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Abstract—Space vector modulation (SVM) is a widespread
method for controlling PM machines. However, the switching
harmonics contribute to eddy current losses in the magnet region.
In the analytical modeling of slotless PM machines, the inverter
model is reduced to overlook the actual modulation and neglects
many higher-order harmonics. This is the first time the full im-
plementation of an experimentally validated analytical SVM has
been applied to analytical PM eddy current loss evaluations. The
inverter model operates synergically with previously developed
analytical field formulations. We show that the inverter’s output
current from SVM control can be conveniently post-processed
to be suitable for analytical implementation. Major numerical
implementation challenges are highlighted and addressed for
the first time. Our work shows a considerable improvement
in the precision both when including and excluding the eddy
currents reaction field. Nevertheless, the models’ limitations are
also emphasized. Finally, the code implementation of the models
is made available in the reference list, yielding full reproducibility.

Index Terms—Analytical method, eddy current losses, inverter-
fed machine, slotless machine.

NOMENCLATURE

δ Inverse skin depth [1/m]
κ Net zero current density term, [A/m2]
λ Lanczos correction factor [−]
Jm, Ym 1st & 2nd kind Bessel functions of order m [−]
ns Mechanical speed, [rpm] or [pu]
µ0 Vacuum air permeability, 4π · 10−7 H/m
µr Relative permeability of magnets, [−]
ωr, ω Mechanical & electrical ang. frequency, [rad/s]
ℜs Per phase armature resistance, [Ω] or [pu]
σ, σpm Generic & magnet conductivity, [S/m]
τm Mechanical torque, [Nm] or [pu]
φn, α Time harmonic angle & stator ang. coord. [rad]
ϑ Angular coordinate position, [rad]
ξpm Mid-magnet-to-pole ratio, [−]
Az Axial magnetic vector potential, [Wb/m]
Br Remanent flux density of magnets, [T]
cmn, dmn Unknown harmonics coefficients [Wb/m]
Cm Boundary condition field coefficient, [Wb/m2]
f , fsw Fundamental and switching frequency, [Hz]
H Harmonic order referred to the rotor [−]
i, h phase current & current harmonic [A]
j imaginary unit [−]
J0, Ja, Je Induced, reaction field, & total eddy currents

density [A/mm2] or [A]
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ke Emf constant for peak fundamental, [Nm/A]
kt Torque constant using rms current, [Nm/A]
la Active machine length, [mm]
Ls Per phase armature inductance, [H] or [pu]
m, M Space harmonic & total number [−]
n, N Time harmonic & total number [−]
p, Ns Number of pole pairs and series turns, [−]
Pe Mean eddy currents loss [W]
r Radial coordinate position, [mm] or [m]
Ri, Rr, Rm Inner radius, inner magnet, & outer magnet

radius, [mm]
Rs, Rw Inner winding & outer winding radius, [mm]
Ry , Ro Yoke & outer stator radius, [mm]
t, T , Tsw Instantaneous time instant, electrical time pe-

riod, & switching time period [s]
Ud, Uq , Usvm D-axis voltage, Q-axis voltage, & SVM voltage

(rms), [V] or [pu]
Vdc Inverter’s DC link voltage, [V] or [pu]
x = 1, 2, 3 motor phase index [−]

I. INTRODUCTION

CONTROL of electrical machines through power inverters
comes along with several challenges stretching from

system design to application adaptation. On the design side,
machine designers are asked to incorporate an understanding
of the final motor operation to know the inverter’s impact
on the overall performance. In some cases, the whole motor-
inverter system ought to be designed as a whole to find the
best trade-off on both subsystems. The assessment of motor
performance under inverter operation represents a task that
can be handled effectively by means of circuit-coupled finite
element analysis (FEA) [1]. However, due to its time inten-
siveness, it cannot be the first step in rapid design processes.
When obtaining a quick initial design, one has to sacrifice
accuracy to leave room for computational efficiency.

An overview of applicable methods to predict rotor eddy-
current losses is presented in [2]. Analytical models represent
an attractive choice as they can, under the same assumptions,
meet the same accuracy as FEA with remarkable computa-
tional efficiency [3]. Under the hypothesis of linearity, two-
dimensional (2-D) magnetostatic problems can be solved
analytically [3]–[6]. Fourier-based analytical models solving
Maxwell’s equations also allow us to simulate the equiva-
lent of a circuit-coupled time-stepping simulation [1]. When
calculating induced eddy-currents in the magnets, magnet
segmentation can be accounted for without including the
eddy currents reaction field as in [7]–[10]. On the contrary,
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solving the diffusion equation in polar coordinates allows the
inclusion of eddy currents reaction field, albeit neglecting
magnet segmentation [11]–[13]. Including both eddy-current
reaction field and magnet segmentation is possible at the price
of higher implementation, and computational complexity [14].

Several authors have also worked on developing analyt-
ical models in Cartesian coordinates to account for both
magnet segmentation and eddy currents reaction field [15],
[16]. However, any curvature effect is neglected. Their work
highlighted that magnet segmentation might give a rather
counter-intuitive loss increase. This behavior occurs in relation
to high-frequency harmonics introduced by power converters
and is considered a segmentation anomaly [17]. In fact, the
loss reduction from magnets segmentation is achieved only if
axial or circumferential dimensions or both are smaller than
twice the skin depth [2].

Nowadays, analytical modeling of PM eddy currents loss
is considered a well-developed topic. Nevertheless, it appears
unusual for authors to contextualize these models to a realistic
inverter-fed operation, a significant limitation in the literature.
To the authors’ knowledge, only one brief example does not
overlook the need to incorporate realistic analytical inverter
outputs to feed the eddy currents problem [18]. However, the
inverter output was not simplified in this approach.

In this paper, a generalized three-phase inverter model with
space vector modulation (SVM) is developed. The inverter
model can be considered semi-analytical, and the output is
conveniently post-processed to fit the proposed eddy currents
formulations in the most general way. The symmetrical com-
ponents analysis is performed on the harmonic spectrum of
the three-phase current waveform. The presented methodol-
ogy defines a complete framework where the inverter model
uses parameters from the motor obtained from analytical
magnetostatic models. Those include the back-emf constant
and machine inductances. The parameters define real current
waveforms resulting from steady-state operating conditions.

The case study presented in this paper centers on slot-
less PM machines equipped with a Halbach array rotor.
These machines offer various desirable qualities, including
the elimination of cogging and magnets losses due to slotting
effects, which can typically restrict a motor’s operating speed
[19]. However, the inverter-fed operation of these machines
produces a high current ripple that emphasizes the importance
of the PM eddy current analysis presented in this study.

The paper’s main contribution is to provide insights into
the numerical challenges of implementing analytical eddy-
current models in polar coordinates, as they are overlooked
in the literature. Two popular modeling strategies are shown
focusing on resolving numerical inaccuracies arising from
an extended model like the one presented in the following.
The inverter-fed operation, with an accurate inverter model,
contextualize the analysis to a realistic case study, thus giving
further support to the importance of the proposed research.
Finally, we propose a way to make the inverter output suitable
to be an input to the popular eddy-current models with the
possibility of simulating any steady-state operating condition.
Transient modeling of PM eddy-current losses is outside the
scope of this paper. The application of slotless machines makes
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Fig. 1. Subdomain/layers subdivision of the studied slotless inrunner PM
machine for analytical field formulation with radial positions indicated.

saturation less of a concern, given the weak armature reaction
field. The two-dimensional modeling should be coupled to
suitable correction factors or models to account for three-
dimensional axial leakage.

The paper is structured as follows. Section II provides an
introduction to analytical eddy-current models, highlighting
the unique contributions of this study in comparison to existing
literature. This section also outlines the need for the proposed
inverter model. Section III presents the inverter model and
our approach to generalizing its output. Section IV serves as
a short introductory guide to the published codes. Finally,
Section IV presents the results of the developed analytical
eddy-current models, followed by the concluding remarks in
Section V.

II. STATE-OF-THE-ART EDDY CURRENT MODELS
IN POLAR COORDINATES AND PAPER’S CONTRIBUTION

Analytical eddy currents modeling through Fourier-based for-
mulations have long been attractive [2]. The different gov-
erning equations applied in regions where the eddy currents
are estimated allow us to neglect or account for the eddy-
current reaction field. This paper assumes that the region of the
magnet is the only one affected by the eddy currents. However,
conductive magnets sleeve and magnets support should be
considered if part of the assembly. Consequently, the eddy
currents occur in the region of the magnets, i.e., region 4
in Fig. 1. Assuming the problem’s source is only the stator
current field, eq. (1) is the governing equation in the region
of the magnets.

∇2Az = −µ0µrσ
∂Az

∂t
(1)

Eq. (1) reduces to the Laplace equation (∇2Az = 0) by
assuming zero magnets conductivity. It means that no induced
eddy currents are included.

This paper’s two main contributions are as follows.
1) For the model neglecting the eddy-current reaction field,

the Gibbs phenomenon introduces uncertainty. A solu-
tion to the problem is presented, along with a results
comparison highlighting the improvement.

2) For the model accounting for the eddy-current reaction
field, the dependency of the field formulation on Bessel’s
functions makes it necessary to resort to specific soft-
ware toolboxes to achieve the best accuracy. The catas-
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TABLE I
SPM MACHINE DATA (COURTESY OF ALVA INDUSTRIES)

Rr Rm Rs Rw Ry Ro la p Br µr ξpm σpm Ns

39.0mm 41.8mm 42.2mm 43.79mm 43.83mm 44.8mm 15.2mm 17 1.35T 1 0.5 0.667MS/m 3

Inverter
model

+

FFT & sequence
analysis [25]

Three-phase
current

harmonics

Steady-state
operating
condition

Motor
design

parameters

Table I
or user-defined 

data

Table II
or user-defined

data

Inductance
emf & torque

constants
Magnetostatic

Eddy currents
loss model [25]

field solution [2]

Fig. 2. Flowchart of the workflow of the whole semi-analytical framework
made available at [26].

trophic numerical error produced in double-precision
arithmetic is emphasized with a proposed solution to
fix the problem.

For both cases in eq. (1), the three-phase current density, acting
in the winding region (region 2), is assumed to be the only
source of the problem. The resulting current density expression
can be expressed as in [3], [20], yielding

J(ϑ, t) =
∑
n,m

Jn,m cos[nωt+ φn + kα]. (2)

In earlier works, the only realistic inverter voltage considered
was the naturally sampled pulse-width modulation (PWM)
[18], [21]. The same double Fourier analytical inverter output
can also be developed for SVM inverter control [22]. As
different inverter outputs result from different SVM vectors
placement [23], it appears to be easier to resort to a semi-
analytical inverter modeling [24], [25]. The next section fo-
cuses on the post-processing of the SVM inverter output into
a suitable form for the eddy-current models.

All the useful machine data are reported in Table I, and
the derived values of back-emf constant, torque constant, and
phase inductance are reported in Table II, along with the
simulated operating point. Fig. 2 shows schematically the
whole inverter model framework for the eddy currents loss
estimation we present herein. It is meant to be the first tile
of a complete model where all the motor losses are estimated
and synergically coupled to a thermal model for parameter
correction with the temperature at any operating condition.
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− −

−

−
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Fig. 3. Space vector diagram of the considered three-phase power inverter.

III. INVERTER MODELING FOR SVM CONTROL

As mentioned before, the Fourier-based analytical model de-
scribing the magnet’s eddy-current losses requires the field
source to be described as a harmonic series; there are two ways
to model the three-phase inverter output. In both instances, the
inverter switches are assumed to be ideal devices switching
from on to off state instantly without considering the existence
of a dead time to avoid a short circuit of the DC-link; this
assumption is valid if dead-time compensation is implemented
in the chosen inverter. A fully analytical approach exists and
is based on a double Fourier integral analysis [21], [27], [28].

Unlike this purely analytical approach, the model described
and employed in this work is a semi-analytical model in-
spired by existing SVM modeling practices [23]–[25]. We
analytically define each switching state’s timing to replicate
the sinusoidal steady state reference voltage. The resulting
output voltage is made of a stream of pulses resulting from
the inverter commutation. The estimated current resulting from
this voltage applied to the motor terminals is then analyzed
through FFT analysis. The following section describes the
procedure to develop the proposed SVM model, with a closer
look at the numerical implementation in the published script
(Inverter star VESC.m) [26].

A. Inverter Output Implementation

As mentioned, SVM offers remarkable flexibility in its im-
plementation as one can choose where to place the different
inverter states in time within each switching interval. The
switching can be optimized for harmonic content or switch-
ing losses. The inverter model is benchmarked against an
off-the-shelf motor controller, i.e., Vedder Electronic Speed
Controller – VESC 6 Mk V, that implements an inverter
control strategy aimed at minimizing the switching events
when transitioning between the different states and implements
a dead-time compensation [29]. The commutation scheme
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TABLE II
DERIVED VALUES FOR THE MACHINE, THE INVERTER AND THE EXAMINED OPERATING POINT IN THIS CASE STUDY

kt ke Vdc ℜs Ls τm ns f fsw

0.0724Nm/A 0.0483Vs 45V 10mΩ 4.6µH 3Nm 2500 rpm 833.33Hz 10 kHz
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Fig. 4. Sequence of active and zero states within each switching period for the different sectors in Fig. 3 with their respective voltages on phase a. It
highlights the commutations within different sectors (i.e., Sectors I & VI, Sectors II & V, and Sectors III & IV) lead to the same phase-voltage waveform.

between different states shown in Fig. 3 is presented in Fig.
4 referring to a single phase. The same switching sequence
described in [24] is implemented in this algorithm. Therefore,
the equations for the different timings (t0, t1, t2) shown
in [24] can be equally used. The numerical implementation
becomes straightforward as a whole fundamental period can be
divided into switching periods whereon the reference voltage is
sampled and the different timings are evaluated. The different
states to apply over each instant depend on the location of the
reference voltage in the vector plane according to Fig. 3. The
reference voltage is estimated considering a maximum torque
per ampere (MTPA) control of a surface-mounted permanent
magnet motor (SPM) where the current is all directed in the
quadrature axis (I = Iq). The steady state voltage equation in
the dq reference frame are

Ud = −2πfLsI, Uq = ℜsI +
2πf

p
ke,

τm = ktI, Usvm =
√
U2
d + U2

q

(3)

All parameters are estimated analytically by means of the field
solution presented in [3] through the methodology described
in [30], [31]. These steps, along with the whole workflow of
the proposed framework, are presented in Fig. 2. The inverter
model gives a stream of pulses as an output, and the resulting
current ripple is estimated by integrating the instantaneous
voltage of each phase divided by the phase inductance [24].

The inverter model is tested with a motor with the param-
eters listed in Table II. The results in Fig. 5 compares the
measured waveform with the one simulated. The comparison
is extended to the total RMS value of the current waveform and
THD percentage in Table III to remark on the good accuracy
of the proposed model

The output of the inverter model needs to be post-processed
through the FFT to get the Fourier coefficients of the current
waveforms. One could notice that a perfectly periodic current
waveform is only obtained if the fundamental period is a
multiple of the switching period, which is hardly ever the

TABLE III
COMPARISON OF INVERTER MODEL AT 30 kHz SWITCHING FREQUENCY

AGAINST MEASURED WAVEFORM IN FIG. 5

Data RMS THD
Measured waveform 20.80A 27.40%
Inverter model 20.84A 27.10%
Deviation +0.19% -1.09%

case. If the model produced a non-periodic current waveform,
the loss analysis would generate non-negligible inaccuracies
due to the Fourier series trying to force the signal to be
periodic. Nevertheless, the inverter model we propose [26]
implements a clever way of framing the current waveform
within the fundamental period to make sure that the resulting
waveform is symmetric. In this way, the methodology achieves
the maximum accuracy. It can be proved that the harmonic
analysis of the current waveform through FFT has to be
performed for at least two phases, as they are not a mere
phase shift of 120◦ of one phase waveform. As a result, the
three-phase current waveform can be expressed as:

ix(t) =
∑
n

{hx,n cos [nωt+ φn,x]} (4)

In this scenario, the three-phase current density distribution
from the stator winding, including both time harmonics and
space harmonics, can be defined as follows [3]:

Jx(t, ϑ) =
∑
n,k

{Jx,n,k cos[nωt+ φn,x]·

· cos [k(pϑ− (x− 1)2/3π)]}
(5)

From the latter expression, it is impossible to obtain a resulting
current density distribution that gathers the contribution of the
three phases in one term; therefore, the field solution needs
to be studied as the sum of the contribution from the three
phases separately. This makes the post-processing of the field
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Fig. 5. Measured phase current waveform (courtesy of Alva Industries) compared against the simulated waveform in the time domain and in the frequency
domain, highlighting the main harmonics around fsw and 2fsw , with 30 kHz switching frequency, 3100 rpm motor speed, and 2.21Nm reference torque.

solution more tedious and the analytical models presented in
the literature useless.

B. Inverter Output Analysis By Symmetrical Components

One could observe that the output of the inverter model
provided in [26] is not the same as one would get by taking
a single-phase waveform and shifting it by ±120 degrees for
the other two phases. This suggests that the system can be
analyzed through its symmetrical components, i.e., positive,
negative, and zero sequence components. Starting from the
three-phase currents (4) written in phasor form:

Īx =
∑
n

hx,ne
j[ωt+φn,x] (6)

It is possible to describe the three-phase system as the contri-
bution of positive (or direct), negative (or inverse), and zero-
sequence (or homopolar) components as follows:

Ī0 =
Ī1 + Ī2 + Ī3

3
= 0

Īd =
Ī1 + βĪ2 + β2Ī3

3
=
∑
n

Id,ne
j[ωt+φn,d]

Īn =
Ī1 + β2Ī2 + βĪ3

3
=
∑
n

Ii,ne
j[ωt+φn,i]

(7)

where β = ej2pi/3. The zero-sequence component is always
zero assuming the ideal case of a star-connected motor with
an isolated neutral point. In this way, one can re-write the
three-phase currents in (6) as:

Īa = Ī0 + Īd + Īi

Īb = Ī0 + β2Īd + βĪi

Īa = Ī0 + βĪd + β2Īi

(8)

Having the three-phase currents expressed as a combination
of direct and inverse components allows rewriting the three-
phase current density distribution (2) as J(ϑ, t) = Jd(ϑ, t) +
Ji(ϑ, t); where Jd(ϑ, t) and Ji(ϑ, t) can be expressed in the
time domain as:

Jd(ϑ, t) =
∑
x

{Jd cos [nωt+ φnd − (x− 1)2π/3]·

· cos [k(ωt+ α− (x− 1)2π/3)]}

Ji(ϑ, t) =
∑
x

{Ji cos [nωt+ φni + (x− 1)2π/3]·

· cos [k(ωt+ α− (x− 1)2π/3)]

(9)

The latter expressions make it easy to highlight the combi-
nation of time and space harmonics which contribute to the
magneto-motive force. In particular, taking the direct-sequence
component as an example, by means of some trigonometric
identities, Jd(ϑ, t) can be rewritten as the sum of a forward
rotating component Jfd(ϑ, t) and a backward rotating compo-
nent Jbd(ϑ, t):

J(f,b)d(ϑ, t) =
Jd
2
{cos [kα∓ nωt∓ φnd]

+ cos [kα∓ nωt∓ φnd − (k ∓ 1)2π/3]

+ cos [kα∓ nωt∓ φnd + (k ∓ 1)2π/3]

(10)
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which takes the minus sign for the forward-rotating component
and the plus sign for the backward-rotating one.

The harmonics giving a non-zero contribution and the re-
lated current density expressions are reported in the following
for the direct-sequence and inverse-sequence component:

Jfd = 3Jd

2 cos [kα− nωt− φnd], k − 1 = 3L

Jbd = 3Jd

2 cos [kα+ nωt+ φnd], k + 1 = 3L

}
L ∈ Z

(11)

Jfi = 3Ji

2 cos [kα− nωt− φni], k + 1 = 3L

Jbi = 3Ji

2 cos [kα+ nωt+ φni], k − 1 = 3L

}
L ∈ Z

(12)

Finally, the three-phase current density distribution can be con-
veniently expressed in the rotor reference frame ϑ considering
that α = ωt+ pϑ as follows:

Jz(ϑ, t) = Jnm cos [Hωt+φ+ kpϑ] (13)

where Jnm, H , φ and k are all matrices holding the respective
values satisfying (11) and (12) for each time and space
harmonic order, meaning that they will have size 4×M ×N .
In particular, all the models were shown to deliver accurate
solutions with M = 3, while N is found as follows to achieve
a good resolution of the current spectrum:

N ≈ 100 · T

Tsw
(14)

The following analysis is based on the number of harmonics
chosen as in eq.(14). The value brings the loss analysis close
to the convergence; however, a slight variation can be expected
when increasing the number of harmonics. It is advised against
reducing the number of harmonics to avoid filtering the current
data in the models.

IV. ANALYTICAL EDDY CURRENTS MODEL

In this section, the two main modeling techniques for ana-
lytical eddy currents loss estimate are thoroughly described,
focusing on their limitations and proposed improvements.

A. Analytical Model Excluding Eddy Currents Reaction Field

First, we will focus on an approach where the eddy currents
losses are not evaluated as a mere contribution of each and
every harmonic of the field. Still, they also account for
the interaction between the combination of time and space
harmonics having the same frequency in the rotor reference
frame [7]. This way of modeling is needed to achieve the
best accuracy. In addition, the inverter output from SVM
control makes it necessary to adapt the model for numerical
implementation as a non-negligible deviation was found in
comparison against FEA [7]. According to [3], solving the
problems presented in Appendix A leads to the following
expression for the one-component magnetic vector potential
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Fig. 6. Comparison of induced current density (J0) in the middle of the
mid-magnet over a quarter of the electrical period. FEA is compared against
the analytical solution and the adjusted solution through the Lanczos factor.

in the region of the magnets:

Az =
Rw

m

[(
r

Rw

)m

+

(
Ri

Rw

)m(
Ri

r

)m]
Cm

cos (Hωt+ φ+mϑ)

(15)

Induced eddy currents in the magnets are formulated in eq.
(16) [7]. The explicit expressions of J0 and Ja are reported
in Appendix B.

Je = J0 + Ja = −σ
∂Az

∂t
+ κ(t) (16)

The net zero coefficient in eq. (17) assumes that the different
segments are insulated from one another.

κ(t) =
2

αm(R2
m −R2

r)

∫ ϑ2

ϑ1

∫ Rm

Rr

σ
∂Az

∂t
rdrdϑ (17)

To avoid the non-negligible Gibbs phenomenon in the time
derivative of Az , the expressions must be improved for nu-
merical implementation by multiplying them by the Lanczos
factor (λ). An effective Lanczos factor is expressed in eq. (18).

λ =

[
sin (πn/N)

πn/N

]
(18)

The effectiveness of introducing λ is highlighted in Fig. 6,
where the induced current density J0 is plotted over the middle
point of the mid-magnet over a quarter of the electric period.

In addition to Fig. 6, Fig. 7 and Table IV map the induced
current density and the deviations for a given time instant.
The improved analytical model is significantly closer to the
FEA model than the standard one. It can be noticed that the
improved model shows a relatively high relative deviation of
the induced eddy current density where this approaches zero,
meaning that in absolute value is negligible.
The eddy currents mapped over the magnet region result in an
average induced magnet loss (for each segment spanning from
ϑ1 to ϑ2) that can be computed according to eq. (19) [7].

Pe =
laωr

2πσ

∫ 2π/ωr

0

∫ ϑ2

ϑ1

∫ Rm

Rr

J2
e r · dr · dϑ · dt (19)

Eq. (19) is now utilized with the improved eddy currents
model proposed in this paper. Table V reveals the differ-

This article has been accepted for publication in IEEE Transactions on Energy Conversion. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEC.2023.3294807

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on July 12,2023 at 21:53:57 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON ENERGY CONVERSION 7

TABLE IV
MEAN ABSOLUTE EDDY CURRENT DEVIATION OF ANALYTICAL MODELS

EXCLUDING THE REACTION FIELD AGAINST FEA (Jz MAP IN FIG. 7)

Model Mid-magnet Side-magnet
Improved model 7.0% 3.2%
Standard model [7] 35.5% 22.6%
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Fig. 7. Induced current density (Jz) map in the region of the magnet
excluding the eddy currents reaction field for time instant, t = 182.23µs,
after initiation of simulation. The upper maps show comparison between the
FEA model and the improved analytical model. The lower maps highlight the
relative difference with the FEA model as a reference, comparing the standard
model against the improved model.

ence in the eddy currents loss estimate when the improved
analytical model is implemented. Despite the diligent care
taken to ensuring the best accuracy of the analytical model,
we deemed it necessary to consider FEA as the reference
model because of the imperfect periodicity given by the
output of the inverter model, which causes a small error in
the loss analysis. Moreover, the errors in the eddy current
density map do not propagate with the same magnitude on
the loss analysis. A high relative error is mostly bounded
around small current density values for any instant. For total
transparency and replication, the code implementation of the
standard and improved model are available as ”No react.m”
and ”IMPROVED no react.m”, respectively [26].

B. Analytical Model Solving the Diffusion Equation

The problem expressed in eq. (1), when the right-hand-side
term is different from zero, allows accounting for the eddy
currents reaction field under the fundamental assumption of
having a homogeneous magnetic ring. To simplify the resolu-
tion of the differential equation, the source current density in

TABLE V
EDDY CURRENTS LOSS ESTIMATE (EXCL. REACTION FIELD) AT 10 kHz

SWITCHING FREQUENCY AGAINST REFERENCE MODEL AND FEA

Model Loss Value Deviation
FEA model 11.92W 0.0%
Standard model [7] 12.48W +5.0%
Improved model 11.87W -0.4%
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Fig. 8. Comparison of induced current density (Jz) in the middle of the
mid-magnet over a quarter of the electrical period. FEA is compared against
the analytical solution obtained in double precision and in quadruple precision
with Advanpix.

eq. (13) is expressed in the complex form in eq. (20).

Jz(ϑ, t) = R{Jnmej[Hωt+φ+kpϑ]} (20)

As the solution to eq. (1) holds the same form as the source
of the field, namely the stator current density in eq. (20), the
equation is conveniently rewritten in eq. (21) as the Bessel
equation form.

r2
∂2Az

∂r2
+ r

∂Az

∂r
+ (r2δ2 −m2)Az = 0 (21)

The inverse to the skin depth is defined in eq. (22) [32].

δ = j3/2
√

Hωµ0µrσ (22)

As thoroughly shown in several other works [32]–[35], the
solution to eq. (21) is expressed in eq. (23).

Az(ϑ, r, t) = [cmnJm(δr) + dmnYm(δr)]ej[Hωt+φ+kpϑ]

(23)
It is worth noting that when H = 0, i.e., for all the combina-
tions of time and space harmonics rotating synchronously with
the rotor, the governing differential equation is the Laplace
equation, and the magnetic potential in the region of the
magnets can be expressed as in eq. (24).

Az(ϑ, r, t) =

[
cmn

(
r

Rm

)m

+ dmn

(
Rr

r

)m]
ej[φ+kpϑr]

(24)

The equations resulting from the boundary conditions are
reported in Appendix A, eq. (32). The system can be either
solved numerically for each and every existing combination
of time and space harmonics or symbolically, thus leading to
analytical expressions holding for every harmonic coefficient.
The latter method is the most computationally efficient as the
system is solved once and for all. The coefficients in the
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TABLE VI
EDDY CURRENTS LOSS ESTIMATE (EXCL. MAGNETS SEGMENTATION) AT
10 kHz SWITCHING FREQUENCY AGAINST REFERENCE MODEL AND FEA

Model Loss Value Deviation
FEA model 38.56W 0%
Double precision model (28) 41.53W +7.7%
Quadruple precision model (28) 38.44W -0.3%

regions of interest can be used without solving the whole
field problem every time. Regardless of the way to solve
the system of equations, having Bessel functions in the field
formulations adds a numerical issue that has not yet been
addressed in the literature when presenting analytical models
solving the diffusion equation. As shown in [36], double preci-
sion arithmetic fails at evaluating Bessel functions accurately.
The presented eddy currents model uses the Multiprecision
Computing Toolbox (Advanpix) to evaluate Bessel functions
accurately and reliably estimate the eddy currents loss in
quadruple precision arithmetic.

According to Poynting’s theorem in eq.(25), the rotor eddy
current loss can be effectively estimated. (25) [34].

Pe =
1

2σ
RmlaR

{∫ 2π

0

(JzH
∗
ϑ)r=Rm

dϑ

}
(25)

Hϑ = − 1

µ

∂Az

∂r
(26)

Jz = −σ
∂Az

∂t
(27)

From eq. (26) and (27), (25) can be rewritten into eq. (28).

Pe =
pωrπRmlaH

µ
R {[cmnJm(δRm) + dmnYm(δRm)]

[cmnJ′m(δRm) + dmnY′
m(δRm)]∗}

(28)

Under the same operating point detailed in Table II, the FEA
model of the motor with specifications listed in Table I was
set assuming a conductive homogeneous magnet ring, thus
neglecting the segmentation but considering the eddy currents
reaction field. The analytical model is benchmarked against
FEA, similar to the previous section.

In Fig. 8, the current density in the middle of the mid-
segment is plotted over a quarter of an electrical period. It
can be noted how the eddy current density computed in double
precision arithmetic exhibits a remarkable deviation, while the
same expression computed in quadruple precision (Advanpix)
is in good correspondence with the results obtained in FEA.

The total induced magnets loss was computed through eq.
(28). Table VI compares the result obtained through FEA taken
as a reference to show the deviation of the multi-precision
model and the same model computed in double precision.

As proposed for the previous model, to enrich the analysis,
the comparison between the induced current density maps is
presented in Table VII and Fig. 9. The current maps are plotted
for the same instant taken for the previous model to show the
different current distributions estimated with this model. It is
hard to notice any difference between the current map obtained

TABLE VII
MEAN ABSOLUTE EDDY CURRENT DEVIATION OF ANALYTICAL MODELS

INCLUDING THE REACTION FIELD AGAINST FEA (Jz MAP IN FIG. 9)

Model Deviation
Improved model (quadruple precision)) 3.4%
Standard model (double precision) [7] 198.0%
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Fig. 9. Induced current density (Jz) map in the region of the magnet
including eddy currents reaction field for time instant, t = 182.23µs, after
initiation of simulation. The upper maps show a comparison between the FEA
and the improved analytical models. The lower maps highlight the relative
difference with the FEA model as a reference, comparing the standard model
(double precision) against the improved model (quadruple precision).

through FEA and the improved model. The mean deviation of
the standard model is shown in Table VII to be 58 times larger
than the improved model.

The error map remarks on the need to use multi-precision
arithmetic tools to accurately compute Bessel functions and
any mathematical expression dependent on them. The analyt-
ical model accounting for the eddy currents reaction field is
not appropriate for the specific case study, which considers
a segmented Halabch array, as the segmentation impact on
the final loss estimate is neglected. Nevertheless, the case
study was taken to fully address numerical issues arising from
developing two popular analytical eddy currents models. The
analytical model implemented in double precision is pub-
lished as Double precision with reaction.m [26]. The multi-
precision version of it could not be published as Advanpix
is not available in Code Ocean. However, its implementation
requires the minimal change of specifying the argument of the
Bessel’s functions in the code as multi-precision arguments.
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C. Eddy-Currents Reaction Field and Segmentation

As pointed out in the introduction, it is possible to include
the circumferential magnets segmentation typical of a Halbach
array and the induced eddy currents reaction field in one
model. The drawback is a greater computational complexity
which might lead to a non-negligible runtime slowdown if
coupled with a multiple-precision arithmetic implementation.
Nevertheless, the basis for developing such a model is pre-
sented in [14]], and any Bessel’s function should be computed
with suitable tools to avoid inaccuracies from their compu-
tation. The analysis was performed through FEA to give an
idea of what to expect from a model accounting for eddy-
currents reaction field and segmentation for this specific case
study. The loss analysis gave a total loss value of 12.3W,
which is very close to the value shown in Table IV. The
result is unsurprising, considering the reasoning presented in
cite7947717. In fact, the motor presented in our study has
an angular magnet thickness of about 4mm, while the skin
depth is calculated from eq. (22) at the switching frequency of
10 kHz is about 4.4mm. Since the magnet thickness is smaller
than twice the skin depth, segmentation is not considered
effective for eddy-current loss reduction. The model neglects
the eddy-currents reaction field results to be suitable for this
particular case.

V. PUBLISHED CODES

The executable version of the eddy-current models presented
in this paper is available as a published capsule in Code Ocean
[26]. The output of a reproducible run consists of most of
the results presented in the paper, apart from the multiple-
precision-based eddy currents model, due to the need for the
Advanpix toolbox. The model is coded in MATLAB and it
is possible for the user to duplicate the capsule and edit the
input data to test the flexibility of the models. The input data
are hard-coded in predefined scripts. The motor data can be
modified within the ”Inrunner.m” script, while the operating
point and the inverter switching frequency can be found and
modified in the inverter script ”Inverter star 3f.m”. These
models are in continuous development and are also available
in GitHub [37] where further improvements are always up to
date.

VI. CONCLUSION

The paper investigates two popular 2-D sub-domain models in
polar coordinates for estimating induced eddy current losses in
slotless PM machines. Our work presents a general approach
to deliver the uttermost achievable accuracy using analytical
techniques. The proposed approach features a synergy between
different analytical models to set the foundation for fast and
accurate electric drive performance assessment.

An inverter model simulating state-of-the-art switching al-
gorithms is coupled with magnetostatic analytical models to
simulate steady-state operation. The output of the inverter
model is conveniently processed as an input to the analytical
eddy-currents models to study the impact of the current ripple
in the magnets’ eddy-current losses. One model neglects the
eddy currents reaction field, while the other neglects the mag-
nets segmentation along the circumferential direction. These

assumptions make the two models inappropriate for estimating
the induced eddy-current losses in segmented Halbach arrays.
Nevertheless, this paper has fully addressed all the challenges
that may arise from implementing these two models. The
impact of the Gibbs phenomenon in the first model has been
highlighted, and a practical approach for mitigating it has
been presented. On the other hand, the implementation of the
model accounting for the eddy-currents reaction field showed
a significant flaw when implemented in double-precision arith-
metic. Advanpix is proposed as a solution to compute the field
formulation accurately. The same proposed solution can be
applied to a sub-domain model where segmentation and eddy-
current reaction field can be accounted for together.

The developed models are ready to be deployed in any sce-
nario where they can be considered to be suitable, and they will
deliver the uttermost accuracy. Most code implementations are
made available to encourage further development in support
of all the presented findings.

APPENDIX A
SYSTEM OF EQUATIONS TO SOLVE THE FIELD PROBLEM

The following boundary conditions have to be set on the
boundaries separating region i from region i + 1 to ensure
the continuity of the field in the whole domain:

(
Br(i) = Br(i+1)

)∣∣
r=R(i,i+1)

(29)(
Hϑ(i) = Hϑ(i+1)

)∣∣
r=R(i,i+1)

(30)

While on the outermost and the innermost boundaries, the
assumption of infinite iron permeability allows enforcing zero
tangential field components as:

Hϑ(i) = 0
∣∣
r=Ri,r=Ry

(31)

the resulting system of equations is the following:

A−
1

((
Rw

Ry

)2m

+ 1

)
= A+

2 +A−
2

(
Rs

Rw

)m+1

+mAmJRw
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((
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)2m

− 1

)
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2 −A−
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(
Rs

Rw

)m+1

+ 2AmJRw

A+
2

(
Rs

Rw

)m−1

+A−
2 +mAmJRs = A+

3 +A−
3

(
Rm

Rs
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A+
2

(
Rs
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−A−
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)m+1

A+
3

(
Rm

Rs
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+A−
3 = 1⃝
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3

(
Rm

Rs

)m−1

−A−
3 = 2⃝

3⃝ = A+
5

(
1 +

(
Ri

Rr

)2m
)

4⃝ = A+
5

(
1−

(
Ri

Rr

)2m
)

(32)
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The system’s missing entries depend on whether the govern-
ing equation in the region of the magnet is the Laplace equa-
tion or the diffusion equation. When the diffusion equation is
considered, for all those harmonics causing eddy currents, i.e.,
H ̸= 0, the entries are expressed as follows:



1⃝ =
m

Rm
(cmnJm(δRm + dmnYm(δRm))

2⃝ =
1

µr
(cmnJ′m(δRm + dmnY′

m(δRm))

3⃝ =
m

Rr
(cmnJm(δRr + dmnYm(δRr))

4⃝ =
1

µr
(cmnJ′m(δRr + dmnY′

m(δRr))

(33)

where the derivative of the Bessel functions of the first
and second kind are defined in the same way reported in the
following only for the first kind Bessel function:

J′m(τr) =
δ

2
[Jm−1(δr)− Jm+1(δr)] (34)

For the case where the Laplace equation governs the field
solution in the region of the magnet, i.e., supposing the
magnets conductivity to be zero or for all those field harmonics
rotating synchronously with the rotor (H = 0), the missing
entries in (32) are to be expressed as:



1⃝ = cmn + dmn

(
Rr

Rm

)m+1

2⃝ =
1

µr
(cmn − dmn

(
Rr

Rm

)m+1

)

3⃝ = cmn

(
Rr

Rm

)m−1

+ dmn

4⃝ =
1

µr
(cmn

(
Rr

Rm

)m−1

+ dmn)

(35)

Despite the several existing contributions about eddy cur-
rents modeling in the literature, a major concern has remained
hidden in the implementation of (23). The issue lies in the
code implementation of Bessel functions over a wide range of
orders and arguments as it is needed for these models. It was
shown that any programming language fails to estimate Bessel
functions to a greater or lesser extent accurately. This problem
has been highlighted only in [36], where the generalized
inaccuracy in evaluating Bessel functions was shown for
Matlab and other open-source libraries. The same problem is
highlighted in the following, with a practical case showing the
extreme inaccuracy achieved by headlessly developing these
models in double-precision arithmetic.

APPENDIX B
INDUCED CURRENT DENSITY EXPRESSIONS

J0 =σ
Rs

m

[(
r

Rs

)m

+

(
Ri

Rs

)m(
Ri

r

)m]
CmHω

sin (Hωt+ φ+mϑ)

(36)

Ja =− 4σ

αm(R2
m −R2

r)

Rs

m2
fmCmHω sin (mαm/2)

sin (Hωt+ φ+m(ϑ2 − ϑ1)/2

(37)

where fm is reported in the following:

fm =
1

m+ 2

[(
Rm

Rs

)m+2

−
(
Rr

Rs

)m+2
]
+

1

2−m

(
Ri

Rw

)m+2
[(

Ri

Rm

)m−2

−
(
Ri

Rr

)m−2
] (38)

the particular case m = 2 is not explicitly treated in this
work.
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