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ABSTRACT Multiple heterogeneous interacting systems are needed to realize the requirements of complex domains. Describing
the interactions between these systems and checking their global behavioral consistency is a general, well-known challenge in
software engineering. To address this challenge, model-driven software engineering utilizes abstract representations of the
constituting systems and their interactions, resulting in a multi-model representing the overall system. In such a multi-modeling
setting, global consistency requirements must be satisfied by a set of heterogeneously typed models to guarantee a desired
global behavior. In this paper, we propose a novel approach for behavioral consistency management of heterogeneous
multi-models. The approach introduces a workflow in which we (i) define which behavioral models in the multi-model may
interact, (ii) specify consistency requirements as global behavioral properties, (iii) align the individual models by specifying how
they interact, (iv) generate a formal specification of the global behavior, and finally, (v) check the global behavioral properties,
which should be satisfied by the multi-model. Our approach is decoupled from the particular formalism used in the generated
formal specification, and we currently support graph transformations (Groove) and rewriting logic (Maude).
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1. Introduction

Model-Driven Engineering (MDE) addresses the increasing
complexity of software systems by employing models to de-
scribe the different aspects of the system. In this way, MDE
promotes a clear separation of concerns and raises the abstrac-
tion level throughout the entire development process (France &
Rumpe 2007). These models are then used to generate portions
of the system, leading to increased productivity, and reduced
errors (Brambilla et al. 2017). As multiple interacting systems
are needed to realize the requirements of complex domains, a
set of corresponding models would be needed to represent these
systems and their interactions. Such a collection of interrelated
models is called a multi-model (Boronat et al. 2009), which is
usually heterogeneous, meaning it consists of models conform-
ing to different modeling languages. Models in a multi-model
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contradicting each other can lead to problems during develop-
ment, system generation, and system execution. Consequently,
continuous multi-model consistency management during the
development process is a significant issue for multi-models
(Spanoudakis & Zisman 2001; Cicchetti et al. 2019).

Recent research describes methods to check the structural
consistency of a multi-model (Stiinkel et al. 2021; Klare &
Gleitze 2019). Structural models, like UML class diagrams,
describe structural aspects of systems, i.e., domain concepts and
relations between these concepts. This is usually referred to as
the denotational semantics of the software system, as it only
describes the set of valid instances or states of the system. Struc-
tural models in a multi-model often contain related information.
Thus, current approaches define so-called commonalities to ex-
plicate these relationships and keep the information consistent.
Afterward, these commonalities can be used to get a compre-
hensive view of the global system, for example, by merging all
models into a global view. Structural consistency can then be
verified using this global view.

Nevertheless, approaches to multi-model consistency man-
agement must also include a means to maintain behavioral con-
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sistency since behavioral models, like Business Process Mod-
eling Notation (BPMN) models, are associated with execution
semantics describing dynamic aspects of the system (Object
Management Group 2013). For example, multi-models consist-
ing of different interacting behavioral models are used when
modeling embedded and cyber-physical systems (Vara Larsen
et al. 2015).

Several approaches exist for checking the consistency of spe-
cific pairs of behavioral models. For example, consistency
checking for sequence diagrams and statecharts was imple-
mented using Petri nets (Yao & Shatz 2006) and Communicating
Sequential Processes (CSP) (Kiister & Stehr 2003). Moreover,
the co-simulation field tackles the simulation of interacting
models by composing their individual simulations. To facili-
tate composing simulations, the Functional Mock-up Interface
(FMI) standard for simulation models and simulation tools such
as Ptolemy (J. Eker et al. 2003) were developed. However, there
is no approach to define and check consistency of arbitrary
many behavioral models.

‘We propose a novel approach for consistency management
of heterogeneous multi-models, which allows us to define and
check global behavioral properties. Our approach facilitates
specifying interactions between multiple potentially heteroge-
neous behavioral models, which are used to generate a spec-
ification of the global behavior. The approach is decoupled
from the particular formalism used in the specification, and
currently, we can generate specifications in two different for-
malisms. The generation of the global behavior specification is
Sfully automatic and results in Graph Transformation (GT) rules
(or, respectively, term rewriting rules) executable in Groove
(Maude). Afterward, we can use the built-in verification mecha-
nisms in Groove (Maude) to check the previously defined global
behavioral properties.

Our approach is based on two fundamental concepts: state
and state-changing elements. The state structure of each partici-
pating behavioral language must be explicitly defined to infer
how global states are structured. Furthermore, state-changing
elements must be identified in each participating behavioral
language. Thus, state-changing elements serve as a minimal
behavioral interface to uniformly define interactions for hetero-
geneous models. Our approach applies to behavioral formalisms
where these two concepts can be found, which is the case for
most formalisms with discrete state variables (see related work
in section 6).

The proposed approach partly resembles the state of the art
approaches for structural consistency. Interactions correspond
to commonalities as both add necessary inter-model information.
Then, a global representation of the system’s behavior/structure
is constructed by composing the individual models using the in-
teraction/commonality information. Generating a global behav-
ior specification is similar to merging structural models into a
global view. To achieve a global view for structural models, one
introduces a base language in which individual models and the
global view can be represented. Likewise, generating our global
behavior specification is based on the two fundamental concepts
of state and state-changing elements. In summary, we adapt the
three steps for structural consistency management: Alignment,
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Verification, and Reconciliation as proposed in (Stiinkel et al.
2021) to a multi-model containing behavioral models.

This contribution builds on our previous publication (Kriuter
2021). However, we refined the behavioral consistency manage-
ment workflow into five steps and introduced new key concepts
such as state, state-changing elements, interactions, and behavi-
oral relationships.

The remainder of this paper is structured as follows. We
introduce a simplified use case (section 2) before explaining
our behavioral consistency management approach in detail (sec-
tion 3). Afterward, we show how we can use the GT toolset
Groove to check behavioral consistency (section 4). Further-
more, we discuss the potential limitations of our approach in
section 5. Finally, we examine related work in section 6 and
conclude in section 7.

2. Use Case

This section motivates our approach with a simplified use case
in which a traffic management system is developed to guide the
traffic at a T-Junction with three traffic lights. The traffic man-
agement system should control the traffic by switching between
the two traffic phases highlighted in figure 1. In addition, it must
fulfill the following two requirements. First, it must guarantee
safe traffic by correctly changing the three traffic lights A, B,
and C. Second, it should prioritize arriving buses, i.e., switch
the traffic lights quicker than usual to let an approaching bus
pass (early green). This so-called bus priority signal is a widely
implemented technique to improve service and reduce delays in
public transport.

i Phase 1 (P1) C ! | Phase 2 (P2) C

oo gB | o
C A A

Figure 1 Traffic phases of a T-Junction

To develop the behavior of the traffic management system,
we follow an MDE approach. First, we model the behavior of a
traffic light as a Unified Modeling Language (UML) state ma-
chine. Then we use BPMN to model the different traffic phases
of the T-Junction, including the prioritization of approaching
buses.

Using different behavioral modeling languages in the use
case has two reasons. First, two software development teams
might work on the system in parallel but prefer different model-
ing languages. Second, each team can choose the most appro-
priate modeling language for defining their part of the system.
In this use case, the behavior of a traffic light and a T-Junction
differs significantly in complexity and requirements, resulting in



the use of two different behavioral modeling languages, namely
UML state machines, and BPMN.

The behavior of a traffic light is straightforward since it uses
only three colors to guide the traffic. Figure 2 shows a typical
traffic light that switches from red to red-amber, green, amber,
and back to red. The start state of the traffic light in figure 2 is
red but can be any of the four possible states.

TrafficLight ) ®
[ J

turn ® turn

red 7 red-amber
amber red-amber

turn turn

amber green

Figure 2 Traffic light state machine model

However, the T-Junction’s behavior is more complex since it
should coordinate the three traffic lights and communicate with
approaching buses to implement bus priority. Consequently, we
are using BPMN to model this aspect of the system’s behavior
and utilize BPMN message and signal events to implement the
communication with approaching buses.

We model two processes, one for the T-Junction and one for
the Bus. Each process is modeled in its BPMN pool. A pool is
depicted as a horizontal lane with a name on the left. Message
flows (arrows with dashed lines) are only allowed between two
different pools.

Figure 3 shows how a possible controller for a T-Junction
behaves in the traffic management system. When a TJunc-
tion controller is started, we assume that the traffic lights are
showing the colors according to phase 1 (see figure 1). Thus,
the controller enters a subprocess called phase 1 (see top right
in figure 4), which we describe together with the subprocess
called phase 2 later. However, when a fixed amount of time
has passed, the subprocess is interrupted by the attached timer
boundary event. Then, the controller executes the next activity
and switches to phase 2. The controller will pass a throwing sig-
nal event before entering a subprocess for phase 2 and repeat the
same steps. This signal event represents a broadcast to all buses
waiting for traffic light B to become green. After switching back
from phase 2 to phase 1 and signaling that traffic lights A and
C are green, the controller can stop or execute the described
steps again. Typically, the controller does not stop, indicated
by the default sequence flow going back to the beginning of the
process.

Figure 4 shows the communication of a bus with the subpro-
cess phase 1. The BPMN model and communication for phase
2 of the controller can be defined accordingly.

The phase 1 model uses an event-based gateway to respond
to two different kinds of messages. First, the traffic light status
can be requested, which is answered by sending a message

declaring that the traffic lights A and C are green while B is red.
Moreover, early green for traffic light B can be requested. This
request ends the subprocess, and the controller immediately
switches to phase 2 (see figure 3), which results in the traffic
light B turning green.

The bottom of Figure 4 shows the controller for a bus pa-
rameterized with direction B. It will first request the traffic light
status to determine if traffic light B is green. If it is green, the
bus can pass the junction. However, if it is red, the bus requests
to change B to green and waits for a signal that the controller
has changed the traffic light. After receiving the signal, the
bus passes the junction. A BPMN model for a bus controller
parameterized with the direction A or C looks nearly identical.
In addition, the bus controller communicates with the phase
2 subprocess, which we only hint at in figure 4. The phase 2
subprocess has the same structure as the phase 1 subprocess
but reports that A and C are red, while B is green. Similarly, it
terminates if green is requested for A or C. The full model and
all other models are available in (Kriauter 2023).

Having developed behavioral models for the system, we want
to check the previously stated safe traffic requirement while
buses are prioritized. We can lower the overall development cost
if we find bugs related to these requirements as early as possible
during system development. However, the traffic light model is
currently not related to the T-Junction and bus models while the
T-Junction is supposed to control the traffic lights, for example,
when it switches between the two traffic phases. In addition,
the system has to manage multiple slightly different instances
of the behavioral models. For example, there are three traffic
lights at one T-Junction starting in different states—i.e., showing
different colors—and buses approaching the T-Junction from
one of the three directions. Consequently, we need a model of
the system to allow us to define interactions between the models
and configure instances of the behavioral models contained in
the multi-model.

The resulting model called the System Relationship Model
(SRM) is shown in figure 5 using a graph-based syntax. It con-
tains one node for each behavioral model and arrows to depict
behavioral relationships, leading to possible interactions. In
addition, it contains enumerations to parameterize the behavio-
ral models. A TJunction has three associated TrafficLights, A,
B, and C, and a set of currently approaching Buses. A Traffi-
cLight has four possible TrafficLightStates and an attribute to
define its startState. A Bus has a direction that indicates which
TrafficLight of the T-Junction it is approaching.

Finally, using the SRM, we can define a test configuration
of our traffic management system to check its requirements.
Figure 6 depicts the test system configuration as an instance of
the SRM. First, it contains three instances of the traffic light
behavioral model, representing the three traffic lights, A, B, and
C. Second, it contains an instance of the T-Junction behavioral
model connected to the three traffic lights and two instances of
the bus behavioral model. Thus, the test system configuration
describes a system that controls one T-Junction with three traffic
lights and two buses approaching from directions A and B.

First, we would like to check the safe traffic requirement.
Since we only want to check system conformance concerning
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Figure 5 System relationship model of the traffic manage-
ment system

the two traffic phases, we do not need to include the two buses

depicted in the red dotted square in figure 6 in the analysis.

We cannot simply assert that the system is either in phase 1 or
phase 2 since there are intermediate states during the transition
between the two phases, which are allowed. By consulting
figure 2, we can, for example, expect a state in which traffic
lights A and C are amber, and traffic light B is red-amber before
reaching phase 2. However, we can define safe traffic as the
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Figure 6 Test system configuration

absence of unsafe traffic, which is easier to define.

For the T-Junction, unsafe traffic occurs if traffic light A is
green or amber and traffic light B is green or amber simultane-
ously. In addition, the same state combinations are forbidden
for traffic lights B and C. Unsafe traffic occurs only in these situ-
ations since green and amber mean that cars are allowed to pass,
while red (red-amber) means cars are not (not yet, respectively)
allowed to pass. We can formalize the consistency requirements



as safety properties in Linear Temporal Logic (LTL), i.e., states
that should never be reached. The resulting global properties
(1) and (2) are the following, assuming the existence of atomic
propositions for each traffic light state.

D_‘((Agreen \ Aamber) A (Bgreen v Bamber)) (D
Dﬁ((cgft’en \ Camber) A (Bgreen \ Bumher)) 2

If we include buses B1 and B2 in the system, we want to
check that they cannot pass when their traffic light is red or
red-amber. Concretely, this means the Pass Junction activity
should not execute while the corresponding traffic light is red
or red-amber. We formalize these requirements again by using
LTL safety properties (3) and (4), where the atomic proposi-
tion Bl gssing and B2p,ssing represent that Pass Junction (see
figure 4) has started but not finished yet.

D_‘(Blpussing A (Ared N Ared—umber)) 3
D_‘(szussing A (Bred \ Bredfumber)) “

However, to check the global properties, we must execute
the system with the behavior specified in the behavioral models
according to the test configuration. This is not straightforward
since the multi-model of the use case consists of a SRM relat-
ing two heterogeneously typed behavioral models. In addition,
the system configuration instantiates the traffic light and bus
behavioral models multiple times with different parameters.
Furthermore, we face the problem that the models are not in-
dependent. For example, the T-Junction controller must decide
when the traffic lights A, B, and C switch states. Thus, if we
were to run the models independently in parallel, the properties
would be violated.

A multi-model is behaviorally consistent if it satisfies all
of its behavioral properties. A behavioral property is given in
temporal logic, for example, LTL in the use case, and is char-
acterized as local if it constrains only one model and as global
if it spans two or more models in a multi-model. Furthermore,
global properties depend on the system configuration, i.e., the
instance of the SRM used. In the remainder of this paper, we
will describe our approach to address behavioral consistency in
multi-modeling and apply it to this use case.

3. Behavioral consistency management

Figure 7 depicts our approach to behavioral consistency man-
agement as a BPMN diagram.
Our approach consists of five steps.

1. We define a System Relationship Model (SRM) describing
which behavioral models may interact.

2. We specify consistency requirements as global behavioral
properties for the SRM.

3. We define interactions between the behavioral models us-
ing the SRM.

4. We automatically generate a specification of the specified
global behavior using the interactions and the SRM.

5. Given a system configuration, we check the global behavi-
oral properties using the generated specification.

The first three steps are marked as manual and must be com-
pleted to use our approach in a given use case. However, the
last two steps are automated and reusable in any use case. In
the following sections, we will describe each step in detail,
highlighting what a modeler must repeatedly do for each use
case and what must only be done once for each participating
behavioral language. In addition, figure 18 at the end of the
paper gives an overview of all the new concepts and how they
are applied to the use case.

3.1. Define the system relationship model

As mentioned, a set of behavioral models might be used to de-
scribe the behavior of a software system. Each model conforms
to its metamodel, corresponding to the behavioral language
used to specify the model. The metamodel ensures that models
specified in the corresponding languages are well-defined and
machine-readable. This is crucial when automating parts of the
consistency checking.

The use case utilizes state machine and BPMN models,
which conform, respectively, to the metamodels of state ma-
chines (see figure 8) and BPMN (see figure 9). The metamodel
of state machines is defined by a UML class diagram. In ad-
dition, the clouds depict the concrete syntax that we use to
denote the models conforming to the metamodel. The traffic
light model in figure 2 uses this concrete syntax.

A StateMachine has a startState and transitions, whereas
each Transition connects two States. The states of a state ma-
chine are not explicitly modeled but can be derived from the
transitions of a state machine. Furthermore, isolated states are
not allowed.

The metamodel for BPMN (see figure 9) is defined analo-
gously to the one of state machines. A BPMN Process contains
a set of FlowNodes connected by SequenceFlows. FlowNodes
and SequenceFlows are FlowElements, inheriting an id and
a name. A FlowNode can be an Activity, Gateway, or Event.
All special activities, gateways, and events are defined in the
BPMN specification (Object Management Group 2013).

Behavioral models interact to realize the global system be-
havior. A SRM describes which behavioral models exist in the
system and whether they are behaviorally related, i.e., they may
interact during execution. In our approach, we define a system
relationship metamodel to specify these relationships formally.
The constructed SRM is use-case specific, while the metamodels
for the participating languages must only be defined once.

We are using a graph-based syntax to define SRMs (see fig-
ure 5), where each node corresponds to a behavioral model
(typed by a BehavioralMetamodel), while each arrow corre-
sponds to a BehavioralRelationship (see concrete syntax de-
picted in clouds). For example, the SRM for the use case (see
figure 5) has three behavioral relationships from TJunction to
TrafficLight since a TJunction controller interacts with three
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Figure 8 Finite state machine metamodel

different traffic lights A, B, and C. Furthermore, there is a beha-
vioral relationship from TJunction to Bus because we want to
check the safety properties (3) and (4). To summarize, behavio-
ral relationships define which behavioral models may interact,
while the interactions in the next step of the workflow describe
how they interact.

In addition, we allow enumerations and attributes in SRMs.
These may be used as parameters, e.g., to define the start state
in a state machine (see figure 5). Different instances of the SRM
can be used to analyze the global behavior of different system
configurations by changing the parameters.

3.2. Specify consistency requirements

In this step, we specify behavioral consistency requirements
as global behavioral properties. These properties are defined
using temporal logic, for example, LTL as in the use case. The-
oretically, any temporal logic can be used together with our
approach, however, in practice, the underlying system which
runs the generated specifications must support it. Furthermore,
we agree with (Meyers et al. 2014) that modelers are usually
unfamiliar with temporal logic. Lifting property specification
to the domain-specific level is a promising idea that fits our ap-
proach. Nevertheless, for now, a modeler must define temporal
logic properties.
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Figure 9 Simplified BPMN metamodel (Object Management
Group 2013)

Temporal logic properties are built upon a set of atomic
propositions which are either true or false in a given state. Each
behavioral language (e.g., the BPMN) specification defines how
these states are represented. Furthermore, the transitions be-
tween these states depend on the semantics of the behavioral
models. In our approach, the first fundamental concept is to
make state structure explicit. We will call the models for the
state structure snapshot metamodels and specify them using
class diagrams.

For example, in the use case, we define snapshot metamodels
for state machines and BPMN. A state machine is in one state
at a time, as shown in the snapshot metamodel on the left of
figure 10. We are reusing the concrete syntax elements from
the state machine metamodel (see figure 8) for the snapshot
metamodel. In addition, each snapshot metamodel has a root
element in our approach, highlighted in light blue.

The snapshot metamodel for BPMN is based on a Token
distribution as described in the BPMN specifications (Object
Management Group 2013) (see on the right of figure 10). The
root element ProcessSnapshot has tokens and subprocesses.
A Token indicates where it is located in the BPMN model using
its position attribute. A valid position is the id of a FlowElement
(see figure 9). Also, for the snapshot metamodel of BPMN we
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Figure 10 FSM and BPMN snapshot metamodels

reuse the concrete syntax of the BPMN metamodel. In addition,
Tokens are highlighted with green bubbles in the middle of
sequence flows and the top right of an activity.

Each instance of a snapshot metamodel can represent an
atomic proposition since a system can either be in the state
specified by this instance or not. Since instances of snapshot
metamodels are essentially graphs, they can be matched to a
given system state uniformly. Thus, using the snapshot meta-
models to create atomic propositions, we can specify local
behavioral properties for any modeling language. However,
to specify global behavioral properties, we must combine the
information of the SRM with the snapshot metamodels. Each
behavioral model is typed by a behavioral metamodel, which
has a snapshot metamodel describing its state structure. Thus,
we know how states of behavioral models are represented when
they are instantiated. For example, figure 11 shows how to
specify the atomic propositions Agreen and Blyssing, used in
the global properties in section 2. Snapshot links connect in-
stances of behavioral models with root element instances of the
corresponding snapshot metamodel.

: Agreen v Blpassing

I 1:Tduncti b :
: i :approaching B1:Bus '
H A Vo 1:TJunction '
H i direction = A |
i|  A:TrafficLight 1:State .

:snapshot H

1:ProcessSnapshot|:

startState = Green name = "green" 1

! :snapshot ¥ :currentstﬁ 1:Token

i|1:StateMachineSnapshot

H ' position = "Pass Junction" name = "Bus"

name = "TrafficLight"

Figure 11 Atomic propositions Agreen and Blygssing

To make formulating atomic propositions less cuambersome,
one can use the concrete syntax of the individual snapshot meta-
models. For example, figure 12 shows the same atomic proposi-
tions as figure 11 but uses the introduced concrete syntax.

With the defined atomic propositions as ingredients, one can
use temporal logic to define global behavioral properties such
as the properties (1)-(4) in section 2. It is worth noting that
the defined atomic propositions are model-specific, meaning
they exactly fit the given multi-model. Thus, property definition
(including atomic propositions) is done for each use case, while
snapshot metamodels for behavioral languages must only be
defined once.

: Agreen P Blpassing H
| < S E
18 e h
10 [ H
| S HI = :
| =2 ! = H
| ? v ? '
I A :
E A ; E l:approaching ;
! Y v H
| TrafficLight o :
: ¢ & :
: . ) Pass junction '
! S H

Figure 12 Concrete syntax for Agreen and Bl ssing

3.3. Define model interactions

In contrast to structural multi-modeling, we call behavioral
inter-model relationships interactions since they carry beha-
vioral meaning while commonalities carry structural meaning
(Stiinkel et al. 2021; Klare & Gleitze 2019). To specify interac-
tions between different behavioral models, we define an inter-
action language given by the system relationship metamodel in
figure 13. In addition, we introduce the second fundamental con-
cept of state-changing elements. Each BehavioralMetamodel
specifies a set of StateChangingElements. For example, a state
machine defines states and transitions, but only the transitions
describe how the states in a state machine change. Thus, the
transitions are the state-changing elements of a state machine
(highlighted in purple, see figure 8). Similarly, the flow nodes
are the state-changing elements of a BPMN process (highlighted
in purple, see figure 9)'. The interaction of behavioral models
is only possible through instances of state-changing elements.
Thus, state-changing elements function as a minimal behavioral
interface to define interactions for heterogeneous behavioral
languages uniformly.

Our approach is based on the requirement that state-changing
elements can be identified in metamodels for any used behavi-
oral formalism. This requirement is not difficult to meet since
behavioral modeling languages with a discrete state must have
some observable construct to describe state changes. Inspect-
ing other behavioral languages, such as Petri Nets or activity
diagrams, shows that identifying state-changing elements (tran-
sitions and activity nodes, respectively) is unproblematic.

An Interaction has a sender, a set of receivers, and a type.
Currently, there is only the synchronous InteractionType. How-
ever, more interaction types, for example, asynchronous interac-
tions or interactions with message passing, could be added in the
future. We model the role of sender and receiver in interactions
to accommodate these interaction types in the future. The two
roles are not needed for synchronous interactions and are hidden
from the modeler in the concrete syntax used later in listing 1.
Furthermore, asynchronous interactions can be modeled us-
ing two synchronous interactions with an additional behavioral
model, such as a queue. Each InteractionReceiver references
one BehavioralRelationship and one StateChangingElement.

! One exception is the event-based gateway, which is not part of the state-
changing elements.
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Adding new interaction types only impacts steps 3.3 and 3.4
in our approach (see figure 7). Concretely, a new interaction type
has to be added to the enumeration in the system relationship
metamodel and must be accounted for in the concrete syntax
for interactions. Then, the semantics of the new interaction
type must be added to the generation of the global behavior
specification in step 3.4.

The sender and the elements of the InteractionReceivers de-
scribe a state change for their behavioral models. By connecting
them with a synchronous interaction, we define simultaneous
state changes in one atomic step. Consequently, an interaction
defines a synchronization between behavioral models. Gener-
ally, models behave in a distributed independent fashion until
they reach a state-changing element that is part of an interaction.
To execute these state changes, the models must then interact,
i.e., synchronize as described. In addition, one can only define
interactions for state-changing elements if a behavioral rela-
tionship connects their behavioral models (see constraint (5)).
We use "." in constraints to navigate along associations. For
example, i.receivers means following all receivers links for
an Interaction object, resulting in a set of InteractionReceiver
objects.

Vi € Interaction : Vr € i.receivers :
r.element € r.relationship.target.elements N

&)

i.sender € r.relationship.source.elements

We allow the definition of as many interactions as desired.
Two interactions are not allowed to share state-changing ele-
ments (see constraint (6)). If such a situation occurs, it must be
resolved by the modeler by deleting one of the interactions or
merging the two interactions into one.

Viy, iy € Interaction :

(iy.receivers.element U iy.sender) N (6)

(ip.receivers.element U ip.sender) = @

In the use case, the TJunction controller interacts with the
three traffic lights, A, B, and C. Listing 1 defines two interac-
tions synchronizing TJunction controller and the traffic lights,
using a textual Domain-Specific Language (DSL). The synchro-
nize keyword specifies the InteractionType to be synchronous.
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Each interaction first defines the sender state-changing ele-
ment. Then receivers are defined by navigating along an ar-
row (BehavioralRelationship) to other BehavioralModels in the
SRM and then specifying a StateChangingElement. All navi-
gation along BehavioralRelationships starts from the Behav-
ioralModel containing the sender, so constraint (5) is satisfied.
synchronize (TJunction.Switch_to_P1,
TJunction.A.turn_green,

TJunction.B.turn_red,
TJunction.C.turn_green)

synchronize (TJunction.Switch_to_P2,
TJunction.A.turn_red,
TJunction.B.turn_green,
TJunction.C.turn_red)

Listing 1 Interactions for the use case

We can explain the interactions as follows. The first in-
teraction defines that the task Switch to P1 and three other
state-changing elements synchronize. Furthermore, line 2 speci-
fies that one of the synchronization receivers is the element furn
green connected by the relationship A. Similarly, two other tran-
sitions of the traffic lights B and C are specified in the following
two lines. Thus, the interaction defines a synchronization of a
task and three traffic light transitions. The second interaction
defines a synchronization for the task Switch to P2 and three
traffic light transitions.

To summarize, we use the system relationship metamodel to
define the relations between the behavioral models in a multi-
model. Thus, the inter-relations between behavioral models in
a multi-model are given by interactions and their behavioral
relationships. Interactions are specific to each use case, but
identifying state-changing elements must only be done once for
each behavioral language.

3.4. Generate a global behavior specification

Using the SRM and snapshot metamodels, we can represent
the global states of the system. However, we still need a for-
mal specification of the global behavior to check the defined
properties. The specification of the global behavior used in our
approach must fulfill the following three requirements:

1. The specification must implement the semantics of each
behavioral model.

2. The specification must realize the defined interactions be-
tween the behavioral models.

3. The specification semantics must allow the checking of
behavioral properties for a given system configuration.

Thus, a specification in any formalism fulfilling these three re-
quirements can be used in our approach. Consequently, one
can experiment with different formalisms, for example, GTs,
rewriting logic, state machines, Petri nets, or process algebras,
without changing the general framework. One can then pick the
most suitable formalism for the modeling scenario at hand re-
garding, for example, the performance of consistency checking.
In section 4, we describe how we generate specifications for the
GT toolset Groove.



To summarize, we generate a specification of the global sys-
tem behavior. This generation takes the models and interactions
as input and is fully automated to allow frequent model changes.

3.5. Check behavioral consistency

In this step, for a given system configuration, we use the gen-
erated specification of the global behavior to check the con-
sistency. A system configuration is an instance of the SRM
and is automatically translated into the formalism used in the
specification. We then check the defined properties using the
specification and the system configuration. This step is fully
automated, such that it can be executed as many times as needed
for different system configurations and properties while using
the same specification.

Finally, if a consistency requirement is violated, a counterex-
ample will be presented. We can only show counterexamples
if the concrete tool, executing the generated specifications, pro-
vides them. However, most modern tools, including Groove and
Maude, will provide a counterexample. Adopting the same con-
crete syntax to visualize the counterexample as for the atomic
propositions should be ideal for helping user understanding.
Uncovered inconsistencies can lead to a consistency restoration
process, which is crucial but out of the scope of this paper. We
describe consistency checking for the use case and its result at
the end of the next section.

4. Specification of the global behavior

This section describes how GTs can be used as one possible
formalism for behavioral consistency management. We utilize
the Groove tool set to run the generated specifications, i.e., GT
systems (Rensink 2004) for the use case and discuss the results.
The successful implementation serves as a proof of concept for
our approach. We have chosen to use the GT formalism to de-
scribe our approach because GTs provide a visual representation
and allow for a clearer understanding. As an alternative to GT
and Groove, we describe in (Krduter 2023) our implementation
using rewriting logic and Maude.

Both implementations utilize a global Higher-Order model
Transformation (HOT) from the behavioral models and their in-
teractions to GT rules (Groove) or term rewriting rules (Maude).
Since the results of the Model Transformation (MT) can be re-
garded as MTs themselves, we say the MT is higher-order (Tisi
et al. 2009). In the following, we describe the HOT to generate
GT specifications for Groove. The HOT works similarly when
generating a term-rewriting specification for Maude.

The HOT can be decomposed into two steps. The first step
to generate a specification of the global behavior is to create
GT rules for each behavioral model contained in the multi-
model. Each set of rules must describe the behavior of the given
behavioral model by manipulating instances of the snapshot
metamodels. For example, a rule for a transition in a state
machine changes the current state of a state machine snapshot
from the source to the target of the transition.

Thus, we need local HOTs for each behavioral modeling
language producing rules. Each local HOT only has to be imple-
mented once by a language engineer. The HOT, metamodel, and

snapshot metamodel for a behavioral language can be shared
together, for example, as a plugin, such that they can be reused
in any future setting the language is needed. In addition, each
local HOT must keep traces of the generated rules. Concretely,
it has to save which rules originated from which state-changing
elements in the behavioral model. Returning to the state ma-
chine example, we must know which transition results in which
rule. In general, multiple rules may be associated with one
state-changing element of a behavioral model. For example,
a receive task in a BPMN process is represented by two rules
since it starts and then waits for an incoming message before
finishing.

The second step is to modify the generated rules to reflect the
defined interactions. Interactions define the synchronization of
systems, which we encode by merging the individual rules into
rules describing the global behavior. In the following section,
we describe these two steps in detail using the use case as an
example.

4.1. Groove specification

A GT system consists of a set of GT rules of the form L — R,
where the graph L is called the left-hand side and the graph R
is called the right-hand side of the rule. Nodes/edges in R but
not in L are added by a rule, while nodes/edges in L and R are
preserved, and a rule deletes nodes/edges that are in L but not
in R. Applying a GT system to a given graph, one obtains a
state space where each state is a graph, and each transition is a
rule application. A formal description of GT systems can, for
example, be found in (Ehrig et al. 2000).

We generate typed GT systems, where the merge of the SRM
and the snapshot metamodels is the type graph (Kriduter 2023).
Individual rules and rules changing the global state conform to
this type graph. Interactions result in global rules which change
multiple parts of the global state. A global GT rule is calculated
by taking the sum of all left-hand sides and right-hand sides of
the individual GT rules (Baldan et al. 1999, Definition 3.2.7).
Together with a system configuration, i.e., a start graph, we can
obtain an executable formal specification of the global behavior.
Consequently, this can be used to check behavioral consistency.

We will now explain how the GT rules are generated for the
use case. To apply our approach to the use case, we need to
define local HOT' from state machines and BPMN processes to
GT rules.

4.1.1. State machine semantics The local HOT to gener-
ate GT rules for finite state machines is straightforward. Each
transition leads to a GT rule. For example, figure 14 shows the
GT rules for the transitions turn green and turn red of the traffic
light model. It uses the concrete syntax introduced in figure 10
to depict state machine snapshots and their current states. We
depict a GT rule by showing the graph L on the left, R on the
right, and a named white arrow from L to R.

Using a traffic light snapshot with the state red as a start
graph, we generate the same state space in Groove as the traffic
light state machine describes. The generated GT system and the
other GT systems of the use case, including further instructions
regarding execution and consistency checking, can be found in
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Figure 14 GT rules for turn green and turn red

(Krauter 2023).

4.1.2. BPMN semantics The local HOT to generate GT
rules for BPMN processes is challenging, and we are currently
only supporting a subset of the BPMN semantics (see (Kriuter
2023)). Generally, we construct one or more rules for each flow
node, i.e., type of state-changing element in a BPMN model.
Furthermore, we created a comprehensive test suite to ensure
the correctness of our HOT (Kriuter 2023). Figure 15 shows the
GT rules for the task Switch to P1 of the TJunction controller.
It uses the concrete syntax introduced in figure 10 to represent
process snapshots containing tokens.

.......................... Start Switch- .- - -----______._____,

to P1 i © 1

I:> E Switch to P1

@ 1 to P1
Switch to P1 ! :>

T-Junction
=
0 &
E
=
by

.

H

H

H

H

H
m
=
2
2]
2
s
>

H

H

H

H

H

H

T-Junction
w @
H
=
T
=

T-Junction

Figure 15 Example GT rules for the TJunction controller

Due to limited space, we only show the Switch to P1 rules
but the artifacts of this paper (Krduter 2023) contain the full GT
system and a wiki explaining the HOT in detail. To summarize,
we can generate GT systems that implement the behavioral
semantics of BPMN.

4.1.3. Realizing interactions To realize interactions be-
tween the behavioral models we merge the previously generated
rules as follows:

1. Rules generated from state-changing elements that are not
part of interactions remain unchanged and are added to the
global rule set.

2. For each interaction, we do the following:

(a) Find the corresponding rule” P, for the sender of
the interaction and find the rules P;, P, ... P, for
the receiver state-changing elements using the saved
traces.

2 If one state-changing element results in more than one rule, one can define a
strategy to pick the appropriate rule.
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(b) Create a global rule for the rules Py, Py,..., Py,
which applies all of them at once, i.e., synchronizes
the state changes of the behavioral models.

(c) For each receiver of the interaction, instantiate the
corresponding behavioral relationship from the beha-
vioral model in Py to the behavioral model in P;, for
1 <1 < n, and add it to the global rule. Thus, only
behaviorally related models may interact, i.e., change
their state simultaneously.

The defined interactions change the rules for switching to
phases 1 and 2. Figure 16 shows the resulting rule for switching
to phase 1. We decided that the interactions between the traffic
lights and the TJunction controller should synchronize with the
end of the task, not the start. Thus, the rule was constructed us-
ing the individual rules furn green and turn red for traffic lights
(see figure 14) and the rule End Switch to PI (see figure 15).
Exactly these rules were used since they are generated from the
state-changing elements specified in the first interaction (see
listing 1).

15|@ 1 L s|l@ |
12| switchtoP1 ; 12]| switchtoP1 1
E {3 :
1| = 1 =

1= : 1= :
E :A¢ |_ :CI} : ' :A¢ L :Cll :

TrafficLight /||| TrafficLight EI::>5 TrafficLight /|| TrafficLight /'
E[red—amberj [red»amberji E( green j ( green ji

ZB\(
TrafficLight

ZBV
TrafficLight

Figure 16 Global GT rule to switch to phase 1

The rule changes all traffic lights simultaneously and finishes
the task. The corresponding individual rules no longer exist,
so synchronization of the behavior is guaranteed. A similar
rule exists for switching to phase 2, resulting from the other
interaction. All other rules are left untouched while constructing
the global GT system.

4.1.4. Check behavioral consistency Finally, we can gen-
erate the global state space of the system using the global GT
system, which can be found in (Kriuter 2023). To check the
requirements formalized by properties 1-4, we must also en-
code the used atomic propositions. These are specified as graph
conditions in Groove. A graph condition in Groove is a rule
that does not change elements but can be used as an atomic
proposition in model checking.

4.2. Behavioral consistency in the use case

Running the obtained GT specification shows that properties
(1) and (2) hold, while properties (3) and (4) do not hold (see
artifacts in (Krduter 2023)). The counterexamples for properties
3 and 4 show an unexpected race condition that must be handled:
after the TJunction controller signals that the traffic light A



is green, bus B1 can advance to the Pass Junction activity.
However, simultaneously, the TJunction controller can enter
the subprocess for the next phase, which can be interrupted
by the associated timer event. This can happen before bus B1
passes the junction, resulting in a violation of the consistency
requirement.

The modelers have different options to handle the detected
inconsistencies. One option is to keep the models unchanged
and pay special attention to the found race condition during sys-
tem implementation. This can be an acceptable solution since
the Pass Junction activity is also modeled as a user activity, i.e.,
the bus driver decides when to cross the T-Junction. Further-
more, tolerating inconsistencies can be a viable option in MDE
(Weidmann et al. 2021). Another option is to change the models
to resolve the inconsistency. If buses are autonomous, this is the
preferred option. For example, the T-Junction controller could
wait for the bus to pass before changing the traffic lights again.

5. Discussion

In this section, we discuss two potential limitations of our ap-
proach: supporting new modeling languages and state space
explosion.

5.1. Support for new modeling languages

To support a new modeling language in our approach one must
do the following tasks: describe the state structure in a snapshot
metamodel, identify state-changing elements in the language’s
metamodel, and implement a HOT to the chosen formalism. A
plugin containing these three artifacts can then be reused.

Implementing a HOT that correctly implements a new model-
ing language’s semantics takes time and effort. We learned that
when implementing HOTs to the same underlying formalism,
one gets accustomed to the formalism and naturally builds a
framework to generate and test specifications in this formalism.
Thus, the work needed to implement new languages decreases
over time, but one must always understand the semantics of the
new language to map them to the chosen formalism.

These tasks are typically done by a language engineer who
may be a different person than the modeler who uses our consis-
tency management approach. Generally, we assume two roles:
language engineer and modeler. The modeler is in control of the
use case and executes the manual tasks in Figure 7, while the
language engineer is responsible for supporting the modeling
languages which are used in the multi-model.

5.2. State space explosion

State space explosion is one of the predominant issues when
applying model checking to complex systems, which are often
found in real-world applications. We tested our approach using
the generated GT system in Groove described earlier and the
alternative implementation using rewriting logic with Maude.
As one can see in table 1 and table 2, our approach is not
immune to state space explosion. The tables show the states,
transitions (rewrites), and average runtime of a full state space
exploration in the Groove (Maude) specification. Four scenar-
ios were benchmarked, starting with the use case multi-model

without approaching buses and then increasing the number of
buses up to three. Generally, the Maude exploration time is
lower despite larger state spaces due to technical differences in
implementing the BPMN semantics.

To calculate the average runtime, we used the hyperfine
benchmarking tool (Peter 2022) (version 1.15.0), which ran
state space exploration for each scenario ten times. Timing
evaluations were done with an AMD Ryzen 7700X processor
and 32 GB of RAM running Maude version 3.1 (inside the
Windows Subsystem for Linux) and Groove version 5.8.1. A
description of how to run the benchmarks is available in (Kriuter
2023).

Use case States | Transitions | Exploration time
No buses 168 438 ~1.201 ms
1 bus 2.888 10.046 ~1.647 ms
2 buses 27.880 121.554 ~4.087 ms
3 buses 195.336 | 1.028.340 ~25.137 ms

Table 1 State space exploration in Groove

Use case States Rewrites | Exploration time
No buses 168 664 ~28 ms
1 bus 3.304 19.958 ~120 ms
2 buses 35.280 279.776 ~1.279 ms
3 buses 260.176 | 2.522.582 ~12.599 ms

Table 2 State space exploration in Maude

As in our use case, one is generally not interested in a full
state space exploration as in table 1 and table 2 but rather in
the validity of a set of behavioral properties. Checking a prop-
erty specified in LTL does not necessarily lead to a full state
space exploration. Furthermore, not every property is concerned
with all behavioral models. For example, properties (1) and (2)
of the use case do not involve buses and can be checked on
smaller state spaces, not including approaching buses. In ad-
dition, checking a set of properties can be run in parallel. If
some properties are computationally expensive, they can be
run on dedicated hardware, for example, during a continuous
integration pipeline once a day in case a behavioral model or an
interaction changes. Thus, checking the consistency of a multi-
model can be seen as an additional test during MDE, which
can be run locally but, in addition, is a vital part of continuous
integration.

The performance of the Maude LTL model checker is com-
parable to the popular SPIN model checker (S. Eker et al. 2004)
and thus is proven to be competitive. However, one could use
different techniques to mitigate the state space explosion prob-
lem further. One technique is to abstract models further such
that they only contain information relevant to the set of prop-
erties to be checked. Thus, minimal models are synchronized,
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leading to smaller state spaces. However, finding correct mini-
mal models might not be trivial.

Partial-order reduction is a well-known and effective tech-
nique to mitigate the state space explosion problem. It is cur-
rently not implemented in the Maude LTL model-checker, but
there is promising work to integrate partial-order reduction
into the model-checker (Farzan & Meseguer 2007), showing
substantial state space reductions. The potential to reduce the
state space using this technique is huge, especially for model-
checking concurrent systems (Clarke et al. 2018). Our approach
analyzes concurrent systems with some interaction, and thus
model-checking would greatly benefit from partial-order reduc-
tion. In our opinion, partial-order reduction must be imple-
mented to analyze models from real-world applications.

6. Related work

We organized related work into two sections. First, we discuss
ad-hoc and general solutions related to the problem of beha-
vioral consistency. Then, we relate our work to the fields of
Multi-Paradigm Modeling (MPM) and co-simulation.

6.1. Ad-hoc and general solutions

The general idea of transforming different behavioral for-
malisms to a single formalism to reason about cross-cutting
concerns is not new, see, e.g., (Engels et al. 2001). For exam-
ple, (Kiister & Stehr 2003) developed consistency checking for
sequence diagrams and statecharts based on CSP, while (Yao
& Shatz 2006) used Petri nets for the same scenario. Never-
theless, these approaches only resemble ad-hoc solutions to
specific combinations of two languages. They do not consider
the general problem of behavioral consistency in a heteroge-
neous modeling scenario.

(Kienzle et al. 2019) proposes a unifying framework for the
homogeneous model composition of structural and behavio-
ral models. To combine behavioral models, they use Event
structures as an underlying formalism and show how different
homogeneous behavioral models can be combined. In addition,
to express behavioral relationships between different models
they create causal relationships, which are used during model
composition. Generally, their approach is compatible with ours
since we do not mandate a specific formalism. Thus, Event
structures could be considered, where interactions are realized
using causal relationships. Since their research challenges and
resulting work items align with our work, we see our work
following the same line of research. In addition, they cover
the same class of behavioral formalisms as our approach (see
DTDS and DEVS in the next subsection).

(Vara Larsen et al. 2015) propose the coordination frame-
work B-COoL. In B-COoL a modeler defines behavioral in-
terfaces for each behavioral language, which are then used to
specify interactions between models. To execute the models
with the specified interactions, they transform them into Clock
Constraint Specification Language (CCSL) models. Their work
results in plugins for GEMOC studio, which support running
and debugging the models.

Both approaches (Kienzle et al. 2019; Vara Larsen et al.
2015) are similar to our approach since both have mechanisms
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to define interactions between behavioral models and generate a
global behavioral specification based on these interactions. Fur-
thermore, the generation of the global behavior is achieved by
transforming models to a certain formalism like the HOT in our
approach. However, the generated specification does not allow
to check global behavioral properties since they do not make
the state structure (snapshot metamodels in our approach) of the
participating models explicit. In our approach, we define the
two fundamental concepts (state and state-changing elements)
to check behavioral consistency when heterogeneous models
interact.

6.2. Multi-paradigm modeling and co-simulation

MPM is based on the idea to model every aspect and part of a
system using the most appropriate modeling formalism(s) (Am-
rani et al. 2021). Thus, MPM often leads to multi-modeling
scenarios where models conforming to different modeling for-
malisms are used.

Different behavioral formalisms can be classified using two
criteria: time and values of state variables (Wainer 2009). Fig-
ure 17 shows the classification where time and state variables
can either be discrete or continuous.

Time
State Continuous Discrete
Variables
DESS: Differential Equation DTSS: Discrete Time
System Specification System Specification
[V] Q
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° %) %)
=]
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=
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Time Time
Bond Graphs, Modelica Difference Equations
DEVS: Discrete Event DTDS: Discrete Time Discrete
System Specification State System Specification
2 2
8 8
[ %] %]
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o
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2
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Time
Timed FSM, Timed Petri Nets FSM, Petri Nets, BPMN

Figure 17 Classification of behavioral formalisms according
to the nature of the time and state variables (adopted from
(Wainer 2009; Amrani et al. 2021))

So far we have seen Discrete Time Discrete State System
Specifications (DTDSs) like Finite State Machine (FSM) and
BPMN in this work, where time and state variables are dis-
crete. Furthermore, our approach can potentially be applied to
Discrete Event System Specifications (DEVSs) since the un-
derlying formalisms support non-discrete time but verification
capabilities for DEVSs are more limited. However, we do not
support formalisms with continuous state variables (top part of
figure 17), since our central concept of state-changing elements
would need to be changed. We think that supporting DEVS



formalisms is a good trade-off between the usefulness and com-
plexity of our approach, since DEVS covers a wide variety of
formalisms (Vangheluwe et al. 2002).

Using different modeling formalisms as is the case when
following the MPM paradigm makes system simulation chal-
lenging. Co-Simulation aims to solve this challenge by compos-
ing the simulation of a system’s parts into a global simulation
(Gomes et al. 2019).

For example, (J. Eker et al. 2003) propose an actor-oriented
co-simulation approach, where each system part is represented
as an actor. An actor can communicate through its interfaces
with other actors. Their approach is implemented in the tool
Ptolemy and supports continuous time and state variables. Fur-
thermore, the FMI° is a co-simulation standard to exchange
executable systems parts, so-called Functional Mock-up Units
(FMUs). Each FMU, similar to the actors in Ptolemy, comes
with an XML model to describe its interface, for example, the
FMU’s exposed variables. FMUs support continuous time and
state variables and are widely used in the industry.

However, with co-simulations, one can only simulate systems
not check global behavioral properties.

7. Conclusion and future work

Our work represents a formalization of behavioral consistency
management in a heterogeneous modeling scenario, facilitating
the formulation and checking of global properties. Previous
work either only dealt with the behavioral consistency between
specific pairs of models or focused on the simulation in a het-
erogeneous scenario but lacked checking global properties.

Our approach is based on two fundamental concepts: state
and state-changing elements. The state structure of each partici-
pating behavioral language must be explicitly defined to infer
how global states are structured. Furthermore, state-changing
elements serve as a minimal behavioral interface to uniformly
define interactions for heterogeneous models. These two funda-
mental concepts can be found in most, if not every DEVS for-
malism. Thus, our approach can support behavioral formalisms
with discrete state variables.

In future work, we plan to extend our implementation to
support more behavioral modeling languages such as activity
diagrams, hierarchical state machines, and the 7r-calculus. In ad-
dition, we aim to apply the approach to real-life industrial case
studies. Furthermore, two systems often exchange data while
interacting, for example, using name-passing or messaging. The
exchanged data then greatly influences the future behavior of
the systems. Thus, adding data transfers to interactions between
heterogeneous models is an important issue left for future work.
Finally, if consistency violations are found, consistency restora-
tion must be achieved. We leave consistency restoration of
behavioral models as a problem for future work.
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