
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Bendik Løvlie

Text Classification via Topological
Data Analysis

Master’s thesis in MLREAL
Supervisor: Øyvind Solberg
June 2023





Bendik Løvlie

Text Classification via Topological Data
Analysis

Master’s thesis in MLREAL
Supervisor: Øyvind Solberg
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Abstract

Recent generative language models such as ChatGPT have demonstrated a remarkable
capacity to generate texts that are difficult to distinguish from human-written texts.
Topological Data Analysis (TDA) is concerned with the shape of data and can extract
significant qualitative and quantitative information from complex datasets. This thesis
provides an introduction to the mathematics underlying the main tool of TDA, persistent
homology. We then present techniques from the field of Natural Language Processing
(NLP) that can transform texts to collections of vectors whose shapes may be analyzed
using TDA. Finally, we explore the application of TDA to tasks involving detection of
machine-generated texts.
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Chapter 1

Introduction

Modern generative language models, such as ChatGPT, have an astounding capacity to
generate texts that are difficult to differentiate from those produced by humans, and can
be misused to generate fake news, cheat on exams and even produce abusive content. The
rise of models replicating human language requires us to develop methods for detection of
texts that have been artificially written.

This thesis explores the application of Topological Data Analysis (TDA) to machine-
generated text classification tasks. The objective is to provide an accessible introduction
to the fields of Topological Data Analysis and Natural Language Processing (NLP) while
demonstrating an application that intersects these two fields within a machine learning
context. To ensure transparency, we offer an easily accessible implementation of the code
used in the experiments. It is our hope that this implementation will inspire and contribute
to further experiments in the field.

The text is intended to be a self-contained introduction, and is written in a way that
requires minimal prerequisites. In particular, little mathematical knowledge is required
beyond basic linear algebra.

1





Chapter 2

Theory

2.1 Topological Data Analysis

Topological Data Analysis (TDA) is an area of applied mathematics that studies the
”shape” of data using ideas from topology. It is based on the premise that topological
features of datasets such as holes, voids, and connected components contain important
information that may be used to expose the structure of complicated high-dimensional
data. In this section we develop the theory of the main tool in TDA, persistent homology.
The presented theory is based on books on persistent homology by Edelsbrunner & Harer
[9], Virk [25], and on the lecture notes on Topological Data Analysis by Botnan [4].

2.1.1 Simplicial Complexes

Much of the data we would like to study takes the form of point cloud data, a finite number
of discrete samples in some metric space. Because topological and geometric features
most often are associated with continuous spaces, point clouds of data do not provide any
topological information in and of themselves.

To be able to infer some topological structure of data, a natural technique is to ”connect”
data points that are sufficiently near each other to create continuous objects that may
reveal structure underlying the data. This is commonly accomplished using relatively
simple shapes called simplicial complexes. In this section, we will look at simplicial
complexes in general and one specific construction of complexes that can be made from
point cloud data: the Vietoris Rips complex. We begin by defining the basic building
blocks of these simple shapes, called simplices.

Definition 2.1.1. A set of points {p0, . . . , pn} ⊂ Rd is geometrically independent if
{p1 − p0, . . . , pn − p0} is a linearly independent subset of the real vector space Rd.

Definition 2.1.2. Let {p0, . . . , pn} be geometrically independent set in Rd. The n-simplex
σ spanned by the points pi is the set of all points x ∈ Rd such that

x =
n∑

i=0

tipi,

3



4 CHAPTER 2. THEORY

where
∑n

i=0 ti = 1, and ti ≥ 0 for all i. This set is denoted by σ = [p0, p1, . . . , pn] and the
points {p0, p1, . . . , pn} are called the vertices of σ.

By definition, an n-simplex is an n-dimensional version of a filled-in triangle. For example,
a 0-simplex is a point, a 1-simplex is a closed interval, a 2-simplex is a triangle with the
interior, a 3-simplex is a tetrahedron with the interior, and so on.

p0 p0 p1 p0 p1

p2

p0 p1

p2

p3

Figure 2.1: Examples of simplices of dimensions 0, 1, 2 and 3.

Next, we will fix some terminology. We say that a simplex τ is a face of σ if τ is spanned
by a subset of the vertices of σ. This we denote by τ ⊆ σ, or τ ⊂ σ if τ is a proper face
of σ, meaning that τ ̸= σ. The boundary of σ is the union of all proper faces of σ and is
denoted by Bd(σ).

Example 2.1.1. Consider the 2-simplex σ = [p0, p1, p2]. Then the 1-simplex τ = [p0, p2] is
an example of a proper face of σ. The boundary of σ is Bd(σ) = [p0, p1] ∪ [p1, p2] ∪ [p0, p2].

We are now ready to define simplicial complexes, which are collections of simplices glued
together along their respective faces:

Definition 2.1.3. A simplicial complex K in Rd is a finite collection of simplices in Rd

that has the following two properties:

1. Every face of a simplex of K is in K.

2. The non-empty intersection of any two simplices of K is a face of both simplices.

Figure 2.2: The left figure is a simplicial complex. The right figure is not a simplicial
complex, since the intersection of the two 2-simplices only is a face of the lower 2-simplex,
and not the upper.

As we can see in Definition 2.1.2, a simplex is defined by listing its vertices, and hence a
simplicial complex may be defined as a list of points corresponding to its simplices. In
many contexts, the precise shape of a simplicial complex is not of major importance, which
motivates a simpler, purely combinatorial description of a simplicial complex:
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Definition 2.1.4. An abstract simplicial complex is a finite collection K of finite
non-empty sets such that if α is an element of K, then so is every nonempty subset of α.

The elements of K are called simplices. The vertices (0-simplices) of K are the one-point
elements of K, and the edges (1-simplices) are the two-point elements of A. In general, a
simplex σ ∈ K is an n-simplex in K if the set σ consists of n+ 1 elements. Similarly to in
the previous definition of simplicial complex, a simplex τ ∈ A is a face of σ ∈ A if τ ⊆ σ.

We say that B ⊆ A is a subcomplex of A if B is an abstract simplicial complex. Moreover,
we define the dimension of A to be the maximal dimension of its simplices.

Example 2.1.2. The following set determines an abstract simplicial complex:

σ = [a, b, c] ∪ [c, d]

= {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} ∪ {{c}, {d}, {c, d}}
= {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c}}

This simplicial complex is of dimension 2 because the largest simplex in σ is {a, b, c},
consisting of 3 elements, which thus corresponds to a 2-simplex. The following figure
serves as a visual representation σ:

a b

c d

Figure 2.3: An illustration of the abstract simplicial complex σ.

Like suggested by the above example, every simplicial complex determines an abstract
simplicial complex by identifying a geometric simplex with the vertices that span it. Due to
their combinatorial nature, abstract simplicial complexes are better suited for calculations
on a computer, which is why we will consider these in the theoretical constructions that
follow later in the text.

Simplicial Complexes from Data

As previously mentioned, the datasets we want to analyze usually come in the form of a
point cloud, a finite set of discrete points embedded in some metric space. There are a
variety of ways to construct simplicial complexes from point cloud data, but among the
more widely used is the following:

Definition 2.1.5. Let X be a pseudo-metric space with pseudo-distance D (i.e. D satisfies
all the axioms of a formal distance, except that D(x, y) = 0 need not imply x = y).
Then the Vietoris Rips complex of X at scale ϵ ≥ 0, denoted VRϵ(X), is the abstract
simplicial complex defined by the following condition [13]:

[x0, . . . , xk] ∈ VRϵ(X) for xi ∈ X ⇐⇒ D(xi, xj) ≤ ϵ for all i, j ∈ {0, . . . , k} .
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In other terms, the Vietoris Rips complex is dependent only on the scale parameter ϵ.
There is an edge between two points in the complex if and only if the distance between
the locations is at most ϵ. There is a triangular face between any three points whose
pairwise distances are at most ϵ, and so on. Figure 2.4 depicts four Vietoris Rips complexes
constructed from the same base point cloud but with varying size parameters. For
illustration purposes we have drawn balls of radius ϵ/2 around each data point, implying
that if the balls around a set of k points have pairwise nonempty intersections, these k
points span a (k − 1)-simplex.

VR0 VR5 VR7 VR8

Figure 2.4: Four Vietoris Rips complexes built from a point cloud in R2, for varying values
of the scale parameter ϵ. Here we have let the metric be the usual Euclidian distance.

The idea is that creating a Vietoris Rips complex from a dataset may somehow reveal
details about the underlying shape of the data. A natural question that might arise, is
what choice of scale ϵ will highlight the most essential features of a particular dataset?
The insight of persistent homology, to be defined later in the text, is that it is not sufficient
to consider any fixed value of ϵ. However, examining how topological features develop
across a variety ϵ-values might uncover important details about the shape of a dataset.

2.1.2 Simplicial Homology

Having defined simplicial complexes, we now wish to develop a method that extracts
geometric information from these objects. Here we introduce the concept of simplicial
homology, which detects holes in a given simplicial complex. The idea of homology is that
it captures holes in a space not by focusing on the holes directly, but by focusing on their
surroundings. Defining this rigorously requires some algebraic machinery, that involves
building vector spaces from simplicial complexes.

Definition 2.1.6. Let n ∈ N and let K be an abstract simplicial complex. The vector
space of n-chains in K is the Z2-vector space Cn(K) such that its basis elements are
all n-simplices of K. Let Kn denote the set of all n-simplices of K. Then an arbitrary
element of Cn(K), an n-chain, is a linear combination of n-simplices, and can be uniquely
written as ∑

σ∈Kn

aσσ, where aσ ∈ Z2.

We define the boundary of an n-simplex to be the formal sum of its (n− 1)-dimensional
faces. For an n-simplex [p0, . . . , pn], let [p0, . . . , p̂i, . . . , pn] denote the (n − 1)-simplex
obtained by omitting the vertex pi. We may extend the idea of boundaries to n-chains in
the following way:
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Definition 2.1.7. The boundary map ∂n : Cn(K) → Cn−1(K) is the linear transforma-
tion defined on simplices by

∂n ([p0, . . . , pn]) =
n∑

i=0

[p0, . . . , p̂i, . . . , pn] .

Thus, we have defined the boundary of an n-chain c =
∑

aσσ to be ∂n(c) =
∑

aσ∂n(σ).
An essential fact for the algebraic formulation of homology is that the composition of two
boundary maps is zero. Intuitively, the following lemma states that a boundary does not
have a boundary:

Lemma 2.1.1. The composition ∂n ◦ ∂n+1 = 0 for all n ≥ 0.

Proof. By linearity it is sufficient to prove that ∂n ◦ ∂n+1(σ) = 0 for an n + 1-simplex
σ = [p0, . . . pn+1]. From the definition of the boundary map we get that

∂n ◦ ∂n+1(σ) = ∂n

(
n+1∑
i=0

[p0, . . . , p̂i, . . . , pn+1]

)

=
n+1∑

j=0,j ̸=i

n+1∑
i=0

[p0, . . . , p̂i, . . . , p̂j, . . . , pn+1] .

For j ̸= i, we see that the n− 1-simplex [p0, . . . , p̂i, . . . , p̂j, . . . , pn+1] appears exactly two
times in the sum. Since our coefficients are in Z2, we conclude that ∂n ◦ ∂n+1(σ) = 0. Thus
∂n ◦ ∂n+1 = 0 for all n ≥ 0.

Using the definition of the boundary map we now define two particularly interesting
types of n-chains. We say that c ∈ Cn(K) is an n-cycle if it has no boundary, i.e. if
∂n(c) = 0. The set of n-cycles form a vector space, which is denoted by Zn(K) = ker ∂n.
An n-chain b is an n-boundary if it is the boundary of an n + 1-chain, meaning that
b = ∂n+1(d) for some d ∈ Cn+1(K). The associated vector space of n-boundaries is denoted
by Bn(K) = im ∂n+1. A consequence of the above lemma is that all boundaries are cycles.

Corollary 2.1.2. All n-boundaries are n-cycles, i.e. Bn(K) ⊆ Zn(K) for all n ≥ 0.

Note that converse is untrue: not all cycles are boundaries. Since Bn(K) is a subspace
of Zn(K), we may form the quotient space Zn(K)/Bn(K) whose non-zero elements are
cycles that are not boundaries. This is precisely the definition of simplicial homology:

Definition 2.1.8. The n-th simplicial homology vector space of a simplicial complex
K is the quotient space

Hn(K) =
Zn(K)

Bn(K)
.

Qualitatively, the basis elements of the homology vector spaces are cycles that are not
boundaries. An interpretation of homology is that a basis element in Hn(K) corresponds to
an n-dimensional hole in the simplicial complex [25] (with a 0-dimensional hole representing
a connected component). Do note that homology detects holes indirectly, by actually
detecting a class of cycles that enclose a hole.
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Example 2.1.3. Let us now calculate the homology vector spaces of a simple example.
Let K be the abstract simplicial complex depicted in Figure 2.5. We want to calculate the
homology vector spaces of K. We immediately conclude that Hr(K) = 0 for all r < 0 and
r > 2, because the simplicial complex only consists of simplices of dimensions 0, 1 and 2.

a

e c

d

b

c1

c2

Figure 2.5: Left: The simplicial complex. Right: Two 1-cycles forming a basis for Z1(K).

The simplices of dimensions 0, 1 and 2 form the basis elements for the vector spaces of
chains C0(K), C1(K) and C2(K) respectively, and thus we have that

C0(K) = span {{a}, {b}, {c}, {d}, {e}} ∼= Z5
2

C1(K) = span {{a, b}, {b, c}, {c, d}, {d, e}, {c, e}, {a, e}} ∼= Z6
2

C2(K) = span {{c, d, e}} ∼= Z2

Let us first compute H1(K), which counts the number of holes in the simplicial complex.
Since the complex has one hole, we expect H1(K) to be Z2. To find Z1(K) = ker ∂1 we
solve

∂1 (λ1{a, b}+ λ2{b, c}+ λ3{c, d}+ λ4{d, e}+ λ5{c, e}+ λ6{a, e}) = 0

Evaluating the boundary map and rewriting in terms of the basis elements of C0(K), we
get

(λ6 + λ1){a}+ (λ1 + λ2){b}+ (λ2 + λ3 + λ5){c}+ (λ3 + λ4){d}+ (λ4 + λ5 + λ6){e} = 0

Because the basis elements {{a}, {b}, {c}, {d}, {e}} are linearly independent, each of the
coefficients must be zero, corresponding to the following system of equations:

λ1 + λ6 = 0
λ1 + λ2 = 0
λ2 + λ3 + λ5 = 0
λ3 + λ5 = 0
λ4 + λ5 + λ6 = 0

⇐⇒


λ1 = λ2 = λ6

λ3 = λ4

λ5 = λ1 + λ3

.

From the equations we can see that there are two free variables, and thus that the solution
space Z1(K) is spanned by {(1, 1, 0, 0, 1, 1), (0, 0, 1, 1, 1, 0)}. So Z1(K) ∼= Z2

2 is generated
by the two 1-chains

c1 = {a, b}+ {b, c}+ {c, e}+ {a, e},
c2 = {c, d}+ {d, e}+ {c, e}.

Next we compute B1(K) by calculating the image of ∂2:

B1(K) = im(∂2) = span{∂2({c, d, e}} = span{{c, d}+ {d, e}+ {c, e}} ∼= span{c2}.
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We have shown that Z1(K) is generated by the two cycles c1 and c2. The basis elements
of H1(K) is however the class of cycles that are not also boundaries, and as we have just
showed, c2 is a boundary. Therefore, there is only one non-trivial class of cycles in H1(K),
corresponding to the one hole in the simplicial complex. We get

H1(K) =
Z1(K)

B1(K)
=

span{{c1, c2}}
span{{c2}}

= span {[c1]} ∼= Z2.

Let us now calculate H0(K). Right away we can see that Z0(K) = ker ∂0 ∼= C0(K) because
the 0-boundary map sends each element to 0. Now we calculate the 0-boundaries:

B0(K) = im(∂1)

= span {∂1({a, b}), ∂1({b, c}), ∂1({c, d}), ∂1({d, e}), ∂1({c, e}), ∂1({a, e})}
= span {{a}+ {b}, {b}+ {c}, {c}+ {d}, {d}+ {e}, {c}+ {e}, {a}+ {e}}
= span {{a}+ {b}, {b}+ {c}, {c}+ {d}, {d}+ {e}}
∼= Z4

2

We then get that

H0(K) =
Z0(K)

B0(K)
=

span {{a}, {b}, {c}, {d}, {e}}
span

{
{a}+{b}, {b}+{c}, {c}+{d}, {d}+{e}

} = span {[{a}]} ∼= Z2,

where now in homology {a}, {b}, {c}, {d}, and {e} all represent the same class of cycles
because they differ by a boundary, and together correspond to one single connected
component in the simplicial complex.

Lastly we calculate H2(K). Since there are no 3-simplices in the simplicial complex, there
are no 3-chains, and so we get that B2(K) = im(∂3) = 0. Furthermore, the only basis
element of C2(K) gets mapped to a non-zero element of C1(K), and thus Z2(K) = ker ∂2 =
0. Thus the homology vector space of dimension 2 is H2(K) = Zn(K)/Bn(K) = 0/0 = 0.
In conclusion, we have that

Hn(K) =

{
Z2 n = 0, 1
0 otherwise.

Remark. It should be clear that performing a direct calculation of homology as the
prior example will become increasingly difficult as the number of simplices grows. The
vector spaces and basis elements of Hn(K) can be calculated in a more systematic way in
the form of a Gaussian matrix reduction of so-called ”boundary matrices”, but this too
will quickly become too advanced to do by hand. In practice, we leave computation of
simplicial homology to our computers.

2.1.3 Induced Maps of Homology

In the previous section we defined the simplicial homology vector spaces of a simplicial
complex. We will now show that the idea of simplicial homology can be extended in a
consistent manner to maps between simplicial complexes, which is an essential notion in
the definition of persistent homology.
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Definition 2.1.9. Let K and L be abstract simplicial complexes. A simplicial map
f : K → L is a function such that for every simplex [p0, . . . , pm] in K, [f(p0), . . . , f(pm)]
is a simplex in L.

A simplicial map f : K → L induces a linear map of n-chains in all dimensions:

f̃n : Cn(K) −→ Cn(L), f̃n(σ) =

{
f(σ) if dim f(σ) = n,
0 otherwise.

While the fact that a simplicial map induces a linear map between n-chains is straight-
forward, the fact that a simplicial map induces a well-defined map in homology is not
immediately obvious. To prove this, we rely on the following lemma:

Lemma 2.1.3. Let f : K → L be a simplicial map. Then the following diagram commutes:

Cn(K) Cn−1(K)

Cn(L) Cn−1(L)

∂n

f̃n f̃n−1

∂′
n

That is, we have that ∂′
n ◦ f̃n = f̃n−1 ◦ ∂n, for all n ≥ 1.

Proof. It is sufficient to prove the result for a single n-simplex σ = [p0, . . . , pn], and the
result will hold for n-chains by linearity. In the proof we have to be aware of the difference
between the simplicial map f and the induced linear maps f̃k. The specific calculations
we have to perform to prove the commutativity of the diagram depends on the dimension
of the simplex f(σ), and we consider the following three cases:

Case 1: dim f(σ) = n. This implies that the dimension of f([p0, . . . , p̂i, . . . , pn]) is n− 1
for all i, and the following holds:

f̃n−1 ◦ ∂n(σ) =
n∑

i=0

f̃n−1 ([p0, . . . , p̂i, . . . , pn])

=
n∑

i=0

[f(p0), . . . , f̂(pi), . . . , f(pn)]

= ∂′
n ([f(p0), . . . , f(pn)])

= ∂′
n ◦ f̃n

(
[p0, . . . , pn]

)
= ∂′

n ◦ f̃n(σ).

Case 2: dim f(σ) ≤ n − 2. It is immediate from the assumption that ∂′
n ◦ f̃n(σ) = 0,

because f̃n(σ) = 0. Furthermore, it follows from the assumption that

dim
(
f([p0, . . . , p̂i, . . . , pn])

)
≤ dim f(σ) = n− 2 for all i.

We thus get the following:

f̃n−1 ◦ ∂n(σ) =
n∑

i=0

f̃n−1 ([p0, . . . , p̂i, . . . , pn]) =
n∑

i=0

0 = 0 = ∂′
n ◦ f̃n(σ).
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Case 3: dim f(σ) = n − 1. It is immediate from the assumption that ∂′
n ◦ f̃n(σ) = 0,

because f̃n(σ) = 0. Since the simplex σ has n vertices, while the simplex f(σ) has n− 1
vertices, there must be two vertices in σ that get mapped by f to the same vertex of f(σ).
We may therefore assume without loss of generality that f(p0) = f(p1). It follows that

dim
(
f([p0, . . . , p̂i, . . . , pn])

)
≤ n− 2 for 2 ≤ i ≤ n

We thus get that

f̃n−1 ◦ ∂n(σ) =
n∑

i=0

f̃n−1 ([p0, . . . , p̂i, . . . , pn])

= [f(p0), f(p2), . . . , f(pn)] + [f(p1), f(p2), . . . , f(pn)]

= 0

= ∂′
n ◦ f̃n(σ).

We have now proved that ∂′
n ◦ f̃n = f̃n−1 ◦ ∂n holds for any basis element σ of Cn(K), and

the result of the lemma follows.

Having established the commutative property between the linear map of n-chains f̃ and
the boundary map ∂n, we are now ready to prove the existence of an induced map in
homology.

Corollary 2.1.4. A simplicial map f : K → L induces a well-defined map in homology,

fn : Hn(K) → Hn(L),

[c] 7→ [f̃n(c)].

Proof. Since Hn(K) = Zn(K) / Bn(K) and Hn(L) = Zn(L) / Bn(L) we need to show that
f̃n(Zn(K)) ⊆ Zn(L) and f̃n(Bn(K)) ⊆ Bn(L). We begin by showing that f̃n(Zn(K)) ⊆
Zn(L). Let z ∈ Zn(K). Then by definition, ∂n(z) = 0. By Lemma 2.1.3 we have that

∂n
(
f̃n(z)

)
= f̃n−1(∂n(z)) = f̃n−1(0) = 0,

which proves the claim. Next, we show that f̃n(Bn(K)) ⊆ Bn(L). Let b ∈ Bn(K). This
implies that there exists some n+ 1-chain d such that ∂n+1(d) = b. Then by Lemma 2.1.3,

f̃n(b) = f̃n(∂n+1(d)) = ∂n+1

(
f̃n+1(d)

)
,

which shows that f̃n(b) ∈ Bn(L) = im ∂n+1, and thus proves the claim.

Finally, we will verify explicitly that the map fn is well-defined. Let [c] = [d] ∈ Hn(K),
which means that the two n-chains c and d are representatives of the same class in Hn(K).
Our goal is now to show that fn([c]) = fn([d]). Because [c] = [d], there exists a boundary
b in Bn(K) such that c = d + b. Now, we have already proved that b ∈ Bn(K) implies
f̃n(b) ∈ Bn(L), and note that this implies that [f̃n(b)] = 0. Now, inserting the definition of
fn yields

fn([c]) =
[
f̃n(c)

]
=
[
f̃n(d+ b)

]
=
[
f̃n(d) + f̃n(b)

]
=
[
f̃n(d)

]
= fn([d]),

which proves the well-definedness of the induced map in homology.
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The next theorem is crucial for the definition of persistent homology, because it asserts
that if two simplicial complexes are isomorphic, then their homology vector spaces will
also be isomorphic.

Theorem 2.1.5. Suppose K,L and M are simplicial complexes. Let f : K → L and
g : L → M be simplicial maps. Then

(g ◦ f)n = gn ◦ fn.

Proof. We begin by proving that (̃g ◦ f)n = g̃n ◦ f̃n. Let c ∈ Cn(K). We have that

(̃g ◦ f)n(c) =
{

(g ◦ f)(c) if dim(g ◦ f(c)) = n,
0 otherwise.

First we consider the case when dim(g ◦ f(c)) = n. Now since

n = dim(c) ≥ dim(f(c)) ≥ dim(g ◦ f(c)) = n,

we may deduce that dim(f(c)) = n. Thus we get the following:

(̃g ◦ f)n(c) = (g ◦ f)(c) = g(f(c)) = g(f̃n(c)) = g̃n(f̃n(c)) = (g̃n ◦ f̃n)(c).

Now if dim(g ◦ f(c)) ̸= n, we have that (̃g ◦ f)n(c) = 0. We also know that g̃n(f(c)) = 0,

since dim(g ◦ f(c)) ̸= n. Now since f̃n(c) is either equal to f(c) or 0, this implies that
g̃n(f̃n(c)) = 0 = (g̃n ◦ f̃n)(c), resulting in the following:

(̃g ◦ f)n(c) = (g̃n ◦ f̃n)(c) = 0.

We can therefore conclude that (̃g ◦ f)n = g̃n ◦ f̃n for all c ∈ Cn(K).

To prove the main result, suppose now that [c] ∈ Hn(K). Then by definition,

(g ◦ f)n
(
[c]
)
=
[
(̃g ◦ f)n(c)

]
=
[(
g̃n ◦ f̃n

)
(c)
]

=
[
g̃n
(
f̃n(c)

)]
= gn

(
[f̃n(c)]

)
= gn

(
fn([c])

)
= gn ◦ fn([c]),

which proves that (g ◦ f)n = gn ◦ fn, and concludes the proof.

2.1.4 Persistent Homology

Having proved that simplicial homology induces a map in homology between simplicial
complexes in a consistent manner, we are close to being able to define persistent homology.
The input in persistent homology takes the form of a nested sequence of simplicial
complexes, defined as follows:
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Definition 2.1.10. A filtration of a simplicial complex K is a collection of subcomplexes
{Ki ⊆ K}mi=0 such that

K0 ⊆ K1 ⊆ · · · ⊆ Km = K.

Example 2.1.4. Given a point cloud X with pseudo-metric D, we can create a filtration
of Vietoris Rips complexes for an increasing sequence of scales ϵ:

VRϵ0(X) ⊆ VRϵ1(X) ⊆ · · · ⊆ VRϵm(X).

VR0 VR5 VR7 VR8

Figure 2.6: A Vietoris Rips filtration for a point cloud consisting of seven points in R2.

Remark. For any index i, the inclusion Ki ⊆ Ki+1 can equivalently be written as an
inclusion map Ki ↪→ Ki+1. Thus we have a sequence of inclusion maps of simplicial
complexes, K0 ↪→ K1 ↪→ . . . ↪→ Km. Note that these inclusions are simplicial maps. As a
result, we have that for all i ≤ j, the inclusion Ki ⊆ Kj induces a map in homology

f i,j
p : Hp(Ki) → Hp(Kj)

for each dimension p. Furthermore, Theorem 2.1.5 implies that

f j,k
p ◦ f i,j

p = f i,k
p for all i ≤ j ≤ k.

We are now ready to define persistent homology. Intuitively, persistent homology is a
mathematical tool that keeps track of the homological features of the subcomplexes in
a filtration, as the scale (or ”time”) parameter i increases in the filtration. It is defined
formally in the following way:

Definition 2.1.11. The p-th persistent homology vector spaces of a filtration
K0 ⊆ K1 ⊆ · · · ⊆ Km = K are the images of the linear maps induced by inclusion,

H i,j
p = im

(
f i,j
p

)
for all 0 ≤ i ≤ j ≤ m.

The associated p-th persistent Betti numbers are given by βi,j
p = dimH i,j

p .

What makes persistent homology powerful, is that measuring the changes in homology
over the course of a filtration might reveal details about the true ”shape” of the input data.
It recognizes p-dimensional holes in a data collection and records ”when” these features
occur and disappear. This we call the birth and death of a homological feature.
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Definition 2.1.12. Let α be a nonzero homology class in Hp(Kb).

• We say that α is born at b if α /∈ Hb−1,b
p .

• If α is born at b, then it dies at d if it is absorbed by another homology class when
mapped from Hp(Kd−1) to Hp(Kd). When two classes merge into one, which class
that absorbs (or kills) the other is determined by which class was born first. This is
called the Elder rule. Importantly, if no such d exists, then we say that α dies at
infinity.

• The interval [b, d) is the persistence interval associated to α, and the persistence
of α is defined as the difference d− b.

The collection of all birth-death persistence-pairs is encoded within the persistent Betti
numbers. If we unfold the definition of the persistent Betti number βb,d

p , we see that it
counts the number of homology classes that were born at or before b that are still alive at
d [9]. By inclusion-exclusion, it is possible to calculate the number of linearly independent
homology classes born at exactly b and dying at exactly d, with the formula

µb,d
p =

(
βb,d−1
p − βb,d

p

)
−
(
βb−1,d−1
p − βb−1,d

p

)
.

Indeed, we can see that the first difference on the right hand side counts the number
of homological classes that die exactly at d (and born at or before b), while the second
difference counts the number of homological classes born at or before (b− 1) that die at
exactly d. The number of features that are born at b but never die can be expressed as

µb,∞
p = βb,m

p − βb−1,m
p ,

where m is the maximal filtration index.

Visualization of Persistent Homology

While the persistent Betti numbers encode information about the homological features of
a filtration, for filtrations of increasing size and complexity, they will be hard to interpret
with the naked eye. To visualize the output of persistent homology, we do not visually
represent the Betti numbers directly, but instead opt to generate plots that contain the
information about all birth-death persistence pairs (b, d). Usually these birth-death pairs
are visualized in one of the following ways:

• The persistence barcode in dimension n is obtained by interpreting each µb,d
n as

µb,d
n copies of the interval [b, d). It is usually visualized by stacking all intervals on

top of each other in the plane.

• The persistence diagram in dimension n is obtained by plotting the birth-death-
pairs as points (b, d) ∈ R2 with multiplicity µb,d

n . A point of the form (b,∞) is usually
plotted as a point (b, k), where k > m is a value larger than the maximal filtration
index.

The following lemma, called the Fundamental Lemma of Persistent Homology, establishes
the fact that the information encoded in a persistence diagram or barcode, is exactly the
same as the information encoded by the persistent Betti numbers. This ensures that the
visualizations we have chosen represents persistent homology in a manner that is faithful
to the original definition.
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Lemma 2.1.6 (Fundamental Lemma of Persistent Homology). Let K1 ⊆ . . . ⊆ Km = K
be a filtration. Then for every pair of indices 0 ≤ b ≤ d ≤ m and every dimension n, we
have that

βb,d
n =

∑
i≤b,j>d

µi,j
n .

Proof. We prove the statement by showing that the right hand side of the equation is
equal to the left hand side. We get that∑

i≤b,j>d

µi,j
n =

∑
i≤b

∑
j≥d+1

µi,j
n

=
∑
i≤b

∑
j≥d+1

(
βi,j−1
n − βi,j

n

)
−
(
βi−1,j−1
n − βi−1,j

n

)
=
∑
i≤b

∑
j≥d+1

(
βi−1,j
n − βi,j

n

)
−
(
βi−1,j−1
n − βi,j−1

n

)
While it may not be immediately apparent due to the plethora of indices, the inner sum
in the last formula is a telescoping sum of the form

∑∞
j=d+1(aj − aj−1) = −ad. Thus it

can be simplified to the following (a new telescoping sum):∑
i≤b,j>d

µi,j
n =

∑
i≤b

(
βi,d
n − βi−1,d

n

)
= βb,d

n ,

which was exactly the left hand side of the equation in the lemma. Thus we have proven
the result.

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9

0 1 2 3 4 5 6 7 8 9

Persistence barcode

0
1

0 1 2 3 4 5 6 7 8 9
Birth

0.000

2.000

4.000

6.000

8.000

+

De
at

h

Persistence diagram

0
1

Figure 2.7: Above in the figure is a filtered simplicial complex, and below is its associated
barcode and persistence diagram. This example is adapted from [4].
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2.1.5 The Persistence Algorithm

Besides having a concise description in terms of persistence diagrams or barcodes, persis-
tence can also be computed efficiently. In this section we introduce a relatively simple
algorithm that computes the persistent homology of a given filtration. This section is
based on [9] and [20].

Suppose like before that we have a filtration K0 ⊆ K1 ⊆ . . . ⊆ Km = K, and suppose that
the simplicial complex K consists of a total number of N simplices. We now introduce some
new notation. Define the time of appearance t(σ) of a simplex σ ∈ K to be the smallest
integer i such that σ ∈ Ki. Based on the filtration of K, we create a compatible ordering
{σ1, σ2, . . . , σN} of all the simplices of K, that satisfies the following two properties:

• if t(σi) < t(σj), then i < j.

• if t(σi) = t(σj) and σi is a face of σj, then i < j.

Aside from these constraints, the ordering of the simplices is arbitrary. From this ordered
set of simplices, we create a N ×N boundary matrix ∂ that sends a given simplex to its
boundary by letting

∂[i, j] =

{
1 if σi is a face of σj and dimσi = dimσj − 1,
0 otherwise.

Explained in words, the rows and columns of ∂ are ordered like the simplices in the
compatible ordering, and the boundary of a simplex is noted in its corresponding column.
The persistence algorithm now performs column operations to convert the matrix into a
reduced matrix R, which encodes the information about the persistent homology of the
filtration. Let low(j) represent the row number of the lowest 1 in the column j. If the
entire column j is zero, then low(j) is undefined. The algorithm goes as follows:

Algorithm 1 The Persistence Algorithm

for j = 1 to m:
while there exists i < j with low(i) = low(j) do
add column i to column j

end while
end for

The intervals of the persistence barcode may be read off the reduced boundary matrix R
by pairing the simplices as follows:

• If low(j) = i, then the simplex σj is paired with the simplex σi, and a homological
feature of dimension dimσi is born at the entrance of σi that dies with the entrance
of σj. This corresponds to a birth-death pair (t(σi), t(σj)).

• If low(j) is undefined, then the entrance of a simplex σj causes the birth of a
homological feature of dimension dimσj at time t(σj). If there exists a k such that
low(k) = j, then the homological feature dies at t(σk). If no such k exists, the
homological feature dies at ∞.
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Example 2.1.5. We demonstrate the algorithm by calculating the persistent homology of
the following filtration:

K0 K1 K2 K3 K4

a

ac

b

bc

c

ab

abc

The first step is to find a compatible ordering of all the simplices in the filtration. There
are in total 7 simplices in the final simplicial complex K4 = K. Following the notation of
the simplices as the figure in K4, we calculate the time of appearance of each simplex in
K to be the following:

0 = t(a)

1 = t(b) = t(c)

2 = t(ac) = t(bc)

3 = t(ab)

4 = t(abc)

An example of a compatible ordering is then the ordered set {a, b, c, ac, bc, ab, abc}. From
this ordered set of simplices, the corresponding 7× 7 matrix ∂ is now given by

∂ =



a b c ac bc ab abc

a 1 1
b 1 1
c 1 1
ac 1
bc 1
ab 1
abc


,

where the blank entries represent zeroes. We perform the persistence algorithm by first
adding column ac to column bc, and then adding column bc to column ab. This yields the
following reduced matrix:

R =



a b c ac bc ab abc

a 1 1
b 1

c 1
ac 1
bc 1
ab 1
abc


.
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Note that we have drawn boxes around entries of interest in the reduced matrix R. We
may now read off the persistence intervals from the reduced matrix:

• The simplex a is not paired with any other simplex, and its corresponding column is
zero. This results in a persistence interval [t(a),∞) = [0,∞) in dimension dim a = 0.

• The simplices b and bc are paired, resulting in a persistence interval [t(b), t(bc)) = [1, 2)
in dimension dim b = 0.

• The simplices c and ac are paired. This gives a persistence interval [t(c), t(ac)) = [1, 2)
in dimension dim c = 0.

• The simplices ab and abc are paired, resulting in a persistence interval [t(ab), t(abc)) =
[3, 4) in dimension dim(ab) = 1.

In conclusion, the barcode of the given filtration is {[0,∞), [1, 2)2} in dimension 0, and
{[3, 4)} in dimension 1. The below figure shows the barcode and persistence diagram
associated to the filtration.

0 1 2 3 4

Persistence barcode

0 1 2 3 4
Birth

0.000

1.000

2.000

3.000

4.000
+

De
at

h

Persistence diagram

0
1

Figure 2.8: The barcode and persistence diagram of the filtration in the example.

We have now presented and demonstrated an algorithm that computes the persistent
homology of a given filtration. The worst case running time of the persistence algorithm
is cubic in the number of simplices [9]. Though there exists more efficient algorithms that
are more often used in practical applications [20], we will not present any other algorithms
here.

2.1.6 Persistence Images

Our aim is to use the data encoded in a persistence diagram to aid in text classification.
However, it is difficult to apply persistence diagrams directly to downstream machine
learning tasks, and we must translate the data from the persistence diagrams into some
vector space to make the data compatible with machine learning classifiers. The TDA
community has created ways of representing persistence diagrams as vectors which are
stable under a suitable distance metric. One of these representations is the persistence
image, introduced by Adams et al. in 2017 [1], which we will present here.

Assume we are given a persistence diagram B containing birth-death-coordinates. By
applying the linear map T : R2 → R2 defined by T (x, y) = T (x, y−x) to B, the persistence
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diagram is transformed into a multiset T (B) containing birth-persistence coordinates. The
multiset T (B) can be interpreted as a non-continuous function f : R2 → N that counts
the number of points in the diagram at the input location u = (x, y). This function is now
approximated in the continuous domain by means of Gaussian distributions:

Definition 2.1.13. The persistence surface of a persistence diagram B is the function

ρB(x, y) =
∑

u∈T (B)

w(u)gu(x, y),

where gu : R2 → R denotes the 2-dimensional Gaussian distribution with mean u = (ux, uy)
and variance σ2, and where w : R2 → R≥0 is a non-negative weighting function that is 0
along the x-axis, continuous and piecewise differentiable.

The weighting function w might at first seem unnecessary, but it is essential for certain
stability properties when transforming a diagram into a persistence image [1]. Continuing
on, the persistence surface ρB(x, y) is reduced into a finite-dimensional vector by integrating
the persistence surface over cells of a grid of dimension (nx, ny).

Definition 2.1.14. Let B be a persistence diagram. Let R be a rectangular region of R2

and fix a grid of dimension (nx, ny) over R to divide R into a collection of equally sized
pixels P . To each pixel P , assign the value

ImB(P ) =

∫
P

ρB(x, y)dxdy

The integration value ImB(P ) of each pixel is stored in a nx × ny image, called the
persistence image of B.
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Figure 2.9: Persistence images of a randomly generated persistence diagram B.

Remark. To use the persistence images as input in machine learning algorithms, the
images of resolution nx × ny, which are matrices, are flattened and interpreted as vectors
in Rnx×ny .

While persistence images have proven to be useful for classification tasks, they come with a
disadvantage. When generating a persistence image, the user makes three nontrivial choices:
the image resolution, the weighting function, and lastly, the standard deviation parameter
σ in the Gaussian distribution. However, research suggest that the classification accuracy
performance using persistence images is fairly robust to changes in image resolution, and
has low sensitivity to changes in standard deviation σ in the Gaussian distribution [1].
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2.2 Natural Language Processing

Natural Language Processing (NLP) is an interdisciplinary field of research that aims
to provide computational tools and models for analyzing language [15]. Although TDA
has been applied successfully in many studies involving high-dimensional numerical data,
applying TDA to text is not a straightforward task [11]. Since TDA is used to extract
the shape (or the topological signature) of point cloud data, to apply this in the case of
natural language, the textual data must first be transformed into some geometric object
to which persistent homology can be applied. It might not however be immediately clear
how one should interpret the geometry of text.

The first step in the majority of NLP applications is to convert the natural language into
some kind of numerical representation that can be processed by a computer more easily [19].
This representation is often in the form of a real-valued vector that tries to encapsulate
the ”meaning” or ”relevance” of a word. Additionally, these vector embeddings are often
designed so that words with similar meanings are supposed to be ”near” to one another in
a suitable metric. As a result, the vector embeddings have an inherent geometry that can
be analyzed using TDA.

In the following sections we lay the theoretical groundwork for how to apply TDA to text
documents. We give an overview of vectorization methods that convert texts to point
cloud data, present text preprocessing methods common in NLP tasks, and finally present
a method of applying TDA to textual data proposed by Zhu [27].

2.2.1 Text Vectorization

Here we introduce four common methods of vectorizing text documents, and establish
a notion of similarity between textual units by defining a metric on the vector spaces
of text embeddings. First, we introduce some terminology relevant to this section: We
define a document to be a single body of text, for example a sentence or paragraph (the
choices may depend on the nature of the text). Next, define a term to be a single unit of
meaningful text in a document. This may for example be a word, pairs of words, and so
on. A corpus is a collection of documents.

Bag of Words (BoW)

The Bag-of-Words (BoW) model is one of the simplest methods to vectorize a given text.
Given a corpus, the BoW model considers each term to be a basis element. A corpus
consisting of d unique terms thus has d basis elements. The BoW model then assigns to
each document a vector

x = (c1, c2, . . . , cd) ∈ Rd,

where ci counts the number of occurrences of the i-th term in a given document [26].

Example 2.2.1. Consider the following corpus, consisting of two documents:

1. my dog is a nice dog

2. your dog is not nice
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In this example, each line is a document in the corpus. Furthermore, each word in the
corpus is a term. Each unique term determines a basis element, and thus the following set
determines the basis for the BoW vector space:

{”a”, ”dog”, ”is”, ”my”, ”nice”, ”not”, ”your”}.

Counting the occurences of each term in every document, we get the following two
BoW-vectors in R7:

a dog is my nice not your

x1 1 2 1 1 1 0 0
x2 0 1 1 0 1 1 1

Term Frequency - Inverse Document Frequency (TF-IDF)

An underlying assumption in the BoW-model is that the importance of a term is directly
proportional to the number of times it appears in a document. This means that a document
will be misrepresented by the model if the most important terms do not appear most
frequently, which may often be the case.

The Term Frequency - Inverse Document Frequency (TF-IDF) model is a modification of
the BoW-model that addresses the frequency assumptions by weighting a term based on its
appearance in the document versus its frequency in the corpus. The intuition here is that
terms important to the document appear more frequently, but this is offset by calculating
whether the term appears in other documents, implying that it is less important to the
specific document [19]. It is defined for a term in a given document as follows:

tfidf(term) = tf(term)× idf(term),

where the term frequency tf is given by

tf(term) =
# of times term appears in document

# of terms in document

and the inverse document frequency1 idf is given by

idf(term) = 1 + ln
( 1 + # of documents

1 + # of documents in corpus with term

)
.

As mentioned previously, a term is defined to be a single unit of meaningful text in a
document. While in some cases you may want a term to be a single word (also called
unigram), there is no reason why a term cannot be two consecutive words (bigrams),
n consecutive words (n-grams), or even combinations of different m-grams. This is
commonly used in many TF-IDF applications.

1How the idf term is defined varies slightly across literature. Here we present the definition used by
TfidfVectorizer in the Python-library sklearn, as this is used in our applications later.
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Example 2.2.2. Let us again consider the corpus

1. my dog is a nice dog

2. your dog is not nice

Let us now calculate the TF-IDF vector of the first document, when we consider terms
to be the single words (unigrams) of the corpus. There are in total 6 terms in the first
document (counting ”dog” twice), and we can calculate the term frequency of each of the
terms to be:

tf(”dog”) =
2

6
, and tf(”my”) = tf(”is”) = tf(”a”) = tf(”nice”) =

1

6
.

We now move on to calculate the inverse document frequencies. The words ”dog”, ”is”
and ”nice” appear in both documents, and their idf-values are therefore

idf(”dog”) = idf(”is”) = idf(”nice”) = 1 + ln

(
1 + 2

1 + 2

)
= 1.

The words ”my” and ”a” are unique to the first document, and hence have a inverse
document frequency that differs from the other words, given by

idf(”my”) = idf(”a”) = 1 + ln

(
1 + 2

1 + 1

)
≈ 1.405.

We obtain the TF-IDF-values of each term by multiplication of the tf and idf values:

tfidf(”a”) ≈ 0.234

tfidf(”dog”) ≈ 0.333

tfidf(”is”) ≈ 0.166

tfidf(”my”) ≈ 0.234

tfidf(”nice”) ≈ 0.166

The document vectors are usually normalized to avoid larger documents in the corpus (as
in containing more terms) dominating in magnitude over smaller ones. Here we normalize
by dividing by the Euclidian norm of the TF-IDF values of the terms in a given document,
i.e. by dividing each TF-IDF value with√

(tfidf(”a”))2 + (tfidf(”is”))2 + (tfidf(”dog”))2 + (tfidf(”my”))2 + (tfidf(”nice”))2.

The TF-IDF vector for the second document is obtained analagously, and we present the
normalized TF-IDF vectors for the two documents as the rows in the table below.

a dog is my nice not your

x1 0.45 0.63 0.32 0.45 0.32 0.00 0.00
x2 0.00 0.38 0.38 0.00 0.38 0.53 0.53
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The benefits of the TF-IDF and BoW models are that they are simple and quite efficient
to compute. One of the drawbacks of the BoW and TF-IDF-models is that they yield
very large and sparse vector representations. Given a corpus with a vocabulary of d
unique terms, a document will be embedded in Rd, with mostly zero-entries and only some
non-zero values in each vector. An additional drawback of these representations is that
they do not take into account that semantically different words and sentences might have
similar meanings.

We will now present two categories of vectorization models that are designed to embed
semantically different words with similar meaning close to each other.

GloVe

The GloVe algorithm [21], introduced in 2014, embeds words as vectors in a fixed dimension
Rn, typically for n ranging between 25 and 300. It is an unsupervised learning algorithm
that is trained on a (usually very large) text corpus, such that words that often co-occur
together are embedded closely together in a chosen metric [10]. To produce sentence
vectors (or in general document vectors) from GloVe word embeddings, a natural method
is to take the average of the GloVe vectors of all the words in a given document.

BERT and Sentence-BERT

A notable example of a more advanced word embedding technique is BERT (Bidirectional
Encoder Representations from Transformers), which produces context-dependent word
embeddings [10]. Unlike the TF-IDF and GloVe models that provide a fixed embedding for a
given word, BERT generates different embeddings of the same word based on neighbouring
words (i.e. the linguistic context). For example, in different linguistic situations, the term
”bank” might have distinct meanings. It might function as either a noun or a verb, and it
can mean different things, like financial institution or land near a river [10]. BERT will
capture this context, and produce different words vectors of ”bank” accordingly.

Sentence-BERT is an extension of BERT, and is distinguished from the original BERT by
being optimized such that sentences with similar meanings are mapped closely together in
the resulting vector space of text embeddings [10].

Metric on Text Embeddings

We have now discussed possible ways of vectorizing textual data, letting us create point
clouds from collections of texts. To apply persistent homology to these point clouds using
Vietoris Rips complexes, it is required that we establish a metric on the vector space of
text embeddings. While the standard choice for a metric in Rn is typically the Euclidian
metric, it is not necessarily the best choice in NLP applications. To capture a notion of
similarity we utilize the metric used by Zhu [27], the angular distance, defined on two
vectors u and v by

D(u,v) = cos−1

(
u · v

∥u∥∥v∥

)
.

Notice that the angular distance simply measures the angle between two vectors u and v
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in Rn. Often one makes use of a normalized variant of the angular distance, by dividing
the above formula by either π/2 or π depending on if u and v contain only positive entries
or if they can also be negative. This normalized metric is bounded in the interval [0, 1]. In
the context of persistent homology of a Vietoris Rips filtration in this metric, this implies
that all birth-death coordinates of persistent homological features are bounded within the
box [0, 1]× [0, 1], which might not be the case in the Euclidian metric.

2.2.2 Text Preprocessing

There is an important step one usually performs on a dataset of text documents before
generating any vectors, and this is to perform a cleaning procedure on each document.
This is done to reduce the amount of unnecessary information from the original texts and
to set the analysis up for success [2]. We use the following preprocessing procedure:

1. Unitization and tokenization. This step involves choosing what serves as a unit
in the text (typically words, pairs of words, or sentences), and the text is separated
into individual tokens corresponding to the choice of unit.

2. Standardize & cleanse. All letters are converted to lower-case, and all numbers,
special characters, unnecessary whitespaces and punctuation are removed.

3. Stop words removal. This step involves the removal of filler words, or stop words,
which add no value to the analysis. Examples of stop words are ”the”, ”and”, ”be”,
”to” and ”of”. While these words are of grammatical importance, they contribute
very little to the meaning of the texts, and may be safely removed.

4. Lemmatization. Lemmatization is a technique for converting different words with
the same word to a common base form. For instance, the words ”walked”, ”walking”
and ”walks” are all considered as the same token ”walk”.

An example of the preprocessing procedure performed on a text document is provided in
Appendix A.6.

2.2.3 TDA on Text

Once the textual data has been preprocessed and then mapped into some metric space,
the implementation of TDA is relatively straightforward. The points of the metric space
have an inherent geometry that allows TDA to extract topological properties. What these
topological properties, such as holes and linked components, should represent about the
original text might however be unclear. Ideally, the homological features should have an
interpretation that relates back to the structure of the text.

In this section we will present two ways of extracting homological features of textual
data, introduced in a 2013 paper by Zhu [27]. The strength of these methods, is that
the 0th and 1st homology classes in persistent homology are given a clear and observable
interpretation. For both methods, assume the following: A text has been divided into
smaller units that have been assigned real valued vectors x1, . . . ,xn. These units may
for example be sentences or paragraphs. In addition, we are given a metric D(xi,xj) ≥ 0
(in our case, the angular distance) such that the distance between ”similar” text units is
small.
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Similarity Filtration (SIF)

The Similarity Filtration (SIF) algorithm calculates the persistent homology of a Vietoris
Rips filtration over the points {x1, . . . ,xn} with metric D for an increasing sequence of
scales ϵ. As we progress through the filtration, the increasing diameter (or time parameter)
ϵ corresponds to allowing looser and looser ”tie-backs”[27]. In the Vietoris Rips complex,
more and more dissimilar text units are linked together to form simplices. Note that the
order of the units x1, . . . ,xn is ignored in the SIF-algorithm.

Similarity Filtration with Time Skeleton (SIFTS)

The Similarity Filtration with Time Skeleton (SIFTS) is a modified version of the SIF-
algorithm that injects an order between successive textual units. Without modification, the
metric D will be oblivious to the ordering of x1, . . .xn. To inject an order between vectors
xi and xi+1 representing consecutive units of text, we modify the metric D by requiring
that D(xi,xi+1) = 0 for all i. Note that this modification renders D a pseudo-metric. The
SIFTS-algorithm now applies persistent homology to a Vietoris Rips filtration over the
points {x1, . . . ,xn} with pseudo-metric D. Due to requiring D(xi,xi+1) = 0, there are
now ”time-edges” (1-simplices) [xi, xi+1] for all i in all stages of the filtration. As a result,
the complex in the filtration will always be connected by what Zhu calls a ”time skeleton”,
resulting in a single trivial feature in 0th persistent homology.

An interpretation of 1-dimensional holes in SIFTS is that they represent semantic tie-backs
[27]. For example, a well written essay may contain a conclusion paragraph that ”links
back” to the introduction paragraph. Thus the vectors representing the first and last
sentence may be close in space, forming a loop since all the consecutive sentences between
them are connected. On the other hand, a badly written essay might not form any loops
at all.

Example 2.2.3. In this example we wish to make clear how the SIF and SIFTS algorithms
work, and what sets them apart from each other, by considering a toy example. Suppose
that a vectorizing a text consisting of 4 documents yields a point cloud {x1,x2,x3,x4}
consisting of four points with the following pairwise distances

D(x1,x2) = 1

D(x1,x3) =
√
2 ≈ 1.41

D(x1,x4) = 0.25

D(x2,x3) = 1

D(x2,x4) = 1.03

D(x3,x4) = 1.25

The points are constructed such that the first and the last text units x1 and x4 are closest
to each other with the given distance function, and are depicted in Figure 2.10. An
interpretation of this is that the first and last documents in the text, the ”introduction”
and ”conclusion”, are the most similar textual units. Applying SIF and SIFTS to the point
cloud results in the filtrations depicted in Figure 2.11. Note that the SIFTS algorithm
modifies the distance function, requiring that D(x1,x2) = D(x2,x3) = D(x3,x4) = 0. By
injecting order between consecutive text units, the SIFTS algorithm captures a circular
structure in the text that the SIF algorithm does not register.
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Figure 2.10: The point cloud considered in Example 2.2.3.

x1

x2

x4

x3

SIF,  = 0.0

x1

x2

x4

x3

SIF,  = 0.25

x1

x2

x4

x3

SIF,  = 1.04

x1

x2

x4

x3

SIF,  = 1.25

x1

x2

x4

x3

SIFTS,  = 0.0

x1

x2

x4

x3

SIFTS,  = 0.25

x1

x2

x4

x3

SIFTS,  = 1.04

x1

x2

x4

x3

SIFTS,  = 1.25

Figure 2.11: Above we see the parts of the Vietoris Rips filtration for the given point
cloud used in the SIF algorithm, and below from SIFTS. The SIFTS algorithm manages
to capture a circular structure in the text, representing a ”tie-back”, because there are
time-edges connecting consecutive text units xi and xi+1.
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Figure 2.12: The persistence barcode for the SIF and SIFTS algorithms for the example.
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2.3 Related Work

In this section we present a brief literature review of existing works in the field of text
classification via topological data analysis, in addition to machine generated text detection
in general.

One of the earliest works on TDA for natural language processing is the 2013 paper
”Persistent Homology: An Introduction and a New Text Representation for Natural
Language Processing” by Zhu [27]. In this paper the SIF and SIFTS algorithms are
introduced, and implementations of the algorithms in Matlab are published. Zhu illustrates
the algorithms on a selection of nursery rhymes, as well as on a corpus consisting of child
and adolescent texts. By employing the SIFTS algorithm, Zhu identifies statistically
significant differences in the amount of semantic tie-backs (H1-groups) between child and
adolescent writing. Using persistent homology, Zhu concludes that children’s writing
becomes structurally richer as they mature. However, he does not apply his algorithm to
machine learning or text classification tasks.

There are several articles that investigate the use of TDA for classification of texts. Doshi
and Zadrozny, in [8], use features generated by the SIFTS algorithm to predict movie genres
based on movie plot summaries from IMDB. In [12], Gholizadeh et al. use topological data
analysis to classify the authors of different 19th century novels. Deng and Duzhin [7] apply
TDA in a fake news detection classification task. They compute persistent homology based
on GloVe word embeddings in R50 with the Euclidian metric, and use persistent images as
features for a binary classifier that predicts if a news article is real or fake. Their results
demonstrate that combining deep learning models with topological data analysis improves
accuracy, particularly for small training sets. Lastly, Das et al. [6] generate persistence
images from sentence embeddings of transcripts from TED Talks and train a model to
predict the rating label (e.g., ”beautiful,” ”confusing,” ”ok,” or ”jaw-dropping”) for each
speech.

For the specific case of detection of artificially generated (or machine generated) texts,
there are also some noteworthy articles. Kushnareva et al. [17] use TDA-based features as
the basis for classifiers trained to distinguish between texts written by humans and by
machines. In a recent non-TDA related work, Shijaku and Canahasi [23] train a machine
learning model to differentiate between essays written by ChatGPT and humans. They
use the previously mentioned TF-IDF model to generate features from the essays, which
are then used in classification tasks.





Chapter 3

Experiments

Inspired by previous works in the field, the research objective of this thesis is to explore
the usage of Topological Data Analysis for text classification, specifically in the case of
machine-generated text detection. In this chapter we develop a pipeline for extracting
topological features from text, similar to the methods of the fake news detection article [7]
and the TED talk article [6]. These topological features are used to train machine learning
classifiers to differentiate samples of human-written and machine-generated text.

We investigate the performance of the proposed TDA-based classifier in two experiments
on machine-generated text detection. The first experiment considers the output of the
language model GPT-2, which generates human-like web page documents, while the
second experiment considers essays generated from ChatGPT. For comparison with the
TDA-based classifier, we also evaluate the performance of non-TDA-based classifier on
the same data. Lastly, in the second experiment we investigate the effects of assembling
TDA-based and non-TDA-based classifiers.

3.1 Method

Both experiments conducted in this thesis follow the same general method, which we
describe in this section. We are interested in training machine learning models to be able
to distinguish between human-written and machine-generated texts. To this end, we train
two types of classifiers: a TDA-based classifier and non-TDA-based classifier, which we
present here. Furthermore, we elaborate on how these classifiers are implemented, and
how their performance is evaluated in each experiment.

TDA Classifier Pipeline

Here we sketch the general pipeline for a TDA-based text classifier. To see the implemen-
tation in Python used for these experiments, we refer the reader to Appendix A. The steps
performed on a dataset of text documents are as follows:

1. Dataset Preparation. Separate each document into sentences. On each sentence,
perform the text preprocessing steps as previously described: lower-case and expand
contractions, remove non-alphabetic characters, unnecessary white-space and stop
words, and finally lemmatize each text.

29
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2. Text Vectorization. For each text document, generate a document embedding
matrix where the i-th row in the matrix is the sentence vector of the i-th sentence in
a given document. Choosing to vectorize with either the TF-IDF model, averaging
GloVe word embeddings or Sentence-BERT yields three distinct matrices to be used
in different classifiers.

3. Calculate Distance. Compute a distance matrix from each sentence matrix in
the previous step. Given a sentence matrix with k sentences, the resulting distance
matrix is a k× k matrix in which the [i, j] term of the matrix represents the distance
between sentences i and j in a given metric D. As a result, the distance matrix is
symmetric and has 0s along the diagonal.

4. Persistent Homology. Apply either the SIF or SIFTS algorithm to obtain per-
sistence diagrams in dimensions 0 and 1. Convert the persistence diagrams in the
dimension of your choice (0 or 1) to persistence images with resolution n × n to
obtain vectors of dimension n2 for each text.

5. Classification. Train and test a machine learning classifier (we use the Support
Vector Classifier) using the persistence images as input.

Non-TDA Classifier: XGBoost

As an example of a non-TDA classifier, we follow a similar approach to that of [23]. The
dataset is preprocessed exactly as in Step 1 of the TDA classifier pipeline. Considering
terms to be both unigrams and bigrams, a single TF-IDF vector is then generated for
each document (contrary to one vector per sentence for each document in the TDA-based
classifier) and is used as input in the XGBoost classifier algorithm [5].

Document
Preprocessed
Document

TF-IDF vector
(Terms: Unigrams and Bigrams)

Document embedding

Distance matrix SIF or SIFTS
Persistence

Image

Classifier

Figure 3.1: A graphic representation of the two pipelines. The above path in the flowchart
shows the steps involved in the non-TDA-based classifier, while the path below shows the
steps involved in the TDA-based classifier.

Implemenation

We implement the machine learning pipelines in Python. To preprocess and lemmatize the
texts, we use the libraries NLTK and re. To vectorize texts, we use TfidfVectorizer in
sklearn for TF-IDF embeddings, the library sentence transformers for Sentence-BERT
embeddings, and for the GloVe embeddings we directly implement an embedding algorithm
using 50-dimensional pre-trained GloVe word embeddings [21].
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To the author’s knowledge, there are no publicly available implementations of the SIF and
SIFTS algorithms in Python1. The SIF and SIFTS algorithms are therefore implemented
manually, using the TDA-library gudhi. To create persistence images from the persistence
diagrams resulting from these algorithms, we use the library persim. Finally, machine
learning classifiers from the libraries sklearn and xgb are used to implement the pipelines
and conduct the experiments. Appendix A contains more information regarding the
implementation.

Evaluation

To evaluate the performance of the machine learning models, we use k-fold cross validation.
The k-fold cross validation is a statistical technique for assessing the performance of a
machine learning model on a given set of data. The dataset is randomly divided into k
folds (or partitions), where k is a user-specified integer. The machine learning model is
then trained on k − 1 folds of data, and tested on the single remaining fold. The test
accuracy is recorded, and the trained model is discarded. This procedure is performed
a total number of k times, where each time, a different fold is treated as the testing set.
The performance of the model is then assessed by taking the of average (and standard
deviation) of the results over the k folds [14]. Associated to the choice of the integer k
there is a bias-variance trade-off, and according to [14], the values k = 5 and k = 10 are
standard choices. To evaluate the classification models in our experiments, we opt for
k = 5, mainly because higher k means longer computation time.

Test Train Train Train Train

Train Test Train Train Train

Train Train Test Train Train

Train Train Train Test Train

Train Train Train Train Test

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Figure 3.2: A schematic overview of a 5-fold cross validation.

1However, an implementation in Matlab of the algorithms exists: https://pages.cs.wisc.edu/

~jerryzhu/publications.html

https://pages.cs.wisc.edu/~jerryzhu/publications.html
https://pages.cs.wisc.edu/~jerryzhu/publications.html


32 CHAPTER 3. EXPERIMENTS

3.2 Experiment: Webtext & GPT-2

For the first experiment we will consider text outputs from the text generation model
GPT-2, released in 2018 [22]. The language model GPT-2 is trained to generate artificial
texts that resemble the input training data and is fine-tuned with the objective to predict
the next word, given all the previous words within some text.

The GPT-2 Output Dataset consists of outputs of GPT-2 models that are trained
on the human-written Webtext, a dataset consisting of filtered and de-duplicated text
documents from 8 million web pages. The dataset comprises outputs of multiple versions
of the GPT-2-model of varying sizes and complexity. We consider multiple versions in the
experiment, to get an overview of how classification performance varies with complexity:
GPT-2 Small, GPT-2 Medium, GPT-2 Large and GPT-2 XL with pure sampling.

Method

Before conducting the experiments, we want to ensure that the machine generated texts
and human-written texts compete on an equal footing. When vectorizing a text using the
TDA method, the number of points produced is directly proportional to the number of
sentences in a document, and hence somewhat dependent on the length of a given text.
The amount of points influence the number of potential homological features produced
from the texts, and these features are what we want to use to distinguish human and
machine-written text. We therefore limit our experiment to entries of Webtext and GPT-
2-output with a fixed length. Due to their abundance in the datasets, the choice falls
naturally to texts of length 1024.

From the texts of length 1024, we randomly select and fix a set consisting of 250 texts from
Webtext. For each of the variants of GPT-2 we also randomly select and fix sets consisting
of 250 texts. The datasets we perform experiments on thus consist of 500 documents, each
a combination of the fixed Webtext set and 250 texts from the GPT-2 variant.

Hyperparameter tuning

As previously mentioned, there are nontrivial choices involved when transforming persis-
tence diagrams to persistence images to be used in the machine learning classifiers: The
image resolution, weighting function and the standard deviation parameter σ. We select
the default weighting function in PersistenceImager, the persistence weighted Gaussian
kernel [16], and perform grid searches on the different TDA classifier models to determine
the best parameters for the image resolution and the standard deviation σ. Performing a
grid search on different persistence image resolutions,

{25× 25, 50× 50, 75× 75, 100× 100},

we find that a resolution of 100 × 100 always either outperforms or is equally good as
the other alternatives. The standard deviation σ is then selected specifically for each
TDA-based classifier to optimize performance, from the following set of values:

{0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005}.
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Furthermore, some experimentation with the TF-IDF vectorization method showed im-
proved classification performance when defining terms to be both unigrams (single words)
and bigrams (two consecutive words), compared with terms being defined as only unigrams.
As a consequence, the former method was used in the TF-IDF vectorization.

We do preliminary tests on TDA classifiers with persistence images from SIF and SIFTS on
three different vector embedding methods: GloVe, Sentence-BERT and TF-IDF. We limit
the final experiments to the four TDA-based classifier models with the best performance,
in addition to the non-TDA-based XGBoost classifier. The specifications for each model is
presented in Table 3.1.

Model Description

SIFTS TF-IDF

Support Vector Machine (SVM) classifier trained on per-
sistence images with σ = 0.0001 from the persistence
diagrams in dimension 1, generated by SIFTS on TF-IDF
embeddings with terms defined as unigrams and bigrams.

SIFTS s-BERT

SVM classifier trained on persistence images with σ = 0.01
from the persistence diagrams in dimension 1, generated
by SIFTS on sentence embeddings from the pretrained
Sentence-BERT model ’all-MiniLM-L6-v2’.2

SIF s-BERT

SVM classifier trained on persistence images with σ = 0.01
from the persistence diagrams in dimension 0, generated by
SIF on sentence embeddings from the pretrained Sentence-
BERT model ’all-MiniLM-L6-v2’.

SIFTS GloVe

SVM classifier trained on persistence images with σ =
0.005 from the persistence diagrams in dimension 0, gen-
erated by SIF on 50-dimensional GloVe embeddings pre-
trained on Wikipedia 2014 and Gigaword 53.

XGBoost
The XGBoost classifier model with TF-IDF unigram and
bigram features with minimum document frequency 5 as
input.

Table 3.1: Model specifications in the experiments with Webtext and GPT-2.

2https://www.sbert.net/docs/pretrained_models.html
3https://github.com/stanfordnlp/GloVe

https://www.sbert.net/docs/pretrained_models.html
https://github.com/stanfordnlp/GloVe
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Results and discussion

The results from the experiments on Webtext & GPT-2 are presented in Table 3.2. The
results clearly suggest that there are statistical differences in persistence images generated
from text embeddings of Webtext and GPT-2, but the classification performances also
indicate that the texts get increasingly more difficult to distinguish as the complexity of
the GPT-2 model increases.

GPT-2 Small GPT-2 Medium GPT-2 Large GPT-2 XL

XGBoost 83.2(2.9) 86.2(3.4) 75.6(2.7) 67.4(4.6)
SIFTS TF-IDF 93.0(1.7) 93.6(3.3) 84.8(4.9) 81.4(5.1)
SIFTS s-BERT 92.0(2.2) 92.8(2.2) 84.8(2.8) 80.8(2.7)
SIF s-BERT 93.0(3.0) 96.0(2.1) 87.2(2.8) 81.0(4.8)
SIFTS GloVe 77.6(3.7) 83.4(2.3) 71.8(5.0) 70.6(5.4)

Table 3.2: Classification results from experiments on Webtext versus GPT-2. The per-
formance is measured by the average accuracy score (%) from a 5-fold cross validation,
and the standard deviation is reported in the brackets. The highest test accuracy for each
experiment is bolded.

Continuing our analysis, we thought it would be both illustrative and enlightening to
examine the persistent homology and persistence images produced from the different vector
embeddings manually, to see if we could deduce any information about the homological
structure of the texts, and how they might differ.

We first examined the the persistent homology from applying SIFTS on the TF-IDF
embeddings on Webtext and the GPT-2 variants. We discovered that the total number
of 1-st order homology classes (or simply, number of 1-dimensional holes), |H1|, varied
quite significantly across the different datasets. While the average |H1| of a Webtext
document was 40.76, the average |H1| for a document across all the GPT-2 variants was
27.84. Recalling that the interpretation of Zhu [27] is that a 1-dimensional hole in the
SIFTS algorithm represents a ”semantic tie-back”, our results suggest that on average, a
human-written document from Webtext contains significantly more tie-backs than a text
written by GPT-2.

Furthermore, examination of the persistence images from SIFTS TF-IDF and SIF s-BERT
suggests that there are some qualitative differences in the persistence diagrams generated
from Webtext and GPT-2, which helps explain the significant classification performance of
the mentioned TDA-based classifier models. Figure 3.3 shows some examples of persistence
images of Webtext and GPT-2 Small produced by SIFTS TF-IDF, while in Figure 3.4 we
have plotted the average persistence image generated from documents from Webtext and
GPT-2 small respectively, using SIFTS TF-IDF. Similarly, Figure 3.5 shows samples of
persistence images of Webtext and GPT-2 Medium produced by SIF s-BERT, while the
average persistence images from SIF s-BERT are plotted in Figure 3.6.
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Webtext Persistence Images: 4 random samples (SIFTS TF-IDF)

GPT2 Small Persistence Images: 4 random samples (SIFTS TF-IDF)

Figure 3.3: Examples of persistence images generated by applying SIFTS to the TF-IDF
embeddings for a random selection of documents from Webtext and GPT-2 Small.
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Figure 3.4: The average persistence images of Webtext documents and GPT-2 Small when
applying SIFTS TF-IDF. Note that the maximum magnitude of the Webtext persistence
image is about double as that of GPT-2 Small.
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Webtext Persistence Images: 4 random samples (SIF s-BERT)

GPT2 Medium Persistence Images: 4 random samples (SIF s-BERT)

Figure 3.5: Examples of persistence images generated by applying SIF to the sentence
BERT embeddings for a random selection of documents from Webtext and GPT-2 Medium.
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Figure 3.6: The average persistence images of Webtext documents and GPT-2 Medium
when applying SIF s-BERT.
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3.3 Experiment: ChatGPT Essays

The field of artificial text generation is undergoing frequent development, and a motivation
for the next experiment is that we wished to try our TDA classifiers performance on
outputs from a more recent generative text model.

Specifically, we wanted to test our TDA classifier on outputs of ChatGPT, a language
model released in November 20224, that has recently garnered a lot of attention in media.
To the author’s knowledge, the creators of GPT-2 have not released official output datasets
akin to the GPT-2 output dataset for ChatGPT. However, Shijaku & Canhasi [23] have
compiled and published a dataset consisting of 126 essays written by humans and 126
essays generated by ChatGPT5, and this is the dataset we consider in this experiment.

Table 3.3: An example of an essay topic and written responses by a human and ChatGPT.

Writer Question: Why do you think people attend college or university?

ChatGPT

There are many reasons why people choose to attend college or univer-
sity. Some of the most common reasons include the desire to gain new
knowledge and skills, the opportunity to pursue a career in a particular
field, and the chance to earn a higher salary. One of the most important
reasons that people attend college or university is to gain new knowledge
and skills. At college or university, students have the opportunity to
learn about a wide range of subjects, from the sciences and humanities
to the arts and social sciences...

Human

College is a place that the students can learn more and new knowledge
and experience in it. Of course, different people have different reason to
study in college. For example, some people want to be to go on a further
study after they graduate from the college; some people hope to find a
good job after their studying in the college and also some people wish to
exchange their present situation through studying in the college. In my
opinion, no matter what reason people study in the college for, studying
in the college is just a preparation for their future’ life...

Contrary to in the previous experiment, we do not filter out any texts in the dataset, but
consider the entire dataset consisting of 252 documents. For the persistence images we
again use a resolution of 100× 100. The optimal values for standard deviation σ in the
images are selected individually for each TDA-based classifier, and are shown in Table 3.4.

Model σ-value

SIFTS TF-IDF 0.001
SIF GloVe 0.001
SIF s-BERT 0.005
SIFTS s-BERT 0.01

Table 3.4: Choices of σ for the different models in the ChatGPT essay experiment.

4https://openai.com/blog/chatgpt
5https://github.com/rexshijaku/chatgpt-generated-text-detection-corpus

https://openai.com/blog/chatgpt
https://github.com/rexshijaku/chatgpt-generated-text-detection-corpus
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Results and discussion

The results from the experiment on the human-written and ChatGPT-generated essays
are presented in Table 3.5.

Accuracy

XGBoost 90.9(2.1)
SIFTS TF-IDF 84.5 (3.6)
SIF GloVe 80.5 (6.4)
SIFTS s-BERT 85.3 (2.0)
SIF s-BERT 90.0 (4.4)

Table 3.5: Classification results from experiments on essays written by humans and
ChatGPT. The performance is measured by the average accuracy score (%) from a 5-fold
cross validation, and the standard deviation is reported in the brackets. The highest test
accuracy for the experiment is bolded.

In this experiment, the non-TDA-based classifier XGBoost had the best performance, by a
slight margin over SIF s-BERT. We went on to explore whether creating ensembles of the
different classifier models would increase classification performance. This was implemented
with sklearns VotingClassifier, with soft voting and equal weighting between the models.
The results from the experiment with classifier ensembles is presented in Table 3.6.

Accuracy

XGBOOST + SIFTS TF-IDF 94.1(2.8)
XGBOOST + SIF GloVe 94.1(2.2)
XGBOOST + SIFTS s-BERT 94.4(4.6)
XGBOOST + SIF s-BERT 94.8(3.7)
SIF GloVe + SIFTS TF-IDF 87.7(1.5)
XGBOOST + (SIF GloVe + SIFTS TF-IDF) 95.2(1.6)

Table 3.6: Accuracy tables for different ensembles of classifier models used in the experiment.
The performance is measured by the average accuracy score (%) from a 5-fold cross
validation, and the standard deviation is reported in the brackets. The highest test
accuracy for the experiment is bolded.

The results indicate that an ensemble of XGBoost and a TDA-based classifier generally
performs better than any single classifier, perhaps suggesting that there are some distin-
guishing features in the machine-written essays that are discovered by the TDA method
that are not discovered by XGBoost, and vice versa.

Like in the previous experiment, we continued our analysis by examining the persistent
homology and persistence images produced from the different vector embeddings manually.
When applying SIFTS TF-IDF, we observed that the average number of H1-features
for the human-written essays were 15.12, while the average of the ChatGPT-essays was
8.65, suggesting that the average human-written essay contained more ”tie-backs” than
the average ChatGPT-written essay. The persistence images also indicated qualitative
differences between the two types of essays, and examples of persistence images are shown
in Figure 3.7, and average persistence images are shown in Figure 3.8.
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ChatGPT Essay Persistence Images: 4 random samples (SIFTS TF-IDF)

Human Essay Persistence Images: 4 random samples (SIFTS TF-IDF)

Figure 3.7: Examples of persistence images generated by applying SIFTS to the TF-IDF
embeddings for a random selection of essays.

Average Persistence Image:
Human Essays (SIFTS TF-IDF)

Average Persistence Image: 
ChatGPT Essays (SIFTS TF-IDF)
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Figure 3.8: The average persistence images of the human-written and ChatGPT-written
essays when applying SIFTS TF-IDF.
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3.4 Discussion

In this section we discuss and summarize the results from both experiments.

Classification performance. The classification results from both experiments indicate
that persistent homology effectively captures structural information that can differentiate
between machine-written and human-written texts. These structural differences are clearly
illustrated by Figures 3.3 - 3.8, which show that the persistence images obtained from
machine-generated and human-written texts are often visibly different, at the very least
on average.

Number of tie-backs. In addition to the classification results, a significant finding was
the differences in the number of 1-dimensional holes generated by the human-written and
machine-generated texts, when we applied the SIFTS algorithm on the TF-IDF vectors.
In the Webtext/GPT-2 experiment, the average |H1| for human-written texts was 40.76,
while the GPT-2 variants averaged at 27.84. As for the essays, the average |H1| of a
human-written essay was 15.12, whereas a ChatGPT-generated essay had an average of
8.65. According to Zhu [27], a 1-dimensional hole can be interpreted as a semantic tie-back,
and our results suggest that human-written texts contain significantly more tie-backs
compared to machine-generated texts in both experiments. This finding is analog with
Zhu’s research [27], which demonstrated that texts authored by adolescents exhibited
more 1-dimensional holes than those written by children. It is possible that this indicates
humans often write in a more self-referential and coherent manner compared to current
generative language models.

Vectorization methods. We created TDA-based machine learning classifiers with
three different types of vectorization methods: the TF-IDF model, the GloVe model,
and the Sentence-BERT model. Among these vectorization methods, Sentence-BERT
demonstrated the best performance. This outcome is not surprising since Sentence-BERT
is the most sophisticated embedding model. The Sentence-BERT embeddings take into
account the semantic similarity of words and sentences, resulting in vectors that preserve
more information about the structure of the original sentences. In contrast, the TF-IDF
vectorization model considers two similar sentences with different words as completely
different.

Perhaps surprisingly, the TDA classifiers based on the GloVe embedding method demon-
strated the poorest performance. On paper, the GloVe embeddings should contain more
information about the original texts than the TF-IDF embeddings, as the GloVe em-
beddings are designed to map semantically different words with similar meanings closely
together, unlike TF-IDF. However, the TF-IDF classifier models outperformed the GloVe-
based models. One possible explanation for this could be that the GloVe vectors we used
had too low an embedding dimension for our specific application. We used 50-dimensional
GloVe vectors, while pre-trained GloVe vectors of dimensions up to 300 were available and
could have been used instead. Some limited testing with 100-dimensional GloVe vectors
on the ChatGPT essay dataset showed a performance of 82.9% ± 5.7% using the SIF
GloVe method, and with 300-dimensional GloVe vectors, a performance of 82.5%± 3.9%
(compared to 80.5%±5.6% for the 50-dimensional embeddings). Although not conclusive
evidence, this suggests that choosing higher-dimensional GloVe embeddings somewhat
improves classification results.
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While the Sentence-BERT-based models often outperformed models based on other vec-
tor embeddings, the retrieval of Sentence-BERT vectors was significantly slower in our
implementation. To illustrate this, generating the Sentence-BERT document matrices
for 500 documents took approximately 15 minutes, whereas generating all the GloVe and
TF-IDF document matrices on the computer used for the experiments only took a couple of
seconds. The slow embedding speed of Sentence-BERT was a significant limiting factor in
determining the size of the Webtext/GPT-2 datasets, leading us to conclude that TF-IDF
vector embeddings were the best overall choice for the TDA-based classifier.

Choice of Classifier. Our TDA-based models generated persistence images, which were
used as input for a classifier model of our choice. To prioritize the quality of the training
data (i.e. the persistence images) rather than focusing on the capabilities of a specific
state-of-the-art classifier model, we selected a well-established and relatively standard
classifier model: the Support Vector Machine (SVM) for all of our TDA-based classifiers. It
is possible that our decision to use the SVM classifier may have influenced the performance
of our TDA-based classifiers, and further improvements could potentially be achieved
by experimenting with other more advanced classifier models while utilizing the same
persistence images as inputs.

As pointed out by Deng et al. [7], this study shares a similar limitation with many others
that utilize TDA for classification: we invest significantly more effort in fine-tuning the
TDA classifier methods compared to non-TDA approaches. In both experiments, we
used the same XGBoost classifier model with TF-IDF unigram and bigram features as
input. The model was fine-tuned by the authors of [23] for the essay experiment, and it is
possible that we could have obtained better results in the Webtext/GPT-2 experiment
by selecting a different classifier. For reference, OpenAI themselves have published a
detection model with detection rates of around 95% on the GPT-2 XL versus Webtext
dataset [24]. Nonetheless, the XGBoost model served as a useful non-TDA reference in
our classifier experiments, as it was efficient and easy to implement. Furthermore, our
lack of consideration for the choice of non-TDA model may be partly justified by the fact
that this text primarily focuses on the application of TDA in classification problems.

Further research. There are many ways of vectorizing text not considered in this
thesis, and it could be interesting to research the TDA-based classifier further with other
text vectorization models. Related to vectorization techniques, is the choice of what to
vectorize in the first place. While we separated our documents into sentences that were
vectorized and used as a basis for persistent homology, experimenting with other ways of
dividing documents into textual units is also a possibility that could be researched further.
An example of already existing works on this is [11], where authors instead divide any
document into 10 consecutive blocks of text. Furthermore, experimenting with metrics
other than the angular distance that we used in the SIF and SIFTS algorithm might yield
interesting results, although our findings suggested that the Euclidian metric was inferior.

In our experiments, we varied the method for generating persistence images (SIF and
SIFTS), and used various embedding methods while keeping the final classifier constant. A
natural extension to these experiments would be to vary the classifier model instead, while
keeping the method of generating persistence images constant. For instance, one could
explore using the SIFTS TF-IDF method, which demonstrated fast computation times and
promising classification results. This approach could provide a better understanding of the
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performance of different classifier models and potentially improve the TDA classification
method.

Another natural variation of the conducted experiments involves investigating the classifi-
cation performance of TDA-based text classifiers using alternative vector representations
of persistence diagrams. While we utilized persistence images, several other methods exist
for transforming persistence diagrams into machine learning-friendly inputs. A summary
of many of these methods can be found in [3].

Further work could be done in the area of assembling TDA-based and non-TDA-based
classifiers. In our second experiment, we combined different TDA-based classifiers with the
non-TDA-based classifier XGBoost, and saw classification performance that exceeded that
of any single classifier. Deng and Duzhin [7] achieved promising results when assembling
TDA-based classifiers with state-of-the-art deep learning models for natural language
processing in a fake news detection experiment with little training data. It would be
interesting to conduct a similar experiment focusing on machine-generated text detection.

Although our TDA-based methods demonstrated promising classification results for our
selected datasets of machine-written and human-written texts, their performance on
human/machine classification tasks for other text types remains unknown. As a side note,
it would be interesting to study the performance of the TDA-based classifier method on
texts that have been modified by humans, rather than focusing on texts generated solely
by machines.



Chapter 4

Conclusion

The goal of the thesis was to provide an accessible introduction to the fields of Topological
Data Analysis (TDA) and Natural Language Processing (NLP). Additionally, we explored
the application of TDA for detecting machine-generated text.

Building upon existing research in the field, we developed a TDA-based text classification
model that demonstrated promising results in distinguishing between human-written and
machine-generated text in our experiments. The classification accuracy ranged from 80%
to 96% depending on the text type and complexity of the generative language model.
However, it remains uncertain whether this solid performance will extend to other datasets
of machine-generated and human-written texts, as well as to the detection of documents
co-written by humans and machines. Furthermore, as artificial text generation models
advance, it is uncertain how the topological structure of their text outputs will evolve. It
is possible that their topological signatures will eventually become indistinguishable from
those of humans.

During our discussion, we made several suggestions for further research with TDA-based
text classifiers. These include conducting experiments with alternative vectorization meth-
ods, exploring different classification algorithms, and investigating alternative approaches
for transforming persistence diagrams into a format compatible with machine learning
methods. To facilitate further exploration in this area, we have published the code devel-
oped for this thesis on GitHub [18]. Furthermore, a detailed explanation of the code can
be found in Appendix A. We consider the publication of this code to be one of the key
contributions of this work.
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Appendix A

Implementation

In this chapter we present an implementation in Python of the machine learning pipelines
described in Chapter 3. The full repository, including the datasets of text and a demon-
stration of the experiments, is available on GitHub [18].

A.1 Text Preprocessing

First we import libraries involved in the processing of strings in Python:

import␣nltk␣␣␣␣␣␣␣␣␣␣␣␣␣#␣Natural␣Language␣Toolkit

import␣re␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣#␣Regular␣expressions␣operations

import␣contractions␣␣␣␣␣#␣Contractions

We then define functions for removing stop words (common words like ”the”, ”a”, etc.)
and expanding contractions (i.e. changing ”don’t” to ”do not”) for a given text document.

#␣Generate␣a␣list␣of␣english␣stop␣words␣using␣NLTK.

sw_nltk␣=␣nltk.corpus.stopwords.words('english')

#␣A␣function␣that␣removes␣stop␣words␣and␣expands␣contractions␣in␣a␣single␣line.

def␣remove_stopwords_line(line):

␣␣␣␣#␣Remove␣contractions␣in␣the␣string␣(i.e.␣switching␣'don't'␣to␣'do␣not'.)

␣␣␣␣line␣=␣'␣'.join([contractions.fix(expanded_word)

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣expanded_word␣in␣line.split()])

␣␣␣␣#␣Remove␣stop␣words␣by␣removing␣the␣words␣that␣are␣in␣sw_nltk.

␣␣␣␣line␣=␣'␣'.join([word␣for␣word␣in␣line.split()␣if␣word␣not␣in␣sw_nltk])

␣␣␣␣return␣line

#␣A␣function␣that␣removes␣stopwords␣and␣expands␣contractions

#␣in␣document␣consisting␣of␣multiple␣lines.

def␣remove_stopwords_document(document):

␣␣␣␣#␣Create␣a␣list␣consisting␣of␣each␣line␣in␣the␣document.

␣␣␣␣lines␣=␣list(filter(None,␣document.splitlines()))

␣␣␣␣#␣Perform␣stop␣word␣removal␣and␣contraction␣expanding␣on␣each␣line

␣␣␣␣#␣and␣join␣the␣modified␣strings␣back␣together.

␣␣␣␣return'\n'.join([remove_stopwords_line(line)␣for␣line␣in␣lines])
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Now we are ready to define a function that performs the steps in the preprocessing pipeline
(except lemmatization, which we perform separately). The operations are performed on a
pandas dataframe consisting of text documents, on the column named ’text’.

import␣pandas␣as␣pd

#␣Performs␣preprocessing␣steps␣on␣a␣dataset␣consisting␣of␣text␣documents

def␣preprocess_df(dataframe):

␣␣␣␣#␣Create␣a␣copy␣of␣the␣input␣dataframe

␣␣␣␣df␣=␣dataframe.copy()

␣␣␣␣#␣Split␣the␣texts␣into␣sentences␣into␣a␣format␣of␣one␣sentence␣per␣row

␣␣␣␣df['text']␣=␣df['text'].apply(lambda␣x:␣'\n'.join(nltk.sent_tokenize(x)))

␣␣␣␣#␣Convert␣all␣letters␣to␣lower-case.

␣␣␣␣df['text']␣=␣df['text'].str.lower()

␣␣␣␣#␣Expand␣contractions␣(don't␣-->␣do␣not)

␣␣␣␣#␣and␣remove␣all␣stop␣words␣from␣each␣text␣document

␣␣␣␣df['text']␣=␣df['text'].apply(remove_stopwords_document)

␣␣␣␣#␣Remove␣punctuation,␣numbers␣and␣special␣characters

␣␣␣␣df['text']␣=␣df['text'].apply(lambda␣x:␣x.replace('-','␣'))

␣␣␣␣df['text']␣=␣df['text'].apply(lambda␣x:␣re.sub(r'[^␣\nA-Za-z.?!]+',␣'',␣x))

␣␣␣␣df['text']␣=␣df['text'].apply(lambda␣x:␣re.sub(r'[.?!]+',␣'',␣x))

␣␣␣␣#␣Remove␣any␣excess␣white-space␣like␣spaces␣and␣newlines

␣␣␣␣df['text']␣=␣df['text'].apply(lambda␣x:␣re.sub('␣+',␣'␣',␣x))

␣␣␣␣df['text']␣=␣df['text'].apply(lambda␣x:␣re.sub('\n+',␣'\n',␣x))

␣␣␣␣df['text']␣=␣df['text'].apply(lambda␣x:␣'\n'.join([line.strip()

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣line␣in␣x.splitlines()]))

␣␣␣␣return␣df

Finally, we define a function that lemmatizes each text in a given dataset:

#␣Load␣the␣lemmatizer␣from␣the␣NLTK-library.

lemma␣=␣nltk.WordNetLemmatizer()

#␣Define␣a␣function␣that␣performs␣lemmatization␣on␣a␣text␣document

def␣lemmatize(document):

␣␣␣␣#␣Create␣a␣list␣consisting␣of␣each␣line␣in␣the␣document

␣␣␣␣lines␣=␣document.splitlines()

␣␣␣␣#␣Make␣an␣empty␣list␣that␣will␣be␣filled␣with

␣␣␣␣#␣the␣lemmatized␣versions␣of␣the␣lines␣in␣the␣document.

␣␣␣␣lemmatized_lines␣=␣[]

␣␣␣␣#␣perform␣lemmatization␣on␣each␣line␣in␣the␣document␣separately,

␣␣␣␣#␣and␣rejoin␣them␣together

␣␣␣␣for␣line␣in␣lines:

␣␣␣␣␣␣␣␣lemmatized_lines.append("␣".join([lemma.lemmatize(item)

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣for␣item␣in␣line.split()]))

␣␣␣␣return␣"\n".join(lemmatized_lines)
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Given a dataset of text documents with directory "dataset.csv", we may now perform
the preprocessing pipeline in Chapter 2.2.2 with the following three lines of code:

df␣=␣pd.read_csv("dataset.csv")

df["text"]␣=␣preprocess_df(df)

df["text_lemmatized"]␣=␣df["text"].apply(lemmatize)

The column ”text lemmatized” may now be used as input in a machine learning pipeline.

A.2 Text Vectorization

After the text documents have been preprocessed, lemmatized and split into sentences,
they are ready for vectorization. Here we implement functions whose input is a document,
and whose output is a document embedding matrix, where the i-th row in the matrix is the
sentence vector of the i-th sentence in a given document. We define document embedding
functions for three vectorization models: TF-IDF, Sentence-BERT and GloVe.

TF-IDF embedding

#␣Import␣the␣TF-IDF␣vectorizer␣from␣the␣sklearn␣library

from␣sklearn.feature_extraction.text␣import␣TfidfVectorizer

def␣tfidf_matrix(document):

␣␣␣␣#␣Initialize␣the␣TF-IDF␣vectorizer.␣Define␣terms␣to␣be␣unigrams␣and␣bigrams.

␣␣␣␣vectorizer␣=␣TfidfVectorizer(ngram_range=(1,2))

␣␣␣␣#␣Split␣the␣document␣into␣lines␣(which␣represent␣sentences)

␣␣␣␣lines␣=␣document.splitlines()

␣␣␣␣#␣Produce␣a␣TF-IDF␣vector␣corresponding␣to␣each␣line␣and␣stack␣them␣in␣a␣matrix

␣␣␣␣matrix␣=␣vectorizer.fit_transform(lines).toarray()

␣␣␣␣return␣matrix

Sentence-BERT embedding

#␣Load␣a␣pre-trained␣sentence-BERT␣model␣from␣sentence_transformers

from␣sentence_transformers␣import␣SentenceTransformer

sbert_model␣=␣SentenceTransformer('all-MiniLM-L6-v2')

def␣sbert_matrix(document):

␣␣␣␣#␣Split␣the␣document␣into␣lines␣(which␣represent␣sentences)

␣␣␣␣lines␣=␣document.splitlines()

␣␣␣␣#␣Generate␣an␣s-BERT␣embedding␣for␣each␣line␣and␣stack␣them␣in␣a␣matrix

␣␣␣␣matrix␣=␣sbert_model.encode(lines)

␣␣␣␣return␣matrix
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GloVe embedding

To generate GloVe sentence embeddings, we first download a text-file containing pre-trained
GloVe word embeddings from [21]. We then load these word embeddings into a Python
dictionary whose keys are words, and whose values are their respective embeddings.

glove_file␣=␣"D:\\glove_file_directory"

def␣load_glove_model(glove_file):

␣␣␣␣with␣open(glove_file,␣encoding="utf8"␣)␣as␣f:

␣␣␣␣␣␣␣␣content␣=␣f.readlines()

␣␣␣␣model␣=␣{}

␣␣␣␣for␣line␣in␣content:

␣␣␣␣␣␣␣␣split_line␣=␣line.split()

␣␣␣␣␣␣␣␣word␣=␣split_line[0]

␣␣␣␣␣␣␣␣vector␣=␣np.array([float(val)␣for␣val␣in␣split_line[1:]])

␣␣␣␣␣␣␣␣model[word]␣=␣vector

␣␣␣␣return␣model

#␣Load␣the␣GloVe␣model␣from␣the␣given␣directory

glove␣=␣load_glove_model(glove_file)

Next, we create a function that returns the GloVe embedding of a given word if it exists,
and a 50-dimensional zero vector if not.

def␣glove_vectorize(word):

␣␣␣␣try:

␣␣␣␣␣␣␣␣vector␣=␣glove[word]

␣␣␣␣␣␣␣␣return␣vector

␣␣␣␣except␣KeyError:

␣␣␣␣␣␣␣␣return␣np.zeros(50)

Finally, we define a function that returns the GloVe sentence embeddings of a document:

def␣glove_matrix(document):

␣␣␣␣lines␣=␣document.splitlines()

␣␣␣␣matrix␣=␣[]

␣␣␣␣for␣line␣in␣lines:

␣␣␣␣␣␣␣␣if␣not␣line␣==␣"":

␣␣␣␣␣␣␣␣␣␣␣␣words␣=␣nltk.word_tokenize(line)

␣␣␣␣␣␣␣␣␣␣␣␣word_vectors␣=␣[glove_vectorize(word)␣for␣word␣in␣words]

␣␣␣␣␣␣␣␣␣␣␣␣sentence_vector␣=␣sum(word_vectors)␣/␣len(word_vectors)

␣␣␣␣␣␣␣␣␣␣␣␣#␣Only␣include␣the␣sentence-vector␣if␣it␣is␣non-zero

␣␣␣␣␣␣␣␣␣␣␣␣if␣np.count_nonzero(sentence_vector)␣>␣1:

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣matrix.append(sentence_vector)

␣␣␣␣return␣np.array(matrix)
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A.3 Metric on Text Embeddings

Here we define a function that calculates the pairwise angular distances between all
sentence vectors in a document embedding matrix. The input of the function is a
document embedding matrix A, whose i-th row in the matrix is the sentence vector xi

of the i-th sentence in a document. The output of the function is a matrix D whose
[i, j]-term is D(xi,xj) in the normalized angular distance metric.

import␣numpy␣as␣np

def␣angular_distance_matrix(A):

␣␣␣␣if␣A.ndim␣==␣1:

␣␣␣␣␣␣␣␣return␣np.array([0])

␣␣␣␣n_row,␣n_col␣=␣A.shape

␣␣␣␣#␣The␣matrix␣where␣the␣(i,j)-th␣entry␣is␣the␣dot␣product

␣␣␣␣#between␣row␣vector␣x_i␣and␣row␣vector␣x_j␣of␣A

␣␣␣␣K␣=␣A␣@␣A.transpose()

␣␣␣␣#␣The␣array␣where␣the␣i-th␣entry␣is␣the

␣␣␣␣#norm␣of␣the␣i-th␣row␣vector␣of␣A

␣␣␣␣normA␣=␣np.sqrt(np.diag(K))

␣␣␣␣#␣Smooth␣out␣by␣making␣zero-entries␣non-zero

␣␣␣␣normA[normA␣==␣0]␣=␣1e-10

␣␣␣␣#␣Tile␣the␣norms␣of␣A␣such␣that␣X_i␣*␣X_j␣is␣the␣matrix␣where␣the

␣␣␣␣#(i,j)-th␣entry␣is␣||x_i||*||x_j||

␣␣␣␣X_i␣=␣np.tile(normA,␣(n_row,␣1))

␣␣␣␣X_j␣=␣X_i.transpose()

␣␣␣␣#␣The␣(i,j)-th␣entry␣is␣the␣cosine␣similarity␣of␣x_i␣and␣x_j

␣␣␣␣cs␣=␣K␣/␣(X_i␣*␣X_j)

␣␣␣␣#␣Avoid␣potential␣numerical␣issues␣when␣using␣the␣arccos␣function

␣␣␣␣cs[cs>1]␣=␣1

␣␣␣␣cs[cs<0]␣=␣0

␣␣␣␣#␣Calculates␣the␣normalized␣angular␣distance␣matrix␣of␣A

␣␣␣␣D␣=␣2␣*␣np.arccos(cs)␣/␣np.pi

␣␣␣␣#␣Ensure␣that␣the␣diagonal␣is␣exactly␣zero

␣␣␣␣for␣i␣in␣range(len(D[0])):

␣␣␣␣␣␣␣␣D[i,i]␣=␣0

␣␣␣␣return␣D

A distance matrix D contains all information about the pairwise distances in a point
cloud representing a text, and therefore contains the necessary information to generate a
filtration of Vietoris Rips complexes, and calculate its persistent homology. Moving on,
these distance matrices will be used as input when applying TDA on text.
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A.4 SIF and SIFTS

Here we utilize the TDA-library gudhi to implement algorithms SIF and SIFTS introduced
by Zhu [27]. The input in these functions is a distance matrix D, and the output is a list
of persistence intervals representing the persistent homology of a given text.

import␣gudhi␣as␣gd

def␣SIF(D):

␣␣␣␣#␣Create␣a␣Vietoris␣Rips␣filtration␣for␣a␣distance␣matrix␣D

␣␣␣␣#␣with␣simplices␣of␣maximum␣dimension␣2.

␣␣␣␣VR_complex␣=␣gd.RipsComplex(distance_matrix␣=␣D)

␣␣␣␣filtration␣=␣VR_complex.create_simplex_tree(max_dimension␣=␣2)

␣␣␣␣#Calculate␣the␣persistent␣homology␣in␣dimensions␣0␣and␣1

␣␣␣␣persistence_intervals␣=␣filtration.persistence()

␣␣␣␣return␣persistence_intervals

def␣SIFTS(D):

␣␣␣␣#␣Create␣a␣copy␣of␣the␣distance␣matrix␣D

␣␣␣␣D_SIFTS␣=␣D.copy()

␣␣␣␣#␣Modify␣the␣the␣distance␣matrix␣by␣requiring␣that␣D(x_i,x_{i+1})␣=␣0

␣␣␣␣for␣i␣in␣range(len(D_SIFTS[0])-1):

␣␣␣␣␣␣␣␣D_SIFTS[i,i+1]=0

␣␣␣␣␣␣␣␣D_SIFTS[i+1,i]=0

␣␣␣␣#␣Create␣a␣Vietoris␣Rips␣filtration␣for␣a␣distance␣matrix␣D_SIFTS

␣␣␣␣#␣with␣simplices␣of␣maximum␣dimension␣2.

␣␣␣␣VR_complex␣=␣gd.RipsComplex(distance_matrix␣=␣D_SIFTS)

␣␣␣␣filtration␣=␣VR_complex.create_simplex_tree(max_dimension␣=␣2)

␣␣␣␣#Calculate␣the␣persistent␣homology␣in␣dimensions␣0␣and␣1

␣␣␣␣persistence_intervals␣=␣filtration.persistence()

␣␣␣␣return␣persistence_intervals
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A.5 Machine Learning Pipeline

We have now defined the SIF and SIFTS functions that return the persistence diagrams
in dimensions 0 and 1 for a given distance matrix D. The next step in the TDA based
classifier is to convert these persistence diagrams in a fixed dimension to persistence images,
which we implement using PersistenceImager in the library persim.

We begin by writing a function that restricts a list of persistence intervals to a specific
dimension, and converts these intervals to a format compatible with PersistenceImager.
In particular, we convert a list of Python tuples of the form (dimension, (birth, death)) to
a list with elements of the form [birth, death] in a fixed dimension:

from␣persim␣import␣PersistenceImager

#␣Returns␣a␣list␣of␣the␣persistence␣intervals␣in␣a␣fixed␣dimension␣n

def␣intervals_in_dimension(n,␣persistence_intervals):

␣␣␣␣list_bd␣=␣[]

␣␣␣␣for␣item␣in␣persistence_intervals:

␣␣␣␣␣␣␣␣if␣item[0]␣==␣n:

␣␣␣␣␣␣␣␣␣␣␣␣#␣Append␣elements␣of␣form␣[birth,death]␣to␣the␣new␣list

␣␣␣␣␣␣␣␣␣␣␣␣#␣Exclude␣potential␣intervals␣with␣infinite␣persistence␣in␣dim␣0,

␣␣␣␣␣␣␣␣␣␣␣␣#␣because␣they␣are␣incompatible␣with␣persistence␣images

␣␣␣␣␣␣␣␣␣␣␣␣if␣item[1][1]␣!=␣np.inf:

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣list_bd.append(list(item[1]))

␣␣␣␣return␣list_bd

For flexibility and generality in the final TDA classifier pipeline, we now define a function
text to matrix that returns the text vectorization function of a desired vectorization
model, ”tfidf”, ”sbert” or ”glove”:

def␣text_to_matrix(embedding):

␣␣␣␣if␣embedding␣==␣"tfidf":

␣␣␣␣␣␣␣␣return␣tfidf_matrix

␣␣␣␣elif␣embedding␣==␣"sbert":

␣␣␣␣␣␣␣␣return␣sbert_matrix

␣␣␣␣else:

␣␣␣␣␣␣␣␣return␣glove_matrix

We are now ready to define the function text to image transformer that transforms
an entire dataset of (lemmatized and preprocessed) text documents into a dataset of
persistence images, that will be used as input in a machine learning classifier. To support
experimentation with the parameters (such as image resoluton and vector embedding
model) in the TDA based classifiers, the function takes in multiple arguments, that are
explained in the comments of the code.
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def␣text_to_image_transformer(algorithm,␣embedding,␣dimension,␣sigma,␣grid_size):

␣␣␣␣'''

␣␣␣␣Returns␣a␣function␣transformer␣compatible␣with␣machine␣learning␣pipelines

␣␣␣␣in␣sklearn,␣that␣transforms␣an␣array␣of␣preprocessed␣text␣documents␣to␣an

␣␣␣␣array␣of␣corresponding␣persistence␣images,␣with␣user␣specified␣parameters

␣␣␣␣for␣a␣given␣embedding␣method.

␣␣␣␣PARAMETERS:

␣␣␣␣algorithm␣:␣{"SIF",␣"SIFTS"}

␣␣␣␣Choose␣which␣TDA-algorithm␣to␣apply␣on␣the␣text␣embeddings.

␣␣␣␣embedding␣:␣{"tfidf",␣"sbert",␣"glove"}

␣␣␣␣Selects␣which␣vector␣embedding␣method␣to␣use␣on␣the␣texts.

␣␣␣␣dimension␣:␣{0,␣1}

␣␣␣␣The␣dimension␣of␣the␣persistence␣diagram␣to␣generate␣a␣persistence␣image␣from.

␣␣␣␣sigma␣␣␣␣␣:␣float

␣␣␣␣The␣parameter␣sigma␣in␣the␣Gaussian␣distribution␣used␣in␣persistence␣images.

␣␣␣␣grid_size␣:␣int

␣␣␣␣Select␣persistence␣image␣resolution,␣which␣will␣be␣(grid_size␣*␣grid_size).

␣␣␣␣'''

␣␣␣␣#␣Define␣a␣function␣that␣transforms␣a␣text␣to␣a

␣␣␣␣#␣persistence␣image␣with␣desired␣parameters.

␣␣␣␣def␣text_to_image(text):

␣␣␣␣␣␣␣␣A␣=␣text_to_matrix(embedding)(text)

␣␣␣␣␣␣␣␣D␣=␣angular_distance_matrix(A)

␣␣␣␣␣␣␣␣if␣algorithm␣==␣"SIFTS":

␣␣␣␣␣␣␣␣␣␣␣␣intervals␣=␣intervals_in_dimension(dimension,SIFTS(D))

␣␣␣␣␣␣␣␣else:

␣␣␣␣␣␣␣␣␣␣␣␣intervals␣=␣intervals_in_dimension(dimension,SIF(D))

␣␣␣␣␣␣␣␣pimgr␣=␣PersistenceImager(pixel_size␣␣␣␣=␣1␣/␣grid_size,

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣birth_range␣␣␣=␣(0,␣1),

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣pers_range␣␣␣␣=␣(0,␣1),

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣kernel_params␣=␣{'sigma':␣sigma})

␣␣␣␣␣␣␣␣imgs␣=␣pimgr.transform(intervals)

␣␣␣␣␣␣␣␣imgs_array␣=␣imgs.flatten()

␣␣␣␣␣␣␣␣return␣imgs_array

␣␣␣␣#␣Define␣a␣function␣transforms␣an␣array␣of␣texts

␣␣␣␣#␣into␣an␣array␣of␣corresponding␣persistence␣images

␣␣␣␣def␣corpus_to_images(array):

␣␣␣␣␣␣␣␣return␣np.array([text_to_image(item)␣for␣item␣in␣array])

␣␣␣␣return␣FunctionTransformer(corpus_to_images)
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Conducting an experiment on the ChatGPT essay dataset may now look like the following.
For more details, we refer the reader to [18].

import␣xgboost␣as␣xgb

from␣sklearn.feature_extraction.text␣import␣TfidfVectorizer

from␣sklearn.pipeline␣import␣Pipeline

from␣sklearn␣import␣svm

from␣sklearn.ensemble␣import␣VotingClassifier

from␣sklearn.model_selection␣import␣cross_val_score

#␣Load␣the␣essay␣dataset

df␣=␣pd.read_csv("datasets/essays.csv")

#␣The␣training/testing␣inputs␣in␣the␣pipelines␣consists␣of␣lemmatized␣texts

X␣=␣df["text_lemmatized"].values

#␣Corresponding␣labels␣for␣each␣text.␣1␣for␣machine-generated,␣0␣for␣human-written.

y␣=␣df["label"].values

#␣Create␣TF-IDF␣and␣XGBoost␣based␣machine␣learning␣classifiers␣+␣an␣ensemble:

tfidf_transformer␣=␣text_to_image_transformer(embedding␣␣="tfidf",

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣algorithm␣␣="SIFTS",

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dimension␣␣=␣1,

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣sigma␣␣␣␣␣␣=␣.001,

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣grid_size␣␣=␣100)

#␣Make␣a␣TDA␣classifier␣on␣persistence␣images␣from␣TF-IDF␣embeddings

tfidf_model␣=␣Pipeline([("persistence␣images",␣tfidf_transformer),

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣("classifier",␣␣svm.SVC(probability=True))])

#␣Make␣a␣non-TDA␣classifier␣with␣XGBoost␣on␣TF-IDF␣unigrams␣and␣bigram␣features

xgboost_model␣=␣Pipeline([('tfidf␣features',

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣TfidfVectorizer(ngram_range=(1,2),min_df=5)),

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣('classifier',

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣xgb.XGBClassifier())])

#␣Make␣an␣ensemble␣of␣the␣two␣previous␣classifier␣models

ensemble␣=␣Pipeline([['ensemble',

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣VotingClassifier(voting="soft",

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣estimators=[("tfidf",tfidf_model),

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣("xgboost",␣xgboost_model)])]])

models␣=␣[tfidf_model,␣xgboost_model,␣ensemble]

names␣=␣["TF-IDF",␣"XGBoost",␣"TF-IDF/XGBoost␣Ensemble"]

#␣Evaluate␣the␣machine␣learning␣models␣using␣5-fold␣cross␣valuation

for␣i␣in␣range(len(models)):

␣␣␣␣model,␣name␣=␣models[i],␣names[i]

␣␣␣␣print(name)

␣␣␣␣scores␣=␣cross_val_score(model,␣X=X,␣y=y,␣cv=5)

␣␣␣␣print("Scores:",␣scores.round(3))

␣␣␣␣print('Cross␣Validation␣accuracy:␣%.3f␣+/-␣%.3f␣\n'

␣␣␣␣␣␣␣␣␣␣%␣(np.mean(scores),np.std(scores)))
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Running the code yields the following output:

TF-IDF

Scores:␣[0.804␣0.863␣0.88␣␣0.8␣␣␣0.88␣]

Cross␣Validation␣accuracy:␣0.845␣+/-␣0.036

XGBoost

Scores:␣[0.902␣0.941␣0.9␣␣␣0.88␣␣0.92␣]

Cross␣Validation␣accuracy:␣0.909␣+/-␣0.021

TF-IDF/XGBoost␣Ensemble

Scores:␣[0.902␣0.941␣0.94␣␣0.92␣␣1.␣␣␣]

Cross␣Validation␣accuracy:␣0.941␣+/-␣0.033
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A.6 TDA Pipeline Demonstration

Here we demonstrate the TDA pipeline on a document from the ChatGPT essay dataset.

Orignal Text:

In my opinion an important skill that a person should learn in order to be successful in
today’s world is to keep him updated in every field. It is said that knowledge is power.
Keeping oneself updated in this high speed, changing world is very important. Knowledge
is like a small drop in this vast ocean and there is no end for it. The more knowledge you
gain, the more you need.

One of the advantages of keeping oneself aware is that nobody can mislead you in anyway.
For example if you know the price of a car, you want to buy, would help you negotiate
more rather than just agree to the dealers price. Keeping ourselves updated also boosts
our confidence and also keeps us ahead in this competitive world.

We should develop this skill by listening to news, reading articles, learning new technologies.
In short we should always keep on increasing our knowledge. If we do this then rest of the
thing like wealth, fame, comforts will automatically come to us. Hence keeping yourself
updated is very important skill everybody should acquire in today’s world.

Preprocessed and Lemmatized Text:

opinion important skill person learn order successful today world keep updated every field
said knowledge power
keeping oneself updated high speed changing world important
knowledge like small drop vast ocean end it
knowledge gain need
one advantage keeping oneself aware nobody mislead anyway
example know price car want buy would help negotiate rather agree dealer price
keeping updated also boost confidence also keep u ahead competitive world
develop skill listening news reading article learning new technology
short always keep increasing knowledge
rest thing like wealth fame comfort automatically come u
hence keeping updated important skill everybody acquire today world
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Figure A.1: Output from applying SIFTS TF-IDF on the proprocessed lemmatized text.
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