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Preface

Master’s thesis in Marine Technology, spring 2023. The thesis explores the application
of machine learning methods to improve the vortex-induced vibration prediction model
VIVANA-TD. Specifically, the thesis will focus on utilizing neural networks and integrating
them with prior knowledge to achieve more precise predictions. Various approaches will
be discussed, and a seamless method for combining physical models and measurement
data will be tested. This thesis builds upon the project thesis conducted in fall 2022,
with chapters 1 and 2 serving as an extended version of the project thesis (TMR4510, 7.5
credits).

I express my sincere gratitude to Prof. Dong Trong Nguyen (NTNU), Prof. Svein Sævik
(NTNU), and Jie Wu (Sintef) for their guidance and support. Their expertise and assist-
ance have contributed to my understanding, approach, and motivation. Additionally, I
would like to thank Jie for his assistance with the SIMA simulation software and expertise
in vortex-induced vibrations.

”All models are wrong, but some are useful”- George E.P.Box

Trondheim 07.06.2023
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Abstract

Predictions of vortex-induced vibrations (VIV) are of great importance in design and life-
time calculations for slender structures in the ocean. The semi-empirical models used
today are still considered simplified compared to the complex fluid-structure interaction.
This thesis investigates the potential of combining machine learning techniques with the
semi-empirical time-domain model VIVANA-TD to improve VIV prediction. The thesis
begins by presenting the theoretical background of VIV and machine learning. Then,
different approaches combining physics-based models with machine learning will be dis-
cussed.

Furthermore, the thesis investigates how Physics-informed Neural Networks (PINNs) can
improve predictions by incorporating mathematical models and measurement data. PINNs
introduce an additional term in the loss function that describes the difference between the
predictions of the neural network and the physics-based model. This approach enables the
discovery of a solution that aligns with the mathematical model. Moreover, the approach
facilitates the adjustment of unknown parameters within the physics-based equations,
leading to a model that satisfies both the measurement data and the mathematical model.
Two simplified problems are used to evaluate the method.

Results from the simplified problems demonstrate its potential to improve mathematical
models by incorporating measurement data. However, the optimization process becomes
more complex due to an additional physics-based term in the loss function of the neural
network. Especially when the parameters of the mathematical models are large, the model
fails to converge to the correct solution. Although modifying the neural network’s struc-
ture improves its ability to converge to the correct solution, further improvements and
understanding are necessary for it to become a practical and effective method in engin-
eering.
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Sammendrag

Prediksjoner av virvel-induserte vibrasjoner (VIV) er av stor betydning i design- og levet-
idsberegninger for slanke strukturer i havet. Modellene brukt i dag, har flere forenk-
linger som gjør at de ikke klarer å beskrive den komplekse fluid strukturen helt nøyaktig.
Oppgaven har som m̊al å utforske potensialet ved å kombinere maskinlæringsteknikker
med tids-domene modellen VIVANA-TD, for å forbedre VIV-prediksjonen. Først vil bak-
grunnsteori for VIV og maskinlæring bli presentert. Deretter vil tilnærminger for å kom-
binere fysikk-baserte modeller med maskinlæring bli diskutert. Spesielt vil bruken av
nevrale nettverk kombinert med tidligere kunnskap i form av matematiske modeller bli
undersøkt.

Oppgaven utforsker videre metoden fysikk-baserte nevrale nettverk (PINN). PINN er et
nevralt nettverk med et ekstra ledd i tapfunksjonen, som beskriver forskjellen p̊a den
fysikk-baserte modellen og prediksjonen til det nevrale nettverket. Denne metoden gjør det
mulig å tilpasse seg m̊aledata og samtidig som det er mulig å finne ukjente parameter i den
fysikk-baserte modellen. Dette gjør at PINN kan benytte seg av matematiske modellene vi
har i dag og forbedre dem med m̊aledata. Metoden blir testet p̊a to forenklet fysikk-baserte
modeller.

Resultatet for PINN, er at metoden i noen tilfeller forbedrer prediksjonen. Men ved å
inkludere et ekstra ledd i tapfunksjonen, blir optimaliseringen mer utfordrende. I noen
tilfeller f̊ar modellen helt feil resultat. Dette er spesielt n̊ar parameterne i den matematiske
modellen blir store. Ved å endre p̊a strukturen i nevral nettverket blir metoden mer robust.
Videre utbedring og forst̊aelse av hvorfor det i visse tilfeller ikke fungerer, m̊a gjøres for
at det skal bli en effektiv metode.
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Chapter 1

Introduction

This chapter covers the motivation, problem description, literature study, and thesis struc-
ture.

1.1 Motivation

In recent years, there has been a growing interest in utilizing the ocean space for renewable
energy. With most of the world’s surface area covered in oceans, it holds immense potential
for resolving the energy transition by technology such as wind turbines, wave power, and
floating solar panels. All these installations require significant power cables and mooring
lines at deep sea, which contributes considerably to the development costs (DNV n.d.).
Offshore structures must withstand harsh weather conditions, including waves, currents,
and strong winds. Therefore, having accurate and precise dynamic response models of
ocean cables for practical engineering and operations is crucial. Vortex-induced vibrations
(VIV) can occur for slender structures in flowing fluids, leading to fatigue damage. Struc-
tural integrity analyses must therefore account for VIV. Today semi-empirical methods
are used to calculate VIV fatigue damage. However, the mathematical formulation of the
hydrodynamic load model is still considered simplified compared to the complex physical
process (Wu et al. 2020). A simplified model leads to uncertainty in response prediction,
resulting in conservative fatigue prediction and shorter design life. As cost is one of the
limiting factors of offshore renewable energy installation, getting more accurate models
will elongate the design life reducing the life cycle cost. This thesis will focus on riser
modeling because most VIV research is for risers. The study on risers is also relevant to
power cables and other slender flexible structures. Figure 1.1 illustrates a semi-submersible
and the riser connecting the wellhead to the platform. The white dotted line represents
the oscillatory motion of the riser in the event of VIV.
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Figure 1.1: Riser and VIV, courtesy Havromsteknologi (Myrhaug and Pettersen 2021)

Machine learning has gained significant attention in recent years due to more available
computing power, large amounts of available data, and efficient algorithms. Machine
learning has demonstrated impressive performance in various applications, including pro-
tein structure prediction (AlQuraishi 2019), image recognition (Szegedy et al. 2014), and
self-driving cars. Machine learning excels at capturing the full complexity of a system and
effectively representing the systems using deep neural networks. However, while machine
learning models excel at capturing the full complexity of a system, they can be limited
by the availability of data. The motivation for this thesis is that the abilities of machine
learning models should be combined with the prior knowledge from science and engin-
eering such that the advantages of machine learning are utilized while maintaining the
generalizability and trustworthiness of the physics models.

1.2 Problem description

Buff bodies exposed to flowing fluid may experience oscillating lift and drag forces. These
forces are caused by flow separation and vortex shedding. For flexible structures, the
oscillating forces will induce structural vibrations, known as vortex-induced vibrations
(DNV-GL 2016a). VIV can rapidly accumulate fatigue damage in slender offshore struc-
tures, such as risers, pipelines, mooring lines, and power cables. Fatigue damage poses a
significant concern for operations and structural integrity. Therefore, an accurate model is
crucial for condition monitoring and can help reduce operating costs while extending the
structure’s design life. Additionally, vibrations in the cross-flow direction increase drag
force, which is particularly relevant during the laying of slender structures on the seabed
or in static calculations. Over the past few decades, extensive research has been conducted
to improve mathematical models of VIV (DNV-GL 2016a). However, due to the complex-
ity of fluid-structure phenomena, these mathematical models are idealized approximations
and cannot fully capture the underlying physics due to various simplifications. This thesis
aims to investigate the potential implementation of machine learning in conjunction with
the existing mathematical model to achieve more accurate predictions. Furthermore, di-
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gital solutions, such as digital twins, will be discussed, where real-time data from sensors
is combined with the model to monitor the displacement and integrity of the structure.
Lastly, a novel approach will be implemented and tested on simulation data, incorporating
prior knowledge directly into the neural network.

1.3 Literature review machine learning implemented in VIV

Some of the most relevant research will be introduced to serve as an inspiration and identify
the approaches worth exploring. Three typical types of machine learning (ML) applica-
tions in structural engineering are system identification, damage detection, and dynamic
response (Sadeghi Eshkevari et al. 2021). While many approaches can be interesting for
fatigue damage in risers, such as cameras/sensors detecting structural fatigue, this thesis
will focus on improving the dynamic response model.

1.3.1 Machine learning and VIV models

The semi-empirical vortex-induced vibration models usually rely on empirical coefficients
to estimate the hydrodynamic forces. The accuracy of these models depends on select-
ing the empirical coefficients, which necessitates conducting several model tests to cover
all possible conditions. The coefficients are determined based on the non-dimensional
frequency and amplitude of the response. However, other factors such as the Reynolds
number, in-line motions, surface roughness, and inflow conditions also influence the coef-
ficients (Kharazmi, Z. Wang et al. 2021). Considering the expensive and time-consuming
nature of model tests, optimizing the selection of these tests is of great interest. Introdu-
cing an automatic model tester combined with an artificial intelligence (AI) program could
revolutionize the model testing process. This combination would enable the AI to conduct
model tests and optimize the setup for subsequent tests. This approach was implemented
in the intelligent towing tank by the Massachusetts Institute of Technology (MIT) riser
program (Kharazmi, Z. Wang et al. 2021), resulting in a more robust empirical coeffi-
cient database. Another approach to improving the coefficients involves using Bayesian
machine learning algorithms. Andersen et al. 2022 utilized Bayesian machine learning to
identify optimal coefficients based on response measurements. Both approaches aim to
estimate improved coefficients, reducing uncertainties associated with hydrodynamic coef-
ficients. However, they still rely on the semi-empirical model, with machine learning used
to optimize the parameters. Another approach is integrating the limited sensor data with
an existing mathematical model to refine predictions. This approach has been effectively
implemented by 4Subsea (Nilsen-Aas et al. 2019), resulting in significant reductions in
uncertainties and improved riser fatigue predictions. In this case, 4Subsea utilized an ML
model to estimate the heading of an FPSO.

Another ML approach replaces the semi-empirical model with an ML model, known as
surrogate modeling. The advantage of the surrogate model is that once trained, the model
is often computationally fast and can be used in real-time problems like digital twins. For
example, ML has proven to reconstruct riser motion using limited measurements. MIT’s
riser program Kharazmi, Z. Wang et al. (2021) proposed an innovative neural network
framework called LSTM-ModNet, which combines a Long Short-Term Memory (LSTM)
network with a neural network (NN) to reconstruct riser motion. The model utilizes strain
measurements from 24 sensors and employs modal decomposition to reconstruct the re-
sponse along the entire riser. The result is a fast model combining different sensors to
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predict the complete displacement. H2Offshore has adopted a similar strategy (Sundarara-
man et al. 2018), where the NN is trained on simulation data. The result was a model that
could use limited real sensors and accurate prediction of the displacement in real time.

Knowing the damping coefficient can be difficult, and additionally, fatigue damage can
lead to changes in the material properties. Therefore, having an estimation of the struc-
tural parameters is of interest. Kharazmi, Fan et al. (2021) introduced a physics-informed
neural network (PINN) for estimating structural parameters. The paper utilized PINN
to estimate the damping coefficients given hydrodynamic force and displacement meas-
urements. The surrogate models so far use a neural network to represent the solution.
Another approach is also to use the neural network to represent the operator. The MIT
Riser program Kharazmi, Z. Wang et al. (2021) suggested a two-part neural network: a
”branch net” that learns the operator based on the current profile and a ”trunk net”
that takes in the coordinates to evaluate the output. The model returns the amplitude
along the spatial coordinate inputs. The method successfully learned the current profile
mapping to the amplitude by training on simulation data from the semi-empirical model.
The prediction is good when the current profile is close to or inside the training range.
Resulting in a fast prediction tool that can match the accuracy of the semi-empirical model

So far, it is possible to divide it into three categories. The first is improving the semi-
empirical models using ML-based optimization to improve the coefficients. The second
approach uses a pure ML model to reconstruct the riser motion using sensor data. The
third approach uses the ML model as a replacement for the semi-empirical model while
retaining prior knowledge through the use of simulation data in training. The last category
falls under the area of Physics Informed Machine Learning (PIML)(G. E. Karniadakis et al.
2021), which is a part of the Scientific Machine Learning (SciML) community (Christopher
Rackauckas 2019). The combination of physics-based and machine-learning models also
falls under Hybrid Analytic methods (Riemer-Sørensen 2023; Staff 2021).

1.3.2 Hybrid models

In recent years, significant research has been conducted on combining physical and machine
learning models. This field is broad and rapidly evolving. For a comprehensive review,
please refer to the following sources: Rai and Sahu 2020; Rueden et al. 2021; Pawar et
al. 2021; Frank et al. 2020; G. E. Karniadakis et al. 2021. One approach that has gained
popularity is the Physics-informed Neural Network (PINN) approach (Cuomo et al. 2022).
This method was first introduced in 2019 (Raissi et al. 2019) and has since been applied
to various problems and developed further by a team of researchers at Brown University
called the CRUNCH group (G. Karniadakis 2023). The team is led by Professor George
Em Karniadakis, one of the original authors of the method (Raissi et al. 2019). PINN is a
method that utilizes machine learning to solve differential equations. While sophisticated
numerical solvers exist to solve differential equations, PINN introduces the capability to
estimate unknown parameters in the differential equation while finding a solution. As most
physical models are formulated as differential equations, PINN provides a seamless way to
combine data with missing physical equations. In addition, the method has demonstrated
robustness to noise and limited data (Raissi et al. 2019). PINN has been successfully
applied to solve challenging problems, such as the incompressible Navier-Stokes equation
(Raissi et al. 2019) and the coupling of the Navier-Stokes equation with the heat equation
(Cai et al. 2021). In mechanics, PINN has been employed for structural health monitoring
of a beam. By equipping the beam with sensors along its length, the PINN model is utilized
to reconstruct the entire displacement profile of the beam (Yuan et al. 2020; Moradi et al.
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2023).

PINNs utilize a deep neural network (DNN) as a surrogate model while simultaneously
fitting the observed data and the physical equations. One advantage highlighted by L.
Lu, Meng et al. (2021) is that the derivatives are obtained through automatic differenti-
ation, eliminating the need for a mesh that traditional numerical differentiation requires.
However, a drawback is that the PINN method is currently slower than the traditional
numerical method for finding the forward solution of a differential equation. Addition-
ally, finding a suitable neural network architecture for the method relies on empirical
approaches (L. Lu, Meng et al. 2021). The PINN approach adds additional terms to
the loss functions, resulting in a more challenging optimization landscape (Krishnapriyan
et al. 2021; Cuomo et al. 2022; S. Wang, Teng et al. 2020). However, ongoing research
is being conducted on automated neural network architecture (Géron 2017; L. Lu, Meng
et al. 2021) and improved optimization routines for multi-objective optimization (Cuomo
et al. 2022).

1.4 Research gap

To my knowledge, prior research has yet to be conducted on improving the semi-empirical
VIV model by solving it using a PINN approach. This novel approach aims to achieve
a solution that aligns with the available data while determining the empirical coefficient
required for the semi-empirical model to match the data accurately. Additionally, the
proposed model can estimate the structural parameters. E. Kharazmseveralho conducted
research utilizing the PINN approach to accurately estimate the structural parameters
of a vibrating cylinder caused by VIV (Kharazmi, Fan et al. 2021). Similarly, C. Cheng
explored similar research in this area (C. Chen et al. 2021). However, it is essential to
note a fundamental difference between these studies and this thesis. In the mentioned re-
search, the hydrodynamic forces were obtained from computational fluid dynamics (CFD)
simulations. In contrast, in this study, the forces are obtained using the semi-empirical
time-domain model VIVANA-TD. This makes it possible to improve the prediction (adjust
the empirical coefficient) and infer structural parameters based on the available measure-
ment data.

1.5 Objective

This thesis aims to improve VIV prediction by using a hybrid analytic method. The
research question is whether a physics-informed neural network can solve the VIVANA-
TD equation and estimate the correct coefficients based on available measurement data.

The PINN methodology will be examined in a simplified constructed forced mass-spring-
damper system. This analysis will provide insights into the capabilities and limitations of
the PINN approach. Subsequently, the PINN approach will be applied to the VIVANA-
TD equation, utilizing simulated measurement data obtained from SIMA (VIVANA-TD)
(Sintef n.d.). This application will enable an exploration of the effectiveness of the PINN in
addressing the complex dynamics of the VIVANA-TD equation and accurately estimating
the associated coefficients and structural parameters.

5



1.6 Structure of the report

The Introduction motivates the research and presents some of the approaches explored.
Chapter 2 explores theories on risers, VIV, VIV model VIVANA-TD, ML, digital twins,
hybrid analytics, and PINNs. Chapter 3 explains the problem setup and implementation
in Python. Chapter 4 presents and discuss the results. Chapter 5 introduces improvements
in PINNs. Finally, chapter 6 presents the conclusion and further work.
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Chapter 2

Background theory

This chapter will introduce risers technology, fundamental VIV theory, VIV modeling,
ML, digital twins, Hybrid Analytics, and Physics-informed Neural Networks. The chapter
is meant to provide information to understand the underlying issues with the physical
models and how digitization and technology can be utilized to improve models.

2.1 Riser

A marine riser is a pipe used in the oil and gas industry. Risers connect the subsea
wellhead to a floater, allowing for the transmission of fluids between the well and the
surface. There are different risers for various marine operations. Marine risers are typically
made of steel or other durable materials. They must withstand offshore environmental
conditions, including high pressures, temperature fluctuations, and the forces from currents
and waves. Marine risers are essential to oil and gas operations, and their design and
operation must be carefully planned and executed to ensure safety and efficiency. Failures
can have significant consequences for the environment and economy. Risers are placed
in deep water far from land, where the environment is challenging and harsh. There are
different types of configurations and also different types of pipes. In this thesis, flexible
pipes will be the focus. The different configurations are shown in figure (2.1).

Figure 2.1: Flexible pipe configurations, courtesy Sundararaman et al. 2018

Although risers are used today to transport hydrocarbons, the technology is still relev-
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ant for the ongoing transition to renewable energy. One suggestion is that hydrogen is
produced by floating offshore wind turbines and stored on the sea bottom (TechnipFMC
2023). The VIV model is also relevant for electrical power cables, an essential part of
offshore renewable energy. However, using direct measurements of the vibrations of the
riser is often not feasible due to the high initial costs and operational costs to reliably
monitor a riser over the whole service life (Sundararaman et al. 2018).

2.1.1 Flexible pipe

Flexible pipes are composed of several layers and complex combinations of steel and poly-
mers. The pipes have multiple degradation mechanisms and failure modes (Fergestad et al.
2017). Due to their complexity and harsh environment, several failures have been repor-
ted over the last few years. The failures have led to considerable interest in the industry
to build a better understanding and detect failures before they happen (Fergestad et al.
2017). A digital solution with screening and monitoring methods can be essential to un-
derstand the failure modes and improve the understanding, leading to better prediction of
why they happen and how. DNV has reviewed how digital tools and solutions can improve
subsea integrity monitoring (DNV-GL 2016b). DNV suggests that digital solutions will
be a key component to increasing the understanding of physical phenomena. The fatigue
life of the flexible riser is calculated in the design phase using historical data to predict
the environment (Nilsen-Aas et al. 2019).

2.1.2 Failure modes

There are several potential failure modes related to flexible pipes. Some failure modes are
mechanical damage from installation, corrosion, and fatigue load from VIV. Mechanical
failure can occur due to excessive bending, twisting, or crushing of the pipe, weakening the
material and making it more susceptible to ruptures or leaks. Corrosion can occur when
the materials are exposed to chemicals or corrosive agents, which degrade the material
leading to leaks or ruptures. This thesis limits its scope to fatigue damage from VIV.
The magnitude of VIV is not very large (cross-flow ≈ 1×D and in-line≈ ×0.3D), so the
bending stress is typically much lower than the yield strength. The issue is that loads from
VIV are cyclic. The material can begin to degrade after many cycles, meaning that on
a microscopic scale, the material can get cracks and imperfections. Over time this leads
to larger cracks and the riser failing. The degradation over cyclic loads is called fatigue.
Fatigue damage is typically calculated using a fatigue curve, which gives the relationship
between stress and the number of cycles the pipe can withstand before it reaches its fatigue
limit and fails. DNV-GL (2016a) mentions two methods to calculate fatigue damage: The
Rain Flow counting method and the Miner’s rule. Due to the complex cross-sections,
fatigue damage calculation is extra difficult. In complete fatigue estimation, temperature
and pressure should also be included in the analysis, as rapid changes in temperature will
affect the materials. There is also the constant development of materials used in the riser,
so using data from old risers past their design life might not be valid for the risers being
built today.
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2.1.3 Inspection and monitoring methods

During the design phase, the design life is calculated, but due to the large uncertainty in
the environments and modeling, this includes a significant safety factor. Since replacing or
maintaining a flexible pipe is expensive, the response should be modeled as accurately as
possible such that the riser’s expected lifetime is accurate. Thus we want to have integrity
management of the pipes. Due to its complexity, inspection and integrity monitoring
involve many disciplines. In the Riser handbook by Fergestad et al. (2017) table C1.2:
there is a whole list with inspection and monitoring lists and explanations on how common
they are in practice. However, only a few monitoring methods focus directly on VIV. As
the flexible risers typically span several hundred meters down in the ocean, installing and
maintaining sensors are challenging and expensive. Transferring and getting electrical
power are typical issues. Visual inspection and scanning can also provide reasonable
indications of the status of the riser regarding fatigue. There are some examples where
a few sensors are placed on the riser. GE Oil and Gas have suggested a method on
how acceleration sensors can be installed and used to collect data from a drilling riser,
illustrated in Figure 2.2

Figure 2.2: Drilling riser, sensor placement, images from Myers 2017

The sensors measure the acceleration and the ocean current. The data can be used in a
digital twin to get a complete description of the dynamic response of the whole system.
There are a couple of ways this can improve the model: The data can provide more
accurate environmental conditions. The data can validate the models. Lastly, by using a
hybrid analytic method, the collected data can further optimize the model and represent
the physics not included. In addition, this approach requires only a few sensors, making
it cost-effective. Therefore, the additional cost may be justified as it contributes to better
integrity insight, ultimately leading to an extended lifetime.

2.1.4 Lifetime assessment

Lifetime assessment for flexible pipes involves evaluating the condition over time to de-
termine their fitness for continued use. This assessment would consider factors such as the
materials used in their construction, the amount of use and wear they have undergone,
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and any potential damage or degradation that may have occurred. The assessment res-
ults would then determine whether the flexible pipes are still suitable for use or need to
be repaired or replaced. Due to the limited historical data due to manufacturers making
changes and evolving the flexible pipes, assessing if the flexible pipe can safely operate after
sustained damages or anomalies is challenging. Fergestad et al. (2017) states that visual
inspection and scanning can be expensive and lead to downtime. Thus having continuous
monitoring over the flexible pipe is of significant interest.

2.1.5 Power cables

In the offshore industry, subsea power cables are used in operations such as oil and gas
platforms and wind farms. For oil and gas platforms, these power cables are used to
transfer electricity to various subsea components and in the electrification of the platform
itself. In wind farms, power cables are utilized to transfer energy from wind turbines to
the power grid. Power cables share many characteristics with risers: they are flexible,
round, slender, and placed in a similar environment for approximately the same lifetime.
Therefore, they also exhibit similar failure modes (Delizisis et al. 2022). VIV fatigue is a
critical failure mode that can occur in power cables. However, the depth of research on VIV
fatigue in power cables is less extensive than in risers. Delizisis et al. (2022) conducted
a study examining how VIV models perform on a power cable, specifically focusing on
hydrodynamic parameters. They found that by adjusting the hydrodynamic parameters,
they could replicate all relevant VIV behavior observed in a small-scale experimental power
cable test. This suggests that current models can accurately predict hydrodynamic forces.

However, power cable cross-sections are complex. Factors such as the number of conduits,
type of insulation, armor, and others all influence the cable’s fatigue life and structural
properties. In practical terms, the fatigue life calculation for a power cable is similar to
that for a riser, where an S-N curve derived from experiments is used (Nasution et al.
2014).

2.1.6 Summary

It is important to predict the lifetime of risers or slender structures in the ocean. The life-
time and condition of these slender structures can be determined by inspection, screening,
and using models. By using models, we can gain a better understanding of the system
and its operations. Digitization can allow for a better connection between all the differ-
ent methods and the incorporation of measurement data, ultimately resulting in a more
comprehensive understanding of the system. Fatigue damage is mainly due to cyclic loads
from VIV. The model needs to be further improved to obtain a more accurate lifetime
assessment, either through a digital twin approach or a more accurate model formulation.

2.2 Vortex-Induced Vibrations

When buff structures are exposed to moving fluid, we may get vortex shedding, leading to
oscillating lift and drag forces. For flexible pipes, the forces will lead to structural oscilla-
tions. The phenomena are distinguished into vortex-induced motion (VIM) and vibrations
(VIV). VIM refers to vortex-induced rigid body motions. A typical example is the VIM
of a spar-type floater for a wind turbine or oil/gas production platform. Due to a signi-
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ficantly larger diameter than risers/cables, the shedding frequency is much lower. If the
vortex shedding force is close to the slender structure’s natural frequencies, the resulting
response is amplified, called resonance (DNV-GL 2016a). Risers often have complex cross-
sections, buoyancy modules, bending stiffness, and strakes, increasing complexity further.
In sheared current, local vortex shedding will also lead to the structure interacting along
the length; parts of the structure will transfer energy to the structure, and parts will
dampen the response. The literature study is based on DNV VIV Best Practice (DNV-
GL 2016a). VIV research aims to get the best understanding, prediction, and prevention
of VIV. Due to the complexity of VIV physical and numerical experiments, theoretical
analyses and physical insights all are necessary for understanding and modeling. The
most important theoretical and experimental findings in VIV prediction for flexible pipes
will be presented.

2.2.1 Vortex shedding

Vortex shedding is one of the fundamental aspects of VIV, and it is the underlying reason
for the alternating force. Vortex shedding occurs because, in actual fluid flow, the no-slip
boundary condition must be satisfied. No-slip boundary condition means there cannot
be a sudden change in fluid flow. For flow around a cylinder, the fluid velocity close to
the cylinder must be the same as the velocity of the cylinder. A thin boundary layer,
denoted as δ in Figure 2.3, formed near the surface due to no slip. Figure 2.3 figure shows
how the flow will increase from zero on the cylinder (or the velocity of the cylinder) to a
velocity determined by the current and the shape of the cylinder. The pressure gradient
will decrease, moving downstream until it reaches the separation point where the pressure
gradient is zero. Beyond the separation point, the pressure gradient will start to increase.
Figure 2.3 illustrates that a shear layer develops after the separation point, and the flow
contains significant vorticity. The vorticity causes the shear layer to roll into a vortex with
a sign identical to the incoming vorticity (vortex A in Figure 2.3). Similarly, a vortex B
forms, rotating on the opposite side of the cylinder (vortex B) Sumer and Fredsøe 2006.

Figure 2.3: Boundary layer, courtesy of Sumer and Fredsøe 2006

From Figure 2.3, it is clear that inertial and viscous forces are important in describing
vortex shedding. The relation of these forces can be described with the Reynolds number,
a non-dimensional parameter.

Re =
U ·D
ν

(2.1)

ν is the kinematic viscosity of the fluid, U is the flow velocity, and D is the pipe diameter.
According to the value of Re, we can distinguish four flow regimes, assuming a smooth
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cylinder: A crude partition of Reynolds number is presented based on Lecture notes Sea
loads (Greco 2022).

• Subcritical flow regime: Re ≤ 2× 105

• Critical flow regime: 2× 105 ≤ Re ≤ 5× 105

• Supercritical flow regime: 5× 105 ≤ Re ≤ 3× 106

• Transcritical flow regime: Re > 3× 106

The vortex shedding frequency (fs) can be expressed with Strouhal’s number for a fixed
cylinder in steady uniform flow. Strouhals number is a function of the Reynolds number.

St =
D · fs
U

(2.2)

In Equation 2.2, D is the diameter, U is the flow velocity, and fs is the vortex shedding
frequency. Investigating the flow around a circular cylinder in a steady current. Figure 2.4
illustrates the patterns behind a fixed, rigid pipe for different Reynolds numbers. Reynolds
number higher than 40, we get the formation of a pattern of vortices that shed alternately
at either side of the cylinder at a frequency.

Figure 2.4: Vortex shedding, courtesy of Lienhard, 1966

Laminar vortex shedding occurs in the range of Reynolds numbers from 40 to 150, forming
what is known as a Karman vortex street. As the Reynolds number increases above 150,
turbulence appears in the vortex street. At Reynolds numbers above 300, the vortex
street becomes fully turbulent, and the flow is referred to as subcritical up to 3 ·105. Most
VIV-related experiments are conducted in the subcritical flow regime, but the flow will
enter the critical or supercritical regimes in full-scale cases. This will introduce errors,
but it is generally understood that experimental data from the subcritical regime tends to
overestimate VIV response when applied to cases with higher Reynolds numbers, as noted
in the DNV Best Practice guidelines (DNV-GL 2016a).
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In addition to being dependent on the Reynolds number, vortex shedding is also influenced
by factors such as surface roughness, cross-sectional shape, incoming turbulence, and the
shear in the incoming flow (Triantafyllou et al. 2016). For example, as illustrated in Figure
2.5, the Strouhal number largely varies with surface roughness for a fixed pipe.

Figure 2.5: Strouhal number, from Lienhard, 1966

The Strouhals number is close to 0.2 in sub-critical flow, and the vortex shedding process
is nearly constant. Rough and smooth differences become significant when the Strouhals
number approaches the critical flow regime. Usually, offshore risers have a sufficiently
rough surface to give a stable vortex shedding (DNV-GL 2016a).

2.2.2 Forces due to vortex shedding

The alternating vortex shedding produces a hydrodynamic force in the cross-flow direction
and in-line. The force is found by integrating the pressure along the surface of the cylinder.
Assuming harmonic motion, the cross-flow component of the pressure resultant, FH , is
described by,

FH = FH0 sin(ωt− ϵ) = −FA sin(ωCF t)− FE cos(ωCF t) (2.3)

The first part of the equation represents the added mass force and is in phase with the
acceleration. The second part represents the excitation force and is in phase with velocity.
A similar expression can be found for the in-line force. For the in-line force, the shedding
frequency will be two times the cross-flow frequency due to both vortices affecting the same
side. There is also a constant friction force term named drag force. Assuming harmonic
oscillation, it is possible to describe the amplitude of the excitation force in phase with
cross-flow as,

FE =
1

2
ρCEDLU2 (2.4)

In Equation 2.4, ρ is the density of the fluid, D is the diameter of the cylinder, L is
the unit length, and CE is the excitation force coefficient. This part is in phase with
the velocity and controls the energy transfer between the fluid and the cylinder. The
excitation coefficient is dependent on amplitude and frequency. To find the coefficients,
two experiments are conducted: elastic mounted and forced oscillations.

2.2.3 Elastically mounted rigid cylinders subjected to cross-flow motions

The cylinder is mounted on linear springs and is free to move as the moving fluid exerts
forces on the cylinder. The cylinder will start to oscillate if the flow is in a regime where
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vortex shedding occurs. The still water natural frequency described in Equation 2.5 char-
acterizes the dynamic model. When it starts to oscillate, the added mass term changes
and the new frequency term is denoted fosc occurs.

f0 =
1

2π

√
k

m+ma,0
(2.5)

fosc =
1

2π

√
k

m+ma
(2.6)

ma is added mass, k spring stiffness, and m is mass. The added mass term is a part of the
hydrodynamic force and is in phase with the cross-flow acceleration of the cylinder. The
cylinder oscillation will further influence the vortex shedding frequency. The oscillating
frequency can further be described as non-dimensional by f̂ ; this uses the reduced velocity
UR. By using non-dimensional parameters, it is easier to compare and analyze across
different systems or scales.

UR =
U

D · f0
(2.7)

f̂ =
fosc ·D

U
(2.8)

The top of the Figure 2.6 shows the non-dimensional amplitude with respect to the re-
duced velocity. This figure differs from a standard mass-spring system with an oscillating
force instead of having an amplitude peak when the force approaches the system’s nat-
ural frequency. The response amplitude increases quickly as the frequency approaches
the beam’s natural frequency. Still, when the response frequently increases further, the
response amplitude is the same until a reduced velocity of 18. This phenomenon is known
as lock-in. In this range, the frequency does not follow the Strouhals shedding frequency.
This comes from the added mass term being in phase with the motion of the pipe and not
the total hydrodynamic force, despite being a part of the hydrodynamic force (DNV-GL
2016a). This also gives the possibility for a negative added mass. The variability of the
added mass to adjust the structure’s natural frequency is one of the fundamental features
of VIV. The response depends on the mass of the pipe; a greater mass can dominate the
added mass term. It is worth noting that the natural frequency defined in Equation 2.5
illustrates that the influence of the added mass variation on the pipe will depend on the
structure’s mass. the mass ratio m* in Equation 2.9 is used to illustrate this,

m∗ =
4 ·m
πρD

(2.9)
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Figure 2.6: Cross-flow VIV response of an elastically supported pipe with low structural
damping and low mass ratio (Govardan & Williamson, 2000). L denotes the lock-in.

Another essential aspect of VIV is that it is a resonance phenomenon with self-limiting
vibration amplitudes. The self-limiting amplitude is clearly illustrated in Figure 2.7. For
a larger initial amplitude than a steady state, the response amplitude gradually decreases
until it reaches a steady state value. On the other hand, suppose the initial amplitude is
smaller than the steady state. Then, the amplitude gradually increases until it reaches
a steady state since the excitation coefficient depends on the response amplitude and
frequency. Finding the coefficient in a free oscillation test is difficult because then the
transient phase needs to be studied. Thus forced oscillation experiments are more common
practice (DNV-GL 2016a).

Figure 2.7: Response oscillation for cylinder, from Wu 2022

2.2.4 Forced oscillations

In a forced oscillation experiment, a cylinder undergoes a prescribed motion, which can be
inline, cross-flow, or a combination of both. The driving force is the measured force and
can be separated into two components: one in phase with acceleration (added mass force)
and another in phase with velocity (excitation force). The motion is described by the
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equation x(t) = x0 sin(ωt), where x represents the displacement, ω denotes the frequency,
and x0 represents the displacement amplitude. The dynamic equilibrium can be expressed
by the following equation Wu 2022.

(m+ma)[−ω2Asin(ωt)] + FEcos(ωt) = Driving force (2.10)

From Equation 2.10, the added mass ma and the excitation force Fe can be calculated.
This makes it possible to find the excitation force and added mass coefficient for a chosen
combination of amplitude and frequency. There have been several attempts to systemat-
ical find the coefficient for both the inline and cross-flow response by a systematic variation
of controlling parameters (DNV-GL 2016a). However, because the force coefficients are
highly sensitive to phase angle, performing the needed amount of experiments is not feas-
ible. The results from forced oscillation are presented in contour plots where the amplitude
ratio is on the y-axis, and the nondimensional frequency is on the x-axis. The added mass
and excitation force is found when the coefficient is zero (no excitation).

2.2.5 Flexible pipes

When using flexible pipes, there are infinitely many natural frequencies. In dynamic
analysis, it is common to represent the displacement as a sum of mode shapes.

r(x, t) =
∑

ϕi(x)yi(t) (2.11)

where ϕi is the mode shape, which is the variation of the response in space, and yi is
the scaling factor that varies with time. The mode shape has to satisfy the boundary
conditions. It gives the mode shape total response in time (Langen and Sigbjørnsson
1986). Figure 2.8 shows the first ten-mode shapes.

Figure 2.8: Modeshapes

Each mode shape corresponds to one of the structure’s natural frequencies. The forces
from vortex shedding can synchronize with any of these frequencies, resulting in lock-in.
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Increasing current velocity might lead to the synchronization skipping to the next lock-in
frequency. In calculating the reduced velocity parameter, the natural frequency is used
in the calculation of reduced velocity. The net energy decides the vibration amplitude in
the structure. The net energy is a sum of the hydrodynamic excitation, hydrodynamic
damping, and structural damping forces (Wu 2022). If the amplitude stays the same,
but with a higher frequency, the fatigue damage will increase. In real situations, the flow
will vary in space and time. Space and time-varying flow lead to many eigenmodes being
exited simultaneously, resulting in a multi-mode frequency response. Risers are not always
uniform in cross-section. This result in different vortex shedding, leading to a multi-mode
frequency response. Inline vibration also needs to be considered, and higher modes will
be excited due to the shedding frequency being twice the frequency. The amplitude is
typically 40 % of the CF amplitude (Wu 2022), but they can be equally crucial in fatigue
calculations due to the higher modes.

2.3 VIV modeling

To model VIV, there is a need for a hydrodynamic model that calculates the force induced
on the structure and a model that calculates the structure’s response. Today, accurate
finite element solvers are used to calculate the structure’s response. The challenge lies in
calculating the hydrodynamic force. CFD and semi-empirical methods are the two main
approaches to estimating the hydrodynamic force in VIV analyses.

CFD relies on the Navier-Stokes equations to describe the motion of fluids. These equa-
tions are then solved by discretizing the fluid and applying the Navier-Stokes equation
to each element. Due to the complexity of these equations and the need for fine mesh,
CFD is currently limited to simplified shapes and low Reynolds numbers. The method
is too computationally heavy for large, complex shapes like a flexible riser. In practice,
semi-empirical methods are used (DNV-GL 2016a). Semi-empirical methods are based
on a combination of fundamental theory and experiments observing the system, lead-
ing to mathematical descriptions. These mathematical descriptions are established on
several simplifications. Traditionally, VIV models are based on empirical models that re-
spond at one or a set of discrete frequencies, such as SHEAR7, VIVA, and VIVANA-FD
(DNV-GL 2016a). This frequency-based approach has to assume a structure model that
is linear. A linear structure model limits the ability to account for non-steady VIV re-
sponses and non-linear structural changes, such as tension variation (Sang Woo Kim et al.
2021). To address this limitation, researchers at NTNU have developed a time domain
model, VIVANA-TD. The time-domain model can account for non-steady VIV response
and non-linear structural changes.

2.3.1 VIVANA-TD

VIVANA-TD is a time-domain hydrodynamic load model developed at NTNU and later
improved and validated by Sintef (Wu et al. 2020). The model is based on strip theory,
which divides the riser into finite amounts of independent strips. The force for each strip
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is described by,

F = (CA + 1)ρ
πD2

4
u̇n − CAρ

πD2

4
ẍn +

1

2
ρCDDvn|vn|+

1

2
ρDCv,CF |vn|(j3 × vn)cosϕv,CF+

1

2
ρDCv,IL|vn|vncosϕv,IL

(2.12)

The first three terms originate from the Morrison equation. CA represents the added mass
coefficient, CD is the drag coefficient, Cv,CF is the vortex-shedding force coefficient in the
cross-flow direction, and Cv,IL is the vortex-shedding force coefficient in the inline direc-
tion. The instantaneous phases of the vortex shedding forces in the inline and cross-flow
directions are represented by ϕv,IL, and ϕv,CF , respectively. The fluid density is denoted
by ρ, and D is the cylinder diameter. Figure 2.9 illustrates the current, hydrodynamic
force, and response vectors. vn is the normal direction of the relative structural velocity.
The current vector is denoted by u, where un is the normal direction and ut is the tan-
gential direction with respect to the cylinder strip. j3 is pointing in the direction of the
cylinder axis. By neglecting the tangential direction of the current, the hydrodynamic
force can be described in the local j1, j2 plane. Fv,x is the in-line vortex shedding force,
and Fv,y is the cross-flow shedding force.

Figure 2.9: Cylinder strip with relevant vectors and local coordinate system, from Sang
Woo Kim et al. 2021

This model aims to describe VIV hydrodynamics as simply as possible while maintaining
the underlying physics. It is considered semi-empirical because certain parts of the Mor-
rison terms are derived from the first fluid mechanics principles. In order to account for
the observed phenomenon of synchronization of VIV loads and structural responses, an
additional term needs to be included. The coefficient is determined empirically through
experimentation. The parameters (Cv,CF ,Cv,IL, CD) are based on empirical observations.
They can be influenced by additional factors such as Reynolds number and surface rough-
ness. The VIVANA-TD model reasonably represents VIV loads, and the predicted results
agree with general measurements Wu et al. 2020. However, the model still has its limita-
tions, and like all empirical models, it requires extensive model test data to determine the
appropriate coefficients.
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2.3.2 Structural model

The structural model used in VIVANA-TD uses finite elements. The structure model is
governed by the theoretical equation of motionMr̈+Cṙ+Kr = F , whereM represents the
structural and hydrodynamic added mass, C is the structural and hydrodynamic damping,
K is the stiffness matrix, and F represents the external force. Since M , C, and R are
functions of the response r, an iterative solution scheme is required (DNV-GL 2016a).

2.3.3 Limitations

The workflow of a semi-empirical VIV model is illustrated in figure 2.10.

Figure 2.10: Semi-empirical work-flow, adapted from DNV best practice DNV-GL 2016a

The results from the semi-empirical model depend on the accuracy of the influencing
parameters, which are labeled as 1 and 3 in Figure 2.10. The validity of the database
of empirical coefficients, which serves as the foundation for the load and response model,
is indicated as 2 in Figure 2.10. Some significant assumptions in the empirical database
include simplified added mass models and non-coupled IL and CF response models. In
addition, the scaling approach constrains excitation coefficient data at different Reynolds
numbers and surface roughness ratios (DNV-GL 2016a). The accuracy of the model also
relies on the simplifications made, identified as 4 in Figure 2.10. According to DNV best
practice (DNV-GL 2016a), the model’s validity domain must be confirmed based on the
experimental database. Additionally, a stress analysis must be conducted considering the
response, indicated with 5 in Figure 2.10 to determine the fatigue life. The ocean current
will also vary in direction and speed, leading to different vortex shedding and a more
complex response. This model does not account for three-dimensional effects.

DNV best practice states, ”The present understanding and capability of engineering soft-
ware for VIV makes it infeasible to carry out analyses that in detail can reproduce VIV as
we can observe the phenomenon on real structures” (DNV-GL 2016a). This leads to that
large safety margins that are expensive. The models are also insufficient to use together
with various sensor data. This raises the question of whether it is possible to implement
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machine learning techniques in conjunction with measurements to improve the model.

2.3.4 Summary

Vortex shedding is a fundamental aspect of VIV, causing alternating forces on structures
in fluid flow. It occurs due to the no-slip boundary condition, where flow around a cylinder
forms vortices on either side. Vortex shedding is influenced by Strouhal’s number, Reyn-
olds number, surface roughness, and incoming flow characteristics. The hydrodynamic
forces from vortex shedding include oscillating cross-flow and inline forces, which can be
estimated using semi-empirical methods. VIV models, like VIVANA-TD, aim to capture
the physics of VIV while considering simplified mathematical descriptions. However, due
to uncertainties in the simplified model, influencing parameters, and relying on empirical
coefficients, a large safety margin is typically included in the analysis. In order to reduce
the safety margin in the VIV model, a better understanding of the relationship between
the response and parameters is needed. Additionally, new approaches incorporating more
data can help reduce uncertainties and thus reduce safety margins.

2.4 Machine learning

ML is a part of AI that uses algorithms to learn from data and make predictions or
decisions without being explicitly programmed. NN is a subset of ML and arguably the
heart of ML. NN are popular because of their ability to learn and model complex patterns
and relationships.

2.4.1 Neural Networks Architecture

NN is inspired by the way that biological neurons in the human brain communicate with
each other. This is why NNs are often referred to as artificial neural networks (Goodfellow
et al. 2016). However, while the initial concept of NNs was influenced by biology, machine
learning has since evolved in many different directions. Today’s NNs are often highly
abstracted and optimized for specific tasks rather than being direct replicas of biological
processes. Thus NNs should, instead of being thought of as a representation of the brain,
be thought of as a new way of representing and modeling complex functions. NNs are a
large function that is well-suited for optimizing. The basic computation unit in a neural
network is the Neurons, also called nodes or units. The structure of a neuron is illustrated
in Figure 2.11; each neuron has a set of weighted input links (ω), a simple function (a),
and output links. The neurons can be connected arbitrarily, allowing for many different
architectures. It is common to organize the neurons into groups called layers connected
in a series. The most basic neural network is fully connected. In a fully connected neural
network, all the neurons in each layer are connected to all the neurons in the next layer;
a feed-forward neural network with four layers is illustrated in Figure 2.12. The circles
represent the neurons, and the links represent the weights. Each layer is a function of
the layer that preceded it. For example, three layers l3, l2, and l1 form the mapping
fN (x) = fl3(fl2(fl1(x)))) where each layer represents a function and x is the input. A
network with more than one hidden layer is called a deep neural network (Goodfellow
et al. 2016).
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Figure 2.11: Neuron

Figure 2.12: Feed-forward Neural Network, generated using (Lenail 2023)

The equation of one layer becomes:

fl = a(Wx+ b) (2.13)

x is the input vector to the layer, W ∈ Rfl×fl−1 is the weight matrix, b ∈ Rfl is the bias
vector that is added to the weighted sum, and a is the activation function that is applied
element-wise to the resulting vector. In DeepXDE paper (L. Lu, Meng et al. 2021), the
NN is denoted NL is L- is the total number of layers, the resulting feed-forward neural
network N is then

input layer: N 0(x) = x ∈ Rdin (2.14)

hidden layers: N l(x) = al(W lN l−1(x) + bl) ∈ RNl for 1 ≤ l ≤ L− 1 (2.15)

output layer: NL(x) = W LNL−1(x) + bL ∈ Rdout (2.16)

The neural network represents a function where the parameters Θ are represented by the
weights W and bias b. Which becomes the following function f[x,Θ] = y, where y is out-
put and x is input. The weights represent the strength of the connection of the neurons
and bias how often it is active. When designing an NNs, the amount of layers and how
many neurons per layer one should choose is a difficult task. Generally, a deeper (more
layers) network requires fewer neurons per layer and fewer total parameters (Goodfellow
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et al. 2016). However, deeper nets are harder to train. The choice of activation function
is an important part of the capabilities of the neural network. The number of paramet-
ers decides how complex functions can be represented. The ability to express complex
functions is called expressibility. The activation function is the part that introduces non-
linearity capabilities into the model; thus, choosing a linear activation function yields a
model that cannot describe nonlinear functions. If a linear activation function is used, the
whole network could be reduced to one layer since the input and output are just matrix
multiplications. The most common activation functions used today are ReLu, Tanh, and
Sigmoid. ReLu is the most popular today, mainly because it does not have a problem with
vanishing gradients, and it works well in a large number of cases (Goodfellow et al. 2016).
Activation functions have a big effect on the training of neural networks because tradi-
tional training requires the gradient of the neural network. Since ReLu is not a smooth
function differentiating two times yields zero, this can be an issue in cases where the double
derivative is required for training or optimizing. Figure 2.13 illustrates the three different
activation functions and its derivative.
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Figure 2.13: Activation function and its derivatives

The parameters that determine the neural network structure is called hyperparameters.
Neural networks can be designed in many different ways due to the extensive amount of
hyperparameters. Finding the most effective and capable NN can be challenging, often
requiring an extensive search (Géron 2017). A lot of research is going into how to select
hyperparameters for a neural network. There are optimization routines that can make this
process more efficient compared to random searches (Géron 2017). A common practice is
to select a more extensive neural network than necessary (e.g. more layers). While this
approach can save time, it also increases the risk of overfitting, which is when the model
performs poorly on unseen data. However, there exist measures that prevent overfitting.
So far, only feed-forward neural networks have been considered. However, there are also
other types of NNs, such as convolution neural networks, which are suitable for image
recognition, and recurrent neural networks, which are used to capture history. These
types of NNs have unique characteristics that make them more suitable for specific tasks.
Research efforts focus on discovering new structures, and in recent years, there have been
notable breakthroughs, such as the transformers used in the highly debated GPT-3.5 model
(network architecture used in ChatGPT)(Wikipedia 2023). While there are countless ways
to design a neural network, the most important aspect of a neural network is its capability
to learn and represent a desired function.
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2.4.2 Feed-forward Deep Neural Networks Training

When training a neural network, the goal is to minimize the difference between the real
function and the NN model. In order to minimize the difference, the optimal parameters
ω∗ and b∗ must be found. The loss function describes the mismatch between the model
output u = f[x,Θ] and the ground truth u∗. The loss function outputs a single scalar
value used in training to minimize the loss. In addition to having a loss value, it is also
important for the NN to represent the function between the measurement points. Thus, in
some cases, the training data is divided into a validation set to check how well the model
matches the function between the data points. If no validation is used, there is a risk
of overfitting the data, meaning that the data points are perfectly matched, but the NN
might be completely wrong between the points. Finding the right parameters becomes an
optimization problem where the loss function is the objective function. The choice of the
loss function can greatly impact the optimizer’s capability to find the best parameters.
One of the most common cost functions is the mean squared error (MSE). MSE is defined
as,

MSE =
1

N

N∑
i=1

(ŷi − yi)
2 (2.17)

In Equation 2.17, i is the number of N training data. In most cases, this performs well
as it penalizes the samples further away exponentially more. However, in cases where the
output is very small scale, the loss might become too small; then the absolute value might
be a better option than squared.

An optimizer is necessary to determine the weights and biases that best represent a func-
tion. The optimizer’s role is to locate the minimum value of the loss function. Most
optimizers require the first-order derivative (gradient) to find the minima. These gradi-
ents are computed from the outputs towards the inputs using the chain rule. Due to the
direction from outputs to inputs, this process is called backpropagation. A significant
issue with this approach is the potential for gradients to progressively decrease as the
algorithm moves through the layers of the neural network. This can result in the first
layers remaining unchanged, a phenomenon called the vanishing gradient problem. Op-
positely, in some cases, the gradients can become excessively large in the initial layers, a
problem known as exploding gradients (Géron 2017). This issue presented a significant
obstacle in the machine learning field for a long time. However, in 2010, Xavier Glorot
et al. published a paper Glorot and Bengio (2010) in which they discovered that the
initialization of weights significantly impacted training, and problems with vanishing and
exploding gradients became less common. Glorot suggested a scheme for initializing the
weights that were tailored to the different activation functions.

Many of the most commonly used optimization algorithms are further extensions of gradi-
ent descent. Gradient descent function by calculating the gradient direction and taking a
step proportional to the negative gradient. At each step, the weights are updated based
on the following rules:

w = w − α
∂C

∂w
(2.18)

b = b− α
∂C

∂b
(2.19)

In these equations, w represents the weight, b is the bias, α is the learning rate, and C is
the objective function. If the learning rate is too large, there is a risk of overshooting and
oscillating around the minimum. This is illustrated in Figure 2.14, where the red arrows
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show a learning rate of 0.1 and the blue arrows show a learning rate of 0.8. The learning
rate of 0.8 overshoots and starts to oscillate. On the other hand, a small learning rate
results in slow convergence. Thus, finding the optimal learning rate is crucial for gradient
descent. However, this is a simplified, convex example. For NN, the cost function is non-
convex, leading to potential issues with the algorithm settling at local minima instead of
the global minimum or getting stuck on a plateau. This is illustrated in Figure 2.15.
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Figure 2.14: Gradient descent, function C(θ) = θ2, red arrows learning rate α=0.1, blue
arrows learning rate α = 0.8
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Figure 2.15: Gradient descent. Challenging optimization.

It is important to note that in gradient descent, the objective function represents the entire
training set. The dataset might be divided into random batches to expedite training, a
method known as stochastic gradient descent. This can lead to faster convergence and
the possibility of training on larger datasets (Géron 2017). Adam is an extension of the
stochastic gradient descent optimization algorithm. The name Adam stands for Adaptive
Moment Estimation. The optimizer improves on stochastic gradient descent with two
techniques: momentum and adaptive learning rate. Momentum uses moving averages to
accelerate the movement in the relevant direction. Much like a ball rolling down a hill,
gradually picking up speed until it reaches terminal velocity, the same principle applies to
the momentum optimization technique. It leverages the history of gradients to compute
a moving average, which speeds up the training. Using momentum helps the optimizer to
get past plateaus, and it can also escape local minima (Géron 2017). The algorithm uses
the momentum to calculate adaptive learning rates for each weight in the network (Géron
2017).

There exists also optimization techniques that use second-order derivatives. These meth-
ods are less prevalent in machine learning because the second-order derivatives (the Hes-
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sian) are difficult to calculate. There are n2 Hessians for each output, while for the
first-order derivatives, there are only n per output (Géron 2017). Despite this, there are
second-order derivative methods that use some tricks to make it feasible. L-BFGS is one
such example. L-BFGS is a quasi-Newton optimization algorithm that approximates the
Hessian matrix to find the direction of the steepest descent. L-BFGS is a batch optimiza-
tion algorithm that processes the entire training dataset in each iteration. For applications
like PINN, using Adam optimizer first, then training with L-BFGS is recommended (Raissi
et al. 2019).

2.4.3 Backpropagation

Traditionally derivatives are found by finite differences or symbolic derivatives. For find-
ing derivatives in neural networks, a version of automatic differentiation is used called
backpropagation (L. Lu, Meng et al. 2021). Automatic differentiation utilizes that all
numerical computations are the sum of a finite set of operations in which the derivatives
are known. The backpropagation algorithm first performs a forward pass through the NN.
Then, it calculates the error between the actual output and the neural network’s output.
The algorithm then proceeds from the output layer to the input layer, measuring how
much each connection contributes to the error. This information is then used to adjust
the weights to reduce the error.

2.4.4 Approximation property of neural networks

The universal approximation theorem states that ”a neural network can approximate any
smooth function arbitrarily close provided a sufficient number of neurons Nn.” Hornik
et al. 1989. It has since been shown that we can do it with fewer neurons when using
a deep neural network with a nonlinear activation function (Z. Lu et al. 2017). This
indicates that when designing a neural network, more expressibility by using a deeper
neural network instead of many neurons per layer. It is important to remember that
the universal approximation theorem only states that it exists a neural network that can
represent any function, not that it is possible to find the neural network parameters.
Finding the right parameters includes solving a non-convex optimization. There is no
guarantee that the solution found is the right one (global minima).

2.4.5 Summary

A neural network is an interesting model due to its expressive capability, well-defined
optimization algorithms, and computationally efficient data libraries. A neural network is
suited for computers, offering many possibilities.

2.5 Digital twin

There has been increased interest in integrating real-time data into physical models, known
as a digital twin. IBM defines a digital twin as ”a virtual representation of an object
or system that spans its lifecycle, is updated from real-time data, and uses simulation,
machine learning, and reasoning to help decision-making” (IBM 2022). Having a virtual
representation fed by live data may result in models providing real-time predictions of
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the flexible pipe. The idea is that the unmodeled physics will be included in the sensor
data. The generated data can offer a better lifetime assessment due to improved insights.
These insights can enhance the maintenance program and operational decisions, detect
failure modes, and extend its lifetime (DNV-GL 2016b). A high-value asset such as a
flexible pipe, reducing downtime and extending life by a few percent, can yield significant
economic gains.

Hybrid Analytic

DIGITAL TWIN

DDM

Measurements

• Informed 

decision making

• Better 

understanding

F=ma

PBM

System

Figure 2.16: Digital Twin Schematics

A digital twin necessitates a robust model capable of utilizing the available data to provide
higher resolution and insights. In Stadtman et al. (2023), the most desirable characteristics
of the modeling approach include:

• Accuracy and certainty: Accuracy denotes the model’s ability to model the
”ground truth” as closely as possible, and certainty refers to confidence in its cor-
rectness. If a model delivers accurate results but relies on simplifications and as-
sumptions, its results cannot be trusted in all cases. Hence, uncertainty studies are
important.

• Computational efficiency: For running a model in real-time, computational effi-
ciency is required.

• Generalizability: The model’s ability to solve a broad spectrum of problems
without the need to change the model. Theoretical models are often generalizable,
e.g., for the gravitational laws F = ma, only a needs to be changed going from
planet Earth to the moon.

• Self-evolution describes the model’s ability to learn and improve over time.

• Interpretability and trustworthiness: Interpretability is the ease with which
humans can understand the reasoning behind predictions and decisions. Trustwor-
thiness indicates the reliability of these interpretations and outcomes.
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• Robustness and stability: Robustness is related to the model’s response to per-
turbations or noise. Stability is essential to prevent model failure or collapse.

Stadtman et al. (2023) separates into three different types of models: physics-based models
(PBM), data-driven models (DDM), and hybrid models.

2.5.1 Physics-based model

PBM is based on mathematical models that utilize principles from physics to simulate and
predict real-world phenomena. Since the model is founded on well-established principles
and theories, it is reliable and accurate. PBM is often also generalizable to similar problems
since the model is built on physics and reasoning. One of the disadvantages of PBM is
that the model can be computationally intensive, especially for large systems with high
fidelity. Computational intensive models limit their use in real-time models such as digital
twins, and often reduced models must be used to compute the models in a reasonable time.
A physics-based model is also challenging to develop and calibrate, especially for poorly
understood systems. VIV is such a phenomenon; the Navier-Stokes equations that describe
the forces are too computationally intensive. Thus, a semi-empirical model that combines
theoretical principles with empirical data is used in practice. The advantage of a semi-
empirical model is that it is easier to incorporate the observed data to improve the model
by tuning the coefficient base. Since they are based on empirical data, they might capture
physics that is not understood or possible to model. However, semi-empirical models are
often complex and expensive to develop as they require experiments and observations, and
a complete underlying understanding may not be possible. Since they are often made as
simple as possible, this leads to less accuracy. In addition, the coefficients are often based
on small-scale experiments, leading to uncertainties.

2.5.2 Data-driven model

DDM is purely based on available data without any underlying theoretical principles.
DDM can be very accurate as the observation it is based on captures the ”ground truth”
instead of the physical models based on abstract theoretical principles. This makes them
suitable for complex systems where we do not have a well-understood theoretical model.
Modern ML has caused a revolution in the application of DDM. With DNN, complex
systems can be learned only by using data. Model built upon data, it is easy to update
and improve. However, the models are constructed entirely from data and observations and
may lack physical interpretation due to their complexity. The DNN does not incorporate
any reasoning and operates as a ”black box,” making it challenging to trust their outputs
and generalize to similar systems. ”Black box” models are a key issue, especially in
safety-critical applications. Additionally, DNN need large amounts of high-quality data,
which can be hard to obtain. When the system needs to exist before it is possible to
collect data, DDM quickly becomes an insufficient modeling strategy. However, DDMs
are often very computationally effective, an essential aspect of digital twins. It is worth
noting that DDMs have increased substantially in popularity, mainly because of cheaper,
better quality, and more available sensors, cameras, and data-gathering devices. The data
collected can be used to develop and improve models. Many advances have been made in
machine learning algorithms and neural network architectures.
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2.5.3 Hybrid model

A hybrid model combines DDM and PBM, utilizing the best of both worlds. The idea
behind the hybrid method is to use the knowledge we already have as much as possible
and combine them with data-driven models to get the best of both models. The goal
is that combining different models can ultimately lead to accurate, efficient, trustworthy,
and generalizable models. In many ways, the VIVANA-TD model is a hybrid model as
it combines theoretical models (finite elements and potential theory) and observations
from model tests to describe the phenomena. However, further improvements could still
be possible by integrating this semi-empirical model with machine learning models. This
area of research goes under the name of hybrid analytics.

2.6 Hybrid analytic

Hybrid analytics is a new and rising field of research. Hybrid analytics combines physical
models with machine learning. Sintef predicts that hybrid analytics to become the forefront
of practical engineering (Riemer-Sørensen 2023). Combining machine learning (ML) with
physical models is an extensive field containing many ML techniques and physical models.
However, this thesis focuses explicitly on utilizing ML in the form of NN, narrowing the
scope to this particular approach.

2.6.1 Introduction

Developing a digital twin for the riser is a good solution for the integrity monitoring
of a riser. However, fatigue damage is something that happens over time. Therefore
is optional to use a model that runs in real-time. Instead, the ML could be used to
improve the simulation. One promising approach is residual modeling. This approach
uses a simulator to calculate a prediction then the difference between the prediction and
real measurement is learned using an ML model. An interesting possibility for VIV is
to use multi-fidelity neural networks (NN), which combine low- and high-fidelity data.
The method uses simulated data and sparse data from real measurements. The neural
network is able to discover and exploit nonlinear and linear correlations between the high-
and low-fidelity data, improving the prediction. By combining the strengths of physical
models and neural networks, multi-fidelity NN is an interesting method for bridging the
gap between real life and simulations. In a paper by Meng and G. E. Karniadakis (2020),
the authors publish a neural network that can combine low and high-fidelity data and
extend it to contain physics equations to learn an unknown parameter.

Another promising approach is to use a neural network as an extra term in the differential
equation. This term is trained to represent unmodeled physics. This approach goes under
Neural ODE or Universal differential equations (Christopher Rackauckas et al. 2021). It
is also possible to use symbolic regression on the neural network to discover a symbolic
equation (mathematical equation). This can help discover nonlinear models that might
be difficult to discover using traditional techniques.

Much research is going into merging physical knowledge into ML models. This area of re-
search goes under Physics-Informed Machine Learning (PIML). PIML aims to enhance the
accuracy, interpretability, and generalization of models. This can provide new possibilities
in modeling complex phenomena such as VIV.
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2.7 Physics-informed machine learning

PIML is an approach that leverages knowledge from empirical, physical, or mathematical
descriptions to improve the performance of ML models (G. E. Karniadakis et al. 2021).
There are three ways of shaping the ML model using prior knowledge.

The first and simplest method is by generating training data through simulation or by
preprocessing the training data and removing data that does not comply with the prior
knowledge. This informing of ML is called observation bias by (G. E. Karniadakis et al.
2021). This has yielded promising results, especially in situations where a fast model is
needed (Sung Wook Kim et al. 2021). After the model is trained, the result is a fast model
that can run in real-time. For example, it has been used in medicine to develop an ML
model to find the aortic wall stress distributions. The model was trained on finite element
analysis data, and the result is that the ML model can provide instant results instead of
waiting for analysis each time (Liang et al. 2018). The same approach has also been used
in fluid mechanics and construction (L.-W. Chen and Thuerey 2021; Alóısio et al. 2013).

The second approach for incorporating physical knowledge into ML models involves design-
ing customized architectures that strictly enforce physical laws. However, this method can
be challenging to implement as it requires the development of a unique architecture that
adds complexity to the training and optimization process (G. E. Karniadakis et al. 2021).
Nevertheless, despite the difficulties associated with this approach, enforcing physical con-
straints can help improve the accuracy and robustness of the ML model. In the VIV case,
this can be a neural network that is inspired by the modal decomposition of the Fourier
series.

The third approach for integrating physical knowledge into machine learning models in-
volves regulating the model with physical equations to ensure that the neural network
converges to the solution matching the mathematical equation. When differential equa-
tions are used in the training process, the method is called a physics-informed neural net-
work (Raissi et al. 2019). This approach is intriguing because it combines the strengths
of neural networks while still adhering to known physical laws. However, it requires a
prior understanding of the differential equation that describes the system. Nonetheless,
this approach shows great promise in improving the accuracy and robustness of machine
learning models in the context of physical systems.

2.7.1 Review of physics-informed neural network (PINN)

The concept of a physics-informed neural network (PINN) was first introduced in 2018
by (Raissi et al. 2019). However, similar approaches have been developed as far back as
1990 (Lee and Kang 1990) and 1998 (Lagaris et al. 1998). The PINN aims to solve two
problems: data-driven solutions and data-driven discovery of partial differential equations.
Although the method is relatively new, it is constantly being improved and refined, and
new discoveries are still being made. George Em Karniadakis is one of the authors of
the PINN framework, and he is currently leading a research team at Brown University
that is further developing the PINN approach and have, since the original paper, pro-
duced a number of papers addressing improvements and implementations in new areas
(G. Karniadakis 2023).
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2.8 Physics-informed Neural Network

This chapter will present the methodology of physics-informed neural networks (PINNs).
The theory is based on the general framework of Maziar Raissi, Paris Perdikaris, and
George Em Karniadakis (Raissi et al. 2019). Therefore, the authors will be addressed as
the original PINN authors, and the theory presented in the general framework will be
considered the original PINN formulation.

2.8.1 Introduction to PINNs

Understanding a complex system through data alone requires a large quantity of it. In
certain scenarios, data generation and collection can be both cost-effective and easily
available. Image recognition is an example of this. Here, humans are prompted to identify
specific items within images, thus creating an extensive repository of labeled data that
can be used in training neural networks. With today’s advanced computing power and
algorithms, learning the objects in the images and interpreting them in new images is
possible. However, this process of data acquisition can be more challenging. There are
instances, particularly in physics and engineering, where obtaining large data sets can be
challenging. For instance, gathering sufficient data from a riser might be financially or
practically infeasible. Furthermore, the data collected from a riser is typically sparse, both
in time and space, making it impossible to fully capture the entire system’s dynamics.
However, years of scientific research have expanded our understanding of dynamic sys-
tems. This knowledge is often in the form of differential equations. Differential equations
illustrate the relationship between variables and how they change over time, providing a
framework for understanding complex interactions. This has motivated the development
of Physics informed neural networks (PINNs). PINNs integrate differential equations into
the training routine of neural networks, ensuring that the model’s predictions satisfy the
known physical laws and principles. This makes them particularly suited to tackling prob-
lems in science and engineering where data may be insufficient, but the underlying physics
is well understood. PINNs use a Neural network as a surrogate model, which is then
regulated by a loss term using the differential equations and data loss term.

Following the formulation explained by Raissi et al. (2019). The PINN uses the universal
function approximation capability of neural network Hornik et al. (1989) to represent the
solution to ordinary or partial differential equations of the form:

∂u

∂t
+N [u;λ] = 0, x ∈ Ω, t ∈ [0, T ] (2.20)

B(u(t, x)) = g(z), z ∈ ∂Ω (2.21)

defined on the domain Ω with the boundary ∂Ω. u(t,x) is the hidden solution, which
depends on time t and a spatial variable x, λ is the parameter related to the physics, N
is a nonlinear differential operator. B is the operator indicating the initial or boundary
condition related to the problem, and then the boundary function g. The equation 2.20
describes the physical system that can be solved forwardly and inversely. The hidden solu-
tion u(x, t) is solved forwardly, given the parameters λ and sufficient initial and boundary
conditions. In the inverse problem, the unknown parameters λ are to be found together
with the hidden solution u(t, x)from the data (Raissi et al. 2019).

Solving inversely and forwardly are two very different problems; however, there are minimal
differences in implementing the PINN approach. The difference is that in the forward
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problem, the neural network is defined by the set of parameters Θ; in the inverse problem,
the unknown physics parameters λ are included in the set of neural network parameters Θ.
For both problems, the neural network is then trained with the loss function L describing
the difference between the labeled data Ldata, including the initial and boundary condition
LIC ,LBC and the residual loss Lres. Each of the losses is weighted with a weight ω. Then
an optimizer finds the parameters Θ that minimize the loss. The complete overview of the
PINN structure is illustrated in Figure 2.17.
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Figure 2.17: Schematic structure of PINN. Three blocks: Neural Network, Residual
network, and then the optimizer. The initial condition and boundary conditions are
included in the labeled Ldata function.

The PINN can be divided into three main parts: a neural network, a residual part, and the
optimizer. The neural network maps the input t to the output x in the Figure 2.17. The
residual part uses the derivatives of the neural network to find the physical loss, initial and
boundary loss. In Figure 2.17, the f(t, x) represents the left-hand side of Equation 2.20,
this means: f(t, x) = ∂u

∂t +N [u;λ] Then the optimizer finds the neural network parameters
Θ to minimize the loss.

2.8.2 Neural network model

The neural network is the model that is used to represent the solution. The idea is that
it exists an unknown mathematical model f(x) = u where f is the unknown function
that takes the input x and outputs the solution u. The problem is that in most physical
cases, there is no known exact function f ; therefore, the problem becomes finding an
approximation to f . Neural networks are popular models due to their approximation
capability (Hornik et al. 1989). Since the theorem states that for a large enough neural
network, any function can be approximated, the problem becomes finding the parameters
for the neural network, which is a well-defined mathematical optimization problem (Chris
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Rackauckas 2020). The neural network will then become,

NNθ(x) ≈ f(x) (2.22)

Other aspects that make neural networks great surrogate models: are several available
high-performance computational libraries like Tensorflow or Pytorch. Furthermore, they
tend to overcome the curse of dimensionality and are highly customizable for different tasks
(Chris Rackauckas 2020). The neural network architecture described in the Section 2.4.1
leaves much flexibility. Even for the simple feed-forward neural network, the number
of layers, neurons per layer, activation function for each layer, and weight initialization
are some of the hyperparameters that need to be decided. The authors of the original
framework state that for the network to perform well, it should have sufficient expressibility
to express the possible solution one expects, given the differential equation (Raissi et
al. 2019). However, there is little understanding of how much expressibility a neural
network has. Thus there are no other options than exploring different sizes. There exist
hyperparameter tuning optimizations such as AutoML (Géron 2017) that explore more
efficiently than doing it randomly. In practice, choosing a ”too large” model is common.
It is also important to highlight the prevalence of transfer learning in these contexts.
Transfer learning involves using the parameters from a similar problem that has already
been solved. This approach can be highly beneficial as it can speed up the training process
for the current problem. Thus, seeking similarities with previously solved issues is always
advisable when facing a new problem. In the context of PINNs, the most frequently used
neural network is the fully connected feed-forward with the activation function ”tanh,”
coupled with ”Glorot” initialization (Raissi et al. 2019; L. Lu, Meng et al. 2021). Choosing
the correct activation function is another important consideration. The activation function
must be continuous for problems involving second-order differential equations or a second-
order optimization like L-BFGS. Furthermore, proper weight initialization is essential
for effective training. For this thesis, all models will adhere to the original framework,
utilizing ”Glorot” initialization and the ”tanh” activation function. The original authors
acknowledged that more work is needed to identify better, customized architectures suited
for PINNs. Some of the new and improved neural network architectures will be discussed
in chapter 5. Input normalization is also recommended to ensure that the inputs to the
neural network fall within the ’effective range’ of the ”tanh” function (-1,1) (Raissi et al.
2019).

2.8.3 Physics-part

The physics part constructs a new custom loss function where the residual of the differential
equation is evaluated. The expression for the residual defined loss is,

f(x, t; Θ, P ) =
∂

∂t
u(x, t; θ) +N [u(x, t; Θ);λ] (2.23)

In Equation 2.23 f represents the residual of the PDE. ∂
∂tu is the partial derivative of the

solution with respect to time, and N is a nonlinear differential operator. The derivative is
found by automatic differentiation. The automatic differentiation provides the derivative
of the neural network concerning their input. The residual can be calculated when the
derivative is available at every point chosen in the space-time domain. The authors of
the original framework called the residual points collocation points. It is important to
notice that the loss term is separate from the labeled data loss. This means it can include
different evaluation points. PINN requires the known differential equation to be satisfied
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at chosen points xi, ti ∈ Ω[0, T ] ”collocation points” or ”residual points”. Satisfying the
differential equation means that the residual of the differential equation should be zero.

Ltot = Ldata + Lresidual (2.24)

Using the mean squared error loss function Lresidual becomes,

Lresidual =
1

Nf

Nf∑
i=1

|f(tif , xif )|2 (2.25)

The user is responsible for selecting the residual evaluation points. However, enough
points must be chosen to cover the entire domain to obtain the correct solution. The
original authors propose various sampling strategies, e.g., hyper-cubic sampling. There
are also algorithms that select residual points automatically (L. Lu, Meng et al. 2021).
Selecting too many residual points can result in high memory usage and slow training while
choosing too few can result in an inability to represent the function accurately. Solving
the differential equation for a large domain requires more residual points, which might
lead to memory problems. However, this can be avoided by dividing the domain into
smaller parts and solving consecutively. Dividing into smaller parts has also been shown
to increase the performance of PINN (Krishnapriyan et al. 2021). The original paper also
proposed a discrete time-stepping method that avoids the need to select residual points. To
obtain a unique solution, initial and boundary conditions must be specified when solving
differential equations. The solution space is infinitely large without these conditions, and
any solution is equally valid. A loss term with initial and boundary conditions is included
to constrain the solution space, known as a well-posed problem, to get a unique solution.
The loss term is formulated to penalize the difference between the predicted and actual
values of the initial and boundary conditions. This leads to a unique solution that satisfies
the differential equation and the given conditions. Since in the PINN, the initial condition
(IC) and boundary condition (BC) loss term is included as a soft constraint, and there is
no guarantee that the solution found is the correct one due to the resulting optimization
problem being non-convex, which generally does not have a unique solution. PINN requires
that all the hyperparameters, e.g., network architecture, learning rate, and numbers of
collocation points, be tuned to find a good solution. According to the original paper, their
observation suggests that the solution is correct in most cases. The robustness of PINN
is problem-specific, and some problems are much harder to get satisfactory results. PINN
also has the advantage over traditional solvers because it can find the correct solution to
an ill-posed problem by using data points to shape the solution. This is possible because
PINN can learn the underlying dynamics of the system directly from the data without
knowing the initial or boundary conditions. This approach is beneficial when the data is
sparse or noisy.

The additional loss term comes with its problems: the optimization problem becomes
increasingly more challenging. Optimizing the two terms simultaneously can lead to several
problems, especially with vanishing gradients. This is likely because the two problems have
different scales leading to more challenging optimization landscapes. This can lead to the
two terms being sensitive to different hyperparameters, such as learning rate, increasing
the difficulties in finding optimal parameters for the problem. The result is that problem is
much more prone to end up in local minima. The original paper only suggests the correct
weighting of the loss term to overcome this problem. However, later research suggested
new setups to overcome these optimization issues. Some of the new approaches will be
explained in chapter 5.
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2.8.4 Optimizing

The process of determining the neural network parameters Θ is called training. The
objective of the training is to find the weights that minimize the loss. Several papers,
including (Raissi et al. 2019) and (L. Lu, Meng et al. 2021), suggest a two-step training
process: initial training with the Adam optimizer and further training with the L-BFGS
optimizer. The Adam optimizer avoids local minima and approximates a good solution,
after which L-BFGS refines the weights further. This approach has proven effective in
tests conducted for this study, particularly when identifying unknown parameters in the
differential equation. Utilizing L-BFGS after Adam consistently increased the accuracy.
However, experience in this thesis is that the L-BFGS optimizing tends to be considerably
slower than the Adam optimizer.

2.9 Summary

VIV is a complex phenomenon influenced by numerous parameters. The VIV model has
been improved and evolved, but it cannot accurately describe the real phenomena due to
fundamental assumptions and simplifications. Recent years have seen immense popularity
in DDM, especially DDM based on DNN. Due to DNN’s excellent pattern recognition and
function approximation capabilities, there has been success utilizing this in the industry.
With technological advancements, digital twin applications have emerged, requiring effi-
cient, flexible, and accurate models. Hybrid analytics, combining the strengths of ML and
PBM, offer a promising approach for digital twins. The end goal is digital twins driven by
hybrid analytics, leading to better predictability, understanding of the system, and prac-
tical and optimized systems. PINN provides a seamless integration of neural networks and
physical models, facilitating the achievement of these goals.
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Chapter 3

Problem setup and
implementation

In this chapter, the proposed concept will be explained. Then, two simplified cases will
be described to assess the feasibility of the concept. The first case is a forced mass-spring-
damper system. The second case is a mass-spring system with force data obtained from the
semi-empirical VIVANA-TD model. Lastly, the code implementation will be explained.

3.1 Proposed concept

Due to the challenging operational conditions discussed in Section 2.1, vibration sensors
are typically scarce on risers. If they exist, they are usually placed in practical locations
rather than high-stress areas (Sundararaman et al. 2018). This means there is a need for a
framework that can utilize the sensor data given the arbitrary placement and quantity of
the sensors. The idea is that using the PINN formulation can solve the equation forwardly
while adjusting the empirical data and estimating the unknown parameters based on the
available data. This approach utilizes the best of physical and data-driven modeling. The
final model is a NN. However, the physical model has to be satisfied for the physical
residual of the NN to become zero. In the inverse problem, the estimated parameters
provide insight into what solution is learned. Thus some of the physical understanding
from the models is kept. Figure 3.1 gives an overview of the PINN approach.
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Figure 3.1: VIV PINN concept

This approach could work by recording data for three hours, then using the data to find
an accurate prediction of the displacement for the whole riser. One apparent downside is
that the already-developed numerical solvers are not used. Furthermore, since PINN is a
relatively new approach, the method needs are not fully understood, and there needs to
be more theory about stability and robustness. Nevertheless, the method offers a flexible
approach, and additional terms can be included in the loss function to regularize the
model and ensure convergence to the correct solution. There are also possibilities for
customization of the NN to represent a riser’s displacement better. For example, a NN
utilizing modal decomposition can be employed (Raynaud et al. 2022).

3.2 Case 1: Forced mass-spring-damper

3.2.1 Equation and numerical solution

The primary objective of the first case is to validate the functionality of the baseline
PINN. Solving this problem will confirm that the implemented PINN code functions as
intended. Despite its simplicity, a mass-spring-damper system is interesting due to its
presence across various dynamic behaviors. For example, this system is frequently used
to model structural vibrations. The system is represented in figure 3.2.

36



k c

m
F(t)

Figure 3.2: Case1: forced mass-spring-damper system

Assuming linear spring, fr(t) = ku(t), linear viscous damping, fd(t) = cu̇(t), and system
with constant mass, fI(t) = mü(t). The equation of motion of the system becomes:

m
d2u

dt2
+ c

du

dt
+ ku = F sin (ωt) (3.1)

Initial conditions:
u = u0, u̇ = u̇0 (3.2)

where m represents the mass, c represents the damping coefficient, k represents the spring
constant, u represents the displacement of the mass from its equilibrium position, t rep-
resents time, F represents the amplitude of the forcing function, and ω represents the
angular frequency of the sinusoidal excitation force. This equation describes the motion
of a mass attached to a spring and a damper, subject to a periodic external force. It is
a second-order ODE involving only the second derivative and the first derivative with re-
spect to one parameter, in this case, the displacement with respect to time. The equation
can be solved by expressing it as two first-order ordinary differential equations. To obtain
a unique solution, the initial condition must be satisfied. The numerical solver ODEINT
from SciPy (n.d.) is utilized to find a solution u∗. Numerical solvers are beyond the scope
of this thesis, and the numerical solution will be referred to as the exact solution u∗.
The second-order linear differential equation is expressed as two first-order linear ordinary
differential equations:

u̇1 = u2

u̇2 =
1

m
(F (t)− cu2 − ku1)

(3.3)

c 0.06

m 0.01

k 0.5

FA 1

ω 15

Table 3.1: Case1 : Parameters

The solution from t ∈ [0, 2] with the parameters given in the table Table 3.1 is plotted in
figure 3.3
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Figure 3.3: Case 1: Numerical solution to equation 3.3 on the interval t ∈ [0, 2].

3.3 Case 2: VIVANA-TD

In case 2, force and displacement data are collected from the simulation software SIMA
(Sintef n.d.), utilizing the VIVANA-TD equation. The results from the simulation pro-
gram are used in conjunction with the VIVANA-TD equation within the PINN model.
SIMA simulates ”real measurement data” for the PINN model to identify unknown para-
meters in the equation. This case study resembles Kharazmi, Fan et al. (2021), with the
difference that the data is obtained from the semi-empirical simulation program SIMA in-
stead of CFD calculations. The objective is to identify the coefficient that best describes
the measured data while removing uncertainty associated with parameter selection. Ad-
ditionally, the problem is simplified by considering a stiff cylinder, eliminating the need to
model and include spatial equations for the beam. By disregarding the space dimension,
the problem transitions from a PDE to an ODE.

SIMA

The SIMA software (Sintef n.d.) is used for simulating the model. The model calculations
are done using RIFLEX 4.44, which utilizes VIVANA-TD equations to calculate the hy-
drodynamic force. The model configuration is depicted in Figure 3.4, consisting of two
nodes fixed in all directions except the z-direction. A linear spring is attached to both
nodes in the z-direction, and a rigid pipe is connected between the nodes. Movements are
initiated using only current. The parameter values for the model are provided in Table 3.2.

Figure 3.4: SIMA model
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Length 1 m

Radius 0.1 m

Mass 13.05 kg

Spring stiffness 598.6 N/m

Current velocity 1 m/s

Table 3.2: SIMA parameters

The resulting displacement and force collected from SIMA are displayed in Figure 3.5.
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Figure 3.5: VIVANA-TD simulation, with the parameters described in Table 3.2

In its computations, SIMA (Sintef n.d.) divides the pipe into smaller parts to get the
displacement along its length. While the flexible pipe is modeled with high bending
stiffness, resulting in consistent displacement, the hydrodynamic forces initially vary across
different sections of the pipe due to the calculation method. Finally, the average force
acting along the cylinder is computed to represent the overall force used in the 1D problem
accurately. This is illustrated left in Figure 3.5.

Equation

Assuming that the force term is always available, the resulting residual differential equation
becomes:

Residual = (m+A ∗ rho) + k ∗ z − Fhydrodynamic (3.4)

Given that the force data is only available at discrete steps from the simulation, second-
order spline interpolation has been used to determine the force at all timesteps. Combining
this equation with the simulation data yields the following results.
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Figure 3.6: Left: SIMA simulation compared to the numerical solution using force
from SIMA and equation Equation 3.4. Right: The force from SIMA, data points, and
interpolated result

On the left in Figure 3.6, the numerical solution differs from the solution derived from
SIMA. These solutions should match perfectly. However, the intricacies of the VIVANA-
TD simulation and numerical solver fall outside the scope of this discussion, so the dis-
crepancy is, for now, neglected. When viewed from another perspective, this discrepancy
isn’t necessarily all negative, as real-world equations often don’t perfectly match the data,
yet they’re usually successful in capturing the main movements. The experiment can be
extended by decomposing the hydrodynamic force into the terms from the VIVANA-TD
(Equation 2.12). Then it is possible to incorporate the empirical coefficients as unknown
parameters and use the PINN method to ”fine-tune” the coefficients, for example, CD

from Equation 2.12. There are also possible to estimate the other coefficients from the
Equation 2.12. However, CvCF requires the relative phase angle between the structural
velocity and the vortex shedding force ϕv,CF in the term, further complicating the setup.
The goal is to have a solution that matches the training data, and the empirical parameter
is estimated such that the physical equation residual is also zero.

3.4 Implementation

There are multiple frameworks for PINNs. The original PINN framework (Raissi et al.
2019) is implemented in Python using TensorFlow 1.0. Since the initial publication, mul-
tiple high-level libraries have been created to limit the need for low-level implementation
of a model in TensorFlow 1.0, including open and popular libraries such as DeepXDE (L.
Lu, Meng et al. 2021), Nvidia Modulus (Nvidia 2023), NeuralPDE (Zubov et al. 2021),
and SciANN (Haghighat and Juanes 2021). These libraries provide a simpler and more
efficient way to implement PINNs. Despite the existence of these libraries, this code has
been implemented in Python using Tensorflow 2.0. TensorFlow 2.0 has been chosen to
have better control and understanding of the underlying processes. TensorFlow 2.0 is a
more widely-supported framework than TensorFlow 1.0, and, most importantly, it enables
more transparent and comprehensible code. Pierre Jacquier’s and the mentioned libraries
have been used for inspiration in implementing the code in TensorFlow 2 (Jacquier 2019).
The code is implemented in an object-oriented setup utilizing three distinct classes, each
representing one of the building blocks of the PINN. This modular approach offers greater
flexibility when tackling various case studies, as each component can be modified inde-
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pendently.

The overview of how the code is implemented is presented in Figure 3.7

NET

Inputs

Layers
Initiali
zation

Activation
function

CASE

SOLVER

Inputs

NET
Residual

points
Training

data
Initial 

conditions

Functions

Train

Keras
optimizer

L-BFGS

CASE

Physical loss 
function

ODE 
Parameter

Figure 3.7: Code structure. Main classes and functions.

Dividing the code into modules facilitates the addition of new functions. However, it
requires a more general approach to coding.

NET

The NET class is a sub-class of the tf.keras.Model (Tensorflow 2023) class is responsible
for constructing the NN. When creating an instance of the NET class, the user specifies
a list of layer sizes, an activation function, and a weight initialization method. Using
Keras sub-classing (Tensorflow 2023), the NN is then initialized. This approach provides
flexibility for customizing the network and allows for additional trainable parameters to
be added directly into the network without defining a custom layer. The NET class
implements feed-forward NNs, but it can be easily adapted to other network architectures
without modifying the other classes. The NET class has a function that can append a
normalization layer to the NN. For the experiments in this project, a standard NN with
four layers and 20 neurons is used (see Table 3.3). This configuration has been found to
yield good results, although different network sizes were also considered (see Appendix A
for details). It is important to note that further research could be conducted to find the
optimal NN. However, it is generally safe to choose an over-parameterized NN as it has no
significant consequences other than training (Géron 2017), and by having a physical loss
term, this will act as a regularizer against overfitting. The activation function is chosen
as ”tanh” based on the Raissi et al. (2019) paper, and the initialization method is set to
”Glorot” (Glorot and Bengio 2010).
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Number of Hidden Layers 4

Number of Neurons per Layer 20

Activation Function Tanh

initialization Glorot uniform

Table 3.3: Hyperparameters, baseline NN

The NN is now a function with over 1000 parameters (weights and biases) that needs to
be adjusted to find the approximation to the solution.
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Figure 3.8: Glorot uniform initialization, tanh activation, 4 hidden layers of 20 neurons
each

Figure 3.8 illustrates the untrained neural network (NN) model predicting the solution
from t ∈ [0, 2]. The predictions of the untrained NN will differ for each initialization due
to the randomness in the ”Glorot initialization”. Thus, the training performance and
result will also differ for each NN initialization.

Optimizer Adam

Epochs 10000

Learning rate 0.001

Residual loss weight 1.0

Initial condition loss weight 1.0

Data loss weight 1.0

Table 3.4: Standard training parameters, the forward problem

Table 3.4 shows the standard training for the forward problem. For inverse problems, the
standard is to follow up with L-BFGS until convergence.

CASE

For each specific problem, there exists a corresponding class that inherits from the NET
class. This derived class includes additional components such as the physical loss equation,
initial loss, and the unknown parameters for the physical loss equation. In the case of the
VIVANA-TD problem, the force data is provided as a list of specific residual points. The
physical loss function takes a list of residual time points as input and calculates the residual
loss at the selected points, returning a list of these losses.
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SOLVER

This is the class implemented to find the correct parameters for the neural network. The
inputs are the Keras neural network, residual loss points, training data, and initial con-
ditions. The solver can train the NN using a Keras optimizer or L-BFGS. Due to the
L-BFGS optimizer not being supported in TensorFlow 2.0, it has been implemented using
the tutorial by Pychao (Chuang 2019). Sometimes while training with the Adam optim-
izer, the loss suddenly gets worse. Therefore, the best loss and corresponding weights will
be saved when training with the Keras optimizer. After the Keras training is finished, the
best weights will be set to the NN.

The Solver class has also been implemented with post-processing tools. Plotting the loss
history, unknown parameters, and solution. The code can be found by following the link
in appendix B.
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Chapter 4

Result from baseline PINN

In this chapter, the results of the baseline PINN model will be presented and discussed.
The analysis will begin by investigating and discussing Case 1, followed by Case 2. The
details and descriptions of these cases are found in chapter 3.

4.1 Case 1: Forced mass-spring-damper system

4.1.1 Neural network

To demonstrate the expressibility of the baseline NN described in Table 3.3. The NN is
trained on labeled samples with a fixed timestep from the solution. The labeled data is
sampled from the numerical solution, with 20 points sampled at a fixed time step. The
NN is then trained with 4000 iterations using the Adam optimizer, with a learning rate
of 0.001.
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Figure 4.1: Case 1: NN. Top: The displacement prediction from 0 to 2 seconds. 20
training data points were sampled from the exact solution. Bottom: Training loss history.
4000 Epochs optimizer Adam with learning rate=0.001.
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Figure 4.1 verifies that the baseline NN can learn the mapping from the input (t) to the
output (y) when provided with sufficient training data. Figure 4.1 shows that the NN’s
expressibility to represent the solution is satisfactory. However, if the solution needs to
be obtained for a larger time interval, it may be necessary to increase the NN size to
adequately represent the solution. During training, the NN’s weights are optimized to
minimize the loss between the training data, as shown in Figure 4.1. As a result, the
NN’s predictions align with the training points, and the approximation also matches the
solution between the training points, which is equally important in practice. With the
significant amount of training data available in this case, the NN is expected to capture
the solution accurately for the entire domain.

It’s important to note that the NN’s accuracy outside the training domain is not included
in the loss function. Hence, there is no guarantee that the NN’s prediction matches the
solution between the training data. To address this issue, some training data can be set
aside as validation or test data. Training can stop when the loss for this validation or test
data is low, indicating that the NN is adequately trained. Continuing to train beyond this
point can lead to overfitting. The NN’s training is limited to the interval between 0 and 2,
and it cannot extrapolate beyond this range. Hence, dealing with sparse or limited data
presents a challenge.

4.1.2 PINN Forward problem

To increase flexibility, the NN will be trained using the differential equation and initial
condition without needing labeled training data. This approach offers greater flexibility,
as the model can operate within the desired time domain, unlike traditional training meth-
ods, which require input-output pairs. By including a term that describes the difference
between the prediction and the equation, the model will not have issues with overfitting.
The initial condition must also be included such that the correct solution is found. The
total loss function is then defined as follows:

loss = ωICLIC + ωresLres (4.1)

LIC = (NN(0)− y(0))2 + (
dNN(0)

dt
− ẏ(0))2 (4.2)

Lres =
1

n

n∑
i=1

(
d2NN(t)

dt2
m+

dNN(t)

dt
c+NN(t)k − Fsin(ωt)) (4.3)

In Equation 4.1 ωIC and ωres represent the initial condition weight and ODE residual
weight, respectively. In Equation 4.3 F represents the external force amplitude, ω is
the angular frequency, and t represents the chosen collocations points. The collocation
points are chosen in the interval of t ∈ [0, T ], and the number of collocation points is
denoted n. Unlike traditional NN training methods, in this model, no labeled training
data is included in the loss function. In order to ensure that the solution satisfies the
differential equation at each point in time, the NN residual from the differential equation
is evaluated at the chosen collocation points within the interval. The collocation points
can either be randomly or regularly spaced. The NN output is then used to calculate
the residual of the differential equation at each collocation point which is then evaluated
in the loss function. The result is a mapping from the NN to the analytical solution in
the time domain of t ∈ [0, T ]. Thus, the PINN method results in a NN representing an
approximation to the analytical solution on the time domain t ∈ [0, T ]. The method can
solve differential equations for a wide range of problems with varying complexities. Using
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50 fixed collocation points and training for 10000 iterations of Adam optimizer with a
learning rate of 0.01, the results are shown in Figure 4.2.
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Figure 4.2: Case 1: PINN. Top: displacement y computed with PINN is compared to
the numerical solution (Exact). Bottom: the training history illustrating the minimizing
of the different loss components for each epoch.

Figure 4.2 shows that the PINN approach can find the correct solution given only the
initial conditions. In contrast, the standard NN requires labeled data to learn functions.
However, due to the added complexity of having two terms in the loss function, the PINN
requires more training iterations compared to the traditional NN, as evident from the loss
curve in Figure 4.2. In particular, the PINN takes around 5000 iterations to reach a loss
of 10−3, whereas the traditional NN reaches the same loss after 1500 iterations. This
observation aligns with the findings by Raissi et al. 2019.

Optimizing using the PINN is more difficult due to the extra complexity of having multiple
objectives. Occasionally, the optimizer may concentrate on minimizing one loss before
satisfying another, causing the optimizer to find a local minimum instead of a global one.
For example, the residual loss gets minimized before the correct initial conditions. In
that case, the model might be unable to change to the correct initial conditions since
correcting the initial condition will lead to a larger residual loss. However, this can be
improved by weighting the initial condition more than the residual loss. Most PINN-
related papers, including the original framework (Raissi et al. 2019) and DeepXDE (L.
Lu, Meng et al. 2021), manage good results by weighting the residual loss lower and using
the Adam optimizer, followed by the L-BFGS optimizer. Despite the advantage of PINNs
learning function solutions without labeled data, the optimization is slower, more difficult
optimizing and has a higher number of training iterations compared to traditional NNs.

4.1.3 Comparing PINN with normal NN

Traditional NNs are highly effective at solving a wide range of problems, but they require
large amounts of labeled data to achieve high levels of accuracy. In contrast, PINNs have
been developed specifically to leverage both input and output data, as well as differential
equations, in order to solve problems more efficiently. This makes them particularly well-
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suited for addressing physical problems where observation data is often sparse or difficult
to obtain. By defining a standard NN and a PINN and training each with the same set of
labeled data. The results are illustrated in Figure 4.3.
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Figure 4.3: Case 1: PINN vs NN. Training points only cover half the time domain.

Figure 4.3 shows that PINNs can extrapolate beyond the available labeled data, while
traditional NNs fail to produce accurate results when presented with limited data. Integ-
rating prior knowledge as a differential equation enables the PINNs to be better equipped
for solving complex physical problems where the underlying principles are known, even
in scenarios with sparsely labeled data. The limitations of a standard NN in extrapolat-
ing data are clearly highlighted in Figure 4.3. A PINN operates similarly to a numerical
method, capable of solving problems within the desired space. Furthermore, the accuracy
of a PINN can be adjusted by selecting the number of residual points, modifying training
parameters, and opting for a larger NN. Figure 4.3 shows how the PINN can seamlessly
combine the differential equation and measurement points. In a scenario where the differ-
ential equation and measurement points differ, a method is needed to decide what should
be prioritized. Typical measurement data and initial and boundary conditions are prior-
itized. Thus to optimize the PINN approach, the loss function should be balanced (4.4).
The incorporation of the loss balancing weights further expands the already extensive list
of hyperparameters. However, PINNs offer a powerful and promising approach to solv-
ing physical problems where data is sparse or incomplete and represent a significant step
forward in developing ML techniques for practical engineering applications.

loss = ωICLIC + ωresLres + ωdataLdata (4.4)

4.1.4 Inverse problem

In the inverse problem, one or more of the parameters in the differential equation are un-
known. These unknowns are incorporated as trainable variables within the PINN model
and are identified concurrently with the weights and biases of the NN. This approach offers
no guarantee of finding the correct parameters, as the NN may converge to a solution that
satisfies all the labeled data and a differential equation that aligns with the collocation
points. However, according to Raissi et al. 2019, the correct parameters are usually iden-
tified given sufficient data points. In order to test the capabilities, different tests will be
considered.
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Two unknown coefficients, no noise

To illustrate this approach, the same training data as in Figure 4.3 is used in training, but
the damping coefficient c and the stiffness k are unknown in the differential equation. The
NN was initially trained using the Adam optimizer and further refined with the L-BFGS.
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Figure 4.4: Case 1: Parameter identification. The evolution of c and k

Figure 4.4 shows how the estimated values for c and k. The model successfully identifies the
correct parameters for the differential equations. This is expected, given the substantial
amount of training data available. To further investigate the capacity of the method to
solve inverse problems, random training data is selected with varying levels of noise and
data quantity.

Randomly selected points, varying levels of noise, and data quantity

Training data were randomly sampled from the interval t ∈ [0, 2] for the subsequent tests.
Each variation of the number of points and the noise level is run three times. This is
because the location of the data points considerably affect the value it has for parameter
identification. In this test, only the c parameter is unknown. The results are shown in
Figure 4.5.
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Figure 4.5: Case 1: Parameter identification: The light blue illustrates the standard
deviation, and the solid blue illustrates the average for the three iterations. The black
cross is the final average prediction

The results in Figure 4.5 demonstrate that the PINN is robust to noise and can accurately
determine the exact value. With 5% noise, the model can accurately identify the c value,
even with only five randomly selected points. The model successfully identifies a close
approximation to the actual c value for all iterations involving random points. This trend
continues even with variations in noise and data quantity. However, as noise increases, the
average becomes increasingly inaccurate. Increasing the number of data points reduces
the standard deviation and the number of iterations required for the method to locate the
accurate values. The final value also improves with the increasing amounts of data points.
This highlights the method’s strength in accurately identifying the value, even with sparse
and noisy data points. These findings underscore the robust characteristics and utility of
the PINN approach.

Two unknowns with varying amounts of noise

Examine the scenario when both k and c are unknown. This analysis involves a single
iteration with unknown coefficients.
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Noise level / 2% 5% 10% 20% 30%
Number Of Points

5 59.40% 111.23% 6.39 % 18.09 % 13.98%
10 1.62% 0.59% 4.81% 17.62% 9.65%
20 2.45% 5.21% 3.98% 6.70% 24.36%
50 1.49% 1.20% 3.83% 12.58% 1.33%

Table 4.1: The result is the average error percentage for k and c. Bold text indicates the
best results.

Table 4.1 presents the average percentage error for k and c. The results with two unknowns
vary substantially more than those with only one unknown. This is likely because several
combinations of k and c closely align with many of the data points. The data quantity
plays a more significant role here, as it is evident that 5 data points are too few to identify
the two coefficients accurately. However, the results improve substantially for 10, 20, and
50 data points. Interestingly, the method performs well for low noise levels and 10 or
more data points but struggles to find the correct solution with a noise level of 10% or
more. However, with 50 data points and a 30% noise level, the model finds a very accurate
solution. The results suggest that the placement of data points plays a substantial role.
More iterations are necessary to identify clear trends and draw a conclusive interpretation.

4.1.5 Simplified physical model

While models may not always match real-world measurement data, it is interesting to
investigate the impact of using a simplified model in the PINN model. Thus the PINN
will be incorporated with a simplified force model. The simplified force term is defined as
follows:

ForceSimplified = 0.5 · ForceTrue (4.5)

Real measurement data is obtained by sampling from the true solution and implementing
these samples in the PINN model. This experiment aims to determine whether the PINN
model, combined with a simplified equation, can outperform the simplified equation when
integrated with sampled data points. To do this, the PINN will be compared to the sim-
plified solution obtained by a numerical method. The investigation consists of two parts.
One has a fixed truncated physical model, and the other by having the F as a trainable
variable in the PINN. The first investigation aims to determine if the PINN approach can
account for unmodeled physics. The goal is to find out if the measurement data improves
the simplified model while keeping the characteristics of the simplified model. The second
investigation will determine if PINN can solve forwardly while inferring/calibrating the
uncertain parameter.

Fixed physical equation

The first investigation will start by using fixed-time step sampling together with the sim-
plified model. The goal is to investigate the behavior when combining a simplified model
with measurement data in the PINN approach.
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Figure 4.6: Case 1: Simplified model. Fixed time step sampling. Equal loss weights.

In Figure 4.6, the simplified model is the numerical solution using the simplified force
term described in equation 4.5 (F=0.5), the exact is the numerical solution to the case
1 Equation 3.3 with F equal to 1, the PINN is the prediction of the PINN model after
training. The plots in Figure 4.6 for 10 data points show that the PINN model is very
close to the simplified model. This outcome is expected as the training data is situated
in areas where the simplified and true solutions are almost indistinguishable. For 20 data
points, the PINN prediction is still very close to the simplified model. Here several data
points should be able to provide value resulting in more accurate prediction. However, this
is mainly due to equal weighting, meaning that the residual loss is equally important as
the training loss. Therefore, the residual weighting is set to 0.1 to prioritize the observed
data the most, and the same training iteration is run.
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Figure 4.7: Case 1: Simplified model. Fixed time step sampling. Residual loss weight
0.1.

Figure 4.7 illustrates that applying more weight to the training data improves the per-
formance of the PINN in satisfying the training points. With only 10 training points, the
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model displays noticeable improvement initially, followed by very similar performance as
the simplified model, and eventually, the model becomes more inaccurate than the sim-
plified model. However, the model can still predict a solution that conforms to the data
points while preserving the physical model characteristics. On the other hand, by using
20 training points, the model is able to precisely represent the exact solution, leading to a
significant improvement over the simplified model. It is important to note that, in actual
situations, data may be randomly selected instead of equally sampled. Therefore, the
same comparison with 20 and 10 randomly selected data points is done.
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Figure 4.8: Case 1: Simplified model. Randomly sampled. Equal loss weighting.

Figure 4.8 shows that for 10 data points, the model improves when t is between 0.75 and
1. For the rest of the prediction, the model is very close to the simplified model. However,
for 20 random points, the model solution is very close to the simplified model and cannot
improve over the simplified model. Leading to the same observation as with fixed sampling:
the data points should be weighted higher to improve the model’s accuracy.
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Figure 4.9: Case 1: Simplified model. Randomly sampled. Residual loss weighted 0.1.
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Figure 4.9 illustrates that by incorporating weighting into the PINN model, it is possible to
satisfy the data points. At the same time, it still keeps the characteristic of the simplified
model structure. For 10 data points, there is a strange PINN prediction at t equal to
0.5; this indicates that there might be solutions that might be completely wrong. This
needs to be investigated more before use in a real-life application. For 20 data points,
the model uses the available data to improve the model. The method is successful in
incorporating measurement data to improve the model. However, it requires the correct
weighting. Therefore, more development is required in weighting loss terms and sampling
residual points effectively.

Trainable parameter

This study set the force amplitude F as an unknown and trainable parameter. This
approach requires that the form of the equation is known; this is, however, the case for
several engineering problems. The objective is to utilize the PINN approach to identify the
correct force amplitude term, thereby enabling the determination of the accurate solution.
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Figure 4.10: Case 1: Simplified model. F unknown parameter. Fixed time sampling.
Equal weighting.

Figure 4.10 demonstrates that for 10 data points, the model finds an entirely incorrect
estimation of F, resulting in a highly inaccurate prediction. However, with 20 data points,
the PINN model accurately estimates the correct F and can predict the exact solution. It
is worth noting that the since the parameter is found, the time domain can be extended.
This study will be further tested with a lower residual weighting.
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Figure 4.11: Case 1: Simplified model. F unknown parameter. Residual weight = 0.1

Figure 4.11 illustrates that adjusting the residual weight to 0.1 significantly improves the
model’s performance, enabling accurate estimation of F in both cases and leading to the
correct solution. Randomly sampled data points are considered to investigate the model’s
performance further.
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Figure 4.12: Case 1: Simplified model. F unknown parameter. Residual weight = 0.1

Figure 4.12 illustrates that even when using randomly sampled data points, the model
can still closely identify the correct value of F. This observation highlights the robustness
and generalization ability of the model. The model can utilize the measurements at hand
to improve the model. Since the estimated parameter is known, some of the model’s
interpretability is kept.
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Figure 4.13: Case 1: Simplified model. F unknown parameter. Residual weight = 0.1

Figure 4.13 showed the model’s performance when trained with five data points. In this
case, the model finds the solution successfully in one out of two possible cases, indicating
that the amount and location of training data can influence its performance. However, in
engineering situations, there is often an idea of the parameters’ value. This can be taken
into account in the optimization. For example, the solution is discarded if the value is
outside a chosen interval.

4.1.6 Summary

The PINN method demonstrates capability in forward-solving and inverse problem-solving
scenarios in exploring the simplified forced-mass-spring-damper system. Traditional nu-
merical solvers are more efficient and accurate when it comes to forward problem-solving.
Nevertheless, the PINN methodology remains appealing due to its ease of implementa-
tion, potential for various extensions, and flexibility regarding factors such as mesh, initial
conditions, and boundary conditions. There is currently a lot of development focused on
improving this method. The CRUNCH group led by G. Karniadakis 2023 believes that
this approach has the potential to become the next generation of numerical solvers.

The inverse problem-solving capability of PINN proves to be highly effective. This ap-
proach is particularly valuable in real-world situations where only sparse measurement data
is available, which can be combined with a differential equation with unknown parameters.
One notable advantage of the PINN approach in these cases is its robustness against noise
and few data points. This feature increases applicability in practical engineering scenarios
where high-quality, dense data may not always be accessible. Therefore, the PINN ap-
proach can be useful in engineering applications requiring inverse problem-solving. This
could, for example, be structural identification and damage detection.

Using PINN with a simplified model demonstrates its potential in combining a simplified
model with measurement data. With proper weighting, the model is able to incorporate
measurement data with a physical model. It is evident that assigning a lower weight to the
residual loss leads to improved results. However, selecting the appropriate weight remains
a challenging task. The solution is also a black box since there are no other measurements
than the corresponding loss value for the residual and data, the risk of getting strange
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results as the training with 10 points in Figure 4.9. Thus, the method shows promise, but
further research and investigation are needed to optimize the loss weighting and residual
points selection. The best performance is when the model estimates unknown differential
equation parameters that align with the available data. This requires to know the form of
the equation. In most practical engineering problems, the form of the equation is known.
In the case of VIV, VIVANA-TD can describe the phenomena if the correct empirical
parameters are chosen. Choosing the correct empirical parameters is a challenging task.
By using PINN’s ability to infer the coefficients that match the data points, the abilities of
machine learning and physical models are kept. There is also kept a physical interpretation
in the form of an adjusted empirical coefficient.

4.2 Case 2: VIVANA-TD

4.2.1 NN

Representing the solution using a traditional NN. Sampling 20 training points and training
for 10.000 iterations with Adam optimizer with a learning rate of 0.001.
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Figure 4.14: Case 2: NN. Top: The displacement prediction from 0 to 2 seconds. 20
training data points were sampled from the exact solution. Bottom: Loss history

Figure 4.14 illustrates that by using a traditional NN, the model is able to learn the
solution to the ODE with training data.

4.2.2 PINN Forward problem

The loss function will now become

loss = ωICLIC + ωresLres (4.6)

LIC = (NN(0)− y(0))2 + (
dNN(0)

dt
− ẏ(0))2 (4.7)
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Lres =
1

n

n∑
i=1

(
d2NN(t)

dt2
(m+ma) +NN(t)k − FSIMA(t)) (4.8)

In Equation 4.8 n is the number of residual points. m is the weight of the cylinder, ma is
the added mass, k is the spring stiffness, and FSIMA is the hydrodynamic force from SIMA.
The FSIMA could be replaced with the VIVANA-TD Equation 2.12. Then FSIMA would

be a function of velocity (dNN(t)
dt ) and acceleration (d

2NN(t)
dt2

), this also requires a model
to capture the change in phase angle between structural velocity and vortex shedding.
However, the phase angle modeling could be avoided by obtaining it directly from SIMA
simulation. Before further analysis, the complete hydrodynamic force is used to assess the
PINN model’s capability to capture the system’s behavior accurately.

0.0 0.5 1.0 1.5 2.0

t

0.0

0.1

y

Displacement

PINN

Exact

Collocation points

0 20000 40000 60000 80000

Epochs

10−1

102

L
os

s

Loss history

ODE residual

Initial condition

Figure 4.15: Case 2, PINN prediction. Equal weights. Top: the displacement prediction
from 0 to 2 seconds. Left: Training loss history
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Figure 4.16: Case 2, PINN prediction. Right: the displacement prediction from 0 to 2
seconds. Left: Training loss history. With a residual weight of 0.001

Looking at Figure 4.16, it is clear that the PINN is unable to learn the correct solu-
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tion. This led to an extended hyperparameter search to get the model to converge to the
correct solution. Different loss functions, NN architecture, learning rates, and more were
considered. However, the model failed to converge to a correct solution, resulting in highly
unsatisfactory results. The suspected issue is with the multi-objective optimization of the
losses. This led to a deeper investigation into the failure modes of PINN was conducted
(Krishnapriyan et al. 2021; S. Wang, Teng et al. 2020; S. Wang, Sankaran et al. 2022; Basir
and Senocak 2022), leading to the belief that the issue likely stemmed from the different
scaling of the loss terms. As a result, extensive efforts were made to find the optimal loss
weights. However, the model was still unable to converge to a satisfactory solution. This
ultimately led to the realization that the problem lay in the baseline formulation of the
model and that further extensions to the baseline PINN were necessary to achieve the
desired results. In research done by S. Wang, Teng et al. 2020, they found a fundamental
failure in physics-informed NNs related to stiffness in the gradient flow dynamics. This
leads to an unstable imbalance in the magnitude of the back-propagated gradients during
model training using gradient descent, leading to vanishing gradients. To illustrate the
problem, the gradients values after training for case 2 and case 1 will be illustrated in
a histogram. The gradients will be plotted with respect to the residual loss and initial
condition loss.
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Figure 4.17: Case 2: Gradient histograms, after training
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Figure 4.18: Case 1: Gradient histograms after training

Figure 4.17 show the gradient histogram after training case 2. Figure 4.18 shows the
gradient histogram after training case 1. Investigating the gradient values in case 2, the
gradient value concerning the initial conditions is close to zero, while the gradient values
with respect to the residual are larger. The different scale of gradient values leads to an
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unbalanced optimization. Comparing the gradients from case 2 with case 1, it is clear that
in case 1, the gradient values with respect to the different loss terms are more similar. This
leads to a more balanced optimization problem, meaning it is more unlikely to end up in
local minima. This was also experienced by S. Wang, Teng et al. 2020 when increasing
the constant in the 1D Helmholtz equation. Further investigation into PINNs and the
problem in case 2 is necessary to overcome this issue.
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Chapter 5

PINN extensions

It has become evident that relying solely on the baseline PINN is insufficient. Therefore, it
is necessary to conduct further exploration to identify the underlying cause of the problem
and implement new extensions that can address these issues. The original authors of
PINN Raissi et al. 2019 left several questions unanswered regarding the selection of the
neural network model, loss function, and optimization. Since the initial publication of
the framework, additional research and development have been published to improve the
baseline formulation. There have also been published papers that have researched failure
modes of PINN and proposed new and improved extensions to its original formulation.
This section will first introduce some of the recent extensions to PINN, followed by a focus
on understanding and resolving the problems encountered in case 2.

5.1 Literature study

Several recent studies have identified a potential issue with the additional term in the
loss function of physics-informed neural networks. (Basir and Senocak 2022) and (Krish-
napriyan et al. 2021) have investigated this phenomenon and found that multiple loss
terms can create a complicated loss landscape and lead to potential problems with van-
ishing gradients. They observed that this occurs when there is a significant difference
in scale between the initial conditions and the data points, and a large coefficient in the
equation increases the problems. Research done by S. Wang, Teng et al. 2020 has sugges-
ted that this problem arises from performing gradient descent on the multi-objective loss
function, as the greedy procedure may prioritize one loss term over the others and prevent
convergence to the correct solution. To address this problem, researchers have proposed
improved neural network architectures more resilient to these issues, such as the architec-
ture proposed by S. Wang, Teng et al. 2020 in ”Understanding and mitigating gradient
pathologies in physics-informed neural networks” and various loss weighting schemes. Po-
tential improvements could be made by utilizing neural networks suited to represent sine
waves, such as ModalPINN (Raynaud et al. 2022) or Fourier neural networks by (Ngom
and Marin 2021). Wong et al. 2022 addressed the issue of getting stuck in local minima by
introducing a neural network model in their paper titled ”Learning in Sinusoidal spaces
with physics-informed neural networks”. The result was a neural network that increased
gradient variability, leading to the model escaping local minima. Several more customized
neural network architectures have been proposed to increase the training of PINN. There
is also the possibility to enforce the initial condition always to be satisfied, thus removing
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the multi-loss landscape in the forward problem (L. Lu, Pestourie et al. 2021). Other
approaches suggest training in sequence, starting with a simple problem and gradually
increasing the challenge (Krishnapriyan et al. 2021). Ji et al. 2021 suggested that stiff
ODE was causing problems with the performance of PINN. They suggested converting
the equation to a nonstiff form to get better convergence. However, the most discussed
extension is changing the weighting (McClenny and Braga-Neto 2022). With many exten-
sions and improvements presented, it becomes challenging to determine the most effective
extensions in this particular case. Therefore, more experiments will be conducted to find
the central issue in the VIVANA-TD problem.

5.2 Investigating the failure modes

5.2.1 Case 3: Constructed VIVANA-TD

Due to issues getting the VIVANA-TD problem to converge, a modified equation will be
used and simulated with a numerical solver (ODEINT) to eliminate potential sources of
error. The aim is to represent the VIVANA-TD problem as closely as possible, which
will facilitate the testing of different hyperparameters and extensions. The method that
yields the best results will then be applied to the data simulation data. Considering the
challenges, different modifications and extensions of PINN will be tested. The ODE to be
considered is as follows:

(m+ ρA)
d2u

dt2
+ ku = F cos (ωt) (5.1)

u0 = 0, u̇0 = 0 (5.2)

with the parameters,

m 13.05

k 1197.2

F 18

ω 8

ρ 1000

A 0.007854

Table 5.1: Case 3: Parameters

In Figure 5.1, the solution is plotted alongside the solution using the force data from
VIVANA-TD. The constructed case is similar to the VIVANA-TD case, suggesting that
the hyperparameters and modifications that work well for the constructed case should also
work well for the VIVANA-TD case.
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Figure 5.2: Case 3: Results from using the baseline PINN on the constructed equation.

Figure 5.2, shows the results from using the baseline PINN formulation on case 3. It
becomes clear that the same problem experienced in case 2 is present. Furthermore, an
exhaustive search for optimal weights was conducted. However, the PINN was not able to
converge to the correct solution.
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Figure 5.3: Case 3: Different residual loss weighting.

Figure 5.3 illustrates some of the different residual weights tested. As evident in the
Figure 5.3, there is little change or improvement when changing the residual weight.

5.2.2 Equation

Solving numerically is not a problem for larger coefficients; however, as pointed out by
Krishnapriyan et al. 2021, the PINN approach struggles to find a solution when the coeffi-
cients become large. Substituting the coefficients from Table 5.1 into Equation 5.1 results
in Equation 5.3. This equation has larger coefficients than case 1, and there is also a
substantial scale difference between ü(t) and u(t).

20.904ü(t) + 1197.2u(t) = 18 cos 8t (5.3)

The term multiplied by u(t) is almost 60 times larger than the term multiplied by ü(t).
This discrepancy might pose challenges in achieving convergence during optimization.
Krishnapriyan et al. 2021 demonstrated that significant coefficients complicate the optim-
ization landscape, resulting in sub-optimal solutions. Given the substantial difference in
initial and residual loss magnitudes, issues can arise during backpropagation through the
network S. Wang, Teng et al. 2020. Different values of k will be investigated to see if the
problems originate from the significant coefficients.
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Figure 5.4: Case 3: Different values of k. Trained on 10000 iterations with Adam with
learning rate=0.001.

From Figure 5.4, it is evident that complications arise as the k becomes larger, a finding
that aligns with what Krishnapriyan et al. 2021 pointed out. However, a positive takeaway
is that the method does not seem to struggle with terms being at different scales. To
investigate if there is an issue with different eigenfrequencies of the system and the forcing
term, different angular frequencies of the force will be explored. Setting the learning rate
to 0.001 and the residual loss to 0.1, yields the following results,
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Figure 5.5: Case 3: Different angular frequency force values. Trained on 10000 iterations
with Adam with learning rate=0.001.

Investigating Figure 5.5 is clear that by setting a lower frequency, the PINN is still not
able to find the correct solution. However, it is clear that for omega ω equal to 0.8,1.6,
and 4.0, the PINN can capture the low frequency. This can indicate that PINN struggles
with capturing high frequencies or solutions with two different frequencies. Two different
frequencies characterize a stiff problem. Traditional explicit numerical methods, such as
forward Euler, require very small timesteps for stiff ODEs.

5.3 Improving the model

Different techniques will be investigated to improve the PINN. To limit the search space,
the same 50 collocation points will be used for all the tests, and the neural network
architecture is described in Table 3.3. The focus will be on improving the training and
optimization. However, it should be noted that changing the architecture also influences
the training of the neural network.

5.3.1 Curriculum Learning

Krishnapriyan et al. Krishnapriyan et al. 2021 proposed using curriculum training to
enhance the training of PINNs. The idea behind curriculum training is to start with an
easier problem and progressively tackle more challenging problems. After each training
session, the weights derived from the more straightforward problem are applied to the
more complex problem. All the following training weights are set to one, and the learning
rate is set to 0.001 with 10,000 iterations using the Adam optimizer. Although it has
been determined that assigning a lower weight to the residual loss typically yields better
solutions, this approach has been selected to isolate the effects of curriculum learning.
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Figure 5.6: Case 3: Curriculum training. 20000 iterations with Adam optimizer learning
rate of 0.001.

Comparing the results from Figure 5.6 and Figure 5.4, it is evident that the training is
improved with the use of curriculum training.
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Figure 5.7: Case 3: Curriculum training. Weighted residual loss ωres = 0.1. 20000
iterations with Adam optimizer learning rate of 0.001.
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Figure 5.7 shows that by setting a lower residual loss weight, the curriculum approach
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improves more, even when larger steps are used between the k values. Including training
data adds another term to the loss function. Figure 5.8 shows that the prediction be-
comes more accurate by incorporating training data. However, at k=700 and k=900, the
initial condition is not satisfied. The results indicate that there are still some problems
with having multiple different loss terms. The method also increases the training time
substantially. Thus other methods will be investigated.

5.3.2 Sequence-to-sequence

Krishnapriyan et al. 2021 proposed applying a sequence-to-sequence approach to improv-
ing the training of PINNs. This method discretizes time into different timesteps, each
containing its own set of collocation points. The model’s training is then conducted in-
crementally: Initially, the model is trained solely on the first timestep. Subsequently, it
is trained on both the first and second timesteps together, and this sequential process
continues. This sequence-to-sequence framework has several potential advantages. First,
breaking down the complex problem into more manageable tasks allows the model to in-
crementally learn and adapt its understanding of the problem at each timestep. It is also
possible to add more layers if needed, limiting the need for a very large neural network
initially. The model was trained using ten steps, with five collocation points for each step.
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Figure 5.9: Case 3: sequence to sequence training. 10 steps with 5 collocation points for
each step. Residual weight 0.01. Learning rate 0.001. Optimized using Adam for 20000
iterations

In Figure 5.9, the t ∈ [0, 2] is divided into 10 steps, with 5 collocation points in each
step δt. Using sequence-to-sequence training, the PINN methodology is still not capable
of learning the system’s underlying dynamics completely, as shown in Figure 5.9. This
approach comes with a significant time cost, as the process involves training the neural
network ten times. Another similar approach to consider is to train a new NN for each
timestep and combine all these individual models into one comprehensive model at the
end. This method could help alleviate issues associated with the increasing time domain,
which will need more expressibility of the neural network. However, sequence-to-sequence
training will not be investigated further due to the longer training time.
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5.3.3 Multi-objective optimization

In this section, methods that make multi-objective optimization work more seamlessly will
be investigated.

Hard constraints

The best fix is sometimes just to remove the problem. Therefore enforcing the neural
network to satisfy the initial condition by construction can lead to easier optimization.
Since the problem is a time-dependent problem, ensuring that the neural network output
matches the desired initial condition can be achieved by multiplying the output with the
input. This is also what is done in the paper using NN to solve ODE (Lee and Kang 1990).
The initial condition was enforced through the structure of the neural network. This
approach offers the advantage of simplifying the loss term by eliminating one constraint.
The suggested formulation for the neural network then becomes,

u(x, t; θ) = t ·NN(x, t; θ) + x0 (5.4)

In this equation, u denotes the new model with the enforced initial condition, t is the
input, and x0 is the position at t = 0. This formulation ensures that the initial condition
is always satisfied, effectively converting it into a hard constraint. However, since case 3 is
a second-order differential equation, there is also an velocity initial condition that needs
to be satisfied to find the unique solution. Since there is no easy way of enforcing the
velocity initial condition, it is included in the loss function as a soft constraint.
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Figure 5.10: Case 3. Hard constraints. Weight residual 1.0, learning rate 0.01, 20000
iterations Adam

Figure 5.10 demonstrates that by enforcing the initial condition, the model successfully
captures the correct solution. The results were highly encouraging, prompting further
attempts to enhance the model’s performance. For this purpose, the model was trained
using 40,000 iterations using the Adam optimizer and subsequently switching to the L-
BFGS optimizer. The learning rate was set to 0.001.
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Figure 5.11 demonstrates that increasing the training duration leads to worse results.
Previous experience has indicated that setting the residual weight, denoted as ωres, to 0.1
has yielded better outcomes. To validate this observation, the same training setup as in
Figure 5.11 with weighted residual utilized.
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Figure 5.12: Case 3, Hard constraints. Weight residual=1. 40000 Adam iteration, then
L-BFGS optimizer

Figure 5.12 presents the results, clearly illustrating that setting the residual weight to 0.1
leads to significantly improved outcomes.

By incorporating the initial displacement directly into the neural network, the optimization
problem becomes more manageable, resulting in better results. Additionally, it has been
observed that the choice of the residual weight plays a crucial role in achieving convergence
of the model. Thus motivating the investigation of automatic loss weighting.

Learning rate annealing

An innovative learning rate annealing algorithm was proposed in the study addressing
gradient pathologies (S. Wang, Teng et al. 2020). This algorithm is designed to adaptively
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scale the loss function using gradient statistics, thereby eliminating the need for manual
tuning to find the optimal weights.

The algorithm considers the loss function L(θ), which is a function of the neural network
parameter θ. The function L(θ) is defined as follows:

L(θ) := Lres(θ) +

M∑
i=1

λiLdata(θ) (5.5)

In this equation, Lres(θ) denotes the residual loss, while Ldata(θ) represents data loss,
which includes measurements, initial conditions, and boundary conditions. The data loss
is weighted by the free parameter λdata.

The algorithm then computes λ̂i as follows:

λ̂i =
maxθ |∇θLres(θn)|
meanθ|∇θLdata(θn)|

, i = 1, ...,M, (5.6)

Next, the weights λi are updated using a moving average of the form:

λi = (1− α)λi + αλ̂i, i = 1, ...,M, (5.7)

Finally, the parameters θ are updated via gradient descent:

θn+1 = θn − η∇θLres(θn)− η
M∑
i=1

λi∇θLdata(θn) (5.8)

The authors of the study recommend hyper-parameter values of η = 10−3 and α = 0.9.
The parameter can be updated either on each iteration or at a specified interval. This
novel approach allows for automatic tuning of the loss weights, removing the need for
manually adjusting the weights. By adaptively scaling the loss function using gradient
statistics, this algorithm offers a robust solution to one of the challenges posed by the
PINN method (S. Wang, Teng et al. 2020). The algorithm will be implemented for two
tests, one with an adaptive parameter interval equal to 10 and one at each iteration. To
test the implementation, the method will be verified on the Case 1 problem.
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Figure 5.13: Case1: Top: All weights equal to 1. Bottom: Adaptive weights according
to S. Wang, Teng et al. 2020

Figure 5.13 shows that the method works better than equally fixed weights as the model
total loss is lower than 10−2 after 2500 epochs, while for the equal fixed weights, the loss is
lower than 10−2 after 4000 epochs. However, the method also comes with a small increase
in computational work as the adaptive weight needs to be calculated.
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Figure 5.14: Initial condition, lr=0.001, adaptive each iteration

Figure 5.14 illustrates the adaptive weight is not able to find the correct solution. Since
the formulation included data points in the data loss term, 5 equally sampled data points
will be included in the next simulation. The data points are sampled from the exact
numerical solution.
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Figure 5.15: lr=0.001, updated weight each iteration

Figure 5.15 illustrates that by including data points, the model is still not able to learn
the function. Changing the update frequency of the self-adapting weighting to 10epochs.
The following results.
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Figure 5.16: lr=0.001. Adaptive parameter updated every 10 iterations, her

Figure 5.16 illustrates that the method is still not able to solve the problems. This leads
to the belief that the method is still insufficient, and another multi-loss method will be
considered.

Self-adaptive weights

The original authors of the framework (Raissi et al. 2019) recommend initially running
the training loop and then calibrating the weights for the various loss components to
ensure they are of the same order. This results in weights being presented as a scalar,
which remains constant throughout the training process. In contrast, Levi McClenny and
Ulisses Braga-Neto propose an adaptive scheme for determining the appropriate weights
McClenny and Braga-Neto 2022. This strategy calculates weights for each training point,
thereby giving greater weight to points located in challenging areas. The self-adapting
weights are updated in the loss function concurrently with the network weights through
gradient descent. Implementing the method according to the paper results in the following
results.
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Figure 5.17: Case 1: self-adapting weights Case 1
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Figure 5.18: Case 2: learning rate=0.001

No performance was gained. However, it should be noted that more variations of the
algorithm could be tested, for example, different masking functions. The algorithm was
also implemented very rushed based on the published code.

5.3.4 Summary

A few of the published extensions to PINNs have been investigated. Curriculum training
offers several benefits. It enables the model to converge to the correct solution by gradually
increasing the difficulty of training examples. This approach allows the model to learn
the easier problem before tackling more challenging tasks, effectively avoiding suboptimal
solutions or local minima. However, it does come at the cost of increased training time.
The concept of sequence-to-sequence training employs a similar thought. This method
divides the training process into ten timesteps, gradually spanning the entire solution.
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This technique fails to achieve convergence and requires significant time to train. As a
result, further investigation into the sequence-to-sequence training was not pursued due
to the prolonged training duration.

Furthermore, research has been conducted on enforcing the initial always to be satisfied.
By using hard constraints, the model was able to converge to the correct solution. The
weighting of residual loss remains important for the results. Two techniques that auto-
matically weigh the loss terms were explored. However, using learning rate annealing or
self-adapting loss did not yield noticeable improvements in the results.

Due to the hard constraints significantly affecting the training, this motivates further
research into different NN architectures more optimized for PINN. The problem remains
intricate, with many components that must work together for good results. Much more
work is needed to find a suitable model that is easy to train.

5.4 Improved model: Case 2

Based on the takeaways from the investigations, the initial condition will be enforced by
the neural network’s architecture. The neural network will also be enlarged with two
additional layers with 20 neurons in each layer. Adding two extra layers comes from
experimenting with different architectures.

5.4.1 Forward problem

In solving the forward problem, the learning rate is set to 0.001, and the weighted of the
residual is set to 0.0005.
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Figure 5.19: Case2, lr=0.001, weight residual = 0.0005

Figure 5.19 shows that PINN is able to find the forward solution matching the solution
from the numerical solver. Investigating what will happen if training data is included in
the loss function.
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Figure 5.20: Case2, with data: lr=0.001, weight residual = 0.0005

Figure 5.20 shows that by including data points, the method is still able to find the
solution. Therefore the inverse-solving capabilities of the neural network will be further
investigated.

5.4.2 Inverse problem

Estimating the spring stiffness using simulated data from VIVANA-TD.
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Figure 5.21: Unknown k. Initial guess k = 1200

Figure 5.21 shows that PINN is able to find the solution with one when provided 10
measurement points. The estimated k is the same as the real k. However, the initial guess
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is very close to the true value. Much more can be investigated, like the effect of initial
guess, training time, and more. However, a more robust NN, optimizer, and weighting
should be prioritized. Therefore no more investigation is conducted.

5.5 Summary

Different variants of the equation have been explored to investigate the challenges associ-
ated with training in case 2. It has been observed that setting a lower value for the para-
meter k allows the model to converge to the correct solution, indicating that the problem
becomes simpler with a smaller k. This finding aligns with the results reported by Krish-
napriyan et al. (2021). However, despite exploring various extensions, the method still
needs to work on achieving convergence to the correct solution. Furthermore, attempts
to improve the optimization process by incorporating automatic loss terms have yet to
resolve the convergence issues. Different neural network architectures present another po-
tential possibility for improving the training process. Exploring alternative architectures
can improve the overall performance and effectiveness of the training.

One promising approach simplifies the problem by incorporating the initial condition as
a hard constraint in the NN. The inclusion of these constraints improves convergence in
PINNs. However, the effectiveness of this method is still influenced by the weighting as-
signed to the loss terms. Employing a larger neural network with hard constraints makes
optimizing the PINN for case 2 feasible. The same approach also makes it possible to
solve the inverse problem starting with an initial guess close to the actual value. These
observations suggest that factors, such as the choice of neural network architecture or the
optimizer used, play a significant role. Still, the method is interesting. However, more ML
expertise and development are required. Some things that need to be made simpler are the
design of the neural network. The neural network architecture is found empirical, requiring
considerable time and knowledge about the problem. Therefore, further research is neces-
sary to explore effective architectures, optimizers, and loss weighting schemes specialized
for PINNs.
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Chapter 6

Conclusion and future work

This thesis aimed to investigate hybrid analytic methods to improve VIV prediction. The
theory underlying the VIV model VIVANA-TD is presented. Due to limitations in the
model, particularly in the choice of empirical coefficients, a PINN approach has been
suggested to improve the prediction. The method aims to improve the VIVANA-TD model
with two concepts: adjusting the empirical coefficient based on response measurements and
shaping the prediction to match the measurement data while maintaining the structure of
the physical model.

PINNs offer a seamless way to combine data with prior knowledge, allowing the utilization
of measurement data to improve existing models. Case study 1 shows that the PINN
method can combine a simplified model with measurement data to improve predictions.
The best result is when one of the parameters in the differential equation is unknown, and
the PINN method uses the measurement points to find the parameter that matches the
measurement points. When using the simplified model without trainable parameters, the
model can satisfy the measurement points and keep the structure and characteristics of the
simplified model. However, the result is very dependent on the choice of loss weighting.
The method also shows that it can solve an ODE and find multiple parameters with sparse
and noisy data.

Applying the same method in case studies 2 and 3 requires much more fine-tuning and
modifications to get the model convergence to the correct solution. The training process
becomes more challenging, making it a highly intricate task for the model to converge
to the correct solution. For PINN to become a reliable tool in engineering applications,
further research is needed to understand why PINN sometimes fails to train. Identifying
possible failure modes and developing strategies to prevent them is crucial. It would
greatly benefit the method to have a published guide that outlines these failure modes
and provides recommendations for avoiding them. By improving the robustness of PINN,
it can become a successful method in hybrid analytics, bridging the gap between real life
and simulations. The method can easily be extended to include spatial dimension, custom
NN architectures, and multi-fidelity data. Additionally, PINN can be a great model for
digital twins due to its fast computational speed when trained.

Further work is needed to improve the robustness of the method. The method should also
be expanded to include spatial dimensions ( modeling of the beam). The expanded method
should first be tested on simulated data and then measurements for model experiments.
There is also the possibility of designing an algorithm that can weigh the measurement
data and the physical model when there are differences between them. While PINN is
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an interesting hybrid analytics approach, other promising methods can improve physical
models. Instead of focusing solely on improving the solution, one could also improve the
differential equation. This is possible by using a Neural ODE, also called a universal
differential equation (Christopher Rackauckas et al. 2021). Focusing on improving the
differential equation will make it possible to use numerical solvers. In this approach, a
NN is included directly in the differential equation. Thus, by using data, it can find a
different term in the differential equation that compensates for the unmodeled physics. It
could also be interesting to test multi-fidelity NN to improve VIV modeling.
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Appendix

A Different neural network configurations

Model Layers Neuron per layer Training time MSE training MSE validation

1 3 10 75.0075 0.0434822 0.0241561
2 3 20 76.7692 0.000177694 0.00390117
3 3 40 65.8685 0.000166874 0.00362876
4 3 100 88.1377 0.000217707 0.00372386
5 4 10 59.7509 0.000114735 0.00260235
6 4 20 59.8184 5.49479e-05 0.00175854
7 4 40 69.4466 0.000150192 0.00344858
8 4 100 139.146 1.25112 0.0085477
9 6 10 67.7607 0.000829788 0.00613894
10 6 20 75.6862 0.000457474 0.004464
11 6 40 104.244 0.00365923 0.00562641
12 6 100 317.298 1.25112 0.0106423

B Python code

The code can be found at the following link:
https://github.com/oleholme/Mthesis.git
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