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Abstract

This thesis is concerned with the spectral properties of quantum particles in fractal
potentials. Fractals are infinitely detailed systems that typically have non-integer
dimensions. The study of these systems is motivated both by natural occurrences
and possible experimental realizations of such potentials. Several spectral proper-
ties were considered for a total of thirty-three fractal potentials. Most properties
displayed unique physics due to the fractal character of the systems, but not all.

This thesis starts by providing a discussion on methodology and the combination of
concepts from measure theory and quantum mechanics. A highly efficient method
of generating fractals was developed and named the Method of Repeated Kronecker
Products. In this method, the fundamental properties of the generated fractal be-
come evident through what is referred to as the “generator” of the fractal. A method
for reducing the complexity of the Hamiltonian was also implemented leading to sig-
nificant improvements in performance.

The first property studied was the scaling of the ground state energies as the details
of the fractals were gradually increased. It was found that the scaling behaved as ex-
pected for a normal Euclidean object. That is, there were no observed consequences
arising from the fractal nature of the systems in these results.

Next, the conductances through the fractals were evaluated. The contribution to the
total conductance from the state at a given energy was considered. The conduct-
ances fluctuated rapidly when the energy was varied, and the conductances were
found to be multifractal. The conductances had dimensions (capacity dimensions)
equal to the fractal dimensions of the underlying potentials. These results show
a clear manifestation of the fractal nature in the physically observable quantities.
Furthermore, this property predicts that meaningful information can be determined
for an unknown fractal structure by a conductance experiment.

To better understand the observed conductance results, the localization of states was
considered. This was evaluated using the participation ratios of eigenstates in the
fractal potentials. The results fluctuated rapidly as a function of the eigenenergy,
and it was found that the participation ratios were also fractal with dimensions equal
to the fractal dimensions of the underlying potentials. This means that for a given
extended state in a fractal, there exists no neighborhood of stability in energy where
the state is guaranteed to remain extended. These fluctuations between extended
and localized states are thought to be the cause of the observed fluctuations in the
conductances.

Finally, the level spacing statistics were studied. It was found that the energy level
spacings of fractals with low internal connectivity followed decreasing power-law
distributions for small energy spacings. This corresponds to an increased likelihood
of finding closely spaced eigenvalues as compared to an open system. The result
does not correspond to a periodic, aperiodic or quasiperiodic system and seems not
to have a satisfactory explanation from random matrix theory. It is hypothesized
that the result is caused by frequent crossings of the energy levels, which is related
to the fluctuation between extended and localized states.
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Sammendrag

Denne avhandlingen omhandler egenskaper til kvantepartikler i fraktale potensialer.
Fraktaler er uendelig detaljerte systemer, som oftest med en dimensjon som er et
desimaltall. Motivasjonen bak å studere slike systemer kommer b̊ade fra natur-
lige forekomster av slike systemer og mulige eksperimentelle realiseringer. Flere
egenskaper ble vurdert for totalt trettitre fraktaler. De fleste egenskapene ga unike
resultater for fraktalene, men ikke alle.

Denne avhandlingen starter med en diskusjon om metodikk samt kombinasjonen av
konsepter fra målteori og kvantemekanikk. En svært effektiv metode for å generere
fraktaler ble utviklet og navngitt Kroneckerproduktmetoden. I denne metoden blir
de grunnleggende egenskapene til den genererte fraktalen synlige gjennom det som
blir kalt “generatoren” til fraktalen. En metode for å redusere kompleksiteten til
Hamilton-matrisen ble ogs̊a implementert, noe som førte til betydelige forbedringer
i ytelse.

Den første egenskapen som ble studert var skaleringen av grunntilstandsenergiene
etter hvert som detaljene i fraktalene økte. Skaleringen oppførte seg som forventet
for et normalt euklidsk objekt. Det var dermed ingen observerte konsekvenser som
følge av den fraktale naturen til systemene i disse resultatene.

Deretter ble ledningsevnene gjennom fraktalene vurdert. Bidraget til den totale led-
ningsevnen fra tilstanden med en gitt energi ble regnet ut. Ledningsevnene svingte
raskt da energien ble variert, og det bel vist at ledningsevnene var multifraktale.
Ledningsevnene hadde dimensjoner (Minkowski–Bouligand dimensjoner) lik frak-
taldimensjonene til de underliggende potensialene. Resultatene viser tydelig at de
fraktale egenskapene til potensialene fører til konsekvenser i de fysiske observerbare
størrelsene. Videre s̊a tilsier funnene at man kan hente ut informasjon fra en ukjent
fraktalstruktur ved en m̊aling av ledningsevnen.

For å forst̊a den observerte effekten bedre, ble lokaliseringen av egentilstandene
studert. Dette ble gjort ved å regne ut deltakelsesgraden av tilstander i de fraktale
potensialene. Resultatene svingte raskt som funksjon av egenenergiene, og det ble
vist at deltakelsesgradene ogs̊a var fraktale med dimensjoner lik fraktaldimensjonene
til de underliggende potensialene. Resultatene viser at for en gitt utstrakt tilstand,
s̊a finnes det ikke et omegn i energi der tilstanden garanteres å forbli utstrakt. Disse
svingningene mellom utstrakte og lokaliserte tilstander sees p̊a som årsaken til de
observerte svingningene i ledningsevnene.

Til slutt ble energiniv̊astatistikken studert. Det ble vist at energiniv̊aforkjellene til
fraktaler med lav grad av sammenkobling fulgte en avtagende potensfordeling for
små energiniv̊aforskjeller. Dette betyr at det er større sannsynlighet for å finne en-
ergier nærme hverandre enn det man ville forventet i et åpent system. Resultatet
avviker fra periodiske, aperiodiske og kvasiperiodiske systemer, og har tilsynelatende
ikke tilstrekkelig forklaring fra teorien om tilfeldige matriser. En hypotese er at
resultatet er for̊arsaket av en hyppig krysning mellom energiniv̊aene, som har sam-
menheng med svingningene mellom utrstrakte og lokaliserte tilstander.
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1 Introduction

This thesis is dedicated to the study of the spectral properties of quantum particles
in fractal potentials. The aim is to study correlations between the properties of the
fractals and the spectral properties of the confined particles. For this purpose, thirty-
three different fractals were studied. The inherent complexity of fractals makes
their study challenging, necessitating a partly theoretical approach informed by
measure theory. Furthermore, due to the intensive numerical computations involved,
computational efficiency plays an important role in this thesis. The analysis is
carried out in the context of low-energy quantum mechanics but is likely to have
applications in other fields as well.

1.1 A historical introduction to fractals

The term fractal was introduced relatively recently, in the 1980s, although the core
concepts have a longer history. Fractals are non-differentiable structures that can
be continuous and simply connected. This characteristic is one of the reasons why
the definition emerged only recently, as it required a revision in the understanding
of functions and sets.

Prior to the late 19th century, mathematicians were primarily concerned with the
countable, and the concept of “infinite” was more closely linked to philosophy than
to empirical science. However, an understanding of such functions and sets is a
prerequisite for the study of fractals. The existence of continuous, non-differentiable
functions was first demonstrated by K. T. W. Weierstrass in 1872 [Weierstrass (2013)
or Hardt (1916)]. Around the same time, George Cantor rigorously investigated the
infinite set in his 1874 paper [Johnson (1972)]. The example he provided of an
uncountable set with zero measure is now known as the Cantor set [Cantor (1883)].

During the mid-20th century, objects with non-integer dimensions began to gain
recognition in various branches of physics, often in connection with dynamics. One
of the most influential papers, titled Deterministic Nonperiodic Flow, was authored
by E. N. Lorenz in 1963 [Lorenz (1963)]. Lorenz demonstrated that a basic three-
dimensional system, created to simulate weather, exhibited chaotic behavior on an
attractor with a non-integer dimension1. Similar objects also emerged in quantum
physics, such as electrons confined in crystals exposed to a magnetic field [Hofstadter
(1976)].

The word fractal was introduced by B. B. Mandelbrot, known for his 1982 book
The Fractal Geometry of Nature. Mandelbrot argued that numerous natural pat-
terns, including coastlines, leaves, and lightning, were not merely more complex
than traditional geometry, but represented an entirely different level of complexity
[Mandelbrot (1982)]. Lorenz’s findings, which showed that a low-dimensional system
could exhibit such complexity, strongly supported this claim. These behaviors could
not be modeled using conventional geometric considerations in higher dimensions.
Instead, the behavior represented a new form of complexity altogether.

1Lorenz referred to this fractal object as a “strange attractor”.
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In some respects, the research of fractals can be viewed as a rebellion against con-
ventional calculus, whose central assumption is that objects appear smooth when
viewed at a sufficiently small scale. Mandelbrot pointed out that many natural pat-
terns, such as turbulent flows, ocean waves, and the shapes of leaves, coastlines, and
clouds, do not display this smoothness.

Fractals are frequently associated with self-similar objects, meaning they consist
of infinitely repeating versions of themselves. While these patterns are easier to
generate and analyze, the definition of a fractal does not impose such a requirement.
The focus on self-similarity is an attempt to maintain a sense of regularity in the
chaotic realm of fractals. This thesis will consider self-similar fractals for practical
reasons, hoping they depict some of the properties of more general fractals.

1.2 The physics of fractals

The following includes a discussion on the emergence of fractals in physics and a
brief introduction to the systems that will be considered in this thesis. Fractals
have been observed in numerous areas of physics and many modern technologies
have started to take advantage of these structures. The technological applications
include fractal antennas, used to pick up a spectrum of wavelengths [Azeez, Jabbar
and Wang (2016)]. Fractal surfaces are employed in the design of solar panels [Roe
et al. (2020)] and acoustic diffusers [Priyadarshinee, Lim and Lee (2018)] to increase
surface area. Fractals are also used in heat exchangers [Zhiwei et al. (2016)], in
micro-scale capacitors [Samavati et al. (1998)] and more.

Fractal structures frequently result from the time evolution of a quantity or bifurc-
ation in a dynamical system [Strogatz (2015), Chapter 12]. Fractals in dynamical
systems are therefore extensively examined in the field of chaos theory. Examples of
such fractals include those found in weather systems, chemical chaos, mechanically
forced double-well oscillations, and others. A particularly notable example is the
bifurcation diagram of the logistic map [Strogatz (2015)].

Quantum effects become important when applying fractals in for example solar
panels and micro-scale capacitors. One of the earliest emergences of a fractal within
quantum mechanics involved the spectral properties of a single electron confined in
a crystal subjected to a magnetic field [Hofstadter (1976)]. The resulting graph of
the band structure plotted against the flux forms a fractal pattern known as the
Hofstadter butterfly, as illustrated in Figure 1. The Hofstadter butterfly appears in
many physical systems, including solid-state physics [Dean et al. (2013)], optics [Ni
et al. (2019)], and ultra-cold atoms [Aidelsburger et al. (2013)].
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Figure 1: The band structure plotted against the flux 2πα for non-interacting elec-
trons in a two-dimensional periodic potential, such as a lattice of atoms. The res-
ulting energy level diagram is a fractal known as the Hofstadter butterfly.

Source: Hatsuda, Katsura and Tachikawa (2016).

Physics within such fractal structures exhibits several unique properties. Diffusion
in periodic fractals deviates from classical transport laws as seen for other periodic
systems [Havlin and Ben-Avraham (1987)], and the spectrum of fractals can be
defined on a Cantor set. Furthermore, it has been demonstrated that the conduct-
ance through certain fractal structures might be inherently linked to the non-integer
dimension of the object [van Veen et al. (2016)]. Even so, there is still much that
remains unknown about the properties of quantum particles in such systems.

One of the reasons why physics in fractals is not better understood is that the
study of these systems can be challenging. First of all, it is difficult to characterize
fractals and even define what they are. Furthermore, analytical methods often fail
for fractals due to irregular surfaces. Even in numerical methods, the infinite de-
tail of the systems complicates the discretization and frequently leads to a demand
for high-resolution computations that are numerically intensive. Moreover, as men-
tioned earlier, there is often an inherent connection between fractal structures and
a system’s dynamics, which exacerbates the computational evaluations.

Due to the above reasons, this thesis will be concerned with the properties of a single
quantum particle within highly self-similar, static fractal potentials. Although this
is still computationally intensive, it allows for relatively high-precision calculations.
Furthermore, studying quantum effects in fractals has become increasingly relevant
due to technological applications such as the aforementioned solar panels and micro-
scale capacitors. Finally, the choice is also motivated by the emerging possibility of
creating precise fractal structures down to the atomic level in laboratories. This has
been demonstrated by Kempkes et al. (2019) in their remarkable paper on “Design
and characterization of electrons in a fractal geometry”, see Figure 2.
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Figure 2: STM image of a physically realized Sierpinski Gasket, made up of carbon
monoxide. The indicated white scale bar is 2 nm. A colored version of the first
generation of the gasket is overlayed to assist visualization.

Source: Kempkes et al. (2019).

The objective of this thesis is to study the spectral properties of an ensemble of static
fractal potentials in the hope that the results convey general properties. Specifically,
the study will be carried out for the ground state energy of fractals at infinite
resolution, transport properties, the localization of states and level spacing statistics.

1.3 Overview

The thesis is structured as follows. The underlying theory which is relevant to the
thesis is presented in Sections 2 and 3. Section 2 discusses the characterization
of fractals, including measures of fractal dimensionality together with methods of
evaluating these. The section also introduces relevant concepts from measure theory,
but in-depth knowledge of these concepts is not necessary to follow the content of
this thesis. The discussion on underlying theory continues in Section 3. Here,
an introduction is given to computational methods and quantum mechanics. This
includes quantum transport theory as well as level spacing statistics and random
matrix theory. These discussions are preliminary to the methodology discussed later.

Sections 4 and 5 describe the core methodology used to evaluate different properties
of the fractals. In Section 4, the generation of the fractals is discussed along with
additional measures to characterize them. Properties of the fractals such as the
fractal iteration, connectivity and the minimal grid representations of the fractals
are covered. A custom method of generating the fractals using repeated Kronecker
products is presented. Section 5 deals with the evaluation of different spectral prop-
erties. First, the discretization of the eigenvalue problem is discussed together with
a method of dramatically reducing the size of the Hamiltonian for the considered
fractal systems. Next, the means of studying the scaling of the ground state energy
when approaching infinite fractal detail is considered. The numerical evaluation of
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conductance through a system is treated subsequently. Finally, details of evaluat-
ing the level spacing statistics of a system are given. This provides the tools for
evaluating the spectral properties of the fractals.

Results for the studied spectral properties together with discussions of these are
found in Sections 6−9. In Section 6, the results for the scaling of the ground state
energy when approaching infinite fractal detail are presented. The application of the
methodology is first demonstrated in detail for a particular fractal, namely the Sier-
pinski Carpet, before being applied to the other fractals. Finally, an interpretation
of the obtained results is included. The properties of conductance through a fractal
are discussed in Section 7. The calculation and interpretation of the results are car-
ried out in detail for two fractals; the Sierpinski Carpet and the Sierpinski Gasket.
Subsequently, the evaluation is done for the other fractals. Extra discussions on
the connectivity of the fractals, multifractal structures and a possible experimental
realization are included at the end of the section. Section 8 presents a study of local-
ized and extended eigenstates in fractals. This section serves as an extension of the
discussion of the results found for the conductances in Section 7. It also motivates
the study of the level spacing statistics of the fractals. Finally, the results from the
level spacing statistics of the fractals are presented and discussed in Section 9.

Closing remarks are found in Section 10. Here, a summary of the results is presented
together with a concluding discussion. The thesis ends with some reflections on the
work carried out and an outlook discussing potential further research in the field.

2 Underlying theory on fractals

This section contains discussions on measure theory and the characterization of
fractals. First, certain concepts from measure theory will be introduced briefly.
These concepts are introduced as a foundation for the discussion on dimensionality
and characterization of fractals in Section 2.2. However, a comprehensive under-
standing of these ideas is not required to follow the reasoning in Section 2.2. Section
2.3 further discusses the dimensional analysis of fractal objects. Finally, a mathem-
atical framework for generating fractals known as the Lindenmayer systems is given
in 2.4. This framework will be made use of but is not the one primarily employed
in this thesis.

2.1 Measure theory

Measure theory is a branch of mathematical analysis that deals with the quantific-
ation of size and volume in a rigorous and generalized way. In the following, certain
concepts from measure theory will be introduced. A full understanding of these
concepts will not be necessary to follow the reasoning of other sections.
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Metric space

The metric space is actually a concept from topology, which is a separate branch of
mathematics from measure theory, although the two are interconnected. A metric
space consists of a collection of elements, referred to as points, along with a notion
of distance between any pair of points, known as a metric [Sutherland (2009)]. In
mathematical terms, a metric space is represented by X and h, where X denotes
the set of points and h represents the distance function. The metric h must fulfill
the following set of properties:

• Non-negativity: h(x, y) ≥ 0.

• Identity of indiscernibles: h(x, y) = 0 if and only if x = y.

• Symmetry: h(x, y) = h(y, x).

• Triangle inequality: h(x, y) + h(y, z) ≥ h(x, z).

A metric serves as a generalization of the well-known concept of distance in Euclidean
space.

σ-algebra

This discussion is heavily based on the treatment of σ-fields in Chapter 2 of Prob-
ability and Measure 3rd ed. by Billingsley (1995) 2. In the field of measure theory, a
σ-algebra is a particular type of algebra for a subset of a given set. It is the collec-
tion of subsets from a set X that remains closed under specific operations, such as
taking the complement and creating countable unions and intersections. Formally,
a σ-algebra Σ of a set X is a collection of subsets of X that meet the following
criteria:

• Σ contains the empty set and X, i.e. {} and X ∈ Σ

• Σ is closed under complementation, i.e. if A ∈ Σ, then its complement AC ∈ Σ

• Σ is closed under countable unions: If A1, A2, A3, . . . is a sequence of sets in
Σ, then so is the union of the sequence A = A1 ∪ A2 ∪ A3 ∪ · · · ∈ Σ.

Together, a σ-algebra and a metric space, {X,Σ}, is frequently referred to as a
measurable space.

The power class P(X) is the largest σ-algebra [Billingsley (1995)]. The power class
is the set of all subsets of a given set X. It includes the empty set and the original
set itself.

2While Billingsley (1995) mainly addresses σ-fields, the closely related concept of σ-algebra is
used here [Billingsley (1995)].

6



The Carathéodory construction

Constantin Carathéodory first introduced the Carathéodory theorem in 1913 in his
book Vorlesungen über reelle Funktionen [Carathéodory (1913)]. The Carathéodory
construction refers to a method for constructing an equivalent measure on a larger
space based on a given measure in a smaller space [Tao (2011)]. Considering a set X
and a subset Y ⊆ X, and a measure h on Y , the Carathéodory theorem guarantees
the existence of a unique measure h̃ on the smallest σ-algebra containing Y , so that
h̃(A) = h(A) for all sets A in Y . The definition of a σ-algebra was provided earlier.

Formally, let X,Σ denote a measurable space as mentioned in the σ-algebra discus-
sion. Let Y be a subset of X, and h a measure on the σ-algebra ΣY of Y . The
objective is to identify a measure h̃ on the σ-algebra ΣX of X, such that for all A
in ΣY , h̃(A) = h(A). Carathéodory’s theorem claims that such a measure always
exists and is unique.

The Carathéodory construction serves as a method for assigning a measure to a
collection of subsets of a given set, based on the Carathéodory theorem. Let Y
represent a collection of subsets of the metric space X and h be a measure h : Y →
[0,∞]. Pick an arbitrary positive scalar value denoted by δ > 0. Assume that one
can find sets from our collection {Si} ∈ Y with diameters diam(Si) less than δ,
that cover the entire metric space X. Note that this implies that the sets Si are
nonempty, as they cover the metric space X. Next, assume that for all δ > 0, sets
Si ∈ Y can be found with measure h(Si) < δ, while maintaing that their diameter
diam(Si) < δ. In other words, these δ values can be made arbitrarily small. Now,
define the Carathéodory construction for values of δ > 0 and subsets of the metric
space A ⊆ X as follows:

h̃h,Yδ (A) = inf
{∑

h(Si) : A ⊆
⋃

Si, diam(Si) < δ, Si ∈ Y
}
. (1)

Note that the second assumption implies that h̃δh,Y (∅) = 0. This can be observed by
first noting that if A is the empty set, any collection of sets can cover A, particularly,
any one set in the collection {Si} is sufficient. So there is no practical restriction
of the set having to cover A. The measure becomes equivalent to the infimum of
h(Si), for Si whose diameter is smaller than zero. The second assumption says that
one can pick δ arbitrarily small, so the infimum is then simply zero.

2.2 Characterization of fractals

Mandelbrot argues that dimensionality is a vague and imprecise notion [Mandelbrot
(1982), Chapter The Idea of Dimension]. The original definition of a fractal encom-
passes various ideas of dimensionality as they are necessary to carry out a precise
discussion of fractals. A discussion of dimensionality and the features of fractals is
presented here. Preliminary concepts from measure theory can be found in Section
2.1. However, detailed knowledge of these concepts is not necessary to follow the
discussion.
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Lebesgue and Hausdorff dimensions

The Lebesgue covering dimension DL was first formulated using a brick wall analogy
[Mandelbrot (1982)]. When covering a two-dimensional Euclidean square with bricks
of arbitrarily small size, Lebesgue demonstrated that each brick must touch at least
three other bricks. In the same way, Lebesgue proved that when covering a DL-
dimensional cube, each brick, or open set, would need to be in contact with at least
DL + 1 other open sets. This results in an integer measure of dimensionality that
remains constant under continuous deformation of space [Edgar (2008)]. In other
words, it is invariant under homeomorphism. This concept of dimensionality will
also be referred to as the topological dimension.

Next, consider the Hausdorff dimension, represented by DH . Given a metric space
X as defined in Section 2.1, let P(X) := S : S ⊆ X be the set of all subsets of X,
where each subset is denoted S. Introduce a measure hq(S) = (diam(S))q, where
q is a positive and real number and diam denotes the diameter. Additionally, let
δ ∈ ⟨0,∞] be a number that will soon be forced to zero. Consider the Carathéodory

construction h̃
hq ,Y
δ (A), as outlined in Section 2.1. If this is unfamiliar, it is not

crucial; the physical relevance in the current context will be explained shortly. The
Carathéodory construction’s parameters include the bounding value δ, the quantity
to be measured hq, and a set F . A set A is taken as the variable. Applying the
Carathéodory construction from (1) to this system results in

Hq
δ(A) ≡ h̃

hq ,P(X)
δ (A) = inf

{∑
hq(Si) : A ⊆

⋃
Si, diam(Si) < δ, Si ∈ P

}
= inf

{∑
(diam(Si))

q : A ⊆
⋃

Si, diam(Si) < δ
}
,

(2)

where P(X) is the power class as given in Section 2.1.

Consider the physical interpretation of the measure in 2, that is, consider what
Hq

δ(A) measures. Given a smooth, well-behaved curve in R2, imagine covering the
object with small rings. One can choose the size of the rings freely, with the only
constraint that their diameter must be less than δ. For higher dimensions, the rings
are replaced by spheres. Next, compute the sum of the diameters of all these rings
covering the object. For q = 1, H1

δ(A) in 2 gives the minimal possible value of this
sum of diameters. The input set A is the spiraling curve. This is illustrated in
Figure 3a and Figure 3b. The figures also demonstrate the purpose of the confining
parameter δ. When δ is very large, the set of rings with the smallest total diameter
which covers the curve is, in this case, simply one large circle, as shown in Figure
3a. However, this captures the shape of the object very poorly. By reducing δ, the
rings are forced to fit the curve more accurately, as shown in Figure 3b. On the
other hand, changing q means taking the sum of the diameters to the power q and
minimizing this sum instead. Letting δ approach zero in the case of q = 1, one
would then get the length of the curve A. This is the next step, letting δ tend to
zero for an arbitrary q, one obtains the Hausdorff measure, given by

Hq(A) = lim
δ→0

Hq
δ(A) = supδ {δ > 0 : Hq

δ(A)} , (3)

where the last equality appears since Hq
δ(A) is strictly increasing as δ goes to zero.

This is because decreasing δ only further limits the choices of rings one can choose
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when minimizing the aforementioned sum. Finally, from this measure, the Hausdorff

(a) (b)

Figure 3: The Hausdorff measure of a spiraling curve for different values of δ. The
combination of circles that completely cover the object and has the smallest sum
of diagonals is chosen. This is done with the restriction that the individual circles
have diameters less than δ. The actual measure is obtained when letting δ → 0. (a)
When δ is large the combination of circles with minimum total diameter is trivially
one large circle. (b) For smaller δ the circles start to follow the shape of the curve
more closely.

dimension can be defined. In the case of the smooth curve, notice that when setting
q < 1 one obtains an infinite Hausdorff measure from 3. On the other hand, setting
q > 1 gives zero Hausdorff measure, while setting q = 1 one obtains a finite Hausdorff
measure. For a square, this transition occurs at q = 2. That is, the square has an
infinite length (q = 1), finite area (q = 2), and zero volume (q = 3). The positive
and real number q can also take on non-integer values. For a general object, the
Hausdorff dimension is defined by the q-value that marks this transition. For q < DH

the Hausdorff measure in 3 is infinite, for q = DH the measure is finite, and for
q > DH the measure is zero. That is,

DH(A) = inf {q ≥ 0 : Hq(A) = 0} = sup {q ≥ 0 : Hq(A) > 0} . (4)

Hausdorff dimension quantifies how much the measure of an object changes when
you rescale it.

The definition of a fractal

With the Lebesgue and Hausdorff dimensions defined, it is straightforward to repro-
duce the original definition of a fractal. However, this is not a unique or problem-free
definition.

First, observe that for smooth geometric shapes, DL = DH . However, while DL

must take integer values for all shapes, DH is not restricted to integers. In general,
the dimensional measures comply with

DH ≥ DL,
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as stated in Edgar (2008) theorem 6.3.10. Mandelbrot’s original definition of a
fractal is any set where

DH > DL, (5)

Mandelbrot (1982), Chapter Definition of the Term Fractal. It is important to note
that a fractal can have integer dimensionality, and its definition does not require
self-similarity.

Before continuing, it is worth mentioning that although (5) is the first definition
of a fractal, this definition has faced criticism from many, including Mandelbrot
himself. The definition excludes traditional, smooth geometric objects but does not
encompass all objects that one might intuitively consider fractals. The definition
appears to be sufficient but not necessary. For more information on this topic, see
Chapter Fractals (on the Definition of) in Mandelbrot (1982).

Similarity dimension

The formal definition of the Hausdorff dimension is often difficult to apply. However,
the more intuitive similarity dimension DS is sometimes a suitable alternative. Self-
similar objects are composed of multiple copies of themselves, scaled down by a
factor of 1/r. For instance, a Euclidean box with side lengths of 1 consists of four
smaller boxes with side lengths of 1/2. Of course, it also consists of nine smaller
boxes with side lengths of 1/3. This concept is illustrated in Figure 4, from Strogatz
(2015). After rescaling each side by a factor 1/r, let the number of new copies
obtained be denoted by m. The factor r will be referred to as the linear rescaling
factor, and m as the number of copies. Clearly, rescaling the box by a factor of 1/r
results in m = r2 new boxes. For a line, it yields m = r1 new lines, and for a cube, it
produces m = r3 new cubes. In general, a D-dimensional self-similar object rescaled
by a factor of 1/r can be said to create m = rDS new copies of itself. This measure
of dimensionality, called the similarity dimension DS, does however not have to be
an integer [Strogatz (2015)]. It can be calculated by

DS = logr(m) =
log(m)

log(r)
(6)

where r is the linear rescaling factor and m is the number of self-similar copies.
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Figure 4: The classical box is a perfectly self-similar object. It can be said to consist
of copies of itself scaled down to infinitely small sizes. Rescaling it by a factor 1/r
produces m = r2 copies.

Source: Strogatz (2015).

To understand the application of the similarity dimension, we must first define
the open set condition. The set of self-similar objects S0, . . . SN that make up, for
example, a fractal, satisfies the open set condition if and only if a non-empty open set
O exists such that Si(O) are pairwise disjoint and contained within O [Hutchinson
(1981)]. Explicitly written,

Si(O) ⊂ O ∀ i ∈ [0, N ] , and

Si(O) ∩ Si(O) = ∅ if i = j.
(7)

In other words, the open set condition can be described as necessitating that the
object is perfectly self-similar, meaning that the object is entirely covered by replicas
of itself without any overlap. Moreover, if a self-similar set satisfies the open set
condition, then the Hausdorff dimension DH is equal to the similarity dimension
DS [Hutchinson (1981)]. For perfectly self-similar fractals, this offers a convenient
method for calculating the Hausdorff dimension.

2.3 Quantitative analysis of fractal objects

Analytical evaluation of the dimensionality of an object is not always possible or
practical. In these cases, a variety of methods and measures can be applied. In
the following, one such method called the box-counting analysis will be treated.
Following this, a discussion on multifractals and a measure for this is included.

Box-counting analysis

The box-counting analysis provides a method for numerically estimating the fractal
dimension of an object when the similarity dimension is unavailable or the open set
condition is not satisfied. The obtained estimate for the dimension is called the box-
counting dimension or Minkowski–Bouligand dimension and will be denoted DBC .
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In the analysis, one divides an object into boxes of a certain size and counts the
number of boxes that are needed to cover the object [Falconer (2003), Chapter 2].
Next, the box size is varied and the new corresponding number of covering boxes is
counted. The relationship between the size of the boxes and the number of boxes
needed provides an estimate of the dimension of the object.

Let h(ϵ) be the number of boxes of size ϵ needed to cover the object. For an infinitely
detailed system, the box-counting dimension is then given by

DBC = − lim
ϵ→0

log(h(ϵ))

log(ϵ)
. (8)

This is the case for an infinitely detailed system. However, in numerical calculations,
one typically has objects represented by a finite collection of discrete points, and
therefore does not want to evaluate the dimension at ϵ → 0 as this would yield
imprecisions due to the finite sampling of the object.

In a discrete system, three regions are expected to appear as shown in Figure 5. Note
that Figure 5 is a log-log plot and that the leftmost part of the figure corresponds to
large boxes, and they become gradually smaller towards the right. When the boxes
are very large, farthest to the left in Figure 5, the entire object will be covered by
a single box, that is h(ϵ) = 1 and log(h) = 0. If the box size is gradually reduced
then two boxes will eventually be needed, but the two will at first overcover the
object. As one then slightly reduces the box size further, two boxes will still be
sufficient and the number of boxes won’t change. This leads to the plateaus seen
to the left in Figure 5. Furthermore, in this region, every box present is highly
likely to be occupied. Due to this, the box-counting method is expected to always
yield the topological dimension of the object, even if the object has a smaller fractal
dimension. This is simply because when the boxes are large enough, they will all
be filled, and the details of the system are not recovered. The fractals studied here
have a topological dimension of 2, and it is therefore expected that the box-counting
analysis gives a slope equal to 2 in the left-most region.

On the other hand, if the boxes become too small, the resolution of the object that
is being sampled will start affecting the results. At some point, each box has either
1 or 0 discrete points inside it. Reducing ϵ and thereby adding more boxes will thus
not increase h(ϵ). This leads to the asymptotic tail of slope equal to 0 to the right in
Figure 5. This only occurs in a discrete system, and shows why one does not want
to consider (8) for too small ϵ in such systems.

In between these two regions, a scaling region is found, where the number of boxes
needed to cover the object goes as h(ϵ) ∝ ϵ−DBC , where it is expected that DBC =
DH . The power law scaling is seen as a straight line in the log-log graph in Figure
5. For a finite system, one measures this slope inside the scaling region to get an
estimate of the box-counting dimension of the system DBC . The object must be
represented by a sufficiently large amount of points in order to get accurate results
from the box-counting method. The box-counting dimension is equal to 1 for a
regular one-dimensional line and 2 for a two-dimensional system when sampled to
sufficient precision.
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Figure 5: Box-counting analysis performed on a regular two-dimensional box. The
procedure yields the expected dimension DBC = 2.

It is worth noting that it is sometimes not trivial to determine the scaling region
[Jiang and Liu (2012)]. As mentioned above, the plot is expected to have a slope
equal to 2 (the topological dimension) for large boxes, and 0 for very small boxes.
Distinguishing true scaling from edge effects can be challenging, and this presents a
limitation for the box-counting analysis.

Multifractal analysis

In some cases, a system is characterized by more than one fractal dimension. While
simple fractals are typically self-similar at all scales, multifractals are characterized
by having a more complex internal structure, showing different scaling behavior
at different locations or for different moments [Falconer (2003), and Budroni, Bar-
onchelli and Pastor-Satorras (2017)]. Different measures of multifractals can be
defined, see Falconer (2003), Chapter 17. This discussion will be concerned with
the generalized dimensions or Renyi dimensions, D(q), as discussed by Budroni,
Baronchelli and Pastor-Satorras (2017). The theory behind this measure was first
introduced by Rényi (1961) in his article On Measures of Entropy and Information.

The core idea behind the generalized dimension is to study the scaling behavior
of different statistical moments in the fractal. The definition of the generalized
dimension reads

D(q) =
1

q − 1
lim
ϵ→0

log(hq(ϵ))

log(ϵ)
, (9)

Budroni, Baronchelli and Pastor-Satorras (2017). The measure hq(ϵ) will be ex-
plained in the following. Equation (9) bears similarity to (8), and the method can
be thought of as a generalization of the box-counting analysis. The studied object is
again covered by boxes of a given size. This time, however, a measure is evaluated
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for each box. The measure can for example be the number of data points that fall
into the box3. This yields a matrix, or a heatmap, where each element represents
the measure evaluated for a particular box. The heat map is normalized to have
a total sum of elements equal to 1, and the elements are then raised to a power
q. After this, the elements are summed. Call this sum hq(ϵ), where ϵ refers to the
box size used. The procedure is repeated for several box sizes. A scaling analysis is
carried out equivalent to the one depicted for the box-counting analysis in Figure 5,
comparing the value of hq(ϵ) to the size of the boxes used ϵ while keeping q fixed.
The scaling follows a power law with an exponent τ . Once again, by using a log-log
plot, the value of τ is easily measured as the slope of the obtained straight line. This
procedure is then repeated for different exponents q. For varying ϵ and q, one then
has the scaling

hq(ϵ) ∝ ϵ−τ(q), (10)

where the function τ(q) gives the slope of the scaling when changing box sizes for a
certain exponent q. Next, notice that

hq(ϵ) ∝ ϵ−(q−1)D(q). (11)

Combining (10) and (11) yields a method for numerically estimating D(q), writing

D(q) =
1

q − 1
τ(q). (12)

In this analysis, one recovers the regular box-counting dimension in the case of q = 0.
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Figure 6: The generalized dimension D(q) is plotted against moments q between
−0.2 and 2.5 for the Sierpinski Gasket and the Henon map. The results are vertically
adjusted to cross the horizontal axis at the center of the plot. For monofractals,
the generalized dimension has a weak dependence on q, exemplified here using the
Sierpinski Gasket. For multifractals, on the other hand, the generalized dimension
depends strongly on the moments q, as is demonstrated by the Henon map.

3The partition function is a usual choice of measure. For a continuous system, the length of
the curve within the box can be used.
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A non-fractal, Euclidean object is expected to have a constant generalized dimen-
sion D(q) = D. The generalized dimension of a simple fractal characterized by a
single fractal dimension is expected to be almost constant. However, a slow de-
crease in D(q) as the exponent q increases is expected. Such structures are called
monofractals. On the other hand, the generalized dimension of a multifractal has
a much stronger dependence on q, decreasing much faster. The results of a mul-
tifractal analysis are demonstrated for a monofractal named the Sierpinski Gasket
and a multifractal named the Henon map in Figure 6. The Sierpinski Gasket will be
discussed in greater detail in later sections. In the figure, the generalized dimensions
D(q) of both systems are adjusted vertically to intersect the horizontal axis at the
center of the plot. This is done to help illustrate the difference between the vari-
ation in D(q) in the two cases. Clearly, the generalized dimension varies strongly in
the case of the multifractal Henon map as compared to the monofractal Sierpinski
Gasket.

When the value of the exponent q is large, the dense regions of the fractals will
dominate. This is because the measure hq(ϵ) becomes very large in these regions for
large exponents. This means that the values of D(q) to the right in Figure 6 reflect
the dimension and scaling properties of the densest regions of the object. On the
other hand, setting q small, and particularly q < 0, would make the dilute regions
more dominant.

Finally, in the context of multifractal analysis, D(q = 0) is referred to as the capacity
dimension and is equal to the box-counting dimension. Furthermore, D(q = 1) is
the information dimension and D(q = 2) is the correlation dimension.

2.4 Lindenmayer systems

A Lindenmayer system, or L-system, is a mathematical framework made by A.
Lindenmayer in 1962 to model biological systems [Lindenmayer (1968)]. It is an
iterative procedure and was first applied to generate the shapes of plants, but it
is useful for other self-similar systems as well, including self-similar fractals. An
L-system comprises a set of symbols, for instance, the symbols F,G. Additionally,
a set of transformation rules are specified, like F → G and G→ FG. An axiom, or
starting point, is established, and the rules are applied iteratively. With the axiom
set to F , the initial few iterations of the described system would be

F → G→ FG→ GFG→ FGGFG→ ...

Typically, F and G are interpreted as specific geometric shapes, such as straight
lines with lengths LF and LG. The generated string, here FGGFG, then forms a
set of construction. Starting from the right, one draws the given instructions. This
results in a pattern that expands with each iteration, here it would simply be a
growing straight line.

By convention, several standard symbols are normally used. Typically, + and −
correspond to counterclockwise and clockwise rotations, respectively. Furthermore,
[ is understood as saving the current location and orientation when drawing shapes,
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while ] is interpreted as loading the last stored location and orientation. In this way,
a string segment, or instruction segment, enclosed in brackets will not impact the
next commands in the rest of the string.

Consider a more advanced example of an L-system. Set the axiom to F , and the
angle applied by + and − to 22.5◦. Then, define the rules

F → G[−F ][F ]G[−F ] +GF,

G→ GG.

Starting with the axiom and applying the rules repeatedly produces a rapidly grow-
ing set of instructions. Now, interpret both F and G as straight lines of equal length.
The obtained structure is shown in Figure 7. This example shows why this model
is used to describe biological systems. The framework illustrates how the repeated
application of simple rules can generate large-scale structures with intricate details
and a high degree of self-similarity. L-systems can be utilized to generate fractals.
This also gives insight into why biological structures from for example cell division
or branching processes often appear fractal.

Figure 7: The first few iterations of the described Lindenmayer system. The system’s
application to the modeling of biological structures becomes evident as the iteration
increases. In the described system, the G -values become branches that grow for
each iteration. The F -values appear as leaves and indicate where the next branches
should emerge.

3 Underlying theory on computational quantum

mechanics

This section treats theory from computational quantum mechanics. It starts by
introducing elementary means of discretizing and numerically evaluating systems.
Next, basic concepts from quantum mechanics are reviewed in Sections 3.3 and
3.4. Following this, the scattering theory of transport is discussed. Finally, random
matrix theory and level spacing statistics in quantum systems are considered in
Section 3.6.
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3.1 Computational methods

The primary focus of computational calculus involves evaluating derivatives and
integrals [Sauer (2011)]. Numerical approximation of differentiation can be achieved
using finite difference formulas. From the definition of a derivative one can obtain
the two-point forward-difference formula, namely

df(x)

dx
=
f(x+ d)− f(x)

d
− d

2
f ′′(c), (13)

where d represents the stepsize, and c is a value between x and x+d. A very common
approximation is the three-point compact stencil, which can be expressed as

df(x)

dx
=
f(x+ d)− f(x− d)

2d
− d2

6
f ′′′(c). (14)

As the stepsize d tends to zero, the first term of both (13) and (14) converges to the
exact derivative. However, the convergence is faster in the latter case, as can be seen
from the error terms square dependence on stepsize d. For the second derivative,
the same approach results in

d2f(x)

dx2
=
f(x− d)− 2f(x) + f(x+ d)

d2
− d2

12
f (iv)(c). (15)

Retaining only the first term provides an approximation of the second derivative.
When extended to two dimensions, the expression becomes

∆f(x, y) ≈ f(x− dx, y)− 2f(x, y) + f(x+ dx, y)

d2x

+
f(x, y − dy)− 2f(x, y) + f(x, y + dy)

d2y
.

(16)

Discretize the system onto a gridG consisting of Nx×Ny uniformly spaced sites over
the dimensions Lx and Ly. The discretization of coordinates x and y are represented
by x̃ and ỹ. For a one-dimensional derivative along the x-coordinate, the function
f(x) can be approximated by a vector f̃(x) ≡ f(x̃) with Nx elements. The Laplacian
in equation (15) then becomes an Nx ×Nx matrix and can be written as

∆x ≈ 1

d2x


−2 1 0 0 0
1 −2 1 0 . . . 0
0 1 −2 1 0

...
. . . 0

0 0 0 0 1 −2

 , (17)

assuming open boundary conditions. For the two-dimensional derivative in x and
y, the approximated function f̃(x, y) ≡ f(x̃, ỹ) becomes an Nx × Ny matrix. The
Laplace operator can be expressed as a tensor with the shape Nx ×Ny × (Nx ·Ny).
Alternatively, the state f̃(x, y) can be redefined as a one-dimensional vector f̃(r)
with Nx · Ny elements. Here, r is determined by an enumeration I : G → N,
given by ri,j = xi · Nx + yj. The corresponding Laplacian would then have the
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form (Nx · Ny) × (Nx · Ny). In the case of non-periodic boundary conditions, the
two-dimensional Laplace operator would have the form

∆x,y ≈


− 2

d2x
− 2

d2y

1
d2x

. . . 1
d2y

. . .
1
d2x

− 2
d2x

− 2
d2y

1
d2x

. . . 1
d2y

. . .

. . .

. . . 1
d2y

. . . 1
d2x

− 2
d2x

− 2
d2y

 . (18)

Here, the first off-diagonal elements are zero for every Nx’th value. The two-
dimensional Laplace operator in equation (18) can be more conveniently expressed
using a Kronecker sum of two one-dimensional Laplace operators [Brewer (1978)].
The Kronecker sum for two matrices of the same size, M1 and M2, is given by

M1 ⊕M2 =M1 ⊗ 1+ 1⊗M2, (19)

where 1 represents the identity matrix with the same dimensions as M1 and M2

[Brewer (1978)]. Employing this approach, the Laplace operator of a two-dimensional
system, ∆x,y, can be expressed using the Laplace operators for individual one-
dimensional systems, ∆x and ∆y. This is explicitly written as

∆x,y = ∆x ⊕∆y = ∆x ⊗ 1+ 1⊗∆y. (20)

Boundary Conditions

Boundary conditions for a general partial differential equation can be either Neu-
mann or Dirichlet conditions. Dirichlet conditions involve setting the boundary
points to known values, while Neumann conditions involve setting the derivatives.
These boundary conditions can be expressed generally as

u = gD (Dirichlet) or
∂u

∂n
= gN (Neumann) on δΩ (21)

where gD and gN can be functions of x and y. The normal direction, ∂
∂n
, is typically

chosen to point away from the domain.

3.2 Error evaluation methods

The error evaluation methods included here are related to the propagation of error
in products and chi-squared error approximation.

Error propagation

Consider a function z(x1, x2, x3...) represented as the product z(x1, x2, x3...) = xl1 ·
xm2 · xn3 ..., where x1, x2, x3... are variables with uncertainties δx1, δx2, δx3.... The
uncertainty in z can then be expressed as

δz

z
= |l|δx1

x1
+ |m|δx2

x2
+ |n|δx3

x3
. . . , (22)

from Adams (2013).
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Chi-square error approximation

The chi-square error approximation is a method employed in interpolation to estim-
ate the error between a collection of data points and a function that approximates
these data points. Let (xi, yi) denote the observed data points, (xi, f(xi)) represent
the value of the function at that point, and σ2

i be the variance of the data point.
The chi-square error can then be formulated as

χ2 =
k∑

i=1

(yi − f(xi))
2

σ2
i

, (23)

where the sum extends over all k data points [Press et al. (2007)].

3.3 Quantum theory

Quantum theory postulates that for any observable physical quantity q, there ex-
ists a corresponding operator Ô [Hemmer (2005)]. Furthermore, measurements of
the observable can only produce values that are eigenstates of this corresponding
operator, qi. The eigenvectors of the problem are the projections of the system’s
state wave function, Ψ(r, t), onto the space associated with the operator. The wave
functions Ψ(r, t) are the eigenstates of the Schrödinger equation. The postulates of
quantum theory further say that the wave function Ψ(r, t) completely characterizes
the system’s state. In terms of mathematics, Ψ(r, t) exists in a Hilbert space, with
its dimension equaling the number of potential states the system can attain through
measurement, which is frequently, but far from always infinite. This is expressed in
the Schrödinger equation given by

iℏ
∂

∂t
|Ψ(r, t)⟩ = Ĥ |Ψ(r, t)⟩ . (24)

Here, Ĥ represents the energy operator, also known as the Hamilton operator, or
Hamiltonian from its classical counterpart. The allowed energies and states of the
system are the eigenvalues and eigenstates of Ĥ, and the Schrödinger equation gives
their time-evolution. The Hamiltonian is defined as

Ĥ =
P̂ · P̂
2m

+ V (r, t), (25)

where the initial term corresponds to the system’s kinetic energy, and the second
term represents potential energy. P̂ is the kinetic momentum operator. When the
potential is time-independent, i.e., V (r, t) = V (r), the equation can be solved using
separation of variables. Setting |Ψ(r, t)⟩ = ξ(t) |ψ(r)⟩, we obtain

iℏ
∂

∂t
ξ(t) = Eξ(t),

Ĥ |ψ(r)⟩ = E |ψ(r)⟩ .
(26)

The first equation in (26) has the solution ξ(t) = e−iEt/ℏ, with the integration
constant set to zero. The second equation in (26) represents the time-independent
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Schrödinger equation. For the systems under consideration, the kinetic momentum
operator P̂ in (25) is −iℏ∇, and the Hamiltonian is time-independent. This results
in

Ĥ = − ℏ2

2m
∇2 + V (r). (27)

3.4 Matrix formulation of quantum operators

Let us examine the time-independent Schrödinger equation as shown in (26). As-
sume that |ui⟩ constitutes a full set of orthonormal basis vectors, allowing the sys-
tem’s wave function to be expanded within these basis states, as

|ψ⟩ =
∑
i

|ui⟩ . (28)

For a quantum mechanical operator Ô, the operator’s expectation value is expressed
by 〈

Ô
〉
= ⟨ψ| Ô |ψ⟩ , (29)

[Hemmer (2005)]. Expanding the wave function results in〈
Ô
〉
=

∑
i,j

Oij, where (30)

Oi,j = ⟨ui| Ô |uj⟩ . (31)

In this context, Oi,j is known as the matrix element, and the expectation value can
be written in its expanded form as

〈
Ô
〉
=


O1,1 O1,2 . . . O1,N

O2,1 O2,2
...

. . .

ON,1 ON,N

 . (32)

3.5 Quantum transport theory

Transmission through a medium is evaluated using the quantum scattering theory of
transport and the Landauer-Büttiker formalism. This is then used to derive current
and conductance. The theory was first put forward by Rolf Landauer in 1957 [Land-
auer (1957)], and further developed by Markus Büttiker in 1988 [Büttiker (1988)].
The formalism is well-suited for the study of mesoscopic and nanoscale systems,
where the dimensions are comparable to the electron wavelength, and quantum ef-
fects become significant. An alternative approach could use Green’s functions, how-
ever, the theories are equivalent and related through what’s known as the Fisher-Lee
relation [Datta (2005) ch. 9, and Datta (1995) ch. 3].
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Figure 8: One-dimensional scattering process. An incoming wave scatters against
a potential of a finite extent. A part of the wave is reflected, creating interference
with the incoming wave, while the rest is transmitted. The regions before and after
the potential are referred to as leads or reservoirs.

Consider a one-dimensional system where an incoming plane wave scatters against
a region of finite potential. For convenience, assume that the potential V (x) is
independent of time, although it is straightforward to include time dependency. The
potential V (x) is greater than zero in the domain x ∈ (0, D), and zero otherwise.
The system is depicted in Figure 8. This system will be treated with a basis in
the approach of Datta (1995). An equivalent derivation holds for higher dimensions
with only small adjustments. See Chapter 3 of Datta (1995) for more details.

Scattering

Some of the incoming wave in Figure 8 is transmitted, while the rest is reflected.
The wave function describing the quantum particle to the left of the potential is
then given by

ψL(x) = eikx + re−ikx. (33)

The first term is the incoming plane wave, and the second term arises from the part
reflected by the potential. In principle, the weights in front of both terms could
be solved generally. Here it is however imposed that the coefficient in front of the
incoming wave should be 1, and we’re solving for the corresponding r. In the region
of finite potential, the state is given by the time-independent Schrödinger equation
(26). Lastly, after the scattering region, the transmitted wave function is given by

ψR(x) = teikx, (34)

where the superscript refers to this being to the right of the scattering region in the
depicted system. The two regions before and after the scattering region are referred
to as leads or reservoirs.

Solving the Schrödinger equation

The system will now be solved for the leads, the scattering region and the boundary
layers between them. First, insert the a plane wave ψ(x) = eikx into (26) with
V = 0, yielding

E(k) =
ℏ2k2

2m
(35)
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This is then the dispersion relation for the one-dimensional wire in the leads. The
solution within the scattering region will depend on the exact potential V (x), and
we write this simply as ψinside(x). Finally, consider the boundary layer between the
scattering region and the leads. Matching the wave functions and derivatives at the
transitions yields

ψ(0−) = ψ(0+) → 1 + r = ψinside(0)

ψ(L+) = ψ(L−) → t = ψinside(L)

dψ(x)

dx

∣∣∣
x=0−

=
dψ(x)

dx

∣∣∣
x=0+

→ ik · (1 + r) =
dψinside(x)

dx

∣∣∣
x=0

dψ(x)

dx

∣∣∣
x=L+

=
dψ(x)

dx

∣∣∣
x=L−

→ ik · t = dψinside(x)

dx

∣∣∣
L=0

(36)

The system is then solved for the state vector.

Solving this system yields values for r and t. Next, consider sending a wave through
the potential in the opposite direction. That is, from right to left in Figure 8.
This gives transition- and reflection amplitudes r′, t′. The results are conveniently
combined in the scattering matrix, given as

S =

[
r t′

t r′

]
. (37)

Particle current

In order to find physical observables, start by considering the particle current. For
non-relativistic systems, the probability current associated with a wave function is
given by

J =
ℏ

2mi

[
ψ∗(x)

∂

∂x
ψ(x)− ψ(x)

∂

∂x
ψ∗(x)

]
(38)

see Hemmer (2005) or another elementary textbook on quantum mechanics. Equa-
tion (38) can be evaluated for each lead by inserting ψL(x) and ψR(x). For the right
lead, ψR(x) = teikx, and (38) becomes

JR =
ℏk
m

|t|2. (39)

Next, define the velocity v(k) as ℏv(k) ≡ ∂
∂k
E(k). In higher dimensions, the currents

and velocities are vectors. Making use of the dispersion relation in (35), this yields
v(k) = ℏk/m, and (39) can be rewritten as

JR = |t|2v(k) (40)

Equation (40) is often found written as J = n · v(k), where n refers to the particle
density, here simply |t|2.

Next, inserting ψL(x) = e−ikx + reikx into (38) and making use of the same velocity
yields

JL =
(
1− |r|2

)
v(k) (41)
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for the left lead.

Conservation of current dictates that the incoming and outgoing current in the
system must be equal, giving

1− |r|2 = |t|2 = |t′|2 = 1− |r′|2 (42)

This is equivalent to stating that the scattering matrix in (37) is unitary, SS† = 1.
This means that the scattering matrix conserves amplitudes through time evolution,
which is a general criterion for all quantum mechanical operators [Hemmer (2005)].
However, it is worth mentioning as a sidenote that although the total system always
needs to be unitary, non-unitary operators are commonly found in the literature
on quantum transport. These typically appear in the context of dissipation and
decoherence. The implication is then made that one is considering a particular
subsystem, which in itself is non-unitary. For example, a lab setup that is influenced
by human measurements. However, such a system must then be coupled to an
external system through collapse operators. In the case considered in this thesis,
the scattering matrix is unitary itself.

Physically observable quantities

The particle current in (38) only describes the flow of particles per quantum state,
which is unsuited for measurements in the lab. However, the real electrical current
can be calculated from this in just a few extra steps. First, consider the average
current produced by a single state i. This must be given by the charge of the
carrier q, times the probability current of the state J , multiplied by the probability
of the state being occupied. For electrons, the charge q = −e and the probability
distribution is given by the Fermi-Dirac distribution f(E) [Hemmer (2005)]. Finally,
the probability current J is given by (38). In order to obtain the observable electrical
current, one needs to fill the states up to the Fermi level and integrate over all
momentum of incoming states k. This yields

I = −2e

ℏ

∫
dk

2π
J · f [E(k)], with

f(E) =
1

e(E−µ)/kT + 1
,

(43)

where the factor 2 is included to account for spin degeneracy. Apply (43) for the
left and right leads separately, with different particle currents and Fermi-Dirac dis-
tributions, giving

I =
2e

ℏ

∫
dk

2π
v(k)

{(
1− |r|2

)
fL[E(k)]− |t|2fR[E(k)]

}
, with

fL[E(k)] =
1

e(E(k)−µL)/kBTL + 1
, and fR[E(k)] =

1

e(E(k)−µR)/kBTR + 1
.

(44)

In one dimension, the velocity is the inverse of the density of state, dk/dE. Use this
to rewrite the integral to run over energy instead. Next, set 1− |r|2 = |t|2 yielding
the Landauer formula, namely

I =
2e

h

∫
dE|t|2

{
fL[E(k)]− fR[E(k)]

}
. (45)
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At zero temperature, the Fermi-Dirac distributions become step functions given by
f [E(k)] = 1 for E(k) < µ (the Fermi energy) and f [E(k)] = 0 for E(k) > µ. This
is because at zero temperature all states up to the Fermi energy are occupied and
all states above it are empty. Consider a small deviation from the Fermi energy in
each lead, writing the chemical potentials as µL = EF +eV/2, and µR = EF −eV/2.
This gives a slight difference in the Fermi energy levels, creating a voltage bias V
across the system. Energies below µR or above µL do not contribute to the current in
(45) since the differences between the Fermi-Dirac distributions fL[E(k)]−fR[E(k)]
are zero. The integral over energy in (45) therefore becomes an integral from µR

to µL. Putting this together, in the zero-temperature limit, the current expression
simplifies to

I =
2e

h

∫ µL

µR

dE|t(E)|2. (46)

Finally, assume that the transmission probability |t|2 does not change much over the
energy range from µR to µL and that it can be approximately evaluated at the Fermi
level EF . Pulling |t|2 out of the integral leads to the Landauer formula, namely

I =
2e

h
|t(EF )|2eV =

2e2

h
|t(EF )|2V. (47)

This is the Ohmic behavior expected in the linear response regime and provides a
good approximation provided that the applied voltage is small enough and the tem-
perature is low enough. From the Ohmic relation I(E) = g(E)V , the conductance
is then given by

g(EF ) =
2e2

h
· |t(EF )|2 = G0|t(EF )|2. (48)

Note that this is the conductance from the eigenstate at energy EF , and it will be
evaluated for varying EF . This is sometimes called the conductance fluctuations or
the differential conductance. This differs from the total conductance, often denoted
G(E) and given as

G(E) =

∫ E

0

g(E)dE

where all the conducting states up to the desired energy are integrated.

From (48) one can observe a general property, namely that the maximum conduct-
ance through one channel connecting two leads is given by q2/h [Datta (2005)].
This can be seen by realizing that the factor |t|2 can take a maximum value of
1, and that there are in fact two channels available in the discussed system, one
for each electron spin configuration, yielding the factor of 2 in (48). The factor
G0 = 2e2/h ≈ 7.75× 10−5S is called the conductance quantum.

In real systems, one can have multiple different modes in the leads. Even if the leads
are 1D wires, there are different modes available at different energies. These modes
can be thought of as different energy channels available for transport, and each of
these modes has its own transmission probability. Label the incoming modes k and
the outgoing l, and the left lead by L and the right lead by R. Instead of a single
transmission probability t as in (48), one now has a scattering matrix S, where each
element Sk,l gives the amplitude for an electron to scatter from mode k to mode l.
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To get total conductance from the left lead to the right lead, one then sums over all
incoming and outgoing modes, giving

g(E) =
2e2

h

∑
k∈L, l∈R

|Sk,l|2. (49)

The method described here holds for coherent transport. This is the case when the
objects that the wave scatters against can be considered constant and unaffected by
the impact. On the other hand, if an incoming electron scatters against a crystal
structure, causing the atoms to oscillate significantly, the transport is not coherent.

3.6 Level spacing statistics and random matrix theory

Random matrix theory (RMT) is a mathematical framework initially introduced by
Eugene Wigner to model the energy levels of heavy atomic nuclei [Wigner (1955)]. In
particular, RMT states that the level spacing statistics of randommatrices will follow
predictable distributions depending on the matrices’ symmetries. By classifying the
properties of these random matrices, one can predict results for physical systems
with the same symmetries. Much of the mathematical framework in the field was
developed by Madan Lal Mehta [Mehta (1967), Mehta (2004)].

Level spacing statistics and random matrix theory are interrelated fields often ap-
plied to quantum mechanics, particularly in the realm of quantum chaos [Gutzwiller
(1990), Chapter 16]. In this context, level spacing refers to the differences between
consecutive energy levels of a quantum system. The study of level spacing stat-
istics is typically concerned with the probability distribution P (∆E) of spacings
∆E between energy levels. The distribution P (∆E) is computed from the spacings
∆En = En+1 − En, where En is the nth energy level, and it is assumed that the
energy levels are sorted an normalized. The normalization process is done such that
the mean level spacing becomes 1, and the distribution P (∆E) beomes a density.
Details of the normalization process will be discussed further in Section 5.6.

Freeman Dyson categorized random matrices into three classes depending on their
symmetry properties [Dyson (1962)]. These are the Gaussian Orthogonal Ensemble
(GOE), the Gaussian Unitary Ensemble (GUE) and the Gaussian Symplectic En-
semble (GSE). This led to the prediction of three different types of level spacing
statistics, now known as the Wigner-Dyson distributions. Consider the properties
of these three main classes of matrices [Mehta (2004), Chapter 2].

The first class of matrices is the Gaussian Orthogonal Ensemble (GOE), which is a
set of real symmetric matrices with elements that have a Gaussian probability dis-
tribution. Their physical counterparts are systems with time-reversal symmetry and
no spin-orbit coupling. The Hamiltonians of such systems are real and symmetric.
The level spacings P (∆E) of these systems follow the distribution given by

PGOE(∆E) =
π

2
·∆Ee−π∆E2/4, (50)

see Chapter 4 of Haake (2010).
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The second class is the Gaussian Unitary Ensemble (GUE), composed of complex
Hermitian matrices invariant under unitary transformations. These then represent
systems without time-reversal symmetry, so that the Hamiltonian becomes complex.
These level spacings of systems are described by the distribution

PGUE(∆E) =
32

π2
·∆E2e−4∆E2/π. (51)

The third and final main class is the Gaussian Symplectic Ensemble (GSE) which
is composed of quaternionic Hermitian matrices invariant under symplectic trans-
formations. These represent systems with time-reversal symmetry and half-integer
spin.

PGSE(∆E) =
262144

729π3
·∆E4e−64∆E2/(9π), (52)

The three distributions (50), (51) and (52) are referred to as Wigner-Dyson distri-
butions and can be written compactly as

P (∆E) = C ·∆Eβeα·∆E2

. (53)

The key observation is the different values of the exponent β in the GOE, GUE
and GSE. For small values of ∆E, the exponential factor in the Wigner-Dyson
distribution can be approximated by writing exp(α · ∆E2) ≈ 1 + α · ∆E2 ≈ 1. In
this case, the GOE, GUE and GSE follow increasing power laws with exponents
β = 1, β = 2 and β = 4, respectively.

Level repulsion: Chaotic, periodic and quasi-periodic systems

Level repulsion describes the statistical tendency for energy levels of a quantum
system to avoid crossing one another [Haake (2010), Chapter 3]. Level repulsion is
one of the key signatures of quantum chaos. That is, the energy levels of quantum
systems that exhibit chaotic (aperiodic) behavior are less likely to be closely spaced
than what one would expect if the levels were independent of each other. This is
understood as an increased coupling strength between different degrees of freedom in
chaotic systems, leading to level crossings being avoided [Gutzwiller (1990), Chapter
16.4].

Level repulsion is closely related to the Wigner-Dyson distributions discussed above.
This is because the Hamiltonians of systems corresponding to the GOE, GUE, and
GSE have linear, quadric and quartic level repulsions, respectively [Haake (2010),
Chapter 3.4]. This means that, for example, for the GOE the probability of find-
ing two eigenvalues very close together is suppressed, and the probability increases
linearly with their spacing. The degree of level repulsion can be measured directly
by measuring the slope of the power law scaling, β, at low energy level spacings.
By measuring the value of β one then determines the Wigner-Dyson distribution
of the system and gains information about the level repulsion. In turn, this helps
determine whether the system displays chaotic (aperiodic) behavior or not.

On the other hand, integrable, typically periodic, systems do not display level re-
pulsion. That is, these systems have quantum energy levels that can cross each
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other since the different degrees of freedom are independent. This leads to a high
probability of small energy level spacings. In fact, the energy level spacing of such
systems follows a Poisson distribution, given by

P (∆E) ∝ e−∆E. (54)

An illustration of the Poisson distribution together with the three discussed Wigner-
Dyson distributions is borrowed from Haake (2010) and given in Figure 9. In this
illustration, the Poisson distribution is labeled β = 0, however, this is slightly mis-
leading as simply setting β = 0 in (53) would yield a Gaussian distribution, and not
a Poisson. As seen from this figure, a high degree of level spacing repulsion yields
a more narrowly peaked energy level spacing distribution. One sees that the prob-
ability of observing small energy level spacings is suppressed in the Wigner-Dyson
distributions.

Finally, quasi-periodic systems can show a crossover between these two behaviors,
depending on the specific parameters of the system.

Figure 9: The figure depicts different level-spacing distributions corresponding to
systems with different symmetry properties. The integrable, periodic system has no
level repulsion and its level spacing distribution resembles the Poisson distribution
labeled here by β = 0. The remaining three distributions display level repulsion
and correspond to aperiodic systems. Particularly, linear, quadric and quartic level
spacing repulsion corresponds to Wigner-Dyson distributions with β = 1, β = 2
and β = 4, respectively. This is related to the symmetries of the systems. Quasi-
periodic systems can display an interplay between the Poisson and Wigner-Dyson
distributions.

Source: Haake (2010).

4 Studied fractals

The creation and representation of the fractals are discussed here as well as some
properties. Detailed information for a representative selection of fractals is also
included here. A more exhaustive list of the studied fractals is found in Appendix
B. Parts of this discussion were first introduced in Akre (2023).

The fractals studied in this project thesis are all self-similar. That is, they appear to
consist of multiple copies of themselves. Most are perfectly self-similar as defined in
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Section 2.2 and satisfy the open set condition, but not all. Furthermore, the fractals
considered here are simply connected as we want the wavefunctions to spread out
and occupy the fractal. That is with the exception that the fractal can be divided
by fully localized points or lines of zero width. In these cases, a wavefunction
placed upon the fractal can still reside on either side of the dividing barrier, so long
the wavefunction’s amplitude can be positive on one side, zero at the barrier and
negative on the other side. Lastly, as the fractal iteration increases the available area
in the system should tend toward zero. This choice is made partly because these
fractals are expected to exhibit similar properties. In addition, the complexity of
Hamiltonians of fractals with vanishing areas can be dramatically reduced. For the
sake of rigorousness, we next define exactly what is meant by the fractal iteration.
In addition, notes are given on the quantization of grid resolutions.

4.1 Fractal iteration and the linear length scale resolution

A fractal has infinite detail, and however much one zooms in on it, it never smoothens.
This is not numerically obtainable, and instead, details are added successively to an
object. By doing calculations for these intermediate stages, one hopes to be able to
extrapolate information for the infinitely detailed system. The intermediate steps
are referred to by a fractal iteration l ∈ N. Here, l = 0 is a completely open system
and l = 1 adds the first layer of detail. For a perfectly self-similar object, the trans-
ition from l′ to l′+1 should satisfy the following. l′+1 should consist only of copies
of iteration l′. Furthermore, l′ + 1 should not be dividable into any larger, identical
constituents than the object from l′. That is, l′ should be the largest possible set
that constitutes l′ + 1 besides itself. Intuitively, this clarification is simply made
to forbid going directly from for example fractal iteration l = 1 to l = 3, skipping
an intermediate step. This is important when comparing the properties of different
fractals.

Consider the grid resolutions N × N needed to represent the fractals. Here, N is
the linear grid resolution. As will be seen in the following, these grid resolutions are
highly different for the fractals. Therefore, a different metric is introduced, namely
the linear length scale resolution n ∈ N. The linear length scale resolution n gives
the number of grid points used to represent the smallest linear length scale of the
fractal. This will be used in most cases, and it makes it easier to compare results
from different fractals.

4.2 The Method of Repeated Kronecker Products

To efficiently generate fractals, an iterative method was developed using repeated
application of Kronecker products.

Define a matrix G called the “generator” and a matrix A0 called the “axiom”. The
elements of both matrices are either 0 or 1. The fractal at fractal iteration l′ + 1 is
denoted Al′+1 and is found as the Kronecker product of G and Al′ . The fractal is
then generated by taking the product of G and Al′ repeatedly, each time updating
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the value of Al′ to the last result until the desired iteration depth is reached. The
first generation A1 is calculated from the Kronecker product between the generator
G and the axiom A0. That is

Al′+1 = G⊗ Al′ =


g1,1Al′ g1,2Al′ . . . g1,nAl′

g2,1Al′ g2,2Al′

...
. . .

gn,1Al′ gn,nAl′

 = G⊗G⊗ · · · ⊗ A0. (55)

The scheme generates a self-repeating pattern defined by the instructions in G, and
Al acts as an evolving building block. Any fractal generated by this scheme fulfills
the open set condition in (7) and is perfectly self-similar. This is because only
the last iteration is used to generate the next, and there is no overlap. Therefore,
the Hausdorff dimension DH equals the similarity dimension DS. Furthermore, the
similarity dimension is trivial to find, and therefore also the Hausdorff. This can be
seen by noting that each non-zero element in G propagates a copy of the previous
iteration into the next. That is, each non-zero element ofGmeans that there’s a copy
of the last iteration in the next. In the limit of infinite iterations, this means that
there’s an exact copy of the system in itself. Therefore, by summing the elements
of G one finds the number of copies m used in the similarity dimension. The scaling
factor r can be found as the linear side length of G. That is, the shape of G is r× r.
The fractal dimension is found using (6) to be

DH = Ds =
log

(∑
i,j gi,j

)
log(r)

. (56)

Notice that the properties of A0 do not affect the fractal dimension, and fractals
with the same generator will have the same fractal dimension. This shows that
fractals that can be created through this algorithm are expected to share fractal
dimensions with many other fractals. This corresponds to a degeneracy for a given
fractal dimension.

Lastly, the topological dimension of our system is the dimension of G, that is 2.
Therefore, in addition to providing a highly efficient routine to generate fractals,
the Method of Repeated Kronecker Products also yields directly the Hausdorff di-
mension DH , the number of copies m, the rescaling factor r and the topological
dimension DL, which are all the measures we need to characterize the fractals in
this thesis.

4.3 Sierpinski Carpet

The base of a Sierpinski Carpet is a blank square. A smaller square of side lengths
1/3 of the original in the center of the base is colored black, this is fractal iteration
l = 1. This new shape can be thought of as a central black square with eight smaller
copies of the base placed around it. Repeat the operation, coloring squares inside
the eight new basis’, yielding 8 × 8 new smaller basis’. This is fractal iteration
l = 2. Repeating the process infinite times yields the Sierpinski Carpet fractal. The
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process is depicted in Figure 10. The colored areas are to be considered illegal later,
that is, having high potential.

fractal iteration l = 1 fractal iteration l = 2 fractal iteration l = 3 fractal iteration l = 8

Figure 10: The first few fractal iterations l of the Sierpinski Carpet. Each iteration
consists of eight copies of the last.

The Sierpinski Carpet can be generated using the Method of Repeated Kronecker
Products described in Section 4.2. To do so, set the generator G and axiom A0 equal
to

G =

1 1 1
1 0 1
1 1 1

 , and
A0 = 1.

(57)

To exactly represent the shape of the object, only certain grid resolutions are ad-
equate. Inspecting the fractal iteration l = 2 in Figure 10 it is clear that 9, 18, 27 . . .
are linear resolutions that accurately capture the object. On the other hand, a grid
resolution N × N of for example 17 × 17 would not. Some of the allowed linear
resolutions are shown in Table 1. The resolutions follow the function

Nl,n = 3l · n.
Here, n gives the number of grid points used to represent the smallest length scale
of the fractal, called the linear length scale resolution.

Table 1: The allowed grid resolutions of the Sierpinski Carpet.

Fractal iteration l Allowed linear grid resolutions N
1 3, 6, 9, 12, 15 . . .
2 9, 18, 27, 36, 45 . . .
3 27, 54, 81, 108, 135 . . .
4 81, 162, 243, 324, 405 . . .
5 243, 486, 729, 972, 1215 . . .
6 729, 1458, 2187, 2916, 3645 . . .

Consider next the dimensionality of the Sierpinski Carpet, following the discussion
of Section 2.2. The topological dimension, or Lebesgue dimension, is DL = 2. Next,
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study the Sierpinski Carpet for a fractal iteration l = 3 and l = 2. The former
consists of eight copies of the latter, exactly. In the limit l → ∞, the Sierpinski
Carpet consists of eight exact copies of itself, and we have m = 8 in (6). Each
of these copies is rescaled linearly by a factor of 1/r = 1/3. Furthermore, the
fractal is perfectly self-similar, and per the discussion in Section 2.2, the Hausdorff
dimension DH equals the similarity dimension DS. Using (6) gives then a similarity
and Hausdorff dimension of DH = DS = log(8)/ log(3) ≈ 1.893. This could also be
found directly from the generating matrix G as discussed in Section 4.2, equation
(56). This method will be used when applicable in later examples. The area of the
Sierpinski Carpet approaches zero as the fractal iteration l grows.

4.4 Filled Sierpinski Square

The filled Sierpinski Square, or simply the Sierpinski Square, can be constructed
using a Lindenmayer system, or L-system, as described in Section 2.4. In order to
create the Sierpinski Square, set the axiom equal to F +XF + F +XF and define
the rules

F → F,

X → XF − F + F −XF + F +XF − F + F −X.

Iterating this generates a string of instructions. Next, interpret F as a straight line
and X as nothing. Set the angle rotated by +/− to 90◦ and draw the result on a
grid. The result of the process is shown in Figure 11.

fractal iteration l = 1 fractal iteration l = 2 fractal iteration l = 3 fractal iteration l = 6

Figure 11: The first few fractal iterations l of the Sierpinski Square.

The allowed linear grid resolutions N are given in Table 2. The resolutions follow
the equation

Nl,n =

[
1 + 4 ·

l∑
a=1

2a−1

]
· n. (58)
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Table 2: The allowed linear grid resolutions of the Sierpinski Square.

Fractal iteration l Allowed linear grid resolutions N
1 5, 10, 15, 20, 25 . . .
2 13, 26, 39, 52, 65 . . .
3 29, 58, 87, 116, 145 . . .
4 61, 122, 183, 244, 305 . . .
5 125, 250, 375, 500, 625 . . .
6 253, 506, 759, 1012, 1265 . . .

Inspecting Figure 11, note that the fractal iteration l = 3 consists of four copies of
iteration l = 2, connected through a central box. As the fractal iteration, l tends to-
wards infinity, the fractal will consist of four exact copies of itself, connected through
a central box. The fractal is not perfectly self-similar, and the open set condition is
not satisfied. Therefore the Hausdorff dimension and similarity dimension are not
necessarily equal. However, the central box has an area that tends toward zero as l
approaches infinity, it is proportional to (3l)−2. Therefore, neglect the contribution
from the central square in the limit of l → ∞. Ignoring the central box, the fractal
becomes perfectly self-similar. Furthermore, the sides of the four smaller copies
constituting the fractal are of a length scale 1/2 of that of the fractal. This gives
a dimension equal to DH ≈ DS ≈ log(4)/ log(2) = 2. This means the Sierpinski
Square seems to have scaling properties similar to that of a regular two-dimensional
object. This is not a fractal by the original definition given by Mandelbrot but
shares many of the same properties.

4.5 Filled Sierpinski Curve

As was the case for the Sierpinski Square, the filled Sierpinski Curve can also be
constructed using a Lindenmayer system. To create the Sierpinski Curve, set the
axiom equal to F −−XF −−F −−XF and define the rules

F → F,

X → XF +G+XF −−F −−XF +G+X.

Analogous to the Sierpinski Square, F is interpreted as a straight line and X as
doing nothing. However, G is now interpreted as a straight line with length

√
2

longer than that of F . The angle of rotation is set to 45◦. The result is shown in
Figure 12.
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fractal iteration l = 1 fractal iteration l = 2 fractal iteration l = 3 fractal iteration l = 6

Figure 12: The first few fractal iterations l of the Sierpinski Curve for a resolution
n = 20. That is, the smallest length scale of the fractal is split into 15 points.

Unlike the fractals considered previously, the Sierpinski Curve has non-square angles.
Generally, representing an angle on a square grid will lead to aliasing. That is, it
will lead to errors due to the finite partition of the grid. In order to find the
best representation of a line with an arbitrary slope at a given grid resolution, the
Bresenham line algorithm can be used [Bresenham (1965)]. However, representing
a 45◦ angle is trivial.

On a square lattice, a 45◦ degree angle should not lead to any issues so long only
nearest neighbor interactions are considered (north, west, south, east). If however
second-nearest neighbor couplings were to be considered, there could exist direct
couplings between points on opposite sides of a thin 45◦ barrier. This would be
unphysical.

Certain grid resolutions are desired to maintain the symmetries of the curve. The
allowed resolutions are the same as those for the Sierpinski Square given in Table
2 and by (58). Note that setting the linear length scale resolution n = 1 yields the
same shape as the Sierpinski Square.

The dimensionality can be found by the same method as used for the Sierpinski
Square. Again the Hausdorff dimension is found to be approximately that of a
two-dimensional object, DH ≈ 2.

4.6 Sierpinski Gasket

The Sierpinski Gasket has an equilateral triangular base. An upside-down triangle
of 1/4 of the measure of the original is then removed from the center of the base.
This yields three new bases. The process is repeated for the new bases and so on.
The equilateral triangles have 60◦ angles that are difficult to represent using a square
lattice. This could lead to significant aliasing. Fortunately, the Sierpinski Gasket
can be accurately expressed using a hexagonal lattice as shown in Figure 13a. In
fact, when doing calculations, the structure will still be represented by a regular
square matrix. However, the hexagonal lattice can be taken into account in the
square matrix by including an extra pair of nearest neighbors. This representation
is depicted in Figure 13b.
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(a) (b)

Figure 13: Grid representation of the Sierpinski Gasket. In (a) the Sierpinski Gasket
is well represented on a hexagonal grid. Figure (b) depicts the Sierpinski Gasket rep-
resented on a square grid, treating the upper-left to lower-right diagonal as nearest
neighbors.

The object in Figure 13b can be generated using the Method of Repeated Kronecker
Products as described in Section 4.2. The generating matrix G and the axiom matrix
A0 are given by

G =

[
1 0
1 1

]
, and

A0 = LT
n+1,

(59)

where LT
n+1 is the lower triangular matrix of shape (n + 1) × (n + 1). Here, n

dictates the resolution of the obtained Sierpinski Gasket. A few fractal iterations of
the Sierpinski Gasket for grid resolution n = 3 are shown in Figure 14.

fractal iteration l = 1 fractal iteration l = 2 fractal iteration l = 3 fractal iteration l = 6

Figure 14: The first few fractal iterations l of the Sierpinski Gasket. This is in the
square grid representation and with n+1 = 4. That is, the smallest triangles present
are represented by 4× 4 lower-triangular matrices.

The allowed grid resolutions are given in Table 3 and follow

Nl,n = 2l(n+ 1). (60)
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Table 3: The allowed grid resolutions of the Sierpinski Gasket.

Fractal iteration l Allowed linear grid resolutions N
1 4, 6, 8, 10, 12 . . .
2 8, 12, 16, 20, 24 . . .
3 16, 24, 32, 40, 48 . . .
4 32, 48, 64, 80, 96 . . .
5 64, 96, 128, 160, 192 . . .
6 128, 192, 256, 320, 384 . . .

As it was generated by the Method of Repeated Kronecker Products, one can im-
mediately state that it fulfills the open set condition in (7) and that the Hausdorff
dimension is given by (56). This yields DH = DS = log(3)/ log(2) ≈ 1.585.

4.7 Flag-fractal

The last show-cased fractal is the Flag-fractal. This fractal can be constructed using
the Method of Repeated Kronecker Products using a generator G and an axiom A0

given by

G =


0 1 0 0
0 1 0 0
1 1 1 1
0 1 0 0

 , and
A0 = 1.

(61)

The first few iterations of the Flag-fractal are shown in Figure 15.

fractal iteration l = 1 fractal iteration l = 2 fractal iteration l = 3 fractal iteration l = 4

Figure 15: The first few fractal iterations l of the Flag-fractal. The detail in the
system grows rapidly.

The details of the fractals grow fast for increasing fractal iteration l, and the allowed
grid resolutions follow the function

Nl,n = 5l · n. (62)
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The first few values for the linear grid resolution N are shown in Table 4.

Table 4: The allowed grid resolutions of the Flag-fractal.

Fractal iteration l Allowed linear grid resolutions N
1 5, 10, 15, 20, 25 . . .
2 25, 50, 75, 100, 125 . . .
3 125, 250, 375, 500, 625 . . .
4 625, 1250, 1875, 2500, 3125 . . .
5 3125, 6250, 9375, 12500, 15625 . . .
6 15625, 31250, 46875, 62500, 78125 . . .

From the generator of the fractal, it is seen that the rescaling factor r = 5 and the
number of copies m = 7. The logic in this is described at the end of Section 4.2.
Using (6) one obtains a similiarity dimension DS = log(7)/ log(5). Furthermore,
as it was generated by the Method of Repeated Kronecker Products, it must fulfill
the open set condition in (7). Therefore the Hausdorff is equal to the similarity
dimension, that is, DH = DS = log(7)/ log(5) ≈ 1.209.

The detail of the Flag-fractal grows rapidly as the fractal iteration l is increased.
However, it is also worth noting that the allowed area in the fractal tends to zero fast,
yielding the small Hausdorff dimension. As it turns out, this makes high-precision
calculations still realizable for the system. A discussion on this is given in Appendix
A.2.

4.8 Connectivity and ramification number

Before continuing, a remark is made on the concept of connectivity as it will prove
useful in later discussions. The connectivity or connectedness of a fractal refers to
how many paths there exist connecting two points within the fractal. It will only
be used in a broad, qualitative sense in this thesis, and a proper definition will not
be put forward.

Consider the Sierpinski Carpet and Sierpinski Gasket as shown in Figures 10 and 14.
In a discrete representation of a fractal, the number of available paths will naturally
always be finite, as the fractal is represented by a finite collection of sites. However,
consider taking the Sierpinski Carpet at a given fractal iteration l′ and using an
infinite grid resolution. In such a continuous realization of the Sierpinski Carpet,
there exists an infinite amount of paths one can take from one point to another. On
the other hand, in the Sierpinski Gasket, there are only so many paths available,
even for a continuous system. This is what is meant by connectivity in the context
of this thesis.

Equivalently one can use the ramification number, which refers to the number of
bonds one has to remove to separate a subset of the fractal. Notice that one can
always separate a third of the Sierpinski Gasket by cutting two bonds, even in a
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continuous realization of the fractal. The Sierpinski Gasket, thereby, has an in-
trinsically low connectivity that does not disappear in a continuous system. In the
Sierpinski Carpet, on the other hand, the number of bonds one would have to cut
is infinite. Low connectivity corresponds to a finite, low ramification number and
high connectivity corresponds to a high or infinite ramification number.

Other quantifications of connectivity can be used. By viewing the sites in the lattice
as vertices, and the couplings between them as edges, one can interpret the fractals
as complex networks. The clustering coefficient from complex networks might then
be used to quantify the connectivity of the fractal. One can also consider using La-
cunarity, betweenness or concepts from network partition. However, as mentioned
earlier, this thesis will only make some broad qualitative statements regarding con-
nectivity, and a precise quantification is not necessary.

5 Implementation and methods of calculations

Spectral properties of multiple fractal-shaped potentials will be studied numerically.
Specifically, the ground state energy, transport properties, localization of states,
and energy level spacing distributions will be considered. The discretization of the
Hamiltonians of the systems will be treated in this section together with a method
to reduce its complexity. Furthermore, the methodology for the evaluation of the
ground state energy, conductance and level spacing statistics will be given.

5.1 Expressing the eigenvalue problem

In order to evaluate the different spectral properties, one needs to assess the energy
levels and wave functions of particles confined in fractal potentials. In line with
the postulates of quantum mechanics given in Section 3.3, the associated energy
operator, the Hamiltonian, must be expressed and evaluated. The possible states of
the system will then be given by the eigenvalues and eigenstates of the Hamiltonian.
The Hamiltonian can be expressed as a matrix following Section 3.4. A discrete
matrix representation will be given in the following.

The general form of the Hamiltonian is shown in equation (27). In the problem to
be evaluated, V : Ω → R is the external fractal potential. Here, Ω ⊂ R2 is the
domain with boundary δΩ. This potential is infinite in the forbidden areas of the
fractal, and zero in the allowed areas. In reality, the potential only needs to be large
enough to make a clear gap in energy between the states residing in the illegal areas
and those not. However, setting it equal to infinite simplifies the calculations since
the wave function becomes exactly zero in these areas. The Schrödinger equation in
(26) can be written

(∆x,y + V (x, y))ψ(x, y) = λψ(x, y) → ψ(x, y) = 0 in Ω, (63)

where λ is a constant. Without loss of generality, the universe is set to be the unit
square U = [0, 1]× [0, 1], containing our fractal, Ω ⊆ U .
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In order to apply numerical approximations, the domain must be discretized into a
grid, G. To this end, U is split into Nx×Ny linearly spaced grid points in the x and
y directions. The new coordinates are xi = i ·dx and yj = j ·dy, where dx and dy are
the step sizes 1/(Nx + 1) and 1/(Ny + 1) respectively. The notation ψ(xi, yj) = ψi,j

will be used.

Since the differential equation does not include any mixed derivatives, the compact
three-point stencil is chosen to approximate the Laplacian in (63). The formula for
the two-dimensional, second-order three-point stencil is given in (16). Next, the
fractal potential V (x, y) is placed on the grid, giving a matrix representation of the
potential Vi,j. As discussed in Section 4, the grid resolution and the lattice type
should be compatible with the fractal to avoid aliasing. Equation (63) at site {i, j}
becomes(

ψi+1,j − 2ψi,j + ψi−1,j

d2x
+
ψi,j+1 − 2ψi,j + ψi,j−1

d2y

)
+ Vi,j · ψi,j = λψi,j, (64)

which holds for all i, j ∈ G. This matrix formulation is in line with the theory of
Section 3.4 and (31), using the grid nodes as the basis set of expansion. In this
thesis, the boundary conditions used will be Dirichlet as described in the discussion
of (21). For i, j /∈ G, the amplitudes ψi,j = 0. Expressing the Laplacian using the
Kronecker sum, as in (20), yields

(∆x ⊗ 1+ 1⊗∆y + Vi,j) · ψi,j = λψi,j. (65)

The system of equations is collected into a matrix equation on the form

Aψ = λψ.

The eigenvalue has non-trivial solutions when

||A− λ · 1|| = 0.

5.2 Equivalence of enumeration

In Section 3.1 an enumeration of the grid sites I : G → N0 was suggested. The
suggested enumeration was the natural numbering of the grid, namely In(i, j) =
i + j · (Nx + 1). However, other enumerations conserving ψi,j = ψI(i,j) can also
be constructed. Specifically, define an enumeration numbering only interior points
of the boundary, Id(i, j). That is, the enumeration only includes the sites that lie
in the allowed regions of the fractals, where the potential Vi,j is zero. Name this
enumeration the interior indexing. Both enumerations are visualized in Figure 16.

Equivalence of enumeration

One can choose enumeration freely without changing the obtained eigenvalues.
Changing enumeration corresponds to a change of coordinate matrix P . For a
permutation matrix P , an eigenvalue of A is shared with PAP−1. If P interchanges
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(a) Natural indexing In(i, j)
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(b) Interior indexing Id(i, j)

Figure 16: Grid of size 4 × 4. Black lattice points are exterior points and white
interior. Different enumerations can be chosen. (a) Natural indexing starting from
the lower left. A total of 24 points are included. (b) Interior indexing starting from
the lower left. Only interior points are included, yielding a total of 9 points.

rows of the matrix, then the following inverse permutation interchange the corres-
ponding columns. It is however not necessary that P only interchange rows. The
proof that this does not alter the eigenvalues can be seen as follows.

Assume we have Axn = λxn, where the superscript n refers to the natural indexing.
Superscripts are used to avoid confusion with the lattice point index j. Furthermore,
let P be the matrix that projects a vector from natural indexing, xn, to interior
indexing, xd. That is, xd = Pxn. If xn is an eigenvector of A with eigenvalue λ,
then

PAP−1xd = PAxn = λPxn = λxd.

Furthermore, let A be the matrix attained from using In, and Ã be the matrix
attained from Id. There exists a permutation matrix P yielding xd = Pxn. This
change of coordinate matrix can be picked to form

PAP−1 =

[
Ã B

0 Ṽ

]
. (66)

If λ is an eigenvalue of Ã, then it is also an eigenvalue of PAP−1, since if Ãu = λu,
then [

Ã B

0 Ṽ

] [
u
0

]
=

[
Ãu
0

]
= λ

[
u
0

]
.

Therefore, λ is an eigenvalue of PAP−1. Hence, this coordinate change invariance
property of eigenvalues shows that an eigenvalue of Ã is also an eigenvalue of A.
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5.3 A reduced method for representation of the eigenvalue
problem

By changing the indexing of the grid from the natural indexing in Section 5.2 to
the interior indexing, one can significantly reduce the complexity of the systems
Hamiltonian. As was shown in Section 5.2, this will not change the eigenvalues
of the problem. This method first changing the indexing before solving for the
eigenvalues will be referred to as the reduced method,

In this project thesis, we consider systems with a confining potential that is assumed
to be infinite (large). The wavefunctions will have no amplitude on the exterior grid
sites, as this would lead to infinite (large) eigenvalues. Therefore, the couplings
between internal points and external points in the Hamiltonian can be set to zero,
without any effect on the eigenstates of interest. Furthermore, the coupling between
external points can also be set to zero. Thus, we obtain a system where only the
interior points are of interest. This is equivalent to the interior indexing Id(i, j) and Ã
in Section 5.2, and the systems Hamiltonians can be written on the form of the right-
hand side of (66). In addition, the columns and rows corresponding to a site in the
forbidden region, Ṽ , can simply be removed. The removal of these rows is analogous
to the before-mentioned transformation. In order to recover eigenvectors of the
original Hamiltonian, the inverse transformation must be applied to the obtained
result.

For a universe discretized into N × N points, the matrix representation of the
Hamilton operator on the left-hand side of (65) with a natural indexing has N2×N2

elements. This is per the discussion in Section 3.1. However, using the interior in-
dexing, Id(i, j), gives a new discretization with Ñ2 × Ñ2 points. Clearly, Ñ ≤ N ,
where the equality holds for a fractal boundary given by the empty set. Generally,
Ñ depends on the shape of the confining potential which separates interior and ex-
terior points and will vary for different fractals. In the case of large forbidden areas,
it will be significantly smaller than N . In such cases, using the reduced method
leads to a dramatic improvement in performance times for numerical calculations.
This method proved essential for the study of fractals in this thesis, and the impact
on performance is discussed in further detail in Appendix A.2.

Note that the reduced method is only valid as described above when the exterior
areas have a finite width. That is, there’s a neighborhood around an exterior point
that consists of other exterior points. If the potential is localized to a point or a
line of no width, the wavefunction could be zero at that point but have a positive
amplitude on one side and a negative on the other. That is, sites on either side
of an infinitely thin barrier can have indirect coupling to each other, even if the
potential is infinite. In such cases, removing the coupling terms through the illegal
area would be unphysical. This is for example the case between triangles in the
Sierpinski Gasket, shown in Figure 14. The method can still be used, it is just
important to make sure that the indirect coupling through illegal areas is preserved.
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5.4 Scaling of the ground state energy for increasing fractal
iteration

The goal of this section is to develop tools to study the energy ground states as
the fractal iteration l approaches infinity. Furthermore, it is desirable to consider
continuous systems, that is, with infinite grid resolution, n→ ∞. The first step will
be to determine the ground state energy for a fixed value of l, letting n approach
infinity and extrapolating a result. Next, this will be done for different values of l,
extrapolating the result as l approaches infinity.

Obtaining the ground state at fixed iteration

Consider finding the ground state energy of a fractal at fixed iteration l as the grid
resolution approaches infinity, Consider first a grid resolution of N ×N , where N is
an integer. As the resolution is gradually increased, it is expected that the eigenvalue
approaches the exact energy level. Specifically, as the resolution is increased, it is
expected that the error ϵ goes as ϵ(d) ∝ d2, where d is the stepsize used in the
grid. This is based on the error term of the three-point compact stencil for second
derivatives in (15). Using a box of physical extent L = 1 gives ϵ(d) ∝ d2 = (1+N)−2,
and ϵ(d) = ϵ(N), where N is the linear grid resolution4.

To estimate the asymptotic value of the energy as N → ∞, the energy is plotted
against 1/N . The limit N → ∞ then corresponds to 1/N = 0 and the expected error
convergence goes as ϵ(1/N) ∝ (1+1/N)−2. Next, fit functions to the obtained points,
using both linear and quadric fits. Call these fits Ẽ1(

1
N
) and Ẽ2(

1
N
) respectively. The

value of E(N = ∞) can be estimated as Ẽ1,2(
1
N

= 0). That is, as the intersection
between the energy axis and either of the fitted functions. This provides a method
for extrapolating the ground state of the system.

In general, for a given fractal at fractal iteration l, only certain grid resolutions
are compatible with the shape of the fractal. These resolutions are given in Tables
1, 2, 3 and 4 for the Sierpinski Carpet, Sierpinski Square, Sierpinski Gasket and
Flag-fractal, respectively. In order to compare the results from different fractals,
the linear length scale resolution n as introduced in Section 4.1 is used instead of
the linear resolution N .

Energy scaling for increasing fractal iteration

Having found a method to extrapolate the ground state energy at infinite grid resol-
ution n in the previous section, we now need tools to study the ground state energy
for increasing fractal iteration l. For these highly self-similar fractals, each iteration
l′ + 1 consists of m copies of iteration l′ where each linear side has been rescaled by
a factor 1/r, as described in Section 2.2.

4This is true as long as the used resolution does not lead to stepsizes d in (64) that approach
machine precision ϵmach. This will rapidly lead to inaccurate results.
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Consider a simple box whose edges decrease by a factor of 1/r for each fractal
iteration l. In units of ℏ2/m, one would expect the energy at a given iteration to be
El =

π2

A0
· r2l = E0 · r2l. That is, the energy follows a power law given by r2l. This

is the expected result for any Euclidean, two-dimensional system. The equivalent
result for a one-dimensional system is El = E0 · r1l, and for a three-dimensional
system it is El = E0 · r3l. It is however not trivial to determine the expected result
for a fractal-dimensional system.

Define the energy ratios of the ground states sl such that sl = El/El−1. Furthermore,
define the energy scaling factor s as

s = lim
l→∞

sl = lim
l→∞

El/El−1. (67)

That is, s is the energy scaling between consecutive fractal iterations, in the limit
of large fractal iterations, assuming this converges. In the case of the box, sl = s =
r2 ∀ l. However, this will not necessarily be the case for other objects, which is
why it is good to separate the quantities. In the proceeding calculations, r is named
the fractal rescaling factor and is considered known. On the other hand, the energy
ratios sl and the energy scaling factor s need to be measured numerically.

Generally, the ground state energy of a confined particle with no other external
potential is inversely proportional to the area in which the wave function resides.
The rate at which these changes is equivalently captured by the change in energy,
and therefore sl. It is suggested that these scaling factors might go as s = rDH for
fractals, where DH is the Hausdorff dimension of the fractal. This is motivated by
the fact that the Hausdorff dimension describes the scaling properties of measures
such as the area of the fractals.

5.5 Current and conductance

The wave function formalism for the calculation of transport through a potential
was given in Section 3.5. In the following, a discretization of the equations from this
section will be discussed, remaining in the one-dimensional system. This is largely
based on Datta (1995), where an extension to higher dimensions is also demon-
strated. The potential itself will be discretized as discussed in Sections 5.1−5.3,
using the reduced method.

Discretization of the system

In order to perform numerical calculations, the system needs to be discretized. Di-
vide the scattering region in Figure 8 into N equally-spaced points with a spacing d.
Replace the continuous variable x by xj ≡ j · dx, as depicted in Figure 17. Further-
more, let ψ(x) → ψ(xj) ≡ ψj and equivalently V (x) → V (xj) ≡ Vj. The potential is
greater than zero in the interval [1, N ], where the index j = 0 is purposely excluded
as this will simplify later equations. Approximate the Laplacian in the Schrödinger
equation using the three-point stencil in one dimension, given by (15). Next, ab-
sorb all the appearing constants into one, writing t̃ = ℏ2/2md2x. This yields the
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discretized Schrödinger equation

−t̃ · ψj−1 + (Vj + 2t̃)ψj − t̃ · ψj+1 = Eψj. (68)

Figure 17: The scattering process depicted in Figure 8 is discretized. The first site
with potential greater than zero is labeled by index i = 0, and the last site is labeled
i = N .

The Schrödinger equation in (68) describes a tight-binding model. Usually, the
potential is redefined such that Vj + 2t̃ → Vj, while maintaining that the potential
should be zero outside the scattering region. Naturally, adding or subtracting along
the diagonal only leads to a constant shift in the energy eigenvalues. Making this
redefinition of Vj gives symmetry around E = 0. This redefinition will be applied
in the transport calculations considered in this thesis.

The wave functions in the leads were given by (33) and (34) for the continuous
system. In the discretized system, the wave function in the left-hand lead becomes
ψL
j = eikxj + re−ikxj = eik·jdx + re−ik·jdx . Equivalently, the wave function in the

right-hand lead becomes ψR
j = teikxj = teik·jdx . It is important to note that while

the dispersion relation in the leads in the continuous case was given by (35), the
dispersion relation in this discretized system is given by

Ej(k) = −2 cos(k · dx), (69)

in the units of t̃, where the subscript j is added to distinguish this from the con-
tinuous case. This can be found by inserting the expression for, for example, the
wave function in the right-hand lead into the discretized Schrödinger equation in
(68). Next, make use of Euler’s formula, writing eiθ+e−iθ = 2 cos(θ), to obtain (69).
The continuous dispersion relation in 35 is recovered in the continuous limit of (69),
taking dx → 0 and Taylor expanding the cosine.

Boundary layers

Having formulated the discrete wave equation in (68), the system can now be solved
numerically. The dispersion relation for the leads was given in (69). Now match the
wave functions at the transitions between the leads and the scattering region, and
apply the discrete Schrödinger equation in (68) to the sites inside the Scattering
region. This is equivalent to (36) in the continuous system. The matching yields
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the linear set of equations given by

W.F. at j = 1 : re−ikd − ψ1 = −eikd,
S.E. at j = 1 : r + (E − V1)ψ1 + ψ2 = −1,

S.E. at j ∈ [2, N − 1] : ψj−1 + (E − Vj)ψj + ψj+1 = 0,

S.E. at j = N : ψN−1 + (E − VN)ψN + teik(N+1)d = 0,

W.F. at j = N : ψN − teikNd = 0.

This can be expressed in matrix form as
e−ikd −1 0 . . . . . . . . .
1 E − V0 1 0 . . . . . .
0 1 E − V1 1 0 . . .
. . . . . . . . . . . . . . . . . .
. . . . . . 0 1 E − VN eik(N+1)d

. . . . . . . . . 0 1 −eikNd




r
ψ1

ψ2

. . .
ψN

t

 =


−eikd
−1
0
. . .
0
0

 . (70)

The system is then solved for the wave function. The wave function vector in (70)
is expressed by the set {ψj} together with r and t, giving the amplitudes at every
discrete point inside the scattering region as well as the leads. This is then set equal
to the injected wave function on the right-hand side of (70). The solutions for r
and t, as well as the solutions for the reverse process, r′ and t′, form the scattering
matrix as given in (37).

Pay notice to the distinction between the transmittance amplitude t and the constant
t̃. In literature, both are frequently referred to by simply “t”, but the tilde is added
here for readability. The system specific constant t̃ is also referred to as the hopping
amplitude as it corresponds to the matrix element coupling two neighboring sites.
In this thesis, the hopping amplitude is simply constant but that is not always the
case.

Current and conductance

The particle current in (38) can be written in the discrete representation. Substitute
the derivatives in (38) by using the two-point forward method from (13) yielding

Jj =
ℏ

2mi

[
ψ∗
jψj+1 − ψjψ

∗
j+1

]
. (71)

For the transmitted plane wave in the right-hand lead, the wave function is given as
ψR
j = teik·jdx . The current density in (71) in units of t̃ = ℏ2/(2md2x) then becomes

JR
j =

|t|2
ℏ
dx
i

[
eik·dx − e−ik·dx

]
=

|t|2
ℏ

2dx sin(k · dx), (72)

where we’ve made use of Euler’s equation in the final equality. The subscript j is
kept to distinguish this from that found in (39) for the continuous case. Tracing
the path of the discussion of the continuous system in Section 3.5, next, consider
the velocity ℏv(k) ≡ ∂

∂k
E(k). Insert the dispersion relation for the tight-binding
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model in (69) into this expression and add a subscript j to distinguish it from the
continuous case. The velocity then becomes ℏvj(k) = 2dx sin(kdx). Use this to
rewrite (72) giving

JR
j = |t|2vj(k), with

vj(k) ≡
1

ℏ
∂

∂k
Ej(k),

(73)

still in units of t̃. On the other hand, for the scattered wave in the left-hand lead
with wave function ψL

j = eikj + re−ikj, (71) becomes

JL
j =

(
1− |r|2

)
vj(k). (74)

Once again, conservation of current implies then that 1−|r|2 = |t|2 = |t′|2 = 1−|r′|2.
This makes the scattering matrix unitary, SS† = 1, as discussed in Section 3.5.

Notice that (73) and (74) have the same form as (40) and (41) in the continuous case.
Inserting the discrete expressions for JL and JR into, for example, the expression for
the real current in (43) yields the exact same results as was found in (44). All the
remaining equations from Section 3.5 are equal in the discrete and the continuous
case. The equation for the conductance found in (49) can be used to evaluate the
conductance in the discrete system, namely

g(EF ) = 2e2/h · |t(EF )|2 = 2g0|t(EF )|2.

When evaluating the conductance one needs to first solve for the wave function in
(70) and then insert the tunneling elements into (49). The implementation of this is
done with the help of the open-source Python package Kwant [Groth et al. (2014)].

5.6 Level spacing statistics

As discussed in Section, 3.6, the energy level spacing statistics can yield information
about the symmetries and periodicity of the system. However, in order to recover
meaningful results, some important steps must be included. In this section, some de-
tails of the procedure are given, followed by a numerical example that demonstrates
the method for two random matrices.

Details of the evaluation of level spacing statistics

There are a couple of important steps in the evaluation of level spacing statistics
necessary to obtain sensible results that should be compared. First of all, the en-
ergy levels are sorted and the level spacings are found as the differences between
consecutive energy levels. When evaluating numerical or experimental data, degen-
erate states are expected to be observed at slightly different energies. It is therefore
important to set a sensible minimum value for the energy level spacing ∆E. En-
ergy level spacings smaller than this minimum value are considered exactly zero and
should not be included in the level spacing statistics.
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Furthermore, one should apply a normalization procedure to the energy level spa-
cings such that the mean level spacing becomes equal to 1. This normalization is
frequently referred to as the unfolding of the level spacings. The unfolding procedure
is essential for comparing the level spacing distributions of different systems because
it removes system-specific features such as the overall energy scale and the density
of states. This allows direct comparison of the underlying statistical properties of
different systems. To do this, the energy levels are rescaled by a smooth function
that represents the mean density of states in the following way.

For the sake of this discussion only, denote the original energy levels as En and the
unfolded energy levels as en. Next, define N(E) as the integrated or cumulative
density of states, that is, the number of states with energy less than or equal to E.
One can unfold the level spacings by writing the unfolded energies as

en = N(En). (75)

The unfolded level spacings are then given by ∆en = en+1−en = N(En+1)−N(En).
Naturally, when letting En and En+1 be the energies of two consecutive states, the
expectation value of the difference ∆en = N(En+1) − N(En) must equal 1. The
unfolded level spacings will be referred to simply as ∆E throughout the rest of
the thesis. In practice, finding a suitable function N(E) can be difficult because it
requires a good estimate of the mean density of states. In this thesis, N(E) will be
found numerically and a smooth curve will then be fitted to the numerical results
and used in the unfolding in (75). Specifically, an optimized spline method will be
used as a fit.

All energies with ∆E greater than the aforementioned minimum value are unfolded
and distributed into a histogram. The obtained histogram should be considered a
density and is therefore normalized to have a total area equal to 1. This concludes
the preparation of the data, and this distribution is the one used in the level spacing
statistics. The distribution can be compared with the theoretical predictions from
random matrix theory, such as the Wigner-Dyson distribution in (53) or the Poisson
distribution in (54).

To verify the method and become more acquainted with the procedure, an example
is included in the following.

Example of level spacing distributions

Consider the Wigner-Dyson distribution in (53). As discussed in Section 3.6, differ-
ent values of the exponent β are associated with the three main classes of random
matrices. The main classes are the GOE, the GUE and the GSE. The exponent β
can be measured from numerical or experimental data of the energy level spacings
to classify systems into one of the three groups. By doing so, one gains information
about the symmetries of the system. Such a classification is demonstrated for a ran-
dom orthogonal and a random unitary matrix in Figure 18. Here, random matrices
of size 20000×20000 were generated with the desired symmetries and the eigenvalues
were solved by exact diagonalization. The energy levels were then sorted and the
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level spacings were computed and normalized as discussed earlier in this section. Fi-
nally, fits using (50) and (51) were made. The results clearly show that the random
orthogonal matrix is well described by a Wigner-Dyson distribution with exponent
β = 1, and the random unitary matrix by β = 2. This is as expected from random
matrix theory. A Poisson distribution is included in Figure 18 for comparison.

Figure 18: The level spacing distributions for random matrices with different sym-
metries are plotted along with the theoretically expected results on a log-log plot. In
red is a histogram of the energy level spacings for a random orthogonal matrix. The
histogram matches the solid red line, which reflects the Wigner-Dyson distribution
with β = 1. A histogram of the energy level spacings for a random unitary matrix is
shown in blue. This matches the dashed blue line which indicates a Wigner-Dyson
distribution with β = 2. Finally, a Poisson distribution is included for comparison,
given by the dash-dotted black line. The energy level spacings were calculated and
normalized through a process known as unfolding to get comparable results.

6 Scaling of the ground state energy for increas-

ing fractal iteration

Methods for generating fractals were discussed together with their properties in
Section 4 and Appendix B. The formulation of a discrete Hamiltonian from these
fractals was discussed in Sections 5.1−5.3. Furthermore, a method for evaluating
the ground state energy when approaching infinite fractal iteration l → ∞ was
discussed in Section 5.4. With this background, the first spectral property of the
fractals will be studied, namely the scaling of the ground state energy with increasing
fractal iteration. The method will first be applied in detail to the Sierpinski Carpet,
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together with a brief discussion of the ground state wave functions of this fractal.
Thereafter, the scalings of the ground state energies of other fractals are considered.
These results and parts of the discussion were first introduced by Akre (2023).

6.1 Ground state of the Sierpinski Carpet

The probability densities and energy levels of the Sierpinski Carpet are computed
for different fractal iterations. Following Section 5.4, the system is first evaluated
at a fixed fractal iteration l. Next, the scaling of the ground state energy between
fractal iterations will be considered.

The ground state energy at fixed fractal iteration

The groundstate energy at a given fractal iteration l is estimated by varying the
grid resolution according to the method described in 5.4. A quadric fit of the Si-
erpinski Carpet at fractal iteration l = 3 is shown in Figure 19a. In Figure 19b
only the last ten points are included and a linear fit is utilized. The energy is found
from the intersection of the energy axis in units of ℏ2/m and was estimated to be
Ẽ2(0) = 551.80 and Ẽ1(0) = 551.78, using the second-order and linear fit respect-
ively. Only data points for large grid resolutions are used in the linear extrapolation
since the convergence in 1/n is only approximately linear when the grid resolution
is large. When large linear length scale resolutions n are used, these two fits give
approximately the same extrapolated value. The agreement of the two fits serves as
a test to see whether the resolution is sufficiently large and shows why both a lin-
ear and a quadric fit are considered. The extrapolated value from the second-order
regression has been seen to converge faster than the one from the linear regression.
Therefore, the extrapolated energy obtained from the second-order interpolation,
Ẽ2(0), will be used in calculations. The linear fit is kept as a control to ensure that
the system is evaluated at sufficiently high resolutions. Going to third-order regres-
sion yields results very similar to that of the second-order. The estimates of the
ground state become less accurate for higher fractal iterations as it becomes more
difficult to evaluate high resolutions.
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Figure 19: The ground state energy of the Sierpinski Carpet at fractal iteration
l = 3 plotted against the inverse linear length scale resolution 1/n. An estimate for
the ground state energy in the continuous system is obtained from evaluating the
fitted functions at 1/n = 0. In (a), a second-order regression Ẽ2(

1
n
) is used over a

large range of resolution values. In (b), a linear regression Ẽ1(
1
n
) of the 10 largest

resolutions is shown.

The ground state at different fractal iterations

The process is repeated for different values of the fractal iteration l. The results up
to l = 7 are shown in a log-log plot in Figure 20 and given in Table 5. The slope of
the logarithmic energies in Figure 20 is seen to become linear for large l, indicating
an exponential dependence.
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Figure 20: The natural logarithm of the ground state energy of the Sierpinski Carpet
for increasing values of the fractal iteration l. The slope of the logarithmic energies
is seen to approach a linear function, corresponding to an exponential dependence
of the ground state energy with respect to l.
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From Table 5, it is seen that, although the deviations between the linear and second-
order fits become larger for increasing fractal iterations, the deviations remain an
acceptable size.

Table 5: The extrapolated ground state energy of the Sierpinski Carpet for increasing
fractal iteration. For each fractal iteration, the largest linear length scale resolution
n used is also shown. Both second-order and linear intersects are shown. The two
deviate more for higher fractal iterations when it is not possible to sample with as
high resolutions compared to the system’s detail.

l Largest n-value used Linear intersect Second order intersect Deviance(
ℏ2
m

) (
ℏ2
m

)
( 2nd−1st
2nd order

) (%)

1 110 38.72 38.73 0.043
2 90 114.11 114.13 0.023
3 70 551.78 551.80 0.003
4 28 4566.23 4569.79 0.078
5 19 40 654.59 40 783.20 0.315
6 14 363 899.01 365 833.40 0.529
7 7 3 242 052.89 3 280 895.88 1.184

Finally, consider the probability density of the ground state at different fractal iter-
ations. To obtain this, the absolute squares of the eigenvectors are taken. Further-
more, the Sierpinski Carpet is symmetric under a 90◦ rotation and exhibits 4-fold
symmetry. The corresponding ground state wave function therefore also exhibits
this symmetry. Because of this, the first four densities are summed and normalized.
The probability densities of the ground states for the first six fractal iterations for
the Sierpinski Carpet are shown in Figure 21.
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Figure 21: Probability densities of the ground state of the Sierpinski Carpet for the
first few fractal iterations. A four-fold symmetry is evident.

Scaling of the ground state energy for increasing fractal iteration

Consider next the ratios between the ground state energies of subsequent fractal
iterations sl as discussed in Section 5.4. The obtained values are given in Table 6.
The ratios sl are not equal for each fractal iteration l like they were in the case
for the particle in the two-dimensional box in Section 5.4. It is seen that as the
fractal iteration l increases, the energy ratios sl approach the value 9 in a seemingly
asymptotic manner. Looking at the definition of the energy scaling factor s in
(67), these results indicate that s = 9. Had there been a relation to the Hausdorff
dimension s = rDH ·l as suggested in Section 5.4, one would expect s = rDH = 8, but
this is clearly not the case. Instead, the obtained result corresponds to s = r2 =
rDL , where DL is the topological dimension or Lebesgue dimension of the fractals
as described in Section 2.2. That is, the energy scaling for the Sierpinski Carpet
corresponds to that of a regular two-dimensional system.
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Table 6: Ratios between ground state energies of consecutive fractal iterations sl for
the Sierpinski Carpet. The individual energies can be found in Table 5.

l sl = El/El−1

2 2.9
3 4.8
4 8.3
5 8.9
6 9.0

The precision of the results for fractal iteration l = 7 was deemed too inaccurate to
include in Table 5. This is because the interval of grid resolutions n considered for
l = 7 was deemed too small, which could have led to errors that would have been
be difficult to estimate. However, the result of l = 7 gave sl = 9, which coincides
with the other values.

6.2 Scaling of the ground state energy of other fractals

The same analysis as was done for the Sierpinski Carpet in Section 6.1 was repeated
for the other fractals. The corresponding energy scaling factors s were evaluated
for each fractal. The energy scaling factor describes the scaling of the ground state
energy of a fractal as the fractal iteration l is increased, and it was defined in (67).

Recall that for the square considered in Section 5.4, it was found that s = r2.
It was also noted that for a general Euclidean object with an integral, topological
dimension DL, the expected energy scaling factor s equals rDL . The definition of the
topological dimension, or Lebesgue dimension, was introduced in Section 2.2, and
loosely speaking DL is the intuitive, integer dimension of an object. For a Euclidean
object, the Hausdorff dimension DH is equal to the topological dimension and one
can simply write s = rDL = rDH = rD. It is however not trivial to see how this
energy scaling factor generalizes for a fractal object with a Hausdorff dimension DH

different from its topological dimension DL.

A total of thirty-three fractals were considered and their estimated energy scaling
values are shown in Figure 22, plotted against the corresponding fractals’ Hausdorff
dimensions. It is not observed any correspondence between the Hausdorff dimension
and the energy scaling factor s in these results. Generally, the objects with higher
values of s tend to have larger fractal dimensions DH , but this might be understood
from other properties of the fractals. Specifically, the fractals with larger Hausdorff
dimensions, also typically rescale their constituent parts by a smaller factor, 1/r,
per fractal iteration l than those with lower Hausdorff dimensions. The area where
the wavefunction resides is expected to get squeezed more dramatically per fractal
iteration l when 1/r is small. This is expected to yield a greater energy scaling
factor s.
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Figure 22: The scaling factors of the ground state energies s of different fractals are
plotted against the Hausdorff dimensions DH of the fractals. There is no observed
correspondence between the scaling factors and the Hausdorff dimensions of the
fractals.

It was seen in the case of the Sierpinski Carpet that s = r2 = rDL . The other
considered fractals also have DL = 2. Motivated by this, the energy scaling factor
s is plotted against the square of the fractal rescaling factor, r2, in Figure 23. A
dotted line corresponding to s = r2 is included in the plot.

Figure 23: The energy scaling factors s for different fractals are plotted against the
square of the linear rescaling factor r2. The dotted line correspondences to s = r2.
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The results seen in Figure 23 correspond to the relation

s = r2 = rDL , (76)

where DL is the topological dimension of the fractals. That is, it corresponds to
the normal solution of a Euclidean object, as was the result found for the Sierpinski
Carpet. To gain further confidence in this result, consider the implications of the
alternative relation s = rDH .

An alternative energy scaling determined by the Hausdorff dimension

It has been observed that the energy scaling factor s is determined by (76). To gain
further confidence in the result, consider the implications of the alternative relation
s = rDH . The relation s = rDH would imply a strong correspondence between s and
the number of copies m. The number of copies m was introduced in Section 2.2 and
gives how many copies of the fractal at iteration l′ − 1 are found in the fractal at l′.
For perfectly self-similar fractals, which satisfy the open set condition given in (7),
one has DH = DS = log(m)/ log(r). Here, DS is the similarity dimension from (6)
and r is the linear rescaling factor. This would then yield the relation

rDH = rDS = r
log(m)
log(r) = m.

The energy scaling factor s is plotted against the number of copies m for different
fractals in Figure 24. The found values of s are seen to pile up at horizontal levels.
The plot does not demonstrate the property s = rDH = m. It could at first glance
seem that there is a correspondence between the number of copies m and the found
energy scaling factors s. However, the fractals with larger values of m also typically
have larger values of the fractal rescaling factor r. Thus, the trend seen in Figure
24 is attributed to this correlation between m and r, and not to a relation between
s and m directly. That is, it is concluded that no relation between s and m can be
extracted from Figure 24. Instead, the energy scaling factor s is determined by the
linear rescaling factor r and the topological dimension DL.
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Figure 24: The energy scaling factor of the ground state s for different fractals is
plotted against the number of copies m. The value m was introduced in Section 2.2,
and is the number of copies of the fractal at iteration l = l′ − 1 that can be found
in the fractal at iteration l = l′. The number of copies m enters in the definition
of the similarity dimension in (6), which is equal to the Hausdorff dimension for a
perfectly self-similar object.

Impact of numerical precision

The impact of imprecise numerical calculations is included as a final remark to gain
further confidence in the obtained result. It is difficult to conclude beyond any
doubt that the obtained results are not influenced by numerical imprecision, but a
compelling argument is given here.

Suppose that the relation s = rDL is wrong and that the result was caused by
insufficient numerical precision. This means that either finer grid resolutions or
larger fractal iterations l, or both, would yield a different energy scaling factor s.

Consider first increasing the fractal iteration l. Based on Table 6 it is seen that
the ratios between consecutive ground state energies sl in fact become closer to the
relation s = rDL as l increases. It is therefore highly unlikely that considering even
larger values of l would disprove the relation liml→∞ sl → s = rDL .

The remaining option is then to increase the grid resolution. This is done by in-
creasing the linear length scale resolution n, which dictates the grid resolution. The
easiest test is to run the numerical evaluations for lower values of n and compare the
results. An example of using smaller grid resolutions in the calculations is shown
in Figure 25. It is seen here that the obtained values of s for the different fractals
lie lower than s = rDL = r2 when n is small. In fact, it seems that when s only
approaches rDL when both l and n are large. This advocates that the obtained
relation for the energy scaling factor s is not due to low-precision calculation.
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Figure 25: The energy scaling factor of the ground state s plotted against the
fractals’ linear rescaling factors r for lower resolutions in grid size and fractal itera-
tion l. As the precisions in the calculations are increased, the results approach that
of a regular two-dimensional object.

6.3 Interpretation of the ground state energy scaling

Consider a fractal with a Hausdorff dimension DH and a topological dimension
DL ̸= DH . The analysis in Sections 6.1 and 6.2 shows that, for large values of the
fractal iteration l, the ground state energies of subsequent iterations follow a power
law, El+1 ≈ s · El ≈ sl · E0. It is stressed that this only holds for large values of
l. Furthermore, it was found in (76) that the energy scaling factor s is determined
by the linear rescaling factor between iterations r and the topological dimension DL

as s = rDL . A possible explanation involves an increased localization in the ground
state wave functions as the fractal iteration l increases.

Consider the different values of sl found between fractal iterations for the Sierpinski
Carpet, given in Table 6. For the intermediate values of the fractal iteration, l = l′,
the found energy ratios were denoted sl′ . The results mean that the area in which
the particle resides decreases by a factor of 1/sl′ when the fractal iteration advances
from l′−1 to l′. For finite iterations, it was found that sl′ < r2, and s approached r2

for large l. Moreover, the fractal iteration l′ consists of m = 8 copies of the fractal
iteration l′−1, each linearly rescaled by a factor 1/r. Since sl′ < r2, this means that
the particle must reside in more than one of these copies of l′−1. The wave function
spreads out into neighboring copies, but not at a sufficient rate, as the area where
the wave function resides still tends towards zero rapidly. This is also confirmed by
inspecting the probability density in Figure 21. Here it can be confirmed that the
particle spreads out to a much greater extent for the low fractal iterations.

The observed relation liml→∞ sl → s = r2 for large values of l then corresponds
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to the particle simply staying put in the structure of l − 1 as the fractal iteration
advances to l. In fact, in Figure 21 it is seen that the wave function resides in
increasingly isolated islands as the fractal iteration grows. It does not make use
of the full global structures of the fractals and therefore does not observe global
properties such as the number of copies m. The plot between s and m in Figure
24 confirms that there is no observed relation between the two. In turn, this would
correspond to a localized state in the limit of large l that doesn’t perceive the change
in the global structure. That is, the particle doesn’t utilize the total available area
in the fractal but is instead confined to several isolated regions.

Based on this, it is theorized that as the fractal iteration l increases, the wave
functions become increasingly localized to the point where they do not experience
the global structures of the fractals. In this sense, they do not perceive the fractal
dimensions of the confining potentials either. This leads to the obtained energy
scaling factors in (76) being completely determined by the linear rescaling factors r
and the topological dimensions DL.

7 Conductance

This section carries on the research on properties of quantum particles in fractal
potentials, now concentrating on transport. The conductance of a coherent electron
current through a fractal potential is considered. The analysis will first be carried
out for the Sierpinski Carpet and the Sierpinski Gasket. Next, the procedures are
repeated for other fractals and the results are discussed. Finally, some additional
considerations on multifractal analysis are made and an experimental setup is sug-
gested. The theoretical background for the following discussion is the scattering
theory of transport presented in Section 3.5. Specifics on the methodology were
outlined in Section 5.5.

7.1 Conductance through the Sierpinski Carpet

In order to evaluate the transport properties through the Sierpinski Carpet, the
system is discretized as discussed in Section 5.5. Next, two leads are attached to
the fractal, and we’re considering the transport of quantum particles between the
two. Different lead positions can be used, as shown in Figure 26. The displayed lead
positions will be referred to as central, diagonal and corner, respectively.
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(a) Central (b) Diagonal (c) Corner

Figure 26: The discretized Sierpinski Carpet at fractal iteration l = 3 and linear
length scale resolution n = 2. This setup is used for evaluating transport properties.
The attached leads are indicated by orange lines. The configurations are referred to
as (a) central, (b) diagonal, and (c) corner.

The conductance through the displayed system is evaluated numerically using the
procedure described in Section 5.5 and (49). The conductance g(E) here refers to the
conductance from the state with energy E, and not the total conductance of all states
with energies less than E. This g(E) is also called the conductance fluctuation or
differential conductance. The calculations are made for different lead configurations,
fractal iterations l, and linear length scale resolutions n. The conductance for the
Sierpinski Carpet with central lead position and linear length scale resolution n = 2
at varying fractal iterations is shown in Figure 27. The maximum values in the
conductance are g(E) = 2 · G0, corresponding to two conducting channels. This
means there are two sets of modes in the leads that contribute to the conduction in
(49) at these energies. This would not have been obtained had we represented the
leads with only a single line of points. Fifty thousand linearly spaced energies are
used to sample the conductance in Figure 27. The number of energies used in the
sampling of the conductance will be referred to by the symbol NC . In the numerical
calculations, NC was of the order 105 − 106.

It can be seen that as the fractal iteration l increases, more and more details appear
in the conductance. In the case of l = 4, the number of sampled points NC =
50000 used in Figure 27 is insufficient to demonstrate the full detail of the curve.
Furthermore, recall that the true fractal is obtained when the fractal iteration l goes
to infinity. This rapid increase in detail in the conductance for increasing l indicates
that the conductance plot of the Sierpisnki Carpet at l = ∞ would have infinite
detail. It is thereby recognized that the conductance is in fact a fractal itself. This
result was first found by van Veen et al. (2016) in the case of the Sierpinski Carpet.
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Figure 27: Conductance through the Sierpinski Carpet at different fractal iterations
with linear length scale resolution n = 2. In all cases, the conductance g(E) is
sampled for 50000 linearly spaced energies. In (a), the fractal iteration l = 2 is
used, and the sampling is sufficient to see all details. In (b), the fractal iteration
is l = 3, and more details are seen to appear. In (c), the fractal iteration is l = 4,
and the number of details is large. Increasing the number of sampled points further
leads to even more details appearing.

Knowing that the conductance plot is fractal, we wish to evaluate the Hausdorff
dimension. The box-counting method described in Section 2.3 is used to approximate
the Hausdorff dimension. In short, one counts the number of boxes of a given
size that are necessary to cover an object, next the box size is varied. For an
intermediate region called the scaling region, a power-law dependence between the
number of boxes and box size can be seen. From the slope of this power law, one
can estimate the dimension of the system. The box-counting analysis is carried out
for the conductance of the Sierpinski Carpet at fractal iteration l = 3, linear length
scale resolution n = 2 and with a sampling of NC = 106 points. The result is shown
in Figure 28. In Figure 28, the dashed black line indicates a power law dependence
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equal to the Hausdorff dimension of the Sierpinski Carpet. Notice how this coincides
with the slope of the box-counting results in the intermediate, scaling region. This
remarkable result shows that the box-counting dimension of the conductance plot in
Figure 27, is the same as the Hausdorff dimension of the Sierpinski Carpet. We will
investigate if this relation holds for other fractals as well. The result was first found
for the Sierpinski Carpet in van Veen et al. (2016), however, the paper attempted
to also evaluate the property for the Sierpinski Gasket but could not conclude.

In Figure 29, the same calculation is repeated for different lead positions, and the
result is unaffected. Furthermore, even though this discussion is done for electrical
current and transport of electrons, by a change of units this can also apply to the
transport of other quantum particles as was done by Krinner, Esslinger and Brantut
(2017).
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Figure 28: Box-counting analysis performed on the conductance plot of current
through a Sierpinski Carpet at fractal iteration l = 3 and linear length scale resolu-
tion n = 2. The power-law scaling seen in the plots shows that the conductance plot
has the same Hausdorff dimension as the Sierpinski Carpet itself, found in Section
4.3. This means that the fractal structure of the underlying object manifests in
the transport properties through it. The conductance was sampled using NC = 106

linearly spaced points, but the scaling can be seen for much smaller sampling rates
as well.
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(a) Diagonal
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(b) Corner

Figure 29: The box-counting analysis applied to the Sierpinski Carpet for different
positions of the leads. Otherwise, the configurations are the same as in Figure 28.
Figure (a) corresponds to diagonal lead positions, and (b) to the corner configura-
tion. A small deviation is seen between the slope of the numerical points and the
analytical scaling in (b). This is however contributed to the fact that it is difficult
to obtain numerical accuracy in the corner configuration as the distance between
leads is small.

7.2 Conductance through the Sierpinski Gasket

In order to compare our results with those of van Veen et al. (2016), the calculations
are carried out for the Sierpinski Gasket before proceeding with other fractals. The
conductance of the Sierpinski Gasket at fractal iteration l = 6 and linear length
scale resolution n = 2 was computed using a sampling of NC = 6× 105 points. The
results are shown in Figure 30.

Figure 30: Conductance through a Sierpinski Gasket at fractal iteration l = 6 and
linear length scale resolution n = 2 for varying gate potentials. The conductance
displays regions of rapidly varying conductance separated by large energy gaps.
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The conductance g(E) in Figure 30 is qualitatively different from that of the Sierp-
inski Carpet in Figure 27. The conductance through the gasket displays islands of
rapidly oscillating conductance, separated by large energy gaps. This indicates that
for large ranges of energy, there is no wave function corresponding to a connection
between the two leads. Thereby, there is no transport between the leads. These
gaps are excluded when calculating the box-counting dimension of this plot. To do
so, start by sampling the conductance with NC = 2000 evenly spaced points. The
energy gaps are then located as anywhere three consecutive points are approxim-
ately zero. A new sampling is made with NC ∈ (105, 106) points equally spaced over
the remaining regions. Considering that the plot is fractal, the gaps might behave in
a fractal way as well, and new gaps might appear in this second sampling. However,
these are considered a part of the fractal structure and were not removed in the
displayed result. Removing these was however tested, and it had a negligible effect
on the results.

The Hausdorff dimension of the conductance plot is estimated by the box-counting
method described in Section 2.3, and the result is shown in Figure 31. At first glance,
the scaling relation is not as convincing as the one seen for the Sierpinski Carpet.
The numerical data doesn’t lie on a smooth line but seems to oscillate. Changing
the lead positions was found to affect these oscillations and can make them more or
less pronounced. This result is likely due to the numerical difficulty of evaluating
the Sierpinski Gasket. It has a very low connectivity and is prone to imprecisions,
see Section 4.8.

Figure 31: Box-counting analysis performed on the conductance plot for a current
through a Sierpinski Gasket. The fractal was at fractal iteration l = 6 and linear
length-scale resolution n = 2. The indicated power-law scaling corresponds to the
Hausdorff dimension of the Sierpinski Gasket, DH = log(3)/ log(2) as seen in Section
4.6. The result is not as convincing as the one seen for the Sierpinski Carpet in Figure
28.
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The slope of the conductance plot is not affected by these oscillations and was found
to be the same for different lead positions. That is, the slope is self-averaging and is
recovered if sufficient data points are considered in the box-counting analysis. From
Figure 31, it seems that the obtained numerical slope corresponds is the Hausdorff
dimension of the Sierpinski Gasket. To verify this, zoom in on the scaling region
of the box-counting analysis, using box sizes between 5% and 18% of the extent of
the horizontal axis in the conductance plot. This is shown in Figure 32. Here, a
linear regression of the data points is shown together with the theoretical scaling.
The linear regression gives a numerical slope of 1.580, which is close to the predicted
value of log(3)/ log(2) ≈ 1.585.
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Figure 32: The scaling region of the box-counting analysis for the conductance plot of
a Sierpinski Gasket. The points do not fall on a straight line, however, the average
scaling found of 1.580 corresponds to the Hausdorff of the gasket, approximately
1.585.

To gain further confidence, the slope is calculated for different fractal iterations of the
gasket, and the results are given in Table 7. The estimated dimensions are close to
the theoretically predicted value of log(3)/ log(2) ≈ 1.585. The results show that the
relation between conductance and fractal dimension found for the Sierpinski Carpet
also holds in the case of the Sierpinski Gasket. That is, the Hausdorff dimension
of the conductance plot is the same as the Hausdorff dimension of the underlying
fractal. The result differs from that found by van Veen et al. (2016). That is, van
Veen et al. (2016) did not recover the relation between the fractal dimensionality
of the conductance and that of the underlying fractal potential for the Sierpinski
Gasket.
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Table 7: The estimated box-counting dimension of the conductance plot for the
Sierpinski Gasket at different fractal iterations. The Hausdorff dimension of the
Sierpinski Gasket itself is log(3)/ log(2) ≈ 1.585.

Fractal iteration l Estimated box-counting dimension
2 1.427
3 1.534
4 1.619
5 1.557
6 1.580

From Table 7 it is also seen that using a large fractal iteration is not necessary to
observe the Hausdorff dimension in the conductance plot. This is a rather peculiar
result. Recall that the Hausdorff dimension of log(3)/ log(2) ≈ 1.585 corresponds to
the fractal at iteration l = ∞. However, when calculating the conductance, a fractal
at finite iteration l must be used. It seems that even if the fractal is represented
at a low fractal iteration, and the potential does not accurately represents the true
fractal, the conductance plot still exhibits a dimension close to the true Hausdorff
dimension. From this, it would seem that the transport properties are determined
by the larger, general structure of the fractal. Infinite, or high, detail is not required
to get a decent estimate of the fractal dimension of the conductance plot in the limit
l = ∞ for the Sierpinski Gasket. This is promising for anyone wanting to make use
of this property in a physical realization of the Sierpinski Gasket.

7.3 Conductance through other fractals

The numerically estimated box-counting dimensions of the conductances Dconductace
BC

are plotted against the Hausdorff dimensions of the corresponding fractals Dfractal
H

in Figure 33. A linear slope is plotted together with the data points. This slope
represents a relation that the fractal dimension of the conductance plot is equal to
the fractal dimension of the underlying structure. The numerical data clearly fits
this prediction.
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Figure 33: Numerically estimated dimensions of the conductances through fractals
Dconductance

BC , plotted against the Hausdorff dimensions of the corresponding fractals
Dfractal

H . A linear relation is evident, corresponding to Dconductance
BC = Dfractal

H . This
shows that the fractal dimension of the conductance is determined by, and equal to
the fractal dimension of the underlying structure.

Based on this result, together with the detailed study of the Sierpinski Carpet and
Sierpinski Gasket in Sections 7.1 and 7.2, it is concluded that the discussed relation
between the dimension of the conductance and the dimension of the underlying
potential holds for the fractals studied in this thesis. That is, for transport through a
fractal potential, the conductance is itself fractal with a fractal dimension determined
by and equal to the Hausdorff dimension of the underlying potential. This can be
written

Dconductance
BC = Dfractal

H . (77)

The fractals considered here were simply connected, displayed a high degree of self-
similar, and had vanishing areas as the fractal iteration increased. This includes a
wide variety of fractals, and the result could hold for other fractals as well.

Upon increasing the fractal iteration l, the dimension of the conductance quickly
approached the true Hausdorff dimension of the fractal at l = ∞. This fact made
the systems possible to study numerically. This is also highly promising for anyone
who wants to replicate such a system in a laboratory. Systems with more than high
enough detail have already been realized by for example Kempkes et al. (2019).
Based on the coherent transport model used here, it is expected that the conduct-
ance through such a system will carry information about the fractal nature of the
structure.

Notice the fractals called Bush, Trimmed Bush 1, Trimmed Bush 2, and Trimmed
Bush 3 in Figure 33. These four fractals are generated using the Method of Repeated
Kronecker products given in Section 4.2. The four fractals have different details since
their axioms are different, however, their generators are the same. In Section 4.2
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it was predicted that the properties of the fractals should depend on the generator,
and not the axiom. This is also what is seen from the numerical results in Figure
33, where the estimated dimensions of the conductances through these four fractals
lie close to each other. The same holds for the fractals Jerusalem Cross and the
Unorthodox Cross.

7.4 Significance of connectiviy

In the analysis of conductances through the Sierpinski Carpet and the Sierpinski
Gasket, qualitative differences were found. Large energy gaps were found in the
conductance plot of the gasket in Figure 30, which were not present in the results
for the Sierpinski Carpet in Figure 27. The observed energy gaps can be related to
the connectivity of the fractal as discussed in Section 4.8.

In the Sierpinski Gasket, there are relatively few available paths connecting any two
points, and the fractal has low connectivity. In fact, one can separate the fractal
into three equal parts by cutting only three edges or neighbor interactions. On the
other hand, in the case of the Sierpinski Carpet, there exist many paths connecting
different regions of the fractal, and the carpet is said to have high connectivity. The
other fractals studied in this thesis also fall into one of the groups, those with high
connectivity and those with low connectivity.

The fractals with low connectivity generally displayed large energy gaps in the con-
ductance plots like those that were shown for the Sierpinski Gasket. On the other
hand, the fractals with large connectivity did not display such gaps and their results
looked qualitatively more like the results for the Sieprinski Carpet. This is likely
related to the fact that the energy levels in the fractals with low connectivity share
unique properties and can even be derived analytically [Shima (1996)]. These unique
properties are discussed in greater detail in the context of level spacing statistics in
Section 9.2.

The box-counting analysis for fractals with low connectivity was generally harder
to evaluate. The scaling region was smaller, and larger values of the linear length
scale resolution n and the conductance sampling NC were necessary to study these
systems. These systems also seemed more prone to numerical errors and displayed
fluctuations in the box-counting analysis such as those seen in Figure 31. These
issues are familiar limitations of the box-counting analysis. This was discussed
briefly in Section 2.3, and a detailed discussion was carried out by Jiang and Liu
(2012).

A method was applied to improve the results of the box-counting algorithm for a few
of the fractals. Depending on the specific set-up, the conductances of the fractals
might be able to take values between 0 and 2 · G0, where G0 is the conductance
quantum defined in Section 3.5. This is not general but it was the case in the
relevant fractals. It was found that the box-counting analysis was more stable when
considering only the larger values of the conductances, specifically in the range of
(1− 2)G0. The motivation for making this consideration in the first place was that
the smaller values are expected to be more prone to numerical errors. Furthermore,
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in some almost fully one-dimensional fractals, one channel was found to remain open
in intervals, giving g(E) ≥ g ·G0. In these few cases, the fractal dimension was more
clearly observed when considering only the larger values of g(E), corresponding
to two conducting channels being open. This method was used to obtain accurate
results for the fractals named Jerusalem Cross, Unorthodox Cross and Remove Lower
Left in Figure 33. In the Flag-fractal, it was difficult to recover a clear scaling in
the box-counting analysis and it was excluded from Figure 33.

7.5 Multifractal analysis of the conductances

A possible explanation as to why the regular box-counting analysis sometimes struggled
to characterize the dimensionality of the conductances could be because they are in
fact multifractal. The concept of multifractals was discussed in Section 2.3. Multi-
fractals are not completely described by a single fractal dimension, but can instead
exhibit multiple dimensions for different regions or moments.

A multifractal analysis was suggested in Section 2.3 using the generalized dimension
D(q) which can be seen as an extension of the box-counting analysis. In this analysis,
one considers the scaling of different statistical moments q in the system and finds
a dimension D(q) based on the scaling of each of these moments. The result from
the box-counting analysis is recovered for q = 0. The generalized dimension D(q)
reveals if the system exhibits different fractal dimensions for different moments.

In a monofractal, there is only one fractal dimension and one expects that D(q) is
almost constant for different q. A slow decrease in D(q) is however expected as the
exponent q increases. The fractal potentials are for example monofractals. On the
other hand, a multifractal is described by different fractal dimensions for different
statistical moments. In this case, it is expected that the generalized dimension D(q)
has a much stronger dependence on the moment q. The goal is to determine whether
the obtained conductances are monofractals or multifractals.

A multifractal analysis was performed on the Sierpinski Gasket and the Sierpinski
Carpet along with the conductances through both systems. The results are shown
in Figure 34. For both fractals, it is clear that the potentials themselves vary
slowly with moments q. On the other hand, the generalized dimensions D(q) for
the conductances yield greater dependencies on q. Based on this, it is concluded
that the conductances are multifractal and are characterized by more than one
fractal dimension. As mentioned, the generalized dimension equals the box-counting
dimension in the case of q = 0. In the context of multifractals, this dimension is
referred to as the capacity dimension. A refined version of our statement from
Section 7.3 would then be that for transport through a fractal, the conductance
is multifractal with a capacity dimension equal to the Hausdorff dimension of the
underlying fractal.
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Figure 34: The generalized dimension D(q) is plotted against moments q. Figure (a)
displays the results for a discrete realization of the Sierpinski Carpet together with
the results for the conductance for transport through this fractal. Figure (b) shows
the results for a discrete realization of the Sierpinski Gasket and the conductance
through this fractal. The results show that the conductances through the fractal
structures are multifractal, meaning that they are characterized by more than one
fractal dimension.

As a final note, it is added that the generalized dimension for the conductances in
Figure 34b were calculated after removing energy gaps. If the energy gaps are kept,
this makes the generalized dimension quickly decay to 1 when the momentum q is
increased since the dimension of these gaps is 1. This is as expected and confirms
that the analysis works. The reason it is obtained for large q is because the data
points in these energy gaps lie closer to one another, i.e., they are denser, than
the data points in the fluctuating parts of the fractal. Recall that the conductance
was sampled by evenly spaced points. The dense regions will dominate for large
moments q, as was discussed briefly at the end of Section 2.3. Naturally, the data
points in the energy gaps scale as a regular one-dimensional straight line. Therefore,
D(q) quickly approaches 1 for increased q if the energy gaps are included.

7.6 Experimental realization

An experiment to investigate the conductance of quantum particles through fractals
is suggested. The experiment is based on the work of Krinner et al. (2015) and
Krinner, Esslinger and Brantut (2017) and is in a cold atoms system. Further
details on the set-up can be found in See Krinner, Esslinger and Brantut (2017).

Starting with an atomic cloud, the cloud prepared into a cigar shape using a dipole
trap as depicted in Figure 35a. Next, a blue-detuned TEM01-like laser mode is
propagated along the x-axis and focused onto the center of the cigar as depicted
in Figure 35b. Finally, the fractal structure should be imprinted onto the obtained
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quasi-2D channel. The method for carrying out this final step is not fixed from this
thesis, but the work of Kempkes et al. (2019) is suggested as a place to start.

In order to have transport, the chemical potential in the two reservoirs needs to be
different. This can be obtained by creating one of the clouds bigger than the other
when applying the laser mode. After this, one can imagine letting the experiment
run while measuring the transport of atoms through the channels. This would yield
the total conductance for varying voltage bias. This could then be used to find
the differential conductance as used in this thesis. Alternatively, one can move the
channel more to one side or the other, squeezing one side of the atomic cloud while
stretching the other, thereby changing the chemical potentials.

(a)

(b)

Figure 35: An experiment to measure the conductance through a fractal is suggested
based on the work of Krinner, Esslinger and Brantut (2017). In (a), an atomic cloud
is formed into a cigar shape using a dipole trap. In (b), a laser mode is used to
separate the cloud into two reservoirs, connected through a quasi-2D channel. As a
final step, one can imagine imprinting a fractal structure onto the channel.

Source: Krinner, Esslinger and Brantut (2017).

8 Participation ratio

In order to further investigate the cause of the results found for the conductances
in Section 7, the localization of states is considered. This section starts with a
short introduction to the motivation and methodology of studying the localization
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of states. The discussion then continues on the localization of the eigenstates in
fractal potentials. Next, an interpretation of the results is given together with their
relation to the results found for the conductances. Finally, a discussion on the
periodicity of fractals in the context of the observed results is made.

8.1 Participation ratio

From the scattering theory of transport, and specifically (70) and (49), it is seen
that conductances greater than zero correspond to an eigenstate stretching between
the two leads. Thus, if there one observes a conductance greater than zero between
two sufficiently separated leads at a certain energy, it is expected that there is an
extended state corresponding to this energy. The conductance is therefore closely
related to the localization or extension of the wave functions. The states do not
need to be fully extended, so long they make contact between the two leads.

Motivated by this, we want to investigate the localization of states in the fractals
and determine whether this can be the cause of the fractal conductances seen in
Section 7. Start by quantifying the localization of a state using the participation
ratio defined as

PR(E) =
(
∫
|Ψ(r, t)|2 dr)2∫
|Ψ(r, t)|4 dr . (78)

If the state is normalized, the numerator in (78) is simply equal to 1. Furthermore,
for highly extended states, the in denominator (78) becomes small, and PR is large.
Contrary, for an exactly isolated state, PR equals 1. For a normalized wave function
in a time-independent system discretized onto a N ×N grid, (78) then becomes

PR(E) =
1∑N

i

∑i
j |ψi,j|4

, (79)

where ψi,j is the amplitude of the wave function at site {i, j}. Equation (79) can be
evaluated for the eigenstates found through exact diagonalization of the fractals.

8.2 Participation ratios of the fractals

The participation ratios of the eigenstates of the Sierpinski Carpet at fractal iteration
l = 4 and linear length scale resolution n = 2 were evaluated using (79). The result is
shown in Figure 36a. Figure 36a qualitatively resembles the plot of the conductance
through the same fractal system in Figure 27. In addition, by adding more detail
to the fractal potential, more detail appears in the plot of the participation ratio.
The results indicate that the participation ratio as a function of energy is a fractal.
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(a) Sierpinski Carpet

(b) Sierpinski Gasket

Figure 36: Participation ratios PR(E) of the eigenvectors for the Sierpinski Carpet
and the Sierpinski Gasket. The fractal iterations used were l = 4 and l = 6 and
linear length scale resolution n = 2 and n = 7, respectively. Exact diagonaliza-
tion is performed numerically on the discrete Hamiltonian of the system, and the
participation ratios are calculated using (79). These are then plotted against the
corresponding energy eigenvalues.

Motivated by Figure 36a and the results from Section 7, the box-counting dimension
of the participation ratio is computed. It is expected that this numerical evaluation
of the box-counting dimension will be less precise than those found for the con-
ductances earlier. This is due to the relatively few data points available for the
participation ratio as compared to the conductance. Following the same approach
as in Section 7.1, we obtain an estimate of the box-counting dimension as shown
in Figure 37a. It can be seen that, in the case of the Sierpinski Carpet, the fractal
dimension of the participation ratio plot is approximately the same as the Hausdorff
dimension of the fractal potential. This is the same result that was obtained for the
conductance through the Sierpinski Carpet in Section 7.1.

The analysis is repeated for the Sierpinski Gasket, similar to what was done for
the conductance in Section 7.2. The obtained result for the participation ratios
is shown in Figure 36b. The participation ratios are to the results found for the
conductance through the same structure in Figure 30, with islands of fluctuations,
separated by large regions with no extended states. The box-counting analysis for
the participation ratio of the Sierpinski Gasket is shown in Figure 37b. It is seen
that the box-counting dimension of the participation ratio is equal to the Hausdorff
dimension of the potential in this case as well. Note that when evaluating the box-
counting dimension of the Sierpinski Gasket, the regions with no extended states
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were removed, as was done in the conductance case. Details of this procedure were
given in Section 7.2.
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Figure 37: The box-counting analysis applied to the participation ratios of (a) the
Sierpinski Carpet and (b) the Sierpinski Gasket. The fractal iterations used were
l = 4 and l = 6, respectively, and the linear length scale resolutions were n = 2 and
n = 7. The participation ratio at a given energy is found by applying (79) to the
eigenvectors after the exact diagonalization of the Hamiltonian.

When evaluating the conductances in Section 7, we could compute 105 − 106 data
points. In the case of the participation ratio, a mere 103−104 data points were used.
It is difficult, or rather impossible, to obtain equivalent precision in the participation
ratio calculations as in the conductance calculations through the employed method.
This is due to the calculations of participation ratios using exact diagonalization.
For a given discrete realization of a fractal, one can only obtain so many eigenvectors
from the exact diagonalization of the Hamiltonian. Therefore, there’s a limited set
of data points in the participation ratio plot, which affects the performance of the
box-counting analysis. Increasing the size of the system quickly becomes unfeasible
due to the time complexity of the exact diagonalization procedure, see Appendix
A for details. In the method used for the conductances on the other hand, one
could evaluate the conductance for as many energies as desired, yielding a large
amount of data points to be used in the box-counting method. For this reason, it
is not produced a plot for the box-counting dimensions of the participation ratios
equivalent to that of Figure 33 for the conductances.

8.3 Interpretation of results and relation to conductance

The results in Figure 36 demonstrate that if there is an extended state at a specific
energy, there does not exist a neighborhood in energy in which the state is guaran-
teed to remain extended. That is, there is no neighborhood of stability, and even an
infinitesimal change in energy could change an extended state into a localized state,
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and vice versa. In terms of quantum mechanics, there are no energy bands. Further-
more, Figure 37 shows that the manner in which the states fluctuate between being
extended and localized is determined by the fractal dimensionality of the potential.
This is seen as the Hausdorff dimension of the fractal potential manifests into the
dimension of the participation ratios. One can write this property as

Dparticipation ratio
BC = Dfractal

H . (80)

It is once again stressed that (80) has not been explicitly shown for all the fractals
in this thesis due to the numerically exhaustive evaluation arising from the exact
diagonalization in the employed mehod.

From the scattering theory of transport in Section 3.5, it is seen that in order to
have a conducting state, there needs to be a connection between the two leads. If
the leads are separated from one another, that means that a non-zero conductance
is expected to correspond to an extended state. This means that large conductances
are associated with large participation ratios. When the states rapidly fluctuate
between being extended and localized, this will cause the conductance to rapidly
fluctuate. At this point, it is additionally concluded that the discussed relationship
between the dimension of the conductance and the Hausdorff dimension of the fractal
potential arises due to these fluctuations between extended and localized states.
This is based on the above discussion together with the agreement between the box-
counting analysis applied to the conductances and participations ratios in Figures 28,
31 and 37, as well as the qualitative similarity between the plots of the conductances
and participation ratios in Figures 27, 30 and 36. The relation given in (77) is thus
the direct consequence of (80). The results can be written together as

Dfractal
H = Dparticipation ratio

BC = Dconductance
BC . (81)

8.4 Periodicity of fractals

Locally, fractal structures appear irregular and aperiodic, with an intricate, infinite
amount of detail on different length scales. However, the considered fractals also
display translational invariance on large scales due to their self-similarity.

Highly extended states, such as those observed as large values of PR(E) in Figure
36, are common in regular, periodic systems. On the other, irregular, aperiodic
systems display localized states, such as those observed as small values of PR(E) in
Figure 36. It was shown above that extended and localized states are “intertwined”
in the fractals, existing side by side, with no neighborhood of stability around them.

Although the fractals considered have translational invariance on large scales, it
would seem that the infinite amount of detail leads to them to also displaying aperi-
odic behavior. One could therefore attempt to understand the fractals as displaying
a combination of properties between periodic and aperiodic systems. This might
help understand the fluctuations between extended and localized states which leads
to the relationships in (77) and (80).

As it turns out, however, viewing the fractals simply as intermediately periodic
systems is not satisfactory, and this viewpoint does not explain all spectral properties
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of the fractals. This is seen from the analysis of the level spacing statistics in the
following section.

9 Level spacing statistics

In the following section, the level spacing statistics of the eigenvalues of the fractal
potentials are discussed. First, a short motivation for this analysis is given. Then,
the level spacing statistics of the different fractals are presented and discussed. Fur-
ther discussion is given on the impact of the connectivity of the fractals on these
results. Finally, a note on the terminology used in this discussion is given. The the-
oretical framework of this section was presented in 3.6 and the specifics of evaluation
were considered in 5.6.

In Section 8, it found that the fractals display fluctuations between localized and
extended states. As discussed in Section 8.4, one can attempt to model this as an
interplay between periodic and aperiodic behavior. A way to investigate whether a
system is periodic or aperiodic is by considering the level spacing statistics of the
system. As discussed in Section 3.6, the level spacing distribution of a system is
determined by the symmetries of the underlying problem. The Poisson distribution
is characteristic of uncorrelated energy levels, as is often found in integrable, typic-
ally periodic, systems. On the other hand, the Wigner-Dyson distributions arise in
systems with chaotic (aperiodic) or strongly disordered behavior, where the energy
levels are highly correlated. Locally, the considered fractals can appear disordered,
having intricate details on every length scale. However, they also display transla-
tional invariance and periodicity on large scales. It is then interesting to see whether
the level spacing statistics reflect that of a periodic or aperiodic system. The results
did however turn out unexpected.

9.1 Level spacing statistics of the fractals

Analysis of the level spacing statistics of the fractals was carried out as demonstrated
in Section 5.6. Figure 38 shows the level spacings of the Sierpinski Gasket, Vicsek
Saltire and Sierpinski Carpet. The results of these three systems are representative
of the findings for all the fractals considered in this thesis. In the case of the Sierp-
inski Gasket, one observes a decreasing power-law scaling in the log-log histogram of
the energy spacings. This is a highly unique energy level spacing distribution. The
obtained level spacing distribution has been documented once before for the Sierp-
inski Gasket by using an analytical method, see Iliasov, Katsnelson and Yuan (2019)
and Iliasov, Katsnelson and Yuan (2020), but not for other fractals. In the Vicsek
Saltire, this region of power-law scaling is somewhat less pronounced, though still
present. However, for large energy spacings, the histogram displays a different dis-
tribution, showing a smoother tail than the results for the Sierpinski Gasket. In the
case of the Sierpinski Carpet, no clear region of decreasing power-law scaling can be
observed. Instead, the distribution resembles a Poisson distribution, corresponding
to a regular periodic system.
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(b) Vicsek Saltire
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(c) Sierpinski Carpet

Figure 38: Level spacing distributions of (a) the Sierpinski Gasket, (b) the Vicsek
Saltire and (c) the Sierpinski Carpet. The fractal iterations l and linear length scale
resolutions n used were (a) l = 7, n = 3, (b) l = 3, n = 2 and (c) l = 3, n = 7.
The results display an interplay between two distributions. A decreasing power
law scaling is visible for the Sierpinski Gasket in (a). The Poisson distribution,
related to a periodic system from random matrix theory, appears in the case of the
Sierpinski Carpet in (c). The results displayed for the Vicsek Saltire in (b) show the
interplay between the two distributions. The result for the Vicsek Saltire is expected
to approach that of the Sierpinski Carpet if calculated for higher resolutions, note
that only n = 2 was used here.

Qualitatively, the fractals considered fall into one of the three cases, see Table 8 for
details. Based on the observed results, the decreasing power-law scaling seems to
be associated with the connectivity of the fractals.

Table 8: The table shows whether the level spacing distributions of the eigenvalues
of given fractals exhibit a region of decreasing power-law scaling. See Figure 38 for
examples of each category. This is based on the results from discrete realizations
of the fractals. The decreasing power law scaling in the fractals marked in between
are expected to become less pronounced or disappear completely in a continuous
realization of the fractals.

Decreasing power-law scaling
Clear scaling In between No clear scaling

Sierpinski Gasket Vicsek Saltire & Cross Sierpinski Carpet
T-fractal Pacman & Variant Dilute Corner Cutting

Jerusalem Cross Bush Bacteria
Unorthodox Cross Trimmed Bush 1− 3 Alien Invasion
Hardly Connected Bombardment 2 Fish

Flag-fractal Cut Cross Dilute Carpet 5
Strange Trees Remove Lower Left Quiver

Sierpinski Curve & Square Cutting Corners
Sail
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9.2 Level spacing distribution and connectivity

Connectivity and ramification numbers were discussed in Section 4.8. Simply put,
low connectivity means that there are few paths connecting any two sites in the
fractal. High connectivity means there are many or infinite paths connecting any
two sites. High connectivity is associated with a large or infinite ramification number
and low connectivity with a finite and small ramification number. For fractals with
low connectivity, such as the Sierpinski Gasket, the decreasing power-law scaling in
the level spacing statistics is evident. In the case of highly connected fractals, such
as the Sierpinski Carpet, the level spacing follow a Poisson distribution, which is
associated with a periodic system. One way of interpreting this is that in highly
connected fractals, the states spread out and feel the periodicity of the fractal. On
the other hand, in the less connected cases, the wave function is more isolated, and
it does therefore not observe the periodicity.

The decreasing power-law scaling implies that there is a high likelihood of observing
small energy level spacings in the systems with low connectivity. The energy levels
are tightly packed, and there is no level spacing repulsion. On the contrary, there
might seem to be an effective level spacing contraction based on the result. That
is, the energy levels lie closer than what is expected from a system with fully inde-
pendent degrees of freedom, which would follow a Poisson distribution.

Lastly, there are fractals displaying properties in between these two distributions,
such as the Vicsek Saltire. However, some of these fractals have low connectivity
due to the discrete realizations of the fractals. Because of the high complexity of
the Vicsek Saltire, it is difficult to make a realization at sufficiently high fractal
iteration l, while maintaining a large value for the linear length scale resolution n.
Recall that n is defined as the number of grid points used to represent the smallest
length scale in the system. In the discrete realization of the Vicsek Saltire, there
was a limited amount of paths available between any two sites. This could have led
to the level spacing attaining properties similar to that of lowly connected systems.
However, in a continuous realization of the Vicsek Saltire, the system might attain
properties closer to that of the Poisson distribution seen for the Sierpinski Carpet.
This also goes for other fractals in this intermediate group.

Low connectivity, and a finite ramification number, are associated with fractals with
analytically solvable eigenvalues. Particularly, it was shown by Shima (1996)5 that
the eigenvalues of a fractal with low connectivity at iteration l = l′ can be found
from the eigenvalues of iteration l = 0 through a recursive process called spectral
decimation. In the same paper, the existence of an upper bound for the integrated
number of states N(E) was found. The results of this thesis indicate that this is
associated with a decreasing power law scaling in the level spacing distribution of
the fractal.

The obtained level spacing distributions do not advocate viewing fractals as simply
showing an interplay between periodic and aperiodic behavior. Instead, the level
spacing statistics of fractals were found to entail a deeper complexity than expec-
ted. A decreasing power-law scaling was found in the level spacing distributions

5See 9.4 for an explanation of the terminology used in by Shima (1996).
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of the fractals with low connectivity. This might be understood as an energy level
contraction. The result does not seem to have a satisfactory explanation from ran-
dom matrix theory. A correlation was not established between the slope of the
decreasing power law and the properties of the underlying potential. However, such
a relationship is not ruled out. One might consider quantifying the connectivity
of the fractal and look for a relationship between the slope and the degree of con-
nectivity. A possible quantization might be made considering the number of hopping
terms connecting two blocks of a fractal, divided by the minimum resolution needed
to represent the fractal. Alternatively, one can attempt to view the lattice and hop-
ping terms as a complex network, and use for example the clustering coefficient to
quantify how connected a fractal is. One can also consider measures such as Lacun-
arity, betweenness or concepts from network partition. It is also possible to study
whether the slope is determined by the fractal dimensionality of the potential. A
more extensive analysis of the level spacing statistics of fractals can be carried out.

9.3 Interpretation of the level spacing statistics

The obtained level spacing statistics do advocate viewing the fractals as displaying
a simple interplay between periodic and aperiodic behavior as was hypothesized.
Instead, the level spacing statistics of fractals were found to entail a deeper com-
plexity than expected. A decreasing power-law scaling was found in the level spacing
distributions of the fractals with low connectivity. The result does not seem to have
a satisfactory explanation from random matrix theory.

Consider the results from level spacing statistics in the context of Anderson loc-
alization in disordered systems [Hemmer (2005)]. Anderson localization describes
how the introduction of disorder into a system can inhibit the propagation of waves,
making the states localized. Furthermore, as one goes from having extended states
to localized states, the level spacing statistics go from exhibiting level repulsion to
not exhibiting level repulsion [Mirlin (2000)]. The intuition as to why the level
repulsion disappears when the states become localized is that the states nearby in
energy are located far from each other in real space. In real space, the states do not
overlap significantly and do not ”feel” each other. As a result, they are effectively
uncoupled, and the level of repulsion disappears. The energy levels then follow a
Poisson distribution, which is characteristic of uncorrelated levels. This can also be
understood through Heisenberg’s uncertainty principle [Hemmer (2005)]. The more
localized the state becomes, the less certain its momentum becomes, which effect-
ively decouples the wave from its neighbors, leading to a lack of level repulsion.

In the fractals with low connectivity, the participation ratio plots showed regions
of fluctuations between extended and localized states, separated by large gaps in
energy with no states. This then led to an increased likelihood of finding closely
spaced energy levels. Motivated by the level spacing statistics of disordered systems,
it is hypothesized that the fluctuations in localization of states lead to a fluctuation
between having and not having level repulsion. More precisely, the energy levels
fluctuate between crossing each other and being separated. Each time the levels
cross, this leads to very small energy spacings arising from the crossing region. The
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overall result of this is the increased likelihood of observing small energy spacings.
It is not however satisfactorily understood why this should only occur in the fractals
with low connectivity and the role of the energy gaps.

A correlation was not established between the slope of the decreasing power law
and the properties of the underlying potential. However, such a relationship is not
ruled out. One might consider quantifying the connectivity of the fractal and look
for a relationship between the slope and the degree of connectivity. A possible
quantization might be made considering the number of hopping terms connecting
two blocks of a fractal, divided by the minimum resolution needed to represent
the fractal. Alternatively, one can attempt to view the lattice and hopping terms
as a complex network, and use for example the clustering coefficient to quantify
how connected a fractal is. One can also consider measures such as Lacunarity,
betweenness or concepts from network partition. It is also possible to study whether
the slope is determined by the fractal dimensionality of the potential. A more
extensive analysis of the level spacing statistics of fractals can be carried out.

9.4 A comment on terminology

This thesis references a paper by Shima (1996). Shima (1996) uses a terminology
different from that of this thesis, and a comparison is included here for the conveni-
ence of the reader. Specifically, Shima (1996) carries out calculations for objects
referred to as “p.c.f. self-similar sets”, or post-critically finite self-similar sets. This
is related to the connectivity used here.

First of all, an Iterated Function System (IFS) is a method of constructing fractals
iteratively [Falconer (2003), Chapter 9]. A critical point is where the derivative of
such a function is zero. P.c.f. self-similar then means that the post-critical set is
finite, that is, there are only finitely many distinct critical points after applying the
functions in the IFS any number of times. Next, to see the relation to connectivity,
one must realize that the critical points of the iterated function system (IFS) are
the points where the fractal branches or splits. This being finite, means that there
are a finite number of branching points. This means that there is a finite number
of connections one would have to sever in order to extract a subset of the fractal.
This is how finite ramification number was defined earlier, which is associated with
low connectivity. Therefore, if a set is post-critically finite, this means the set has a
finite ramification number and low connectivity.

10 Closing remarks

Several spectral properties have been studied for multiple fractals. Specifically, the
ground state energy at increasing fractal iteration l → ∞, conductance through
fractals, the localization of states and the level spacing statistics were studied. A
summary of the results will be given here together with a concluding discussion,
followed by an outlook on potential further research in this field.
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10.1 Summary and conclusion

Consistent results have been obtained across the different fractal potentials. This has
made it possible to distinguish between numerical artifacts and physical properties.

The first sections of this thesis provided discussions on the underlying theory for
the study of fractals. Topics from quantum mechanics, quantum transport, level
spacing statistics, measure theory, topology and chaos theory were discussed in a
consistent language, bridging concepts between the different fields. Furthermore, the
methodology for the study of fractals was considered, and new methods were dis-
cussed. A method for reducing the complexity of the system’s Hamiltonians through
interior indexing was derived. The method was found to significantly improve the
performance, see Appendix A.2.

Generating and characterizing fractals are not trivial. The fractals studied in this
thesis were highly or exactly self-similar, simply connected and most had areas that
tended to zero as more detail was added. The fractal Hasudorff dimension DH , the
integer topological dimension DL, the linear rescaling factor r and the number of
copies m were used as the primary tools of characterization for the fractal poten-
tials, all defined in Section 2.2. A new and highly efficient method for generating
fractals using Kronecker products was introduced and dubbed the Method of Re-
peated Kronecker Products. In this method, all of the above characteristics become
trivial to assess through what is referred to as the “generator”. Furthermore, the
discrete realizations of the fractals were characterized by the fractal iteration l and
the linear length scale resolution n, both discussed in Section 4.1. In addition, two
main groups were considered, fractals with low and high degrees of connectivity, see
Section 4 for details.

The ground state energy as a function of the fractal iteration was studied for the
different fractals. The energy at a given iteration l′ was studied in relation to the
energy at the preceding iteration, l′ − 1. The scaling was quantized by the energy
scaling factor s such that liml→∞El ∝ s · El−1. It was found that the energy
scaling factor was given by s = rDL . This is what one would expect for a normal
Euclidean system. That is, the fractal nature of the system had no manifestation
in the results for the scaling of the ground states. It was in Figure 21 demonstrated
that the ground state wave function becomes highly localized as the fractal iteration
increases. This was also seen indirectly through the scaling between consecutive
energy levels in Table 6. It could seem that the ground state wave function only
resides in multiple localized islands in the system for large iterations. It is theorized
that, as a consequence of this, the wave function does not experience the global
structures of the system, and therefore not the fractal nature of the system. This
is supported by the fact that the found energy scaling factor has no dependency
on the number of copies in the system m which gives information about the global
structure of the fractal.

Next, the conductances g(E) of transport through the fractal potentials were con-
sidered. Here, g(E) is the contribution to the total conductance from the state with
energy E. The conductances were found to fluctuate rapidly for varying energy and
displayed ever-increasing detail as the details of the fractals were increased. From
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this, it was concluded that the conductances themselves were fractal. By further
analysis, they were found to be multifractals, meaning they display different scaling
properties for different moments. The non-integer box-counting dimensions, also
known as the capacity dimensions, of the conductances were found to be equal to
the Hausdorff dimensions of the underlying fractal potentials. This was shown for
several fractals, and the results are displayed in Figure 33. The results show that
the fractal nature of the potentials led to consequences in the physically observable
quantities of the systems.

To investigate the cause of the conductance results, the localization of states was
studied. The participation ratios PR(E) of the eigenvectors at a given energy were
evaluated. As the energy varied, the eigenvectors fluctuated rapidly between loc-
alized and extended states. Adding more details to the fractal potentials led to
increased detail appearing in the participation ratios, and the participation ratios
were found to be fractal. The results show that if there exists an extended state at a
specific energy, there does not necessarily exist a neighborhood around this energy
where the state remains extended. In terms of quantum mechanics, there are no
energy bands. Furthermore, the box-counting dimensions of the participation ratios
were the same as the Hasudorff dimensions of the underlying potentials. This is the
same result that was obtained for the conductances.

It is argued that the fractal quality of the conductance is a direct consequence of
the fractal quality of the participation ratio. If one attaches leads to the fractal suf-
ficiently far from each other, one must have an extended state in order to measure
non-zero conductance. The criterion is not sufficient, but it is necessary and can
be seen from the quantum scattering theory of transport, discussed in Section 3.5.
A fluctuation between extended and localized states will therefore lead to a fluctu-
ation in conductance. It is from this understood that the oscillation in localization
is what drives the oscillation in conductance. This is also supported by the qual-
itative similarity between the plots of conductances and participation ratios of the
fractals in Figures 27, 30 and 36, as well as the agreement between the box-counting
dimensions of the conductances and the participation ratios. Hence, the presence of
the Hausdorff dimension of the fractal potential in the conductance is a result of its
appearance in the participation ratio. The results were summarized in (81) which
reads

Dfractal
H = Dparticipation ratio

BC = Dconductance
BC .

It is stressed at this point that it was not obtained accurate results for the particip-
ation ratios of all fractals due to the time complexity of the applied method. The
result for the localization of states has therefore not been shown for as many fractals
as the conductance relation. In addition, it is worth noting that this thesis only deals
with a specific group of fractals, as detailed above. Fractals are a vast and vaguely
defined set of objects, and one should be careful if one wishes to extrapolate the res-
ults to other fractals. Finally, it is noted that the procedures employed to evaluate
the participation ratios and the conductances are markedly different. Participation
ratios were found through an exact diagonalization of the fractal without any leads,
followed by the application of (79). Conductances, on the other hand, were found
by solving for the wave functions directly in (70) at fixed energy levels and for given
lead configurations, thereafter inserting the obtained tunneling elements into (49).
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The fact that one can observe the fractal dimension in both cases is reassuring for
the methodology.

Based on the rapid fluctuations between extended and localized states, it was hy-
pothesized that the fractals could be thought of as displaying a combination of
periodic and aperiodic behavior. To investigate this, the level spacing statistics
were studied. It is expected from random matrix theory that aperiodic systems
display energy level repulsion. This leads to the energy level spacings attaining a
Wigner-Dyson distribution, which follows an increasing power law for small energy-
level spacings. Periodic systems on the other hand have no level repulsion and are
expected to follow a Poisson distribution. However, a completely different level spa-
cing statistic was obtained for some of the fractals. The level spacing distributions
followed decreasing power-law scalings in fractals with low connectivity. This cor-
responds to an increased likelihood of observing small energy level spacings. The
result is hypothesized to be caused by a frequent crossing of the energy levels of
the systems. The frequent crossing would then arise due to the states oscillating
between extended and localized states, corresponding to having and not having level
repulsion, respectively. For fractals with large connectivity, the results followed a
Poisson distribution. Fractals with intermediate connectivity displayed an interplay
between these two distributions as shown in Figure 38. The decreasing power-law
distribution is suggested to be a property of all such self-similar, simply connected
fractals with low connectivity. This suggestion is made in part because the prop-
erty was seen to hold for the fractals studied here, and in part due to the findings
of Shima (1996). Here, Tadashi Shima demonstrates that the eigenvalues of this
group of fractals can be solved analytically. Furthermore, he derives that the cu-
mulative level distributions of such fractals have common properties, including an
upper bound. As a result, it is reasonable to believe that the observed result in level
spacing distribution is also a common property amongst the members of this group.

It is interesting to note that some spectral properties of the fractals were found to
be determined by the integer topological dimension of the system, DL, while others
were determined by the non-integer Hausdorff dimension DH . This shows once again
that the study of fractals is highly non-trivial. One can not simply replace every
appearance of dimensionality in regular equations with the fractal dimension and
obtain the correct results. Rather, some properties are determined by the one, and
others are determined by the other.

10.2 Outlook

In this final section, reflections on the work carried out in this thesis are included,
together with some potential future directions for research in this field.

Carrying out precise calculations for the fractals brought about the demand for
efficient numerical solutions and modern computational infrastructure. It was ne-
cessary to customize existing algorithms and develop new methods to optimize per-
formance. In addition, accurate characterization and classification of fractals can be
challenging. That is, knowing by which quantities to describe the fractals, and to
distinguish them into different groups. This is a common problem in the treatment
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of fractals, and, as discussed in Section 2.2, even the very definition of a fractal is far
from trivial. There are large gaps between the different fields which study fractals.
The use of different terminology and methodology poses a challenge when combining
results from fields such as quantum mechanics, network theory and fractal geometry.

One interesting path of investigation for a short-to-medium-term project in the
field would be to look for experimental validation of the conductance results. The
conductance for transport through a fractal has been shown numerically to be de-
termined by the fractal’s dimensionality. A possible realization to observe this effect
could be a cold atoms experiment as suggested in Section 7.6.

Another potential path is to look into the discussed localization effects. It has been
observed in this thesis that the eigenstates fluctuate rapidly between extended and
localized states in small energy ranges. In condensed matter physics, the well-known
phenomenon of Anderson localization describes how the introduction of disorder can
inhibit the propagation of waves. At a fundamental level, this effect is about the wave
nature of particles, and how these waves interact with a complex potential landscape.
The result is a localization effect that is unexpected from classical particles and
whose character depends on the dimensionality of the system. This prompts the
question of how the localization fluctuations observed in this thesis relate to the
Anderson localization in disordered quantum systems. In a periodic system, one
expects delocalized bloch states and a Fourier space consisting of a single, discrete
point. In the quasi-periodic case, one obtains several discrete points in the Fourier
space. In a disordered system, one expects a Fourier space with states spread out
over a range of momenta. There’s also the possibility of a mobility edge depending on
the system dimension. A guess would be that the fractals display an intermediate
state between the quasi-periodic and the fully disordered. One can also imagine
introducing disorder into the fractal and consider how the Anderson localization
behaves as compared to integer-dimensional systems. It’s important to note that
the Anderson localization is typically concerned with the transition from extended
to localized and not fluctuations as was discussed here. However, both effects seem
to be caused by the wave properties of particles in complex potentials. Looking
into this would deepen the understanding of fractals in general, as well as the cause
of the localization phenomena which somehow carry the fractal dimensionality of
the structure. This might also lead to a better understanding of the obtained level
spacing statistics.

In the context of level spacing statistics, it would be a good next step to quantize the
connectivity in fractals. One possible quantization might be made considering the
number of hopping terms connecting two blocks of a fractal, divided by the minimum
resolution needed to represent the fractal. These minimum resolutions depend on
the fractal at hand and the iteration l considered. In the terminology of this thesis,
this would be the linear grid size N in the case of n = 1. These resolutions can be
found for some fractals in the tables of Section 4, and are also possible to evaluate
directly from the generators and axioms in Appendix B. Another possibility would
be to consider the tight-binding model as a complex system and use the clustering
coefficient as an estimate for connectivity, or to borrow insights from network par-
tition. Having a good measure for connectivity, one could investigate whether there
exists a correlation between the slope of the decreasing power-law scaling in the level
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spacing distributions and the connectivity or dimension of the fractals. Studying
the level spacing statistics of these systems might also help understand quantum
chaos in fractals.

Some additional topics are suggested that are expected to not be within close reach.
First, the work of this thesis highlighted that certain properties are determined by
the fractal dimension, while others are dictated by the topological dimension. With
this in mind, a deeper exploration of what governs whether the fractal- or topological
dimension is applicable is warranted. Furthermore, in the context of dimensionality,
it is also interesting to expand the study to include the multifractal properties of
the systems.

Finally, it is interesting to consider some of the broader implications of fractal di-
mensionality in physics. For instance, the Mermin-Wagner theorem states that con-
tinuous symmetries cannot be spontaneously broken in one- and two-dimensional
systems at finite temperatures. This is due to thermal fluctuations. The theorem
forbids, for example, having a Bose-Einstein condensate in low-dimensional systems
at finite temperatures. The key question is then, how do such theorems apply to
systems like the Menger Sponge, which has a dimension of 2.73?

In conclusion, there is a multitude of intriguing possibilities for future research at the
intersection of quantum physics and fractal geometry. The field has broad implica-
tions for theoretical physics and is expected to bring about a variety of technological
applications.
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Appendix

A Numerical performance

Finding the eigenvalues of fractals numerically brings about demanding calcula-
tions. The fractals need to be created in fine detail. Furthermore, the corresponding
Hamiltonian needs to be generated, which requires large amounts of memory. Fi-
nally, the eigenvalue problem must be solved. Multiple algorithms were tested and
custom algorithms were also implemented to enhance performance. Some numerical
considerations are included here.

The code was written in Python, but exploits C-based libraries such as Numpy,
Numba and Scipy. Numba compiles Python code into optimized machine code mak-
ing performance comparable to C and FORTRAN [Lam, Pitrou and Seibert (2015)].
In addition, parallel processing techniques were implemented where possible.

A.1 Choice of algorithms

To create fractals efficiently, multiple methods were tested. The Lindenmayer sys-
tems described in Section 2.4 and the Method of Repeated Kronecker Products
described in Section 4.2 were eventually used. Both these methods can be imple-
mented with high efficiency, but the latter is preferable when possible.

Generating the fractals

When employing the Lindenmayer system, the boundary of the fractal is obtained,
and not the grid representation directly. Although it may seem trivial at first glance,
ideally representing an arbitrary boundary on a finite grid can be a demanding
process, especially in large systems. Algorithms such as the flood fill algorithm
[Burtsev and Kuzmin (1993)] require the boundary coordinates to be placed directly
onto the grid. Such solutions are efficient, but will however result in an imprecise
representation of the object due to the boundary being enforced onto the grid.

There exist many algorithms to ideally represent an arbitrary shape on a grid. For
example ray tracing method [Glassner (1989)], the point-in-polygon method, which
is often made GPU based and applied in e.g. VR [Hormann and Agathos (2001)],
and there are also premade methods in for example the Maplotlib library in Python.
However, most Python implementations of these algorithms become staggeringly
slow for the size of systems considered in this thesis. That is also when making use
of libraries such as Numba and Numpy. A version of the point-in-polygon method,
using parallel processing, was eventually applied. A task that took ten minutes using
the method found in matplotlib.path, took roughly six seconds using this method
on a basic four-core CPU laptop. This difference will become larger if more cores
are available.
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Representing the Hamiltonian

The viable option for representing the Hamiltonian of large systems with only neigh-
boring interactions is using sparse dictionaries. The matrices used were of size up to
1016 elements. Representing each element in a double-precision floating-point format
would require 1016 · 64/8 = 80 petabytes of memory. To further increase perform-
ance in both RAM and CPU, a reduction of the eigenvalue problem was performed.
The method encompasses excluding all rows and columns that correspond to illegal
points in the Hamiltonian, as well as all coupling elements coupling to such points.
Had this reduced method not been employed, the most extreme cases would lead to
Hamiltonians of about 1028 elements. This also makes the calculations less prone to
swamping errors from using large and small numerical values in the same calcula-
tion. The reduced method is described in Sections 5.2 and 5.3 and the performance
of this method will be treated below.

Solving the eigenvalue problem

Lastly, when solving the eigenvalue problem, different algorithms were used. When
only the lowest-lying eigenvalues were of interest, the shift sigma algorithm and the
Von Mises iteration were used. The numerical shift sigma algorithm uses the shift-
and-invert method. Near a given value σ it computes (A−σ ·I)x = b instead of A ·x.
This is solved with LU decomposition for A. When looking for the ground state we
want σ equal to zero. This was used in most cases. The other algorithm uses a
Von Mises iteration, also called a power iteration. It chooses a linear combination of
found eigenvectors that gives the smallest amplitude. Both algorithms were called
through the python package scipy.sparse. The algorithm is chosen based on empirical
performance for the given problem. That is, the first few fractal iterations are
computed with both methods for a given fractal. Based on this the method which
is expected to give the best results is used for the higher fractal iterations. This
desired method varies for different problems.

A.2 Performance of the reduced method

When solving the eigenvalue problem, a method referred to as the reduced method
was used. The method was introduced in Section Sections 5.2 and 5.3 and entails
removing the rows and columns corresponding to illegal areas in the Hamiltonian as
well as the associated coupling elements. The performance of this reduced method
will be compared to evaluating the eigenvalue problem directly, which will be referred
to as the normal method. The reduced method includes both the time of doing the
transformation and applying the eigenvalue solver. The same eigenvalue solvers were
used in both cases.

The transformation used to reduce the Hamiltonian is of complexityO(N2), whereN
is the linear grid size. Furthermore, solving an eigenvalue problem has a theoretical
ideal complexity of O(M2.376) [Demmel, Dumitriu and Holtz (2006)], while practical
implementations of exact diagonalization typically have a complexity of roughly
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O(M3) [Eberly et al. (2006)]. The matrix diagonalized here is the Hamiltonian,
which has elements M = N4, where N is the linear grid size. Using the reduced
method yields a new number of elements M̃ = Ñ4, where M̃ ≤ M in general. The
equality holds for the completely open system.

The time complexities of the two methods therefore become

Normal system (natural indexing) ∝ O(M3) = O(N12), and

Reduced system (interior indexing) ∝ O(N2)×O(M̃3) = O(N2)×O(Ñ12).
(82)

The first factor in the reduced method is due to transformation. Furthermore, most
of the considered fractals have areas that tend to zero as the fractal iteration in-
creases. This means more and more of the grid becomes unavailable for the wave
function. The reduced Hamiltonian size M̃ only includes the allowed points. There-
fore, as the fractal’s area tends to zero, M̃ becomes much smaller thanM . One then
expects the reduced method to be significantly faster than the normal method.

For a Sierpinski Gasket at fractal iteration l = 10, one finds M/M̃ ≈ 1.784 · 10−3.
That means the complexity of exact diagonalization of the reduced Hamiltonian is of
order (1.784 · 10−3)3 ≈ 5.68 · 10−9 compared to the original system. This is however
an extreme case. In addition, often only the lowest-lying eigenvalue was of interest,
meaning that algorithms with small time-complexities were used. Therefore, to
estimate the impact of the reduced method in these cases, performance tests were
made.

The first few lowest-lying eigenvalues were calculated for different grid resolutions
N ×N , for a fixed fractal at a fixed iteration l. Two different fractals are considered
here, the Sierspinski Carpet and the Flag-fractal found in Sections 4.3 and 4.7,
respectively. Both the reduced and the normal method were applied and the median
times used in the calculation were considered for multiple runs. The estimated
performances of the different methods are shown in Figures 39a and 39b for fractal
iterations l = 1 and l = 5. The grid resolutions are here given by the length
scale resolution n, which determines how many grid points were used to represent
the smallest distance in the system. Evidently, the time of calculation increases
exponentially as the grid resolution increases. The reduced method is significantly
faster than the normal method for both fractals. For fractal iteration l = 5, it’s
roughly 3 − 4 orders of magnitude faster in the case of the Sierpinski Carpet, and
about 8 orders of magnitude faster in the case of the Flag-fractal. Notice that at
l = 5, the Flag-fractal is the most demanding in the case of the normal method, but
the most efficient using the reduced method. The ordering is not the same in the
case of l = 1. The reason for this was briefly mentioned in Section 4.7. The Flag-
fractal becomes detailed very rapidly with increasing l, with minimal grid resolutions
following (62). However, the area of the allowed region also tends to zero fast. This
means that many rows and columns can be removed from the Hamiltonian using
the transformation in the reduced method.
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(b) Fractal iteration l = 5

Figure 39: The first few lowest-lying eigenvalues were evaluated for the Sierpinski
Carpet and the Flag-fractal, and the times used in the numerical calculations were
considered. The median performance times after multiple runs are shown. In the
plot, a comparison is made between the reduced method and the normal method for
varying different resolutions n at fixed fractal iterations l. In (a), a fractal iteration
l = 1 is used, and in (b), a fractal iteration of l = 5 is used. Notice that the flag
fractal in the reduced method is the fastest method in (b), while the normal method
for the same fractal is the slowest.

For a given fractal iteration, the percentage of points that can be removed remains
constant over different resolutions n. Therefore, the complexities of the different
methods have the same exponential evolutions with increasing grid resolution. That
is, the plots in Figure 39 are all linear, and have approximately the same slope.

Next, choose a constant value of the length scale resolution n and vary the fractal
iteration l. The performances of the different methods for the two fractals are shown
in Figure 40. When increasing the fractal iteration l, the percentage of points that
can be removed in the reduced method also increases. The effect of the reduced
method, therefore, becomes gradually more and more significant. Because of this,
the slopes in Figure 40 are no longer of the same shape and with a constant shift
between them, as was the case for the results when varying grid resolutions. Instead,
it is seen that the complexity of the normal method grows faster than that of the
reduced method. This demonstrates why the reduced method is especially useful
when considering large fractal iterations of fractals with a vanishing area.

The reduced method works especially well for the Flag-fractal. However, most
fractals considered in this project thesis have vanishing areas as the fractal iter-
ation l increases. In all these cases, the reduced method is considerably faster than
the normal method.
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Figure 40: The numerical performances when solving the lowest-lying eigenvalues
of the Sierpinski Carpet and the Flag-fractal for varying fractal iterations. The
plot is equivalent to Figure 39, only now varying the iteration l instead of the grid
resolution n. The two methods called the reduced method and the normal method
are compared. Multiple runs were made and the median of the total run times of
the methods are used. The complexity of the normal method grows faster than that
of the reduced method. The lines between points are second-order fits and are only
added to assist visualization. It does not make sense to extract values at non-integer
values of l.
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B Additional fractals

Some fractals were discussed in depth in Section 4. The remaining fractals are in-
cluded below. The fractals were generated using the repeated Kronecker Product
method described in Section 4.2. Their generators, axioms and Hausdorff dimen-
sions are given along with images at intermediate fractal iterations.

Sierpinski gasket. Fractal iteration l = 6.

T-fractal. Fractal iteration l = 6.
The T-fractal is created similarly to the Sierpinski Gasket, but after each application
of the generator, the upper left quarter is rotated 90◦ clockwise and the lower right
corner is rotated 90◦ counterclockwise.
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Remove lower left. Fractal iteration l = 6.

Sierpinski Carpet. Fractal iteration l = 5.

Dilute Corner Cutting. Fractal iteration l = 5.
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Bush. Fractal iteration l = 5.

Trimmed Bush 1. Fractal iteration l = 5.

Trimmed Bush 2. Fractal iteration l = 5.
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Trimmed Bush 3. Fractal iteration l = 5.

Jerusalem Cross. Fractal iteration l = 5.

Unorthodox Cross. Fractal iteration l = 5.
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Alien Invasion. Fractal iteration l = 5.

Cutting Corners. Fractal iteration l = 4.

Strange Trees. Fractal iteration l = 4.
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Flag-fractal. Fractal iteration l = 4.

Fish. Fractal iteration l = 4.

Sail. Fractal iteration l = 4.
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Dilute Carpet. Fractal iteration l = 4.

Bacteria. Fractal iteration l = 4.

Vicsek Saltire. Fractal iteration l = 4.
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Vicsek Cross. Fractal iteration l = 4.

Cut Cross. Fractal iteration l = 4.

Quiver. Fractal iteration l = 4.
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Snake. Fractal iteration l = 4.

Big Snake. Fractal iteration l = 4.

Central Snake. Fractal iteration l = 4.
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Pacman. Fractal iteration l = 4.

Pacman Variant. Fractal iteration l = 4.

Hardly Connected. Fractal iteration l = 4.
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Bombardment 1. Fractal iteration l = 4.

Bombardment 2. Fractal iteration l = 4.
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