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Abstract: Soluble gas stabilization (SGS) technology is a novel way to increase the effectiveness
of modified atmosphere (MA) packaging. However, SGS can be time-consuming and difficult to
include in an existing process. This can be overcome by including CO2 in an existing processing step,
such as the product’s cooling step. A full factorial design was set up with SGS times (0.5, 1.0, and
2.0 h) and temperatures of fish cakes (chilled (0 ◦C) or during chilling (starting at 85 ◦C)) as factors.
MA-packaged fish cakes were included as a control. The response was headspace gas composition at
equilibrium. Headspace gas composition at equilibrium showed significantly (p < 0.05) less dissolved
CO2 in hot fish cakes after 0.5 h than in cold cakes. Still, no significant differences were found between
hot and cold at 1.0 and 2.0 h. Also, all SGS samples, regardless of time and temperature, had a higher
content of CO2 compared to modified atmosphere packaging (MAP).

Keywords: modified atmosphere; soluble gas stabilization; minced fish; chilling

1. Introduction

Soluble gas stabilization (SGS) technology, consisting of a pre-step before packing
where carbon dioxide (CO2) is dissolved into the food matrix, has been demonstrated
to be beneficial to prolonging the shelf life of muscle foods [1–5] and to improving the
sustainability of modified atmosphere (MA) packaging due to a higher possible degree
of filling (DF) [1,2]. However, appropriate well-designed industrial applications and
commercial technological solutions still need to be made available. One concern the
industry raises is related to changes in the processing logistics affecting the internal product
flow, thereby reducing production efficiency.

Diffusion is a time-consuming process affected by several factors, including the prod-
uct shape [6], the headspace CO2 concentration [6,7], the chemical composition of the
food matrix [8–13], the product and surrounding temperature [8,9], and the product salt
content [7,14–16]. Depending on the mentioned factors, previous studies have shown
that 3–4 days at refrigerated temperatures is necessary to obtain an equilibrium between
the product headspace and the food matrix [8,13]. However, a positive effect on product
quality or the potential to increase the DF can be obtained after shorter treatments, e.g.,
1 to 2 h [12].

One possible way to implement SGS technology into a processing line for fish cakes
without affecting production efficiency is to use the already-existing post-frying cooling
step to dissolve CO2 into the food matrix. However, the practical challenge is the product’s
initial temperature (85 ◦C) and the low CO2 solubility at such high temperatures. Due
to fast cooling rates in the product surface and subsequently increased solubility during
the first minutes of the cooling process, the potential to dissolve CO2 efficiently still exists.
The present study aimed to study the possibility of implementing SGS technology in
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processing fish cakes using the post-frying cooling step to dissolve CO2 into the product
before MA packaging.

2. Materials and Methods

The present study was carried out on commercial fish cakes purchased from a Norwe-
gian supplier, and the experiment was performed the day after production. The fish cakes
were not pre-treated by the supplier with CO2 or other packaging solutions that could
affect the experimental results. The fish cakes consisted of silver smelt (Argentina silus)
(51%) and haddock (Melanogrammus aeglefinus) (2%), in addition to milk (fat 4.5%), water,
tapioca starch, rapeseed oil, onion, nutmeg extract, salt (1%), yeast extract, dextrose, and
spices. The proximate composition as listed by the producer was fat (8%, of which 1.1%
was saturated fatty acids); proteins (11%), carbohydrates (9.2%, of which 1.3% was sugar),
and salt (1%), giving a total dry matter content of 29.2%.

The experimental setup (Figure 1) consisted of ‘initial temperature’ and ‘SGS process-
ing time’ as experimental factors. The process started by heating the fried fish cakes in a
steam cabinet (Convoterm, Elektrogeräte, Eglfing, Germany) to a core temperature of 85 ◦C.
Twenty-four out of fifty-six samples were then treated via SGS immediately (96–97% CO2),
simultaneously to them being cooled down for 0.5, 1.0, and 2.0 h, respectively (n = 8 for
each group).
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were treated with SGS according to their hot equivalents (0.5, 1.0, and 2.0 h, n = 8 for each 
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commercial protocol and to work as a control group. 

Figure 1. The experimental design. Commercial fish cakes were heated to 85 ◦C before being placed
in 100% CO2 to cool down for 0.5, 1.0, and 2.0 h, respectively. Cold-processed samples (n = 32) were
cooled to 0 ◦C before the soluble gas stabilization (SGS) treatment. Control samples were stored in air
for 2 h before being packaged in a modified atmosphere (60% CO2:40% N2).

The core temperature in four samples in each SGS treatment group was logged using
a TrackSense Pro Double Sensor (Ellab AS, Hillerød, Denmark) during cooling. The last
32 samples were cooled down in plastic bags to 0 ◦C using wet ice. Then, 24 cold samples
were treated with SGS according to their hot equivalents (0.5, 1.0, and 2.0 h, n = 8 for
each group), however without dry CO2 as a cooling medium. The last eight samples were
stored in air before packaging (0 h SGS time) and were included to simulate a standard
commercial protocol and to work as a control group.

The SGS treatment was performed according to a modified method described by
Rotabakk et al. [17]. Dry ice was used as the cooling medium for directly processing
the heated fish cakes. The average headspace CO2 concentration during treatment was
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99.3 ± 0.7%. After SGS treatment (Figure 1), all samples were re-packaged in MA-trays
(C2187-F, Fearch Plastics, Holstebro, Denmark; OTR: 66–78 cm3 × 25 µm/m2/24 t/atm at
23 ◦C, and 0% relative humidity) using a Multivac T200 semiautomatic tray-sealing system
(Sepp Haggenmüller SE & Co. KG, Wolfertschwenden, Germany) and a top film (Cryovac®

OSF33ZA, Sealed Air Food Care, Charlotte, NC, USA; OTR: 60 cm3/m2/24 t/bar at 23 ◦C,
and 0% relative humidity) consisting of 99% polyethylene terephthalate (PET) and 1%
polyethylene (PE) for improved sealing properties. The initial headspace atmosphere was
adjusted to 60% CO2 (60.3 ± 0.3%) and balanced with N2. A total weight of 263 ± 2.6 g fish
cake was packaged in each tray (4 pieces in each tray), giving a DF of 37.3 ± 0.3%.

Both the SGS treatment and the storage (96 h) for the packaged samples took place in
a chilled storage room with a temperature of 1.8 ± 0.3 ◦C.

The solubility of CO2 in fish cakes as affected by the experimental factors was mea-
sured as changes in headspace gas composition at the point of packaging (n = 17) and at equi-
librium (n = 8 per group, 56 in total) by a Checkmate 9900 analyzer (PBI Dansensor, Ringsted,
Denmark). The sample dry matter (DM) was measured according to ISO.6496 [18].

One-way ANOVA and Tukey’s comparison test were used to compare different groups.
All statistical analyses were performed using Minitab 19 (Minitab Inc., State College, PA, USA).
The alpha level was set to 5% (p < 0.05), and all results are given as an average ± standard
deviation (SD), unless otherwise stated.

3. Results and Discussion

SGS treatment significantly (p < 0.001, one-way ANOVA) increased the level of CO2
in the tray headspace in all SGS samples compared to MAP (Figure 2). The solubility of
CO2 in a food matrix is proportional to the concentration of CO2 in the headspace, which is
determined by the solubility constant (Henry’s constant), as described by Henry’s Law [19].
However, this only applies when the system is in equilibrium. The measurements of
headspace CO2 concentration were hence conducted after 96 h of storage, assuming that
equilibrium was reached [8,12]. Furthermore, a significant increase in the headspace’s CO2
level (p < 0.001, one-way ANOVA) was observed as a function of a longer SGS processing
time (0.5 h < 1.0 h < 2.0 h).
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Figure 2. The headspace CO2 concentration of MAP (control) and SGS (0.5, 1.0, and 2.0 h) samples
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As the headspace CO2 increases, the amount of dissolved CO2 in the fish cakes
increases accordingly, which implies that the fish cakes can dissolve CO2 during cooling.
Also, there was a significantly (p < 0.001, one-way ANOVA) lower concentration of CO2
in fish cakes that were SGS-treated during chilling, compared to those treated hot at the
processing time of 0.5 h, but not for those treated for 1.0 h or 2.0 h. Henry’s constant is
dependent on several factors, amongst other temperatures [20], and the solubility of CO2
is known to increase with decreasing temperature. The average core temperature in the
warm fish cake was 71.9 ± 2.3 ◦C at the starting point of the SGS treatment. The highest
recorded core temperatures after 0.5, 1.0, and 2.0 h SGS treatment were 25.6 ◦C, 13.1 ◦C,
and 5.0 ◦C, respectively (Figure 3).
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CO2 is a gas that has good solubility in both water and liquid fat in food [8,16].
Moreover, the solubility depends on the product’s total amount of water and fat. The dry
matter in the fish cakes was 29.6 ± 0.1%, and no significant differences (p = 0.150, one-way
ANOVA) were found between the cakes processed warm or cold. The fat content was
approximately 8%, according to the producer. The primary ingredient in the fish cakes,
silver smelt mince, consisted mainly of saturated and monounsaturated fatty acids in the
range of C14 to C22 [8]. Since most of the present lipids will change their state during
cooling, from a liquid form in warm fish cakes to a solid state after cooling, the improved
solubility of CO2 is reasonable in the first part of the cooling procedure [8]. However,
high temperatures naturally decrease the solubility of CO2 dramatically [9]. The higher
temperature (25.6 ◦C) measured in the hot SGS-processed fish cakes (0.5 h group) was most
likely the main reason for the observed difference between the pre-cooled samples and the
samples cooled for 0.5 h, as the cakes’ proximate composition was equal. According to
Fick’s second law of diffusion [21], CO2 starts to dissolve on the surface and then diffuses
into the food matrix simultaneously, as the surface temperature will drop sooner than
the fish cakes’ core temperature. The cooling of the fish cakes was slow enough in this
system to show a significant difference after 0.5 h (showing the highest headspace CO2
concentration of cold-treated samples). However, this effect was insignificant after SGS
processing times of 1.0 and 2.0 h. In a commercial setup, the cooling will take place in
a much shorter timeframe. The current fish cake producer has a 40 min process directly
after the frying step to cool the cakes down to refrigerated temperatures (<4 ◦C). It is
likely that more efficient cooling for 40 min will result in an equal absorbance of CO2 as
with the precooled fish cakes, as the surface and the first millimeters below will decrease
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in temperature more rapidly than observed in the experimental setup conducted in the
present study.

Increasing the headspaces’ CO2 level from 30.2% (MAP samples) to 34.8% with SGS
during cooling (0.5 h SGS time) will most likely affect the product’s shelf life. It is well
known that the effectiveness of MAP in inhibiting the growth of microorganisms is deter-
mined by the concentration of dissolved CO2 in the product [22]. Increasing the headspace
concentration of CO2 from 38.8 to 44.9 significantly increased chicken breasts’ microbial
and sensorial shelf life [17]. In addition, an increase from 51.5% to 56.8% in chicken drum-
sticks significantly reduced the amount of total aerobic bacteria and Pseudomonas spp. [23].
Both Rotabakk et al. [17] and Al-Nehlawi et al. [22] used an SGS processing time of 2.0 h,
comparable with the design of the present experiment. It has also been previously shown
that increased SGS time is followed by an increased amount of dissolved CO2. SGS times
up to 48 h have been tested [24], showing that the dissolving rate of CO2 decreases with
increased SGS processing time applied. In other words, by applying the SGS technology,
the highest amount of CO2 will be dissolved at the beginning of the process.

This highlights the possibility of increasing the shelf life of fish cakes even after 0.5 or
1.0 h of SGS processing as part of the existing post-frying cooling step in the commercial
production of fish cakes.

4. Conclusions

This trial demonstrates that it is possible to simultaneously chill down and dissolve
CO2 into a newly fried product. It shows the possibility of including SGS technology
in an already-existing production step without adding extra processing time. This is a
big step toward an industrial application. Further work will be focused on scaling up
and finding a secure way to maintain health and safety issues working with CO2 in a
processing environment.
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