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Abstract
Background/Purpose: Pulse palpation is an unreliable method for diagnosing cardiac arrest. To address this limitation, continuous hemodynamic

monitoring may be a viable solution. Therefore, we developed a novel, hands-free Doppler system, RescueDoppler, to detect the pulse continuously

in the carotid artery.

Methods: In twelve pigs, we evaluated RescueDoppler´s potential to measure blood flow velocity in three situations where pulse palpation of the

carotid artery was insufficient: (1) systolic blood pressure below 60 mmHg, (2) ventricular fibrillation (VF) and (3) pulseless electrical activity (PEA).

(1) Low blood pressure was induced using a Fogarty balloon catheter to occlude the inferior vena cava. (2) An implantable cardioverter-defibrillator

induced VF. (3) Myocardial infarction after microembolization of the left coronary artery caused True-PEA. Invasive blood pressure was measured in

the contralateral carotid artery. Time-averaged blood flow velocity (TAV) in the carotid artery was related to mean arterial pressure (MAP) in a linear

mixed model.

Results: RescueDoppler identified pulsatile blood flow in 41/41 events with systolic blood pressure below 60 mmHg, with lowest blood pressure of

19 mmHg. In addition the absence of spontaneous circulation was identified in 21/21 VF events and true PEA in 2/2 events. The intraclass correlation

coefficient within animals for TAV and MAP was 0.94 (95% CI. 0.85–0.98).

Conclusions: In a porcine model, RescueDoppler reliably identified pulsative blood flow with blood pressures below 60 mmHg. During VF and PEA,

circulatory arrest was rapidly and accurately demonstrated. RescueDoppler could potentially replace unreliable pulse palpation during cardiac arrest

and cardiopulmonary resuscitation.

Keywords: Doppler ultrasound, Experimental model, Carotid artery blood flow, Cardiac arrest monitor, PEA, Ventricular fibrillation
absence of a pulse. During advanced cardiopulmonary resuscitation

Introduction

Sudden cardiac arrest is an abrupt cessation of cardiac pump func-

tion, resulting in the absence of signs of circulation, including the
(CPR1), chest compressions are paused briefly to assess the cardiac

rhythm by electrocardiogram (ECG) and the return of spontaneous

circulation (ROSC) by manual carotid pulse palpation.1 Pulse palpa-

tion has severe limitations and is neither a rapid nor a reliable
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method.2–5 During CPR, 45% of the healthcare providers were

unable to detect central pulse accurately2,6 despite a systolic radial

artery pressure of above 80 mmHg.3 In addition, pulseless electrical

activity (PEA) was misdiagnosed in 32% of cardiac arrests, where

the patient had blood circulation.7

Since invasive blood pressure seldom is used during cardiac

arrest, a surrogate marker for ROSC is used, such as end-tidal car-

bon dioxide (ETCO2).1,8,9 However, the accuracy of ETCO2 is influ-

enced by, e.g. ventilation and medications.8–10

PEA is increasingly and particularly prevalent in both in-hospital

(IHCA) and out-of-hospital (OHCA) cardiac arrest.11,12 Recent

research from our research group at NTNU13,14 shows that PEA

behaves very differently in terms of developing ROSC, depending

on the preceding rhythm (primary, or secondary to temporary ROSC,

ventricular fibrillation (VF), ventricular tachycardia (VT), or asystole).

Thus, incorrect decisions about the presence or absence of a carotid

pulse, both initially and when evaluating the response to treatment,

may deprive the patient of an individualized approach. This may lead

to both under- and overtreatment, the latter for instance by schematic

applying potentially harmful chest compressions and medications like

adrenaline.15 The European Resuscitation Council Guidelines’

emphasise high quality chest compressions with minimal interrup-

tion.1,16 The most common reason for interrupting chest compression

for more than 10 seconds was rhythm/pulse checks in 52% of 206

IHCA and OHCA.17 The use of ultrasound for pulse checks has

increased but might also cause additional or prolonged interruptions

of chest compressions and requires a skilled operator.1,18–20

Therefore, we aimed to evaluate the ability to detect blood flow

with a novel, automated, hands-free pulsed wave Doppler system,

RescueDoppler. We evaluated RescueDoppler in three clinical

situations.

Our hypothesis was whether Doppler could identify carotid pulse

in situations where blood pressure is below 60 mmHg and pulse pal-

pation is unreliable,3,21 and identify the absence of pulse in situations

such as VF and true PEA where circulation has ceased.

Methods

RescueDoppler system

The RescueDoppler is a pulsed wave Doppler system consisting of a

custom-made carotid ultrasound Doppler probe, a scanner (Manus

EIM-A produced by Aurotech Ultrasound AS), and a laptop running

Matlab (Matlab� R2021a) program as the user interface, and a

real-time display (Supplemental Fig. 1), similar to the NeoDoppler

system.22 The RescueDoppler system was tested and complied with

the thermal and acoustic requirements of international standard

IEC60601-2-37 for clinical research for non-scanned modalities.

The RescueDoppler system involved two transducers fitted to a

3D-printed transducer casing with fixed angle ±30� (Supplemental

Fig. 1). The aperture of each transducer was unfocused with a

dimension of 30 � 6 mm and a central frequency of 4 MHz. This mul-

tirange technology used digital signal processing and 32 depth

ranges distributed equally from 8 to 45 mm.

The system displayed the depth ranges as colour M-mode and

Doppler spectrogram of the selected range and sample volume

(Supplemental Fig. 2). The maximum velocity curve was automati-

cally traced from the spectrogram. Doppler variables, peak systolic

velocity, end-diastolic velocity, and time-averaged blood flow velocity

(TAV) were calculated for each heartbeat. TAV was calculated from
each transducer, and angle is estimated by a simple geometrical for-

mula, based on the two TAV values and the fixed angle between the

transducers. Values for resistive index, pulsatility index, and heart

rate are not affected by inclination angle. Angle correction was per-

formed after the experiments.

Animals

Twelve pigs (sus scrofa domesticus) were included (mean weight

30 ± 3 kg). The study was approved by the Norwegian Animal

Research Authority (FOTS-ID 25415) and performed by the ARRIVE

guidelines.23

Animal retrieval, preparation, and anaesthesia

At the farm, the animals were sedated with intramuscular 1000 mg of

ketamine (Ketalar, Pfizer AS, Norway), 1 mg of atropine (G.L.

Pharma GmbH, Lannach, Austria), and 5 mg of midazolam (B. Braun

Melsungen AG, Germany) before being transported the laboratory. A

20-G peripheral venous catheter (BD VenflonTM Pro Safety Needle,

Eysins, Switzerland) was inserted into both ears. Anesthesia was

induced with intravenous (iv) midazolam and morphine (G.L. Pharma

GmbH, Lannach, Austria) and maintained with iv morphine, midazo-

lam, and thiopental (Pentocur Abcur AB, Sweden). Methods for

sedation and anaesthesia were conducted as described in detail

by Storm et al.24 The animals were ventilated using a GE Engstøm

Carestation Ventilator (GE Healthcare) with 21% FiO2, a tidal volume

of 15–20 mL/kg, a respiratory rate of 13 –16 breaths per minute, and

zero positive end-expiratory pressure. End-tidal CO2 (ETCO2) was

continuously monitored, and minute ventilation was adjusted to

maintain a normal pH and normocapnia. The pigs were kept nor-

mothermic (38.5–39.0 �C).

Instrumentation

The left external jugular vein and left internal carotid artery were

identified using a Sonosite S ultrasound machine with an L38 linear

transducer (Fujifilm Sonosite, Bothell, WA).

Ultrasound-guided Seldinger’s technique was used to insert an 8

Fr Avanti + Sheath introducer (Cordis, Santa Clara, CA) into the left

external jugular vein and a 4 Fr, 8 cm leader arterial catheter (Vygon

Ltd., Swindon, UK) into the left internal carotid artery. An open surgi-

cal technique was used if more than one attempt was necessary.

Monitoring and data recording

A TruWave pressure monitoring transducer kit (Edwards Life-

sciences Corporation, Irvine, CA) was connected to an arterial can-

nula, and 500 mL of pressurized Ringer’s acetate (Baxter AS,

Norway) and 1250 IE heparin (LEO Pharma AS, Norway) was added

to prevent catheter clotting. The flow rate across the flush device was

3 ± 1 mL/hr. Monitoring: continuous 5-lead ECG, continuous invasive

arterial- and central venous pressures, ETCO2, peripheral oxygen

saturation (SPO2), and urinary bladder temperature. These data

were recorded by Phillips IntelliVue Patient Monitor MP70 (Philips

Medizin Systeme Boeblingen GmbH). The common carotid artery

(CCA) on the contralateral side of the arterial catheter was identified

by vascular ultrasound (GE Vivid S7 Pro) linear probe. The Res-

cueDoppler probe was positioned over the CCA to ensure optimal

signal recording and fixed with a elastic self-adhering bandage

around the neck. An overview of the research setup is presented

in Supplemental Fig. 1. For precise time synchronization between

the RescueDoppler recordings and other physiological recordings,

an electrical pulse-generator (impulse every 6 seconds) was con-
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nected to the RescueDoppler computer and a pressure transducer

on the MP70 monitor. The pulses were timestamped and recorded

by the RescueDoppler computer and the MP70 monitor. These sig-

nals were used for precise post-processing data synchronization.

Data from the IntelliVue monitor and the ventilator were transferred

to the RescueDoppler laptop via two additional serial ports. A custom

Matlab program was designed to synchronize the traces from and

calculate the derived parameters (Supplemental Table 1).

Vena cava occlusion model

Hypotension was induced by occlusion of the inferior vena cava

(VCO) using a 6 Fr Edwards Fogarty Arterial Embolectomy Catheter

(Edwards Lifesciences Corporation). The catheter was brought for-

ward to the inferior vena cava and placed intrathoracically above

the diaphragm (Supplemental Fig. 1). We then occluded the inferior

vena cava by inflating the catheter cuff with 2 mL of normal saline.

This resulted in a rapid fall in blood pressure (Fig. 1). The occlusion

was terminated at the lowest possible systolic blood pressure below

60 mmHg. Ventilation was paused during the sequences, from infla-

tion to deflation of the catheter cuff.

VF model

We induced VF with an implantable cardioverter-defibrillator (ICD)

(St. Jude Medial Ellipse DR Model CD2377-36C, Merlin Patient Care

System, Abbott, formerly St. Jude Medical Inc) (Supplemental

Fig. 1). The ICD lead was inserted through the external jugular vein

to the right ventricle and placed in the apex using echocardiographic

guidance (GE Vivid S7 Pro, 3S probe), and the device was placed

subcutaneously on the upper right side of the chest. VF was induced

using the DC Fibber induction method with the St. Jude Medical soft-

ware.25 A 7.5-volt direct current was delivered to the myocardium for

2 seconds. Defibrillation (30 joules) was automatically delivered by

the ICD after a maximum of 60 seconds of untreated VF. The interval

between two VF episodes was 5 minutes. FiO2 was increased to

100% before and after each sequence. Subsequent defibrillation

converted all VF sequences to sinus rhythm and ROSC.

Myocardial infarction model

Infarction (MI) was induced by left coronary microembolization. The

main trunk of the left coronary artery was catheterized with a 4 Fr

angiography catheter under fluoroscopic guidance. Microemboliza-

tion was performed using 50 lm polystyrene microspheres (Chromo-

sphere, Thermo ScientificTM) dissolved in 0.9% sodium chloride and

0.01% Tween 20. The model is previously described by Stenberg

et al.26 We administered polystyrene microspheres (50–150 mg) to

induce a significant impairment in contractile function, with the objec-

tive of decreasing blood pressure to a systolic pressure of 60 mmHg

or lower.

Statistics

Descriptive statistics include basic animal data, blood pressure, and

Doppler velocity measurements at baseline and VCO. The sample

size for the model was based on similar studies.27,28 Each pig under-

went repeated sequences of VCO or VF. We investigated the ability

of RescueDoppler to track blood pressure during the VCO

sequences by fitting a linear mixed model with TAV as the outcome

variable to MAP up to the second degree as the fixed predictor vari-

able. We entered the animal identity and sequences nested within
animals as random intercepts, and MAP up to the second degree

as random slopes within animals. The variances ascribed to animals

and sequences within animals in this two-level hierarchical model

were quantified as intraclass correlation coefficients (ICC). All statis-

tical analyses were performed in IBM SPSS Statistics version

27.0.1.0. Matlab was used to display the data and for post-data anal-

ysis. Stata version 17 used the “mixed” procedure (StataCorp, Col-

lege Station, Texas, USA) to estimate the linear mixed-effects

model.

Results

Twelve pigs (male n = 11) were included in the present study VCO

model n = 7; VF model n = 4, MI model n = 7 (Table 1). The Doppler

recorded flow continuously for a mean duration of 26 minutes (range

18–46 min) in the VCO model and 48 minutes (range 28–71 min) in

the VF model. MI model was performed after the VCO model. Data

from one VCO animal were excluded due to technical failure.

VCO model

VCO sequences (n = 41) from seven pigs were included (Table 2).

Each sequence lasted 50 seconds (range 30–69 sec) from inflation

to deflation. VCO systolic pressures: mean 33 mmHg and minimum

19 mmHg (Table 2). The lowest peak systolic velocity was a mean of

102 cm/sec and a minimum of 74 cm/sec (Table 2). An illustration of

the VCO model is presented in Fig. 2.

VF model

VF sequences (n = 21) from four pigs were included. The model is

illustrated in Fig. 2.

Cessation of circulation was immediately confirmed by the

absence of invasive carotid blood pressure and VF on the ECG.

All 21 VF sequences were recorded and confirmed in real-time with

the absence of blood pressure and Doppler pulsative blood flow

(Fig. 2).

TAV and MAP

Fig. 3 shows scatter plots for each animals’ sequence, respectively,

overlaid predicted values obtained from the linear mixed effects

model. Within each animal and sequence, TAV followed MAP closely

but with marked variability between the different animals. The ICC

relating TAV to MAP was 0.88 (95% CI. 0.70–0.96) for the animals

and 0.94 (95% CI. 0.85–0.98) within the animals. Thus, given the

same sequence and animal, there was little residual variation (i.e.,

TAV robustly predicted MAP well).29

Reverse carotid flow during VCO

A high-resistive triphasic waveform30 was present in all VCO

sequences. The mean end-diastolic velocity was �29 cm/s at the

end of the VCO. Reverse flow started shortly after the initiation of

VCO and lasted throughout the whole sequence before returning

to baseline (Fig. 1 and Supplemental Fig. 3).

True PEA

After MI, true PEA was identified in two animals. ECG presented with

organized rhythm, blood pressure at 20 mmHg and aphasic blood

flow velocity (Fig. 4).



Fig. 1 – Vena cava occlusion sequence from base to lowest systolic blood pressure. The top line shows the carotid

Doppler spectrogram, cm/sec. Themiddle line shows arterial pressure in the carotid, mmHg. The lower image shows

an electrocardiogram. The figure shows a vena cava occlusion sequence from the start to the lowest blood pressure

before the cessation of occlusion. Blood pressure drops gradually from around 100 to 25 mmHg systolic pressure.

Doppler velocity follows pulsative blood pressure beat by beat. Little reduction in peak flow is seen, and negative

flow is visible from systolic pressure 80 mmHg down to the lowest value.
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Table 1 – Baseline characteristics of the animals for vena cava occlusion (VCO) model and Ventricular fibrillation
(VF) model.

VCO model, n = 7 Range Minimum Maximum Mean Male (Female)

Carotid diameter (mm) 13 37 50 43

Carotid depth (mm) 60 19 25 22

Weight (kg) 4 28 32 30

Sex 6 (1)

VF model, n = 4 Range Minimum Maximum Mean Male (Female)

Carotid diameter (mm) 2 48 50 50

Carotid depth (mm) 200 20 40 28

Weight (kg) 6 27 33 30

Sex 4 (0)

Table 2 – Baseline and low blood pressure variables for vena cava occlusion sequences.

n = 41

*Baseline variables Range Minimum Maximum Mean Std. Deviation

Peak Systolic Pressure (mmHg) 47 86 133 111 12.9

Mean Arterial Pressure (mmHg) 40 66 106 86 11.4

Peak Diastolic Pressure (mmHg) 35 45 81 66 9.6

Central Venus Pressure (mmHg) 21 �4 16 6 5.5

Peak Systolic Velocity (cm/s) 67 74 142 102 16.7

Time-average velocity (cm/s) 41 23 64 37 10.4

End-diastolic velocity (cm/s) 68 �40 29 10 19.0

**Values of variables at the low blood pressure n = 41

Range Minimum Maximum Mean Std. Deviation

Peak Systolic Pressure (mmHg) 27 19 46 33 7.8

Mean Arterial Pressure (mmHg) 21 12 33 23 5.5

Peak Diastolic Pressure (mmHg) 19 8 27 18 5.4

Central Venus Pressure (mmHg) 21 �5 16 4 6.2

Peak Systolic Velocity (cm/s) 52 46 98 73 14.7

Time-average velocity (cm/s) 24 4 27 16 4.9

End-diastolic velocity (cm/s) 48 �57 �9 �29 13.2
* Baseline variables recorded approximately 10 seconds prior to the vena cava occlusion sequence.
** Low values of variables are measured at the lowest systolic blood pressure before deflation of the Fogarty catheter cuff. Std. Deviation = Standard Deviation.
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Discussion

This animal study has shown that a novel hands-free carotid Doppler

system, RescueDoppler, reliably recorded pulsative flow with blood

pressures below 60 mmHg and precisely identified the presence or

absence of spontaneous circulation.

The carotid artery is recommended as the gold standard localiza-

tion for pulse checks as a marker of circulation during CPR.31,32

Pulse palpation during cardiac arrest is an unreliable tech-

nique.6,33,34 Only 38% of healthcare personnel could correctly iden-

tify the presence or absence of the carotid pulse within the

recommended maximum of 10 seconds.2 In a cardiac surgery study

where the patients had a systolic pressure greater than 80 mmHg,

45% of the participants could not identify a present pulse.3

The prevalence of PEA IHCA is shown to be approximately 35–

40% and 22–30% for OHCA.35 However, PEA can be misdiagnosed

since pulse palpation is unreliable. As many as 32% have been

reported to be false PEA7 and the prevalence of PEA is increasing.36

A correct and early diagnosis is essential to immediately treat the
patient’s condition to warrant the greatest chance of survival. In

our myocardial infarction model, true PEA could be identified with

the RescueDoppler showing no blood flow velocity corresponding

with no invasive carotid pressure, albeit only in two animals.

Correctly determining whether a patient has achieved ROSC is

equally important.1 Experimental studies have shown that chest

compressions on ROSC may be detrimental to hemodynamics37

and unnecessary medication.15

Therefore, there is a need for a more reliable method than pulse

palpation. The method needs to be non-invasive, continuous and

hands-free for identifying circulation during CPR.

In our VCO model, the blood pressures in all sequences were

below systolic blood pressure of 60 mmHg. The RescueDoppler

recorded continuous pulsative flow in all sequences and might there-

fore become an alternative to manual pulse palpation.

Several methods to differentiate between pulse or no pulse dur-

ing resuscitation have been tried, for example, wrist-mounted smart-

watches with photoplethysmography that could detect ROSC with

the same sensitivity but with a higher specificity than pulse palpa-



Fig. 2 – Ventricular fibrillation model. Panel A and B are consecutive. Top line: RescueDoppler velocity curve. Middle

line: Arterial pressure, red curve, and central venous pressure, blue curve. Bottom line: electrocardiogram. The

figure shows an example where circulation ceases. Cessation of pulsative velocity occurs simultaneously with the

fall in blood pressure. After defibrillation, return of spontaneous circulation occurs simultaneously with return of

pulsative arterial pressure and carotid Doppler velocity. Top line: Inducton of ventricular fibrillation appears as

white noise on the doppler curve before pulsative blood flow ceases. Middle line: sudden fall in blood pressure and

loss of pulsative pressure. Bottom line: Sinus rhythm before induction, followed by a short period of signal loss

before ventricular fibrillation.
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tion.38 Examining the carotid artery during CPR using handheld ultra-

sound devices is feasible for hemodynamic measurement.39–43 B-

mode ultrasound-carotid artery compression has been used to

assess the carotid artery compressibility and pulsatility by probe

compression. The method was quick to determine pulse but limited

to the rhythm check time.40,44 Detection of ROSC in the femoral

artery using a handheld ultrasound was found to be more accurate

than pulse palpation.45,46

Echocardiography is today recommended in the guidelines but

cannot be performed continuously.47 Studies have shown that

echocardiography nearly doubles the 10 seconds recommended

for pulse checks.1,17 Echocardiography is also dependent upon

image quality and a skilled operator.

Ultrasound measurement of common carotid artery blood flow

during CPR is feasible,43 where colour flow and spectral Doppler

waveform ultrasound images were obtained from the common caro-

tid artery during CPR for 5–10 minutes using a handheld 10-MHz lin-

ear array transducer. However, with a handheld probe, continuous

measurement is only feasible with a dedicated operator. In a study
Fig. 3 – Seven scatter plots are presented, one for each ani

Velocity (TAV) andMean Arterial Pressure (MAP) during Ven

the X-axis represents MAP, with identical scales for all pl

based progression of VCO. The VCO sequence was captu

completion. The obtained data is visually represented in the

second-degree random slope for MAP within each animal an

black dashed lines. The Intraclass Correlation Coefficient (

(95% CI 0.70–0.96) for the animals as a whole, and 0.94 (95%
involving healthy volunteers in a simulated haemorrhage model, sys-

tolic blood pressure was reduced to 70 mmHg. A strong correlation

was observed between noninvasive stroke volume, carotid artery

velocity time integral, and corrected flow time.19 No correlation was

found between stroke volume change and MAP.19 In another study

with patients undergoing coronary artery bypass grafting surgery,

carotid artery blood flow correlated moderately with invasive cardiac

output measurements but less well in tracking changes in cardiac

output.48 Our study found the strongest correlation within animals

between TAV and MAP in the VCO model with an ICC of 0.94.

Development of hands-free, carotid Doppler is in progress and

seems promising for indicating blood circulation during resuscitation.

However, these systems use continuous wave doppler, which cannot

define the depth of the velocities.49 With pulse wave Doppler, it is

possible to identify blood velocities and flow direction in a specific

depth, from arteries and veins, respectively.19,27,50

A hands-free carotid continuous wave Doppler system has previ-

ously been studied by Larabee et al. in a swine model where carotid

flow velocity was detected over a wide range of blood pressures.27
"

mal, depicting the relationship between Time-Averaged

a Cava Occlusion (VCO). The Y-axis represents TAV, and

ots. The X-axis is transposed to demonstrate the time-

red and recorded every second, from its initiation to

figure with gray dots. The statistical analysis utilized a

d individual intercepts for each sequence, indicated by

ICC) between TAV and MAP was determined to be 0.88

CI 0.85–0.98) when considering within-animal variance.
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Fig. 4 – True pulseless electrical activity (PEA). (A) shows baseline before myocardial infarction, B shows true PEA

after myocardial infarction. Common to (A) and (B): Top line: RescueDoppler velocity curve, low-velocity flow

waveform. Middle line: Arterial pressure, red curve, and central venous pressure, blue curve. Bottom line:

electrocardiogram. (A) shows baseline velocity, pressure and ECG. (B) shows true PEA with organized electrical

activity on the ECG, arterial blood pressure shows sytolic pressure around 20 mmHg, carotid blood vises aphasic or

phasic velocity around 10 cm/s.
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Their system could differentiate pseudo from true PEA during CPR in

cardiac arrest and detect pressure gradient changes of less than

5 mmHg through to normotension. RescueDoppler uses pulsed

wave Doppler that measures blood velocity at a precise location

and differentiates flow and direction between arteries and veins,

respectively. RescueDoppler is limited in its ability to quantify the

amount of flow, but the graphic display of velocities over time and

colour M-mode provides the ability to interpret information with less

subjectivity than with colour Doppler alone.51–53

In our VFmodel, the RescueDoppler recorded the absence of flow

immediately with the cessation of invasive blood pressure in all ani-

mals and sequences. We did not observe any significant impact on

the placement of the device or Doppler signals due to the movements

resulting from defibrillation. The potential of RescueDoppler to detect

ROSC during or in between chest compressions will be further inves-

tigated. Also, identifying circulation in special circumstances like car-

diac arrest in severe accidental hypothermia is crucialy.16 Identifying

blood flow and trends can provide valuable insights into the progres-

sion and treatment. We did not investigate hypothermia in our study,

but this is in the scope for future studies.

Limitations

Despite similarities between human and porcine hemodynamics,

there are still species-based differences. In pigs, the musculature

of the head and neck and large mass of soft tissue is supplied by

the robust external carotid arteria. Only a tiny ascending pharyngeal

artery leads to the internal carotid artery distal to the rete mirable54.

The anatomical differences from humans are believed to entail high

resistance triphasic flow in the common carotid artery in the VCO

model. These high-resistance triphasic flow findings are not immedi-

ately transferable to humans and must be investigated further in clin-

ical trials. The sensitivity of the RescueDoppler to head rotation and

neck extension during resuscitation procedures represents an impor-

tant factor that warrants further clinical investigation.
These differences mean porcine-based findings, especially the

Doppler tracings, might not be directly transferable to human medi-

cine. However, the differences between pigs and humans do not

affect the operational properties of RescueDoppler, and we consider

our findings to be transferable to human medicine, albeit with a

human calibration.

Conclusion

This animal study has shown that a novel hands-free pulsed wave

continuous carotidDoppler system,RescueDoppler, reliably identified

pulsative flow with blood pressures below 60 mmHg. RescueDoppler

has the potential of replacing unreliable pulse palpation during CPR.

Blood flow cessation was promptly and accurately identified during

VF and in two animals with PEA during myocardial infarction.

CRediT authorship contribution statement

Bjørn Ove Faldaas: Conceptualization, Formal analysis, Software,

Investigation, Writing – original draft, Visualization. Erik Waage Niel-

sen: Conceptualization, Methodology, Software, Validation, Investi-

gation, Writing – review & editing. Benjamin Stage Storm:

Conceptualization, Validation, Investigation, Data curation, Writing

– review & editing. Knut Tore Lappegård: Methodology, Validation,
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