Once the robot is
at mechanical zero position, all its joints are free of angle rotations.

Figure 52: InitializeRobotPosition() method within RobotUtil class.

7.7.2 Real-time information

Programming of LBR IIWA in the Java environment opens up possibilities of extracting important
information without interrupting any operations. Method of choice is Threading, which can be
used to provide the data for exchange and execute the main program at the same time.

Extracting the data is based on constantly requesting the current cartesian position of the flange
and further extracting specific axes. It is done by utilizing the method getCurrentCatesianPosi-
tion(robot.getFlange()) and further passing it to EL6695 variables. Additionally, thread can be
suppressed after each execution, to not unnecessarily consume resources.

RobotCurrentInfo, shown in figure 53 is a separate class which extends the Thread class. It is
enabled during the initialization phase of the program.

Figure 53: Implementation of RobotCurrentInfo class.

36

7.7.3 Main program

The main program is a part of RobotApplication class and is based on a constantly checked and
looped switch-case. It heavily uses other classes and builds logic around them. The program
is mostly scripted movement arrangements, as it’s expected from industrial robots. Each case
represents an operation type which the robot can perform.

Case 1: Pick up Operation

The pick up operation in figure 54 starts with a countermeasure for falsely passed object informa-
tion. It checks if the coordinates are within the area of pick up operation and if not, it cancels the
execution. Once the object is validated, it can proceed to the ‘PickupPrepare()’ position, which is
a predetermined joint setup over tools.

Figure 54: PickupPrepare() method.

During the procedure, the program requires certain actions from the gripper. Until the synchron-
ization and proper feedback is received, the robot stalls to avoid unintended behavior. Upon
continuation, object position and parameters are passed for a new movement set in which the
robot moves over the object and adjusts the angle for perfect grasp. Figure 55 shows a pick up
case code.

Figure 55: Pick up case.

Random or not predicted angle of rotated object poses certain issues. The flange of the robot is
not able to rotate full 360 degrees around the axis. Instead, the range of rotation is -175 degrees to
175 degrees. The gripper must take the long path of 350 degrees in order to rotate from one end to
another. Additionally, once the robot moves to specific coordinates, its flange already rotates the
flange x degrees with respect to tool position. That being said, a tool, whose angle is evaluated
only with respect to the pick-up area, will create an offset angle for the flange based on its position
with respect to the robot’s base . The problem cannot be addressed by always placing the flange
at 0-angle rotation with respect to the pickup area and then rotating the flange with respect to
the tool, as it can lead to axis rotation violations. Figure 56 shows a representation of the angle

37

problem.

Figure 56: Simple representation of the angle problem

In order to address the problem, the offset angle must be known. By commanding the KUKA
robot to set its flange 0 degrees with respect to the pickup-area after placing it over the object,
it’s possible to read the value of Joint rotation (offset angle) responsible for rotating the flange.
With compensating for the offset angle, the calculation of the final rotation is Offset Angle + Tool
Angle. Only that poses a risk of rotating the flange under -175 degrees or over 175 degrees. To
counter that, a special algorithm shown in figure 57 will transform the tool’s angle with respect
to the robot’s offset angle and determine which path of rotation is shorter and does not violate
axis limits. Generally, it is impossible to avoid 180 or -180 degree rotations in unfortunate cases,
however 5 degree error is negligible.

38

Figure 57: Angle transformation algorithm along with movements performed to prepare for object
grasping.

2: Drop (placing) operation

The drop operation is fundamentally based on an internal switch case, where different objects are
separate cases. Such design is based on the fact that different tools benefit from different movement
sets, which allow for safer and more elegant procedure of placing. Twincat 3 program is responsible
for determining whether the tool is ready to be placed and will not allow for the operation to be
triggered without an object. The dropping sequence consists of moving the robot to neutral and
safe space and slowly approaching its destined place. Upon reaching the place, KUKA orders the
gripper to be opened and safely returns to neutral position. The code for drop operation is shown
in figure 58.

39

Figure 58: The case which controls the dropping sequence.

3: Give

Give is a simple conditional command which orders the robot to release the tool when in neutral
position. It can only be triggered when the object is present. Give command is shown in figure 59.

Figure 59: The code of Give operation

0: HOLD (IDLE)

Hold is the neutral position of the robot, from where any task can be performed. Only during
the time of IDLE, the robot will receive any commands and will allow for request handling in the
TwinCAT 3 environment. Case for Hold operation is shown in figure 60.

Figure 60: The code of hold (idle) operation.

40

7.8 Speech Recognition application

This part of the chapter will describe how Speech Recognition application in the Python envir-
onment should be established. In the project it will be used to recognize words spoken by the
user. The hardware that is used for Speech Recognition application is stationary PC and an USB
headset with microphone.

7.8.1 PyAudio SR libraries

In order to start using a Speech Recognition application in Python, first of all, the installation of
python libraries should be done. There are three libraries that are required for this application:

SpeechRecognition package - this package gives an opportunity to recognize speech from audio
files that are recorded in “.wav” or “.mp3” formats [41].

PyAudio package - this package is required for application to be able to recognize voice from the
connected microphone in real time [29].

7.8.2 Speech Recognition Setup

For speech recognition application PyCharm IDE is used. The package installation can be done
through the terminal in PyCharm. Before installation, it’s necessary to check which Python version
is active in the Python IDE. By printing the command “print(sys.version)” the output provides
information about which Python version is in use. Example of checking version of python is shown
in figure 61. Python versions 3.8 and above are required for speech recognition library.

Figure 61: Printing python version in PyCharm IDE

Now that required version of Python is active, all necessary libraries can be downloaded for the
future application. All the packages can be installed through the terminal by typing specific com-
mands. “SpeechRecognition” package can be installed by running “pip install SpeechRecognition“
in the terminal as shown at figure 62.

41

Figure 62: Installing SpeechRecognition library in python

“SpeechRecognition” - package could be enough if the task is to recognize voice recording from
audio files and translate them into text. However this package alone is not sufficient for real
time speech recognition. “PyAudio” - package gives an opportunity to recognize voice from the
microphone and print it out in the terminal in real time. Installing “PyAudio” is done in the
same way as installing “SpeechRecognition”. By running the command “pip install pyaudio” in
the terminal as shown in the figure 63, ”PyAudio” will be installed for Python 3.

Figure 63: Installing PyAudio library in python

Now that all the necessary packages are installed, the Speech Recognition application can be used
in Python IDEs.

7.8.3 Speech Recognition application

There are many possible IDEs that can be used for Python development. For speech recognition
application ”PyCharm v2022.1.3” IDE is used. ”Speech recognition” python library has all the
necessary commands to create simple application of speech recognition.

The figure 64 bellow shows simple Speech Recognition application that can recognize voice from
the microphone:

42

Figure 64: Recognizing voice commands from microphone

In the beginning the ”speech recognition” package is imported. Next step is to create a function
named ”speech()” that will recognize spoken words. Inside a function is a ”while”-loop that will
run the code inside a function continuously. In ”while”-loop an instance will be created which
contains a ”Recognizer()” class. The purpose of the ”Recognizer()” class is to recognize speech.
The code is listening to the audio from the microphone, which is a source, and then using “Google
Speech Recognition” - algorithm to recognize the voice and transform it into text which will be
printed out in the output terminal. Figure 65 shows output where the application is waiting for
the user’s input from the microphone. Figure 66 shows a sentence that has been said by the user
and recognized by the ”speech()” function. The sentence that is said by the user is a command
to pick up a hammer. Output in figure 66 also shows alternative results of speech recognition
and which of the alternatives have highest confidence. Users can say different commands such as
”pick up screwdriver”, ”pick up pliers”, ”give” and ”drop” a tool. It is important to note that this
package require an internet connection while the script is running, otherwise the program will not
work properly.

Figure 65: Speech recognition application waiting for the user to say something

Figure 66: Speech recognition application output with recognized words

43

7.9 Server/Client communication between Raspberry and PC

Figure 67: Simplified demonstration of server client communication

In order to send information between devices, a ”Server/Client” application can be created by
using socket programming. The devices that should communicate are Raspberry Pi and a local
PC.

”Server/Client” communication will be established between those devices. In this application
Raspberry Pi will act as a server while a local PC will have a role of a client as shown on figure 67.
First step is to assign a static IP address to both Raspberry Pi and PC. It is important to note
that IP addresses should be on the same subnet in order for communication to happen. There are
two ways of setting up a connection. Raspberry Pi and PC can be connected together by using
Ethernet cable and assigned with an IP address which is on the same subnet . Another method is
to connect Raspberry Pi and PC to a common router using Ethernet cables and choosing DHCP
server connection.

Raspberry Pi’s assigned static IP address is “192.168.0.101”. For PC a static IP address is
“192.168.0.103”. Python code for a “Server”-part is created first. This “Server” part will be
run as a python script on Raspberry Pi. The complete code shown below on figure 68:

Figure 68: Python code for server that is run on Raspberry Pi

The code first imports an built-in “socket” library that is needed for socket programming in python.
The ”HOST” is an IP of a device that will act as a server. The ”PORT” for connection is chosen
to be ”8000” and it’s important that both server and client use the same port number. When the

44

“Server” script is run, it will wait for client devices to connect to the server and give the following
message at the output as shown on figure 69:

Figure 69: Raspberry Pi waiting for client device to connect

“Client” part of the application can be created for a local PC that will connect to the Raspberry
Pi server. Figure 70 demonstrates an example of client application made in python:

Figure 70: Python code for client that is run on local PC

The “Client” script uses Raspberry Pi’s IP address which is an IP address the client tries to
connect to. The ”PORT” in ”Server/Client” communication is common - ”8000”. PC establishes
connection to the server using information about IP address and port. The server is waiting for
the external connection from client devices. When the “Client” script is run on PC, it connects
to the Raspberry Pi. The output on Raspberry Pi tells that client device has been connected and
client is receiving data from the server as shown on figure 71:

Figure 71: Output on Raspberry Pi showing that client is connected and client receiving data

The PC receives tool data from Raspberry Pi after the connection is established. The message PC
gets back is “tool data” and is showed as an output as in figure 72 below:

Figure 72: Output on local PC showing that message is received

45

Such a simple way of communication can be established between more than two devices. Raspberry
Pi can still be used as a server, but more devices could be connected as clients that send information
back and forth to the server.

7.10 Raspberry Pi and Tool recognition

This part of the section presents the method of using ”OpenCV” computer vision library in Python
to detect the position of the tools lying on a flat surface. Python script is run on Raspberry Pi 4
board.

7.10.1 Practical setup

The Python script presented in this section is able to recognize the position and orientation of three
different tools that were selected for this project: hammer, screwdriver and pliers. To recognize
tools that have different shapes and sizes, color bands are used. Each band contains two colors:
one primary-bottom color and secondary upper color. By having a band with primary bottom
color and secondary upper color it is possible to determine the orientation of the tool that lies on
the surface. Figure 73 shows different color bands selected for the hammer screwdriver and pliers.

Figure 73: Three tools with color bands: hammer, screwdriver and pliars

The surface on which tools are lying, reflects light which in return could affect how the camera
recognizes colors on the color bands. To minimize the effect of light reflection from the surface, a
computer mouse pad of black color is used under the tools. Figure 74 demonstrates tools on the
surface of the table with black mouse pad.

Figure 74: Tools with mouse pad lying on table surface

A USB Web camera that is used for tool recognition is placed above the surface of the table by

46

using aluminium profiles as shown on figure 75.

Figure 75: Camera stand made from aluminium profiles

7.10.2 Method of calculating angle for color bands

The comparison of coordinates of the bottom and top rectangles is needed for angle calculation
of the color band. For this project it has been chosen that an object can have both positive and
negative angles. Figure 76a shows a coordinate system with positive angles on the right side and
negative angles on the left side.

(a) Camera stand made from aluminium profiles

(b) Change of angle
for color bands in ro-
tation

Figure 76: Sketch of angle calculation for tools

Coordinate system from figure 76a has four quadrants. Quadrant 1 (Q1) is from 0 to 90 degrees.
Quadrant 2 (Q2) is from 0 to -90 degrees. Quadrant 3 (Q3) is from -90 to -180 degrees. Quadrant

47

4 (Q4) is from 90 to 180 degrees. The figure 76b demonstrates how color bands change angles
when they are rotated in different directions. By rotating color bands clockwise, the angle changes
from 0 to 180 degrees, while rotation in counter clockwise direction changes angle from 0 to -180
degrees.

• Rotation from 90 to 180 degrees - x coordinate of the top rectangle should be greater
than x coordinate of red rectangle, while y coordinate of top rectangle is greater than y
coordinate of red rectangle

• Rotation from 0 to -90 degrees - x coordinate of the top rectangle should be less than x
coordinate of red rectangle, while y coordinate of top rectangle is less than y coordinate of
red rectangle

• Rotation from -90 to -180 degrees - x coordinate of the top rectangle should be less than
x coordinate of red rectangle, while y coordinate of top rectangle is greater than y coordinate
of red rectangle

7.10.3 Python Code: Variable setup

First step is to define the lower and upper values for colors that should be detected. Packages
that are required for this part are “cv2”, “time”, “numpy” and math. ”Cv2” and ”time” libraries
are used for computer vision and time delays respectively. ”Numpy” is used to create arrays and
”math” is used for calculation of the tool’s angle. Figure 77 shows upper and lower limits for red,
blue, orange and yellow colors as well as some color and string variables.

Figure 77: Initialization of variables

Figure 78 shows a setup of a web camera with parameters such as USB port, weight and height of
the displayed image, and framerate of the image.

48

Figure 78: Initialization of variables

7.10.4 Creating color detection function

For detection of the color band for each tool a function can be created. Figure 79 shows the
function ”MyTool()” with input arguments and a part that creates an ”object box” around the
color band.

Figure 79: Creating function MyTool() that will recognize objects

”MyTool()” function uses five arguments that determine which color band should be detected.
”myFrame” argument is a frame that is captured by a USB web camera. ”contours” are contours
that are created around the whole color band. “topContours” are contours that are created around
the secondary upper color. ”color” argument is a color of the ”objectbox” that is created by the
function. ”Offset” argument tells a function if it needs to create an offset for the tool’s coordinates.
In figure 79 the box is created by using command ”cv2.contourArea()” to calculate the area of the
created contours. If the area of the contour area is greater than 10, a bounding rectangle with
minimum area is created around the color band with command ”cv2.minAreaRect()” [37]. In
addition, coordinates x and y of the bounding rectangle are created as shown on lines 53 and 54
in figure 79.

Next step is to define an area with minimum and maximum coordinate values as shown on Figure
80.

49

Figure 80: Definition of limits for an area of coordinates

Two variables are created for x coordinate, namely “black area x min” and “black area x max”.
Same for y coordinates, namely “black area y min” and “black area y max”. These variables
for x and y coordinate will be used to transform coordinates of the detected object into robot
coordinates. Two more variables are needed in order to complete transformation from object- to
robot coordinates, namely ”scale x” and ”scale y”. ”scale x” and ”scale y” coordinates will scale
object coordinates in such a way that they will have a limit which is set by “black area x” and
”black area y” variables. To calculate ”scale x” the difference between ”black area x max” and
”black area x min” is divided by frame width, 1024. In the same way to calculate ”scale y” the
difference between ”black area y max” and ”black area y min” is divided by frame height, 648.

Robot coordinates “xR” and yR are calculated by using variables “black area x max”, ”black area y min”,
object coordinates x and y, and scaling variables ”scale x ” and ”scale y”. Robot coordinates ”xR”
and ”yR” do not get best precision so scaling and offset can be adjusted to meet required minimum
and maximum values for coordinate limits. ”xR” and ”yR” will result as robot coordinates that
are transformed coordinates of the object within the black area. Black area that is used for object
detection is shown at figure 81:

Figure 81: Black area for tool picking

On lines 68 and 69 on figure 80, “center” variable is created that stores x and y object coordinates,
and “angle” variable which is a part of the rectangle list. “robotCenterText” is a string that is
used to display robot coordinates of the object on the frame when the program is run. Command
”cv2.putText()” puts the text in the center of the detected object. The text will be displayed
as robot coordinates calculated from scaling factors. ”cv2.FONT HERSHEY SIMPLEX” and

50

”cv2.LINE AA” parameters are a font and line type of the text respectively. “color” parameter
represents the color of the text. Command ”cv2.circle()” on line 73 creates a dot in the center of
the captured object. Finally, ”cv2.drawContours()” draws a line around an object that forms a
bounding box.

Every tool that should be recognized by a camera has a color band with red as primary bottom
color and blue, orange, yellow as secondary top colors. Program using if-statement to check if
the size of the red contours and ”topContours” are greater than 0. Then it creates bounding box
around primary red color and secondary top color as shown on lines from 75 to 85 on figure 82:

Figure 82: Python code part for creating a bounding box, angle calculation and offset coordinates

On line 87 on figure 82, IF-statement checks if the ”topColor” rectangle is on the top by comparing
x and y coordinates of both ”topRectangle” and bottom rectangle.

The angle calculation in python is done by checking which part of the color band is on the top
and which is on the bottom. If the information about center coordinates of the bottom red color
and top color rectangles are available, it’s possible to calculate angle by comparing their center
coordinates with each other. Center x and y coordinates of the red rectangle are ”red rect[0][0]” and
”red rect[0][1]” respectively. Center x and y coordinates of the top rectangle are ”top rect[0][0]”
and ”top rect[0][1]” respectively.

On line 87 on figure 82 if statement checks if the x (red rect[0][0]) coordinate of red rectangle
is less or equal to the x (top rect[0][0]) coordinate of the top rectangle, and at the same time if
y (red rect[0][1]) coordinate of red rectangle is greater than y (top rect[0][1]) coordinate of top
rectangle. If that is the case, the color band will get from 0 to 90 degrees as it rotates clockwise.
On line 89 on figure 82 it creates a string of ”angleText” that will display angle using command on
line 90, ”cv2.putText()”. The code on figure 82 creates angle for the first quadrant Q1 of rotation,
which is when the color band is rotated from 0 to 90 degrees. In a similar way IF statements can
be made to calculate the angle for other cases.

Figure 83, figure 84 and figure 85 demonstrate python codes for angle calculation for intervals [90,
180], [0, -90] and [-90, -180] respectively:

51

Figure 83: Angle calcualtion 90 to 180 degrees

Figure 84: Angle calcualtion 0 to -90 degrees

52

Figure 85: Angle calcualtion -90 to -180 degrees

Every part of angle calculation code includes an IF-statement that checks if the ”Offset” parameter
is true. The offset is needed specifically for calculation of the coordinates for the pliers. The reason
pliers need an offset in coordinates is that the colorband for the pliers is attached to a handle,
while it should be picked on the top by the robot. Without an offset parameter the Kuka robot
will pick up pliers by the handle, which is not the best solution since the gripper will struggle to
pick it up correctly. Offset part which is included under every IF-statement for angle calculation
is presented in figure 86:

Figure 86: Offset part of the code that creates offset coordinates

Figure 86 shows that new variables ”center x” and ”center y” are created that are center s and
y coordinates of the top rectangle. Right endpoint is created on lines 167 and 168 which will
be a new center with offset in x and y coordinates. Variables ”xOffset” and ”yOffset” that are
used for right endpoint calculation are shown at figure 82. Then on lines 175 and 176 on figure
86, ”rotated right endpoint” variables are created that will make the offset point rotate along
the center of a rectangle as it moves. Rotated right endpoint coordinates should be transformed

53

to the new offset robot coordinates. It can be done by applying a scaling factor as shown on
lines 179 and 180 on figure 86. Robot coordinates “xR” and “yR” will be assigned as robot
offset coordinates “xToffset” and “yToffset”. From line 185 to 191, the function will create a
string “offsetCoordinates”, create a line from the center of the rectangle to the offset point using
“cv2.line()” command, create a dot for offset point using “cv2.circle()” command and display
“offsetCoordinates” string as text using ”cv2.putText()” command.

Figure 87 shows that at the end of the function, robot coordinates with object angle are printed at
the output. Else-sentence returns robot coordinates and angle as 0 if there are no objects present
in the frame.

Figure 87: Part of the function that prints coordinates at the output

7.10.5 Python Code: While loop

While-loop will contain all the parts of the code that should be run continuously. Figure 88 shows
the first part of the loop for the color band detection program.

Figure 88: First part of the while-loop

54

First, the frame variable is created from the ”cam.read()” command that captures a frame that is
read from a web camera. Then a new frame is created that is called “frameROI”. “frameROI” is
a frame that has a region of interest which is a black area shown in figure 81. That frame with
region of interest is made from the original frame by setting lower and upper limits of pixels in x
and y direction. Next, an image is converted to the HSV color space. Red, blue, orange and yellow
masks are created using lower and upper values of the colors. To create a combination of masks
for color bands, ”RedBlue”, ”RedOrange” and ”RedYellow” masks are created by simply adding
masks together. Additionally, by using commands ”cv2.morphologyEx()” noise can be removed
from masks by applying morphological transformations [27].

On lines 275, 276 and 277 on figure 88, the program finds contours of the detected regions in the
mask.

Figure 89: Second part of the while-loop

In the second part of the loop, which is shown on figure 89, python code finds color contours
in the masks. Then color contours are sorted by area. On lines 297, 298 and 299 on figure 89,
three variables called ”RedBlueData”, ”RedOrangeData” and ”RedYellowData” are created and
assigned as ”MyTool()” functions. Each of those three functions will detect different color bands
based on the parameters that were provided. At the end of the second part of the while loop, the
program shows a frame as presented on line 302 in figure 89.

7.11 3D models of tool stands

Main task of the project is to make a Kuka LBR IIWA robotic arm to place tools on tool stands.
Tool stands for hammer, pliers and screwdriver are 3D modeled in ”Fusion 360” software. Models
of the tool stands are shown on the figure 90.

55

Figure 90: 3D models of the tool stands made in Fusion 360 software

By measuring thickness and length of each tool, the stands can be designed to fit and hold them
in place. The tool stands are modeled in such size and shape that they could simply be attached
on the tree beams that are located on the wall. After the modeling of tool stands, they can be
printed out on a 3D printer and can look as shown on figure 91.

Figure 91: Tool stands made on 3D printer and mounted on the wall

56

8 Results

This chapter presents the results and achievements of the project based on the implemented meth-
ods. It will also present the administrative results as an outcome of the teamwork.

8.1 Engineering result

8.1.1 Integration of devices

One of the key objectives of the project was to integrate several devices together, ranging from
industry to consumer grade. The methods utilized several different communication protocols which
proved to be more than sufficient for delivering the final solution. It was feared that certain
implementations could hold back or bottleneck the system. A good example is the gripper, which
might have been lacking necessary or reliable feedback, like the object detection. However, all the
sub-systems utilized in the project gave an opportunity for developing a troubleless, consistent and
reliable integration solution.

8.1.2 Safety

Safety measurements were the first objective and initial stage of development. In order to conduct
any tests or use the robot, it was necessary to develop an extensive risk evaluation and strictly
follow it. Initially, the robot was meant to be used only when paired with a relay system, connected
to the proximity sensor. This idea was scrambled, as the responsible personnel were not able to
carry out the correct configuration over a long period of time.

Based on the risk evaluation and recommendations of experienced personnel and teachers, the
environment had to be adapted. The measures were strictly visual warnings and marked lines
depicting robots’ potential reach. One hardware-based measure and potentially the most important
one, was KUKA SmartPAD Stop button, which was at all time within users reach.

Lastly, the software measures, such as very careful programming and fail-proofing of the code,
resulted in no hazardous situations at all stages of development. Velocity of the robot was bot-
tlenecked down to maximum 25% on any move, which gave enough reaction time for the users to
manually shut down the operation.

In summary, the safety rules were successfully followed and no hazardous situations occurred.
However, the planned implementation is not entirely fulfilled.

8.1.3 Commanding the KUKA LBR IIWA

Commanding KUKA LBR IIWA and executing the tasks in a predictable manner was the main
objective of the project. The solution required voice operated pick-and-place procedure to be
viable and ready to be used. It is safe to say that the main goal has been achieved and in fact, the
group’s work has produced a fruitful result in the topic. Voice commanding the robot has a very
fail-safe implementation. It is not, under any circumstances expected to pass wrong and unwanted
commands or trigger unintended behavior. The robot follows strictly scripted paths which makes
sure it’s collision free. There are no deployed collision detection features as explained previously
in the Safety section. The reliability of placing the items on designed stands is very high once the
correct calibration is done. As long as the robot is firmly installed in the place, the pick-and-place
works flawlessly.

57

8.1.4 Speech recognition - results

Speech Recognition application is one of the important parts of this project. The primary task
of speech recognition was to recognize voice commands precisely and use them later to command
a robot to do specific tasks. Speech recognition applications are able to recognize both simple
words or sentences said by the user. There are five voice commands used in this project. The voice
commands are:

• Pick up hammer - sends robot a command to pick up hammer

• Pick up screwdriver - sends robot a command to pick up screwdriver

• Pick up pliers -sends robot a command to pick up pliers

• Give - if robot holds a tool, sends command to a robot that it should release gripper and
give tool to a user

• Drop - sends command to a robot that it should place tool on a tool stand which is located
on the wall.

All of the commands above are recognized by the speech recognition application. However, some-
times it struggles to recognize all of the words for the first try. The user sometimes has to say the
voice command multiple times before the application recognizes it correctly. For example, when a
user asks to ”pick up the hammer”, sometimes the application chooses words that are close enough
to what the user has said but not exactly correct. Figure 92 and figure 93 demonstrate the correct
and incorrect transcript for the hammer.

Figure 92: Correct recognition of hammer command

Figure 93: Incorrect recognition of hammer command

58

Voice command “pick up screwdriver” is easiest of all of the pick up commands to recognize with
transcript confidence of approximately 0.88. The transcript of the correct screwdriver command
is shown on the figure 94.

Figure 94: Correct recognition of screwdriver command

“Pick up pliers” command is the hardest for speech recognition application to transcript correctly.
The application struggles the most to recognize the word “pliers” and often confuses it with other
words that sound similar. Figure 95 shows the correct transcript of the “Pick up pliers” command,
while figure 96, figure 97 and figure 98 show incorrect transcript.

Figure 95: Correct recognition of pliers command

Figure 96: Incorrect recognition of pliers command

59

Figure 97: Incorrect recognition of pliers command

Figure 98: Incorrect recognition of pliers command

In summary, the speech recognition application works as expected and it delivers all the function-
ality required for the project. However, the application could be more precise in the transcript of
the speech.

8.1.5 Computer Vision - results

The Computer vision part of this project that has a task of recognizing and differentiating tools
works for the most part as expected. ”OpenCV” python library provided the team with all the
necessary functionality for the tool detection that was required for the project. By using different
color bands for each tool, the computer vision script in python is able to recognize color bands,
create coordinates for them and calculate orientation as shown on figure 99.

60

Figure 99: Example of tools recognized by webcamera using computer vision library ”OpenCV”

However, sometimes difficulties can occur under the process of tool detection. For example, the
program sometimes struggles to recognize color correctly which leads to wrong calculation of the
angle or coordinates for some of the tools as shown on figure 100 and figure 101. On figure 100, the
coordinates and orientation of the hammer and pliers are calculated correctly, while orientation of
the screwdriver is incorrect and should be in the interval of [0, - 90] degrees.

Figure 100: Example of computer vision application having difficulties to correctly calculate angle
of screwdriver

Figure 101: Example of computer vision application having difficulties to correctly calculate offset
coordinates and angle for pliers

From figure 101 the program doesn’t calculate the offset coordinates for pliers correctly. The offset

61

coordinates for pliers are shown as a green dot connected with the center of the yellow color band
by a straight red line. When the computer vision application is run, it prints coordinates for each
color band in the output as shown in figure 102.

Figure 102: Computer vision application prints out tool coordinates as an output

With all the flaws the computer vision application has in this project, it delivers a simple solution
that meets most of the requirements set by the team. The application has room for improvement
by applying more advanced object detection techniques that could give better final results.

8.2 Administrative results

8.2.1 Teamwork

Teamwork was a big part in this project. Throughout the project process, team members worked
together, reported the progress of their daily tasks and gave technical advice if some of the team
members had difficulties with performing the tasks.

8.2.2 Sprints and planning

Figure 103: Example of planning tasks in YouTrack

62

Figure 104: Example of planning tasks in YouTrack

At the beginning of the project the team had challenges with proper planning and assigning of the
tasks to each member of the team. The team had difficulties with time estimation and planning
deadlines. Later in the process, the team started to use collaborative tools such as “Confluence”
and “YouTrack” that enabled team members to split project into smaller parts and keep track of
each other’s work. Figure 103 and figure 104 shows an example of planning tasks in ”YouTrack”.
With proper planning and task tracking, the team started to work more efficiently towards the
project’s goal.

63

9 Discussion

This chapter is focused on the discussion, whether the group managed to meet personal and
scientific expectations. It will also reveal the limitations and challenges that were faced.

9.1 Expectations vs reality

The expectations regarding the technological complexity in the project were definitely higher than
what was presented. During the development, it has shown that an overcomplicated system does
not yield better results, therefore a simpler vision for the project was created and certain limitations
greatly delayed the development process resulting in inferior quality of particular aspects.

There were expectations about safety in the starting phase of the project. Initially the team
expected safety to be present on the robot from the start in a proper working condition. However
the safety didn’t meet the team’s expectations and it led to consume a lot of time to figure out
how it should be reseted.

Initially, the robot was supposed to be utilized in a collaborative manner, but that idea needed
to be put aside because of the limitations. The positive aspect of the expectations versus reality
is that the project has reached fully operational state before the estimated deadline. The group
has discussed a final roadmap including the final and definitive version of the system and that
expectation was fully satisfied.

9.1.1 Computer Vision: Why some parts didn’t work?

Computer Vision application overall works good enough and meets requirements set by the team
members. However, the application meets some challenges that come from different sources. The
color band solution for tool recognition in itself is not the best solution for the task where it needs
to recognize and differentiate tools. Color detection of the color bands is based on the recognition
of colors that have lower and upper HSV values. Sometimes an application can confuse colors it
detects, since they can have HSV values that are in the same interval. It leads to computer vision
application recognizing parts of blue color as red or orange color as yellow etc. In addition the
light source and shadows affected the performance of the tool detection. The black area where the
tools should be detected had places with shadows and light reflections which led to objects being
not detected in the same way in different places.

9.1.2 Speech Recognition: Why didn’t it work perfectly?

Overall result of the speech recognition application is good for the project. The “SpeechRecogni-
tion” python library and the whole application itself delivers all the functionality that is needed
to achieve a good result for the project. For the most part the application is reliable and simple in
use. Team’s requirements is that the speech recognition application should be able to recognize the
speech at first try. However the recognition of speech can sometimes not give the desired results.
Application can happen to transcript the words incorrectly or not transcript some words at all,
leaving empty space. One of the reasons is that a speech recognition application requires precision.
Application gives better results if the user has a microphone of high quality and words pronounced
loud and clear.

9.2 Limitations

The goals of the project were hindered by certain limitations.

64

9.2.1 Safety limitations

Undoubtedly the most influential limitation is safety. The group had to strictly follow the guidelines
attached in the risk evaluation. One of the main resolutions was maintaining safe proximity from
the operating robot. That alone ruled out any human-robot collaboration at close distance. The
key element which would allow for certain interactions, was the safe-zone sensor based on the relay
system. That was unfortunately not delivered by the responsible personnel and left the group
improvising at maintaining a safe working environment.

The environment in which the robot was installed also led to minor limitation issues. KUKA LBR
IIWA was placed directly in the corner of the room in order to leave the space for a safe-zone. Due
to that fact, the robot had possibilities for only 180 degrees of movement and a portion of it was
reserved for safety reasons, it left less space for additional functions.

9.2.2 Limited Hardware

Although the project utilizes a reasonable amount of hardware, the group has applied for additional
equipment which was not provided or at least not what was required. The initial resolution of the
project was to utilize separate Raspberry PI units to handle any Python related assignments.
The objective was to create a master-slave based system, where the Object detection, Speech
recognition and Gripper controls would be distributed among the Raspberry units for optimal
resource consumption. The final implementation deploys only one unit of Raspberry PI handling
just the Object Detection due to the computational limits.

The provided gripper is not purely designed for KUKA LBR IIWA thus induces certain limitations
in form of delays in the solution. The robot must await the feedback which travels through several
subsystems which results in not instant reactions and hindered precision.

9.3 Challenges

The safety also produced an indirect limitation in the form of enormous time delays.

9.3.1 Safety

Safety setup that was present at the starting phase of the project didn’t work properly and didn’t
allow the team members to progress through the project without limitations. Safety problems that
occurred made the project’s tasks progress more slowly than the team had expected.

Before the safety implementation took place, the time schedule was already stretched to the max-
imum. The group did not start any work on the KUKA LBR IIWA until late April as it was
not permitted to utilize it without it. Responsible personnel finally decided to remove any safety
module and allowed the group to proceed. It is safe to say that the final shape of the robots code
and overall performance is lacking due to that fact. The massive delay not only influenced the
robot, but generally any aspect of the project since every component required general overhaul to
properly integrate it with the robot. The group was granted an additional month to the deadline
due to that delay, however the immobility that was induced by it, created a far greater setback.

9.3.2 Computer vision

During development of computer vision application some challenges occurred in the process. One
of the ideas of developing a computer vision application was to use pictures of color bands. Instead
of tracking colors, camera would use reference pictures of color bands, compare with real time
image and detect colorbands which are attached to the tools. However, this solution didn’t work
as it was expected and the team decided to switch to color tracking instead.

65

9.3.3 Speech Recognition

When the team developed the speech recognition solution it was planned to use the “Whisper”
library provided by OpenAI. There were some problems and errors during setup and use of the
Whisper library in PyCharm python IDE. The team later decided to use an alternative library
called “SpeechRecognition” to establish a simple speech recognition application.

9.4 Communication

9.4.1 Internal

Along the progression of the project, the team has built great relations in the professional space.
The communication in the team was mostly built on common problem solving and achieving the
same goal, rather than disagreeing and being frustrated. The group has managed to mitigate
potential disagreements regarding meetings, by introducing a more loose working relations, where
no strict schedule points were made. Thanks to this working method, the communication took
place as soon as both parties were available and all members were satisfied.

Another key factor which resulted in smooth relations in the team, was offering help to each other.
Even though the team worked mostly on separate assignments, the objectives were positively
influenced by others in the form of providing expertise or ideas for implementation.

9.4.2 How the team worked

The project team worked on several independent parts that needed to be integrated into one
system. From the starting period of the project work, team members decided to work on each part
separately and independently from each other. Each of the team members had freedom to try out
different methods and techniques for the part they worked on.

During the working process, team members didn’t have a fixed time at which they should meet
up at school. Without fixed meeting time, team members had a flexible working process in which
they could meet at any time that was suitable for them. Such choice of working style didn’t affect
the working progress much and didn’t lead to any conflicts between team members.

9.4.3 Project planning

The planning process during the development was dynamic and changing. The group had a pre-
pared plan and goals, but certain changes were made along the way. The original version of the
plan included different methods and equipment.

The team decided that an ongoing communication, updating each other on results, predictions
and limitations was the key to successful project delivery. Although the team worked mostly on
separate milestones, the collaboration occurred daily on the campus where all the information
could be exchanged on the site. It helped enormously to achieve common goals and plans knowing
that the members are well motivated and engaged in the project.

Besides the physical meetings, occasional web-meetings were held, where the members exchanged
their thoughts and ideas outside the professional restrictions.

9.4.4 Collaboration using YouTrack and Confluence

At the beginning of the project the team didn’t use any collaboration tools and didn’t have any
proper planning of the work that should be done. After some time, the team saw that in order
to have more progress in the project, collaboration and planning tools are needed. Collaboration
tools such as ”YouTrack” and ”Confluence” were chosen for this project.

66

”YouTrack” tool enabled team members to split the project into smaller tasks. Every team member
could work on every task and at the same time keep track of the work of other team members.
”Confluence” made it easy to document the work during the process that later could be used in
the report. Team members have never used these collaboration tools before but after some time
of use it was clear that it helped the project to progress more quickly in development.

67

10 Conclusion and further work

10.1 Conclusions

The goal of this project was to develop a Workshop assistant - a robotic arm which is going to follow
voice commands to pick-and-place randomly distributed tools. The solution also aimed to show
how industrial grade equipment can be complemented by consumer grade devices like Raspberry
PI.

In order to meet the requirements, the group picked the necessary hardware and designed working
principles from scratch. The work included delving deep into priorly unknown areas like the
collaborative robots and putting to work experience gained throughout the studies. By utilizing
several programming languages a great ecosystem was created, allowing for complex data exchange
and integrity between devices.

By combining different independent software, programming languages and experience from various
technical fields the team successfully created a solution to the problem described in the project
and achieved an overall good result.

10.2 Further work (upgrade ideas)

This section will explain how the project can be expanded and upgraded. There are many things
which would benefit the solution and make it more versatile and robust.

10.2.1 More organized hardware

The requirement for the PC is simply said, not existent. The design already packs a powerful
CX5120 IPC which can easily be configured to do what the PC does in the project. The upgrade
aspect is based purely on adapting the environment of the IPC to run potential Python code and
scripts.

In addition to removing the PC from the ecosystem, it would be advised to deploy additional
Raspberry PI units to control speech recognition and gripper code. By doing that the devices
would handle one assignment at a time and would potentially be less devastating upon failure of
either device yielding the system still operational.

10.2.2 Collaborative robot

The system would greatly benefit from actually utilizing collaborative functions of the robot. As a
workshop assistant, the current solution lacks direct touching interaction with humans. In order to
combat that, a new risk evaluation would have to be conducted and new reasonable safety measures
would have to take place. The robot did not pose a threat during the development process and
together with understandable programming methods, it did not end up moving unexpectedly. The
future safety measures do not require drastic changes.

10.2.3 Task queueing

Task queueing was one of the points on the roadmap. The idea ended up being dropped due to
limited time and not fully thought-through potential implementation. The upside of task queueing
is that the robot can perform tasks in series, without constant observation and commanding the
robot. However the downside is that the users can either change their minds or trigger unintended
behaviors. The group believes that Task queueing would still be a superior solution, however it
requires more in depth analysis whether it is actually beneficial in a given environment.

68

10.2.4 Better tool recognition

Computer vision part has room for improvements and potential to produce better results. Tool
recognition by color band detection is a simple and working solution for this project. However
the solution is not completely reliable since it doesn’t produce accurate results all the time and
has calculation flaws. In computer vision application the color of the color bands are affected by
light and shadows from the surroundings which makes it difficult for camera to produce the same
recognition result for all places on the surface.

The better solution would be to use shape recognition of the object. Python program could get
training from multiple pictures of the tools and based on those pictures learn the shape of the
object it needs to detect. Such solution would be more advanced and challenging to execute but
would give better results at the end.

10.2.5 Better speech recognition

Speech Recognition application does satisfy the requirements of this project by ability to recognize
user’s commands for Kuka robot. However the solution is not perfect. Speech recognition library
used in this project does sometimes have difficulties understanding some words or commands on
the first attempt. This is not a critical problem that affects the project much but the application
could be improved. Other speech recognition libraries such as ”Whisper” from ”OpenAI” could
be more reliable and give better and more precise speech recognition results.

69

Bibliography

[1] 2018sauravtelge. OpenCV – Invert Mask. url: https://www.geeksforgeeks.org/opencv-invert-
mask/.

[2] Youngeun An, Muhammad Riaz and Jongan Park. ‘CBIR Based on Adaptive Segmentation
of HSV Color Space’. In: 2010 12th International Conference on Computer Modelling and
Simulation. 2010, pp. 248–251. doi: 10.1109/UKSIM.2010.53.

[3] Real Time Automation. An introduction to Modbus RTU. url: https://www.rtautomation.
com/technologies/modbus-rtu/.

[4] S. Kolkur; D. Kalbande; P. Shimpi; C. Bapat and J. Jatakia. Human Skin Detection Using
RGB, HSV and YCbCr Color Models. url: https://arxiv.org/ftp/arxiv/papers/1708/1708.
02694.pdf.

[5] Beckhoff. CX5120 — Embedded PC with Intel Atom® processor. url: https://www.beckhoff.
com/en-en/products/ipc/embedded-pcs/cx5100-intel-atom/cx5120.html.

[6] Beckhoff. EL6695 — EtherCAT Terminal, communication interface, EtherCAT bridge, ex-
tended functions. url: https://www.beckhoff.com/en-us/products/i-o/ethercat- terminals/
el6xxx-communication/el6695.html?pk campaign=AdWords-AdWordsSearch-EtherCat dynamic
EN&pk kwd=.

[7] Beckhoff. Router. url: https://infosys.beckhoff.com/english.php?content=../content/1033/
tc3 userinterface/3813966475.html&id=.

[8] Beckhoff. TwinCAT 3 — eXtended Automation (XA). url: https://www.interempresas.net/
FeriaVirtual/Catalogos y documentos/171630/Beckhoff TwinCAT3 042012 e.pdf.

[9] Jason Brownlee. Python Multiprocessing: The Complete Guide. url: https://superfastpython.
com/multiprocessing-in-python/.

[10] Marina Chatterjee. What is Computer Vision? Know Computer Vision Basic to Advanced
& How Does it Work? url: https://www.mygreatlearning.com/blog/what-is-computer-vision-
the-basics/.

[11] Codesys. Structured Text (ST), Extended Structured Text (ExST). url: https://help.codesys.
com/webapp/ cds f programming language st;product=codesys;version=3.5.13.0.

[12] Gerry Creech. Black Channel Communication: What is it and how does it work? url: https:
//journals.sagepub.com/doi/pdf/10.1177/002029400704001003.

[13] Raspberry Pi Foundation. Raspberry Pi OS. url: https://www.raspberrypi.com/software/.

[14] George T Hilliard.What is an Industrial Embedded Computer? url: https://www.winsystems.
com/what-is-an-industrial-embedded-computer/.

[15] D. Hema; Dr. S. Kannan. Interactive Color Image Segmentation using HSV Color Space. url:
http://site.mzu.edu.in/wp-content/uploads/2020/05/Interactive-Color-Image-Segmentation-
using-HSV-Color-Space.pdf.

[16] Shahid Akhtar Khan. How to mask an image in OpenCV Python? url: https : / /www .
tutorialspoint.com/how-to-mask-an-image-in-opencv-python.

[17] KUKA. KUKA Sunrise Cabinet. url: https://www.oir.caltech.edu/twiki oir/pub/Palomar/
ZTF/KUKARoboticArmMaterial/MA KUKA Sunrise Cabinet en.pdf.

[18] KUKA. KUKA Sunrise.OS. url: https://www.kuka.com/en-de/products/robot- systems/
software/system-software/sunriseos.

[19] KUKA. KUKA.WorkVisual. url: https://www.kuka.com/en-us/products/robotics-systems/
software/system-software/kuka systemsoftware/kuka-work-visual.

[20] Kuka. KUKA Sunrise Cabinet. url: https://www.kuka.com/en-de/products/robot-systems/
robot-controllers/kuka-sunrise-cabinet.

[21] Kuka. LBR iiwa. url: https://www.kuka.com/en- de/products/robot- systems/industrial-
robots/lbr-iiwa.

[22] Kuka. The KUKA smartPAD: simply more freedom. url: https : / /www . kuka . com/ en -
de/products/robot-systems/robot-controllers/smartpad.

70

https://www.geeksforgeeks.org/opencv-invert-mask/
https://www.geeksforgeeks.org/opencv-invert-mask/
https://doi.org/10.1109/UKSIM.2010.53
https://www.rtautomation.com/technologies/modbus-rtu/
https://www.rtautomation.com/technologies/modbus-rtu/
https://arxiv.org/ftp/arxiv/papers/1708/1708.02694.pdf
https://arxiv.org/ftp/arxiv/papers/1708/1708.02694.pdf
https://www.beckhoff.com/en-en/products/ipc/embedded-pcs/cx5100-intel-atom/cx5120.html
https://www.beckhoff.com/en-en/products/ipc/embedded-pcs/cx5100-intel-atom/cx5120.html
https://www.beckhoff.com/en-us/products/i-o/ethercat-terminals/el6xxx-communication/el6695.html?pk_campaign=AdWords-AdWordsSearch-EtherCat_dynamic_EN&pk_kwd=
https://www.beckhoff.com/en-us/products/i-o/ethercat-terminals/el6xxx-communication/el6695.html?pk_campaign=AdWords-AdWordsSearch-EtherCat_dynamic_EN&pk_kwd=
https://www.beckhoff.com/en-us/products/i-o/ethercat-terminals/el6xxx-communication/el6695.html?pk_campaign=AdWords-AdWordsSearch-EtherCat_dynamic_EN&pk_kwd=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_userinterface/3813966475.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_userinterface/3813966475.html&id=
https://www.interempresas.net/FeriaVirtual/Catalogos_y_documentos/171630/Beckhoff_TwinCAT3_042012_e.pdf
https://www.interempresas.net/FeriaVirtual/Catalogos_y_documentos/171630/Beckhoff_TwinCAT3_042012_e.pdf
https://superfastpython.com/multiprocessing-in-python/
https://superfastpython.com/multiprocessing-in-python/
https://www.mygreatlearning.com/blog/what-is-computer-vision-the-basics/
https://www.mygreatlearning.com/blog/what-is-computer-vision-the-basics/
https://help.codesys.com/webapp/_cds_f_programming_language_st;product=codesys;version=3.5.13.0
https://help.codesys.com/webapp/_cds_f_programming_language_st;product=codesys;version=3.5.13.0
https://journals.sagepub.com/doi/pdf/10.1177/002029400704001003
https://journals.sagepub.com/doi/pdf/10.1177/002029400704001003
https://www.raspberrypi.com/software/
https://www.winsystems.com/what-is-an-industrial-embedded-computer/
https://www.winsystems.com/what-is-an-industrial-embedded-computer/
http://site.mzu.edu.in/wp-content/uploads/2020/05/Interactive-Color-Image-Segmentation-using-HSV-Color-Space.pdf
http://site.mzu.edu.in/wp-content/uploads/2020/05/Interactive-Color-Image-Segmentation-using-HSV-Color-Space.pdf
https://www.tutorialspoint.com/how-to-mask-an-image-in-opencv-python
https://www.tutorialspoint.com/how-to-mask-an-image-in-opencv-python
https://www.oir.caltech.edu/twiki_oir/pub/Palomar/ZTF/KUKARoboticArmMaterial/MA_KUKA_Sunrise_Cabinet_en.pdf
https://www.oir.caltech.edu/twiki_oir/pub/Palomar/ZTF/KUKARoboticArmMaterial/MA_KUKA_Sunrise_Cabinet_en.pdf
https://www.kuka.com/en-de/products/robot-systems/software/system-software/sunriseos
https://www.kuka.com/en-de/products/robot-systems/software/system-software/sunriseos
https://www.kuka.com/en-us/products/robotics-systems/software/system-software/kuka_systemsoftware/kuka-work-visual
https://www.kuka.com/en-us/products/robotics-systems/software/system-software/kuka_systemsoftware/kuka-work-visual
https://www.kuka.com/en-de/products/robot-systems/robot-controllers/kuka-sunrise-cabinet
https://www.kuka.com/en-de/products/robot-systems/robot-controllers/kuka-sunrise-cabinet
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-de/products/robot-systems/robot-controllers/smartpad
https://www.kuka.com/en-de/products/robot-systems/robot-controllers/smartpad

[23] Ben Lutkevich. Speech recognition. url: https://www.techtarget.com/searchcustomerexperience/
definition/speech-recognition.

[24] Hani Al-Mohair. ‘Impact of Color Space on Human Skin Color Detection Using an Intelligent
System’. In: Jan. 2013, p. 179.

[25] Department of Marine Technology NTNU. IMT Software Wiki - LaTeX. url: https://www.
ntnu.no/wiki/display/imtsoftware/LaTeX (visited on 15th Sept. 2020).

[26] OpenCV. Contours : Getting Started. url: https://docs.opencv.org/3.4/d4/d73/tutorial py
contours begin.html.

[27] OpenCV. Image Filtering. url: https://docs.opencv.org/3.4/d4/d86/group imgproc filter.
html.

[28] Pankaj.Multithreading in Java - Everything You MUST Know. url: https://www.digitalocean.
com/community/tutorials/multithreading-in-java.

[29] Hubert Pham. PyAudio 0.2.13. url: https://pypi.org/project/PyAudio/.

[30] Gabriele Ribichini. What Is EtherCAT Protocol and How Does It Work? url: https : / /
dewesoft.com/blog/what-is-ethercat-protocol.

[31] Robotiq. 2F-85 and 2F-140 Grippers. url: https://robotiq.com/products/2f85-140-adaptive-
robot-gripper?ref=nav product new button.

[32] Robotiq. Robotiq 2F-85 & 2F-140 Instruction Manual. url: https ://assets . robotiq .com/
website-assets/support documents/document/2F-85 2F-140 Instruction Manual e-Series PDF
20190206.pdf.

[33] Robotiq. Robotiq 2F-85 2F-140. url: https ://assets . robotiq .com/website- assets/support
documents/document/2F-85 2F-140 General PDF 20210623.pdf? ga=2.201990357.51230788.
1653473411-1379069650.1649070508.

[34] Simplilearn. What Is Computer Vision: Applications, Benefits and How to Learn It. url:
https://www.simplilearn.com/computer-vision-article.

[35] Technology Robotix Society. Colour Detection. url: https://medium.com/image-processing-
in-robotics/colour-detection-e15bc03b3f61.

[36] Editorial Staff. Components of PLC. url: https://instrumentationtools.com/components-of-
plc/.

[37] TheAILearner. OpenCV Minimum Area Rectangle. url: https://theailearner.com/tag/cv2-
minarearect/.

[38] Wikipedia. Function block diagram. url: https : / / en .wikipedia . org /wiki / Function block
diagram.

[39] Ladder Logic World. Ladder Logic Basics. url: https://ladderlogicworld.com/ladder- logic-
basics/.

[40] Guobo Xie and Wen Lu. Image Edge Detection Based On Opencv. url: http://www.ijeee.
net/uploadfile/2013/0702/20130702104409134.pdf.

[41] Anthony Zhang. SpeechRecognition 3.10.0. url: https://pypi.org/project/SpeechRecognition/.

71

https://www.techtarget.com/searchcustomerexperience/definition/speech-recognition
https://www.techtarget.com/searchcustomerexperience/definition/speech-recognition
https://www.ntnu.no/wiki/display/imtsoftware/LaTeX
https://www.ntnu.no/wiki/display/imtsoftware/LaTeX
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/3.4/d4/d86/group__imgproc__filter.html
https://docs.opencv.org/3.4/d4/d86/group__imgproc__filter.html
https://www.digitalocean.com/community/tutorials/multithreading-in-java
https://www.digitalocean.com/community/tutorials/multithreading-in-java
https://pypi.org/project/PyAudio/
https://dewesoft.com/blog/what-is-ethercat-protocol
https://dewesoft.com/blog/what-is-ethercat-protocol
https://robotiq.com/products/2f85-140-adaptive-robot-gripper?ref=nav_product_new_button
https://robotiq.com/products/2f85-140-adaptive-robot-gripper?ref=nav_product_new_button
https://assets.robotiq.com/website-assets/support_documents/document/2F-85_2F-140_Instruction_Manual_e-Series_PDF_20190206.pdf
https://assets.robotiq.com/website-assets/support_documents/document/2F-85_2F-140_Instruction_Manual_e-Series_PDF_20190206.pdf
https://assets.robotiq.com/website-assets/support_documents/document/2F-85_2F-140_Instruction_Manual_e-Series_PDF_20190206.pdf
https://assets.robotiq.com/website-assets/support_documents/document/2F-85_2F-140_General_PDF_20210623.pdf?_ga=2.201990357.51230788.1653473411-1379069650.1649070508
https://assets.robotiq.com/website-assets/support_documents/document/2F-85_2F-140_General_PDF_20210623.pdf?_ga=2.201990357.51230788.1653473411-1379069650.1649070508
https://assets.robotiq.com/website-assets/support_documents/document/2F-85_2F-140_General_PDF_20210623.pdf?_ga=2.201990357.51230788.1653473411-1379069650.1649070508
https://www.simplilearn.com/computer-vision-article
https://medium.com/image-processing-in-robotics/colour-detection-e15bc03b3f61
https://medium.com/image-processing-in-robotics/colour-detection-e15bc03b3f61
https://instrumentationtools.com/components-of-plc/
https://instrumentationtools.com/components-of-plc/
https://theailearner.com/tag/cv2-minarearect/
https://theailearner.com/tag/cv2-minarearect/
https://en.wikipedia.org/wiki/Function_block_diagram
https://en.wikipedia.org/wiki/Function_block_diagram
https://ladderlogicworld.com/ladder-logic-basics/
https://ladderlogicworld.com/ladder-logic-basics/
http://www.ijeee.net/uploadfile/2013/0702/20130702104409134.pdf
http://www.ijeee.net/uploadfile/2013/0702/20130702104409134.pdf
https://pypi.org/project/SpeechRecognition/

Appendix

A Project video link

https://www.youtube.com/watch?v=sVem W-k8hU&ab channel=Artify

72

https://www.youtube.com/watch?v=sVem_W-k8hU&ab_channel=Artify

73

B Preliminary project report

74

75

76

77

78

79

80

81

82

83

84

85

86

C Progress report

87

88

89

D Time list

90

E Raspberry Pi - code

import cv2

import time

import socket

import numpy as np

import math

HOST = '192.168.0.101' # IP address of the Raspberry Pi

PORT = 8000 # Port used for connection

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind((HOST, PORT))

s.listen(1)

BlueColor = (255, 0, 0)

OrangeColor = (0, 200, 255)

GreenColor = (0, 255, 0)

RedColor = (0, 0, 255)

YellowColor = (0, 255, 255)

blueStr = 'Blue'

orangeStr = 'Orange'

redStr = 'Red'

yellowStr = 'Yellow'

xZero = 0

yZero = 0

angleZero = 0

xZeroData = str(xZero)

yZeroData = str(yZero)

angleZeroData = str(angleZero)

objectZeroData = [xZeroData, yZeroData, angleZeroData]

objectRedDataString = ';'.join(objectZeroData)

objectGreenDataString = ';'.join(objectZeroData)

objectBlueDataString = ';'.join(objectZeroData)

Define the lower and upper color thresholds for each color in the flag

lower_red = np.array([0, 100, 70]) # [166, 150, 109]

upper_red = np.array([15, 250, 170]) # [186, 250, 209]

lower_blue = np.array([90, 145, 205]) # [102, 176, 176]

upper_blue = np.array([120, 255, 255]) # [122, 255, 255]

lower_orange = np.array([10, 140, 180]) # [70, 25, 145]

upper_orange = np.array([25, 255, 255]) # [90, 125, 245]

lower_yellow = np.array([30, 70, 180]) # [21, 87, 157]

upper_yellow = np.array([50, 160, 255]) # [41, 187, 255]

camera_port = '/dev/video0' # this is the camera port number (This can vary

from, 0 - 10 from pc to pc)↪→

cam = cv2.VideoCapture(camera_port) # Set the camera capture device

width = 1024 # 1024

height = 800 # 648

91

cam.set(cv2.CAP_PROP_FRAME_WIDTH, width)

cam.set(cv2.CAP_PROP_FRAME_HEIGHT, height)

cam.set(cv2.CAP_PROP_FPS, 30)

cam.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*'MJPG'))

def MyTool(myFrame, contours, topContours, color, colorName, Offset):

global objectDataString

if contours:

for cnt in contours:

contour_area = cv2.contourArea(cnt)

if contour_area > 10:

rect = cv2.minAreaRect(cnt)

objectBox = cv2.boxPoints(rect)

objectBox = np.int0(objectBox)

Get parameters of the rotated bounding box

x = int(rect[0][0])

y = int(rect[0][1])

black_area_x_min = -312

black_area_x_max = 312

black_area_y_min = -720

black_area_y_max = -401

scale_x = (black_area_x_max - black_area_x_min) / 1024

scale_y = (black_area_y_max - black_area_y_min) / 648

xR = int((black_area_x_max - (x * scale_x)) * 1.8) - 235

yR = int((black_area_y_min + (y * scale_y)) * 2.2) + 840

center = (x, y)

angle = int(rect[2])

centerText = "X:" + str(x) + " Y:" + str(y)

robotCenterText = "Xr:" + str(xR) + " Yr:" + str(yR)

cv2.putText(myFrame, robotCenterText, (center[0], center[1]),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 1,↪→

cv2.LINE_AA)

cv2.circle(myFrame, (center[0], center[1]), 2, RedColor, 2)

cv2.drawContours(myFrame, [objectBox], 0, color, 2)

if len(red_contours) > 0 and len(topContours) > 0:

red_contour = red_contours[0]

topContour = topContours[0]

xOffset = 25

yOffset = 85

Get the bounding rectangles of the contours

red_rect = cv2.minAreaRect(red_contour)

top_rect = cv2.minAreaRect(topContour)

Compare the y-coordinate of the centers of the bounding

rectangles↪→

92

If blue rectangle is on the top

if red_rect[0][1] > top_rect[0][1] and red_rect[0][0] <=

top_rect[0][0]:↪→

orientation = "Blue is top, Red is bottom"

angle = angle

angleText = "Angle: " + str(angle)

cv2.putText(myFrame, angleText, (center[0] - 100,

center[1] + 120), cv2.FONT_HERSHEY_SIMPLEX,↪→

0.7, (0, 0, 0), 1, cv2.LINE_AA)

if Offset is True:

Assuming you have the top rectangle 'top_rect'

center_x = int(top_rect[0][0])

center_y = int(top_rect[0][1])

rect_angle = math.radians(angle) # Convert angle to

radians↪→

right_endpoint_x = center_x + xOffset

right_endpoint_y = center_y - yOffset

Rotate the right endpoint around the center

rotated_right_endpoint_x = center_x +

(right_endpoint_x - center_x) *

math.cos(rect_angle) - (right_endpoint_y -

center_y) * math.sin(rect_angle)

↪→

↪→

↪→

rotated_right_endpoint_y = center_y +

(right_endpoint_x - center_x) *

math.sin(rect_angle) + (right_endpoint_y -

center_y) * math.cos(rect_angle)

↪→

↪→

↪→

Round the coordinates if needed

rotated_right_endpoint_x =

round(rotated_right_endpoint_x)↪→

rotated_right_endpoint_y =

round(rotated_right_endpoint_y)↪→

Sciling tool offset from x and y coordinates to xR

and yR robot coordinates↪→

xToffset = int((black_area_x_max -

(rotated_right_endpoint_x * scale_x)) * 1.8) -

235

↪→

↪→

yToffset = int((black_area_y_min +

(rotated_right_endpoint_y * scale_y)) * 2.2) +

840

↪→

↪→

xR = xToffset

yR = yToffset

offsetCoordinates = "Xt:" + str(xR) + " Yt:" +

str(yR)↪→

Draw the line connecting the rotated endpoints

cv2.line(myFrame, (center_x, center_y),

(rotated_right_endpoint_x,

rotated_right_endpoint_y), (0, 0, 255), 2)

↪→

↪→

cv2.circle(myFrame, (rotated_right_endpoint_x,

rotated_right_endpoint_y), 2, GreenColor, 2)↪→

93

cv2.putText(myFrame, offsetCoordinates,

(rotated_right_endpoint_x,

rotated_right_endpoint_y),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 1,

cv2.LINE_AA)

↪→

↪→

↪→

↪→

time.sleep(0.05)

elif red_rect[0][1] > top_rect[0][1] and red_rect[0][0] >=

top_rect[0][0]:↪→

angle = -(90 - angle)

angleText = "Angle: " + str(angle)

angleBox = cv2.rectangle(frame, (center[0] - 100,

center[1] + 100), (center[0] + 80, center[1] + 125),

(255, 255, 255), -1)

↪→

↪→

cv2.putText(myFrame, angleText, (center[0] - 100,

center[1] + 120), cv2.FONT_HERSHEY_SIMPLEX,↪→

0.7, (0, 0, 0), 1, cv2.LINE_AA)

if Offset is True:

Assuming you have the top rectangle 'top_rect'

center_x = int(top_rect[0][0])

center_y = int(top_rect[0][1])

rect_angle = math.radians(angle) # Convert angle to

radians↪→

right_endpoint_x = center_x - xOffset

right_endpoint_y = center_y - yOffset

Rotate the right endpoint around the center

rotated_right_endpoint_x = center_x -

(right_endpoint_x - center_x) *

math.cos(rect_angle) - (right_endpoint_y -

center_y) * math.sin(rect_angle)

↪→

↪→

↪→

rotated_right_endpoint_y = center_y -

(right_endpoint_x - center_x) *

math.sin(rect_angle) + (right_endpoint_y -

center_y) * math.cos(rect_angle)

↪→

↪→

↪→

Round the coordinates if needed

rotated_right_endpoint_x =

round(rotated_right_endpoint_x)↪→

rotated_right_endpoint_y =

round(rotated_right_endpoint_y)↪→

Sciling tool offset from x and y coordinates to xR

and yR robot coordinates↪→

xToffset = int((black_area_x_max -

(rotated_right_endpoint_x * scale_x)) * 1.8) -

235

↪→

↪→

yToffset = int((black_area_y_min +

(rotated_right_endpoint_y * scale_y)) * 2.2) +

840

↪→

↪→

xR = xToffset

yR = yToffset

offsetCoordinates = "Xt:" + str(xR) + " Yt:" +

str(yR)↪→

94

Draw the line connecting the rotated endpoints

cv2.line(myFrame, (center_x, center_y),

(rotated_right_endpoint_x,

rotated_right_endpoint_y), (0, 0, 255), 2)

↪→

↪→

cv2.circle(myFrame, (rotated_right_endpoint_x,

rotated_right_endpoint_y), 2, GreenColor, 2)↪→

cv2.putText(myFrame, offsetCoordinates,

(rotated_right_endpoint_x,

rotated_right_endpoint_y),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 1,

cv2.LINE_AA)

↪→

↪→

↪→

↪→

time.sleep(0.05)

If the red rectangle is on the top

elif red_rect[0][1] < top_rect[0][1] and red_rect[0][0] >=

top_rect[0][0]:↪→

angle = -(180 - angle)

angleText = "Angle: " + str(angle)

cv2.putText(myFrame, angleText, (center[0] - 100,

center[1] + 120), cv2.FONT_HERSHEY_SIMPLEX,↪→

0.7, (0, 0, 0), 1, cv2.LINE_AA)

if Offset is True:

Assuming you have the top rectangle 'top_rect'

center_x = int(top_rect[0][0])

center_y = int(top_rect[0][1])

rect_angle = math.radians(angle) # Convert angle to

radians↪→

right_endpoint_x = center_x - xOffset

right_endpoint_y = center_y - yOffset

Rotate the right endpoint around the center

rotated_right_endpoint_x = center_x -

(right_endpoint_x - center_x) *

math.cos(rect_angle) - (right_endpoint_y -

center_y) * math.sin(rect_angle)

↪→

↪→

↪→

rotated_right_endpoint_y = center_y -

(right_endpoint_x - center_x) *

math.sin(rect_angle) + (right_endpoint_y -

center_y) * math.cos(rect_angle)

↪→

↪→

↪→

Round the coordinates if needed

rotated_right_endpoint_x =

round(rotated_right_endpoint_x)↪→

rotated_right_endpoint_y =

round(rotated_right_endpoint_y)↪→

Sciling tool offset from x and y coordinates to xR

and yR robot coordinates↪→

xToffset = int((black_area_x_max -

(rotated_right_endpoint_x * scale_x)) * 1.8) -

235

↪→

↪→

yToffset = int((black_area_y_min +

(rotated_right_endpoint_y * scale_y)) * 2.2) +

840

↪→

↪→

xR = xToffset

yR = yToffset

95

offsetCoordinates = "Xt:" + str(xR) + " Yt:" +

str(yR)↪→

Draw the line connecting the rotated endpoints

cv2.line(myFrame, (center_x,

center_y),(rotated_right_endpoint_x,

rotated_right_endpoint_y), (0, 0, 255), 2)

↪→

↪→

cv2.circle(myFrame, (rotated_right_endpoint_x,

rotated_right_endpoint_y), 2, GreenColor, 2)↪→

cv2.putText(myFrame,

offsetCoordinates,(rotated_right_endpoint_x,

rotated_right_endpoint_y),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 1,

cv2.LINE_AA)

↪→

↪→

↪→

↪→

time.sleep(0.05)

elif red_rect[0][1] < top_rect[0][1] and red_rect[0][0] <=

top_rect[0][0]:↪→

angle = 90 + angle

angleText = "Angle: " + str(angle)

cv2.putText(myFrame, angleText, (center[0] - 100,

center[1] + 120), cv2.FONT_HERSHEY_SIMPLEX,↪→

0.7, (0, 0, 0), 1, cv2.LINE_AA)

if Offset is True:

Assuming you have the top rectangle 'top_rect'

center_x = int(top_rect[0][0])

center_y = int(top_rect[0][1])

rect_angle = math.radians(angle) # Convert angle to

radians↪→

right_endpoint_x = center_x + xOffset

right_endpoint_y = center_y - yOffset

Rotate the right endpoint around the center

rotated_right_endpoint_x = center_x +

(right_endpoint_x - center_x) *

math.cos(rect_angle) - (right_endpoint_y -

center_y) * math.sin(rect_angle)

↪→

↪→

↪→

rotated_right_endpoint_y = center_y +

(right_endpoint_x - center_x) *

math.sin(rect_angle) + (right_endpoint_y -

center_y) * math.cos(rect_angle)

↪→

↪→

↪→

rotated_right_endpoint_x =

round(rotated_right_endpoint_x)↪→

rotated_right_endpoint_y =

round(rotated_right_endpoint_y)↪→

Sciling tool offset from x and y coordinates to xR

and yR robot coordinates↪→

xToffset = int((black_area_x_max -

(rotated_right_endpoint_x * scale_x)) * 1.8) -

235

↪→

↪→

yToffset = int((black_area_y_min +

(rotated_right_endpoint_y * scale_y)) * 2.2) +

840

↪→

↪→

96

xR = xToffset

yR = yToffset

offsetCoordinates = "Xt:" + str(xR) + " Yt:" +

str(yR)↪→

Draw the line connecting the rotated endpoints

cv2.line(myFrame, (center_x, center_y),

(rotated_right_endpoint_x,

rotated_right_endpoint_y), (0, 0, 255), 2)

↪→

↪→

cv2.circle(myFrame, (rotated_right_endpoint_x,

rotated_right_endpoint_y), 2, GreenColor, 2)↪→

cv2.putText(myFrame, offsetCoordinates,

(rotated_right_endpoint_x,

rotated_right_endpoint_y),

cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 1,

cv2.LINE_AA)

↪→

↪→

↪→

↪→

time.sleep(0.05)

xData = str(xR)

yData = str(yR)

angleData = str(angle)

objectData = [xData, yData, angleData]

objectDataString = ';'.join(objectData)

print(f'{colorName} coordinates:', xR, yR)

else:

xR = 0

yR = 0

angle = 0

xData = str(xR)

yData = str(yR)

angleData = str(angle)

objectData = [xData, yData, angleData]

objectDataString = ';'.join(objectData)

return objectDataString

Waiting for a client to connect to the Raspberry Pi

print('Waiting for a client to connect to the server...')

conn, addr = s.accept()

print('Connected by', addr)

data = conn.recv(1024)

print(data.decode())

while True:

Detect object coordinates part

ret, frame = cam.read()

frameROI = frame[100:435,

215:875] # [130:400, 80:560] Change values from here to affect

boundaries of robot pick up area↪→

Convert the frame to the HSV color space

97

hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

hsvROI = cv2.cvtColor(frameROI, cv2.COLOR_BGR2HSV)

Perform color segmentation to detect the red color in the frame

red_mask = cv2.inRange(hsvROI, lower_red,

upper_red) # Change hsv to hsvROI if you want

tracking in region of interest!↪→

Perform color segmentation to detect the blue color in the frame

blue_mask = cv2.inRange(hsvROI, lower_blue,

upper_blue) # Change hsv to hsvROI if you want

tracking in region of interest!↪→

Perform color segmentation to detect the blue color in the frame

orange_mask = cv2.inRange(hsvROI, lower_orange,

upper_orange) # Change hsv to hsvROI if you want

tracking in region of interest!↪→

Perform color segmentation to detect the blue color in the frame

yellow_mask = cv2.inRange(hsvROI, lower_yellow,

upper_yellow) # Change hsv to hsvROI if you want

tracking in region of interest!↪→

Combine the red and blue masks

maskRedBlue = red_mask + blue_mask

maskRedOrange = red_mask + orange_mask

maskRedYellow = red_mask + yellow_mask

Apply a series of morphological operations to remove noise and fill gaps

kernel = np.ones((5, 5), np.uint8)

maskRedBlue = cv2.morphologyEx(maskRedBlue, cv2.MORPH_OPEN, kernel)

maskRedBlue = cv2.morphologyEx(maskRedBlue, cv2.MORPH_CLOSE, kernel)

maskRedOrange = cv2.morphologyEx(maskRedOrange, cv2.MORPH_OPEN, kernel)

maskRedOrange = cv2.morphologyEx(maskRedOrange, cv2.MORPH_CLOSE, kernel)

maskRedYellow = cv2.morphologyEx(maskRedYellow, cv2.MORPH_OPEN, kernel)

maskRedYellow = cv2.morphologyEx(maskRedYellow, cv2.MORPH_CLOSE, kernel)

Find contours of the detected regions in the mask

contoursRedBlue, _ = cv2.findContours(maskRedBlue, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

contoursRedOrange, _ = cv2.findContours(maskRedOrange, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

contoursRedYellow, _ = cv2.findContours(maskRedYellow, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

Angle calculation part

Find contours in the masks

red_contours, _ = cv2.findContours(red_mask, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

blue_contours, _ = cv2.findContours(blue_mask, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

orange_contours, _ = cv2.findContours(orange_mask, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

yellow_contours, _ = cv2.findContours(yellow_mask, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

98

RedBlue_contours, _ = cv2.findContours(maskRedBlue, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

RedOrange_contours, _ = cv2.findContours(maskRedOrange, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

RedYellow_contours, _ = cv2.findContours(maskRedYellow, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)↪→

Sort the contours by area in descending order

red_contours = sorted(red_contours, key=cv2.contourArea, reverse=True)

blue_contours = sorted(blue_contours, key=cv2.contourArea, reverse=True)

orange_contours = sorted(orange_contours, key=cv2.contourArea, reverse=True)

yellow_contours = sorted(yellow_contours, key=cv2.contourArea, reverse=True)

RedBlueData = MyTool(frameROI, contoursRedBlue, blue_contours, BlueColor,

blueStr, Offset=False)↪→

RedOrangeData = MyTool(frameROI, contoursRedOrange, orange_contours,

OrangeColor, orangeStr, Offset=False)↪→

RedYellowData = MyTool(frameROI, contoursRedYellow, yellow_contours,

YellowColor, yellowStr, Offset=True)↪→

list = [RedBlueData, RedOrangeData, RedYellowData]

stringedList = "%".join(list)

conn.sendall(stringedList.encode())

time.sleep(0.1)

Display the frame with bounding rectangles

cv2.imshow('My WEBcam', frame)

cv2.moveWindow('My WEBcam', 500, 100)

cv2.moveWindow('Image Blue', 1550, 100)

cv2.moveWindow('Image Green', 1650, 100)

Check for key press

if cv2.waitKey(1) & 0xFF == ord('q'):

break

Release the video capture object and close windows

cam.release()

cv2.destroyAllWindows()

conn.close()

...

99

F PC - main code

import pyads as pyads

import socket as socket

import multiprocessing

import threading

import serial

import time

import speech_recognition as sr

import numpy as np

from GripperControl import GripperControl

from SpeechRecognition import SpeechRecognition

AMSNETID = '158.38.140.64.1.1' #AMS of the PLC

plc = pyads.Connection(AMSNETID, pyads.PORT_TC3PLC1)

plc.open()

print(f"Connected?: {plc.is_open}")

print(f"Local Address? : {plc.get_local_address()}")

print(plc.read_state())

#Connect to PLC and read it's state

def speech():

while True:

r = sr.Recognizer()

if plc.read_by_name("KUKA_OPERATION.RequestSpeech"):

Speech Recognition part:

time.sleep(1)

plc.write_by_name("KUKA_OPERATION_POU.RequestSpeech", False)

with sr.Microphone() as source:

print("Say something!")

audio = r.listen(source)

recognize speech using Google Speech Recognition

try:

text = r.recognize_google(audio)

print(f"You said: {text}")

plc.write_by_name("KUKA_OPERATION_POU.sWord", text)

time.sleep(2)

plc.write_by_name("KUKA_OPERATION_POU.sWord", '')

except sr.UnknownValueError:

print("Google Speech Recognition could not understand audio")

except sr.RequestError as e:

print(f"Could not request results from Google Speech

Recognition service; {e}")↪→

def grip():

activateCommand = bytearray(

[0x09, 0x10, 0x03, 0xE8, 0x00, 0x03, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00,

0x73, 0x30])↪→

checkCommand = bytearray([0x09, 0x03, 0x07, 0xD0, 0x00, 0x01, 0x85,

100

0xCF]) # GACT (Gripper Action) command for the

gripper activation↪→

feedBackCommand = bytearray(

[0x09, 0x10, 0x03, 0xE8, 0x00, 0x03, 0x06, 0x0B, 0x00, 0x03, 0x08, 0x00,

0x00, 0x0C, 0x36])↪→

deactivateForceControl = bytearray(

[0x09, 0x10, 0x03, 0xE8, 0x00, 0x03, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0xDE, 0xB9])↪→

readForceFeedback = bytearray([0x09, 0x03, 0x07, 0xD0, 0x00, 0x01, 0x84,

0x0F])↪→

openCommand = bytearray(

[0x09, 0x10, 0x03, 0xE8, 0x00, 0x03, 0x06, 0x09, 0x00, 0x00, 0x00, 0xFF,

0xFF, 0x72, 0x19])↪→

closeCommand = bytearray(

[0x09, 0x10, 0x03, 0xE8, 0x00, 0x03, 0x06, 0x09, 0x00, 0x00, 0xFF, 0xFF,

0xFF, 0x42, 0x29])↪→

ser = serial.Serial(port='COM16', baudrate=115200, timeout=1,

parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE,

bytesize=serial.EIGHTBITS)↪→

gripOpened = True

gripClosed = False

stateNow = gripOpened

objDetected = False

gripLow = 0

gripHigh = 1

printed = False

#ser.write(activateCommand)

time.sleep(1)

print('grip Init')

while True:

ser.write(checkCommand)

response = ser.readline()

print("Response:", response)

status_byte = response[3]

print(response)

if plc.read_by_name("KUKA_OPERATION_POU.RequestGripClose"):

ser.write(closeCommand)

time.sleep(1)

Change the states for PLC

plc.write_by_name("KUKA_OPERATION_POU.RPI_Grip_Opened", False)

plc.write_by_name("KUKA_OPERATION_POU.RPI_Grip_Closed", True)

plc.write_by_name("KUKA_OPERATION_POU.objectDetected", objDetected)

print("Gripper is closed")

print("Checking status...")

elif plc.read_by_name("KUKA_OPERATION_POU.RequestGripOpen"):

101

ser.write(openCommand)

objDetected = False

time.sleep(1)

Change the states for PLC

plc.write_by_name("KUKA_OPERATION_POU.RPI_Grip_Opened", True)

plc.write_by_name("KUKA_OPERATION_POU.RPI_Grip_Closed", False)

plc.write_by_name("KUKA_OPERATION_POU.objectDetected", objDetected)

if not printed:

print("Gripper is opened")

print("Gripper lost the object")

printed = True

if status_byte == 0xb9: # If gripper senses an object

objDetected = True

plc.write_by_name("KUKA_OPERATION_POU.objectDetected", objDetected)

print("Gripper has successfully grasped an object")

elif status_byte == 0xf9: # If gripper doesn't sense any object

objDetected = False

plc.write_by_name("KUKA_OPERATION_POU.objectDetected", objDetected)

#print("Gripper did not find any object")

def ObjectDetectionRPI():

HOST = '192.168.0.101' # This is the Raspberry Pi's hostname or IP

address↪→

PORT = 8000 # The same port as the server

Create a socket object

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect to the server

s.connect((HOST, PORT))

while True:

#Send a message to the server

Send a message to the server

s.sendall('Recieving...'.encode())

data = s.recv(1024).decode()

dataSplit = data.split('%')

HammerData = dataSplit[0].split(';')

ScrewdriverData = dataSplit[1].split(';')

PliersData = dataSplit[2].split(';')

Send data about red object to the PLC

if plc.read_by_name("KUKA_OPERATION_POU.RequestCoordinates"):

plc.write_by_name("GVL.Raspberry_Screwdriver_X",

int(ScrewdriverData[0]))↪→

plc.write_by_name("GVL.Raspberry_Screwdriver_Y",

int(ScrewdriverData[1]))↪→

plc.write_by_name("GVL.Raspberry_Screwdriver_Angle",

int(ScrewdriverData[2]))↪→

plc.write_by_name("GVL.Raspberry_Hammer_X", int(HammerData[0]))

plc.write_by_name("GVL.Raspberry_Hammer_Y", int(HammerData[1]))

102

plc.write_by_name("GVL.Raspberry_Hammer_Angle",

int(HammerData[2]))↪→

plc.write_by_name("GVL.Raspberry_Pliers_X", int(PliersData[0]))

plc.write_by_name("GVL.Raspberry_Pliers_Y", int(PliersData[1]))

plc.write_by_name("GVL.Raspberry_Pliers_Angle",

int(PliersData[2]))↪→

#Gripper = GripperControl(port= 'COM16',baudrate=115200, plc=plc)

#SR = SpeechRecognition(plc=plc)

#ObjDetection = ObjectDetection(plc=plc, s=s)

if __name__ == '__main__':

gr = multiprocessing.Process(target=grip)

gr.start()

sp = multiprocessing.Process(target=speech)

sp.start()

od = multiprocessing.Process(target = ObjectDetectionRPI)

od.start()

#p2.start()

#p1.start()

#p1.join()

#p2.join()

#multiprocessing.Process(target = SR.start()).start()

#t3 = threading.Thread(target = ObjDetection())

103

G TwinCAT 3 code

GVL variables

HandleRequests

104

KUKA Task Information

105

ManualMode

106

SpeechRecognitionHandling

TaskHandling

107

108

KUKA Operation POU

109

110

H JAVA - code

RobotApplication

package application;

import javax.inject.Inject;

import com.kuka.common.ThreadUtil;

import com.kuka.generated.ioAccess.EL6695IOGroup;

import com.kuka.roboticsAPI.applicationModel.RoboticsAPIApplication;

import static com.kuka.roboticsAPI.motionModel.BasicMotions.*;

import com.kuka.roboticsAPI.deviceModel.LBR;

import com.kuka.roboticsAPI.geometricModel.Frame;

import com.kuka.roboticsAPI.geometricModel.ObjectFrame;

import com.kuka.roboticsAPI.motionModel.CartesianPTP;

import com.kuka.roboticsAPI.motionModel.IMotionContainer;

import com.kuka.roboticsAPI.motionModel.PTP;

import com.kuka.roboticsAPI.motionModel.controlModeModel.PositionControlMode;

/**

* Implementation of a robot application.

* <p>

* The application provides a {@link RoboticsAPITask#initialize()} and a

* {@link RoboticsAPITask#run()} method, which will be called successively in

* the application lifecycle. The application will terminate automatically after

* the {@link RoboticsAPITask#run()} method has finished or after stopping the

* task. The {@link RoboticsAPITask#dispose()} method will be called, even if an

* exception is thrown during initialization or run.

* <p>

* It is imperative to call <code>super.dispose()</code> when overriding the

* {@link RoboticsAPITask#dispose()} method.

*

* @see UseRoboticsAPIContext

* @see #initialize()

* @see #run()

* @see #dispose()

*/

public class RobotApplication extends RoboticsAPIApplication {

public static boolean startInfoThread = true;

private LBR robot;

@Inject

private EL6695IOGroup io;

public void initialize() {

io.setKUKA_Current_Operation(0);

robot = getContext().getDeviceFromType(LBR.class);

RobotUtil.initializeRobotPosition(robot);

RobotCurrentInfo info = new RobotCurrentInfo(robot, io);

info.start();

}

@Override

public void run() {

io.setKUKA_Current_Operation(0);

int RobotEnable = 1;

111

while(RobotEnable == 1){

switch(io.getPLC_OperationType()){

case 1: //pickup command

io.setKUKA_AnswerRequest(0);

io.setKUKA_Current_Operation(1);

int ObjectX = io.getPLC_Coordinate_X()-1000;

int ObjectY = io.getPLC_Coordinate_Y()-1000;

double ObjectAngleRad =

Math.toRadians(io.getPLC_Object_Angle()-180);↪→

if (ValidateCoordinates(ObjectX,ObjectY)){

RobotUtil.PickupPrepare(robot);

while(GripperClosed(io.getPLC_Grip_State())){

//while grip is closed↪→

io.setKUKA_Grip_State_Request(1);

//open grip↪→

ThreadUtil.milliSleep(500);

}

System.out.println(ObjectAngleRad*0.0174532);

RobotUtil.PickupPrepareObjectPosition(robot,

ObjectX, ObjectY, 285,

ObjectAngleRad);

↪→

↪→

while(GripperOpened(io.getPLC_Grip_State())){

//while grip is opened↪→

io.setKUKA_Grip_State_Request(0);

//close grip↪→

ThreadUtil.milliSleep(500);

}

RobotUtil.afterPickup(robot);

}

ThreadUtil.milliSleep(3000);

io.setKUKA_Current_Operation(0);

break;

case 2: //drop command

//prepare

io.setKUKA_AnswerRequest(0);

io.setKUKA_Current_Operation(2);

while (io.getKUKA_Current_Operation() == 2){

RobotUtil.DropPrepare(robot);

switch(io.getPLC_ObjectType()){

case 1: //drop Screwdriver

RobotUtil.DropScrewdriverPrepare(robot);

while(GripperClosed(io.getPLC_Grip_State())){

//while grip is closed↪→

io.setKUKA_Grip_State_Request(1);

//open grip↪→

ThreadUtil.milliSleep(500);

}

112

ThreadUtil.milliSleep(4000);

RobotUtil.AfterDropPosition(robot);

io.setKUKA_Current_Operation(0);

break;

case 2: //drop Hammer

RobotUtil.DropHammerPrepare(robot);

while(GripperClosed(io.getPLC_Grip_State())){

//while grip is closed↪→

io.setKUKA_Grip_State_Request(1);

//open grip↪→

ThreadUtil.milliSleep(500);

}

ThreadUtil.milliSleep(4000);

RobotUtil.AfterDropPosition(robot);

io.setKUKA_Current_Operation(0);

break;

case 3: //drop pliers

RobotUtil.DropPliersPrepare(robot);

while(GripperClosed(io.getPLC_Grip_State())){

//while grip is closed↪→

io.setKUKA_Grip_State_Request(1);

//open grip↪→

ThreadUtil.milliSleep(500);

}

ThreadUtil.milliSleep(4000);

RobotUtil.AfterDropPosition(robot);

io.setKUKA_Current_Operation(0);

break;

}

}

break;

case 3: //give command

System.out.println("give object");

io.setKUKA_Grip_State_Request(1); //open grip

ThreadUtil.milliSleep(500);

io.setKUKA_Current_Operation(0);

break;

case 0: //HOLD

io.setKUKA_Current_Operation(0);

ThreadUtil.milliSleep(500);

PTP HOLDPrepareJointPosition =

ptp(0,0.715,0,-1.17,0,0,0).setJointVelocityRel(0.2);↪→

robot.move(HOLDPrepareJointPosition);

//waiting for new operation

break;

}

}

}

113

private static boolean ValidateCoordinates(int x, int y){

if((x < -312) || (x > 312) || (y > -401) || (y<-720)) {

return false;

}

else{

return true;

}

}

private static boolean GripperOpened(int state){

if(state == 1){

return true;

}

else{

return false;

}

}

private static boolean GripperClosed(int state){

if (state == 0){

return true;

}

else{

return false;

}

}

}

RobotCurrentInfo

package application;

import com.kuka.common.ThreadUtil;

import com.kuka.generated.ioAccess.EL6695IOGroup;

import com.kuka.roboticsAPI.deviceModel.LBR;

public class RobotCurrentInfo extends Thread{

private LBR robot;

private EL6695IOGroup io;

RobotCurrentInfo(LBR robot, EL6695IOGroup io){

this.robot = robot;

this.io = io;

}

public void run(){

System.out.println("Robot info thread running...");

System.out.println("--------------------------------------");

while(RobotApplication.startInfoThread){

114

int Transform_Robot_X =

(int)robot.getCurrentCartesianPosition(robot.getFlange()).getX()+1000;↪→

int Transform_Robot_Y =

(int)robot.getCurrentCartesianPosition(robot.getFlange()).getY()+1000;↪→

int Transform_Robot_Z =

(int)robot.getCurrentCartesianPosition(robot.getFlange()).getZ()+1000;↪→

io.setKUKA_TaskInfo_Coordinate_X(Transform_Robot_X);

io.setKUKA_TaskInfo_Coordinate_Y(Transform_Robot_Y);

io.setKUKA_TaskInfo_Coordinate_Z(Transform_Robot_Z);

try{

Thread.sleep(300);

}

catch(Exception err){

}

}

}

}

RobotTestUtil

package application;

import static com.kuka.roboticsAPI.motionModel.BasicMotions.ptp;

import com.kuka.roboticsAPI.deviceModel.LBR;

import com.kuka.roboticsAPI.geometricModel.Frame;

import com.kuka.roboticsAPI.motionModel.CartesianPTP;

public final class RobotTestUtil {

public static void printout(){

System.out.println("hej");

}

public static void PickupBoxCornering(LBR robot){

Frame PickupBoxCorner1 = new Frame(312,-401,335,0,0,3.13);

Frame PickupBoxCorner2 = new Frame(312,-720,335,0,0,3.13);

Frame PickupBoxCorner3 = new Frame(-312,-720,335,0,0,3.13);

Frame PickupBoxCorner4 = new Frame(-312,-401,335,0,0,3.13);

CartesianPTP PickupBoxCorner1Prepare =

ptp(PickupBoxCorner1).setJointVelocityRel(0.25);↪→

CartesianPTP PickupBoxCorner2Prepare =

ptp(PickupBoxCorner2).setJointVelocityRel(0.25);↪→

CartesianPTP PickupBoxCorner3Prepare =

ptp(PickupBoxCorner3).setJointVelocityRel(0.25);↪→

CartesianPTP PickupBoxCorner4Prepare =

ptp(PickupBoxCorner4).setJointVelocityRel(0.25);↪→

robot.move(PickupBoxCorner1Prepare);

robot.move(PickupBoxCorner2Prepare);

robot.move(PickupBoxCorner3Prepare);

robot.move(PickupBoxCorner4Prepare);

}

}

115

RobotUtil

package application;

import static com.kuka.roboticsAPI.motionModel.BasicMotions.lin;

import static com.kuka.roboticsAPI.motionModel.BasicMotions.ptp;

import com.kuka.roboticsAPI.deviceModel.LBR;

import com.kuka.roboticsAPI.geometricModel.Frame;

import com.kuka.roboticsAPI.motionModel.CartesianPTP;

import com.kuka.roboticsAPI.motionModel.PTP;

public class RobotUtil {

public static void PickupPrepare(LBR robot){

PTP PickupPrepareJointPosition = ptp(0, 0.523, 0, -1.57,0, 1.047,

0).setJointVelocityRel(0.2);↪→

robot.move(PickupPrepareJointPosition);

PTP PickupPrepareJointPosition2 = ptp(-1.57, 0.523, 0, -1.57,0,

1.047, 0).setJointVelocityRel(0.25);↪→

robot.move(PickupPrepareJointPosition2);

}

public static void PickupPrepareObjectPosition(LBR robot, double x,

double y, double z, double a){↪→

Frame AngledFrameOverObject = new

Frame(x,y,robot.getFlange().getZ(),robot.getCurrentJointPosition().get(6)+1.57,robot.getFlange().getBetaRad(),-3.13);↪→

robot.move(lin(AngledFrameOverObject).setJointVelocityRel(0.1));

double J1= robot.getCurrentJointPosition().get(0);

double J2= robot.getCurrentJointPosition().get(1);

double J3= robot.getCurrentJointPosition().get(2);

double J4= robot.getCurrentJointPosition().get(3);

double J5= robot.getCurrentJointPosition().get(4);

double J6= robot.getCurrentJointPosition().get(5);

double Joint7Offset= robot.getCurrentJointPosition().get(6);

double angleFix = 0;

if (a + Joint7Offset > 3.05){

angleFix = -((Math.PI - Joint7Offset) + (Math.PI - a));

if (-angleFix > a + Joint7Offset){

angleFix = a+Joint7Offset;

}

}

else if (a + Joint7Offset < -3.05){

angleFix = ((-Math.PI - Joint7Offset) - (Math.PI + a));

if (-angleFix < a + Joint7Offset){

angleFix = a + Joint7Offset;

}

}

else {

angleFix = a+Joint7Offset;

}

if (angleFix > 3.05) {

angleFix = 3.05;

}

116

else if (angleFix < -3.05) {

angleFix = -3.05;

}

robot.move(ptp(J1,J2,J3,J4,J5,J6,angleFix).setJointVelocityRel(0.1));

Frame OverObject =

robot.getCurrentCartesianPosition(robot.getFlange());↪→

System.out.println("OverO: " + OverObject);

Frame DownToObject = OverObject.copyWithRedundancy();

DownToObject.setZ(z);

robot.move(lin(DownToObject).setJointVelocityRel(0.10));

}

public static void afterPickup(LBR robot){

Frame afterPickupFrame =

robot.getCurrentCartesianPosition(robot.getFlange());↪→

Frame MoveUpwardsFrame = afterPickupFrame.copyWithRedundancy();

MoveUpwardsFrame.setZ(385);

robot.move(lin(MoveUpwardsFrame).setJointVelocityRel(0.10));

double J1= robot.getCurrentJointPosition().get(0);

double J2= robot.getCurrentJointPosition().get(1);

double J3= robot.getCurrentJointPosition().get(2);

double J4= robot.getCurrentJointPosition().get(3);

double J5= robot.getCurrentJointPosition().get(4);

double J6= robot.getCurrentJointPosition().get(5);

PTP rotateFlange =

ptp(J1,J2,J3,J4,J5,J6,0).setJointVelocityRel(0.15);↪→

robot.move(rotateFlange);

}

public static void initializeRobotPosition(LBR robot){

Frame startFrame =

robot.getCurrentCartesianPosition(robot.getFlange());↪→

System.out.println("Robot start position: " + startFrame);

Frame ColisionStartFrame = startFrame.copyWithRedundancy();

if (startFrame.getY() > 400){ //If robot is initialized from Drop

position↪→

ColisionStartFrame.setY(500);

robot.move(lin(ColisionStartFrame).setJointVelocityRel(0.1));

}

if (startFrame.getY() < -400){ //If robot is initialized from

pickup position↪→

ColisionStartFrame.setZ(350);

robot.move(lin(ColisionStartFrame).setJointVelocityRel(0.1));

PTP HOLDPrepareJointPosition =

ptp(0,0.715,0,-1.17,0,0,0).setJointVelocityRel(0.2);↪→

robot.move(HOLDPrepareJointPosition);

}

PTP ptpToMechanicalZeroPosition = ptp(0,0,0,0,0,0,0);

ptpToMechanicalZeroPosition.setJointVelocityRel(0.25);

117

robot.move(ptpToMechanicalZeroPosition);

}

public static void DropPrepare(LBR robot){

Frame DropPrepFrame = new Frame(-14,470,824,0,1.553,-1.56);

CartesianPTP DropPrepare =

ptp(DropPrepFrame).setJointVelocityRel(0.25);↪→

robot.move(DropPrepare);

}

public static void DropScrewdriverPrepare(LBR robot){

Frame ScrewdriverDropPrepFrame = new

Frame(12.9,550,840,0,1.553,-1.56);↪→

Frame ScrewdriverDropPrepFrame2 = new

Frame(13.5,587.3,830,0,1.553,-1.56);↪→

Frame ScrewdriverDropPrepFrame3 = new

Frame(13.5,587.3,832,0,1.553,-1.56);↪→

CartesianPTP ScrewdriverDropPrepare =

ptp(ScrewdriverDropPrepFrame).setJointVelocityRel(0.1);↪→

CartesianPTP ScrewdriverDropPrepare2 =

ptp(ScrewdriverDropPrepFrame2).setJointVelocityRel(0.10);↪→

CartesianPTP ScrewdriverDropPrepare3 =

ptp(ScrewdriverDropPrepFrame3).setJointVelocityRel(0.10);↪→

robot.move(ScrewdriverDropPrepare);

robot.move(ScrewdriverDropPrepare2);

}

public static void DropHammerPrepare(LBR robot){

Frame HammerDropPrepFrame = new Frame(161,520,857,0,1.553,-1.56);

Frame HammerDropPrepFrame2 = new

Frame(161,579,857,0,1.553,-1.56);↪→

Frame HammerDropPrepFrame3 = new

Frame(161,579,837,0,1.553,-1.56);↪→

CartesianPTP HammerDropPrepare =

ptp(HammerDropPrepFrame).setJointVelocityRel(0.25);↪→

CartesianPTP HammerDropPrepare2 =

ptp(HammerDropPrepFrame2).setJointVelocityRel(0.1);↪→

CartesianPTP HammerDropPrepare3 =

ptp(HammerDropPrepFrame3).setJointVelocityRel(0.1);↪→

robot.move(HammerDropPrepare);

robot.move(HammerDropPrepare2);

robot.move(HammerDropPrepare3);

}

public static void DropPliersPrepare(LBR robot){

Frame PliersDropPrepFrame = new

Frame(299.5,564,883.2,0,1.553,-1.56);↪→

Frame PliersDropPrepFrame2 = new

Frame(299.5,603.5,883.2,0,1.553,-1.56);↪→

CartesianPTP PliersDropPrepare =

ptp(PliersDropPrepFrame).setJointVelocityRel(0.1);↪→

118

CartesianPTP PliersDropPrepare2 =

ptp(PliersDropPrepFrame2).setJointVelocityRel(0.1);↪→

robot.move(PliersDropPrepare);

robot.move(PliersDropPrepare2);

}

public static void AfterDropPosition(LBR robot){

Frame AfterDropFrame =

robot.getCurrentCartesianPosition(robot.getFlange());↪→

System.out.println("Robot start position: " + AfterDropFrame);

Frame ColisionAvoidFrame = AfterDropFrame.copyWithRedundancy();

ColisionAvoidFrame.setY(500);

robot.move(lin(ColisionAvoidFrame).setJointVelocityRel(0.1));

}

}

119

	Abstract
	Summary
	Sammendrag
	List of Figures
	List of Tables
	Introduction
	Project background
	Project task
	Definitions and abbreviations
	Structure of the thesis

	Materials and devices
	Theory
	Raspberry Pi board
	Speech Recognition
	Computer Vision
	Definition of computer vision
	Color detection using computer vision
	Color detection in BGR color model
	Color detection in HSV color model

	OpenCV - Contours and contour tracking
	OpenCV - Masking
	Robotiq 2F-85 gripper
	KUKA LBR IIWA 7 R800
	Programmable Logic Controller
	IPC and Embedded PC
	Beckhoff CX5120
	EL6695 - Beckhoff module

	Software
	Multithreading and multiprocessing
	Modbus RTU
	TwinCAT 3
	EtherCAT

	Materials and methods
	Planning and design
	Initial meeting
	Pre-project
	System design
	KUKA LBR IIWA and CX5120
	SpeechRecognition v3.10.0 library
	OpenCV, color band solution and Raspberry PI
	Gripper, why Robotiq 2F-85 gripper
	Data flow chart
	Data exchange - KUKA LBR IIWA and Twincat 3
	Data exchange - Twincat 3 and Python
	Data Exchange - Raspberry PI and Python (PC)

	Communication
	Communication of PC to CX5120
	Communication via Beckhoff EL6695
	Communication via Pyads
	Communication and control of Robotiq 2F-85 gripper

	Twincat 3 program
	Request Handling
	User input handling
	Task Handling
	Visualization and GUI

	KUKA LBR IIWA PROGRAM
	Initialization
	Real-time information
	Main program

	Speech Recognition application
	PyAudio SR libraries
	Speech Recognition Setup
	Speech Recognition application

	Server/Client communication between Raspberry and PC
	Raspberry Pi and Tool recognition
	Practical setup
	Method of calculating angle for color bands
	Python Code: Variable setup
	Creating color detection function
	Python Code: While loop

	3D models of tool stands

	Results
	Engineering result
	Integration of devices
	Safety
	Commanding the KUKA LBR IIWA
	Speech recognition - results
	Computer Vision - results

	Administrative results
	Teamwork
	Sprints and planning

	Discussion
	Expectations vs reality
	Computer Vision: Why some parts didn’t work?
	Speech Recognition: Why didn’t it work perfectly?

	Limitations
	Safety limitations
	Limited Hardware

	Challenges
	Safety
	Computer vision
	Speech Recognition

	Communication
	Internal
	How the team worked
	Project planning
	Collaboration using YouTrack and Confluence

	Conclusion and further work
	Conclusions
	Further work (upgrade ideas)
	More organized hardware
	Collaborative robot
	Task queueing
	Better tool recognition
	Better speech recognition

	Bibliography
	Appendix
	Project video link
	Preliminary project report
	Progress report
	Time list
	Raspberry Pi - code
	PC - main code
	TwinCAT 3 code
	JAVA - code

