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Abstract— This paper presents a modified multi-stage eco-
nomic nonlinear model predictive controller (M-ENMPC) for
reference optimisation of isolated, uncertain offshore hybrid
power systems (OHPSs). These systems require control strate-
gies that can handle significant stochastic disturbances in
exogenous power demand and wind, given uncertain forecasts
of the disturbances. An M-ENMPC modified with a certainty
horizon is formulated to hande uncertain forecasts of these
disturbances for reference optimisation of OHPSs. The certainty
horizon models the increase in uncertainty of forecasts with time
to decrease the cost in the M-ENMPC. Monte Carlo simulations
with different realisations of the considered disturbances show
that explicitly considering scenarios of the disturbances with
the M-ENMPC can decrease greenhouse gas (GHG) emissions
by operating the gas turbines in the hybrid power system
more efficiently while achieving an acceptable satisfaction of
the exogenous power demand. Furthermore, the Monte Carlo
simulations show that using the modified M-ENMPC decreases
the average computational time by 17% compared with the
conventional M-ENMPC from literature.

I. INTRODUCTION

Complex industrial systems are often handled by de-
composing the decision-making process into a hierarchy of
different time-scales [1]. Reference generation, the transfer
of decisions from an upper to a lower level, is vital in
these systems to take advantage of a priori knowledge. In its
simplest form, a high-level reference generator can be used
to generate a reference for some low-level PID controllers
to track given knowledge of some forecasts of disturbances
(see, for example, [2]). In the case of isolated, hybrid power
systems, the disturbance can occur as an uncertain forecast
of wind power production (due to uncertain meteorological
forecasts of the wind speed), which then can be used to
coordinate other deterministic power suppliers and power
storage systems [3]. However, due to its intermittent na-
ture, generating references for energy infrastructure with
high penetration of renewable energy sources is non-trivial.
Significant deviations between the actual and the predicted
wind power production may decrease the total performance
of such systems which are dependent on optimal coordina-
tion between power suppliers, power storage systems, and
exogenous power demand.

Several ways of reference generation for deterministic
systems, where references are computed based on an optimal
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state prediction, have already been investigated. In process
control, real-time optimisers (RTOs) are widespread due
to their low computational demand as the references are
generated based on steady-state dynamics [4]. Extensions to
capture transient dynamics can be found in economic model
predictive control (EMPC), see for example [2], [5], [6].

In practice, a certainty-equivalent EMPC (CE-EMPC) ap-
proach is commonly used in case of significant disturbances.
To explicitly consider the uncertainty, both stochastic and ro-
bust approaches have been explored in the literature. Robust
methods prevents constraint violations under uncertainty by
relying on the maximum and minimum formulation of some
bounded uncertainties, to represents all realisations of the
uncertainty [7]. In contrast, a stochastic approach allows for
some constraint violation by neglecting improbable realisa-
tions of the disturbances for some increased performance [8].

Here, a subcategory of stochastic economic nonlinear
model predictive control (ENMPC), the M-ENMPC with
continuous-time uncertainties in power generation and de-
mand, is explored, for reference generation of OHPSs con-
sisting of intermittent offshore wind energy that must be
coordinated with other power systems such as batteries and
gas turbine generators to achieve optimal performance [3].
The M-ENMPC is an approximate method of scenario-
based optimisation that handles, additionally to the nominal
case of the disturbance, also the minimum and maximum
case realisation of the disturbances to prevent constraint
violation and improve performance [9]. The M-ENMPC has
been applied to many different applications, such as for the
semi-batch polymerisation reactor [9], obstacle avoidance in
autonomous vehicles [10], and daily production optimisation
in petroleum production [11].

The novelty of this paper is twofold. First, an M-ENMPC
is proposed to handle uncertainty in forecasts of power
production (uncertain offshore wind) and demand in an
OHPS by considering approximate minimum and maximum
scenarios of the disturbances (which are assumed known
for simplicity). The main point is to show how considering
uncertainty in a gas turbine, wind turbine, and battery con-
figuration can lead to decreased GHG emissions with more
efficient use of the gas turbine while robustly utilising the
battery to satisfy some uncertain power demand. Secondly, a
certainty horizon is proposed to decrease the computational
cost of the M-ENMPC. The certainty horizon is motivated
by the decreasing accuracy of forecasts one can expect in
such systems. For simplicity, the references are assumed to
be perfectly tracked by some low-level controllers.

The remainder of the paper is structured as follows:



Section II presents the OHPS, followed by a general formu-
lation for the modified M-ENMPC in Section III. In Section
IV, a simulation study is presented using the proposed
methodology for an OHPS, given different realisations of
the disturbances with Monte Carlo simulations. The paper
will conclude with Sections V and VI.

II. OFFSHORE HYBRID POWER SYSTEMS

OHPSs, such as the one illustrated in Fig. 1, provide a
means to decarbonise the energy supply on the Northern
Continental Shelf by increasing the penetration of renewable
energy into the offshore energy infrastructure, which today
consists of primarily gas turbines [12]. Control solutions
that efficiently and robustly handle uncertainties in forecasts
of wind power generation (due to uncertain wind speed
forecasts) and exogenous power demand is therefore essen-
tial for power system stability and efficiency, see Fig. 1.
This exogenous power demand can stem from decentralised
power sinks, such as maritime transport, green hydrogen,
aquaculture, or petroleum production [13].
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Fig. 1. An illustration of offshore hybrid power systems with offshore
wind energy, gas turbines, and batteries.

Generally, optimal operation of production and storage in
the OHPS is vital if the power demand is significantly greater
than the maximum gas turbine power output and the cur-
rent wind power. An intelligent controller can preemptively
charge the battery in advance and allow the OHPS to act
more robustly regarding the power demand [3]. Furthermore,
a vital controller aim for such a system is ultimately to
lower the emitted GHG emissions. Lower GHG emissions
can be achieved through 1) maximising the wind power by
storing excess wind power in the battery or 2) by operating
the gas turbine more efficiently and lowering the total GHG
emissions [14].

A. Modeling of Offshore Hybrid Power System

The isolated nonlinear OHPS considered in this paper
consists of three subsystems: a gas turbine generator (GTG)
system, a wind turbine generator (WTG) system, and a
battery (Bat) system with the following system dynamics

f : Rnx × Rnu × Rnd → Rnx and measurement function
h : Rnx × Rnu × Rnd → Rny (refer to [3] and the
references herein for further information on the modelling
and assumptions)

xk+1 = f (xk, uk, dk)

yk = h (xk, uk, dk),
(1)

where system state vector x = [Vgtg, Pgtg, ωwtg,Mwtg,gen,
SOCbat]

⊤∈ Rnx , system input vector u = [Tgtg, βwtg, Ibat]
⊤∈

Rnu , system disturbance vector d = [vwind, Pdemand]
⊤∈ Rnd ,

and system output vector y = [Pgtg, Pwtg,SOCbat, ωwtg]
⊤ ∈

Rny . In which, Vgtg [pu] and Pgtg [kW] describe the GTG
fuel flow and power output, ωwtg [rad s−1] and Mwtg,gen
[Nm] describe the rotational speed of the wind turbine and
the WTG generator torque, SOCbat [%] describes the battery
state of charge, Tgtg [pu] describes the GTG throttle, βwtg
[deg] describes the WTG blade pitch, Ibat [A] describes
the battery current, vwind [ms−1] and Pdemand describe the
average WTG rotor wind speed and the total power demand,
and Pwtg [kW] describes the WTG power output.

B. Control Objective

The control objective of this constrained OHPS is to (in
decreasing order of importance):

1) Satisfy the uncertain total power demand
2) Maximise WTG power to reduce GHG emissions
3) Maximise GTG efficiency to reduce GHG emissions
4) Minimise GTG power to reduce GHG emissions
5) Maximise the battery SOC for system flexibility
6) Minimise actuator effort
These control objectives (except for the satisfaction of the

uncertain total power demand) can intuitively be formulated
in terms of four cost functions terms θi

Johps(x, u, d) = θwtg + θgtg + θbat + θu (2)

θwtg = Kwtg(Pwtg − Pwtg,max)
2 (3)

θgtg = Kgtg,η(ηgtg − ηgtg,max)
2 +Kgtg,PPgtg (4)

θbat = −KbatSOCbat (5)

θu = u⊤Kuu, (6)

where Ki are positive constants or matrices to be tuned,
Pwtg,max is the maximum power output from the WTG, and
ηgtg is a function that describes the efficiency of the GTG as
a second-degree polynomial (adapted from [14] assuming a
combined-cycle LM2500 turbine with αi as fitted constants)

ηgtg =

{
α1P

2
gtg + α2Pgtg, if Pgtg ≥ 0.01Pgtg,max.

0, otherwise.
(7)

In general, there are two approaches for ensuring the satis-
faction of exogenous power demands in constrained optimal
control: 1) in the cost function with θP = Pdemand − Pwtg −
Pgtg − Pbat, or 2) as a constraint

gP = Pdemand − Pwtg − Pgtg − Pbat = 0. (8)

The methods considered in this paper use 2), formulated
as a soft constraint to guarantee feasibility as there may



be scenarios where Pdemand cannot be satisfied even with a
perfect forecast of Pdemand and vwind (thus also Pwtg).

Remark 1: Only control objectives 1, 3, and 4 are chosen
as key performance indicators (KPIs) for the simulation study
as they are easily quantifiable. Objective 2 is omitted as it
is assumed that Pwtg is maximised at every time step since
the references are known with no measurement noise for the
current time step, where the Pdemand is never low enough that
Pwtg has to be dissipated for grid stability.

Additionally, the amount of GHG emissions (measured in
CO2) is also used as a KPI and minimised indirectly with
θgtg as it is more easily understood and combines control
objectives 3 and 4, respectively. The total GHG emissions is
in this paper computed as

ṁC02 =
MCO2

MCH4

ṁCH4 =
MCO2

MCH4

Pgtg

ηgtgLHVCH4

, (9)

where M is the molecular weight [g/mole], ṁ [kg/s] is
the mass flow of reactant/product, and LHV is the lower
heating value. Equation (9) is derived by assuming ideal,
stoichiometric combustion of methane with air

CH4 + 2(O2 + 3.76N2)−→ CO2 + 2H2O+ 7.52N2

III. OPTIMAL REFERENCE GENERATION WITH
UNCERTAIN DISTURBANCES

The most common approach when using ENMPC is to
ignore the uncertainty by relying on the certainty-equivalence
(CE) property [15] even if this does not formally hold (Sub-
section III-A). A CE-ENMPC may therefore incur perfor-
mance losses. To handle and exploit uncertainty information,
the multi-stage variant from [9] is proposed for reference
generation (Subsection III-B).

A. Baseline controller - Certainty-Equivalent approach

A CE-ENMPC formulates the control problem as an
optimisation problem by considering future potential control
actions using an imperfect disturbance value d̂. Commonly,
the control law can be computed as a policy by solving a
nonlinear program (NLP) in the form of [16]

min
x,u

NP∑
k=0

Johps

(
xk, uk, d̂k

)
subject to: xk+1 = f

(
xk, uk, d̂k

)
, ∀k ∈ [0, NP ]

hineq

(
xk, uk, d̂k

)
≤ 0, ∀k ∈ [0, NP ]

geq

(
xk, uk, d̂k

)
= 0, ∀k ∈ [0, NP ],

(10)

where NP is the prediction horizon, J(·) is the cumulative
cost function from (2), xk+1 = f(xk, · · · ) are dynamic
model constraints (the main cause of nonlinearity is due to
the aerodynamics), hineq(·) and geq(·) are general vectors
of inequality and equality constraints (hineq(·) and geq(·)
relevant for the OHPS can be found in [3]), d̂k is the
uncertain disturbance vector, x = [x1, ...xNP

] and u =
[u0, ...uNP

] are the decision variables to be optimised, and
x1 is the optimal next step reference for the lower level.
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Fig. 2. A schematic of the modified multi-stage economic nonlinear model
predictive used for reference generation. x1 is a reference for some low-
level controller (llc).

The NLP in (10) that describes the CE-ENMPC is com-
puted every step before being shifted forward in time and
recomputed. The disturbance vector d̂k is considered in the
NLP as the conditional expected disturbance vector forward
in time, and a correction is applied at the next time step.

B. Proposed controller - Multi-Stage approach

The multi-stage variant computes its control actions, anal-
ogous to the CE-ENMPC, by predicting xk+1, which are
optimised ∀k = [0, NP ] before being shifted to the next time
step and recomputed. The difference between an M-ENMPC
and a CE-ENMPC lies in the handling of the uncertain
disturbances d̂, which are addressed by constructing a sce-
nario tree with discrete representative scenarios to represent
some probability distribution, see Fig. 2. Fig. 2 illustrates
the scenario tree which the M-ENMPC most commonly
employs, which is based on three branches to account for
the nominal d1, the minimum d0, and the maximum d2

realisation of d̂. The optimal control input is then computed
according to an expected value formulation.

In some power systems applications, forecasting can en-
hance the controller for better performance [17]. This paper
extends forecasting for the M-ENMPC by imposing a cer-
tainty horizon NC to exploit forecasting information, which
is often accurate for a short time horizon, see Fig. 2. After
NC , the M-ENMPC used in this paper follows the nominal
form where the amount of times branching occurs follows a
robust horizon NR formulation for tractability and prediction
horizon NP is the same as for the CE-ENMPC [9]. As the
branching occurs much later, a decrease in computational
cost can be achieved due to reducing decision variables in the
NLP, thereby improving numerical tractability. Additionally,
it becomes trivial to compute the references in the following
step state predictions x1 using the modified M-ENMPC as
x1 can be chosen similar to the CE-ENMPC, see Fig. 2. In



contrast, it is non-trivial to decide between the nominal, the
minimum, or the maximum optimal state prediction in the
nominal formulation of the M-ENMPC from [9] as branching
occurs already at the initial node x0 (unless the references
in questions are the input u0).

The resulting control problem can be formulated according
to (10) during the certainty horizon, which thereafter assumes
a scenario tree representation, where each next state xi

k+1 at
stage k + 1 after NC and position i in the tree depends on
the parent state xi

k at stage k and the corresponding input ui
k

and current realisation of the disturbance dik. If one defines
the set of indices (i, k) in the scenario tree as I where k ∈
[NC + 1, NP ] and i ∈ [0, 3nd · 3NR−1], then the following
NLP solves the certainty-based M-ENMPC

min
x,u

Johps,multi + Johps,nominal

subject to: xk+1 = f
(
xk, uk, d̂k

)
, ∀k ∈ [0, NC ]

hineq

(
xk, uk, d̂k

)
≤ 0, ∀k ∈ [0, NC ]

geq

(
xk, uk, d̂k

)
= 0, ∀k ∈ [0, NC ]

xi
k+1 = f

(
xi
k, u

i
k, d

i
k

)
, ∀(i, k) ∈ I

hineq
(
xi
k, u

i
k, d

i
k

)
≤ 0, ∀(i, k) ∈ I

geq
(
xi
k, u

i
k, d

i
k

)
= 0, ∀(i, k) ∈ I,

(11)

where Johps,multi + Johps,nominal is defined as

Johps,nominal =

NC∑
k=0

Johps(xk, uk, dk) (12)

Johps,multi =
∑

∀(i,k)∈I

Johps
(
xi
k, u

i
k, d

i
k

)
, (13)

with wi
k being the probability of the different realisations of

d. Additionally, non-anticipativity constraints on the form of

0 ≤ uj
k − ui

k ≤ 0 if xj
k = xi

k, ∀(i, k) ∈ I, (14)

are included in hk,ineq(·) in addition to hineq(·) from [3] to
model real-time decisions [18].

The M-ENMPC accounts for two uncertain variables in the
case of the OHPS (vwind and Pdemand), resulting in 32 ·3NR−1

branches. As vwind (in the form of Pwtg) and Pdemand interact
through (8) as a sum, a combined uncertain variable can in-
stead be defined to simplify the M-ENMPC to only 31·3NR−1

branches instead of 32 · 3NR−1. Intuitively, this reduction is
because a higher/lower Pdemand and a lower/higher Pwtg have
the same effect on the OHPS.

IV. SIMULATION STUDY

A simulation study is presented to validate the proposed
method for reference optimisation of an OHPS in a case
study with one lumped uncertain power consumer and uncer-
tain wind power production. Including the uncertain demand
side is essential as the trend goes toward decentralisation on
the demand side, where demand forecasts may deviate from
the actual demand [19]. Subsection IV-A first presents the
simulation environment and variables used for the simulation

study. Subsection IV-B follows by comparing the M-ENMPC
to a CE-ENMPC for a single day. Thereafter, Subsection IV-
C validates the results from Subsection IV-B for multiple
realisations of uncertainty with 50 Monte Carlo simulations.
Lastly, Subsection IV-D compares the modified M-ENMPC
with the nominal one from [9]

A. Simulation Environment and Variables

A computer with an Intel(R) Core(TM) i7-9850H CPU @
2.60 GHz is used to simulate the controllers for this study.
The optimal control problems (OCPs) are formulated with
CasADI [20], utilising a multiple shooting approach, and
solved with IPOPT [21] using ma27 [22] as the linear solver.

Each simulation is run for 43200 s (≈ 12 hours) with
a time step of 30 s for each Monte-Carlo simulation. The
methods are recomputed every time step with a prediction
horizon of 3000 s. The methods are initialised with an initial
system state x0 = [0.001, 0.001, 0.9, 0.001, 0.001]⊤, with a
prediction/control horizon of 100 time steps (= 3000 s).

It is assumed for simplicity that the plant and control
models are identical, where α = [−1.59 · 10−6, 1.84 · 10−2],
with full-state feedback and no process/measurement noise.
The uncertainties arise from vwind (which affects the Pwtg
predictions through (1)) and Pdemand forecast described by

vwind = Avwind sin
(

1

fvwind

t

)
+Kvwind + wvwind (15)

Pdemand = wP1
+ wP2

, (16)

and Table I. The power demand is a function of two random
variables wPi

that change their values every Ts,wPi
[s].

Similarily, the average wind rotor wind speed is defined for
simplicity as a noisy sine curve using a Gaussian random
variable wvwind [23] that changes its value every Ts,wvwind

.

TABLE I
WIND AND EXOGENOUS POWER DEMAND PARAMETERS

Symbol Value Symbol Value

wvwind N (0, 1) wP1
N (0, 500)

Kvwind 7.5 wP2
U(2000, 8800)

Avwind , fvwind 0.5,200 Ts,wP1
6000

Ts,wvwind
900 Ts,wP2

2250

By assuming that uncertainties are known accurately for
the first 5 minutes, the certainty horizon for the M-ENMPC
is NC = 10 (the choice of NC depends on the uncertainty,
for wind data, 5 minutes is reasonable [24]), while a robust
horizon NR = 1 was adequate. The branches in the M-
ENMPC are weighted by hand according to: ωi

NC+1 =
[0.175, 0.65, 0.175] with i∈ [0, 2], where the maximum and
minimum realisations of the combined uncertainty are set to
±40% ≈

(
var(wP2

)

Pdemand
+

var(wvwind )

vwind

)
· 100.

The resulting references from the different methods (given
by the following state prediction x1 after the initial state
x0) are assumed to be followed perfectly by some low-level
controllers. For comparison reasons, the tuning constants Ki

in the cost function from Subsection II-B are kept the same
for the different methods and weighted by hand according
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to: Kwtg = 10, Kgtg,η = 5, Kgtg,P = 200, Kbat = 1, and
Ku = diag(1, 10000, 10).

Subsequently, the identifiers in Table II will be used for the
different methods compared in this section, where the first
identifier represents an upper bound on the performance as
this method employs the CE-ENMPC with perfect forecasts
of the wind (wvwind ) and exogenous power demand (wP1

,wP2
).

Identifier 2 represents what can be achieved given imper-
fect forecasts (wvwind , wP1) = (0, 0) using a CE-ENMPC.
Finally, identifier 3 is used for the certainty-horizon-based
M-ENMPC given imperfect forecasts. In practice, only im-
perfect knowledge of these forecasts is realistic. Lastly,
identifier 4 is used for the nominal M-ENMPC from [9].
For a fair comparison, method 2 and 4 also uses a certainty
horizon scheme where the disturbances are known accurately
(however, method 4 still branches at the initial node where
the nominal trajectory is used as the next reference value).

TABLE II
IDENTIFIERS FOR THE METHODS TO BE COMPARED

Identifier Method

1 CE-ENMPC with perfect forecasts

2 CE-ENMPC with imperfect forecasts

3 Modified M-ENMPC with imperfect forecasts

4 Nominal M-ENMPC with imperfect forecasts

B. Single Day Case Simulation

The proposed methods (excluding 4) are initially com-
pared for a single simulation of 12 hours to understand the
qualitative differences. Fig. 3 shows the results of applying

the different methods for reference optimisation of an OHPS
for a single simulation. For simplicity, only the power
responses P for the GTG, the WTG, and the battery are
shown (where Ptotal = Pgtg + Pwtg + Pbat), including the
average WTG rotor wind speed vwind and the battery state of
charge SOCbat.

As expected, method 1, with perfect forecasts of vwind
and Pdemand, satisfies the power demand Pdemand completely.
Method 2 performs the worst in terms of satisfying Pdemand
due to imperfect forecasting. The lack of precise forecasting
affects how much in advance the methods can preemptively
charge the battery SOC when required. Most notable, the
state around t = 29000 s shows a particularly demanding
scenario for the system as the total power demand cannot be
satisfied by Pwtg and the maximum gas turbine power output
Pgtg,max (Pwtg,t=29000 + Pgtg,max ≤ Pdemand,t=29000), the OHPS
thus needs to charge the battery using the gas turbine pre-
emptively, which is only possible with accurate forecasting.

A closer look at Fig. 3 shows that method 3 achieves an
acceptable degree of satisfaction of the total power demand
Pdemand. At around t = 16000 s, method 3 has a much
lower reference for the battery storage SOCbat compared
to the other methods while still being able to charge the
battery at t = 29000 s sufficiently. This is due to how
branching is implemented in the M-ENMPC, which accounts
for the maximum and minimum realisations of uncertain
disturbances. By accounting for the uncertainties, method 3
accounts for the lowest possible wind power output Pwtg,lowest
(where Pwtg,lowest ≤ Pwtg,nominal ≤ Pwtg,highest) and the highest
possible power demand Pdemand,highest (where Pdemand,lowest ≤



Pdemand,nominal ≤ Pdemand,highest). Since Pdemand,highest,t=16000 ≤
Pwtg,lowest,t=16000 + Pgtg,max at t = 16000 s, method 3 is free
to empty the battery and still be able to satisfy Pdemand,
given that the minimum and maximum values are suffi-
ciently accurate. Conversely, this also translates to how
method 3 manages to preemptively charge the battery at t
= 29000 s. An automatic back-off in (8) is introduced in the
NLP as method 3 accounts for Pwtg,lowest and Pdemand,highest.
Method 3 therefore charges the battery at t = 29000 s, since
Pwtg,lowest,t=29000 + Pgtg,max ≤ Pdemand,highest,t=29000.

Table III summarises the results by highlighting the key
performance indicators (KPIs), where Perror = Pdemand −
(Pwtg + Pgtg + Pbat). A closer look at Table III (where all
of the KPIs are summed for the whole simulation duration
except for the efficiency ηgtg, which is averaged) shows that
method 3 achieves an increased ηgtg which results in lower
GHG emissions even compared to the benchmark method 1.

The increased gas turbine efficiency of method 3 can be
attributed to how uncertainty is explicitly defined in the
optimisation problem. As method 3 accounts for Pwtg,lowest
and Pdemand,highest, it can optimise the references based on
the control input which will improve performance for all
considered scenarios. For example, at t = 16000 s, the battery
is fully discharged method 3. The effect of running the
battery dry is that it later can, on average, increase the gas
turbine power output, thus increasing the turbine’s efficiency,
see (7). In this case, method 3 already accounts for an
overestimation of the power demand and an underestimation
of the wind power output and also optimises for these
scenarios. In contrast, methods 1 and 2 do not consider
uncertainty and aim to precisely satisfy the power demand
for the nominal branch. As such, optimality for methods 1
and 2 is achieved by jointly satisfying the power demand
with both the battery and the gas turbine at partial load.

TABLE III
KEY PERFORMANCE INDICATORS FOR SINGLE DAY CASE.

Method Perror [MW] η̄gtg [%] Pgtg [GW] GHG [Mg CO2]

1 23.76 31.21 75.19 12.30

2 2954.37 32.15 72.43 11.62

3 794.85 36.48 74.55 10.65

C. Monte Carlo Simulations

50 Monte-Carlo simulations for each of the compared
methods are simulated for each uncertain disturbances (vwind
and Pwtg) to draw statistical conclusions and confirm the
results from the single case simulation in Fig. 3. The results
are summarised in Fig. 4, which uses box plots to compare
the four KPIs for the different methods.

As shown, Fig. 4 confirms the results of Subsection IV-
B: On average, the M-ENMPC (in green) is an improve-
ment over the CE-ENMPC with both perfect (in blue)
and imperfect (in red) forecasts in terms of GHG emis-
sions (GHGmethod 3 ≤ GHGmethod 2 ≤ GHGmethod 1), while
still achieving acceptable Perror relative to the CE-ENMPC
(Perror,method 1 ≤ Perror,method 3 ≤ Perror,method 2). The gas
turbine generator is used more often in method 3 compared to
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Fig. 4. Comparison results from the Monte Carlo simulations for methods
1-3. The key performance indicators are represented as box plots. A
stipulated gray line is included for ease of comparison, while outliers are
represented as circles.

method 2, but the emitted GHG is lowest due to the increased
efficiency.

D. Comparing nominal to modified multi-stage

Lastly, comparing the proposed method 3 against method
4 from the literature is essential. For that, the average
computational cost of the different methods is computed by
averaging the computational cost of each method over 50
Monte Carlo simulations. The results are listed in Table IV
and show that, on average, method 3 decreases the average
computational cost of each iteration by 17%.

TABLE IV
AVERAGE COMPUTATIONAL COST OF FULLY SOLVING THE DIFFERENT

METHODS AT EACH TIME STEP.

Method 1 Method 2 Method 3 Method 4
0.11 s 0.11 s 0.39 s 0.47 s

Simulating method 4 over 50 Monte Carlo simulations
results in Fig 5 shows that, on average, method 4 performs
better than method 3. Most notably, method 4 performs better
in terms of ηgtg and GHG. The increase in performance is
because method 4 possesses more degrees of freedom during
optimisation as it branches at the initial node compared to
method 3, which branches after the certainty horizon. In
many applications, this tradeoff between performance and
computational cost is acceptable, as the computational cost
of M-ENMPC prohibits many of its uses.

V. CONCLUDING REMARK

This paper proposes a certainty-horizon-based M-ENMPC
for reference optimisation, given uncertain forecasting. The
method is applied to an OHPS. However, the method can be
extended to any control system utilising a CE-ENMPC for
reference generation with uncertain forecasts. The proposed
certainty-horizon-based M-ENMPC is validated in simula-
tion with 50 Monte Carlo simulations and compared with a
CE-ENMPC with perfect and imperfect forecasts of vwind
and Pdemand. Simulations show that the M-ENMPC with
imperfect forecasts can have increased performance when it
comes to satisfying the uncertain exogenous power demand



Method 3 Method 4
0

100

200

300

400

500
P e

rr
or

 [M
W

]

Method 3 Method 4

30.0

32.5

35.0

37.5

40.0

η g
tg

 [%
]

Method 3 Method 4

50

60

70

80

P g
tg

 [G
W

]

Method 3 Method 4

8

10

12

G
H

G
 [M

g 
C

O
2]

Fig. 5. Comparison results from the Monte Carlo simulations for methods
3-4. The key performance indicators are represented as box plots. A
stipulated gray line is included for ease of comparison, while outliers are
represented as circles.

compared to the CE-ENMPC with imperfect forecasts. Fur-
thermore, a decrease in GHG emissions can be achieved with
the M-ENMPC with imperfect forecasts even compared to
the CE-ENMPC with perfect forecasts.

VI. FURTHER WORKS

Further work is required as the present method is tuned
empirically and assumes constant parameters in the PDFs
from which vwind and Pdemand are sampled. Considering
PDFs where parameters such as the mean and variance (if
one assumes white noise) are essential for the OHPS. For
example, the Pdemand fluctuates more during the day as there
is naturally more activity, while vwind fluctuates depending on
factors such as season, day/night, location, and temperature.
Techniques for this exists, for example [25] and [26].

Additionally, further work should investigate the optimal-
ity of using a certainty horizon based M-ENMPC compared
to the nominal M-ENMPC formulation. It would be inter-
esting to see whether branching at the beginning would
result in vastly different state trajectories, even if the first
predictions in each branch in the nominal M-ENMPC utilise
the actual forecasts. Maybe even more interesting is to
investigate the effect of the certainty horizon NC on the
expected performance. Further work should also investigate
the trade-off between computational cost and performance
on other applications, as the computational cost of the M-
ENMPC prohibits its use in many applications.
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