
Department of ict and Natural Sciences

Bachelor’s thesis in Electrical Engineering -
Automation and Robotics

Autonomous Drone Props in Theatre

The Balance Between Artistic Design and Technical
Functionality, and Different Possible Location

Technologies.

By:

Jakob Andreas Amtedal
Supervisor:

Erlend Coates

Date: 20th of June, 2023

Sammendrag

Denne Bachelor’s oppgaven omhandler den potensielle bruken av droner i skuespill. Motivasjonen
for å ha flyvende droner i skuespill er å kunne f̊a en mer fortryllende teateropplevelse med å
ha svevende rekvisitter i skuespillet. Oppgaven ser p̊a ulike teknologier for å kunne lokalisere
dronen p̊a scenen, samt ogs̊a kontrollere den autonomt slik at dronen kan forflytte seg mellom
ulike posisjoner uten å ha en ekstern pilot som styrer dronen. Oppgaven er gitt av Teateret V̊art,
som ønsket å ha en svevende bok i sitt skuespill. Dermed ser oppgaven ogs̊a p̊a designkonflikter
n̊ar dronen skal tildekkes som en bok for Teateret V̊art. De største konfliktene møtt er hull for
luftstrøm som dronen m̊a ha for å fly, og vekt som legges til for å gjemme dronen. To teknologier for
innendørs lokalisering blir brukt for å lokalisere dronen. Pozyx’s UWB (Ultra-Wideband) bruker
lange radiobølger for å m̊ale posisjon. Den andre teknologien brukt for å m̊ale posisjonen av dronen
er distribuert av Marvelmind. Marvelmind bruker ultrasonisk lyd for å lytte hvor objektet befinner
seg. Begge teknologiene bruker triangluering fra ulike referansepunkter for å finne en mobil sensor
som beveger seg. Hver av disse teknologiene har sine fordeler og ulemper. For styring av dronen
er det to scripts som blir presentert, begge av disse har ulike spesifikasjoner. Første script er rask
og effektiv, men lite presis. Andre script er treg men har høyere presisjon. Bruken av droner i
teater har potesiale, men det krever b̊ade program, design og maskinvare for at dronen skal kunne
fly p̊alitelig og trygt.

Underveis i prosjektet har en YouTube-video blitt laget. Denne videoen har som hensikt å vise
frem hvordan prosjektet har blitt til s̊a langt. Ferdig resultat er ikke med her, men viser mer til
hvordan prosjektet har utviklet seg. Link: https://youtu.be/QBF4H6GgW6Y

Summary

This Bachelor’s thesis focuses on the potential use of drones in theater productions. The motivation
behind incorporating flying drones in plays is to create a more enchanting theater experience by
having floating props in the performance. The thesis explores various technologies for locating the
drone on stage and also controlling it autonomously, allowing the drone to move between different
positions without an external pilot operating it.

The assignment was given by Teateret V̊art, which wanted to have a levitating book in their play.
Therefore, the thesis also examines design conflicts when the drone needs to be disguised as a book
for Teateret V̊art. The main conflicts encountered involve the need for air vents for the drone to
fly and the additional weight added to conceal the drone.

Two indoor localization technologies are used to track the drone’s position. Pozyx’s UWB (Ultra-
Wideband) utilizes long radio waves for position measurement. The other technology used for
tracking the drone’s position is distributed by Marvelmind. Marvelmind employs ultrasonic sound
to determine the object’s location. Both technologies use triangulation from different reference
points to track a moving mobile sensor. Each of these technologies has its own advantages and
disadvantages.

For drone control, two scripts are presented, each with different specifications. The first script is
fast and efficient but lacks precision. The second script is slower but offers higher precision.

The use of drones in theater has potential, but it requires both programming, design, and hardware
to enable the drone to fly reliably and safely.

During the project, a YouTube video was created. This video aims to showcase the progress of the
project so far. The final result is not included but provides insight into the project’s development.
Link: https://youtu.be/QBF4H6GgW6Y

i

https://youtu.be/QBF4H6GgW6Y
https://youtu.be/QBF4H6GgW6Y

Acknowledgment

First, I would thank Bjørnar Teigen, Jonas Fuglseth and the others at Teateret V̊art for giving me
this unique project.

Secondly, a big thank you to PlayOn! for taking me to Krakow and letting me in on their Digital
Campus 2023 workshop. Giving me valuable insight into the immersion in art and technology.

Also a big thank you, Lars Ivar Hatledal, for valuable critique and feedback.

Finally, I want to thank Erlend Coates, who supervised this project. Giving guidance, advice, tips,
and encouragement. This project would not be possible without him.

ii

Table of Contents

List of Figures v

1 Introduction 2

1.1 Background for the task . 2

1.2 Goal Objective . 2

1.3 Structure of Thesis. 3

2 Theory 4

2.1 Drones and Quadcopters . 4

2.2 Tello Drone . 4

2.2.1 Tello Library . 5

2.3 Localization Systems . 5

2.4 UWB . 5

2.5 Triangulation . 6

2.6 Pozyx UWB Technology . 6

2.6.1 The Creator One Kit . 6

2.6.2 Companion Software . 7

2.7 Marvelmind Indoor Navigation System . 7

2.7.1 Super-Beacons . 7

2.7.2 Mini-TX Beacon . 8

2.8 Computer Assisted Design . 8

2.9 Additive Manufacturing (3D-Printing) . 9

2.9.1 Material for Printing . 9

2.9.2 Prusa Slicer and Slicing . 9

3 Methodology and Materials 10

3.1 Project Organisation . 10

3.1.1 Supervisor Meetings & Meetings with Teateret V̊art 10

3.1.2 Meetings with Teateret V̊art . 10

3.2 Research for hardware . 11

3.3 Setup and testing hardware and software . 11

3.3.1 Tello Drone . 11

3.3.2 Marvelmind . 12

3.3.3 POZYX, Creator one kit, First setup . 14

3.3.4 Measuring Pozyx with setup . 15

iii

3.4 Implementing Marvelmind localization with Tello drone 18

3.4.1 Creating a mount for the Marvelmind to the Tello 18

3.5 Software for Tello drone . 19

3.5.1 Mocking the Marvelmind GPS . 19

3.5.2 Testing the mocking . 22

3.5.3 Controlling the drone with Marvelmind . 23

3.5.4 Self-correction of flight . 24

3.5.5 Implementing the Z-axis to the coordinate system 24

3.5.6 Different Approach . 27

3.6 Creating the book model for the Tello drone . 30

4 Results 36

4.1 Measuring the Precision of the Marvelmind GPS 36

4.2 Measuring the precision of the POZYX Creator One kit 36

4.3 Combining the Tello with Marvelmind . 37

4.3.1 Casing for Marvelmind Mini TX . 37

4.3.2 Controlling Tello Drone . 38

4.4 Finished design of the flying book . 43

5 Discussion 46

5.1 Indoor Location System Measuring and Errors . 46

5.1.1 Discussion on measured results . 46

5.1.2 Errors and issues with Marvelmind . 46

5.2 Pozyx Creator one . 47

5.2.1 Extracting location data from Pozyx . 47

5.3 Comparing the Local GPS Systems . 47

5.4 Tello Drone . 48

5.5 Python Code and Solutions . 48

5.5.1 Container . 48

5.5.2 Software and Programming . 48

5.5.3 First Approach . 49

5.5.4 Second Approach . 49

5.5.5 Issues and flaws with the code . 49

5.6 Book Design . 50

6 Conclusion 52

iv

Bibliography 53

Appendix 54

A Mocking of Marvelmind . 54

B Coordinate Deviation Filter . 55

C First Approach Code . 56

D Second Approach Code . 59

List of Figures

1 Illustration of 6 DOF, illustration taken from [7] 4

2 Using two Anchors, a1 & a2 and using the distances of r1 & r2, the possible location
of the beacon is both in the green and red area. 6

3 Creator One kit + Tello Drone, top left is Tello drone, Battery pack, mobile beacon,
and anchor. 7

4 Marvelmind Super Beacon, picture taken from Marvelmind.com [11] 8

5 The mini TX can remove its casing to make it smaller. Pictures taken from Mar-
velmind.com [10] . 8

6 Testing the drone in the play, the drone is only tested with its safety cage. (Note
the amount of light on the ground.) . 11

7 This is how the beacons are oriented in the room, ignore x, y and z values for now.
Only note that beacon 10 is in origo (center) of the map. This is to have positive
coordinate values in the future. 12

8 The Beacons are running, listening to the the mobile node nr 7 (in center). The
coordinates are adjusted, note that the Z value is defined and not calculated by
Marvelmind. 13

9 Measuring X and Y of coordinate E, we place the Marvelmind mobile beacon 5.7
meter from the left wall, and 4.14 meter from the bottom wall 14

10 First setup of the Pozyx test, figure is a screen capture of the software. Note that
the background is a picture of the classroom where this was tested. 15

11 Setup at room L165. Stationary beacons are placed in the corner of the room, two
mobile beacons are visible at the map. 16

12 Reading the coordinates of each stationary beacon we can calculate distances between
them. 17

13 Finding center of the Pozyx Anchors. 17

14 Marvelmind Mini TX on the Tello drone . 18

15 Possible latch point for the mount of sensor . 18

16 Computer model of the container to the Marvelmind node mounting to the drone. 19

17 Function that generates random coordinates, rounded to two decimals 20

18 Function that generate coordinates and prints them in terminal 20

v

19 Euclidean Formula for length of hypotenuse,
dx and dy refers to the difference in coordinates; the length of the adjacent and
opposite leg . 21

20 Formula for angle θ, note that this value is given in radians. 21

21 Function that calculates direction, rotation and orientation between two coordinates 21

22 Main code of mocking Marvelmind . 22

23 Test of the mocking code, here the input given is 20 20, Note: Orientation is defined
as CW2 is because code was somewhat changed, it is indifferent. 22

24 Visualising in Geogebra to get better understanding. 23

25 Code that uses the distance, rotation and orientation to make the drone move. . . 23

26 A loop is added after going to coordinates, that checks the new coordinates after
arriving. 24

27 Code snippet of finding z difference and giving commands to Tello. 25

28 Flowchart of Python code . 26

29 Function calculating relevant angle from previous angle, with orientation 27

30 New rotation is 90 degrees CW . 28

31 New rotation is 45 degrees CW . 29

32 Mounting model created in Fusion . 30

33 Further development of the frame. 30

34 First test of hiding drone, using a frozen pizza box 31

35 CAD model of the propeller guards to the Tello drone 32

36 CAD model of the propeller guards with a thicker bezel. 32

37 CAD model of potential book design . 33

38 The first printed book design . 33

39 A Cage completely covering the drone. 34

40 CAD model of potential book design, for better airflow 34

41 Corner of the book design in slicer. 35

42 Complete printed book design for the Tello drone 35

43 Found distances using tape measure. Measured in centimeters 37

44 Found distances by Pozyx. 37

45 Picture of the Marvelmind Mini TX mounted on the Tello drone 38

46 Drone on the map, before flight. 39

47 Information out of terminal. 39

48 Drone positioned on the map, after flight. 40

49 Terminal during flight with program number 2 . 41

50 Terminal during flight with program number 2 . 42

vi

51 Position difference between the final positions . 43

52 3D model of book cover . 43

53 3D model of book cover separated . 44

54 Weighted book disuise . 44

55 Using tape to cover the frame better . 45

56 Different antennas on the Marvelmind modem [11] 46

57 Code for reading finding mean position . 47

58 Visualization of simplest code, move one axis at a time 49

59 Computer rendering of book design. 51

vii

Terminology

UAV - Unmanned aired vehicle

Quadcopter - A helicopter having 4 rotors

6DOF- 6 Dimensions of freedom

RTLS - Realtime Location System

TOA - Time of arrival, total time for a signal to emitt to recive back again

UWB - Ultra wideband, Radio waves between 3.1 and 10.6 GHz.

GPS - Global Positioning System

LPS - Local Positioning System

Library - A collection of pre-written code available to make coding more efficient and clean.

Hotspot - A connection using WiFi, but does not give access to world wide web.

MQTT - A computer communication protocol, using publish/subscribe data from a main server,
called MQTT-broker.

1

1 Introduction

This report reviews the challenge with incorporating drones in live theatre performances. The
motivation for the use of drones in a theatre play is to enhance the immersion experience by
introducing levitating props, creating an illusion of magic and unnatural forces.

However, the implementation does have concerns and challenges. Such as the safety for both actors
and audience in the theatre, reliability, and control.

Moreover, it is a difficult balance between artistic vision and technical feasibility to have the
implementation of drones satisfy both illusion and reliability.

The theatre company Teateret V̊art had produced a new play that was in need of a flying prop.
In cooperation with NTNU, the challenge was handed over to us to try to find a possible solution
for their task. Teateret V̊art was specially requesting us to use a drone.

Additionally, this report also reviews the different technologies feasible for localization, different
methods to control drones, and lastly, different challenges and issues with disguising the drone into
the prop.

1.1 Background for the task

Teateret V̊art is Molde municipality’s largest theatre. They have created a play based on the
novel Hunger (original title Sult) by the Norwegian author Knut Hamsun. The novel tells a story
about a struggling writer who becomes more and more consumed by his thoughts of inadequacy
and failure. Hunger is widely regarded as a classic of Norwegian literature. Hamsun writes about
self-doubt, creativity, and human psyche in a haunting and provoking way[20]. Teateret V̊art
wanted to visualize the protagonist losing his mentality with a flying notebook on stage. Using a
drone, the prop would physically fly on the stage. The finished product wanted by Teateret V̊art
was three different drone interactions on stage. The interactions with the drone were changed
somewhat throughout the project, but these changes did not create any conflicts for the thesis.

The three interactions were somewhat possible to do with an off-the-shelf drone available in hobby
stores, the Tello drone that is used in this project was equipped with enough features to do this.

The Tello could be controlled with a mobile phone, this was somewhat enough for Teateret V̊art’s
usage, but then the Tello was dependent on good lighting. So for the project to be more applicable
for a bachelor thesis in automation engineering, it was decided to add an indoor GPS system to try
to create a closed-loop system locating and controlling the drone by itself. The objective for this
would be to have the drone act on its own. Moving between locations as programmed to (Without
remote human control).

The task for the thesis is to create a system that can calculate where the drone is and control
it to different coordinates on stage. To track the position of the drone, different technologies are
feasable. They have the same key concept. A small transmitter sends out a beam signal, that is
picked up by multiple stationary receivers (called anchors). Using the time difference of when the
signal is sent to when the signal is received, its possible to estimate the transmitters position.

1.2 Goal Objective

The goal of the project can be parted into 2 parts, what Teateret V̊art wanted as a finished product,
but also what was needed for it to be done so it was more applicable as a automation thesis.

What Teateret V̊art wanted was to have the drone do 3 appearances during the play; First was to
have the drone take off from the main characters hands. Staying in the air where they could push
the drone and it would stay in one place.

Second, the protagonist throws the book away from him, but the book never lands on the ground.

2

Rather it begins to fly in the air.

The third and last appearance would be the drone taking off from the ground. Finishing the play.
These appearances are very straightforward and can be done with a drone bought off-the-shelf.
However, it was important for Teateret V̊art to have the drone resemble a book, so the task has
some design challenges as well.

Furthermore, to make it more relevant for automation engineering it was decided to add a local
GPS-system for the drone. Making it possible to control the drone’s position on stage independent.
Another reason for the GPS system is that the Tello drone was dependent on good lighting to
maintain its position. Creating a closed loop system so it stays in its position reading of the GPS.
The possibilities for utilizing an indoor GPS-system together with the drone are quite flexible and
open-ended.

1.3 Structure of Thesis.

The report is structured as follows: Chapter II presents the theory needed to understand the
different technologies and concepts that have been used in the thesis. The chapter also includes
background information relatable to the report. How the technology and concepts are put together
are presented in Chapter III, also presenting the testing and prototyping done. Chapter IV show-
cases the final result of the project in general. What the final product is, and if it has managed
to successfully complete the challenge given. Chapter V discusses the result, assessing the results
found in the previous chapter. Also, different limitations and constraints encountered, and how
these were solved. The discussion chapter also assesses what could be done differently, and how
it might be solved in other ways. The Final chapter, Chapter VI, summarizes the findings of the
project. The conclusion also consists of what will be done in future research. Finally, what are the
possible usages for the technology that has been established.

3

2 Theory

The theory chapter aims to give an understanding of the different technologies that are used in
this study. Both how they function and how they are intended to be used.

2.1 Drones and Quadcopters

Drones and Quadcopters are two terms often used around each other; however, quadcopters are
categorized as a subcategory of drones. A definition of a drone is an aerial vehicle that is un-
manned and can fly autonomously. Therefore, fixed-wing airplanes equipped with GPS able to
fly autonomously can also be categorized as a drone [19]. Multicopters are drones using multiple
propellers for lift, the difference between the speed of the motors creates the movement for the
multicopter. A quadcopter is a multicopter that has just 4 motors, this is optimal for stabilization
[4]. Quadcopters are able to move and rotate in 6 dimensions of freedom (6DOF). Forwards &
backward, left & right, roll, yaw, and pitch.

Figure 1: Illustration of 6 DOF, illustration taken from [7]

Quadcopters can change their orientation through controlling differential speeds on their motors
individually. Different combinations of motor speeds change its orientation.

2.2 Tello Drone

Tello is developed by Ryze Technologies and uses a DJI flight control system. The Tello drone is
lightweight and designed with the purpose to be programmable and provided with open software.
The Tello drone is a quadcopter, but for further reference to avoid confusion, it will be called
a drone. The drone is also equipped with tools such as a front camera and a vision positioning
system. This system contains two components, a camera, and a 3D infrared module. The two
components are pointing down, calculating the distance to the ground, and helps maintain the
current position [18]. These properties make this the choice for the project.
The Tello drone weighs 80 grams (54 grams itself + 26 grams battery) and has a flight time of
around 10 minutes. The flight time is very dependent on the weight of the drone. Therefore, it
is possible to remove some parts to get more flight time and vice versa, added weight will reduce
flight time [17]. The Tello drone is measured to be able to lift 70 grams of extra weight [8].

It is important to mention that the positioning system on the drone struggle when lighting is
low[18]. When at the theatre scene, it will always be different lighting and it is wanted that the
drone is stationary. Unaffected by the lighting. This is one of the reasons why it is implemented
a indoor GPS system.

4

2.2.1 Tello Library

The Python library to control the drone is basic with straight-forward instructions.

start(): - Creates a connection between Python terminal and Tello drone.

takeoff(): - Function that instructs drone to take off the ground, going up to 70cm above ground.

land(): - Tello drone is instructed to lower elevation and land

get tof(): - Get the distance to ground in millimeters

forward(centimeters): - Function takes an input value and drives the drone forward that value
in centimeters.

backwards(centimeters): - Drives drone backwards the amount of input value in centimeters.

left(centimerers): & right(centimeters): - Goes left or right in centimeters with inputted value.

up(centimerers): & down(centimeters): - Goes up or down in centimeters with inputted value.

anticlockwise(degrees): & clockwise(degrees): - Rotates the drone in yaw axis using the inputted
degrees. Limited between 0 and 360 degrees.

2.3 Localization Systems

GPS is a technology used to determine the position of devices globally, using satellites traveling in
orbit around the globe. GPS works by using satellites that orbit the Earth. The satellites sends a
continuous signal containing their current position and the time when the signal were sent.

GPS-receivers can with the received timestamp of the known position of the satellite calculate the
time it took for the signal to travel from the satellite to the receiver.

Using both the satellites position and the signal’s time delay, it can then calculate its relative
position from the satellite. Comparing the position from a minimum of 4 different satellites the
receiver calculates its position.

For a reliable continuously tracked location there are 24 operational satellites, and at any time, at
least 4 are within range. 4 is the minimum for providing the current location [16]. On a global
scale, the satellites are the anchors used as points of reference. The GPS tracker is the mobile node.

Furthermore, GPS is not sufficient at locating objects that are indoors, as walls and roofs disturb
the signal. GPS lacks the precision needed to locate an object in a room. Additionally, GPS
technology is limited in its ability to estimate precise altitudes.

In contrast, there are alternative methods to localize objects with greater accuracy in a closed area.
Since the location system is not on a global scale, it is called LPS (Local Positioning System) [22].
LPS uses different technology to estimate a mobile nodes position but the principle of locating the
mobile node using triangulation (see chapter 2.5) is the same.

2.4 UWB

Ultra-WideBand is a technology that uses wireless communication and applies a broad frequency
spectrum to transmit and receive data over short distances. By diverging the signal over a broader
range of frequencies (typically several gigahertz) the spectrum makes it possible for high data
transfer rates and precise localization capabilities. Sending signals in a very short duration to
transmit data. The pulses have low power cost and spread across a wide range of frequencies,
which allows for lot of transmitted data[5]. Measuring the Time of flight (ToF) of the signal of

5

the UWB pulse between devices it can estimate the distance between them [5]. Reading of the
distances between multiple devices it can then create an estimate of a mobile device. Estimating
the position using different perspectives is called triangulation.

2.5 Triangulation

Triangulation is a measuring technique, using multiple points of reference to estimate a new position
or distance. For the positioning system for the drone, it will be used stationary nodes (called
anchors). The stationary nodes know their position relative to each other. The stationary nodes
can then send a signal out to the mobile node (the node that is tracked). The mobile node then
sends the signal back to the anchors again. Using the TOT and TOA (time of transmission and
arrival) and knowing the speed of the signal. Computers can estimate the distance from each
anchor to the mobile node. And then calculate an estimation of where the mobile node is [21].
Using one anchor, it is only possible to calculate the distance between the anchor and the mobile
node. However, there is not any direction. The signal is sent in every direction around the anchor,
the returning signal creates a sphere around the anchor where the possible position is [21].

Figure 2: Using two Anchors, a1 & a2 and using the distances of r1 & r2, the possible location of
the beacon is both in the green and red area.

Using two anchors to track a mobile node, however, there can be then two possible solutions for
where the mobile node is, as illustrated in figure 2. If the anchors are at the end of a room, a wall
can then eliminate the other position. 2 anchors are functional for 2-dimensional space, but a 3rd
anchor will create better localization, and it can also give a sense of the height level of the mobile
node.

2.6 Pozyx UWB Technology

Pozyx is a distributor of UWB RTLS system, they have developed an open-source kit with hardware
that they develop. Creator One is a kit with both Arduino and Raspberry Pi libraries.

2.6.1 The Creator One Kit

Pozyx provides a kit for new creative development of indoor GPS systems. The kit includes 6
developer tags (mobile nodes) and 4 anchors (anchors working as reference points). One of the
tags serves as a master tag that can be connected to the computer communicating with the other
tags. The 6 tags make it possible to track 6 different objects within the confined space. Extra

6

technical equipment that is supplied is 5 battery packs for the tags and anchors and 4 power
adapters [13].

Figure 3: Creator One kit + Tello Drone, top left is Tello drone, Battery pack, mobile beacon,
and anchor.

If it was to be used to track the drone, the drone would then need to carry both the power bank
and the mobile beacon. The power bank is weighing 61 grams, and the mobile beacon weighs 17
grams.

2.6.2 Companion Software

Pozyx does distribute software with the hardware, the software gives real-time location visualiza-
tion. In this software it is also possible to adjust settings and calibrate the system. The software
available as a standalone software or available on the web in a browser. From this software its
possible to collect the location data using MQTT.

2.7 Marvelmind Indoor Navigation System

Marvelmind has developed tracking technology with the same technique as UWB RTLS, the main
difference however is the use of sound instead of radio waves. The speed of sound and radio
waves are very different, but the same method still applies. Marvelmind supply software for their
components, making it more straight forward to set up and read data of it. Marvelmind Starter set
NIA-SmallDrone is a tracking kit designed for small drones for indoor tracking. The set contains
4 Super-Beacons, 1 Mini-TX Beacon and 1 Modem [9].

2.7.1 Super-Beacons

The Super-Beacon can be used as a double feature, with both being a stationary anchor but also
a mobile node. This is possible because the Super-Beacon is capable of transmitting and receiving
ultrasonic sound.

The Super-Beacons can have a range of 50 meters between them, but Marvelmind recommends

7

up to 30 meters. The super-Beacon measures at 55x55x65mm (with antenna) and weighs 59g
(including 1000 mAh battery) [11].

Figure 4: Marvelmind Super Beacon, picture taken from Marvelmind.com [11]

2.7.2 Mini-TX Beacon

The mini beacon is as suggested a smaller version of the other tracking beacon, ideal to attach on
a drone because it weighs less. The biggest differences are that the Mini beacon is a TX, meaning
it can transmit ultrasound but cannot receive it. Common Beacons can receive and transmit
ultrasound. The Mini-TX is 47x42x15mm and weighs 25 grams. Comparing size to Super-Beacon,
which is 55x55x33mm (not counting the antenna) and 62 grams. The battery of the Mini-TX is
a 250mAh, but since it also only has TX function, the battery time lasts longer [10] . (The Mini
TX will be referred as the mobile beacon or beacon number 7)

(a) Picture of the Marvelmind Mini TX. (b) Marvelmind Mini TX without its casing

Figure 5: The mini TX can remove its casing to make it smaller. Pictures taken from
Marvelmind.com [10]

2.8 Computer Assisted Design

Computer assisted design, CAD for short, is computer software that assists in designing models.
The designs are then created with great precision and accurate measurements. The software that
has been used to create models is called Autodesk Fusion 360, a versatile tool for model making.
Fusion 360 also has tools to optimize the 3D printing of models.

In addition, Blender was used to create computer models. Blender is a computer program that
mainly focuses on character modeling and animation, but it was chosen for its familiarity and

8

efficiency. Ultimately, Blender is not an optimal option for creating designs that crave high precision
and measurements.

2.9 Additive Manufacturing (3D-Printing)

Parts needed for the product, such as the drone’s disguise as a book and holder for the mobile
sensor were made with the usage of additive manufacturing. There are different technologies for
additive manufacturing, however, final products were made using material extrusion (MEX) 3D
printers. The 3D printers used, are called Prusa Mini+. The Prusa printers provide an opportunity
to prototype parts and small models. The Mini+ Models have a printing volume of 18cm3. Which
is sufficient for this project [14].

2.9.1 Material for Printing

The models are printed in PLA (Polyactic acid), a plastic polymer created from renewable sources.
These sources can be fermented plant starches such as corn or sugarcane. The material is strong
and stiff enough for the project.

2.9.2 Prusa Slicer and Slicing

Software used to make instructions to the printer. Here it’s also decided what size and orientation
the model should be printed. Different orientations need different supports and can demand more
time. Prusa Slicer is the software to create the instructions for the printers [15].

9

3 Methodology and Materials

The methodology and materials chapter goes deeper into the approach of the task, and what was
done from research at the beginning of the project to the final product.

3.1 Project Organisation

3.1.1 Supervisor Meetings & Meetings with Teateret V̊art

The student and supervisor had a meeting usually every Wednesday. At the beginning of the
project, it was mostly discussed how to approach the task given by Teateret V̊art. As there are
multiple ways to locate the drone, a comparison of technologies was made to look at what is needed
for the task and was is possible to do. While doing research, it would also be discussed what kind
of drone would be accessible. An idea was to build a drone with the needed gadgets from scratch,
however, this would need a lot more research and time.

It was also discussed design ideas for the book, such as how the drone could be hidden, and safety
measures for both actor and audience.

After finding hardware that could be used for locating the drone, it was ordered online. The drone
for the project was already in inventory, it was the correct size and was equipped with the needed
tools.

3.1.2 Meetings with Teateret V̊art

There were 3 meetings with Teateret V̊art. The first meeting was with them presenting their
objective of their using the drone. Also telling the setup of the play, the scene, and where the
audience would be sitting. The second meeting was at Teateret V̊art, where we got to see the
scene setup and perceive how the play would unfold. Here we showed our drone and the indoor
GPS system that we ordered. It was tested to see how the drone noise would play out with music.
Here it was learned how much the Tello drone struggles to keep its position in air with the different
lighting conditions that the theatre use on stage.

The third meeting was also at Teateret V̊art, this time the drone was implemented in the play,
tested with an audience.

10

Figure 6: Testing the drone in the play, the drone is only tested with its safety cage. (Note the
amount of light on the ground.)

3.2 Research for hardware

First phase of approaching the task was to do research for how to localize the drone. There were
multiple systems using different methods. There where different suppliers that was considered.
Comparing what the different suppliers where offering, as of software, hardware and price points.
Evaluation of the different techs were compared in a table:

3.3 Setup and testing hardware and software

When the positioning systems arrived, the first approach was setting the systems up and creating
a connection between the anchors, the beacons, and the laptop to read the position. The main
reason for testing was to check if everything worked, hardware and software-wise.

First the Tello drone, then both the location systems, POZYX and Marvelmind. There were
different theories for optimal setup with the location systems to get the best results. One theory is
to have all in the same plane, at a level z value in the room. Second theory is to have two diagonal
anchors placed lower on the wall, and the two other higher up. This would give the anchors better
cross-reference when calculating distances.

3.3.1 Tello Drone

To control the Tello Drone, a library is available. Equipped with easy scripts to decide movement
and orientation. Also, some scripts to get status information. Functions mentioned are listed in

11

chapter2.2.1. The Tello Drone is connected to a computer with Wi-Fi, a hotspot the drone sets
up itself. With the connection to the computer, it is then given instructions with Python code. A
complimentary Python library is given with the Tello drone for basic maneuvers. Such as rotating
in the yaw axis to move in different directions. The Tello drone could also be controlled with an
app on a smartphone, the smartphone connects via the hotspot by the drone. When the connection
is successful, the drone was tested with simple lines of code. Such as takeoff and move 100 cm
forward. These are scripts already supplied from Tellos code library.

3.3.2 Marvelmind

Testing the Marvelmind location system was done by first uploading firmware to both the anchors
and the mobile node provided by Marvelmind. Then connect them to the modem. In the first
effort just to try the tracking of the mobile node. The anchors were set up with no determined
distance between the anchors, but when they showed up in the software and the ranges seemed to
be accurate. However, in the testing, the correctness of ranges and the readout of data is not so
important. It will be tuned later. Most important is to check that there is no big errors. Also
important for testing is to see if the mobile node is located and the estimated location is somewhat
accurate. Which it is.

When setting up a permanent environment, the beacons are mounted on each side of the classroom
using Velcro. All beacons are placed 2.5 meters high, so that the signal has as the minimal objects
disturbing the line of sight. The beacons are each given a number to mark each of them.

Figure 7: This is how the beacons are oriented in the room, ignore x, y and z values for now.
Only note that beacon 10 is in origo (center) of the map. This is to have positive coordinate

values in the future.

When measuring the actual distance between the beacons. The ground truth distances between
the beacons are measured below. It is not measured diagonally. Measured distances are 1

Mind the distance between 1 to 10 and 2 to 11 is not exact same length, neither 1 to 2 and 10 to
11 even when 1 & 10 or 2 & 11 are mounted on the same wall.

Software supplied by Marvelmind is used to set up the indoor location system. The beacons send

12

Beacon 1 Beacon 2 Beacon 10 Beacon 11
Beacon 1 - 11.40m 8.60m -
Beacon 2 11.40m - - 8.43m
Beacon 10 8.60m - - 11.30m
Beacon 11 - 8.43m 11.30m -

Table 1: Ground Truth Matrix (Marvelmind)

out a signal to each other and then estimate their distances based on the time it takes for the
signal to return.

Figure 8: The Beacons are running, listening to the the mobile node nr 7 (in center). The
coordinates are adjusted, note that the Z value is defined and not calculated by Marvelmind.

In figure 8 the distances of the beacons are in the top left. These are the readings of the Marvelmind
data.

Beacon 1 Beacon 2 Beacon 10 Beacon 11
Beacon 1 - 11.461m 8.565m 14.302m
Beacon 2 11.461m - 14.093m 8.445m
Beacon 10 8.565m 14.093m - 11.278m
Beacon 11 14.302m 8.445m 11.278m -

Table 2: Marvelmind Distance Matrix

The values in matrix 2 is the measured distances done by the Marvelmind software. These values
change somewhat when in search mode actively measuring distances. Compared to the first matrix
(Matrix 1), the diagonal distances are measured in matrix 2.

When anchors are done calculating their distances between themself, the map freezes their position
and begins to actively find the mobile beacon in the room. Placing the mobile beacon as center as
possible in the room so each anchor can get as equally strong signal as possible. Thereafter reading

13

the position of the mobile beacon from the software and from ground truth, comparing the results
give an estimation of reliability and precision of the local GPS.

Finding center of the the beacons is done by putting the coordinates of the anchors in geogebra
and see where the diagonal line cross:

Figure 9: Measuring X and Y of coordinate E, we place the Marvelmind mobile beacon 5.7 meter
from the left wall, and 4.14 meter from the bottom wall

3.3.3 POZYX, Creator one kit, First setup

Testing the Pozyx location system was done similarly to Marvelmind, here there was an issue with
the software that reads all the data to work. Luckily Pozyx also had the software available online
in the web browser, the data could then be extracted out as with MQTT to Python. Here again,
testing it is mostly for checking if everything is working, tuning will be done later. The first setup
was done in one of the classrooms. Figure 10 shows the first setup. When setting up, each anchor
is given a reference coordinate of where it is, then when starting to scan where they are, they have
a greater understanding of their relative position from each other. Note that Anchor 0x1233 is
connected to my laptop. This communicates with the other anchors. Optimally this would be in
a corner of the room.

14

Figure 10: First setup of the Pozyx test, figure is a screen capture of the software. Note that the
background is a picture of the classroom where this was tested.

In figure 10 , the mobile nodes are not visible.

3.3.4 Measuring Pozyx with setup

The Pozyx beacons were set up in classroom L165 for measuring accuracy.

15

Figure 11: Setup at room L165. Stationary beacons are placed in the corner of the room, two
mobile beacons are visible at the map.

Figure 11 shows the setup in room L165. Similar to the Marvelmind setup, each beacon is placed
in the corner of the room. In contrast, there are two visible mobile beacons. Beacon 0x6859 is the
beacon connected to the laptop, working as the communicator between all beacons. The measured
beacon in center of the room is labeled 0x682d.

When measuring the distances using a tape measure between the beacons, the distances are shown
in matrix 3:

0x1147 0x1233 0x1137 0x1230
0x1147 - 1114mm 909mm -
0x1233 1114mm - - 884mm
0x1137 909mm - - 1106mm
0x1230 - 884mm 1106mm -

Table 3: Ground Truth Matrix (Pozyx)

Again, the diagonal distances are not measured.

For coordinates, values are given in millimeters. But Pozyx does not give the distances between the
beacons and nodes. So reading coordinates of each beacon, it is then possible to find the distances
between them.

16

Figure 12: Reading the coordinates of each stationary beacon we can calculate distances between
them.

First table in figure 12 shows the coordinates of each beacon measured by Pozyx’s software. The Z
value added externally. Using these coordinates, the distances are calculated between the anchors.
Second table is the distances in millimeters, and third is in centimeters.

Here again, the mobile beacon is placed center of the room. Using the coordinates from Pozyx’
software center is then found.

Figure 13: Finding center of the Pozyx Anchors.

Figure 13 shows where the mobile beacon should be placed to be center of the anchors. (It is scaled
to a tenth so measured it is 593.6cm and 470.8cm)

17

3.4 Implementing Marvelmind localization with Tello drone

3.4.1 Creating a mount for the Marvelmind to the Tello

To mount the Marvelmind mobile node to the Tello drone there was a main idea that it would sit
45 degrees rotated between the propellers, however, it would be a limited area for it. This place
is optimal for the drone because it would would evenly put weight in the center, and not create
imbalance on the motors.

(a) (b)

Figure 14: Marvelmind Mini TX on the Tello drone

Figure 14 above shows the ideal position for where the mobile node should be mounted. To
mount the sensor, there was needed a container to hold it secure. The idea is to make a clip-on
mechanism that grasp onto the Tello drone. There is a notch (see figure15) that is possible to use
for the clipping. This notch is symmetric to both sides of the Tello so a 3D printed part could then
slightly bend over the top. Then the sensor could be mounted to the grasp. A mount was created
using CAD software and then 3D printed.

Figure 15: Possible latch point for the mount of sensor

18

With the latch point on the Tello, a 3 piece CAD model was created (figure 16). The bottom piece
is the part that would clip on the Tello, sliding though the compartment holding the sensor. Top
piece comes above to hold the sensor in place.

Figure 16: Computer model of the container to the Marvelmind node mounting to the drone.

3.5 Software for Tello drone

Combining the libraries from both Tello and Marvelmind, it can be used to create a script con-
trolling the drone from its location to go to a determined position.

3.5.1 Mocking the Marvelmind GPS

Mocking refers to creating code that gives an output resembling real data, this is useful to edit the
data without having to connect to hardware. First it was created a GPS mock that gives a random
x and y value to further create the commands for the drone. In the mocking software its made
so that it takes two input variables (x and y coordinates) that is written in the terminal. Then
the code creates two random x and y coordinates. The random coordinates are supposed to be
the read position of the drone, and the coordinates written in the terminal is the coordinates the
drone would go to. Using these two coordinates the code then creates 3 values that is the distance
between them, the angle and what rotation the drone should do. A function to random generate x
and y- coordinates between the values of 15 - 25. For readability they are rounded to 2 decimals.

19

Figure 17: Function that generates random coordinates, rounded to two decimals

Figure 17 above shows the function code that creates random coordinates and mocks the Marvel-
mind code, the reason for the mocking is so it would be easier to create the script that calculates
the orientation, rotation and orientation values without having to connect the Marvelmind setup
each time.

Next function generates coordinates and prints them in the terminal. Shown in figure 18 below.

Figure 18: Function that generate coordinates and prints them in terminal

20

Last function is the code that calculates the angle, distance and orientation between the two
coordinates. It is expected that my pos and wanted pos is coordinates with both x and y -values,
therefore it declares each of the x and y values out of both coordinates. Following code shown
in figure 21 using Euclidean distance formula to find the distance of difference in the x and y
coordinates, but also the angle.

c2 = dx2 + dy2

c =
√
dx2 + dy2

Figure 19: Euclidean Formula for length of hypotenuse,
dx and dy refers to the difference in coordinates; the length of the adjacent and opposite leg

Finding the angle of between the lengths dy and dx is used with arctan of the adjacent and opposite
leg. The angle θ between the adjacent leg and the hypotenuse can be found using the arc tangent
function:

θ = arctan

(
dy

dx

)

Figure 20: Formula for angle θ, note that this value is given in radians.

However, calculating the orientation of the rotation was more challenging. The reason to find the
orientation if it is clockwise or counterclockwise rotation is because the code to steer the Tello
drone contains commands to steer it clockwise or counterclockwise (even though the Tello code
library calls it anticlockwise). Knowing the orientation the drone should not rotate any more than
180 degrees to point towards the next coordinate it is ordered to go to.

Figure 21: Function that calculates direction, rotation and orientation between two coordinates

21

The returned values of the function is the direct distance between the coordinates, the angle (in
degrees) and if the rotation is clockwise or counter clockwise. This function should never give an
angle that is above 180 degrees.

Figure 22 below shows the main part of the mocking. where the functions are put together. First
it waits for an input in the terminal, its expected that the input is two coordinates split with a
space. eks: 20 20. If input is something else, then an error is displayed.

The input numbers are put in a list, and two other coordinates are randomly created with the
function from figure 17 in line 97.
Line 98 in figure 22, the input coordinates and random coordinates are put together to find the
distance, angle and orientation. The random coordinates represents the coordinates that are read
of the Marvelmind. The input coordinates represent the input coordinates that we want to go
towards.

Figure 22: Main code of mocking Marvelmind

3.5.2 Testing the mocking

The input given is 20 20.

Figure 23: Test of the mocking code, here the input given is 20 20, Note: Orientation is defined
as CW2 is because code was somewhat changed, it is indifferent.

To better visualize the results of the code, figure 24 shows the results using Geogebra: RandomCoor
is the Marvelmind mock, and selectedCoor is our input. Point A is to define direction. Angle α is
the clockwise angle. And d is the calculated distance.

22

Figure 24: Visualising in Geogebra to get better understanding.

This code is the first step in enabling the Tello drone to move from one coordinate to another in
a confined space. However, the drone is not able correct itself because it does not check if it is off
its course. It is still tested on the drone to see if its working.

3.5.3 Controlling the drone with Marvelmind

With the function to find direction and distance, it is then created a new code to give the drone its
instructions. Here its important to mention that the Tello library do not allow code that instructs
the drone to fly further than 5 meters. and the following code also has a workaround this limitation.

Figure 25: Code that uses the distance, rotation and orientation to make the drone move.

The code first orients the drone to point towards the new point of where its headed. Its decided
by the if the orientation is CW or CCW (clockwise or counter clockwise). The increments is the
workaround of maximum 5 meter flight distance. For easier explanation the increments are set to
5 meters, longest allowed flight. The code then check how many times the distance can be divided
in total increments (ignoring the decimal). Example: If the distance is 17 meters, and increments

23

are 5. Then the value would be 3, leaving out the decimal. Using this new value and multiplying
with 100 (Tello library expects value in centimeters). The drone is then told to go 5 meters 3
times. Traveling a total of 15 meters. Calculating the last remaining 2 meters are then done with
calculating the modulus. (written as % in Python). 17%5 = 2 left over. This value is then also
multiplied by 100. The drone is instructed to go the last two meters. Totaling the 17 of 17 meters.
However, the Tello library does also not let it fly shorter than 20cm, so if the modulus value is less
it will ignore it.

Defining the increments as a lower value than 5 meters, it might be possible to have the a checking
of new coordinates to correct itself in flight. However, the figure 25 above it is not implemented.

After the drone has taken the flight path, it then corrects its angle again so it points in the
orientation it started. With this code, the drone can fly to a desired coordinate, however, there is
no feedback/correction if it has failed. It follows directions blindly.

3.5.4 Self-correction of flight

After flying to a new coordinate, the drone would not know if it came to wanted position. This is
counteracted by reading its position over again from the Marvelmind beacon when it has finished
its flight path. Reading its coordinates from the input coordinates, it evaluates if there is a 0.2
meter error (Tello does has a minimum flight of 20 cm) in between. If there is not an error, it is in
an acceptable position. If there is an error, it takes the new position and calculates the distance,
rotation and orientation, then executes the new flight path. Then retries to read again, and checks
if error is outside threshold.

Figure 26: A loop is added after going to coordinates, that checks the new coordinates after
arriving.

Figure 26 shows the loop, the loop corrects the drone if it is off the wanted coordinate. However,
there is a limit on how short the drone can fly, this is defined as 20cm. Therefore the drone can
be off with ± 20cm the determined position.

As of now, the drone can fly on its own to different coordinates in a closed-off room, but only in
one plane. The x and y axis.

3.5.5 Implementing the Z-axis to the coordinate system

Reading the Z-axis with Marvelmind was not reliable enough to use it to control the drone (read
chapter 4.1). There was a workaround this issue using the sensor on the Tello drone, reading its
height by the infrared module located underneath the drone. This sensor gives reliable information
about its distance to the ground beneath in millimeters.

24

Figure 27: Code snippet of finding z difference and giving commands to Tello.

First function in figure 27 find z uses the measured distance above ground first then the determined
Z value. Comparing the values and finding the distance between. Returning the value z diff. The
value is positive or negative number, In respect of up and down.

Second function, Tello Commands Z takes the input z diff value and checks if its more than the 20
cm threshold. If outside the threshold, the function also checks if the value is positive or negative,
commanding the drone to go the distance. Note that the drone can not go down a negative value,
therefore it is changed to a positive number using absolute function. This method works well if
there is nothing beneath the drone disturbing the read-off to the ground. If a table that is 1 meter
tall beneath the drone when it measures. It will correct itself from the table.

25

Figure 28: Flowchart of Python code

Figure 28 gives a visualization of how the first code performs. Starting with creating a connection
with Tello drone and the Marvelmind Hedge (The mobile beacon). After creating a connection,
the drone takes off hovering stationary in air, waiting for coordinates to go to. When coordinates
are written in the input terminal, it then reads off its own location with the Marvelmind beacon.
Creating a flight path from its current location to the inputted location. The drone reads of its
height position and uses this as the Z value. Using this as reference to find way to the new Z
position given.

Then the code presents a flight path, asking for execution. When confirmed execution, the drone
rotates towards the new position. Flies the direct difference in position A to B. When in position,
it rotates back again to point in original direction. Then changes altitude in Z after the difference
of measured from the drone and the input given.

When the drone has arrived at its new location (hopefully the inputted coordinate), it then first
checks the Marvelmind coordinates and then the Z value from the drone. If the new location
is within a 20 cm error. It is then in an acceptable position. If not an acceptable position; it
then reads of again its coordinates and creates a new flight path and checks again. This loop

26

continues until the drone is in the coordinates given in the beginning. When arriving at its wanted
coordinates, it then asks for new input coordinates. Ready to start over.

3.5.6 Different Approach

A different approach to go from A to B is to part the distance up in more segments, correcting the
angle midway. Resulting in always flying straight toward the input coordinate. This uses the same
method for reading position and elevation, but instead of rotating back for every check it calculates
a new angle from the angle of its position compared to the last angle it rotated. However, it is
also important to look at the previous way the drone rotated since it can not get a negative angle
value.

A new function is added as such:

Figure 29: Function calculating relevant angle from previous angle, with orientation

27

Figures drawn to give a better understanding of the code:

Figure 30: New rotation is 90 degrees CW

28

Figure 31: New rotation is 45 degrees CW

There are different cases of how the angles should be calculated together to find the new ’relative’
angle. Therefore figure 30 and figure 31 shows in the first line of the terminal what case it is in
from the code in figure 29.

When pointing towards the determined coordinate, it then moves a defined amount towards it,
stopping and reading again. Continuously doing this until it arrives the final coordinate. Finally,
a total sum of different angles defines how much it needs to rotate back to starting position.

29

3.6 Creating the book model for the Tello drone

There were many ways of different approaches to create the book model. It began with using
mounting points for the book to the drone. The Tello drone already has mountings for its propeller
guards. The first try was to create a mount part that would fit the drone. This was done in
Autodesk Fusion 360. This was first time using Fusion as a cad software, but it was a simple
model to create.

Figure 32: Mounting model created in Fusion

Figure 32 is a small part that would fit on one of the motors of the drone. This part was test to
see if it could fit. After a couple of design changes it fit perfect. The design process for the book
further was mostly trial and error. Testing and getting to know Fusion 360. Further design was to
create a new frame around the drone.

Figure 33: Further development of the frame.

The idea is that it would mount on the two front motors and the back motors Using these arms it
was first prototype of what could be a book. Figure 34 shows the first disguise for the drone.

30

Figure 34: First test of hiding drone, using a frozen pizza box

When tested for flight it was barely able to lift itself of the ground, and poor control in air. The
book design was not working. However it gave valuable insight in how much weight is enough. This
design also did a poor job to hide the drone. The design in figure 33 was scrapped, and a new
approach was tested.

Online, there was CAD models to the Tello drone and the propeller guards available for 3D printing.
(Figure 35). These were modified to be the base of the mounting of the book model. Link to the
original model is in the bibliography cited number: [1].

31

Figure 35: CAD model of the propeller guards to the Tello drone

This part is new start point for further designing the book around the drone. Making equal parts
that mount diagonally from each other. The mounts were raised to cover over the propellers.

Figure 36: CAD model of the propeller guards with a thicker bezel.

Adding a thicker rim / bezel around the protector, it is easier to use this part to mount the corner
piece to the drone. The propeller guard mounts on the drone as normal.

32

Figure 37: CAD model of potential book design

Design in figure 37 is an improved design from the previous design in figure 34 to hide the drone.
This design also gave more security for both propellers and the audience.

The propeller guard and corner plate are glued together. This is done to 3D print the parts using
less excess materials.

(a) (b)

Figure 38: The first printed book design

The design in figure 38 was also not able to create good lift, and its speculated that it is that the
parts around creates a big drag around the drone, plus that it is heavy in the on the outside. Also
again not satisfied on how well the drone is hidden. A new design is tried, taking inspiration of a
”Security cage” available for the Tello drone.

33

Figure 39: A Cage completely covering the drone.

Made in soft plastic, the cage is folded around the drone and mounted on the same mounts as the
propeller guards.

Figure 40: CAD model of potential book design, for better airflow

Using what failed, a new design was created. With thinner walls and holes in them, both the drag
and weight is reduced. This design completely covers the drone. The holes solve two issues; it is
reducing material, making it lighter and support for better airflow though the model. The idea
is that the sides would be covered with thin paper, letting air though for airflow. But making it
difficult for audience to see the drone inside. Top of the design the drone is not possible to cover,
as it would make it difficult for the drone to fly. Figure 40 is the digital model before getting
printed. Same propeller guards are used, but its mounted to the a ring that clears the propeller.

34

Figure 41: Corner of the book design in slicer.

(a) (b)

Figure 42: Complete printed book design for the Tello drone

Preferably, the frame would be colored white to be less distinguishable from paper.

35

4 Results

In results, it is examining the finished result of the thesis, comparing the indoor GPS, the code for
the drone, and the finished design for the book.

4.1 Measuring the Precision of the Marvelmind GPS

For the first original setup of the Marvelmind in the classroom, the anchors were placed as close
as possible in a rectangle. Placing anchor 1 & 2 and 10 & 11 to be exactly as possible opposite of
each other. Also placing 1 & 10 and 2 & 11 for vertical for each other. All anchors were placed 2.5
meters up on the wall. This gave as much clear line of sight to the mobile beacon in center of the
room. The Marvelmind software is able to measure all the distances between the anchors on its
own. By comparing the distances determined by the software against the physical measurements
done using a measuring tape. We can conduct a comparison on reliability and precision. Using the
values from figure 8 adding the values of distances to mobile node number 7. Beacon 7 is placed
in the center of the room.

Beacon 1 Beacon 2 Beacon 7 Beacon 10 Beacon 11
Beacon 1 - 11.40m 7.41m 8.60m -
Beacon 2 11.40m - 7.23m - 8.43m
Beacon 7 7.41m 7.23m - 7.26m 7.24m
Beacon 10 8.60m - 7.26m - 11.30m
Beacon 11 - 8.43m 7.24m 11.30m -

Table 4: Ground Truth values, Values measured with measuring tape:

Beacon 1 Beacon 2 Beacon 7 Beacon 10 Beacon 11
Beacon 1 - 11.461m 7.395m 8.565m 14.302m
Beacon 2 11.461m - 7.184m 14.093m 8.445m
Beacon 7 7.395m 7.184m - 7.242m 7.220m
Beacon 10 8.565m 14.093m 7.242m - 11.278m
Beacon 11 14.302m 8.445m 7.220m 11.278m -

Table 5: Marvelmind Values, Values measured with software by Marvelmind:

This gives an overview of how reliable the Marvelmind is at measuring distances between the
anchors. For the distances between the beacons to number 7, its important to know that the
mobile beacon is placed on a table 0.73 meters high, so the direct path has an incline up to 2.5
meters. (Total 1.77 meters incline)

With every anchor mounted at 2.5 meters high, missing between 2 and 6 centimeter. But the z -
axis measurement of the mobile was unreliable. The values were incorrect and would miss with ±
20cm. In figure 8 the z value of node 7 is 0.998, but its placed on a table, 73cm tall.

4.2 Measuring the precision of the POZYX Creator One kit

When testing the POZYX setup, the anchors where placed on the same plane. With the setup of
POZYX the measured values were as such:

Ground Truth Values, Values measured with measuring tape:

36

Figure 43: Found distances using tape measure. Measured in centimeters

Pozyx Values, Values measured with software by Pozyx:

Figure 44: Found distances by Pozyx.

Measuring the mobile node distance from the walls. The Mobile beacon is placed 593.6 centimeter
and 470.8 centimeter from the walls. (corresponding to x and y)

Reading of the mobile beacon 0x682d in figure 11, Its coordinates are X = 6193, Y= 5247 and Z =
1512. However, when the node was laying in the center on a table in the classroom, 73 centimeters
tall. Comparing the results, the error is off with ± 25 - 55 cm, and the Z-coordinate was off with
80cm.

4.3 Combining the Tello with Marvelmind

4.3.1 Casing for Marvelmind Mini TX

A three piece part was made to hold the mobile node in place on the drone:

Figure 16 shows the compartment for the mobile node. The bottom is slid inside the middle part
from the top. This lets it bend around the top of the drone, without also bending the square
compartment. The top part slides on the inside of the middle compartment. The middle and
top compartment’s walls are 1mm thick. The middle compartment is 30mm wide, leaving enough
space for the node (without its casing) and the top cover. This mount is also created with 3D
printing. This was printed with no issues, but the bending part (bottom piece) is printed laying
sideways, this is to print without support, but mainly to get greater bending strength as well.

37

(a) (b)

Figure 45: Picture of the Marvelmind Mini TX mounted on the Tello drone

Removing the original casing from the node makes it lighter and smaller, but also more exposed
for damage.

4.3.2 Controlling Tello Drone

The final result for controlling the drone are multiple scripts that proves the different ways to
approach the issue. For both of the codes to work, it is critical that the Tello drone is facing
towards north relative to the location system. The first approach made was a program that reads
its own position and then rotates the drone towards the entered coordinate. The next step is to
fly the total length between the distance. When arrived at the (expected) final position, the drone
reads of its altitude from the ground beneath it and corrects this according to the inputted Z
variable. Finally the drone reads and checks that it is within a 20 cm error window in x, y and z.
If not, it reads its own position and try again.

Before starting the code, the checked coordinate of the drone is on the map as figure 46

38

Figure 46: Drone on the map, before flight.

When starting, the drone takes of, asks for the new position to go to. The inputted value here
is X= 1.7, Y= 7.2 and Z= 0.5. A lot of other information is printed in the terminal, but the
important to notice is in figure 47.

Figure 47: Information out of terminal.

39

After receiving wanted coordinates, the drone reads of its own coordinates. Printed as X= 5.188,
Y= 6.471 and Z= 0.788. It then calculates just the distance and angle between the X & Y
coordinates. The values calculated are = 3.56 meters distance and 78.19 degrees counter-clockwise,
lastly the Z difference is -0.32m. The script asks for confirmation to go to the coordinates. The
drone rotates the angle in the orientation the desired coordinate is. It has been defined in the
code that it shall not go further than 3 meters in one go. Therefore the drone goes the first 3
meters, then the 56 cm afterwards. The terminal does not print that it changes elevation, however,
the drone do go 32 cm down. Now finished with the instructions, the drone rotates back facing
north. It then reads its new coordinates and calculates the distance between the desired input (it
is printed in wrong order in the terminal). The calculated distance is 0.33 meters in xy-plane, and
is not in the acceptable error zone (± 20 cm), The error in the Z-plane is -0.03. Trying again, the
drone uses the new calculated distance and the angle and tries to reach the position a second time.
When done, the new position is X= 1.652, Y= 7.147 and Z= 0.514. Both XY and Z are withing
the 20 centimeter error window and therefore the drone in done, asking for new coordinate to go
to.

Figure 48: Drone positioned on the map, after flight.

Second approach checks the drones position and finds the angle between itself and final coordinate.
Then drives a determined distance. Then checks position again. From this new position. it finds a
new angle. And by comparing the new angle to the previous rotated angle it then hones its angle
and then approach the new location the determined distance.

In the second approach, the drone tries to continuously point towards the determined finished
coordinate. The functions for calculating the angle, orientation and distance is the same in the
first code. The main difference is that the drone measures its coordinates midway.

The program begins with connecting to the systems, and then the Tello takes of, while levitating
it asks for new coordinates. The same coordinates are given as input, X= 1.7, Y= 7.2 and Z= 0.5.

40

Again, the angle and distance is calculated. The drone rotates towards the destined position (84.78
degrees CCW) and since the distance is more than defined increments (0.75 meters) it flies the 75
centimeters towards the goal position. Then the drone fixes to its in correct Z- value. From the
new position calculates the distance and rotation. However, the new angle (85.06 degrees CCW)
calculated is compared with the old angle what was previously executed to find the angle the drone
needs to rotate. new angle - old angle (85.08-84.78) = 0.3 CCW. Small adjustment is made, and
then a new 75 centimeters are moved towards the goal coordinate.

Figure 49: Terminal during flight with program number 2

41

Figure 50: Terminal during flight with program number 2

42

As the Tello approaches the goal coordinates, it continuously checks if Z - value is within acceptable
error. If it is, it stays level.

The final position it arrives to in figure 50 is X= 1.659, Y= 7.246 and Z = 0.558. The total
distance is 6 centimeters from the coordinate that was given as input. Finally the Tello rotates
back, pointing north.

Figure 51: Position difference between the final positions

Both of these programs works well for solving the challenge of controlling a drone to get from one
coordinate to another, but also correcting itself on its own.

4.4 Finished design of the flying book

The finished model for the book is hidden inside the book cover. Using this design the book is
hidden when you see it straight on and the actor can show the book to the audience without
revealing there is a drone inside.

Figure 52: 3D model of book cover

The actor then could open the first page of the book and the papers inside can take off freely from
the actors hand.

43

Figure 53: 3D model of book cover separated

The wholes on the backside helps the drone to stay in place without slipping out when the book
is closed. The cage around the drone is 4 parts, each a corner of the drone.

Figure 54: Weighted book disuise

44

The 3D printed part weights 15 grams, since it carries one on each propeller mount, the drone lifts
a total of 60 grams. The printed frame for the drone is 23cm long, 18 cm wide and 3 cm tall.

To hide the drone further, the idea is to cover the holes in the side panels, using masking tape
around. This is to add minimal weight but still cover the drone.

Figure 55: Using tape to cover the frame better

Here the frame around the drone is covered in masking tape. Preferably the frame would be printed
in white plastic.

45

5 Discussion

In this chapter, it is discussed what worked well and what could have been done differently. It is
also theorized about possible reasons for errors and possible solutions.

5.1 Indoor Location System Measuring and Errors

When comparing the Marvelmind values to the measured values found with measuring tape. We
see that there is a ±2-4 cm offset in direct distance from mobile beacon to anchors. This error is
an acceptable error when the distance from anchor to mobile beacon is around 7.2 meters. The
longest distance from anchor to anchor is 1100 cm it misses with 6.1 cm.

5.1.1 Discussion on measured results

In an effort to get better reading results of the Z axis, one set of anchors diagonal of each other
were placed down so they were 1 meter above the ground. (Look at the z values of the beacons
in figure7) This was done to create a greater cross-reference when the anchors were reading the
distances to the mobile beacon. However the results were disappointing, Reading the x, y as z
coordinates were more off. The reason for this is probably because of objects in the classroom such
as chairs and desks. So having all 4 anchors mounted on the wall 2.5 meters up gave best results.
To achieve even better results, it could be possible to tweak settings in the Marvelmind software.
This was not done, so the settings used were straight out of the box.

5.1.2 Errors and issues with Marvelmind

With the Marvelmind there were couple of issues, mostly connection and readings. Reading the
position of the mobile beacon would sometimes have spiking from its coordinate, another issue was
connection with one of the beacons in the room. When not able to connect to the beacon at all,
a curious test to just change the antenna of the modem that is connected to the PC. Changing
the stock linear antenna, to a circular antenna stopped the connection errors and also reduces the
spikes. Figure56 shows the different antennas and the modem, the left one is the stock antenna
and the right is the changed one.

Figure 56: Different antennas on the Marvelmind modem [11]

46

The probable reason this fixed the connection issues was the way the antenna receives and sends
out signals. Another fix for better readings was to have a clear line of sight. It was important not
to stand between the mobile beacon and anchors as this resulted in weird data.

A solution before the spikes were solved, was to have a deviation filter. Reading off the location
multiple times and then calculate the mean value of these positions. Figure 57 below shows the
code that was written to do this. The code works well, however, it was not used.

Figure 57: Code for reading finding mean position

5.2 Pozyx Creator one

The Pozyx Location system gave disappointing results, a 25 - 55 cm error with X and Y values.
The Z value is off with 80 cm. This is not good enough results for a reliable indoor GPS-system
for a drone. Looking at the coordinates for the beacon 0x1137 (beacon that is in origo, figure 44).
The beacon is not completely in origo, its off 2.6 cm in X and 3.3 cm in Y. Taking the mobile
beacon values and move them towards origo with this offset. The new position is X = 566, Y =
437 cm. The ground truth error is then X = 27.6cm and Y = 33 cm. These values are improved,
but still not an acceptable error.

However, it was not done more extensive testing knowing that Marvelmind was mainly going to
be used for the drone. So testing with cross-referencing the positions of the diagonal anchors high
up and at ground level was not done. Maybe this would give a greater Z value.

Further, there could have been more ways to test the Pozyx system. Similar to Marvelmind, no
settings of frequencies or software were changed during testing, it could also be this would improve
better readings.

5.2.1 Extracting location data from Pozyx

There is also a other issue using Pozyx location system to control the drone. Since the Tello creates
a connection to the laptop using a local hot spot, receiving location data of Pozyx though MQTT
would not be possible as it could not connect to WiFi.

5.3 Comparing the Local GPS Systems

When comparing the different indoor GPS-Systems, there is a significant difference with using
UWB or supersonic sound to locate the mobile beacon. Overall did Marvelmind give better results
in performance and precision, but showed worse reliability. For Marvelmind to have the best
results, the anchors and the mobile beacon needs to have a clear line of sight, as standing between
sensors cause spikes in values. Pozyx in comparison have no issue locating the mobile beacon with
objects around, but the trade-off is worse precision.

It is also important to mention human error when testing and measuring both systems. The only
tool used for measuring ground truth distances was a measuring tape, slight angle between anchors
could result in a couple of centimeter offset.

47

In final comparison, it is difficult to compare Marvelmind to Pozyx. While Marvelmind using
supersonic sound was a lot more precise, there were errors with objects being in the way for the
anchors. Pozyx failing to be precise was more consistent with connection. Also, using UWB is
supposed to be greater through walls as well, giving a bigger area for usability.

[compare prices?]

5.4 Tello Drone

The commands given to the Tello drone are mostly just to move it around or turn it, except for the
reading of its battery percentage or altitude. However, how precise the drone follows instructions.
An example of this is instructing the drone to fly 100cm forward. But when executing instructions,
it only flies 95 cm in total, this could cause issues. This also applies to rotation in the yaw axis.

The accuracy of the drone is also why having an acceptable window of 20 cm error from the final
coordinate is OK.

If 20 centimeter error window would be evaluated as too extensive. A possible solution to com-
pensate for this is to have the drone go forward 30cm, then back 20cm, going a total of 10 cm.
The Tello code accepts a command to go 21 cm. So it could be possible to go just 1 cm forward.
But again, how precise the Tello drone is, is questionable.

Another issue met with the Tello drone, is the criteria needed for keeping its location in the air.
To avoid drifting, it inspects the ground beneath and checks for movement of the texture. If the
texture beneath is glossy or monotone, it cannot resolve if there is any movement. When flying
above the white tables in the classroom it would have issues staying still and result in the drone
starting to drift around. Luckily, the classroom floor has an Excelon Imperial texture which works
well. As long there is enough light in the room to see the texture. It is also stated in the Tello
Instructions that this can cause issues. (Monochrome surfaces and poor lighting) [18].

A final challenge that also was given by Teateret V̊art was to make the drone more quiet for the
play, this was taken out of the challenge for the thesis. But could possibly be solved using toroidal
propellers [12]

5.5 Python Code and Solutions

5.5.1 Container

The design for the container was mostly made straight forward starting in Blender software. With
a CAD plugin it is not an issue to get everything to fit in scale. Measuring the Mini TX with a
caliper and using those sizes to make the parts fit snugly. With the Prusa slicing software it is also
possible to check that objects are to scale.

5.5.2 Software and Programming

There are a lot of ways to make the drone go from location A to location B. The most general/
simplest way could be to move the drone along the X-axis first, then Y- axis and lastly the Z -
axis.

48

Figure 58: Visualization of simplest code, move one axis at a time

Figure 58 shows how the move from position A to B, one axis at a time (visualization is just with
X and Y). This solution would remove orientation completely, as the drone is available to fly right,
left, and backward without having to rotate toward the position.

The final result are 2 codes made to control the drone and both work as intended.

5.5.3 First Approach

The first code is working well, it finds the angle and distance between itself and the final coordinate
and uses this to travel there. This is the quickest code as it goes straight from a to b blindly and
when done it then checks its position. Issues with this approach is that it does not check midway.
So it could miss-align and end up in the wrong position.

5.5.4 Second Approach

The second approach is more complicated because it looks at the previous angle it rotated, and
then has to calculate by it to rotate to a new angle. Example: If the last angle was 30 degrees
CCW, and the new coordinate is 60 degrees CW, it then needs to rotate a total of 90 degrees CW.
This approach works just as well, it is slower but more accurate.

5.5.5 Issues and flaws with the code

Both of the codes will have issues if the drone is placed not facing towards north relative to the
location system. If placed otherwise it will fail. This is a critical weakness in the code. A possible
solution to find the angle it is oriented at start would be to read its location, drive forward 20cm,

49

then read again. Comparing these to locations it can figure out the way the vector is pointing and
then orient itself from this. This was never tried, but is believed to be a solution.

The Tello library used to control the drone gave limitations. One of the limitations the Tello drone
has is the limit of how short and how far it can fly. It is limited to fly a minimum 20 cm and a
maximum 500cm. For the first code, this was fixed by having it in a loop. If the distance from a
to b was more than 5 meters, it would first fly those 5 meters then the rest. if it were more than
10 it would fly 5 meters twice then the rest. In the code, you can define the increments to shorter
distances. For 20 cm it was not created a workaround, it was just accepted that the drone would
be inside the area within a 20 cm range. Which is a OK solution because any shorter distances,
the drone would maybe have issues to completely reach destined coordinates.

There were also issues with the Z variable for the local GPS. It was expected to be better, luckily
there was also an acceptable solution that worked well for this. Using the Tello drone’s distance
sensor that is calculates its elevation from the ground beneath. It could then know how many
meter above ground it was. This was used as variable better z in the code. On stage in the theatre
there is no props so the stage ground will be flat. This makes the solution acceptable. It there was
a table 1 meter tall on stage, and the drone would be above it and it would read of its distance it
would be wrong compared to ground truth.

5.6 Book Design

For the design of the book, there were two main challenges revolving around each other; being
flyable and looking like a book. A design that solves both of these issues perfectly is difficult,
as it is impossible to create a book replica with no visible feature of the drone and still fly. The
approach to these challenges began with mostly testing what worked and what did not. The first
design was quite optimistic about how much the Tello drone could lift as extra weight. The flight
test using the pizza box (figure 34) showed that it was not that good at lifting extra. So therefore
new designs were tested. The final design covers the drone on all sides and on top (not underside).
This design hides the drone as much as possible, and also protects the actor and audience if it were
to fail during live play.

Flaws with the design however makes the drone unstable and hard to control, it is most likely to
be all the material that is mounted around the propeller on the outside. The total weight of the
model would be to slimmed down.

So there is still room for optimizing this design even more. The book design still has a lot of
potential for optimization. The model that was printed ended up being able to fly, but with poor
control, as it would swing back and forth. In the final meeting with Teateret V̊art before the thesis
deadline, it was given feedback that they wanted the book to fly with the cover.

A final design acknowledging this request was modeled:

50

Figure 59: Computer rendering of book design.

Figure 59 is a model made as the final adjustment from Teateret V̊art, however, this design is
neither printed nor tested for flight.

With more time or resources, a design could be a book with an implemented drone that was built
into it.

51

6 Conclusion

The objective of this project was to incorporate drones into a live theater performance. To do this,
different indoor location systems were tested to track and control the drone on the stage. Multiple
scripts to control the drone automatically have been created, making the drone able to go between
different locations on stage without human interaction. A final challenge was to create a disguise
for the drone, attempting to hide it as a book prop for the audience.

This thesis has also given insight into the different location technologies that are possible and the
pros and cons of each of them. Using UWB distributed by Pozyx, the connection for tracking
is reliable but not very precise. Another pro with UWB is, in theory, that it is better at longer
ranges. Using Marvelmind’s ultrasound for the location system, however, gave better results in
precision, but would easily fail with obstacles in between sensor and anchor.

Two scripts have been created to control the drone between coordinates. As there are multiple
ways to do so, the ones that are created in this thesis make it possible to autonomously fly the
drone between coordinates on stage of the theatre. Each of the scripts does have their strengths.
As the first one is quick to move but less precise. The second, however, is more precise, but slower.

On the balance of artistic design and technical functionality, the project has made more progress
in the technical department. Creating multiple scripts able to successfully control the drone, while
disguising the book still needs more development before it can be taken into a live play.

Setting up the indoor GPS and controlling the drone within it, has given a lot of insight into how
to fuse the systems together, as both Tello and Marvelmind has their area of usage and limitations.
The project has also given a lot of insight into Python programming.

Creating the disguise for the drone has also been a difficult challenge. The drone has strict require-
ments that it needs to fulfil to be able to fly, such as with extra weight and airflow. Matching these
requirements while also creating an authentic costume for the drone was paradoxical. However, a
potential solution has been made, but it does still need optimization to be reliable enough for live
theatre.

For further development of this project, it would be best to change to a more powerful drone. A
drone that struggles less with lifting extra weight would make the prop design around the drone
easier. Using a more powerful drone, however, would then be heavier and cause new issues with
safety and flight time.

Additionally, not being locked to the limited control commands the Tello Library distributed, would
result in more dynamic flight control. A possible solution would be to use a custom drone equipped
with a different flight controller. A feasible solution would be to use ArduPilot software, an open
software used to control drones autonomously. ArduPilot is compatible with both Marvelmind [2]
and Pozyx [3] to control the drone. However, to use ArduPilot for a control system, other hardware
(than what the Tello is equipped with) is needed for controlling the drone. Therefore it would be
better to build the drone in prospect for its role in the play.

In final conclusion, it is possible to create flying props for theatre, but it does require concrete
design, hardware, and software for its assignment. The design of the drone is going to be very
dependent on its purpose in the play. The design of the drone and prop is dependent be its flight
time, size, and control. Also sound, safety, and movement on stage.

Furthermore, there are other potential uses for indoor GPS-controlled drones, such as inspection
and maintenance. If a drone is equipped with cameras and sensors can then be used to inspect
places that are hard-to-reach. Saving time and resources. For example, a cathedral with a high
roof where scaffolding would be difficult to set up.

Another potential is mapping and navigation, using the drone to create a 3D computer visualization
of an area. It could possibly assist in architecture and emergencies. A possibility could be a scenario
with a house fire creating dense smoke, using the UWB to locate the drone. Creating a 3D mapping
for the firefighters outside. Another possible example is using drones for inventory management,
using drones flying in storage facilities or warehouses to scan items available in the inventory.

52

Bibliography

[1] Albisay. DJI Tello propeller guard. 2023. url: https://www.thingiverse.com/thing:4339771/
files (visited on 20th Apr. 2023).

[2] Ardupilot. Marvelmind for Non-GPS navigation. 2023. url: https://ardupilot.org/copter/
docs/common-marvelmind.html (visited on 20th June 2023).

[3] Ardupilot. Pozyx for Non-GPS Navigation. 2023. url: https://ardupilot.org/copter/docs/
common-marvelmind.html (visited on 20th June 2023).

[4] Adrian Carrio et al. IEEE: Onboard Detection and Localization of Drones Using Depth Maps.
2020. doi: 10.1109/ACCESS.2020.2971938.

[5] N.S. Correal et al. IEEE: An UWB relative location system. 2003. doi: 10.1109/UWBST.
2003.1267871.

[6] George Dekoulis. Drones Applications. url: https : / / books . google . no / books ? hl = en &
lr = &id = XaQDwAAQBAJ & oi = fnd & pg = PA3 & dq = drones + book & ots = UAoH7o0mp0 &
sig=xKy1xPMXVkqHumgdPnem28lqbbQ&redir esc=y#v=onepage&q&f=false (visited on
20th June 2018).

[7] Dragonfly.cv. What does 6 dimentions of freedom mean? url: https://dragonflycv.com/what-
does-6-degrees-of-freedom-or-6-dof-mean/# (visited on 20th June 2023).

[8] DroneBlog. How much can a drone lift. 2023. url: https : / / www . droneblog . com / drone -
payload/ (visited on 20th June 2023).

[9] Marvelmind. Marvelmind Starter Set. 2023. url: https://marvelmind.com/product/starter-
set-nia-03-smalldrone/ (visited on 15th Apr. 2023).

[10] Marvelmind. Mini-TX Beacon. 2023. url: https://marvelmind.com/product/mini-tx/ (visited
on 27th Apr. 2023).

[11] Marvelmind. Super-Beacon. 2023. url: https : / / marvelmind . com / product / super - beacon/
(visited on 1st May 2023).

[12] MIT. Toroidal propellers. 2022. url: https://www.ll.mit.edu/sites/default/files/other/doc/
2023-02/TVO Technology Highlight 41 Toroidal Propeller.pdf (visited on 15th June 2023).

[13] Pozyx. The Creator One Kit. 2023. url: https://www.pozyx.io/creator-one-kit (visited on
12th Apr. 2023).

[14] Prusa. Prusa Mini. 2023. url: https://www.prusa3d.com/product/original-prusa-mini-semi-
assembled-3d-printer-4/ (visited on 25th Apr. 2023).

[15] Prusa. Prusa Slicer Software. 2023. url: https://www.prusa3d.com/page/prusaslicer 424/
(visited on 28th Apr. 2023).

[16] Ahmed El-Rabbany. Introduction to GPS. 2001. url: https://books.google.no/books?hl=
en&lr=&id=U2JmghrrB8cC&oi=fnd&pg=PR13&dq=Gps+systems&ots=9NEUjQWGHU&
sig=C6J79It8NzCLhfQP2n5bsWpZRF8&redir esc=y#v=onepage&q=Gps20systems&f=false
(visited on 1st May 2023).

[17] Ryze. Tello. 2023. url: https://www.ryzerobotics.com/tello (visited on 5th Apr. 2023).

[18] Ryze. Tello User Manual. 2018. url: https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%
20User%20Manual%20v1.4.pdf (visited on 5th Apr. 2023).

[19] Store Norske Leksikon SNL. Drone. 2023. url: https://snl.no/drone (visited on 5th Apr.
2023).

[20] Store Norske Leksikon SNL. Sult. url: https://snl.no/Sult (visited on 2nd Apr. 2023).

[21] Onur Tekdas and Volkan Isler. ‘IEEE, Sensor Placement for Triangulation-Based Localiza-
tion’. In: IEEE Transactions on Automation Science and Engineering 7.3 (2010), pp. 681–
685. doi: 10.1109/TASE.2009.2037135.

[22] Al-Furat Al-Awsat Technical University. An Overview of Local Positioning System: Techno-
logies, Techniques and Applications. url: https://core.ac.uk/download/pdf/287743886.pdf
(visited on 20th May 2023).

53

https://www.thingiverse.com/thing:4339771/files
https://www.thingiverse.com/thing:4339771/files
https://ardupilot.org/copter/docs/common-marvelmind.html
https://ardupilot.org/copter/docs/common-marvelmind.html
https://ardupilot.org/copter/docs/common-marvelmind.html
https://ardupilot.org/copter/docs/common-marvelmind.html
https://doi.org/10.1109/ACCESS.2020.2971938
https://doi.org/10.1109/UWBST.2003.1267871
https://doi.org/10.1109/UWBST.2003.1267871
https://books.google.no/books?hl=en&lr=&id=_XaQDwAAQBAJ&oi=fnd&pg=PA3&dq=drones+book&ots=UAoH7o0mp0&sig=xKy1xPMXVkqHumgdPnem28lqbbQ&redir_esc=y#v=onepage&q&f=false
https://books.google.no/books?hl=en&lr=&id=_XaQDwAAQBAJ&oi=fnd&pg=PA3&dq=drones+book&ots=UAoH7o0mp0&sig=xKy1xPMXVkqHumgdPnem28lqbbQ&redir_esc=y#v=onepage&q&f=false
https://books.google.no/books?hl=en&lr=&id=_XaQDwAAQBAJ&oi=fnd&pg=PA3&dq=drones+book&ots=UAoH7o0mp0&sig=xKy1xPMXVkqHumgdPnem28lqbbQ&redir_esc=y#v=onepage&q&f=false
https://dragonflycv.com/what-does-6-degrees-of-freedom-or-6-dof-mean/#
https://dragonflycv.com/what-does-6-degrees-of-freedom-or-6-dof-mean/#
https://www.droneblog.com/drone-payload/
https://www.droneblog.com/drone-payload/
https://marvelmind.com/product/starter-set-nia-03-smalldrone/
https://marvelmind.com/product/starter-set-nia-03-smalldrone/
https://marvelmind.com/product/mini-tx/
https://marvelmind.com/product/super-beacon/
https://www.ll.mit.edu/sites/default/files/other/doc/2023-02/TVO_Technology_Highlight_41_Toroidal_Propeller.pdf
https://www.ll.mit.edu/sites/default/files/other/doc/2023-02/TVO_Technology_Highlight_41_Toroidal_Propeller.pdf
https://www.pozyx.io/creator-one-kit
https://www.prusa3d.com/product/original-prusa-mini-semi-assembled-3d-printer-4/
https://www.prusa3d.com/product/original-prusa-mini-semi-assembled-3d-printer-4/
https://www.prusa3d.com/page/prusaslicer_424/
https://books.google.no/books?hl=en&lr=&id=U2JmghrrB8cC&oi=fnd&pg=PR13&dq=Gps+systems&ots=9NEUjQWGHU&sig=C6J79It8NzCLhfQP2n5bsWpZRF8&redir_esc=y#v=onepage&q=Gps20systems&f=false
https://books.google.no/books?hl=en&lr=&id=U2JmghrrB8cC&oi=fnd&pg=PR13&dq=Gps+systems&ots=9NEUjQWGHU&sig=C6J79It8NzCLhfQP2n5bsWpZRF8&redir_esc=y#v=onepage&q=Gps20systems&f=false
https://books.google.no/books?hl=en&lr=&id=U2JmghrrB8cC&oi=fnd&pg=PR13&dq=Gps+systems&ots=9NEUjQWGHU&sig=C6J79It8NzCLhfQP2n5bsWpZRF8&redir_esc=y#v=onepage&q=Gps20systems&f=false
https://www.ryzerobotics.com/tello
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20User%20Manual%20v1.4.pdf
https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello%20User%20Manual%20v1.4.pdf
https://snl.no/drone
https://snl.no/Sult
https://doi.org/10.1109/TASE.2009.2037135
https://core.ac.uk/download/pdf/287743886.pdf

Appendix

A Mocking of Marvelmind

import random

import time

import ast

import math as m

def generate_coordinates():

Generate random coordinates with two decimal places

x = round(random.uniform(15, 25), 2)

y = round(random.uniform(15, 25), 2)

return [x, y]

def print_current_coordinates(): #mocking av marvelmind coordinater

Generate and print current coordinates

coordinates = generate_coordinates()

print("Current coordinates: x =", coordinates[0], "y =", coordinates[1])

return coordinates

def create_direction(my_pos, wanted_pos):

x1, y1 = my_pos

x2, y2 = wanted_pos

dx = x2 - x1

dy = y2 - y1

distance = m.sqrt(dx**2 + dy**2)

angle = m.atan2(dy, dx)

angle_deg = m.degrees(angle) # radians to degrees

#print (angle_deg, 'original angle')

o_angle = angle_deg

rotation = ''

angle_deg = (angle_deg + 360) % 360 # angle is between 0 and 360

#print(angle_deg, 'new angle')

#print(abs(angle_deg), 'abs of angle')

#print(abs(angle_deg - 90), 'v-90')

if 0 < o_angle < 90: #between 0 and 90 deg

rotation = 'CW1'

if -90 < o_angle < 0: #between -90 and 0

rotation = 'CW2'

#print(abs(angle_deg), 'abs')

#angle_deg = 360 - angle_deg

if -180 < o_angle < -90: #between -180 and -90

rotation = 'CCW1'

if 90 < o_angle < 180: #between 90 and 180

rotation = 'CCW2'

if angle_deg < 0 : #if degrees is lower than 0 #O = angle_deg < 0:

angle_deg = abs(angle_deg-90)

#print (angle_deg, 'okok')

54

if angle_deg > 180 : # if degrees is above 180 O: angle_deg > 180

#elif -180 > angle_deg > 180:

angle_deg -= 90

elif angle_deg < 180: #if degrees is more than 0 and less than 180

angle_deg = abs(angle_deg - 90)

#print("alå")

#print(angle_deg , 'v2')

if rotation == 'CW2':

angle_deg = 360 - angle_deg

return distance, angle_deg, rotation

###########MAIN#####################

def main():

print("Enter the coordinates as 'x, y'. Press Enter without any input to continue.")

#coordinates = generate_coordinates()

while True:

user_input = input()

numbers = list(map(float, user_input.split()))

if len(numbers) != 2:

print ("error, print two numbers")

else:

new_pos = numbers

print('Selected coordinates', 'x=', new_pos[0], 'y=', new_pos[1])

coordinates = print_current_coordinates()

new_distance, new_angle, orientation = create_direction(coordinates, new_pos)

print ('distance=', round((new_distance), 2), 'angle=', round((new_angle), 2),

'orientation=', orientation)↪→

time.sleep(0.1)

if __name__ == "__main__":

main()

...

B Coordinate Deviation Filter

def precision_coordinates(hedge):

number_of_precision = 3 #decides the amount of checks

pos_array = [] # Create an empty list to store positions

for i in range(number_of_precision):

hedge.dataEvent.wait() # Wait for new data

hedge.dataEvent.clear()

pos_array.append((hedge.position()[1], hedge.position()[2])) # Append position [1] and [2]

to the list↪→

precise_pos = tuple((sum(coords) / number_of_precision for coords in zip(*pos_array)))

print (pos_array)

return (precise_pos)

...

55

C First Approach Code

import os

import sys

import math as m

master_folder = os.getcwd()

sys.path.append(os.path.join(master_folder, "Tello-master"))

sys.path.append(os.path.join(master_folder, "marvelmind.py-master\src"))

from marvelmind import MarvelmindHedge

import tello as tl

my_increments = 3 #Increments decide how many meters it

should go before checking new pos. Maximun increments is 5 meters↪→

z_height = 0

def get_current_coordinates(hedge):

hedge.dataEvent.wait() #Wait for new data

hedge.dataEvent.clear()

#z_height = tl.get_tof()/100 #Tello height readoff

return hedge.position()[1], hedge.position()[2], hedge.position()[3]

def create_direction(my_pos, wanted_pos):

x1, y1 = my_pos

x2, y2 = wanted_pos

dx = x2 - x1

dy = y2 - y1

distance = m.sqrt(dx**2 + dy**2)

angle = m.atan2(dy, dx)

#print(angle, 'angle radiants')

angle_deg = m.degrees(angle) #Radians to degrees

rotation = ''

#print (angle_deg, 'original angle')

o_angle = 90 - angle_deg #rotate angle 90 deg ccw

#print (o_angle, 'angle-90')

if 180 > o_angle > 0:

rotation = 'CW'

#print(o_angle, 'new angle')

if o_angle > 180:

o_angle = 360 - o_angle

rotation = 'CCW'

#print (o_angle, 'new angle')

if o_angle < 0:

o_angle = (abs(o_angle))

rotation = 'CCW'

return distance, o_angle, rotation

def find_z(my_pos, wanted_pos):

z1 = wanted_pos

z2 = my_pos

z_diff = round(- (z2 - z1),2) #get two decimals

return z_diff

def Tello_Commands_Z(elevation):

if elevation > 0.2: #positive value, upwards

tl.up(elevation*100)

elif elevation < -0.2: #negative value, downwards

tl.down(abs(elevation)*100)

elif 0.2 > elevation > -0.2:

56

print('staying level')

def Tello_Commands(distance, rotation, orientation):

my_rotation = rotation

if orientation == 'CCW': #Rotate angle towards point

tl.anticlockwise(rotation)

else:

tl.clockwise(rotation)

if distance > my_increments: #Drone can with this if loop fly longer

than 5 meters.↪→

increments = distance // my_increments #how many increments goes into the

distance. 15meter in 5 increments = 3 increments↪→

print(increments, 'increments *', my_increments) #increments can be

defined to how often it stops. max lenght of increment is 5 meters and shortest is 20cm.↪→

for i in range(int(increments)):

tl.forward(my_increments*100)

#x, y = get_current_coordinates(hedge)

mudolo = round(distance % my_increments, 2)

print(round((mudolo*100),2), 'cm mudolo')

if mudolo > 0.2: #if mudolo values are more than 20 cm

tl.forward(mudolo*100)

else:

print('staying')

else:

tl.forward(distance*100) #distance = less than 5 meters. go

distance in cm↪→

if orientation == 'CCW': #Rotate back again to '0'

tl.clockwise(rotation)

else:

tl.anticlockwise(rotation)

def main():

tl.start()

print(tl.get_battery(), 'percentage of battery left')

hedge = MarvelmindHedge(tty="COM8", adr=None, debug=False) #Create MarvelmindHedge object

if len(sys.argv) > 1:

hedge.tty = sys.argv[1]

hedge.start() # Start receiving data from marvelmind

tl.takeoff()

try:

while True:

user_input = input("Please Enter new coordinates...")

numbers = list(map(float, user_input.split()))

if len(numbers) != 3:

print('Error')

else:

new_pos = numbers

print('Selected Coordinates; x=', new_pos[0], 'y=', new_pos[1], 'z=', new_pos[2])

current_pos = get_current_coordinates(hedge)

print("Current coordinates; x=", current_pos[0], "y=", current_pos[1], 'z=',

current_pos[2])↪→

current_pos_xy = (current_pos[0], current_pos[1]) #cord of hedge, only x and y.

current_pos_z = tl.get_tof()/1000 #read height of tellodrone, only z

print(current_pos_z, 'CYPHER 1')

wanted_pos_xy = (new_pos[0], new_pos[1]) #cord of new pos, only x and y

wanted_pos_z = (new_pos[2]) #last value of input coordinates

57

z_difference = find_z(current_pos_z, wanted_pos_z)

print(z_difference, 'CYPHER 2')

my_Distance, my_Angle, my_Orientation = create_direction(current_pos_xy, wanted_pos_xy)

#Create path↪→

print('distance=', round((my_Distance), 2), 'angle=', round((my_Angle), 2),

'orientation=', my_Orientation, 'Elevation:', z_difference,'m')↪→

question_input = input('GO TO COORDINATES? y for yes') #Doublecheck of commands, This

was learned the hard way.↪→

if question_input == 'y':

print('GOING TO COORDINATES')

Tello_Commands(round((my_Distance), 2), my_Angle, my_Orientation)

Tello_Commands_Z(z_difference)

while True:

while True:

x, y, z = get_current_coordinates(hedge)

current_pos = (x, y, z)

better_z = tl.get_tof()/1000

distance_to_target = m.sqrt((new_pos[0] - current_pos[0])**2 + (new_pos[1]

- current_pos[1])**2) #Check distance between wanted coord. and new

coord.

↪→

↪→

distance_to_target_z = find_z(better_z, wanted_pos_z)

print ('direct distance to target xy:', distance_to_target, 'z',

distance_to_target_z)↪→

if distance_to_target <= 0.2:

#Check if distance within threshold↪→

print('Im at x=', x, 'y= ', y,)

print('Acceptable, Reached xy coordinates.')

break

else:

print('Im at x=', x, 'y= ', y, 'and z=', z)

print('Not yet reached the coordinates. Trying again...')

current_pos = get_current_coordinates(hedge)

current_pos_xy = (current_pos[0], current_pos[1])

my_Distance, my_Angle, my_Orientation = create_direction(current_pos_xy,

wanted_pos_xy)↪→

Tello_Commands(round(my_Distance, 2), my_Angle, my_Orientation)

while True:

if 0.2 > distance_to_target_z > -0.2:

print('z=' , better_z,)

print (distance_to_target_z,'acceptable z value, staying level')

break

else:

better_z = tl.get_tof()/1000

print('wrong z altitude, im at:', better_z,'m')

z_difference = find_z(current_pos_z, wanted_pos_z)

Tello_Commands_Z(z_difference)

#Continue the loop and check again

if distance_to_target <= 0.2 and 0.2 > distance_to_target_z > -0.2:

print('In both xy and z, finished')

break

else:

print('not ok, LANDING')

tl.land()

x, y, z = get_current_coordinates(hedge)

print('NEW COORDINATES x=',x, 'y=', y, 'and z =', z)

except KeyboardInterrupt:

hedge.stop() # stop receiving data

if __name__ == "__main__":

58

main()

...

D Second Approach Code

import os

import sys

import math as m

master_folder = os.getcwd()

sys.path.append(os.path.join(master_folder, "Tello-master"))

sys.path.append(os.path.join(master_folder, "marvelmind.py-master\src"))

from marvelmind import MarvelmindHedge

import tello as tl

my_increments = 1 # Increments decide how many meters it should go before checking new pos. Maximum

increments are 5 meters↪→

old_angle = 0

z_height = 0

old_orientation = ''

final_angle = 0

def get_current_coordinates(hedge):

hedge.dataEvent.wait() # Wait for new data

hedge.dataEvent.clear()

return hedge.position()[1], hedge.position()[2], #x y

print('im at: x', hedge.position()[1],'y', hedge.position()[2])

def calculate_angle(my_pos, wanted_pos):

x1, y1 = my_pos

x2, y2 = wanted_pos

dx = x2 - x1

dy = y2 - y1

angle = m.atan2(dy, dx)

#print(angle, 'angle radiants')

angle_deg = round(m.degrees(angle), 2) #Radians to degrees

rotation = ''

#print (angle_deg, 'original angle')

o_angle = 90 - angle_deg #rotate angle 90 deg ccw

#print (o_angle, 'angle-90')

if 180 > o_angle > 0:

rotation = 'CW'

#print(o_angle, 'new angle')

if o_angle > 180:

o_angle = 360 - o_angle

rotation = 'CCW'

#print (o_angle, 'new angle')

if o_angle < 0:

o_angle = (abs(o_angle))

rotation = 'CCW'

return round((o_angle),2), rotation

def calculate_distance(my_pos, wanted_pos):

x1, y1 = my_pos

x2, y2 = wanted_pos

59

dx = x2 - x1

dy = y2 - y1

distance = round(m.sqrt(dx**2 + dy**2), 2)

return distance

def rotate_towards_angle(angle, orientation):

if angle > 0:

if orientation == 'CCW':

tl.anticlockwise(angle)

else:

tl.clockwise(angle)

else:

print('angle = 0, straigt ahead')

def second_angle(new_angle, old_angle, orientation, last_orientation):

if orientation == 'CW' and last_orientation =='CW':

if new_angle < old_angle:

angle = round(abs(new_angle - old_angle),2)

print('1new_angle -old_angle')

orientation = 'CCW'

else:

angle = round(abs(new_angle - old_angle),2)

print('12new_angle -old_angle')

orientation ='CW'

elif orientation == 'CCW' and last_orientation =='CW':

angle = round(abs(new_angle - old_angle),2)

print('2new_angle - old_angle')

orientation = 'CW'

elif orientation == 'CCW' and last_orientation == 'CCW':

if new_angle < old_angle:

angle = round(abs(new_angle - old_angle),2)

print('21new_angle -old_angle')

orientation = 'CCW'

else:

angle = round(abs(new_angle - old_angle),2)

print('22new_angle -old_angle')

orientation ='CCW'

elif orientation == 'CW' and last_orientation =='CCW':

angle = round(abs(new_angle - old_angle),2)

print('3new_angle - old_angle')

orientation = 'CW'

return angle, orientation

def move_towards_coordinate(distance):

if distance > 0.75: #if further than 50cm, just go 50 cm

tl.forward(75)

print('going forward 75cm')

else:

tl.forward(distance*100) #if shorter, go complete distance

def read_z():

zpos = tl.get_tof()/1000

return zpos

def find_z(my_pos, wanted_pos):

z1 = wanted_pos

z2 = my_pos

z_diff = round(- (z2 - z1),2) #get two decimals

return z_diff

def Tello_Commands_Z(elevation):

if elevation > 0.2: #positive value, upwards

60

tl.up(elevation*100)

elif elevation < -0.2: #negative value, downwards

tl.down(abs(elevation)*100)

elif 0.2 > elevation > -0.2:

print('staying level')

def calc_totangle(totangle, rotangle, orientation):

if orientation == 'CCW':

totangle = totangle - rotangle

else:

totangle = totangle + rotangle

return totangle

def main():

tl.start()

print(tl.get_battery(), 'percentage of battery left')

hedge = MarvelmindHedge(tty="COM8", adr=None, debug=False) # Create MarvelmindHedge object

if len(sys.argv) > 1:

hedge.tty = sys.argv[1]

hedge.start() # Start receiving data from Marvelmind

tl.takeoff()

final_angle = 0

try:

while True:

user_input = input("Please enter new coordinates (x y z): ")

numbers = list(map(float, user_input.split()))

if len(numbers) != 3:

print('Error: Invalid input format')

continue

target_pos = numbers

target_pos_xy = (target_pos[0], target_pos[1])

target_x, target_y, target_z = numbers

print('Selected Coordinates: x =', target_pos[0], 'y =', target_pos[1])

while True:

current_pos = get_current_coordinates(hedge)

print("Current pos: x =", current_pos[0], "y =", current_pos[1],)

current_pos_z = read_z()

print('z = ', current_pos_z)

angle, orientation = calculate_angle(current_pos, target_pos_xy)

print('a:', angle, 'o:', orientation)

distance = calculate_distance(current_pos, target_pos_xy)

print('d=', distance)

z_diff = find_z(current_pos_z, target_pos[2])

rotate_towards_angle(angle, orientation)

move_towards_coordinate(distance)

Tello_Commands_Z(z_diff)

print('done commands')

final_angle = calc_totangle(final_angle, angle, orientation)

print(final_angle, 'final angle')

old_angle = angle

old_orientation = orientation

while True:

current_pos = get_current_coordinates(hedge)

print('current pos:', current_pos)

current_pos_z = read_z()

print('z = ', current_pos_z)

61

angle, orientation = calculate_angle(current_pos, target_pos_xy)

distance = calculate_distance(current_pos, target_pos_xy)

print('a:', angle, 'o:', orientation)

z_diff = find_z(current_pos_z, target_pos[2])

rotangle, orientation = second_angle(angle, old_angle, orientation,

old_orientation)↪→

rotate_towards_angle(rotangle, orientation)

Tello_Commands_Z(z_diff)

print(angle, 'relative angle')

print(rotangle, 'differation_angle', orientation)

print(distance, 'distance')

final_angle = calc_totangle(final_angle, rotangle, orientation)

print('finalangle:', final_angle)

if distance > 0.2:

move_towards_coordinate(distance)

print('done commands2')

old_angle = angle

old_orientation = orientation

print(old_angle, old_orientation, 'OA and OO')

if distance < 0.2:

print('Reached the target coordinates')

print(final_angle, 'rotating back to north')

if final_angle < 0:

tl.clockwise(abs(final_angle))

else:

tl.anticlockwise(abs(final_angle))

break

print('Distance to target:', distance)

break

except KeyboardInterrupt:

hedge.stop() # Stop receiving data

if __name__ == "__main__":

main()

62

	List of Figures
	Introduction
	Background for the task
	Goal Objective
	Structure of Thesis.

	Theory
	Drones and Quadcopters
	Tello Drone
	Tello Library

	Localization Systems
	UWB
	Triangulation
	Pozyx UWB Technology
	The Creator One Kit
	Companion Software

	Marvelmind Indoor Navigation System
	Super-Beacons
	Mini-TX Beacon

	Computer Assisted Design
	Additive Manufacturing (3D-Printing)
	Material for Printing
	Prusa Slicer and Slicing

	Methodology and Materials
	Project Organisation
	Supervisor Meetings & Meetings with Teateret Vårt
	Meetings with Teateret Vårt

	Research for hardware
	Setup and testing hardware and software
	Tello Drone
	Marvelmind
	POZYX, Creator one kit, First setup
	Measuring Pozyx with setup

	Implementing Marvelmind localization with Tello drone
	Creating a mount for the Marvelmind to the Tello

	Software for Tello drone
	Mocking the Marvelmind GPS
	Testing the mocking
	Controlling the drone with Marvelmind
	Self-correction of flight
	Implementing the Z-axis to the coordinate system
	Different Approach

	Creating the book model for the Tello drone

	Results
	Measuring the Precision of the Marvelmind GPS
	Measuring the precision of the POZYX Creator One kit
	Combining the Tello with Marvelmind
	Casing for Marvelmind Mini TX
	Controlling Tello Drone

	Finished design of the flying book

	Discussion
	Indoor Location System Measuring and Errors
	Discussion on measured results
	Errors and issues with Marvelmind

	Pozyx Creator one
	Extracting location data from Pozyx

	Comparing the Local GPS Systems
	Tello Drone
	Python Code and Solutions
	Container
	Software and Programming
	First Approach
	Second Approach
	Issues and flaws with the code

	Book Design

	Conclusion
	Bibliography
	Appendix
	Mocking of Marvelmind
	Coordinate Deviation Filter
	First Approach Code
	Second Approach Code

