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ABSTRACT In this paper, an automatic antenna impedancematching technique is presented for a wide range
of frequency bands where a low-complexity shallow learning model adaptively determines the component
values of the matching circuit on a real-time. In general, matching networks require both the real and
imaginary parts of the antenna impedance to determine the tuning parameters which involves expensive
measurement equipment. The shallow learningmodel developed in this work needs only themagnitude of the
antenna reflection coefficients (S11) to construct the impedance matching circuit. First, the tuning parameters
were theoretically calculated and used for computer simulations to generate the S11 data. In total 500 samples
were generated, of which, 400 were used for training and 100 for validation. The proposed technique was
applied to a novel inverted-F antenna resonating at 2.45 GHz for impedance matching. The achieved results
show stable performances over a wide range of frequencies from 2 to 3GHz. For validation, the performances
of the impedance matching circuit were simulated using predicted and calculated tuning parameters. Results
confirm comparable performances in terms of the antenna’s resonance frequency, reflection coefficients, and
operational 10-dB bandwidth. The fast prediction ability of the proposed low complexity shallow learning
model makes it suitable for real-time applications. Moreover, repeated K -fold cross validation confirms a
stable 0.99985 accuracy of the proposed model when repeated 15 times.

INDEX TERMS Antenna impedance matching, impedance mismatch, antenna sensors, shallow learning
model, inverted-F antenna.

I. INTRODUCTION
Antennas used in wireless communications are one of the
key elements that greatly determine the overall performance
of the system. Wireless applications in general require their
antennas to resonate within fixed band(s) of operating fre-
quency. These antennas are also designed to be impedance
matched with the radio frequency (RF) front-end. A prop-
erly matched antenna section, i.e., when the antenna is at a
resonance, maximum power transmission, maximum cover-
age, reduced power consumption, high signal-to-noise ratio,
and stable communication can be ensured [1], [2]. However,
antennas in electronic devices can be detuned (deviated from
designed resonance frequency) by several random factors.
In handheld devices, for example, when a user receives a
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phone call, the hand movement and the user proximity create
an impedancemismatch.When a call is in progress, the phone
is held very near to the user’s ear (and head). This interaction
between the antenna and the person’s head, that acts as a lossy
dielectric, further causes impedance mismatch [3], [4], [5].
The effect of the textile on the human body, its thickness,
air gap between textile and skin can also contribute to
antenna impedance mismatch. This greatly reduces antenna
radiation efficiency, transmission range, and overall perfor-
mances [1], [3], [4], [5], [6], [7]. Recently, sensor antennas
are becoming more and more prevalent due to their dual
functionality i.e., simultaneous sensing and communicating
capability [8], [9], [10], [11], [12]. When sensor antennas
are openly placed in the sensing environment in contact with
the target analyte (in the form liquid, solid or gas), sensing
is usually done by changing the resonant frequency of the
antenna which can affect its communication performance.

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 74101

https://orcid.org/0000-0002-5651-5535
https://orcid.org/0000-0003-2086-8627
https://orcid.org/0000-0002-6977-6363


M. M. Hasan, M. Cheffena: Adaptive Antenna Impedance Matching

To ensure antenna’s dual functionality (i.e., sensing and com-
munications), a real-time adaptive and automatic impedance
matching system becomes important. Several decades of
extensive research on this topic revealed numerous effec-
tive solutions to this problem that falls mostly under two
major categories: Reconfigurable Antenna (RA) and Antenna
Impedance Matching (AIM) circuit. RAs can achieve fre-
quency adjustment, change in the radiation patterns, polar-
ization, etc., by changing its electrical configuration through
switches. A solid-state plasma chip antenna with a surface
positive-intrinsic-negative (PIN) diode is proposed in [13]
that can achieve reconfigurability. Additional switches were
used to toggle between sensing and communication modes,
and three varactor diodes to tune the operating frequencies
and achieved good radiation performances, however, with
high complexity [14]. Varactor diodes can tune both the res-
onance frequency and polarization of the antenna by varying
the voltage applied to the varactors [15]. Varactor diodes
can also be used in a wideband compact loop antenna for
0.9, 2.4, 3.5, and 5.5 GHz applications where each of these
bands can be tuned separately [16]. Recently, water-based
antenna has drawn attention due to its low cost and ease
of reconfigurability [17]. Here, the operating frequency can
be tuned by controlling the filling status of water. Different
shapes and thickness of layers can achieve continuous tuning
of the resonance frequency ranging from 1.1 to 2.2 GHz [17].
However, electrically RAs involve complicated design, com-
plex structure and require complex biasing systems making
them less attractive for next general of wireless commu-
nication that require low-complex circuitry for high-speed
operation [18], [19].

On the other hand, AIM circuits are directly placed
between the transceiver and antenna with no electrical (or
physical) reconfiguration to the antenna [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37]. Antenna’s resonating frequency is
then adjusted by changing component values of the AIM
circuit, making them easy to implement. The first chal-
lenge is that these circuits are desired to be adaptive and
automatic for real-time applications. For fixed inductor and
capacitor values, the circuit resonates at a single frequency,
thus, not suitable to track and compensate for the changes
in antenna’s operational condition. Additionally, today’s
battery-operated wireless devices need on-chip antenna tun-
ing with low-complex circuitry for high-speed operation and
low-power consumption. Such solutions are, however, still
challenging. The second challenge is that the design of AIM
circuits in general requires accurate measurement of the
complex impedance of the antenna. Several techniques are
available to measure this such as quadrature detectors [20],
and RF peak detectors [21]. A combination of capacitors
with planner inverted-F antenna can achieve a wide fre-
quency tuning range that covers from 2 to 4 GHz [22].
Channel capacity metric can be used as a guideline to
design an AIM circuit [23]. Additional sensory circuit can
be used to monitor the fluctuations in the AIM circuit,

where control-loops are used to independently control the real
and imaginary parts of the impedance [24]. However, these
complex measurement techniques make them less attractive
for battery driven applications such as handheld devices.
Optimization techniques can also tune an LC-network iter-
atively until the matching component values are found, and
the impedance matching goal is met. These traditional tech-
niques, however, are based on iterative algorithms, thus,
not fast enough for real-time impedance matching. Gradient
algorithms are computationally expensive and often converge
to a local optimum [25]. Non-gradient based optimization
techniques, such as genetic algorithms are also available,
with some limitations such as large storage, loss of best
chromosome, premature convergence, local optimum during
evolution [26], [27], [28], [29], [30]. Later, fuzzy inference
system was found to be 80.26% more efficient than genetic
algorithms [31]. Quantum inspired genetic algorithms have
shown to overcome the limitations of conventional genetic
algorithms by factoring or searching in an unstructured
database. Results also confirm the feasibility for real-time
application in RF-front-end systems. Furthermore, software
defined solutions can ensure automatic tuning [32], [33].

Recently, machine learning received huge attention for
solving antenna optimization problems [34], [35], [36], [37],
[38]. For example, DeepNeural Network (DNN)was used for
shape optimization and the location of antenna feeding point
in [34]. Later, DNN was used to determine optimal design
parameters of the bent wire antenna [35]. A feedforward-
backpropagation neural network is presented in [36] to design
impedance matching circuit for wireless power transmis-
sion with good efficiency, however, with limited range of
impedance. A range-adaptive solution based on neural net-
work achieved 90%wireless power transfer (WPT) efficiency
in [37]. However, the techniques proposed in [36] and [37] are
applicable forWPT only and suitable for low frequency appli-
cations. These solutions cannot tune antenna impedances for
wireless applications. Recently, DNN was used to construct
tuneable matching circuit for wireless applications using only
the magnitude of the Return Loss (RL) [38]. The authors
used 377 simulated training samples for a frequency range
from 0.8 to 1.5 GHz to train a DNN. However, the complex
structure of DNN is not fast enough to track the dynamic
nature of today’s wireless environment. The proposed DNN
model in [38] required 10.5 minutes using Intel(R) Xenon(R)
processor at 2.30 GHz and 16 GB memory. Clearly, the time
complexity of [38] is not suitable for real-time applications.
To date, only neural networks have been used for impedance
matching. The contribution of our work can be summarised
as:

• For the first time we propose a Shallow Learning Model
(SLM) with no hidden layers to construct an AIM circuit
that requires 0.05 seconds (50ms) for the training, and
only 0.001 second (1ms) to make a prediction, unlike
the previous DNN based solution that required 10.5min-
utes [38].
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FIGURE 1. Inverted-F antenna used for impedance matching.

• Unlike previous works where arbitrarily values of
matching circuit components were considered, we used
interpolated tuning values to reduce the training time and
improve the training accuracy. Accurate measurement
of complex impedances requires expensive equipment
such as a vector-network-analyser or spectrum analyser.
Through training, the proposed shallow learning model
can learn to find the complex impedances entirely from
the magnitude of the S11 data without needing to cal-
culate the real or imaginary values of the impedance.
Data analysis also shows that a proper dimensionality
reduction can further reduce the model’s complexity.

The remaining of this paper is organized as follows.
Section II presents a novel antenna design to generate S11 data
and evaluate performances of proposed impedance matching
technique. A step-by-step development of the impedance
matching circuit is presented in Section III. Section IV
explains the datasets used in this work. In Section V,
we develop a low-complexitymachine learningmodel using a
shallow learning approach. Section VI discusses the findings
and obtained results.

II. INVERTED-F ANTENNA STRUCTURE
The aim of this work is to develop a machine learning model
that learns from the changes in the antenna’s operational

conditions and adapts itself to these changes for impedance
matching by tuning the circuit parameters. To track these vari-
ations and evaluate the performances, we designed a novel
inverted-F antenna structure as shown in Fig. 1 for wireless
hand-held applications (where the RF section is most likely
to face the maximum impedance variation). We used this
antenna to generate the required magnitude of the RL (S11)
for the model training, and to evaluate the performances of
impedance matching circuit. Inverted-F antenna structures
are widely used as primary antennas for mobile devices due
to their radiation efficiency, wideband, and miniaturized size.
These are low-profile, quarter-wave short-circuit monopole
antennas where an inverted-F shaped patch is placed in paral-
lel to the ground plane with an inductively tuned stub in paral-
lel with the capacitive radiating arm. Monopole antennas are
usually capacitive in nature, however, placing a shorting stub
increases inductance to achieve impedance matching. In this
work, the antenna is designed to achieve an exact resonance
at 2.45 GHz on an air substrate layer and thickness of 1.6 mm.
The antenna has a length of 19.44 mm and a height of 1.6 mm
from the ground. The width of the patch element through-
out the structure is 1.0 mm. The shorting stub, 2.77 mm
away from the feeding arm, is connected to the ground with
three shorting pins of solid copper contact of 0.2 mm radius
each. The matching circuit is placed with the feeding point.
We simulated the antenna structure using Ansys HFSS (high
frequency electromagnetic simulation software). The RL in
Fig. 2(a) shows that the designed antenna is perfectlymatched
(without the matching circuit) at 2.45 GHz with a 200 MHz
of bandwidth. The Voltage Standing Wave Ratio (VSWR),
in Fig. 2(b), is 1.0 (which is ideally minimum) at 2.45 GHz.
This also confirms impedance matching and absolutely no
power is reflected from the antenna. One of the many advan-
tages an Inverted-F antenna can offer is that it can be made
meandered to house in a narrow space of handheld devices
and yet can achieve a high bandwidth. The magnitude of
the complex antenna impedance (Z11) along with its real and
imaginary parts are given in Fig. 2(c). This shows that the
impedance is purely real at the resonating frequency. A smith
chart in Fig. 2(d) graphically represents the location of the
complex impedances for the total frequency range. Using a
coaxial cable transmission line with a 50 � input impedance,
Fig. 2(d) confirms that the designed antenna is normalized
at 2.45 GHz. The complex impedances of frequencies higher
than 2.45 GHz are located on the upper inductive part and for
the frequencies lower than 2.45 GHz are located on the lower
capacitive part of the smith chart.

III. ANTENNA IMPEDANCE MATCHING (AIM) CIRCUIT
The development of an AIM circuit is illustrated in Fig. 3.
As shown in Fig. 3(a), a parallel capacitor (Cp) first moves
complex impedance from both the inductive (BC arc) and
capacitive parts (AB arc) along the conductance circles to
a single unit resistance circle, on BD arc. Then, a series
inductor (Ls) moves the impedance along the unit resistance
circle to the target point (B). Fig. 2(c) confirmed that all
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FIGURE 2. Simulation of the proposed inverted-F antenna: (a) RL (S11);
(b) VSWR; (c) Complex input impedance Z11; (d) Smith chart.

the impedances are in the permissible region of an L-type
LC-network, thus, such a single network can be constructed
with an inductor in series and a capacitor in parallel to
tune all the impedance points without entering the forbidden
region of the circuit. Then, the inductor and capacitor can
be tuned to match over the target range of frequencies. The
proposed L-type LC-network is shown in Fig. 3(b). ZS , is
the source impedance, ZL is the load impedance. Zm and Zi
represent impedance transformations after each stage from
load-to-source during impedance matching, respectively. For
a purely resistive source, the impedance of the matching net-
work needs to be complex conjugate of the load impedance.
To transfer maximum real power to the load, i.e., achieve
impedance matching, Zi must equal the source impedance,
Zs. From Fig. 3(b), we obtain,

Zm =
ZL

1 + jωCpZL
, (1)

where ZL = RL+jXL , andω is the angular frequency. Letting
Zm = Rm + jXm, we get

Rm =
RL(

ωCpRL
)2

+
(
1 − ωCpXL

)2 , (2)

and

Xm =
XL − ωCp

(
R2L + X2

L

)(
ωCpRL

)2
+

(
1 − ωCpXL

)2 . (3)

Finally, we get the input impedance as,

Zi = Zm + jωLs = Rm + j (Xm + ωLs) . (4)

FIGURE 3. Step-by-step development of AIM circuit. (a) Movement of
impedances using parallel capacitor and series inductor. (b) L-type
LC-network for AIM circuit; (c) Simplified circuit.

Denoting Zi = Ri + jXi and equating real and complex
terms separately, we get,

Ri =
RL(

ωCpRL
)2

+
(
1 − ωCpXL

)2 , (5)

and

Xi =
XL − ωCp

(
R2L + X2

L

)(
ωCpRL

)2
+

(
1 − ωCpXL

)2 + ωLs. (6)

From (4), we can calculate reflection-coefficient at the input
of AIM circuit as,

0in =
Zi − Zs
Zi + Zs

, (7)

and VSWR as

VSWR =
1 + |0in|

1 − |0in|
. (8)

To determine the tuning parameters, a simplified structure
of Fig. 3(b) is given in Fig. 3(c). To achieve impedance
matching, Zi must equal to the characteristic impedance of
the transmission line, Z0. From Fig. 3(c),

Z0 = jX1 +

(
jX2 +

1
ZL

)−1

= jX1 +
RL + jXL

jX2RL − X2XL + 1
.

(9)
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TABLE 1. Calculated values of tuning parameters.

Simplifying (9) and equating the real and imaginary terms on
both sides we get

X2 (RLX1 − Z0XL) = RL − Z0, (10)

and

X1 (1 − X2XL) = X2Z0RL − XL . (11)

Solving (10) and (11), we get

X1 =
X2Z0RL − XL
1 − X2XL

. (12)

and

X2 =

XL ±

√
RL
Z0
(R2L + X2

L − Z0RL)

R2L + X2
L

. (13)

Two solutions for X2 are possible from (13), and both
can be used for implementation. The proposed L-type LC
network provides required tuning parameters to cover entire
range of frequency over 2 to 3 GHz to achieve an ideal
impedancematching (0in = 0 andVSWR= 1). Six sets of LC
values were determined using (12) and (13) (see Table 1).
At 2.0 GHz, for example, the matching parameters are Cp =

0.32491 pF and Ls = 15.21 nH, respectively. At 3.0 GHz,
the values are Cp = 0.67007 pF and Ls = 8.59 nH,
respectively.

IV. DATASET PREPARATION
Accurate measurement of antenna impedance, including real
and imaginary parts, is essential to construct a tuning circuit
and achieve impedancematching. This is possible tomeasure,
however, it requires expensive equipment such as a vector
network-analyser. A larger dataset is also required for effec-
tive training of machine learning models and accurate pre-
diction of the circuit parameters. To manually produce such a
large dataset using commercial network-analysers would be a
time consuming and cumbersome task. Instead, we developed
a programming-interface, using IronPython, that intercon-
nects antenna simulation software and Python. To obtain the
required S11 dataset, we generated synthetic data to simulate
the inverted-F antenna. We used piecewise cubic polyno-
mial interpolation on mathematically obtained datasets (see
Table 1), unlike previous works [38] where linear values
were considered. This further improves the training accuracy
during simulation. Cubic Hermite polynomial uses the cur-
rent shape of the given data points and produces additional

FIGURE 4. (a) Interpolation of data using piecewise cubic Hermite
Interpolating Polynomial algorithm for (a) parallel capacitor, Cp and (b)
series inductor, Ls.

FIGURE 5. (a) Simulated values of S11: (a) 400 samples for training (b)
100 samples for validation (c) Heatmap of the correlation matrix of S11.

interpolation points [39]. Interpolation in general defines
a function that estimates unknown values from given data
points. A piecewise cubic Hermite interpolator uses mono-
tonic cubic splines to preserve the overall shape in the given
dataset and it does not overshoot or undershoot during inter-
polation. We produced 500 interpolation points for the tuning
parameters using shape preserving interpolation technique
given in [40] and shown in Fig. 4. The programming-interface
selects a pair of tuning parameters each time, simulates the
inverted-F antenna in HFSS, and a total of 500 S11 results
are obtained in the form of comma-separated value (csv)
file. Each of which contains 300 data points corresponding
to the frequency range from 2 to 3 GHz. Fig. 5(a) shows
400 samples of S11 results that were used for the training,
and Fig. 5(b) shows the remaining 100 samples used for the
validation.

During data analysis, we also noticed the presence of
multicollinearities in the dataset, i.e., two or more input
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TABLE 2. Algorithm for impedance matching using SLM.

features are highly (or almost linearly) correlated. Fig. 5(c)
shows a heatmap of the correlation matrix of the feature
dataset where several S11 results are correlated with several
adjacent frequency points. S11 curves, in general, includ-
ing multiband or wideband antennas, will have a specific
number of minimums to specific frequencies and few side-
bands. It is, however, possible to consider the range of
target frequency, i.e., 2 to 3 GHz. Instead, we considered
the entire range of frequency (1 to 4 GHz) to consider
the sidebands during training and improve the prediction
accuracy further. Simultaneously, proper techniques must
be used during data processing to avoid high dimensional
computational complexity. A learning algorithm in general
finds correlation between the input features and the target
variable(s) to learn from patterns. In this work, a learning
algorithm learns solely from S11 magnitude, thus, a high
level of multicollinearities between input features can pro-
duce misleading outcomes. Without addressing the presence
of multicollinearities in the dataset, learning algorithms can
make poor (or wrong) predictions. A straightforward solution
is to remove correlated features and train the model from the
rest. This only reduces the model’s predictabilities at these
frequencies.

V. MACHINE LEARNING MODEL: SHALLOW APPROACH
In this work, we use S11 data to train a shallow learning model
which then can determine tuning circuit parameters to achieve
impedance matching automatically. Machine learning algo-
rithms learn from the hidden patterns present in the dataset
and become capable of predicting unseen data. In general,
shallow learning models are machine learning models where
complex structures of deep layered-neural network or multi-
layer perceptron are not involved. In this work, we used a low
complexity, yet efficient algorithm for impedance matching
given in Table 2. We used Sci-kit’s python class for shallow
learning model and its parameterized grid search for opti-
mal hyperparameter search. Sci-kit’s pipeline encapsulates
data pre-processing, transformations, and a final estimating
model. This builds a model that improves the algorithm’s
accuracy. We used ridge regression as estimator to reduce
collinearities from dataset. Ridge regularization works by

adding a penalty, equal to the square of the coefficient, to the
cost function which shrinks ridge coefficients. In general, for
a given set of N data points (xi,yi)Ni=1, the ridge estimator
finds a function, f (x) as

f (x) = xTw=

M∑
j=1

xjwj (14)

by setting parameters w = (w1, · · · ,wM )T in such a way
so that f (x) approximates yi as much as possible. Then, the
estimator minimizes the sum of squared residuals plus a
regularization term and has the optimal fitting parameters,

w = argmin
w

N∑
i=1

|f (xi) − yi|2 + α ∥w∥
2 (15)

where ∥w∥ is the 2-norm of w. In our case, the algorithm
estimates two separate outputs as fk (x)k=1,2 = xTwk=1,2.
The controlling parameter, alpha (α), in (15) adds a constraint
to the coefficients as a penalty factor to control the amount
of shrinkage. For α > 0, this causes the ridge coefficients to
tend towards zero, but neither setting them zero nor removing
them as each of the S11 results corresponds to specific tuning
elements. The larger the value of the constraint, the more
robust it becomes against multicollinearities in the dataset.
Initial pre-processing involved data scaling (tomake themean
= 0 and standard deviation = 1.0) as ridge estimators are
extremely sensitive to input data scale.

As observed from the heatmap of S11 correlation matrix
in Fig. 5(c), several columns appeared to be strongly cor-
related (more than 0.9 correlation). This is because most
of the data points in S11 curves will be constant except
one minimum (or more for multiband antenna) pointing the
resonance frequency (or frequencies). If there are two (or
more) features that show such degree of correlation, there is
no point in using them both (or all). These features become
dimensionally redundant. In that case, we drop features and
save computation time. Principal component analysis (PCA)
becomes extremely useful in such cases when features are
linearly (or even monotonically) related to each other. Using
PCA, the number of features reduced to 200 from 301 original
features (i.e., frequency points) in S11 data. This reduces high-
dimensional complexity, without losing the patterns in the
dataset, i.e., features with maximum variance.

VI. RESULTS AND DISCUSSION
Recently, many researchers have usedmachine learningmod-
els for automatic impedance matching [36], [37], [38]. How-
ever, their applications are either limited to WPT with low
frequency operation (few MHz) or based on complex neural
networks with several dense layers. The proposed model
learns from simulated magnitude values of input reflection
coefficients instead of measuring complex impedances with
expensive network analyzer. Fig. 6(a)-(b) show the actual
(true values) and the predicted values of parallel capacitor and
series inductor, respectively. To understand the stability of
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FIGURE 6. (a) Actual vs predicted values of (a) parallel capacitor, Cp (b)
series inductor, Ls; Observation data vs models best fit for (c) parallel
capacitor (d) series inductor.

prediction accuracy, confidence bounds are given in Fig. 6(c)-
(d) along with model’s regression lines to fit the data points.
Confidence bounds create a space between two lines that
shows uncertainty around mean predictions. So, a 99.99%
confidence bounds means that there is a 99.99% probability
that the model’s true best-fit regression line (solid line) lies
within the confidence interval (dotted line) of the regression
line calculated from the data points. To quantify the predic-
tion accuracy of the proposed model, we performed repeated
k-fold cross validation. A k-fold cross-validation effectively
estimates the model’s predictive performance; however, the
performance can vary each time for different splits. To avoid
this, we performed repeated k-fold cross-validation by repeat-
ing the regular cross validation process several times and
taking mean of results each time.

A summary of 10-fold cross validation with 15 repeats
is shown in Fig. 7. The accuracy fluctuates approximately
at 0.99980 during the first 4 repeats. However, it remains
constant at 0.999850 from5th repeat onwards. This can
be considered as a stable performance indicator of predic-
tion accuracy of the proposed model. Higher accuracies are
extremely desirable while determining the tuning parameters
as it greatly determines RL, reflection coefficient, mismatch-
loss and reflected power. Here, the RL becomes a useful
way to measure power loss (mostly) due to the impedance
mismatch. It is a measure of all the reflections that are caused
by the impedance mismatches. It is calculated as the ratio of
the power in the rejected travelling wave to the power in the
incident wave. A higher RL is always desirable as it indi-
cates that less power is reflected from the antenna. Similarly,

FIGURE 7. Summary of a repeated 10-fold cross validation with
15 repeats.

TABLE 3. Validation of the proposed SLM Based AIM.

a lower RL implies more power is reflected from the load due
to impedance mismatch. VSWR and reflection coefficients in
(7) and (8) are also used to measure RL. Further, we calculate
the mismatch loss (in dB) as −10

[
log

[
1 − |0|

2]], and the
reflected power in percentage as 100

∣∣02
∣∣.

For validation, we considered 6 sets of calculated tuning
parameters using (12) and (13), mentioned as ‘Calculated
tuning parameters’ in Table 3. Then, corresponding S11 data
from the validation dataset was applied to the SLM to predict
the tuning parameters. We calculated prediction errors for
both parameters for further analysis in this section. Next,
Table 4 shows the impact of the prediction error on mismatch
loss and transmitted (and reflected) power. We have sorted
the test samples according to the descending order of the
reflection coefficient to considermost of theworst cases (high
prediction error). Results show that for the highest 0 = 0.098
(sample no. 20), with 13.83% and 9.86% prediction errors of
tuning parameters, respectively, the proposed SLM ensures
RL = -20.18 dB with ≈1% reflected power. This is the
highest amount of reflected power due to the prediction error
with the proposed SLM. During practical implementation of
the proposed solution other losses such as the losses due to
the measurement may also arise. Generally, the frequency
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TABLE 4. The impact of the prediction error on return loss, mismatch loss and power transfer.

domain-based measurements are highly accurate and have
much lower noise compared to the time domain-based mea-
surements. Measurement losses of approximately 0.3 dB to
0.5 dB are expected while using directional couplers. How-
ever, measurement losses are functions of the directivity of
the device and can be very negligible for highly directive
coupler.

To illustrate the impact of prediction error mentioned in
Table 3 and Table 4, we simulated the inverted-F antenna
with newly predicted Cp and Ls. In Fig. 8, we compared
the simulated S11 results using predicted tuning parameters
(shown in dashed lines) with calculated tuning parameters
(shown in solid lines). Results confirm similar performances
when compared between the two. The figure also shows that
the proposed AIM circuit tuned by SLM can dynamically
track any shifts in the resonance frequency over a wide
range of frequency from 2 to 3 GHz without changing the
operational 10-dB bandwidth (200 MHz). The maximum
reflection coefficients were −23.5 dB at 2.5 GHz. A single
inverted-F antenna was used during modelling and simula-
tion. This concept can also be adopted to multiple antenna
systems (including base stations) equipped with array of

FIGURE 8. Simulated magnitude of S11 using impedance matching with
tuning parameters obtained by proposed SLM (shown in dash-lines) and
compared with mathematically obtained tuning parameters (shown in
solid lines) and the dataset for 6 samples.

antennas. However, multiple antenna system creates mutual
coupling among the closely spaced antenna elements and
significantly influences radiation pattern, reduces transmis-
sion capacity, and changes input impedance. This can be
addressed by using a decoupling network to isolate the effect
of mutual coupling. The automatic impedance matching
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technique presented in this work using SLM is validated
through simulation only. However, it can be practically imple-
mented using a control module including the proposed SLM
and a network of tuneable inductors and capacitors (our future
work).

Ridge estimation can be computed efficiently using sin-
gular value decomposition. If the dataset is represented as a
data-matrix of shapeN×C, then the computational cost of the
ridge estimation has a cost ofO(NC2) where N is the number
of sample (data size), and C is the number of input feature
(feature size). On the other hand, machine learning based
previous works in antenna impedance matching used neural
networks [34], [35], [36], [37], [38]. The computational com-
plexity to train a neural network depends on many factors,
such as the number of iterations, number of hidden layers, and
the number of neurons in each layer, size of the dataset, etc.
There are, however, many frameworks available to compute
complex structures of deep neural networks efficiently such
as TensorFlow, Keras, PyTorch, etc. In general, the com-
putation complexity of a neural network-based solution is
O(NCnlni), where nl is the number of hidden layers and ni is
the number of iterations. Here, the computational complexity
will greatly depend on the number of iterations and data size.
For example, the previous neural network-based work for
AIM takes approximately 10.5minutes for training [38] using
Intel(R) processor at 2.30GHz and 16GB memory, whereas
the proposed SLM took 0.05 seconds for the training using
same processor at 2.50GHz and 32GB memory.

It is possible to determine the matching circuit parameter
values analytically. However, this would require the complex
impedances (both magnitude and phase) or reflection coef-
ficients of the antenna. These can be measured using time
domain-based reflectometer, or a frequency domain-based
vector network analyser or spectrum analyser. The proposed
technique in this work can tune over a wide range of fre-
quency band from 2 to 3GHz. Collecting complex measure-
ments over such a wide frequency range, in the laboratory
environment, using vector network analyser would be time
consuming and cumbersome. Assuming we have the com-
plex measurements, we would still need to use (12) and
(13) to compute the circuit parameters. It is clear from the
equations that solving them would require several complex
additions, complex multiplications, division of complex con-
jugates, squaring complex terms, and then finding root-mean-
square of complex terms in quadratic equation. So, computing
the circuit parameters analytically (and frequently) would
be computationally expensive for battery operated mobile
devices. Our proposed model, on the other hand, requires
0.05 seconds (50ms) for the training, and a trained model
takes only 0.001 second (1ms) tomake a predictionwhich can
automatically tune itself. This quick predictability makes the
proposed technique more suitable for real-time applications
than analytical computations.

A comparison of the proposed model with other machine
learning based solutions for impedance matching is given
in Table 5. The impedance matching techniques proposed

TABLE 5. Comparison of reported machine learning models for
impedance matching.

in [36] and [37] are applicable for the applications related
to WPT and cannot tune antenna impedances. Moreover,
the operating frequencies are not suitable for mobile com-
munication. Although the DNN based algorithm proposed
in [38] can construct impedance matching circuits for mobile
communication but the algorithm requires 10.5 minutes using
Intel(R)Xenon(R) processor at 2.30GHz and 16GBmemory.
This time complexity restricts its use for many real-time
applications. On the other hand, the proposed model in this
work requires only 1ms to make a prediction, where one
prediction provides both the values of tuning parameters for
the AIM circuit.

VII. CONCLUSION
The resonance frequency of an antenna can be affected
by user proximity, presence of the human body (or body
parts), nearby objects, or other environmental factors causing
impedance mismatch in the RF front-end and other sensi-
tive applications such antenna sensors. A poorly matched
antenna-transceiver section causes severe power loss, reduces
transmission range and overall performance. An impedance
matching circuit can mitigate this by quickly responding to
the rapid fluctuations in the antenna’s operational conditions.
A fast, effective, and low-complexity solution has always
been a challenge for this purpose. We proposed, for the
first time, a low-complexity shallow learning-based model to
construct impedance matching circuit. We designed a novel
inverted-F antenna to evaluate and validate the performances
of impedance matching circuits. We calculated several true
values of the impedance matching circuit parameter and
created 500 interpolation points. Using these points, we sim-
ulated the antenna with impedance matching and generated
S11 dataset. Then, 400 samples are used to train the proposed
model and 100 are used for the validation. We addressed mul-
ticollinearities in the dataset, and yet used that to our advan-
tage and improvedmodel’s accuracy.We used dimensionality
reduction technique using PCA to avoid high-dimensional
complexity at the same time. For validation, the proposed
antenna is simulated using the calculated (theoretical) and
predicted tuning parameters and matching performances are
compared. Results show negligible differences in terms of
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resonance frequency, reflection coefficients, and operational
bandwidth. A summary of 10-fold cross validation with
15 repeats confirms that the proposed SLM has 0.99985 pre-
dictive accuracy. The impact of the prediction error on return
loss, mismatch loss and power transmission are also dis-
cussed. Results show that with the highest prediction errors
of 13.83% and 9.86% for the tuning parameters, respec-
tively, the proposed SLM ensures RL = -20.18 dB with ≈

1% reflected power. This is the highest amount of reflected
power due to the model’s prediction error. The proposed
low-complexity model requires 0.05 seconds for the train-
ing and 0.001 seconds for prediction making it suitable for
wireless application in terms of speed and accuracy. The
technique can be expanded for other antenna types as well as
for multiple antenna systems utilizing a network of tuneable
inductors and capacitors.

REFERENCES
[1] K. R. Boyle, Y. Yuan, and L. P. Ligthart, ‘‘Analysis of mobile phone

antenna impedance variations with user proximity,’’ IEEE Trans. Antennas
Propag., vol. 55, no. 2, pp. 364–372, Feb. 2007.

[2] B. Couraud, R. Vauche, S. N. Daskalakis, D. Flynn, T. Deleruyelle,
E. Kussener, and S. Assimonis, ‘‘Internet of Things: A review on
theory based impedance matching techniques for energy efficient
RF systems,’’ J. Low Power Electron. Appl., vol. 11, no. 2, p. 16,
Mar. 2021.

[3] M. I. Hossain, M. R. I. Faruque, and M. T. Islam, ‘‘Investigation of hand
impact on PIFA performances and SAR in human head,’’ J. Appl. Res.
Technol., vol. 13, no. 4, pp. 447–453, Aug. 2015.

[4] G. Sacco, D. Nikolayev, R. Sauleau, and M. Zhadobov, ‘‘Antenna/human
body coupling in 5Gmillimeter-wave bands: Do age and clothing matter?’’
IEEE J. Microw., vol. 1, no. 2, pp. 593–600, Apr. 2021.

[5] J. W. Adams, L. Chen, P. Serano, A. Nazarian, R. Ludwig, and
S. N. Makaroff, ‘‘Miniaturized dual antiphase patch antenna radiating into
the human body at 2.4 GHz,’’ IEEE J. Electromagn., RF Microw. Med.
Biol., vol. 7, no. 2, pp. 182–186, Jun. 2023.

[6] U. Ali, S. Ullah, B. Kamal, L. Matekovits, and A. Altaf, ‘‘Design, analysis
and applications of wearable antennas: A review,’’ IEEE Access, vol. 11,
pp. 14458–14486, 2023.

[7] M. Ziane, R. Sauleau, and M. Zhadobov, ‘‘Antenna/body coupling in the
near-field at 60 GHz: Impact on the absorbed power density,’’ Appl. Sci.,
vol. 10, no. 21, p. 7392, Oct. 2020.

[8] T. Alam and M. Cheffena, ‘‘Integrated microwave antenna/sensor for
sensing and communication applications,’’ IEEE Trans. Microw. Theory
Techn., vol. 70, no. 11, pp. 5289–5300, Nov. 2022.

[9] T. Alam, M. Cheffena, and E. Rajo-Iglesias, ‘‘Dual-functional communi-
cation and sensing antenna system,’’ Sci. Rep., vol. 12, no. 1, p. 20387,
Nov. 2022.

[10] R. Kozak, K. Khorsand, T. Zarifi, K. Golovin, and M. H. Zarifi, ‘‘Patch
antenna sensor for wireless ice and frost detection,’’ Sci. Rep., vol. 11, no. 1,
p. 13707, Jul. 2021.

[11] R. U. Tariq, M. Ye, X.-L. Zhao, S.-C. Zhang, Z. Cao, and Y.-N. He,
‘‘Microwave sensor for detection of ice accretion on base station antenna
radome,’’ IEEE Sensors J., vol. 21, no. 17, pp. 18733–18741, Sep. 2021.

[12] M. El Gharbi, R. Fernández-García, S. Ahyoud, and I. Gil, ‘‘A review
of flexible wearable antenna sensors: Design, fabrication methods, and
applications,’’Materials, vol. 13, no. 17, p. 3781, Aug. 2020.

[13] X. Jin, S. Liu, Y. Yang, and Y. Zhou, ‘‘A frequency-reconfigurable planar
slot antenna using S-PIN diode,’’ IEEE Antennas Wireless Propag. Lett.,
vol. 21, no. 5, pp. 1007–1011, May 2022.

[14] T. K. Nguyen, C. D. Bui, A. Narbudowicz, and N. Nguyen-Trong,
‘‘Frequency-reconfigurable antenna with wide- and narrowband modes
for sub-6 GHz cognitive radio,’’ IEEE Antennas Wireless Propag. Lett.,
vol. 22, no. 1, pp. 64–68, Jan. 2023.

[15] K. Paramayudha, S. J. Chen, W. Withayachumnankul, and C. Fumeaux,
‘‘Frequency-reconfigurable circularly polarized omnidirectional antenna,’’
IEEE Trans. Antennas Propag., vol. 70, no. 8, pp. 7205–7210, Aug. 2022.

[16] S. Subbaraj, M. Kanagasabai, M. G. N. Alsath, S. K. Palaniswamy,
S. Kingsly, I. Kulandhaisamy, A. K. Shrivastav, R. Natarajan, and
S. Meiyalagan, ‘‘A compact frequency-reconfigurable antenna with inde-
pendent tuning for hand-held wireless devices,’’ IEEE Trans. Antennas
Propag., vol. 68, no. 2, pp. 1151–1154, Feb. 2020.

[17] S. Wang, F. Fan, F. Zhang, Y. Li, G. Zhang, S.-W. Wong, and L. Zhu,
‘‘A frequency-reconfigurable inverted-L antenna made of pure water,’’
IEEE Antennas Wireless Propag. Lett., vol. 21, no. 1, pp. 109–113,
Jan. 2022.

[18] S. N. M. Zainarry, S. J. Chen, and C. Fumeaux, ‘‘A frequency-
reconfigurable single-feed zero-scanning antenna,’’ IEEE Trans. Antennas
Propag., vol. 71, no. 2, pp. 1359–1368, Feb. 2023.

[19] N. O. Parchin, H. J. Basherlou, Y. I. A. Al-Yasir, A. M. Abdulkhaleq, and
R. A. Abd-Alhameed, ‘‘Reconfigurable antennas: Switching techniques—
A survey,’’ Electronics, vol. 9, no. 2, p. 336, Feb. 2020.

[20] A. van Bezooijen, M. A. de Jongh, F. van Straten, R. Mahmoudi, and
A. van Roermund, ‘‘Adaptive impedance-matching techniques for control-
ling L networks,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 2,
pp. 495–505, Feb. 2010.

[21] E. L. Firrao, A.-J. Annema, and B. Nauta, ‘‘An automatic antenna tuning
system using only RF signal amplitudes,’’ IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 55, no. 9, pp. 833–837, Sep. 2008.

[22] M. Huang, Y. Lu, Q.-A. Zhu, M. Salek, Y. Wang, J. Huang, and
T. Liu, ‘‘Highly integrated PA-PIFA with a wide frequency tuning range,’’
IEEE Antennas Wireless Propag. Lett., vol. 20, no. 8, pp. 1433–1437,
Aug. 2021.

[23] I. Vasilev, V. Plicanic, and B. K. Lau, ‘‘Impact of antenna design onMIMO
performance for compact terminals with adaptive impedance matching,’’
IEEE Trans. Antennas Propag., vol. 64, no. 4, pp. 1454–1465, Apr. 2016.

[24] M. Alibakhshikenari, B. S. Virdee, L. Azpilicueta, C. H. See,
R. Abd-Alhameed, A. A. Althuwayb, F. Falcone, I. Huynen, T. A. Denidni,
and E. Limiti, ‘‘Optimum power transfer in RF front end systems using
adaptive impedance matching technique,’’ Sci. Rep., vol. 11, no. 1,
p. 11825, Jun. 2021.

[25] Y. Sun, J. Moritz, and X. Zhu, ‘‘Adaptive impedance matching and antenna
tuning for green software-defined and cognitive radio,’’ in Proc. IEEE 54th
Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2011, pp. 1–4.

[26] Y. Sun, ‘‘Antenna impedance matching using genetic algorithms,’’ in Proc.
IEE Nat. Conf. Antennas Propag., Aug. 1999, pp. 31–36.

[27] A. X. Chen, T. H. Jiang, Z. Z. Chen, and Y. Zhang, ‘‘A genetic and simu-
lated annealing combined algorithm for optimization of wideband antenna
matching networks,’’ Int. J. Antennas Propag., vol. 2012, Apr. 2012,
Art. no. 251624.

[28] Y. Tan, Y. Sun, and D. Lauder, ‘‘Automatic impedance matching and
antenna tuning using quantum genetic algorithms for wireless and
mobile communications,’’ IET Microw., Antennas Propag., vol. 7, no. 8,
pp. 693–700, Jun. 2013.

[29] M. Alibakhshikenari, B. S. Virdee, P. Shukla, C. H. See,
R. A. Abd-Alhameed, F. Falcone, and E. Limiti, ‘‘Improved adaptive
impedance matching for RF front-end systems of wireless transceivers,’’
Sci. Rep., vol. 10, no. 1, p. 14065, Aug. 2020.

[30] J. Bito, S. Jeong, and M. M. Tentzeris, ‘‘A real-time electrically controlled
active matching circuit utilizing genetic algorithms for wireless power
transfer to biomedical implants,’’ IEEE Trans. Microw. Theory Techn.,
vol. 64, no. 2, pp. 365–374, Feb. 2016.

[31] Y. Li,W. Dong, Q. Yang, S. Jiang, X. Ni, and J. Liu, ‘‘Automatic impedance
matching method with adaptive network based fuzzy inference system
for WPT,’’ IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 1076–1085,
Feb. 2020.

[32] H. Song, S.-H. Oh, J. T. Aberle, B. Bakkaloglu, and C. Chakrabarti,
‘‘Automatic antenna tuning unit for software-defined and cognitive radio,’’
in IEEE Antennas Propag. Soc. Int. Symp. Dig., Jun. 2007, pp. 85–88.

[33] M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed,
F. Falcone, and E. Limiti, ‘‘Automated reconfigurable antenna impedance
for optimum power transfer,’’ in Proc. IEEE Asia–Pacific Microw. Conf.
(APMC), Dec. 2019, pp. 1461–1463.

[34] F. Mir, L. Kouhalvandi, and L. Matekovits, ‘‘Deep neural learning based
optimization for automated high performance antenna designs,’’ Sci. Rep.,
vol. 12, no. 1, p. 16801, Oct. 2022.

[35] J. Choo, T. H. A. Pho, and Y.-H. Kim, ‘‘Machine learning technique
to improve an impedance matching characteristic of a bent monopole
antenna,’’ Appl. Sci., vol. 11, no. 22, p. 10829, Nov. 2021.

74110 VOLUME 11, 2023



M. M. Hasan, M. Cheffena: Adaptive Antenna Impedance Matching

[36] Y. Li, W. Dong, Q. Yang, J. Zhao, L. Liu, and S. Feng, ‘‘An automatic
impedance matching method based on the feedforward-backpropagation
neural network for a WPT system,’’ IEEE Trans. Ind. Electron., vol. 66,
no. 5, pp. 3963–3972, May 2019.

[37] S. Jeong, T.-H. Lin, and M. M. Tentzeris, ‘‘A real-time range-adaptive
impedance matching utilizing a machine learning strategy based on neu-
ral networks for wireless power transfer systems,’’ IEEE Trans. Microw.
Theory Techn., vol. 67, no. 12, pp. 5340–5347, Dec. 2019.

[38] J. H. Kim and J. Bang, ‘‘Antenna impedance matching using deep learn-
ing,’’ Sensors, vol. 21, no. 20, p. 6766, Oct. 2021.

[39] F. N. Fritsch and J. Butland, ‘‘A method for constructing local mono-
tone piecewise cubic interpolants,’’ SIAM J. Sci. Comput., vol. 5, no. 2,
pp. 300–304, 1984.

[40] C. B. Moler, ‘‘Interpolation,’’ in Numerical Computing With MATLAB.
Philadelphia, PA, USA: SIAM, 2004, pp. 99–100.

MOHAMMAD MAHMUDUL HASAN received
the B.Tech. andM.Tech. degrees in electronics and
telecommunication engineering from KIIT Uni-
versity, India. He is currently pursuing the Ph.D.
degree in information and communication technol-
ogy with from the Norwegian University of Sci-
ence and Technology (NTNU), Norway. In 2010,
he was an Assistant Professor with KIIT Uni-
versity. From 2011 to 2022, he was an Assistant
Professor with the Department of Electronics and

Communication Engineering, UITS, Bangladesh. He has written and/or
edited several journals and conference papers. His research interests include
wireless communications, signal processing, machine learning and intelli-
gent systems, antenna engineering, antenna sensors, massive MIMO, and
millimeter wave communications.

MICHAEL CHEFFENA received theM.Sc. degree
in electronics and computer technology from the
University of Oslo, Norway, in 2005, and the Ph.D.
degree from the Norwegian University of Science
and Technology (NTNU), Trondheim, Norway,
in 2008. In 2007, hewas aVisiting Researcher with
the Communications Research Centre, Ottawa,
ON, Canada. From 2009 to 2010, he conducted a
Postdoctoral Researcher with the University Grad-
uate Center, Kjeller, Norway; and with the French

Space Agency, Toulouse, France. He is currently a Full Professor with
NTNU, Gjøvik, Norway. His research interests include the modeling and
prediction of propagation radio channels, signal processing, medium access
control protocol design, antenna sensors, and sensor systems.

VOLUME 11, 2023 74111


