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A B S T R A C T   

The approach of thermodynamics with internal variables, known as hyperplasticity, is used to develop a set of hyper-viscoplastic clay models that comply with the 
critical state soil mechanics and isotache viscosity. Different friction criteria of Drucker-Prager, Mohr-Coulomb, and Matsuoka-Nakai have been considered, and their 
conjugate features in terms of friction mobilisation and inelastic flow direction are explored. One of the distinctions of the proposed hyper-viscoplastic models 
regarding the existing models is having a unique friction envelope at the critical state (the paradigm of critical state soil mechanics) while adopting versatile dynamic 
yield surfaces and inelastic flow rules. To achieve this importance, an emphasis has been put on the practice of the stress ratio tensor (the deviatoric stress tensor per 
the spherical effective stress) as an essential state variable of frictional material. Along the way, some consistencies with the results and insights of studies with the 
discrete element method (DEM) in the literature are reported and interpreted.   

1. Introduction 

As a frictional particulate material, soils can sustain loads by mobi
lising shearing resistance at the contacts between particles. This single 
fact is crucial in modelling the deformation and failure of soil. 

Several true triaxial tests (e.g., Kirkgard and Lade (1993), Kumruz
zaman (2012), Lade and Musante (1978), Nakai et al. (1986), Prashant 
and Penumadu (2004), Prashant and Penumadu (2005b), Ye et al. 
(2014), Yong and McKyes (1971)) have demonstrated that the shear 
strength of soil is essentially anisotropic, i.e., it varies according to the 
relative orientation of loading and failure plane. In addition to verifying 
this important macroscale observation, various simulations by the 
discrete element method (DEM) have also unveiled interesting features 
about the behaviour of particulate media in the mesoscale. It has been 
revealed that stresses on the macroscale arise by developing “force 
chains” that are a self-organising, emergent, and inhomogeneous 
mobilisation mechanism of skeletal forces at inter-grains/aggregates 
contacts on the mesoscale (Hurley et al., 2016). Force chains comprise 
“weak and strong sub-networks” (Radjai et al., 1998). Strong sub- 
networks with “non-sliding” contacts are preferentially oriented to
wards the major principal stress direction and carry nearly the whole 
deviatoric stress, whereas weak sub-networks with “sliding contacts” are 
on average aligned perpendicular to the major principal stress direction 

and contribute mainly to spherical effective stress (Radjai et al., 1998, 
Radjai and Azéma, 2009, Shi and Guo, 2018b). This phenomenon has 
been demonstrated in several DEM simulations of particulate systems 
under deviatoric strain or stress paths (e.g., Thornton and Zhang (2010), 
Karapiperis et al. (2020), Phusing et al. (2017), Shi and Guo (2018a), Liu 
et al. (2020)). This bimodal attribute of the frictional dissipation on the 
mesoscale could result in anisotropic shear strength for the particulate 
system (Radjai and Azéma, 2009). In this regard, DEM studies of Maeda 
et al. (2006) and Shi and Guo (2018a) notably showed that the ratio of 
principal stresses is approximately proportional to the square root of the 
corresponding proportion of the principal values of the so-called “fabric 
tensor” defined as an average of whole contact network in the particu
late system after Satake (1982) and Oda (1993). 

Our mesoscopic speculation regarding the development of force 
chains in clay (extending the notion from perfect granule to clay) is 
bound to the idealisation that the clay skeleton is an assembly of ag
gregates (analogy grains) made of many thousands of clay platelets (e.g., 
Chang et al. (2009), Hattab and Chang (2015), Hicher et al. (2000)). Of 
course, microscopically, the situation is significantly more complex for 
clay as these relatively large aggregates are soft or crushable affecting 
the transfer of stress between their contacts inside the skeleton. Further 
complexity comes from the physicochemical interactions in clay. Apart 
from these extra complexities and as a worthy excursion from the main 
theme, this paper attempts to remark on the plausible physical 
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mesoscopic mechanism behind the Lode angle dependent behaviour, a 
matter that has previously been treated in a purely algebraic manner. To 
do so, we appeal to the insights gained by DEM studies with “ideal 
granules”. This may be justified by the absence of representative real 
and virtual experiments on clay targeting the Lode angle dependency of 
its behaviour, besides the nature of coulomb friction between particulate 
constituents of frictional media. Furthermore, the formation of force 
chains in soft gels (Vinutha et al., 2023, Dong et al., 2022) with similar 
morphology to clay implies the possibility of a similar phenomenon 
occurring in clay. 

The insights gained by DEM simulations generally support the 
continuum-based concept of “Spatially Mobilised Plane” (SMP) (Mat
suoka and Nakai, 1974) and subsequently the Matsuoka-Nakai (MN) 
friction theory. The MN friction theory later led to the development of 
the modified stress concept (tij concept) (Nakai, 2007, Nakai and 
Mihara, 1984) to describe the mechanical behaviour of soils in general 
three-dimensional stress conditions. The MN friction has been engaged 
with the critical state soil mechanics (CSSM) (Schofield and Wroth, 
1968) by using the plasticity theory and subsequently led to a few 
continuum constitutive models that can successfully capture the general 
shear and compression behaviour of soils (Matsuoka, 2006, Nakai, 
2012). In a different line of thought, Collins (2003), based on the works 
by Houlsby (1981) and Collins and Houlsby (1997a), provides a detailed 
procedure for consideration of the MN friction in the families of critical 
state models using the hyperplasticity approach. 

Recently Dadras-Ajirloo et al. (2022), by using the hyperplasticity 
approach (Houlsby and Puzrin, 2007) and subscribing to the CSSM and 
the isotache viscosity (Leroueil, 2006, Suklje, 1957), have developed a 
constitutive model for describing the creep and rate-dependent behav
iour of clay. The model is formulated by specifying two thermodynamic 
potentials, namely the force and the free energy potentials. It enjoys the 
non-associated flow rule as a natural consequence of including the 
frictional dissipative mechanism (Collins and Kelly, 2002) while 
securing a unique critical state envelope. However, by following Roscoe 
and Burland (1968), the model is developed for the simple condition of 
isotropic friction mobilisation being independent of the shearing mode 
(Lode angle dependency). The primary purpose of the current paper is to 
generalise the developed hyper-viscoplastic model to consider the 
anisotropic nature of friction mobilisation by employing the MN friction 
criterion. Along the way, some interesting consistencies with DEM ob
servations and insights are also reported. 

Several experimental studies (e.g., Adachi et al. (1995), Arulanandan 

et al. (1971), Sheahan et al. (1996), Vaid and Campanella (1977), Zhu 
(2000), Tafili et al. (2021)) have demonstrated that the mobilised fric
tion at critical state does not significantly depend on the loading rate. 
This experimental finding is supporting the fact that the coulomb sliding 
friction (macro-scale) is approximately independent of the rate of me
chanical processes. This is ideally equivalent to the uniqueness of the 
critical friction envelope under different loading rates. However, it has 
come to the authors’ attention that in the trend of the viscoplastic, 
critical state constitutive modelling of soil behaviour using the hyper
plasticity approach, the uniqueness of the mobilised friction at the 
critical state is not respected (e.g. Jacquey and Regenauer-Lieb (2021)). 
A unique envelope for the mobilised friction at the critical state is an 
essential paradigm in the CSSM for a unified description of the general 
mechanical behaviour (shear and consolidation) of soils. In this regard, 
Grimstad et al. (2020) and Grimstad et al. (2021) have pointed out the 
possible formulations for the non-uniqueness of the critical friction en
velope. The current paper also explores these ill formulations consid
ering the MN friction criterion. Moreover, a sophisticated force potential 
coupled with the friction mobilisation criteria is proposed to achieve a 
versatile dynamic yield surface (Perzyna, 1963) and flow rule while 
securing a unique friction envelope at the critical state (frictional failure 
envelope). 

Lastly, the efficacy of the proposed hyper-viscoplastic model is 
evaluated by simulating the triaxial and the true triaxial tests conducted 
on the Hong Kong Marine Deposit (HKMD) (Zhu, 2000) and the Fuji
nomori clay (Nakai et al., 1986). 

2. Nomenclatures and assumptions 

The hyperplasticity approach (Houlsby and Puzrin, 2006) is a sys
temized version of the approach of Ziegler (1983) with unconditional 
thermodynamics consistency including the principle of maximum en
ergy dissipation rate. In this approach, all elements of a constitutive 
model such as yield and plastic potential surfaces, hardening rules and 
elasticity are defined through the specification of two potentials: the free 
energy potential and the dissipation function (or force potential). The 
free energy potential describes the conservative and path-independent 
behaviour, whilst the dissipation function expresses the dissipative 
and path-dependent behaviour. The detailed context of the hyper
plasticity approach for modelling the inelastic viscous behaviour can be 
found in Houlsby and Puzrin (2002) and Houlsby and Puzrin (2007). 
The concise account of hyperplasticity formalism is provided in a 

Nomenclature 

f Helmholtz free energy potential 
G Shear modulus 
g Dimensionless shear modulus coefficient 
I1, I2, and I3 The first, second and third invariants of Cauchy stress 

tensor σ 
K Bulk modulus 
M frictional coefficient 
n Homogeneity degree of force potential or rate sensitivity 

parameter 
OCR Over consolidation ratio 
p spherical effective stress 
p0 isotropic pre-consolidation pressure 
pa Reference pressure (atmospheric pressure) in Helmholtz 

free energy potential 
peq Equivalent pressure on isotropic unloading reloading line 

(IURL) 
pref Reference pressure for definition of p0 

q Deviatoric stress invariant 

R Spacing ratio 
r Norm of an arbitrary reference volumetric strain rate 
S State variable 
T Transition function 
w Flow potential 
z Force potential 
υ Specific volume 
ε,εp Total and inelastic strain tensor 
Dε, Dεp Total and inelastic deviatoric strain tensor 
εv, εp

v Total and inelastic volumetric strain 
φCS Critical state angle of shearing resistance 
γ Parameter for the frictional dissipation 
η Stress ratio tensor 
θ Lode angle 
κ Slope of isotropic unloading reloading line (IURL) 
λ Slope of normal compression line (NCL) 
μ Creep index 
χp, χq spherical and deviatoric invariants of dissipative stress 

tensor  
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collection of Appendices with notations and terminologies similar to 
Houlsby and Puzrin (2007). 

Following the conventional practice, the total strain (ε) and inelastic 
strain (εp, known as the internal variable), are taken as the kinematic 
variables of the system. All stresses (dependent variables) are effective 
stresses, and compressive strains and stresses are positive. The formu
lations are strain-based with the assumption of infinitesimal strain in the 
Cartesian coordinate system for the isothermal processes. Therefore, the 
viscoplastic constitutive model is preferably expressed in terms of the 
Helmholtz free energy and the force potential. It is also assumed that the 
elastic stiffness of the material is decoupled, meaning elastic moduli are 
independent of the internal variable (inelastic strain). 

In the current work, boldface characters will denote second-order 
tensor quantities. All tensor quantities are symmetric. The trace of an 
arbitrary second-order tensor x = xij êi ⊗ êj, where the symbol ‘⊗ ’ 
stands for the dyadic or tensor product between the Cartesian bases {êi}, 
is defined as tr(x) = xii in which the summation convention over 
repeated indices is employed. Thus, the deviatoric component of an 
arbitrary second-order tensor (Dx) is: 

Dx = x −
(

tr(x)
3

)

1 (1)  

where 1 = δij êi ⊗ êj the second-order identity tensor with components 
δij, the Kronecker delta, relative to a Cartesian coordinate system. If × =

σ, tr(x)/3 is the spherical effective stress denoted by p in the following. 
The symbol ‘:’ between two tensor quantities denotes the double index 
contraction of their product, e.g., in cartesian axes between two second- 
order tensors a : b = aijbij. The composition of two arbitrary second- 
order tensors is defined as a.b = aikbkj êi ⊗ êj. Therefore, the trace of a 
composition of two arbitrary second-order tensors becomes tr(a.b) =

aijbji 

3. Helmholtz free energy 

The proposed model employs the Helmholtz form (f) of the free en
ergy potential developed by Houlsby et al. (2005): 

f = κpaexp

(
tr(ε − εp) + gtr

(
(Dε − Dεp)

2 )

κ

)

(2)  

where κ and g are dimensionless material parameters defining the elastic 
bulk and shear moduli, respectively. pa is an arbitrary reference pressure 
(preferably pa = 100 kPa). 

The Helmholtz free energy describes the path-independent and 
reversible behaviour of the material. In addition to being strictly convex, 
it is reference independent and suitable for modelling long-term creep 
and relaxation (Dadras-Ajirloo et al., 2022). This importance enables the 
laboratory-estimated material viscous parameters (to be defined in the 
following) to be representative of the material under the in situ condi
tion with a significantly different time scale (Jostad and Yannie, 2017, 
Bjerrum, 1967). 

Equation (2) is also a positive definite function for any material state, 
meaning that positive work must be done on the material to deform. 
Moreover, the deviatoric and volumetric components of the strain tensor 
are coupled via an exponential function to provide spherical effective 
stress-dependent elastic moduli (a common feature for geomaterials). 
This later feature results in an induced anisotropy imposed by the first 
law (Amorosi et al., 2020, Houlsby et al., 2005). 

The fourth-order symmetric elasticity tensor D can be derived as: 

D =
∂2f

∂ε ⊗ ∂ε =

(
1
κp

)

σ ⊗ σ + 2gp
[

I −
1
3

1 ⊗ 1
]

(3)  

where I = 1
2
[
δikδjl + δilδjk

]
êi ⊗ êj ⊗ êk ⊗ êl is the fourth-order symmetric 

identity tensor. For isotropic stress states, the bulk modulus (K) 

becomes: 

K =
p
κ

(4)  

indicating that κ is the slope of the isotropic drained unloading line in 
the bi-logarithmic compression plane of ln(υ)-ln(p) with υ being the 
specific volume. 

Another prime feature of the employed free energy potential is the 
lack of pure plastic part in the free energy. In the hyperplastic descrip
tion of the MCC model (Collins, 2003, Collins and Hilder, 2002, Collins 
and Kelly, 2002), the plastic free energy is exclusively dependent on the 
volumetric component of the internal variable, which results in a “shift” 
or “back” spherical stress. Based on Collins (2005), the nonstorage of the 
volumetric plastic work (zero shift stress) can be interpreted as ho
mogenous volumetric mechanisms in the lower (meso) scale. Grimstad 
et al. (2020) have demonstrated that this choice can secure a unique 
critical friction envelope for a rate-dependent system with a single in
ternal variable under different loading rates. 

4. Classical force and flow potentials 

To integrate the MN friction in hyper-viscoplastic models and to 
investigate its features, it is convenient to embark on the force potential 
(z) proposed by Grimstad et al. (2020) and Dadras-Ajirloo et al. (2022). 
This force potential is based on two phenomenological concepts of the 
critical state (Schofield and Wroth, 1968) and the isotache viscosity 
(Suklje, 1957). It is expressed as: 

z =
rp0

n

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr2(ε̇p
) + (Mε̇p

s )
2

√

+ tr(ε̇p
)

2r

⎞

⎠

n

(5) 

To achieve a comprehensive dissipative mechanism, according to 
Roscoe and Burland (1968), the compressional and shearing dissipative 
mechanism are coupled via the Euclidean norm of the trace of inelastic 
strain rate (volumetric strain rate) and a certain norm form of inelastic 
shear strain rate (ε̇p

s ) weighted by the corresponding frictional coeffi
cient M. In this paper, the terms characterised by a bar, all of which are 
associated with a shearing process, are to be suited for an intended 
frictional criterion. 

p0 in equation (5) is the isotropic pre-consolidation pressure. The 
evolution of p0 in an inelastic process renders the material resistance 
against further compression or creep (soil’s memory). According to the 
CSSM, p0, which its evolution is known as isotropic hardening, can be 
expressed as: 

p0 = pref exp
(

tr(εp)

λ − κ

)

(6)  

where pref is the value of p0 at zero inelastic volumetric strain, κ is 
defined in equation (4), and λ is the slope of normal compression 
behaviour on the bi-logarithmic plane of ln(υ)-ln(p). 

The force potential (equation (5)) is non-negative definite with the 
positive homogeneity degree of n⩾1. The isotache viscosity, based on 
which a unique relation between effective stress, strain (or specific 
volume), and strain rate exists (Leroueil, 2006, Suklje, 1957), is 
considered by scaling a reference inelastic (creep) power equal to r times 
p0. The parameter r depicts the trace (volumetric component) of a 
reference inelastic strain rate associated with p0. The scaling is per
formed by the rate sensitivity parameter or viscosity index (n⩾1), which 
controls the degree of positive homogeneity of the force potential and 
regulates the spacing between so-called isotaches, i.e., contours of 
stress–strain each associated with a certain rate. By following Janbu’s 
time resistance concept (Janbu, 1969, Janbu, 1985), it has been 
demonstrated that n can be slightly larger than one (Grimstad et al., 
2010): 
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n = 1+
μ

λ − κ
(7)  

where μ is the creep index that can be objectively quantified using the 
time resistance concept (Grimstad et al., 2015, Jostad and Yannie, 
2017). For μ = 0→n = 1, the force potential becomes rate-independent 
(positively homogenous of degree one), leading to one of two forms of 
MCC dissipation function (Houlsby, 2000). For further discussion and 
details about the force potential (equation (5)), refer to Dadras-Ajirloo 
et al. (2022). 

By following the procedure explained by Grimstad et al. (2020), the 
flow potential (w), which provides the evolution of the internal variable, 
can be expressed as: 

w = rp0

(
n − 1

n

)(
peq

p0

) n
n− 1

(8)  

where peq is the equivalent isotropic stress measure in the dissipative 
stress space and resembles the size of the dynamic yield surface (Per
zyna, 1963). It is defined as: 

peq = χp

[

1 +

(
χq

Mχp

)2 ]

(9)  

χp is the spherical dissipative stress work conjugated to volumetric in
elastic strain rate. χq is a norm form of deviatoric dissipative stress work 

conjugated to the chosen ε̇p
s . According to equation (8), the degree of 

positive homogeneity of the flow potential w with respect to the dissi
pative stress is obtained to be n/(n-1), which is confirmed by the scaling 
property of Legendre-type homogeneous functions (see Appendix B and 
Appendix E). 

In the following, the focus is placed on the integration of the MN 
friction criterion with the isotache hyper-viscoplastic critical state 
model through the specification of ε̇p

s , M, and χq. The conventional 
friction criteria of the Drucker-Prager (DP) and the DP with Lode angle 
dependency, which is commonly practised in the plasticity theory as the 
Mohr-Coulomb (MC), are also introduced for effective appreciation of 
the features of the MN friction. 

The MN friction is derived from the continuum-mechanics-based 
concept of SMP. Matsuoka (1976) interprets the SMP as the plane 
with the most mobilised grains/aggregates. This physically appealing 
hypothesis has been alluded to by several DEM studies (e.g., Maeda et al. 
(2006), Shi and Guo (2018b), Fleischmann (2020), Zhou et al. (2021)). 
The SMP can be characterised by the unit norm tensor of 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ− 1/tr(σ− 1)

√
, 

and the mobilised friction on the SMP (the MN friction), that is, the ratio 
of shear stress to normal stress on the SMP (ηSMP), can be cast as: 

ηSMP =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ptr(σ− 1) − 3

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
I1I2

3I3
− 3

√

(10)  

where I1, I2 and I3 are the first, second and third stress invariants which 
are expressed as: 

I1 = tr(σ) = σ1 + σ2 + σ3

I2 =
1
2
[
tr2(σ) − tr

(
σ2) ] = σ1σ2 + σ2σ3 + σ3σ1

I3 =
1
6
[
tr3(σ) − 3tr(σ)tr

(
σ2)+ 2tr

(
σ3) ] = σ1σ2σ3

(11)  

where σ1,σ2, and σ3 are principal stresses. Failure in the MN friction 
criterion is assumed to occur when ηSMP approaches a unique value 
denoted here by MSMP representing the particulate system’s macro-scale 
friction at the critical state, which can be cheaply quantified by triaxial 
or other shear tests. By composing the unit norm normal tensor of 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ− 1/tr(σ− 1)

√
with the Cauchy stress tensor σ, Nakai and Mihara (1984) 

transformed σ into a so-called modified stress tensor. Based on the 

plasticity theory, they adopted the MN friction in the critical state 
models. Nakai (2007) interprets this mapping process as a consideration 
of the stress-induced anisotropy originating from the development of the 
strong (on SMP) and weak force chains, which is called the force 
anisotropy by Radjai and Azéma (2009). 

As another prime development in this direction, Collins (2003) 
brought the MN friction to the critical state models using the hyper
plasticity approach. To do so, Collins (2003) defined the dual form of the 
SMP called “Dual Kinematic Plane” (DKP), characterised by the unit 
norm tensor of 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ/tr(σ)

√
to maintain the work-conjugacy of variables 

which is the fundamental premise of the hyperplasticity framework. In 
contrast to Nakai and Mihara (1984) but under the same assumption of 
the coaxiality between the stress σ and the inelastic strain rate ε̇p tensors, 
Collins (2003) composed the characteristic tensor of the DKP with ε̇p and 
proposed the following shear strain rate measure on the DKP: 

ε̇p
s,DKP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr(σ)tr
(
σ.( Dε̇p

)
2 )

− (tr(σ. Dε̇p
) )

2
√

tr(σ) (12)  

The classical isotache hyper-viscoplastic model with the MN friction 
criterion can be achieved by employing ε̇p

s,DKP. After replacing ε̇p
s =

̅̅̅
3

√
ε̇p

s,DKP(merely for the sake of consistency with Collins (2003)) and 
M = MSMP in the force potential, the flow potential can be derived as 
(see Appendix F): 

wSMP =

(
n − 1

n

)

(rp0)

⎛

⎜
⎝

χp

p0

⎛

⎜
⎝1 +

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ptr
(
σ− 1.( Dχ)2 )

√

MSMPχp

⎞

⎠

2⎞

⎟
⎠

⎞

⎟
⎠

n
n− 1

=

(
n − 1

n

)

(rp0)

(
peq

p0

) n
n− 1

(13)  

Since there is no pure plastic free energy and subsequently no shift stress 
(back stress), thus based on Ziegler’s orthogonality postulate, the 
dissipative stress tensor χ is equal to the true stress (Cauchy stress) 
tensor σ. Therefore, after some simplification, peq in equation (13) can be 
written in the true stress space as: 

peq = p
(

1 +
ptr(σ− 1) − 3

M2
SMP

)

= p

(

1 +

(
ηSMP

MSMP

)2
)

(14) 

Similarly, the shear strain rate on the octahedral plane can be cast 
from the composition of the unit norm characteristic tensor of 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1/tr(1)

√

and D ε̇p whose norm is: 

ε̇p
s,OCT =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr
(
1.( Dε̇p

)
2 )

tr(1)

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr
(
( Dε̇p

)
2 )

3

√

(15)  

For this case, by taking ε̇p
s =

̅̅̅
2

√
ε̇p

s,OCT and M = MOCT in the force po
tential (equation (5)), the classical isotache hyper-viscoplastic model 
(Grimstad et al. (2020), Dadras-Ajirloo et al. (2022)) with the DP friction 
criterion can be obtained. w for this case can be expressed as: 

wOCT =

(
n − 1

n

)

(rp0)

⎛

⎜
⎜
⎜
⎝

χp

p0

⎛

⎜
⎜
⎜
⎝

1 +

⎛

⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3
2 tr
(
( Dχ)2 )

√

MOCT χp

⎞

⎟
⎟
⎠

2⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

n
n− 1

=

(
n − 1

n

)

(rp0)

(
peq

p0

) n
n− 1

(16)  

which after the transformation of χ = σ, peq can be written as: 

peq = p

⎛

⎝1 +
3tr
(
( Dσ)2

)

2p2M2
OCT

⎞

⎠ = p

(

1 +

(
ηOCT

MOCT

)2
)

(17) 
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Similarly, the common form of the MC friction in plasticity theory 
can also be simply accommodated by taking the same measure of 
dissipative shear strain rate on the octahedral plane (ε̇p

s =
̅̅̅
2

√
ε̇p

s,OCT) and 
adapting the frictional coefficient M as: 

M =
3sin(φcs)̅̅̅

3
√

cos(θ) + sin(θ)sin(φcs)
(18)  

where φcs represents the critical state angle of shearing resistance of the 
particulate system at the macroscale. θ stands for the Lode’s angle 
defined as: 

θ = −
1
3

sin− 1
( ̅̅̅

6
√

tr
(
e3

θ

) )

eθ =
η
̅̅̅̅̅̅̅̅̅̅̅̅

tr(η2)
√

(19)  

where η = Dσ/p is the stress ratio tensor. 
It is essential to recognise that the shear dissipation on the non- 

evolving octahedral plane led to the friction mobilisation (ηOCT) on the 
very same plane for the DP and the MC. The only difference is that for 
the MC case, the frictional coefficient varies with the Lode’s angle due to 
the directional variation of η. Consequently, the MC will be renamed DP- 
MC from now on. On the other hand, for the MN, shearing dissipation on 
the evolving DKP resulted in friction mobilisation on the evolving SMP 
(ηSMP). In fact, by employing equation (15), the dissipative shear strain 
rate measure on the DKP (equation (12)) becomes: 

ε̇p
s,DKP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

ε̇p
s,OCT

)2

+
1
3

tr
(
η.( Dε̇p

)
2 )

−

(
1
3

tr(η.( Dε̇p
) )

)2
√

(20) 

DEM studies (e.g. Radjai et al. (1998), Alonso-Marroquín et al. 
(2005), Antony and Kruyt (2009) and Radjai and Azéma (2009)) imply 
that the stress ratio η could represent the degree of the bimodal dissi
pative behavioural feature of particulate systems (development of the 
strong and weak force chains). It has been numerously demonstrated 
that the strong force chains carry almost the entire deviatoric stress 
while the weak force chains contribute only to the spherical stress. 

Interestingly, a bimodal behaviour under conventional axisymmetric 
loading has been observed in a real experiment on kaolin clay as well, in 
which even the orientation and arrangement of clay aggregates are 
affected (Hattab, 2011). Based on equation (20), as η increases and the 
bimodal behaviour intensifies, the dissipative shear strain rate deviates 
from the dissipative strain rate on the stationary octahedral plane. The 
consequence of this deviation (stress-induced anisotropy) in terms of 
friction mobilisation and the corresponding inelastic flow is explored in 
the following sections. 

It is worth noting that the meaning of friction is more than the mere 
slide of particles passing each other. Here, the mobilised friction in the 
macro-scale is considered as a norm of stress ratio depending on macro/ 
meso physical entities such as the voids, the distribution of contacts and 
the interlocking between aggregates besides the friction between them. 
The CSSM phenomenologically tries to tie all these interacting entities 
by linking the consolidation and shearing behaviour. 

It should also be pointed out that the following results and obser
vations on friction mobilisation and inelastic flow direction for the DP- 
MC friction criterion can be extended to other convex deviatoric shape 
functions (e.g. Van Eekelen (1980) and Panteghini and Lagioia (2018)) 
since their hyperplastic implementations are the same as the DP-MC 
criterion. 

5. Friction mobilisation 

For clarity and simplicity, the following visualisations have been 
done in the normalised triaxial q/peq-p/peq plane with q = σ1 − σ3 and 
p = (σ1+2σ3)/3. q is the deviatoric stress measure under the axisym
metric condition (σ2 = σ3) comprising triaxial compression (σ1≫σ2 =

σ3) and extension (σ2 = σ3≫σ1). Moreover, for a better visual inter
pretation of the friction mobilisation, the mobilised friction is illustrated 
in terms of the stress ratio for each criterion on the deviatoric or so- 
called π-plane (the octahedral plane on which the spherical stress is 
zero) in the Haigh-Westergaard stress space. 

Fig. 1 illustrates the dynamic surfaces (Fig. 1a) and the corre
sponding mobilised friction at the critical state (deviatoric failure sur
face) (Fig. 1b) according to different friction criteria on the normalised 
triaxial and the π-plane. For comparison, the critical state in the 

Fig. 1. (a) Dynamic yield surfaces and (b) the corresponding mobilised friction at critical state according to different friction criteria for friction criteria of Drucker- 
Prager (DP), conventional Mohr-Coulomb (DP-MC), and Matsuoka-Nakai (MN) when φ = 25◦- Note that the left side scale in (b) is a metric for the stress ratio 
(representative of friction) at critical state in one out of three possible situations for axisymmetric loading. 
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axisymmetric compression (θ = -30◦) for all friction criteria is chosen to 
be the same. This unique failure state for different friction criteria has 
been achieved by adjusting MSMP and MOCT as: 

MOCT = MC(θ = − 30◦) =
6sin(φcs)

3 − sin(φcs)
(21)  

MSMP = 2
̅̅̅
2
3

√

tan(φcs) (22) 

The comparison of the convex dynamic surfaces associated with 
different friction criteria in Fig. 1(a) demonstrates that the MN dynamic 
surface is not elliptical but more distorted, particularly in the axisym
metric extensional region. On the right side of the critical state line in 
the axisymmetric compressional region, where the soil is known to be in 
a looser state, the friction mobilisation (here in terms of triaxial stress 
ratio q/p) for all criteria is almost identical. Indeed, it is the same for the 
DP and DP-MC, but with a minor difference for the MN depending on the 
value of φcs. However, on the left side of the critical state line in triaxial 

Fig. 2. Friction mobilisation for the states on the looser side of the critical friction envelope: (a) representative states, (b) Drucker-Prager (DP), the conventional 
Mohr-Coulomb (DP-MC), and Matsuoka-Nakai (MN) friction envelope at the representative states when φ = 25◦- Note that the left side scale in (b) is a metric for the 
stress ratio (representative of friction) at critical state in one out of three possible situations for axisymmetric loading. 

Fig. 3. Friction mobilisation for the states on denser side of the critical friction envelope: (a) representative states, (b) Drucker-Prager (DP), the conventional Mohr- 
Coulomb (DP-MC), and Matsuoka-Nakai (MN) friction envelope at the representative states when φ = 25◦- Note the left side scale in (b) is a metric for the stress ratio 
(representative of friction) at critical state in one out of three possible situations for axisymmetric loading. 
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compression and extension, where the soil state is relatively denser 
(existence of interlocking between grains/aggregates), the MN friction 
mobilisation considerably deviates from the DP-MC and the DP. The 
dynamic surface with the MN friction becomes tangential to the dashed 
lines called tension cut-off as the stress state approaches the origin. The 
tension cut-off lines with a slope of 1:3 for compression and 2:3 for 
extension separate the stress states with negative values of the principal 
stresses under axisymmetric conditions. As a result of this deviation, the 
states at which the principal stresses are negative are not attainable. On 
the extensional looser side, the MN friction mobilises towards the crit
ical friction in such a way that deviates from the DP and approaches the 
DP-MC at the critical state. 

According to Fig. 1(b), the isotropic friction criterion of DP gives the 
same critical friction as the axisymmetric compression for any deviatoric 
loading directions. On the other hand, the mobilised friction at the 
critical state for the MN and DP-MC in the axisymmetric extension is the 
same but not equal to the corresponding value for the axisymmetric 
compression. For both criteria, the mobilised friction at the critical state 
on the deviatoric plane decreases from the axisymmetric compression to 
the axisymmetric extension by increasing the Lode’s angle (based on the 
definition in equation (19)). According to Fig. 1(b), since the MN 
smoothly circumscribes the DP-MC surface, it gives higher friction for 
the other loading directions than the axisymmetric loadings. However, 
as shown in the following, this is not generally the case for states other 
than the critical state. 

To have a more effective visual impression of the friction mobi
lisations for different directions, several deviatoric cross-sections of the 
dynamic surfaces on both looser and denser sides of the critical state 
envelope are illustrated in Figs. 2 and 3. 

Fig. 2 indicates that as the norm of the stress ratio increases, the Lode 
angle dependency (the directional effect of stress ratio) of the convex 
envelope of MN friction also increases. As shown, with the increase in 
the norm of stress ratio, the convex friction envelope on the deviatoric 
plane diverges from the isotropic friction envelope of the DP until 
finally, it smoothly circumvents the DP-MC friction envelope at the 

critical state. In this regard, even stronger anisotropic friction mobi
lisation (higher degree of Lode angle dependency) can be seen for the 
denser side in Fig. 3. However, on the denser side where the bimodal 
behavioural feature is dominant (Barreto and O’Sullivan, 2012), as the 
norm of stress ratio increases and more stress-ratio induced anisotropy is 
intensified, the friction envelope of the MN moves inside the DP-MC 
envelope and approaches a triangular envelope with smoothly 
rounded edges. Indeed, the triangular shape is the maximum possible 
envelope in the Haigh-Westergaard stress space on which the principal 
stresses are greater than zero. Note that negative principal stresses are 
meaningless for a particulate material without any tensile capacity. 

On the contrary, the DP and DP-MC criteria do not show this stress 
ratio-induced anisotropic faeture. In fact, the shape of DP and the DP-MC 
friction envelopes remain constant irrespective of the norm of stress 
ratio (being on the looser or denser side of the critical state envelope). 
The reason is that in both friction criteria, the dissipative shear mech
anism (ε̇p

s,OCT) and the friction mobilisation (ηOCT) are established on the 
fixed octahedral plane. The only difference is that the DP-MC friction 
criterion is dependent solely on the direction of η via the shape function 
defined in the equation (18). 

Prashant and Penumadu (2005a), after conducting a series of true 
triaxial tests on Kaolin clay, observed a similar anisotropic friction 
mobilisation on the looser and denser sides of the critical state envelope. 
Remarkably, they have reported a significant anisotropic behaviour on 
the denser side in terms of the deviatoric stress measure versus the 
deviatoric strain measure for the undrained true triaxial loadings under 
different Lode angles. Prashant and Penumadu (2005a) interpreted this 
anisotropic behaviour as an “inherent anisotropy” maintained in “the 
memory of soil” after the K0-consolidation of the specimen in the 
preparation phase. These results, however, support the MN friction 
mobilisation (equation (14)) in which the anisotropic behaviour in
tensifies by moving from the critical state to the denser side, as shown in 
Fig. 3. This induced anisotropy could be linked to the bimodal stress 
transmission in DEM studies (e.g., Barreto and O’Sullivan (2012), 
Fleischmann (2020), Thornton (2000), Zhou et al. (2021)) although the 

Fig. 4. Dynamic surfaces and the corresponding inelastic flow directions on (a) the normalised meridian plane and (b) the deviatoric plane at the critical state for the 
conventional Mohr-Coulomb (DP-MC) friction criterion when φ = 15◦, 25◦, and 35◦- Note that the vectors without arrows next to each inelastic flow vectors are the 
gradient of the deviatoric surface. Moreover, the left side scale in (b) is a metric for the stress ratio (representative of friction) at the critical state in one out of three 
possible situations for axisymmetric compression. 
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superiority of the experimentally developed Lade-Duncan friction en
velope (Lade and Duncan, 1975) with greater friction in extension than 
the MN equivalent friction is acknowledged. 

As a final remark, the notion of stress ratio-induced anisotropy in the 
MN friction criterion accommodated via equation (20) should certainly 
be distinguished from other types of friction or failure criteria (e.g. Gao 
et al. (2010)) with anisotropic features incorporated by the mixed 
invariant of the stress tensor and structure tensor (so-called fabric 
tensor). 

6. Inelastic flow 

The inelastic strain (the internal variable) can be computed from the 
differentiation of the flow potential with respect to the work-conjugated 
dissipative stress. Therefore, after invoking Ziegler’s orthogonality 
postulate, i.e., χ = σ, the inelastic strain rate related to friction criteria of 
the DP and the MN can be computed as equations (23) and (24) 
respectively: 

ε̇p
=

∂wOCT

∂χ = r
(peq

p0

) 1
n− 1
([

1 −

(
ηOCT

MOCT

)2
](

1
3

)

1 +

(
3

M2
OCT

)( Dσ
p

))

(23)  

ε̇p
=

∂wSMP

∂χ

= r
(peq

p0

) 1
n− 1
([

1 −

(
ηSMP

MSMP

)2
](

1
3

)

1 −

(
2

M2
SMP

)
(
p D( σ− 1) )

)

(24) 

The inelastic strain rate for the case with the DP-MC friction criterion 
is the same as equation (23), but with the value defined in equation (18) 
instead of MOCT. As equations (23) and (24) indicate, the inelastic strain 
increment and the current stress are coaxial for all cases. This can be 
acknowledged as one of the limitations of the model since real and 
virtual experiments (e.g. Roscoe (1970), Gutierrez and Ishihara (2000), 
Pouragha et al. (2021), and Karapiperis et al. (2020)) on frictional 
particulate material have demonstrated the non-coaxiality between the 
current stress and inelastic flow. 

It is essential to recognise that the dissipative and true stresses have 
different natures, although they are equal due to the absence of plastic 
free energy based on Ziegler’s orthogonality postulate. As its name 

indicates, χ has a dissipative nature, whilst σ has a conservative nature. 
This difference allows the introduction of non-associated inelastic flows 
whose directions are not perpendicular to the dynamic surface in the 
true stress space. The non-associativity of inelastic flow could be 
considered by elastoplastic coupling in the conservative or dissipative 
forms (Collins, 2002). The current paper only considers the dissipative 
coupling, based on which the dissipation function is coupled with the 
current true stress state. According to the flow potential (equation (16)), 
due to the lack of dissipative coupling, the inelastic flow for the DP 
friction criterion defined in equation (23) is associated. 

On the other hand, the flow potential for the DP-MC friction criterion 
(equation (16) with replacement of MOCT by equation (18)) is dependent 
on the stress ratio but only on its direction (via equation (19)), leading to 
the non-associated inelastic flow. Fig. 4 illustrates the inelastic flow 
directions (depicted by arrows) for this case on the p-q and the deviatoric 
planes at the critical state (tr(ε̇p

) = 0 ). As shown in Fig. 4(a), the in
elastic flow direction on the p-q plane is associated regardless of the 
value of φ. However, following the directional dependency of the force 
and the flow potentials on the current η through equations (18) and (19), 
the inelastic flow is non-associated, exclusively on the deviatoric plane. 

Another interesting observation is the variation of the degree of non- 
associativity of in-elastic flow with φ. The degree of non-associativity (α) 
is defined as the angle between two vectors of the inelastic flow and the 
gradient of the dynamic surfaces on the deviatoric plane. Fig. 5 shows 
the degree of non-associativity (α) for the DP-MC friction against the 
intermediate principal stress ratio (b): 

b =
σ2 − σ3

σ1 − σ3
=

̅̅̅
3

√
tan(θ) + 1

2
(25) 

As shown in Fig. 5, for the more significant part of the DP-MC friction 
envelope, α increases with the increase of φ. Note that there is a sharp 
change in the degree of non-associativity in the vicinity of the axisym
metric condition (b = 0, 1). However, the dependency of α on the value 
of φ is not due to the change of inelastic flow direction with the change 
of φ. As shown in Fig. 4b, for a certain direction of η (or Lode angle), the 
inelastic flow direction of the DP-MC friction is constant and the same as 
the DP inelastic flow. It is the anisotropic evolution of the DP-MC friction 
mobilisation with an increase of φ, and subsequently, the evolution of 
the gradient vector of the DP-MC hexagon that indeed causes the change 
of α. This kind of inelastic flow has been reported by Prashant and 

Fig. 5. Variation of the angle (α) between the inelastic flow vectors and the gradient of the surface in the deviatoric plane against the intermediate principal stress 
ratio (b) for the conventional Mohr-Coulomb (DP-MC) friction criterion, when φ = 15◦, 25◦, and 35◦. 
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Penumadu (2004) and Prashant and Penumadu (2005b) for kaolin clay, 
and it has been employed in solving some boundary value problems (e.g. 
Potts and Gens (1984), Grammatikopoulou et al. (2007) and Shirmo
hammadi et al. (2021)). 

The inelastic flow direction for the MN friction criterion in the 
triaxial stress plane and the deviatoric plane at the critical state is 
illustrated in Fig. 6. Contrary to the DP and DP-MC friction criteria, the 
inelastic flow is non-associated in both the triaxial and the deviatoric 
plane as the dissipative mechanism depends on both the direction and 
norm of η. In solid materials like metal, the magnitude of the yielding 
deviatoric stress governs the dissipation and inelastic flow. In 

particulate frictional materials, both the norm and direction of the stress 
ratio control the dissipation and inelastic flow, which is the case for the 
MN dissipation mechanism (equation (20)). This view criticises the 
dissipative mechanism considered for the DP and the DP-MC to be a 
frictional type. 

As shown in Fig. 6, the degree of non-associativity in both stress 
planes increases with an increase in φ. On the triaxial plane, a “stress 
softening” behaviour on the looser side in the vicinity of the critical state 
in both extension and compression emerges for large values of φ. 
However, the inelastic volumetric flow in these regions is still con
tractant, consistent with the CSSM. 

Fig. 6. Dynamic surfaces and the corresponding inelastic flow directions on (a) the normalised meridian plane (b) the deviatoric plane at the critical state for the 
Matsuoka-Nakai (MN) friction criterion when φ = 15◦, 25◦, and 35◦- Note that the vectors without arrows next to each inelastic flow vectors are the gradient of the 
deviatoric surface. Moreover, the left side scale in (b) is a metric for the stress ratio (representative of friction) at the critical state in one out of three possible 
situations for axisymmetric compression. 

Fig. 7. Variation of the angle (α) between the inelastic flow vectors and the gradient of the surface in the deviatoric plane against the intermediate principal stress 
ratio (b) for the Matsuoka-Nakai (MN) friction criterion, when φ = 15◦, 25◦, and 35◦. 
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Fig. 7 shows the pattern of increase in the degree of non-associativity 
(α) in the deviatoric plane for the MN friction criterion. In contrast to the 
DP-MC criterion, the relative position of the inelastic flow to the 
gradient of the MN convex surface does not change and always remains 
on one side of the gradient vectors. 

According to Fig. 6 (b), the inelastic flow and the current stress state 
in the deviatoric plane for the MN friction criterion are not in the same 
direction. This feature has been observed in several experimental 
studies, e.g. Yong and McKyes (1971), Lade and Musante (1978), Nakai 
et al. (1986), Topolnicki et al. (1990), and Kirkgard and Lade (1993). 

Fig. 8 shows the relationship between the direction of the inelastic 
flow and the stress ratio on the deviatoric plane in terms of the differ
ence between their Lode angles (discordance) at a particular stress state. 

For the computation of θεp , equation (19) with the definition of ηεp =

Dε̇p
/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
tr2(ε̇p

)
√

instead of η is employed. Since the inelastic flow in the 
DP-MC and DP friction criteria is perpendicular to a circular potential on 
the deviatoric plane, there is no discordance between the Lode angles 
associated with the stress state and its corresponding inelastic flow 
vector. However, for the MN friction criteria, except for the axisym
metric stress states (b = 0, 1), the disaccord is intensified by an increase 
in the value φ. This observation is consistent with DEM studies of Zhou 
et al. (2021), Thornton and Zhang (2010), Wan and Pinheiro (2014), 
and Karapiperis et al. (2020), in addition to the aforementioned exper
imental studies. 

Finally, but importantly, the inelastic dilatancy (d), the ratio of the 
volumetric and the norm of the deviatoric component of the inelastic 

Fig. 8. Comparison of the deviations (disaccord) between the stress Lode angle (θσ) and the inelastic strain Lode angle (θεp ) in the Drucker-Prager (DP), the con
ventional Mohr-Coulomb (DP-MC), and the Matsuoka-Nakai (MN) friction criteria when φ = 15◦, 25◦, and 35◦. 

Fig. 9. Comparison of the dilatancy under axisymmetric condition for the conventional Mohr-Coulomb (DP-MC) and the Matsuoka-Nakai (MN) friction criteria when 
φ = 15◦, 25◦, and 35◦. 
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strain increment under axisymmetric condition, for the DP-MC and MN 
friction criteria are compared in Fig. 9. The dilatancy for the cases with 
DP-MC and MN friction criteria are computed from equations (23) and 
(24) respectively, and they are presented against the triaxial stress ratio 
η. The negative and positive sides of η represent the axisymmetric 
extension and compression. As shown, by increasing φ, the dilatancy of 
the MN friction criterion gets larger than the equivalent dilatancy for the 
DP-MC criterion, particularly for the axisymmetric extension. However, 
the critical state (zero dilatancy) associated with each value of φ is 
unique for both criteria, consistent with the previous observations. 

Fig. 9 also shows that the dilatancy of the MN criterion approaches 
the unique values of − 1.5 and − 0.75 for the axisymmetric compression 
and extension as the stress ratio approaches η = 3.0 and η = − 1.5 rep
resenting the tension cut-off lines for the axisymmetric compression and 
axisymmetric extension, respectively. 

7. Possible Ill-Formulations causing Non-Uniqueness of friction 
at the critical state 

Houlsby (1981) presented the hyperplastic description of the rate 
independent MCC model in which the volumetric plastic work has been 
divided into the stored (integrable) and dissipative shares. Alternately, 
Collins and Houlsby (1997a) and Houlsby (2000) presented another 
hyperplastic form of the MCC model in which the entire plastic volu
metric work has been placed in the non-negative definite dissipation 
function. The non-unique expression of the MCC model brought Houlsby 
(2000) to the conclusion that free energy and dissipation are generally 
unobservable. 

On the other hand, Collins and Hilder (2002) proposed a family of 
critical state models with versatile yield surfaces and non-associated 
inelastic flow rules for a rate-independent system with a single inter
nal variable. In these models, by imposing Ziegler’s orthogonality 
postulate, the location of the critical state on the spherical stress axis is 
adjustable (adjustable spacing ratio) due to the adjustability of the 
dissipative and stored shares of the plastic volumetric work while the 
critical state friction envelope remains unique. Considering these dis
tinctions, it is tempting to employ the same forms of potentials proposed 
by Collins and Hilder (2002) to construct a family of the critical state 
model for an equivalent rate-dependent system (e.g. Jacquey and 
Regenauer-Lieb (2021)). However, Grimstad et al. (2020) and Grimstad 
et al. (2021) demonstrated that this comes at the expensive cost of losing 
the unique critical state friction envelope under different loading rates in 
hyper-viscoplastic models with homothetic viscosity. Two sources for 

this non-uniqueness are specified in the following. 
To reveal the first source, suppose the following form for the force 

potential: 

z =
(rp0

n

)
⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr2(ε̇p
) + (Mε̇p

s )
2

√

2r

⎞

⎠

n

(26) 

This form of the force potential with the same parameters as in 
equation (5) is similar to the MCC dissipation function (Houlsby, 1981). 
The only differences are the homogeneity order n resulting in the 
homothetic scaling relation for viscosity (with respect to reference strain 
rate r), whose centre is located at the origin of the dissipative space. This 
is illustrated schematically in Fig. 10, with the vectors representing the 
direction of the inelastic flow in the dissipative stress space. As shown, 
the critical states (represented by bullets) associated with different 
loading rates are located on χq axis (χp = 0) along with the homothetic 
centre. 

The last modification to obtain a hyper-viscoplastic model with a 
similar form to the hyperplastic MCC model of Collins and Hilder (2002) 
is the addition of a volumetric plastic part to the free energy potential 
expressed in equation (2): 

f = κpaexp

⎛

⎝
tr(ε − εp)+gtr

(
( Dε − Dεp)

2
)

κ

⎞

⎠+

(
λ − κ

2

)

prefexp
(

tr(εp)

λ − κ

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
p0

(27)  

where p0 is the CSSM hardening variable employed in the dissipation 
function (equation (26)) as well. Based on the hyperplastic framework, 
the outcome of having a plastic part in the free energy is a shift or back 
stress which is employed in transforming the dissipative stress space to 
the true stress space by invoking Ziegler’s orthogonality postulate 
(Collins and Houlsby, 1997a; Houlsby and Puzrin, 2007). The shift stress 
here is equal to p0/2 computed by derivation of the plastic part of free 
energy with respect to the volumetric inelastic strain. The shift stress 
essentially has a non-viscous nature since it cannot bear any viscous 
homothetic scaling in terms of the rate of the internal variable. This is 
due to the nature of the free energy function that describes the path- 
independent behaviour of a system. 

Fig. 11 illustrate the effect of non-viscous shift stress on the dynamic 
surface with the DP-MC and MN friction criteria in the true stress space. 
As shown, the homothetic centre in both cases has been moved to the 
non-viscous shift stress after imposing Ziegler’s orthogonality postulate 

 

2
 Homothetic centre*

Fig. 10. Viscous homotheticity and the critical states associated with different loading rates in the dissipative stress space.  

D. Dadras-Ajirlou et al.                                                                                                                                                                                                                        



International Journal of Solids and Structures 273 (2023) 112267

12

(χp = p - p0/2). The inelastic flow directions corresponding to the 
different loading rates are also depicted in the figure. Also shown are the 
critical states (bullet points) on the axis p = p0/2, each associated with 
different loading rates. This indicates that the mobilised friction at the 
critical state (tr(ε̇p

) = 0 ) could generally attain any value depending on 
the loading rate history. The effect of the tension cut-off on the mobilised 
friction in the MN criteria can also be observed in Fig. 11(b). Compared 
with the DP-MC friction criterion, the dynamic surface with the MN 
criterion is twisted around tension cut-off lines. 

Discard of the plastic free energy may not necessarily guarantee a 
unique critical state friction envelope for rate dependency if the force 
potential (dissipation function) is coupled with the internal variable in 
such a way that it affects the homothetic viscosity. To expose this second 

source, M in the force potential defined in equation (5) is modified into 
the following form similar to the one proposed by Collins and Kelly 
(2002): 

M = MSMP

[

1 − γ + γ
(

2p
p0

)]

(28)  

in which p0, as defined in equation (6), is a function of the volumetric 
component of the internal variable. Equation (28) incorporates the 
spherical effective stress dependency of shear dissipation (an essential 
attribute of frictional material) by mapping MSMP based on the ratio of p/ 
p0 to secure a correct dimension for the dissipation rate. 

By following the same procedure as before, the dynamic surface in 
the dissipative stress space with the modified M can be computed 
similarly to equation (13): 

peq = χp

⎡

⎢
⎣1 +

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ptr
(
σ− 1.( Dχ)2 )

√

Mχp

⎞

⎠

2 ⎤

⎥
⎦ (29)  

After applying Ziegler’s orthogonality for this case (χ = σ), a similar 
dynamic surface to equation (14) but with the new friction coefficient 
(equation (28)) can be obtained: 

peq = p
[

1 +
(ηSMP

M

)2
]

(30) 

The dynamic surface associated with different loading rates and the 
corresponding inelastic flow direction for the fascinating situation of γ 
= 1 are illustrated in Fig. 12. As shown, the paradigm of the CSSM is lost 
for different loading rates due to the loss of the homothetic viscosity 
caused by the mapping of frictional coefficient based on a non-viscous 
hardening variable (p0). Grimstad et al. (2021) have utilised this later 
condition to propose a relation for the evolution of the earth pressure 
coefficient at rest due to creep. 

It is also notable that the dynamic surfaces become concave in their 
dilatant part, equivalent to the rate-independent case (Collins and Kelly, 
2002). Although this non-convexity violates Drucker’s stability postu
late (Drucker, 1959), it is not an issue from both aspects of thermody
namics and the rheology of the material. Since the dissipative stress is 
equal to the true stress in the absence of the plastic free energy, it is 
evident from Fig. 12 that the dissipation is non-negative definite and 
maximal (see Appendix D), even in the concave region. Moreover, 
increasing the loading rate, which is envisaged by the increase of the size 
of dynamic surfaces, results in a higher stress state for the material, 
which is rheologically sensible. 

8. A set of hyper-viscoplastic critical state models 

To generate a broad set of hyper-viscoplastic critical state models 
with versatile dynamics surface and the flow rule while simultaneously 
securing a unique critical friction envelope, Dadras-Ajirloo et al. (2022) 
proposed the following form for the force potential: 

z =
rp0

n

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr2(Tε̇p
) + (Mε̇p

s )
2

√

+ tr(ε̇p
)

Rr

⎞

⎠

n

(31)  

where R is called the spacing ratio, specifying the relative location of the 
critical state on the spherical stress axis for dynamic surfaces. Chen and 
Yang (2017) have reported that the spacing ratio for clays can vary 
between 1.5 and 4.0. While Dadras-Ajirloo et al. (2022) presented the 
force potential (equation (31)) for the DP criterion, here it is generalized 

Fig. 11. Dynamic surfaces together with inelastic flow direction in the true 
stress space for (a) the conventional Mohr-Coulomb (DP-MC) and (b) Matsuoka- 
Nakai (MN) friction criteria showing the non-uniqueness of the critical state 
friction under different loading rates due to movement of the homothetic centre 
as the consequence of consideration of plastic free energy for the rate- 
dependent system with a single internal variable. 
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to other friction criteria by a consistent specification of T, ε̇p
s , and M for 

the intended frictional criterion. The dimensionless coefficient T is a 
variant of the Logistic function, which due to its performance called the 
transition function of the state variable S, defined as: 

T =
R
2
+

(
R
2
− 1
)

tanh(S) (32)  

S =

(
M
η

)2

−
( η

M

)2
(33)  

in which the critical state friction is treated as a reference state ac
cording to the CSSM. The detailed description of M and η depend on the 

chosen friction criterion. For R = 2 and subsequently T = 1, the clas
sical force potential expressed in equation (5) can be retrieved. By 
following the procedure as previously, the flow potential with the same 
form as equation (8) can be computed in which the general equivalent 
isotropic stress measure (peq) in the dissipative stress space is:   

By specialising the generalised force potential for the MN friction 
criterion by assuming ε̇p

s =
̅̅̅
3

√
ε̇p

s,DKP, M = MSMP, and η = ηSMP, the 

components of dissipative stress 
(

χ p, χq

)
in equation (34) are computed 

to be the same as their corresponding values previously computed for 
the classical force potential. Since there is no plastic free energy and 

Fig. 12. Dynamic surfaces together with inelastic flow direction in the true stress space for Matsuoka-Nakai (MN) friction criteria showing the non-uniqueness of the 
critical state friction under different loading rates due to the non-homotheticity of the viscous scaling as the consequence of mapping of frictional coefficient in 
equation (32). 

peq =

Rχ p

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
((

χ pM
)2

− χ 2
q
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+ χ 2

q
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)2
+
(
T2
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)
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q
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√
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χ pM
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− χ 2
q
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+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
((

χ pM
)2

− χ 2
q

)2
+ χ 2

q

(

χ pMT +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
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subsequently no shift stress, invoking Ziegler orthogonality condition (χ 
= σ) yields the following expression for peq in the true stress space:   

Fig. 13 illustrates the effect of the spacing ratio parameter on the 
convex loci and their corresponding inelastic flow. As shown, the 
dilatancy is controlled by the ratio of the mobilised friction to the critical 
friction and the spacing ratio. This is the fundamental premise of the 
CSSM employed through the sophisticated and comprehensive force 
potential defined in equation (31) which guarantees the uniqueness of 
the critical friction envelope. 

It is still possible to increase the versatility of the force potential by 
incorporating the “frictional dissipation”, i.e., the spherical effective 
stress sensitivity of a dissipative shearing process attributed to the 
mobilisation of internal friction at grains/aggregates contacts. To do so, 

by preserving the dimension of the force potential, M in equation (31) 
can be modified to: 

M = MSMP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − γ + γ
(

Rp
p0

)√

(36) 

It is important to note that M in the definition of the state variable S 
(equation (33)) is the critical state friction (for instance, M = MSMP while 
η = ηSMP for the MN criterion), which following the CSSM serves as a 
reference, and is not affected by equation (36). Compared to equation 
(28) that led to the non-unique critical state friction envelope, there are 
three differences in equation (36). Firstly, after Zhang et al. (2018), the 
square root function is employed to have the convexity for the dynamic 
surface and more flexibility in adjusting the value of γ, which regulates 

Fig. 13. The convex dynamic surface hybridised with the Matsuoka-Nakai (MN) friction criteria together with the corresponding inelastic flow directions (arrows) in 
the normalised true stress space for different values of spacing ratio (R) and φ = 25◦. 

peq =

Rp
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the intensity of the spherical effective stress dependency of the shear 
dissipation. Secondly, parameter R is incorporated to secure the critical 
state friction at the desired spacing ratio. Lastly, instead of the non- 

viscous hardening parameter p0, the equivalent dynamic pressure p0 

with the same form as equation (35) is recruited to preserve the 
homothetic viscosity and subsequently maintain a unique critical fric
tion envelope. Therefore, equation (36) can be written as:   

According to equations (36) and (37), the spherical effective stress 
sensitivity of the shear dissipation is linked to the relative value of the 
mobilised friction from the critical friction. Fig. 14 illustrates the effect 
of the frictional dissipation on the dynamic convex loci and their cor
responding inelastic flow directions. As shown, with the increase of γ, 
the convex loci get more teardrop shapes while conforming to the ten
sion cut-off due to the engagement of the MN friction. Moreover, 
incorporating the frictional dissipation mitigates the dilation on the 
denser side of the critical state. In contrast, it causes an increase in the 
contraction (negative dilatancy) on the looser side. 

Fig. 14. The convex dynamic surface hybridised with the Matsuoka-Nakai (MN) friction criteria together with the corresponding inelastic flow directions (arrows) in 
the normalised true stress space for different values of parameter γ incorporating the frictional dissipation while φ = 25◦ and R = 2. 

Table 1 
Parameters of the model and their values for HKMD and Fujunomori clay.  

Model 
parameters 

Description HKMD Fujinomori 
clay 

κ slope of isotropic unloading line on 
bi-logarithmic compression plane 

0.018 0.0112 

λ slope of normal compression line on 
bi-logarithmic compression plane 

0.0793 0.0508 

g shear modulus coefficient 42 88.2 
φ angle of shearing resistance at 

critical state 
31.5◦ 33.7◦

R spacing ratio 2.6 2.2 
γ parameter for frictional dissipation 0 0 
µ creep index 0.0025 0.003  

M = MSMP
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9. Model evaluation 

The efficacy of the developed hyper-viscoplastic model with DP-MC 
and MN friction criteria is evaluated by simulating the conventional and 
true triaxial test conducted on the Hong Kong Marine Deposits (HKMD) 
(Yin and Zhu, 1999, Zhu, 2000) and Fujinomori clay (Nakai and Mat
suoka, 1986, Nakai et al., 1986). The model requires seven dimension
less parameters same as the previous version (Dadras-Ajirloo et al., 
2022). Table 1 displays the model parameters and their values for both 
clays based on the report of the original experimental studies. 

The only parameter not included in Table 1 but implicitly considered 
in the model is the reference strain rate, r. By definition, r is the average 
volumetric strain rate for a certain consolidation mode. It can be esti
mated from conventional 24-hour incremental loading oedometer or 

isotropic consolidation tests. This means that the stress–strain behaviour 
obtained from either of these two conventional tests can be taken as the 
reference stress–strain behaviour for the isotache viscous scaling 
considered in the force potential (equation (5)). For instance, for the 
oedometer test, the oedometer plastic strain rate under K0 loading can 
be computed from the model as: 

ε̇p
v

⃒
⃒
⃒

oed
= 3

∂w
∂(tr(χ) ) = 3r

(
peq

p0

) μ
λ− κ ∂peq

∂(tr(χ) )

⃒
⃒
⃒
⃒

K0

(38)  

in which equation (7) is replaced for n. Since the isotache associated 
with the K0 loading is chosen as the reference, then peq = p0, and: 

Fig. 15. Comparison between experimental and simulated results of undrained triaxial tests on normally consolidated reconstituted HKMD under different strain 
rates in terms of (a) stress–strain behaviour and (b) stress path. 
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r =

ε̇p
v

⃒
⃒
⃒

oed

3 ∂peq
∂(tr(χ) )

⃒
⃒
⃒

K0

=
μ

τ
(

3 ∂peq
∂(tr(χ) )

⃒
⃒
⃒

K0

) (39)  

where ε̇p
v

⃒
⃒
⃒
oed 

is replaced by its value according to the time resistance 

concept (Grimstad et al., 2010). τ = 24h is the reference age or time (not 
absolute) associated with the reference isotache r obtained based on the 
oedometer test. Note that, based on Ziegler orthogonality, χ = σ must be 
applied to equation (39) under the axisymmetric K0 condition, based on 
which the lateral or horizontal effective stress is equal to the multipli
cation of the axial or vertical effective stress and K0 value. Also note that, 
here, K0 value is not a characteristic material parameter. It is given by 
the model based on certain values for the material parameters presented 
in Table 1. 

Fig. 15 illustrates the simulated and experimental results of un
drained triaxial tests conducted at constant strain loading rates of 0.15, 
1.5, and 15%/h on the HKMD specimens. Before shearing, each sample 
was normally consolidated to isotropic effective stress of 400 kPa. As 
shown, the model’s responses with DP-MC and MN friction criteria are 
almost identical for the undrained compression tests. However, for the 
undrained extension tests, the MN criterion gives a higher deviatoric and 
stress ratio throughout whole tests. This is consistent with the obser
vation of the shear mobilisation in the looser side of the critical state line 
in Fig. 2. 

To assess the performance of the model for the denser (over- 
consolidated) states, the undrained triaxial tests with the strain rate of 
1.5%/h on the specimens of HKMD with different over-consolidation 
ratios (OCR = p/p0) are also simulated. According to Fig. 16, the MN 
criterion results in a lower deviatoric and stress ratio than the DP-MC 

Fig. 16. Comparison between experimental and simulated undrained triaxial compression tests on reconstituted HKMD with different OCR under constant axial 
strain rate of 1.5%/h in terms of (a) stress–strain behaviour and (b) stress path. 
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criterion for high OCRs (OCR = 4, 8), supported by the observation made 
in Fig. 3. 

For further evaluation of the model performance, particularly the 
stress-induced anisotropic friction mobilisation, the drained true triaxial 
tests with shear loadings under constant spherical stress and different 
Lode angles on normally consolidated Fujinomori clay are simulated. 
But beforehand, to examine whether the chosen value for the spacing 
ratio parameter (R) is proper, the undrained triaxial test on a normally 
consolidated (p = p0 = 196 kPa) specimen of Fujinomori clay under 
strain loading rate of 3.3 × 10-2%/h (Nakai and Matsuoka, 1986) is 
predicted. The value of parameter R is selected from its relationship with 
the critical state angle of shearing resistance proposed by Nakai and 
Matsuoka (1986). As shown in Fig. 17, the predictions with both friction 
criteria are satisfactory. The predicted results of the drained true triaxial 

tests under constant p = 196 kPa and OCR = 1 are compared with the 
measured results in Fig. 18 in terms of the maximum principal stress 
ratio (σ1/σ3) and the volumetric strain against the principal strains. 
Fig. 18 indicates that the hyper-viscoplastic model with MN friction 
criterion generally provides a better prediction. It is seen from the figure 
that more significant differences in predicted response by the friction 
criteria happen at shear loadings other than axisymmetric compression 
and extension. As expected, based on Fig. 18 (a), the predicted responses 
by both friction criteria are almost the same for the axisymmetric 
compression (θ = -30◦). 

10. Conclusions 

In the present study, a set of thermodynamically consistent 

Fig. 17. Comparison between experimental and simulated undrained triaxial tests on normally consolidated reconstituted Fujinomori clay under constant axial 
strain rate of 3.3 × 10-2%/h in terms of (a) stress–strain behaviour and (b) stress path. 
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viscoplastic models for clay has been constructed using the hyper
plasticity approach (Houlsby and Puzrin, 2007). The proposed models 
comply with the critical state soil mechanics (CSSM) theory (Schofield 
and Wroth, 1968) and the isotache viscosity (Leroueil, 2006, Suklje, 
1957). Different friction criteria, namely the Drucker-Prager (DP), the 
Mohr-Coulomb (DP-MC) and the Matsuoka-Nakai (MN), have been 
employed. The features of the friction criteria in terms of friction 
mobilisation and inelastic flow direction in the meridian and the 
deviatoric stress space have been explored. Along this line, some inter
esting consistencies with DEM observations and insights have been re
ported and interpreted. It has been demonstrated that the model with 
the MN criterion exhibits a stress-induced anisotropic friction mobi
lisation, considered by a stress-coupled dissipative shearing mechanism 
that deviates from the stationary octahedral plane. This deviation is 
controlled by the stress ratio tensor (η), which is an essential state var
iable of a particulate frictional system representing the degree of 
bimodal stress transmission. In addition, η has been tactfully used to 
obtain sets of hyper-viscoplastic models with a unique critical friction 
envelope, versatile dynamic surfaces, and non-associated flow rules. The 
fact that the proposed model exhibits a Lode angle-dependent behaviour 
similar to that observed in real experiments and the strong consistency 
of its stress–strain conjugate features (manifested by the hyperplasticity 
approach) with the results and insights gained via DEM studies in the 
literature suggest that the conjecture regarding the mesoscopic bimodal 

behaviour may have relevance to the behaviour of clays. 
Another extension in this paper stemmed from the useful and uni

versally employed first-order approximation of Coulomb’s sliding fric
tion being independent of the rate of the shearing process (Popova and 
Popov, 2015). This is ideally equivalent to the uniqueness of the critical 
friction envelope under different loading rates. In this regard, the con
ditions that cause non-uniqueness of the critical friction envelope for a 
rate-dependent particulate system with a single internal variable have 
been outlined. These conditions, which originate from the direct uti
lisation of the rate-independent formulations (e.g. Collins and Kelly 
(2002), Collins and Hilder (2002)) for rate-dependent cases (e.g. Jac
quey and Regenauer-Lieb (2021)), are the existence of plastic free en
ergy (leading to “shift or back stress” based on Ziegler’s orthogonality 
postulate) or the frictional dissipation coupled with the internal variable 
in such a way that affects the homothetic viscosity. 

The efficacy of the proposed model with the MN and the DP-MC 
friction criteria has been examined by simulating the conventional 
and true triaxial tests on Hong Kong Marine Deposits (HKMD) (Yin and 
Zhu, 1999, Zhu, 2000) and Fujinomori clay (Nakai and Matsuoka, 1986, 
Nakai et al., 1986). Overall, the hyper-viscoplastic model with MN 
friction criterion captures the behaviour of the clays better than the DP- 
MC friction. Although the MN criterion might not be considered a uni
versal frictional criterion for different soils or even clay, its unique 
features and their consistency with DEM results highlight its structure as 

Fig. 18. Comparison between experimental and simulated drained true triaxial tests on normally consolidated reconstituted Fujinomori clay under different Lode 
angles of (a) − 30◦, (b) − 15◦, (c) 0◦, (d) 15◦, and (e) 30◦. 
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a basis for the development of other forms or more general friction 
criteria using the thermodynamic-based approach of hyperplasticity. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

Acknowledgements 

The authors would like to acknowledge the support from the 
Research Council of Norway through its Centre of Excellence Funding 
Scheme, PoreLab, with project number of 262644.  

Appendix A. Thermodynamic rudiments 

The infinitesimal strain hypothesis in the Cartesian coordinate system is adopted. Therefore, all extensive variables are considered as specific 
quantities in the forthcoming mathematics. 

The hyperplasticity formalism emerges as a direct implementation of the thermodynamic laws. According to the first law, the universe’s energy is 
constant. It can only change from one form to another by transferring between the system and its surroundings inside the universe. Generally, there are 
three mechanisms for transferring energy into and out of a system. Since the considered system is closed, no mass exchange with the surrounding can 
occur. Therefore, the first law can be mathematically expressed in its local form as: 

u̇ = σijεij − qi,i (A-1) 

stating that the internal energy (u) is generally changed by two forms of power input: the mechanical power and the heat supply per unit volume 
(written as the divergence of the heat flux vector qi). Due to the transfer of mechanical and thermal power or energy, the phenomenological states of a 
system, quantified by deformation and temperature, can alter. 

While the first law deals with the quantification and feasibility of the transfer of energy in thermal and mechanical forms, the second law in
troduces entropy (s) as a property of the system to identify the direction that energy tends to disperse naturally. Mathematically, the useful form for 
expressing the second law is the Clausius-Duhem inequality in the local form: 

ṡ = −
(qi

θ

)

,i
= −

qi,i

θ
+
(ϛi

θ

)
θ,i⩾0 (A-2) 

where θ and qi/θ are temperature and the entropy flux (ςi), respectively. By multiplying Equation (A-2) by θ, we have: 

d = θṡ+ qi,i − ϛiθ,i⩾0 (A-3) 

where d is the total dissipative power in the sense that the last term on the left-hand side of the inequality is known as the thermal dissipation, 
which is always non-negative since the heat flux is always in the opposite direction of the temperature gradient. The rest of the total dissipation can 
then be considered mechanical dissipation. The thermal dissipation is insignificant compared to the mechanical dissipation for slow processes (suited 
for the purpose of this paper), so it can be argued that, as a stronger statement, the mechanical dissipation must be non-negative (Houlsby and Puzrin, 
2006). Moreover, the temperature gradient is zero for the isothermal condition (constant temperature). Therefore, by combining equations (A-1) and 
(A-3) we have: 

u̇+ d = σijεij + θṡ (A-4) 

subjected to d ≥ 0. This equation is the starting point for developing the hyperplasticity formalism. But, Legendre transform is first introduced, to 
be able to have a more simplified perspective to equation (A-4) under isothermal condition. 

Appendix B. Legendre transform 

Legendre transform is essentially a method of transferring between potentials by interchanging the role of independent and dependent variables 
while pertaining all information and properties of the physical theory. More detailed account of this elegant mathematical tool can be found in 
Rockafellar (1997) and Houlsby and Puzrin (2006). The following briefly introduces some important properties of the Legendre transform. 

Consider a potential function X  = X(x1, α). Only two independent variables, x1 and α, are considered for simplicity. Since the function X acts as a 
potential, it can be written: 

y1 =
∂X(x1,α)

∂x1
(B-1) 

where y1 is the dependent variable conjugated to x1. Here, we are interested in transforming X to the other form (Y, for example) in which the roles 
of x1 and y1 are interchanged; y1 acts as an independent variable conjugated to x1. Therefore, throughout the transformation, α serves as a passive 
variable. The Y = Y(y1, α) can be defined via the Legendre transform: 

Y(y1,α) = ±[X(x1, α) − x1y1 ] (B-2) 

where the preference of sign is the matter of a particular application. It can be deduced that: 

x1 = ∓
∂Y
∂y1

(B-3)  

∂Y
∂α = ±

∂X
∂α (B-4) 
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Another important property of the Legendre transform is related to the scaling property of homogenous functions. Suppose X is a positive ho
mogeneous function of the independent variable x1 with the homogeneity order of m. By imposing Euler’s theory for homogenous functions, it follows 
that Y is a positive homogeneous function of its independent variable y1 (conjugated to x1) with the homogeneity order of n such that: 

1
n
= ±

(
1
m
− 1
)

(B-5)  

Appendix C. Hyperplasticity formalism 

In the hyperplasticity approach, the state of a material element is characterised by a set of (internal) variables to capture the effect of the history. 
Internal variables are in addition to standard independent macroscopic state variables like strain or true stress. For the purpose of this paper, a single 
kinematic internal variable in tensorial form is assumed that can be identified as the plastic strain. However, there can generally be more internal 
variables in different forms depending on the (irreversible) mechanism they are associated with. Therefore, following Houlsby and Puzrin (2006), the 
internal variable is denoted by αij herein. The meaning for notions of independent and dependent variables will be seen in the following. 

Since the current state of the material quantifies the internal energy to represent the path independent property of the material (the capacity), it is 
conceived as a function of independent state and internal variables, i.e., u(εij, αij, s). Therefore, the rate of change of the internal energy can be given as: 

u̇ =

(
∂u
∂εij

)

ε̇ij +

(
∂u
∂αij

)

α̇ij +

(
∂u
∂s

)

ṡ (C-1) 

On the other hand, to describe the dissipative processes, Ziegler (1983) postulated that instead of treating the dissipation d in equation (A-4) as 
secondary importance (like the non-negativity checkpoint), d must be a primary function describing the dissipative power. Since dissipation is 
essentially path and history-dependent, the dissipation function (d) must be a function of rates of the internal variable. Since dissipative power is 
always non-negative based on the second law, any function for d cannot be a state function of its primary variable. Further, Ziegler (1983) postulated 
that the dissipation function d must be a positively homogenous or pseudo-homogeneous function of rates of internal variables. Based on Euler’s 
theorem, for a positively homogeneous dissipation function of order n, there is: 

d =
1
n

⎛

⎝ ∂d
∂α̇ij

⎞

⎠α̇ij =

⎛

⎝ ∂z
∂α̇ij

⎞

⎠α̇ij (C-2) 

where z = d/n, which is called force potential (more detail provided in the following). For the particular case of rate-independent dissipative 
behaviour, n is one, and d equals z. Throughout this paper, the general form of homogeneity for d is invoked since the rate independency is not the 
prime subject of this paper. The homogeneity or pseudo-homogeneity of d is a powerful postulate that reciprocally is linked to the fundamental 
definition of power (here is a dissipative power) if d exists as a primary function of the rate of internal variables. This importance leads not only to the 
determination of the thermodynamic dissipative stresses conjugated to the rate of internal variables but also to maximising the dissipation rate. More 
details regarding the maximum dissipation are provided in the next section. It should be emphasised that the dissipation or the force potential can also 
be a function of state and internal variables. However, the role of these variables would be passive. 

Having established the rates of change of the internal energy and dissipation, equation (A-4) can hence be extended by replacing equations (C-1) 
and (C-2), and grouping each rate terms: 

(
∂u
∂εij

− σij

)

ε̇ij +

(
∂u
∂s

− θ
)

ṡ+

⎛

⎝ ∂u
∂αij

+
∂z

∂α̇ij

⎞

⎠α̇ij = 0 (C-3) 

Now since entropy and strain are state variables and subsequently their rates are arbitrary at any thermodynamic state (free variation), for a pure 
reversible heating process in which ε̇ij and α̇ij are both zero, one can deduce that: 

∂u
∂s

= θ (C-4) 

Equation (C-4) demonstrates an example for the notion of dependent and independent variables. As the equation indicates, the temperature is a 
dependent variable since it can be derived by differentiating the potential function u in terms of the conjugated, independent variable entropy. So, one 
can apply the Legendre transform to interchange the role of these variables and to obtain the other form of the free energy, the Helmholtz free energy 
(f): 

f
(
εij, αij, θ

)
= u
(
εij, αij, s

)
− θs (C-5) 

Now by practising the property of the Legendre transform for passive variables of εij and αij, it can be obtained: 

∂f
∂εij

=
∂u
∂εij

(C-6)  

∂f
∂αij

=
∂u
∂αij

(C-7) 

By replacing equations (C-4), (C-6), and (C-7) in equation (C-3), for an isothermal condition, we have: 

(
∂f
∂εij

− σij

)

ε̇ij +

⎛

⎝ ∂f
∂αij

+
∂z

∂α̇ij

⎞

⎠α̇ij = 0 (C-8) 
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since the strain is a state variable, and f is state property, the strain rate is subsequently arbitrary at any thermodynamic state. Therefore, the 
following relation between stress–strain can be deduced: 

∂f
∂εij

= σij (C-9) 

However, the same conclusion as the above cannot be deduced for the second differential term in equation (C-8) because z is not a state function. 
The only conclusion is that the internal variable has no exclusive contribution to the free energy increase but only contributes to the increase of the 
dissipation (entropy production). To satisfy the last differential term, generally, two possibilities emerge: 

∂f
∂αij

+
∂z

∂α̇ij
= 0 or equivalently − χij + χij = 0 (C-10)  

⎛

⎝ ∂f
∂αij

+
∂z

∂α̇ij

⎞

⎠α̇ij = 0 or equivalently
(
− χij + χij

)
α̇ij = χ̃ijα̇ij = 0 (C-11) 

where after Houlsby and Puzrin (2006), χij and χij are called the generalised and dissipative stresses, respectively, to conveniently distinguish the 
non-dissipative and dissipative internal stresses that are both work-conjugated to the rate of the internal variable. χij is the conservative stress since it is 
derived from the internal energy potential. ̃χij is called gyroscopic stress since ̃χij is orthogonal to α̇ij resulting in zero power. Ziegler (1983) argues that 
phenomenologically, the gyroscopic stresses or forces are not present, particularly in the mechanics of continuum media. Therefore, Ziegler (1983) 
postulated the first alternative, the orthogonality condition, leading to the following system of equations in which the number of unknown variables 
(internal and dependent state variables) equal to the number of equations supplied by the two potentials without any side conditions: 

∂f
∂εij

= σij

∂z
∂α̇ij

= −
∂f

∂αij

(C-12)  

Appendix D. Ziegler’s orthogonality condition and maximum dissipation 

This section, by following Ziegler (1983), demonstrates why Ziegler’s postulate is an orthogonality condition leading to the maximum dissipation 
rate, which makes the postulate a stronger statement than the second law. To do so, no prerequisite assumptions and conditions regarding the form of 
the dissipation function are made. The only prerequisites are definite non-negativity of dissipation rate, and the fundamental postulate of power, here 
a dissipative power: 

d
(

α̇ij, r
)

= χijα̇ij (D-1) 

in which d is a primary invariant entity, i.e., a primary function of the rate of internal variable as the primary variable. Note that χij is not yet 
defined but only considered as a variable conjugated to α̇ij. For generality, r is defined as a set of state and internal variables with the passive role. The 
above construction is essentially phenomenological and free from microscopic complexities. The fundamental postulate of power determines the 
dissipative stress 

(
χij
)

as the space of linear mappings taking elements of α̇ij into scalars of dissipative power, which imposes χij to be so-called dual 
space of α̇ij. Now, the task is to determine χij in a way that maximises the dissipation (d) subjected to the constraint of the fundamental postulate of 
power. To do so, the following Lagrangian can be casted: 

L = d +Λ
(

d − χijα̇ij

)

(D-2) 

where Λ is the Lagrange multiplier. The extrema of d can be found by: 

∂L
∂α̇ij

=
∂d
∂α̇ij

+Λ

⎛

⎝ ∂d
∂α̇ij

− χij

⎞

⎠ = 0 (D-3) 

which leads to the definition of χij as: 

χij =

(
1 + Λ

Λ

)
∂d
∂α̇ij

(D-4) 

This definition for χij indicates that the dissipative stress is in the direction of the gradient of the dissipation function, like the deduction made from 
the homogeneity condition of d. By replacing this definition for χij in equation (D-1), the dissipative power can be expressed as: 

d
(

α̇ij, r
)

= χijα̇ij =

(
1 + Λ

Λ

)
∂d
∂α̇ij

α̇ij⩾0 (D-5) 

Considering that based on the second law, d must be non-negative definite and contain the origin 
(

α̇ij= 0
)

, it can be deduced that d must be a 

differentiable convex surface of α̇ij, that is maximised by the definition of χij in equation (D-4) obtained based on the extremum principle. Since χij is 
orthogonal to the level set of d, this result is known as Ziegler’s orthogonality postulate. By combining equations (D-4) and (D-5), the dissipative stress 
can be expressed solely based on the dissipation function: 
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χij =

⎛

⎜
⎜
⎜
⎜
⎝

d
∂d

∂α̇ij
α̇ij

⎞

⎟
⎟
⎟
⎟
⎠

∂d
∂α̇ij

(D-6) 

which in combination with the postulate of Ziegler (equation (C-10)), leads to the derivation of the complete response of a system, conservative or 
dissipative, just by the specification of two potential functions: u (or other dual forms like f) and d, while subscribing to the principle of maximum 
dissipation rate. 

Appendix E. Force and flow potentials 

It has been shown previously that the dissipative stress can be derived by derivation of the dissipation function with respect to the internal variable 
rate. As can be seen, based on Euler’s theorem for homogenous functions of order n, the scaling factor inside the parenthesis in equation (D-6) is equal 
to 1/n. For rate-independent material, n is unity, and as a result, the dissipative stress can be purely derived from the derivation of the dissipation 
function: 

χij =
∂d
∂α̇ij

(E-1) 

in this case, d serves as a potential for the dissipative stress and provides a derivation relationship between independent (rate of the internal 
variable) and dependent variables (dissipative stress). However, for the rate-dependent material, which is of interest, with a homogenous dissipation 
function of order n, the dissipative stress can be derived as: 

χij =

(
1
n

)
∂d
∂α̇ij

(E-2) 

This definition for χij indicates that the dissipation function does not act as an potential but rather as a pseudopotential (Houlsby and Puzrin, 2002). 
By introducing the force potential as z = d/n, the dissipative stress can then be obtained by: 

χij =
∂z

∂α̇ij
(E-3) 

which indicates that z is a potential for dissipative stresses. Therefore, z, which working with provides a neat formulation free from ubiquitous 
homogeneity order, was called the force potential previously. Now, a Legendre transformation can be made to interchange the role of the dependent 
and independent variables and identify the flow potential w: 

w
(
χij, σij, αij

)
= χijα̇ij − z

(

α̇ij, σij,αij

)

= d
(

α̇ij, σij,αij

)

− z
(

α̇ij, σij,αij

)

(E-4) 

where it can be deduced: 

α̇ij =
∂w
∂χij

(E-5) 

which means that w is a potential for the rate of the internal variable with a resemblance to the dynamic yield surface in the overstress viscoplastic 
theory of Perzyna (1963). The flow potential is a useful form of a dissipative potential for the conventional numerical implementation as it can readily 
be invoked in the strain-based incremental formulation. Based on the scaling property of Legendre type functions, since z is a positive homogenous 
function of order n in terms of α̇ij, w is a positive homogenous function of order m in terms of χij such that: 

1
m
+

1
n
= 1 (E-6) 

if z is a first order homogenous function of α̇ij, then z = d and w = 0. In this case, w is similar to the yield function. To obtain w from d in this case, the 
degenerate form of Legendre transform (Collins and Houlsby, 1997b) or the convex analysis (Srinivasa, 2010, Houlsby and Puzrin, 2006) can be 
employed. 

Appendix F. Switch from the force potential to the flow potential suited for the Matsuoka-Nakai frictional criterion 
The force potential can be specified as: 

z =
(

1
n

)(
r1− np0

2n

)( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr2(ε̇p
) +

(
MSMPε̇p

s

)2
√

+ tr(ε̇p
)

)n

(F-1) 

where ε̇p
s =

̅̅̅
3

√
ε̇p

s,DKP is the shear strain rate measure on the dual kinematic plane (Collins, 2003): 

ε̇p
s,DKP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr(σ)tr
(
σ.( Dε̇p

)
2 )

− (tr(σ. Dε̇p
) )

2
√

tr(σ) (F-2) 

All other parameters and variables in equation (F-1) are the same as equation (5). Therefore, the corresponding spherical and deviatoric com
ponents of the dissipative stress (χ) can be computed as: 
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χp =
tr(χ)

3
=

∂z
∂(tr(ε̇p

) )
=

(
1
2

)[

p0

(zn
r

)n− 1
]1

n

⎛

⎜
⎜
⎝

tr(ε̇p
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr2(ε̇p
) +

(
MSMPε̇p

s

)2
√ + 1

⎞

⎟
⎟
⎠ (F-3)  

Dχ =
∂z

∂ Dε̇p =

(
1
2

)[

p0

(zn
r

)n− 1
]1

n

3M2
SMP

⎛

⎜
⎜
⎜
⎝

tr(σ)
( D ε̇p .σ+σ. D ε̇p

2

)
− tr(σ. Dε̇p

)σ

tr2(σ)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr2(ε̇p
) +

(
MSMPε̇p

s

)2
√

⎞

⎟
⎟
⎟
⎠

(F-4) 

By definition (equations (D-6) and (E-3)), Dχ is work-conjugate to Dε̇p. However, to find the dual form of the force potential (the flow potential), 
we need to derive the dissipative stress work- conjugated to ε̇p

s . To do so, both sides of equation (F-4) are first squared and multiplied by σ− 1. The trace 
of the outcome in both sides results in: 

tr
(

σ− 1.
( Dχ

)2
)

=

(
( 1

2
)[

p0
( zn

r
)n− 1

]1
n
)2(

3M2
SMP
)2

⎛

⎜
⎜
⎜
⎜
⎝

tr(σ)tr
(

σ.( D ε̇p)
2 )

− tr2(σ. D ε̇p)

tr3(σ)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr2(ε̇p)+

(
MSMP ε̇p

s

)2
√ )2

⎞

⎟
⎟
⎟
⎟
⎠

(F-5) 

Now by taking square root of both sides and constructing the definition of ε̇p
s,DKP(equation (F-2)) on the right hand side, the stress χq work-conjugate 

to ε̇p
s can be derived as: 

χq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ptr
(

σ− 1.( Dχ)2
)√

=
( 1

2
)[

p0
( zn

r
)n− 1

]1
n

⎛

⎜
⎜
⎝

M2
SMP ε̇p

s̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr2(ε̇p
)+

(
MSMP ε̇p

s

)2
√

⎞

⎟
⎟
⎠ (F-6) 

where p is the spherical component of the true or Cauchy stress (σ). Now, having the dissipative stress measures computed, the following relation in 
terms of the conjugated measures of inelastic strain rate in the force potential can be casted: 

χq
χp
=

M2
SMP ε̇p

s̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr2(ε̇p
)+

(
MSMP ε̇p

s

)2
√

+tr(ε̇p
)

(F-7) 

rearranging this equation results in: 

ε̇p
s

tr(ε̇p)
=

2
(

χq
χp

)

M2
SMP −

(
χq
χp

)2 (F-8) 

indicating that at the critical state: 
χq
χp
= MSMP (F-9) 

Based on the definition provided in equation (E-4), the flow potential in terms of inelastic strain rate can be expressed as: 

w =

(
n − 1

n

)(
r1− np0

2n

)( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr2(ε̇p
) +

(
MSMPε̇p

s

)2
√

+ tr(ε̇p
)

)n

(F-10) 

Now, by rearranging equation (F-3) and applying equation (F-8), the following relation can be obtained: 

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr2(ε̇p
) +

(
MSMPε̇p

s

)2
√

+ tr(ε̇p
)

)n− 1

=

(χp

p0

)(
2n

r1− n

)

⎛

⎜
⎜
⎜
⎜
⎝

M2
SMP +

(
χq
χp

)2

2M2
SMP

⎞

⎟
⎟
⎟
⎟
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(F-11) 

Applying this relation in equation (F-10) provides the flow potential in terms of the dissipative stress: 

w =

(
n − 1

n

)

(rp0)

(
χp

p0

(

1 +

(
χq

MSMPχp

)2)) n
n− 1

=

(
n − 1

n

)

(rp0)

(
peq

p0

) n
n− 1

(F-12) 

in which: 

χq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ptr
(
σ− 1.( Dχ)2 )

√

(F-13)  

References 

Adachi, T., Oka, F., Hirata, T., Hashimoto, T., Nagaya, J., Mimura, M., Pradhan, T.B.S., 
1995. Stress-strain behavior and yielding characteristics of eastern osaka clay. Soils 
Found. 35 (3), 1–13. 

Alonso-Marroquín, F., Luding, S., Herrmann, H.J., Vardoulakis, I., 2005. Role of 
anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E 71 (5), 
051304. 

Amorosi, A., Rollo, F., Houlsby, G.T., 2020. A nonlinear anisotropic hyperelastic 
formulation for granular materials: comparison with existing models and validation. 
Acta Geotech. 15 (1), 179–196. 

Antony, S.J., Kruyt, N.P., 2009. Role of interparticle friction and particle-scale elasticity 
in the shear-strength mechanism of three-dimensional granular media. Phys. Rev. E 
79 (3), 031308. 

Arulanandan, K., Shen, C.K., Young, R.B., 1971. Undrained Creep Behaviour of a Coastal 
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Dong, J., Turci, F., Jack, R.L., Faers, M.A., Royall, C.P., 2022. Direct imaging of contacts 
and forces in colloidal gels. J. Chem. Phys. 156 (21), 214907. 

Drucker, D.C., 1959. A Definition of Stable Inelastic Material. J. Appl. Mech. 26 (1), 
101–106. 

Fleischmann, J.A., 2020. Micromechanical Exploration of the Lade-Duncan Yield Surface 
by the Discrete Element Method. Geotech. Geol. Eng. 38 (5), 5409–5431. 

Gao, Z., Zhao, J., Yao, Y., 2010. A generalized anisotropic failure criterion for 
geomaterials. Int. J. Solids Struct. 47 (22), 3166–3185. 

Grammatikopoulou, A., Zdravkovic, L., Potts, D.M., 2007. The effect of the yield and 
plastic potential deviatoric surfaces on the failure height of an embankment. 
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