
Abstract

The conditions created by breaking waves in the ocean are turbulent and complex,

and the mixing driven by this turbulence has a great impact on the fate of contam-

inants in the water. Numerical simulations can help illuminate these conditions, as

well as being tools for predicting the development of such systems.

A comparison of two stochastic particles methods: random walk and random

flight, have also been made. They were found to preform similarly in their abilities

to satisfy the well-mixed condition, in their order of convergence in both the strong

and weak sense, and in their Monte Carlo error.

A comparison of a simple reflection scheme and a more involved scheme presen-

ted by Lépingle (1995) in random walk methods have been made. It was found

that the Lépingle method, in addition to being computationally more expensive,

also performs worse than the simple scheme at reflecting boundaries with non-zero

derivative of the diffusivity profile. It was also found to have a lower order of con-

vergence, and a poorer ability to preserve the well-mixed state of a diffusion system

in line with the well-mixed condition presented by Thomson (1987).



Samandrag

Forholda som vert skapt av brytande bølgjer i havet er turbulente og samansette, og

blandinga drevet av denne turbulensen har stor innverknad p̊a skjebnen til t.d. for-

ureining i vatnet. Numeriske simuleringar kan bidra til å kaste lys p̊a disse forholda,

i tillegg til å vere verktøy for å føreseia utviklinga av slike system.

Ei samanlikning av to stokastiske partikkelmetodar: virrevandring og tilfeldig

flukt, har ogs̊a verte gjort. Dei vart funne å prestere likt p̊a evna deira til å

tilfredsstille godt-blanda-kriteriet, konvergensordenen deira i b̊ade sterk og svak for-

stand, og i Monte Carlo-feilen deira.

Det har vorte gjort ei samanlikning av ein enkel refleksjonsmetode og ein meir

involvert metode presentert av Lépingle (1995) i virrevandringsmetodar. Det vart

funne at Lépingle-metoden, i tillegg til å vere berekningsmessig dyrare, ogs̊a prest-

erte d̊arlegare enn den enkle metoden ved reflekterande grenser med ikkje-null-

derivert diffusivitetsprofil. Den vart ogs̊a funne å ha ein l̊agare konvergensorden,

og ei d̊arligare evne til å bevare den godt blanda tilstanden til eit diffusjonssystem

i tr̊ad med godt-blanda-kriteriet presentert av Thomson (1987).
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Chapter 1

Introduction

1.1 History

The phenomenon of diffusion has fascinated scientists for centuries, and it has been

studied extensively in various contexts. A significant observation was made in 1827,

when the Scottish botanist Robert Brown observed the erratic motion of pollen

particles suspended in water under a microscope. The motion seemed so life-like

that he thought it had to be the result of some life-force within the pollen, but after

repeating the experiment with small particles of inorganic minerals and observing

the same erratic motion, he concluded that the source could not be related to life,

but its source still remained a mystery.

A breakthrough was made in 1905 when Albert Einstein published one of his four

influential papers in his annus mirabilis. His second paper of the year outlaid a

theoretical framework for the description of Brownian motion and linked it to the

then much disputed kinetic theory of gasses (Einstein, 1905). The paper presented

an expression for the mean square displacement of particles undergoing Brownian

motion, and this expression together with simple observations of such motion under

a microscope made it possible for physicists and chemists to calculate such funda-

mental constants to those fields as the Boltzmann constant and Avogadro’s number.

Measurements of the mean square displacement of particles undergoing Brownian

motion were later made by Jean Baptiste Perrin in 1909 and presented in his paper

Brownian motion and molecular reality (Perrin, 1909). This was the first time

researchers had been able to directly calculate the masses of atoms and molecules,

and Perrin was awarded the Nobel Prize in Physics in 1926 largely for this work.

(NobelPrize.org, 2023)

At the same time, the French physicist Paul Langevin developed an equation for

the description of the movement of particles undergoing Brownian motion (Langevin,

1908). The Langevin equation, which is essentially Newton’s second law with a drag
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force and a random agitating force, became an early example of what we today call

stochastic differential equations. The term ”Langevin equation” is now often used

more generically as a name for any equation describing fast random fluctuations in a

slowly changing system (see e.g. Coffey and Kalmykov (2012)). The theory of SDEs

was later, in the 1940s, developed by Japanese mathematician Kiyosi Itô into the

field of Itô calculus which extends the methods of calculus to the realm of stochastic

processes.

The observations made and tools developed by these pioneering scientists made

way for more modern applications with the advent and greater availability of com-

puters. For instance do random walk methods, which may be constructed from

discretization of the Langevin equation, have a long history of applications in the

modelling of oil spill transport, both vertically (Tayfun and Wang, 1973) and hori-

zontally (Elliott et al., 1986), as well as the transport of plastics in the ocean (Onink

et al., 2021), and airborne transport of viruses (Abuhegazy et al., 2020).

1.2 Motivation

The conditions created by breaking waves in the ocean are complex and dynamic,

making them a challenging area of study. One particular aspect of interest is the

mixing driven by breaking waves. As waves break, they create turbulence and mixing

in the water column, which can enhance the transport and dispersion of dissolved

substances such as nutrients, pollutants, and gasses, or other substances such as

harmful plankton. The resulting diffusion process can have significant implications

for the ecology and biogeochemistry of the ocean, as well as for the fate of pollutants

and contaminants. Understanding the mechanisms and dynamics of diffusion driven

by breaking waves is therefore crucial for predicting and mitigating the impact of

human activities on the marine environment.

The simulation of movement of particles in the ocean is an important tool both

for researchers, but also for agencies tasked with responding to contamination of

seawater from e.g. oil spills. Moreover, the absorption of carbon dioxide in the

ocean is to a large extent driven by entrainment of bubbles facilitating the contact

of the CO2 with water from further down in the water column which might be less

saturated. In all these cases the entrainment of the particles in the water is of special

interest since it greatly affects the overall dynamics of the system.

There are two main approaches when one seeks to study fluid flow numerically:

The Eulerian approach, which considers the vector field of fluid motion, and the

Lagrangian approach, which simulates a number of tracer particles individually.

When using the latter approach one is free to choose how many time derivatives of
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the position is taken into consideration: The most common approach is to simply

consider the position of the particles with no regard to the velocity and higher

order time derivatives. An alternative approach is to consider both the position and

velocity of the particle, still disregarding the higher order time derivatives of the

position such as acceleration (see e.g. Lynch et al. (2014, chapter 4)). One of the

goals of this thesis is to compare these two different approaches in modelling the

turbulent diffusion of particles in water.

It is also a known issue (Ross and Sharples, 2004; Nordam et al., 2019) with Lag-

rangian models that they might produce artifacts near certain reflecting boundaries,

though the issue of boundary conditions in random walk methods have received lim-

ited attention in the applied literature. This thesis will investigate an alternative

reflection scheme as presented by Lépingle (1995) which might perform better than

the traditional approach.

1.3 Outline of the thesis

This thesis is structured around chapters where the first chapter following this one

will present the necessary equations and theoretical background for the following

chapters. Next, in chapter 3, I will present the methodology used to find the results

which will be presented along with a discussion in chapter 4. Finally, in chapter 5, I

present the conclusions drawn from the results and discussions in chapter 4. At the

end of this thesis in appendix A I give a proof of the stability of the Crank-Nicolson

method.

3



Chapter 2

Theory

This chapter will present the theoretical foundations that will be used in the in-

vestigations later in this thesis. Throughout the whole thesis we will consider a

one-dimensional system representing a water column with positive z-direction down-

wards, and z = 0 located at the water surface.

2.1 Diffusion processes

Diffusion can generally be thought of as the process of particles moving from areas

of high concentration to areas of lower concentration. This process can happen on

different scales based on the conditions of the system. The two main modes of

diffusion are molecular and turbulent. The prior is driven by the thermal kinetic

energy of the particles as a result of temperature, while the latter is a result of more

macroscopic movement of the solvent fluid (Thorpe, 2005, pp. 20-21). Molecular

diffusion is generally considered negligible in systems where turbulent diffusion also

occurs since its scale is much smaller, and this thesis will only focus on the latter

mode of diffusion.

In the one dimensional case, vertical transport may be described by the following

equation, simply called the advection-diffusion equation:

∂C

∂t
=

∂

∂z
(−ωC +K

∂C

∂z
), (2.1)

where C is the concentration of the particles of interest, z is the vertical position, t

is time, ω is the advection and K is the diffusivity of the solvent fluid. In the case

of no advection, ω = 0, equation (2.1) simplifies to the diffusion equation

∂C

∂t
=

∂K

∂z

∂C

∂z
+K

∂2C

∂z2
. (2.2)
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While the concentration is a macroscopic and deterministic quantity, it is the

result of the small-scale and largely stochastic movements of the particles of interest.

This stochastic nature of diffusion can be expressed with a stochastic differential

equation (SDE) describing the development of the position of the tracer particles.

Such an equation can be constructed to describe the same system as the partial

differential equation (PDE) in equation (2.1) via the Fokker-Planck equation. The

Fokker-Planck equation and resulting SDE will be discussed in the following sections.

2.2 Markov processes

A process X(t) which depends on the real variable t, representing time, is said to be

Markov or Markovian if the state of the process in the future only depends on the

current state of the process, and not directly on any states prior to the present. This

property is called the Markov property, and can be thought of as the process being

memoryless or past-forgetting. This is not to say that the process is independent

of the past states, but that the future state only depends on the past through that

of the past that is represented in the present (Gillespie and Seitaridou, 2012, p.

149). The numerical methods we will discuss later in sections 2.6 and 2.7 for the

simulation of diffusion are both examples of Markov processes.

2.3 The Langevin equation

In 1908 the French physicist Paul Langevin developed an equation to describe the

movement of a particle undergoing Brownian motion

m
d2x

dt2
= −6πµa

dx

dt
+X. (2.3)

The equation emerges from Newton’s second law where the two terms on the right

are the viscous drag force and some stochastic agitating force respectively. About the

agitating force X, Langevin said that ”[...] we know that it is indifferently positive

and negative and that its magnitude is such that it maintains the agitation of the

particle, which the viscous resistance would stop without it.” (Lemons and Gythiel,

1997). We will later look at a stochastic process which satisfies this criterion when

we consider the Wiener process in section 2.5.

Equation (2.3) is an example of what is now called a stochastic differential equa-

tion, a concept we will return to in the following sections. What this means is that

we have a differential equation where at least one of the terms is a stochastic process;

in the case of the original Langevin equation: the agitating force X. A typical SDE
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can be written on the form

dz(t) = a(z(t), t)dt+ b(z(t), t)dWt, (2.4)

where a(z(t), t) and b(z(t), t) are called the drift- and diffusion coefficients respect-

ively, and Wt is a stochastic process called the Wiener process, which we mentioned

earlier and will return to in section 2.5.

The Langevin equation was so influential in the development of the concept of

SDEs that we now often call any SDE describing the fast random fluctuations in a

system whose average properties change only slowly a Langevin equation, with equa-

tion (2.3) itself being called the original Langevin equation. This is the terminology

we will use going forward in this thesis.

2.4 Fokker-Planck equation

The Fokker-Planck equation of a system describes the temporal evolution of the

probability distribution of some attribute of that system. Commonly it describes

the development of the probability distribution of either the velocity or position

of particles undergoing Brownian motion. Equation (7.14) in Kloeden and Platen

(1992, p. 37) gives us the Fokker-Planck equation for a diffusion process dz =

a(z, t)dt+ b(z, t)dW :

∂p

∂t
+

∂

∂z
(a(t, z)p)− 1

2

∂2

∂z2
(b2(t, z)p) = 0, (2.5)

where a and b are the drift- and diffusion coefficients respectively. This equation

then describes the temporal development of the probability distribution for the

position of the particles in the diffusion process. The development of this probability

distribution is fully deterministic, but as mentioned before, equation (2.5) can be

utilized to find an SDE that describes the same system as the PDE in equation

(2.1). Before presenting this SDE we will first introduce the Wiener process which

will be utilized extensively in the following chapters.

2.5 The Wiener process

The Wiener process, denoted W (t) or Wt, is a continuous stochastic process over

time that exhibit the following characteristics:

1. W (0) = 0; Its values are initialized as 0,

2. W (t) is continuous over time t,
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3. Its non-overlapping increments W (t + dt) − W (t) = dWt are independent of

each other,

4. dWt = W (t + dt) − W (t) = N (0, dt); The increment between two states is

normally distributed with mean 0 and variance dt .

This process is a generalization to continuous time of the fixed-stepsize random walk

where at each timestep the process takes a fixed step in a random direction. Figure

2.1 is a simple illustration of the two processes. We will mainly be concerned with
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Figure 2.1: Five realizations of a fixed-stepsize random walk and five realizations of
the Wiener process. The units on both axes are arbitrary.

the increment dW of the Wiener process as it will play a central role in the SDEs

that are to be presented next.

2.6 Random walk

Building on the previous sections we will now introduce a random walk scheme for

the simulation of turbulent mixing. In contrast to the fixed-stepsize random walk

mentioned in section 2.5 this random walk will have a variable stepsize, and be
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constructed to represent a diffusion system. According to equation (2) in Gräwe et

al. (2012) the SDE describing the diffusion system of equation (2.1) is

dZ(t) =

(
ω +

∂K

∂z

)
dt+

√
2K(z)dW (t) (2.6)

where a(t, z) = ω + ∂K
∂z

and b(t, z) =
√
2K(z), and dW (t) is an increment of the

Wiener process as defined in section 2.5. Inserting these expressions for a and b into

the Fokker-Planck equation given in equation (2.5), we get

∂p

∂t
+

∂

∂z

((
ω +

∂K

∂z

)
p

)
− 1

2

∂2

∂z2

((√
2K(z)

)2

p

)
= 0 (2.7)

⇒ ∂p

∂t
= − ∂

∂z

(
ωp+

∂K

∂z
p

)
+

∂2

∂z2
(K(z)p)

⇒ ∂p

∂t
=

∂

∂z

(
−ωp− ∂K

∂z
p

)
+

∂

∂z

(
∂K

∂z
p+K

∂p

∂z

)
⇒ ∂p

∂t
=

∂

∂z

(
−ωp+K

∂p

∂z

)
. (2.8)

If we then consider that p is the probability distribution of the particle positions,

which is equivalent to the normalized concentration, and do the substitution p → C,

equation (2.8) simply becomes the advection-diffusion equation from equation (2.1),

showing us that this random walk scheme indeed is a represetntation of the system

in equation (2.1).

Equation (2.6) represents the change in the particle positions over time, and we

observe that for stationary diffusivity K and advection ω the only temporal de-

pendence of the increment is in dW (t).

Another observation to make is that if equation (2.6) represents a change in spatial

position of the particle, and this change takes place over a time interval dt, one might

ask what the resulting velocity of the particle is. One might be inclined to derive

the velocity by dividing both sides by dt giving

dZ

dt
=

(
ω +

∂K

∂z

)
+
√
2K(z)

dW (t)

dt
, (2.9)

but given that

dW (t) = N (0, dt) =
√
dtN (0, 1) (2.10)

from item 4 in section 2.5, equation (2.9) becomes

dZ

dt
=

(
ω +

∂K

∂z

)
+
√
2K(z)

N (0, 1)√
dt

. (2.11)
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We observe that in the limit dt → 0, the last term on the right-hand side of equation

(2.11) diverges due to the term
√
dt that remains in the denominator. This results

in infinite velocity, which is obviously unphysical, and we will return to this problem

and a possible solution in section 2.7 where we look at random flight. As we will see

later, infinitely fast transport is also a feature of the diffusion equation, with which

equation (2.6) is consistent.

Going forward, we will consider systems where the advection ω = 0, meaning

we will consider systems of pure diffusion. If we discretize equation (2.6) using

the Euler-Maruyama method (Kloeden, 1992, p. 305) we get a discrete updating

formula for position that we will utilize in the Lagrangian model that we will look

at later.

zn+1 = zn +K ′(z)∆t+
√
2K(z)∆Wn, (2.12)

where K ′(z) = ∂K
∂z

, and n ∈ {0, 1, ..., T/∆t} is the discrete temporal index of a given

spatial state z. The two last terms of the right-hand side are discrete steps in space,

and are often collected in a single term

∆z = K ′(z)∆t+
√
2K(z)∆Wn. (2.13)

These equations represent a scheme for simulating the development of the position

of a particle over time given some initial position z0 which is called a random walk

method, and it is widely used in simulating diffusive mixing due to its simplicity.

2.7 Random flight

One solution to the unphysicalness of the velocity of the traced particles resulting

from the random walk method is to use a different method where we consider the

velocity directly. We will call such a model, where the velocity is given by an SDE,

a random flight model. An expression for the Langevin equation can be found in

model 2 in Griffa (1996) which considers a joint Markovian process x and u (in this

thesis labeled z and v). Modifying equation (7) in Griffa to use our notation we get

dV (t) = −1

τ
V (t)dt+

√
K(Z)

τ 2
dW (t), (2.14)

where we have done the substitution T → τ . Here V represents the velocities of

the particles at a given time t and dW (t) is the increment of the familiar Wiener

process. τ is the so called decorrelation time or relaxation time which describes the

time it takes for the particle to ”forget” its previous velocity. The first term on the

right-hand side, in which τ participates inversely, represents the drag force which
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leads to this loss of memory of the velocity.

This model is equivalent to the Ornstein-Uhlenbeck process, and the Fokker-

Planck equation of this process with constant diffusivity K can be found in equation

(1.5) in Gillespie (1996)

∂p

∂t
− 1

τ

∂[vp]

∂v
− K

2

∂2p

∂v2
= 0. (2.15)

Given the Langevin equation for the velocity in equation (2.14), a very simple

physical argument can be made for writing the Langevin equation of the position in

this scheme as

dZ(t) = V (t)dt. (2.16)

It is important to note that in this model, Z and V are no longer Markovian on

their own as V is not memoryless, but jointly they still satisfy the condition for

being Markovian.

Applying Euler-Maruyama to equations 2.14 and 2.16 we find the discrete updat-

ing formula for the random flight

vn+1 = vn +∆v (2.17)

zn+1 = zn + vn∆t (2.18)

where n ∈ {0, 1, ..., T/∆t} again is the discrete temporal index of a given state, and

∆v = −1

τ
vn∆t+ 2

√
K(zn)

τ 2
∆Wn. (2.19)
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Figure 2.2: Trajectories of random walk and random flight on short timescales.

10



0 50 100 150 200
t/

8

6

4

2

0

2

4

6

8

z [
m

]

Random walk

0 50 100 150 200
t/

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Random flight

Individual trajectories

Figure 2.3: Trajectories of random walk and random flight on long timescales.

When particles are simulated using the random flight method, we expect that their

trajectories become ”smooth” since they will have a tendency to keep travelling in

the same direction as they did before. This is precisely what is shown in figure 2.2

where particle trajectories from a random walk and random flight are compared on

a short timescale. ”Short” in this context means that the relative time t
τ
is small.

On longer timescales however, we expect the effects of the memory of the velocity

to diminish, and for the trajectories to become more ”jagged” and more similar to

those of the random walk. This is illustrated in figure 2.3. This motivates us to

guess that the choice between these two methods plays a bigger role on short time

scales than on long ones.

The jaggedness of the random walk is due to the Wiener process itself being

jagged, which is a result of its pathological quality of being continuous everywhere

but differentiable nowhere. The non-differentiability of the Wiener process was

implicitly seen when we observed that the right-hand side of equation (2.11) diverges

when dt → 0. Physically this relates to the discussion about the velocity of the

random walk where we saw that it changes quickly and could become very large.

2.7.1 Properties of random flight velocity

Some properties of the random flight method that might be worth investigating are

the autocorrelation of the velocity, and how the velocity distribution develops over

long times.

The former describes how the velocity at a given timestep is correlated with the

velocity at all other timesteps, or in other words; how much the velocities are coupled
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over time. Equation (9) in Griffa (1996) gives the theoretical autocorrelation of the

velocity of the random flight model as

R(t) =
⟨v(t̃)v(t̃+ t)⟩

σ
= e−t/τ (2.20)

where σ is the standard deviation of the initial velocity distribution, which is as-

sumed to be normal and centered at 0.

It can be found from the Fokker-Planck equation (2.15) that for any time t > 0

the velocity distribution V (t) will be normally distributed with mean and variance

⟨V (t)⟩ = v0e
−t/τ (2.21)

Var(V (t)) =
Kτ

2
(1− e−2t/τ ), (2.22)

where v0 is the initial velocity and K is assumed constant (equations (2.2) and

(2.3) Gillespie, 1996). If we want to know the behavior of the velocity on long time

scales, we simply take the limits of the above equations as t → ∞, which clearly

shows that the mean and variance approach 0 and Kτ
2

respectively.

2.8 Eulerian and Lagrangian modelling

As mentioned in the introduction there are two main ways of simulating mixing due

to fluid flow numerically where the first, Eulerian, considers each position on a finite

grid and how a conserved quantity, such as particle concentration, develops at these

positions given some vector field describing the flow and a parameter describing the

diffusivity. These methods require a fixed position grid and may be solved using a

finite difference method (FDM). This involves setting up a linear algebra system and

solving it for each timestep; something computers are very efficient at doing. This

method, however, does not include a notion of singular particles, and it is therefore

not possible to consider an ensemble where different particles in the same position

can have different velocities since the velocity at a given position is determined by

the vector field.

The Lagrangian models, on the other hand, track individual particle packets or

parcels. This lets us track any number of properties of these particles, such as

both position and velocity, and these properties can vary continuously inside some

predefined range. Here, each parcel is simulated and tracked through the entire

diffusion process. These methods do not require a discretization of the space since

the position of the particles can vary continuously (to the precision of the com-

puter on which the simulation is run). However, it is often unpractical to simulate
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inter-particle interactions and these are therefore often neglected for large particle

ensembles.

In both cases we simulate the mixing with the assumption of knowing the neces-

sary characteristics of the overall fluid flow.

2.8.1 A suitable FDM

An example of an FDM that is well suited for solving the diffusion equation is the

Crank-Nicolson method. It consists of discretizing the PDE with implicit trapezoid

in time, and second order central difference in space (Gustafsson, 2007, p. 39). For

simple one dimensional diffusion without advection, as given by equation (2.2), the

Crank-Nicolson method describing the concentration of tracer particles is

Ci+1
n − Ci

n

∆t
=

K

2∆x2
(Ci+1

n+1 − 2Ci+1
n + Ci+1

n−1 + Ci
n+1 − 2Ci

n + Ci
n−1), (2.23)

where C is the concentration, i and n are the temporal and spatial indices respect-

ively, ∆t and ∆x are the temporal and spatial discretization step sizes respectively,

and K is the diffusivity. The method is second order and implicit in time. An

important consideration when using FDMs is the stability of the method which

describes the development of numerical error with the timestep size. Both the de-

rivation of equation (2.23) and a proof of the stability of the method can be found

in appendix A.

On the other hand, the random walk and random flight methods presented previ-

ously in sections 2.6 and 2.7 are examples of Lagrangian methods since these consider

individual particle parcels rather than the flow field as a whole.

2.8.2 Boundary conditions

When doing both Eulerian and Lagrangian simulations one needs to consider what

to do when particles cross a boundary of the spatial interval of interest. The topic

of boundary conditions in Lagrangian models is not often discussed in the applied

literature, and we are therefore interested in illumiating this topic in this thesis.

In an FDM, the implementation of boundary conditions is usually accomplished by

changing some of the values in the linear algebra system that is used to describe the

method, while for stochastic particle methods we cannot a priori know if a particle

will cross a boundary, and we therefore need an approach where we in some way

change the particle position back to some acceptable value after it has stepped out

of the acceptable domain. In this thesis we will only be considering systems with

reflecting boundary conditions. For the stochastic particle methods we will consider
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two different approaches to this; one simple method, and one more advanced method

presented by Lépingle (1995).

Simple reflection

For some potential new position of a particle

z̃n+1 = f(zn) (2.24)

we want to check if the particle is outside the domain of interest [0, L], and if so we

reflect it back inside. If the particle is to the left of the domain (z̃n+1 < 0) meaning

it has hit the water surface, the reflection simply consists of changing the sign of

the position. If the position is to the right of the domain (z̃n+1 > L) meaning it

has hit the ocean floor, the reflection is carried out by subtracting z̃n+1 from 2L.

If the particle is within the domain, nothing is done. This method depends on a

sufficiently large domain size L compared to the step sizes ∆z so that the particle

is never a distance greater than L outside the domain on either side, since in such

a case this reflection scheme would simply move the particle from being outside the

domain on one side to being outside it on the other. The actual new position zn+1

can then be expressed as

zn+1 =


−z̃n+1 if z̃n+1 < 0

2L− z̃n+1 if z̃n+1 > L

z̃n+1 otherwise

(2.25)

When this scheme is applied to the random flight method, with some potential new

velocity ṽn+1 = f(zn, vn), the reflected velocity simply changes its sign such that it

travels at the same speed but in the opposite direction after the reflection:

vn+1 =

−ṽn+1 if z̃n+1 < 0 or z̃n+1 > L,

ṽn+1 otherwise.
(2.26)

Lépingle reflection

Since our Lagrangian models are constrained by using a finite timestep ∆t we are

faced with the possibility that a particle that is inside the valid domain at both times

t and t+∆t might have gone outside it at a time in the sub-interval between t and

t+∆t. An illustration of this can be seen in figure 2.4 where we see that one of the

possible trajectories between the two points crosses the reflecting boundary. This is

the motivation for introducing a new reflection scheme. Given some potential new
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Figure 2.4: An illustration of two possible trajectories, z(t), between the points
(tn, zn) and (tn+1, zn+1). Even if the particle is inside the domain at these points, it
might still have been outside between.

position, z̃n+1, as in equation (2.24), the Lépingle reflection scheme can be written

as

zn+1 = z̃n+1 +max(0, An − zn) (2.27)

where

An =
1

2
[−a(zn)∆t− b(zn)∆Wn +

√
b(zn)2Vn + (−a(zn)∆t− b(zn)∆Wn)2] (2.28)

Here a(zn) = K ′(zn) and b(zn) =
√

2K(zn) are the drift- and diffusion coefficients

respectively, and Vn is an exponential random variable with rate parameter λ =

(2∆t)−1. The inclusion of this exponential variable is motivated by the observation

that the distance outside the acceptable domain traveled by a particle between two

timesteps is exponentially distributed, with it being exponentially less likely for a

particle to move to a point outside the domain the further away that point is.

2.9 Monte Carlo error

When trying to glean insight into the development of macroscopic quantities like

concentration from statistical aggregation of microscopic quantities like position, the

number Np of tracked particles greatly affects the accuracy of these aggregations.

The error we expect from using too few particles; or in other words an Np that is

too small, is called the Monte Carlo error.

Calculating the concentration for a sample of Np positions is done by making
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a histogram of the positions, which consists of subdividing the spatial interval of

interest into a set of bins and counting the number of particles within each bin

before doing the required normalization. Since the resulting positions from both the

random walk and random flight simulations are stochastic variables, this counting of

points that are internal to each bin is equivalent to doing a Monte Carlo integration

(see e.g. Press et al. (2007, pp. 397-402)) of an indicator function that evaluates

to 1 inside the bin and 0 elsewhere. For a given bin [zi, zi+1) the indicator function

can be expressed as

fi(z) =

1 if zi ≤ z < zi+1,

0 otherwise.
(2.29)

The proportion of particles that are inside the i-th bin can then be expressed as

Qi =
1

Np

Np−1∑
j=0

fi(zj), (2.30)

where Np is the total number of tracked particles and zj is the j-th position sample.

This is equivalent to taking the mean of the function fi evaluated on the points

zj. A suitable estimate for the error of this method of aggregation could be the

standard deviations associated with this mean. Since this is a mean of stochastic

variables, the central limit theorem gives a nice closed form for the standard devi-

ation. Before doing the final step in deriving the Monte Carlo error, we will give a

short presentation of the central limit theorem.

2.9.1 Central limit theorem

The central limit theorem states that for a set of stochastic variablesX0, X1, ..., Xn−1

selected from a population with mean µ and finite standard deviation σ, with sample

mean

X̄ =
1

n

n−1∑
i=0

Xi, (2.31)

the empirical standard deviation of the mean is

σX̄ =
σ√
n
. (2.32)

This means that the empirical standard deviation of the sample mean X̄ is expected

to decrease with the inverse of the square root of the number of samples, meaning

if we want to reduce the error by a factor of 1
2
we need to increase the number of

points n by a factor of 4.
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2.9.2 Final thoughts on Monte Carlo error

Leveraging the central limit theorem presented above, using X̄ = Qi, n = Np, and

X0, X1, ..., Xn−1 = fi(z0), fi(z1), ..., fi(zNp−1)

we find that the error, expressed through the standard deviation of the mean, is

σQi
=

σ√
Np

. (2.33)

A short illustrative example can be made where we have some known probability

distribution and draw Np samples from this distribution. If we for instance represent

the Monte Carlo error by the root-mean-square difference between the histogram

values of the sample and the expected value found from evaluating the probability

density function (PDF) of the population distribution at the relevant bin centers,

we will observe that as Np increases the error decreases.

We will illustrate this by taking samples from a Laplace distribution whose PDF

is given by

p(x) =
1

2
e−|x|. (2.34)

Figure 2.5 shows how the sample histograms much more faithfully aligns with the

expected values from the PDF for the bigger value of Np, while figure 2.6 illustrates

how the sample error falls like σ√
N
, where σ is the known standard deviation of the

Laplace distribution in equation (2.34).

10 5 0 5 100.0

0.2

0.4

0.6

0.8

1.0

N = 500

10 5 0 5 10

N = 1000000
Histogram of samples
Exact PDF

Figure 2.5: Two examples where we have drawn N = 500 and N = 106 samples
from a Laplace distribution; both shown against the expected values given by the
PDF.
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Figure 2.6: The root mean square error of the samples compared to the PDF plotted
against the line proportional to 1√

N
on a logarithmic plot.

2.10 Well-mixed condition

A common metric for the suitability of a Lagrangian model to simulate diffusion

is called the well-mixed condition (WMC). It states that for a diffusion problem

any initially well-mixed system, for instance meaning that the tracer particles starts

evenly spread out, the system should always remain well mixed, given that the tracer

can not move outside the system and that the diffusion is greater than zero every-

where (Thomson, 1987). This expectation can be seen directly from the diffusion

equation (2.2): If the system is in a well-mixed state, as outlined above, where the

particles are evenly distributed the spatial derivative of the concentration becomes

zero
∂C

∂z
= 0. (2.35)

Inserting this into the right-hand side of equation (2.2) it immediately follows that

∂C

∂t
= 0, (2.36)

meaning that concentration is stationary and does not change with time. The phys-

ical intuition for this can be linked to the concept of entropy: A well mixed state

where all particles are evenly distributed has the highest possible entropy of that

system, and given a simple closed system, the second law of thermodynamics tells

us that the entropy cannot decrease, which in our case would mean the system going

from a well-mixed state to one that is not well-mixed. The famous example of non-

decreasing entropy where we are mixing milk in our tea is illustrative of this since
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it is also an example of a system of turbulent diffusion: If we consider the state of

the milk being well dispersed in the tea due to our stirring with a teaspoon to be

a well-mixed state, we know from experience that no amount of stirring will unmix

the milk from the tea, and thus this token turbulent system will remain well-mixed.

2.11 Convergence

An interesting property of stochastic particle models is the convergence of the

method. Just like for PDE solvers, this is a measure of how rapidly the method

approaches the ”true” solution as we decrease the timestep ∆t. However, due to

the stochastic nature of SDEs the concept of convergence differs from that of PDEs:

For SDEs we have two different concepts of convergence, namely weak and strong.

A stochastic method is said to have convergence of order γ if for sufficiently small

∆t there exists a Λ such that

|⟨p(Xn)⟩ − ⟨p(X(t))⟩| ≤ Λ∆tγ : weak (2.37)

⟨|Xn −X(t)|⟩ ≤ Λ∆tγ : strong, (2.38)

for t = n ·∆t ∈ [0, T ] (Gräwe et al., 2012). Here, X(t) represents the exact solution

at time t and Xn is the approximation (this is opposite of the notation used in the

source, but the equation remains the same), and p(·) is some polynomial function.

Also note that Λ is an unknown parameter which is dependent on the equation we

are trying to solve, while γ should only depend on the method used: The parameter

Λ is therefore not of much interest when determining the order of convergence. Weak

convergence, as given by equation (2.37), then relates to the statistical moments of

the distribution of particle positions. This means that we are looking for how the

mean, variance, skewness etc. converge. Strong convergence, on the other hand,

concerns how each individual particle trajectory converges, and weak convergence

is therefore implied if strong convergence is present.
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Chapter 3

Method

In this chapter we will look at the methodology used to investigate stochastic particle

methods for diffusion problems in breaking waves. All the simulations have been

done using the Python programming language, and the code used can be found in

my public Git repository 1.

3.1 Simulation setup

The main variables that describe the systems that we will simulate are the initial

distributions for both position and velocity, the depth of water that is simulated,

as well as the diffusivity profile. As we are mostly interested in the behaviour of

the paricles near the surface, we consider a water column of depth L = 2 m in all

simulations, and use positive z-direction downwards. Using z = 0 at the surface,

this means that we consider the interval z ∈ [0, L] = [0 m, 2 m] in all simulations.

3.1.1 Initial position distributions

For the initial position distributions we use three different distributions; the uniform

distribution, Dirac delta distribution, and truncated normal distribution. Figure 3.1

shows all three position distributions used, and a more detailed description of each

distribution follows below.

Uniform distribution A uniform distribution on a given interval U(a, b) means

it is equally likely for a particle to occupy any position in that interval. For our case

1https://codeberg.org/konki/Masterprosjekt

20

https://codeberg.org/konki/Masterprosjekt
https://codeberg.org/konki/Masterprosjekt


with the interval [0 m, 2 m] the PDF of the distribution reads

p(x) =

1
2

0 ≤ x ≤ 2,

0 otherwise.
(3.1)

It represents an even distribution of the particles, and we use it here to initialize

systems as well-mixed. In general, the mean and variance of this distribution on the

interval [a, b] is µ = b−a
2

and σ2 = (b−a)2

12
respectively, which on our interval gives

µ = 1 and σ2 = 1
3
. In the code this initial distribution is achieved using the following

code

import numpy as np

Np = 10_000_000 # Number of particles to be simulated.

L = 2 # Depth of water column in meters.

z0 = np.random.uniform(0, L, size=Np) # Initial position distribution.

Dirac delta distribution The Dirac delta distribution δ(x) is infinite in a single

point and zero everywhere else, meaning the only place one could find a particle is

that specific point. Its PDF is

δ(x) =

∞ x = 0,

0 otherwise,
(3.2)

but numerically this position distribution is achieved simply by initializing all particles

at the same position, skipping the step of drawing them from a distribution all to-

gether. My code simply reads

import numpy as np

Np = 10_000_000 # Number of particles to simulate.

L = 2 # Depth of water in meters.

loc = L / 2 # Desired location where all particles are

# initialized, in this case in

# the middle of the domain.

z0 = np.repeat(loc, repeats=Np) # Initial position distribution.

Equation (3.2) describes a system where all particles are initialized at zero, but one

can easily initialize at any arbitrary point a by doing the substitution x → x− a.
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Truncated normal distribution The normal distribution N (µ, σ2) is a well-

studied distribution and its PDF reads

p(x) =
1

σ
√
2π

e−
1
2
(x−µ

σ
)2 (3.3)

One of its properties is that the PDF evaluates to a non-zero value everywhere (save

for the cases where σ2 = 0, in which case the normal distribution is simply a Dirac

delta distribution like the one presented above). This means that to be able to use

this as an initial particle distribution within our domain [0, L] we need to modify the

distribution to a so-called truncated normal distribution. To this end we modify the

PDF to evaluate to zero everywhere outside the domain, and rescale the function

inside the domain to still integrate to 1. In the code this is done using the method

truncnorm form the library scipy:

import numpy as np

from scipy.stats import truncnorm

Np = 10_000_000 # Number of particles to simulate

L = 2 # Depth of water in meters

std = 0.5 # Standard deviation of the

# distribution

loc = L / 2 # Center of the normal distribution

# in this case in the middle of the

# domain

# Edges of the domain in number of standard deviations from the mean

a, b = (0 - loc) / std, (L - loc) / std

# Initial position distribution

z0 = truncnorm.rvs(a, b, loc=loc, scale=std, size=Np)
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Figure 3.1: The different initial position distributions used. Note the different scales
on the vertical axes.

3.1.2 Diffusivity profiles

The diffusivity profile of the water column describes the degree to which mixing is

happening as a function of position and/or time. Since our simulations do not track

time explicitly as a variable but only implicitly through the timestep ∆t, we limit

our scope to only consider diffusivity profiles that are stationary; that is they do not

change with time.

In the following simulations we will use a diffusivity profile that decays linearly

towards the surface, and exponentially for large depths

K(z) = K0 +K1ze
−αz, (3.4)

where we use K0 = 2 · 10−4 m2/s, K1 = 2 · 10−3 m/s, and α = 1
L
= 0.5 m−1. As

we will only consider a domain of z ∈ [0 m, 2 m], the effects of the exponentially

decaying term will be minimal. The derivative of this function, which is used in the

update formula for the random walk shown in equation (2.13) is

K ′(z) = K1e
−αz · (1− αz). (3.5)

For simpler simulations we sometimes use a constant diffusivity profile which reads

Kconst(z) = K0 (3.6)
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and hence the derivative for the constant case is simply

K ′
const(z) = 0 (3.7)

Both the constant and variable diffusivity profiles and their derivatives can be seen

in Figure 3.2
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Figure 3.2: The different diffusivity profiles used and their derivatives

3.2 Convergence

We will look at both the strong and weak convergence for the random walk and

random flight methods. In both the case of the weak and the strong convergence we

need to run several realizations of the same simulations, only changing the timestep

∆t, and comparing the final positions of the simulations to those of the exact solu-

tion. As we do not know the exact solutions we instead use the simulation with

the reference timestep ∆tref as a reference solution that the other simulations are

compared to. To this end ∆tref needs to be much smaller than the second-smallest

timestep so that our reference solution can be considered to be significantly better

than the other simulations that we will compare it to. Using equations (2.38) and

(2.37), we can write the expression for the error of a single timestep size ∆ti

ei =


∣∣∣⟨p(Zi

(final))⟩ − ⟨p(Zref
(final))⟩

∣∣∣ weak,

⟨
∣∣∣Zi

(final) − Zref
(final)

∣∣∣⟩ strong.
(3.8)
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Remembering, from equations (2.37) and (2.38), that the requirement for conver-

gence is

e(∆t) ≤ Λ∆tγ, (3.9)

and taking the logarithm on both sides of the equality case of equation (3.9)

log e(∆t) = log Λ + γ log∆t, (3.10)

we can find the upper bound of the order by doing a linear regression with the results

of the simulations

log ei = log Λ + γ log∆ti (3.11)

and solving for the order γ. Note, as mentioned earlier, that Λ is given by the equa-

tion we are trying to solve, and is therefore not of much interest when determining

the order of convergence.

3.2.1 Convergence of trajectories

To investigate the strong convergence of the methods we are looking at how the

trajectories of each particle converge to the trajectory of the reference solution as ∆t

decreases. To be able to achieve this the simulations need to use the same realization

of the Wiener process, or else the simulations would not approximate the same

trajectories. Remembering that the Wiener process is a function over time, we create

a reference realization of W ref with ∆t = ∆tref . For a simulation with timestep

size ∆ti = m ·∆tref , with m ∈ N, the value of ∆W i
n at a given temporal position n

can be found be finding the appropriate increment of the reference Wiener process

∆W i
n = W ref

n+m−W ref
n . By doing this, all ∆W i represent the same trajectories, only

with different temporal resolutions given by ∆ti. Figure 3.3 gives an illustrative

example of what multiple realizations of the same Wiener process with different

timesteps looks like.
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Figure 3.3: Four realizations of the same Wiener process using different timesteps.
The units on both axes are arbitrary.
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Chapter 4

Results and discussion

In this chapter we present the results obtained together with discussions of these

results.

4.1 Random walk and random flight

4.1.1 Monte Carlo error

To investigate the development of the Monte Carlo error one should fix all parameters

of the system, except the number of particles Np, and run a series of simulations

with an increasing number of particles and investigate the distribution of positions

at the end time T . Since we do not know what the ”true” position distribution of

the particles should be, which is needed for the error-calculation, we instead use the

sample with the highest Np as the benchmark that the other samples are measured

against using the root-mean-square error.

As we can see in Figure 4.1 the Monte Carlo error for both the random flight and

random walk behave in the way we expect according to the theory presented previ-

ously. As the errors of both methods follow each other so closely we can conclude

that the choice of Np is equally important for both methods.
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Figure 4.1: Development of the Monte Carlo error for both random flight and ran-
dom walk.

4.1.2 Convergence

Strong convergence

To investigate the strong convergence of the random walk and random flight methods

we simulate Np = 4000 particles, with reference timestep ∆tref = 2−8 s, and total

simulation time T = 512 s. We simulate using timestep sizes

∆t ∈ {2n∆tref |n ∈ 3, ..., 11}, (4.1)

giving N = 9 different simulations. We use the variable diffusivity profile from

equation (3.4) with the simple reflection scheme. All particle positions are initialized

with a Dirac delta distribution at z = L
2
= 1, and for the random flight, the velocity

is initialized at 0.

The error for each timestep size ∆ti may be found by taking the mean absolute

error of the position at the final timestep with respect to the reference solution

ei = MAE = ⟨
∣∣∣Zi

(final) − Zref
(final)

∣∣∣⟩ (4.2)

As we can see from figure 4.2 random walk has a strong convergence of order

γ ≈ 0.51. This is in line with what we know from the literature about the Euler-

Maruyama scehme which is order γ = 1
2
(Gräwe et al., 2012). We can also see that

the random flight method has a similar order convergence with γ = 0.47, though

it has an overall higher error than the random walk for the timestep sizes we have

considered here.
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Figure 4.2: Strong convergence of random walk and random flight. The dashed lines
are the linear regression of the random walk and random flight respectively.

These simulations used the constant diffusivity profile, which means that K ′(z) =

0 ∀z ∈ R. If we apply this to the Langevin equation for the random walk in equa-

tion (2.6), we see that the only term that directly relies on the timestep,
√

2K ′(z)∆t,

vanishes. The only dependence of this equation on the timestep is then contained in

the increment of the Wiener process, ∆Wn = N (0,∆t), but since we are comparing

trajectories using the same realization of the Wiener process we would expect all the

particles to have the same final position, and therefore for the error to be constant

and (almost) zero. This would be the case in the absence of a reflecting boundary,

as demonstrated in figure 4.3. This shows that the error we observe in the random

walk is purely a result of the reflecting boundaries, but since the convergence order

of the random flight method remains the same even without boundaries it is clear

that the same is not true for this method. Considering that the Langevin equation

for the random flight in equation (2.14) does not depend on K ′(z), this behavior is

in line with what we would expect.
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Figure 4.3: Strong convergence if no reflecting boundary is applied.

Weak convergence

As weak convergence relates to how the moments of the samples converge to the

reference solution we need to simulate many more particles than what we needed

for checking the strong case. To this end we use Np = 40000, ∆tref = 2−4 s, and ∆t

as in equation (4.1). The moments we will consider are the mean and the variance

of the distribution, and using the absolute error of the final distribution resulting

from timestep size ∆ti as a measure of the error, which becomes

ei = AE =
∣∣∣⟨Zi

(final)⟩ − ⟨Zref
(final)⟩

∣∣∣ mean, (4.3)

ei = AE =
∣∣∣Var(Zi

(final))− Var(Zref
(final))

∣∣∣ variance. (4.4)

If we first consider the convergence with respect to the position mean as shown

in the figure on the left in figure 4.4 it is clear that both models scale well with

∆t which implies a convergence of order γ = 1. This is again in line with what

we expect from the literature, where we know the Euler-Maruyama scheme to be of

weak order γ = 1.

When considering the variance we can see from the figure on the right that the

random flight still follows ∆t very well, as does the random walk for larger timestep

sizes, but for small timestep sizes it becomes apparent that the number of particles

Np = 40000 was not adequate to capture the weak convergence of the random walk

method.

Still we notice that the overall error of the random flight method is significantly

higher than that of the random walk, and since they are of the same order in the
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Figure 4.4: Convergence of mean and variance of particle positions.

weak sense, we cannot make the former more precise than the latter by choosing

more appropriate timesteps.

4.2 Impact of reflection schemes

We will now investigate the impact of the reflection scheme on the random walk

method.

4.2.1 Well-mixed condition

An important thing to do after implementing a numerical method is to check if it

satisfies the WMC, as this is a necessary requirement for the method to be a faithful

representation of diffusion. We check this by creating a uniform distribution of the

particle positions z within the domain [0, L], and running the simulations for a total

time T = 6 h with the different combinations of reflection schemes and particle

methods. We simulate Np = 5000000 particles using the variable diffusivity profile

from equation (3.4) and a timestep of size ∆t = 12 s. For the random flight the

initial velocity of all the particles are set to 0. After the simulation we investigate

whether the distribution has changed in any meaningful way by comparing the mean

and variance of the final distributions of each method to that of a perfectly uniform

distribution.

The final position distributions after running the different simulations can be seen

in figure 4.5. Here we can see that both random walk and random flight with the

simple reflection scheme preserve the well mixed state of the system quite well, while
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Figure 4.5: Position distributions after 6 hours for random walk with simple and
Lépingle reflection schemes, as well as random flight with simple reflection scheme,
all plotted against the initial position distribution.

the Lépingle reflection scheme produces a quite big deviation near the reflecting

boundary at z = 0. This is further seen in table 4.1 where we can see that the

Lépingle scheme has the highest error for both the mean and variance.
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⟨Z⟩ Var(Z) |1− ⟨Z⟩|
∣∣1
3
−Var(Z)

∣∣
Initial distribution 0.999536 0.333383 4.64 · 10−4 5.5 · 10−5

Random walk
w/ simple reflection

1.001850 0.332736 1.85 · 10−3 5.98 · 10−4

Random walk
w/ Lépingle reflection

1.003749 0.331375 3.75 · 10−3 1.96 · 10−3

Random flight
w/ simple reflection

0.998627 0.333491 1.37 · 10−3 1.57 · 10−4

Table 4.1: The first two columns are the mean and variance of the initial distribution
as well as of the final distributions for all methods and reflection schemes. The last
two columns are the deviation of these means and variances from the exact mean
and variance of the uniform distribution.

4.2.2 Comparison with Crank-Nicolson method

Lastly we consider a comparison of the random walk method and the direct solution

of the diffusion PDE by the Crank-Nicolson method. Both methods are well suited

and widely used for simulation of diffusion. We are specifically interested in the

behavior near a reflecting boundary where the derivative of the diffusivity is non-

zero, as this is where we expect an artifact to occur, as discussed in the introduction

(see also Ross and Sharples, 2004; Nordam et al., 2019). This is the case for the

reflecting boundary at z = 0 with the variable diffusivity profile given in equation

(3.4), and we therefore will give both methods the same initial position distribution

near this boundary and compare their development over time. We will investigate

how the choice of reflection scheme between simple and Lépingle reflection affect

the results. The comparison consists of comparing the resulting concentrations

from each method at each time and calculating the mean absolute error (MAE)

as a representation of how much they differ, as well as a qualitative comparison of

the concentrations at the end time T . We will also look at the weak convergence of

the random walk with the different reflection schemes where we use the result from

the Crank-Nicolson method as a reference solution.

The simulations are run using a total simulation time T = 5 min, varying timesteps,

and using the variable diffusivity profile given in equation (3.4). The concentration is

initialized as a truncated normal distribution centered at z = 0.1L = 0.2 m and with

a standard deviation of σ = 0.1 m. For the random walk we use Np = 100000000

particles, and for the Crank-Nicolson method we use a spatial discretization of size

∆x = L
10000

= 0.0002 m.

It is clear from figure 4.6 that the overall behavior of random walk with both
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Figure 4.6: Concentration of particles resulting from the random walk and Crank-
Nicolson methods at different times.

reflection schemes and the Crank-Nicolson method follow each other closely, but

when inspecting the behavior near the surface boundary we observe rather large

deviations for the Lépingle method and smaller deviations for the simple method.

This is reflected in figure 4.7 where, when we consider mean absolute error, can see

that the Lépingle method has consistently higher error than the simple method.

Furthermore, to investigate the weak convergence with the different reflection

schemes we run the same simulation as above multiple times, only changing the

timestep size and calculated the error in the first moment. Figure 4.8 considers the

error in the first moment of the Lagrangian method relative to the Eulerian. The

first moment is given by 1
Np

∑Np−1
i=0 zi for the Lagrangian method and

∫ L

0
zC(z)dz

for the Eulerian, where we use Simpsons method to calculate the integral. As we

can see from the figure the reflection schemes converge in the weak sense with order

∼ 1.08 for simple and ∼ 0.929 for Lépingle reflection.
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While Lépingle (1995) proves that his method has order of convergence 1
2
in the

strong sense, there has to the best of my knowledge been no investigations of his

reflection scheme in an applied context. In applications, one is typically more con-

cerned with weak convergence, as this describes how the concentration field con-

verges. It is interesting that the Lépingle method apparently has slower convergence

than the simple reflection scheme in this context. If we also note that we found the

Lépingle scheme to have a poor ability to preserve the well-mixed state of a diffusion

system, and keeping in mind its double computational cost compared to the simple

scheme, we conclude that there seems to be no benefit, but rather a detriment, in

choosing this method of reflection over the simple scheme.
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Chapter 5

Conclusion

In this thesis we have investigated the differences and similarities of the random

walk and random flight methods for simulation of diffusion, as well as the impact of

choice of reflection scheme on the random walk method. We have found that both

methods satisfy the well-mixed condition when using a simple reflection scheme,

but that when using the Lépingle reflection scheme with the random walk method

a large deviation appears near the reflecting boundary where the derivative of the

diffusivity is zero.

The number of particles simulated plays a big role in the accuracy of a stochastic

particle method, and the Monte Carlo error is an estimate of the error introduced to

the system due to the choice of number of simulated particles. From the literature we

would expect this to develop as one over the square root of the number of particles,

which we have found to be the case for both the random walk and random flight.

Another important choice for the simulations is the size of the timestep. We have

found that, using constant diffusivity and reflecting boundaries, the random walk

method is of order ∼ 0.51 in the strong sense and ∼ 1.1 in the weak sense, while

the random flight method is of order ∼ 0.47, and ∼ 1.0 respectively, while still

maintaining a higher overall error that the random walk method.

Furthermore, we have found that, comparing the random walk with the different

reflection schemes to the Crank-Nicolson method, the overall error when using the

Lépingle method is significantly higher than that of the simple reflection scheme.

Though Lépingle (1995) proves that his method is of order 1
2
in the strong sense,

one is often more interested in the weak convergence, as this relates to how the

macroscopic property of concentration behaves. In this thesis we have found the

Lépingle method to be of order ∼ 0.929 in the weak sense, while the simple reflection

method is of order ∼ 1.08, making the former a poorer choice in this regard as well.

Combining this with the fact that the Lépingle method has a higher computational

cost, we conclude that the usage of this reflection scheme is a detriment rather than
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a benefit to random walk method.

This leads us to conclude that due to it having little extra computational cost,

the random flight method might be equally suitable for simulations of diffusion as

the random walk method.
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Appendix A

Stability of Crank Nicolson

method

The Crank-Nicolosn method is defined to solve PDEs on the form

∂C

∂t
= F (C, x, t) (A.1)

where we discretize forwardly in time

Ci+1
n − Ci

n

∆t
=

1

2
(F (Ci+1

n , xn, ti+1) + F (Ci
n, xn, ti)) (A.2)

Given the 1-D diffusion equation with constant diffusivity K

∂C

∂t
= K

∂2C

∂x2
(A.3)

Inserting this into equation (A.2) using F (C, x, t) = K ∂2C
∂x2 we get

Ci+1
n − Ci

n

∆t
=

1

2
(K

∂2Ci+1
n

∂x2
+K

∂2Ci
n

∂x2
) (A.4)

This equation can then be discretized centrally in space to get the following fully

discretized expression for the Crank-Nicolson method

Ci+1
n − Ci

n

∆t
=

1

2
(K

Ci+1
n+1 − 2Ci+1

n + Ci+1
n−1

∆x2
+K

Ci
n+1 − 2Ci

n + Ci
n−1

∆x2
) (A.5)

=
K

2∆x2
(Ci+1

n+1 − 2Ci+1
n + Ci+1

n−1 + Ci
n+1 − 2Ci

n + Ci
n−1) (A.6)
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Collecting terms that are the same in the temporal index, and using α = K∆t
2∆x2 we

get

Ci+1
n − α(Ci+1

n+1 − 2Ci+1
n + Ci+1

n−1) = Ci
n + α(Ci

n+1 − 2Ci
n + Ci

n−1) (A.7)

The stability of the method is analyzed using von Neumann analysis by substitut-

ing Ci
n = Ĉi

ke
jkxn where j is the imaginary unit. Inserting this into equation (A.7)

we get

Ĉi+1
k ejkxn − α(Ĉi+1

k ejk(xn+∆x) − 2Ĉi
ke

jkxn + Ĉi+1
k ejk(xn−∆x))

− Ĉi
ke

jkxn − α(Ĉi
ke

jk(xn+∆x) − 2Ĉi
ke

jkxn + Ĉi
ke

jk(xn−∆x)) = 0

Using ejk(xn±∆x) = ejkxn · e±jk∆x and dividing by ejkxn everywhere we get

Ĉi+1
k − α(Ĉi+1

k ejk∆x − 2Ĉi
k + Ĉi+1

k e−jk∆x)

− Ĉi
k − α(Ĉi

ke
jk∆x − 2Ĉi

k + Ĉi
ke

−jk∆x) = 0

Collecting terms, and using the identity ejθ + e−jθ = 2 cos θ we get

Ĉi+1
k (1 + 2α(1− cos k∆x))− Ĉi

k(1− 2α(1− cos k∆x)) = 0 (A.8)

Solving for Ĉi+1
k gives

Ĉi+1
k =

1− 2α(1− cos k∆x)

1 + 2α(1− cos k∆x)
Ĉi

k (A.9)

This gives us the amplification factor

g(k∆x) =
1− 2α(1− cos k∆x)

1 + 2α(1− cos k∆x)
(A.10)

Since the denominator of equation (A.10) is always greater than or equal to the

enumerator, the equation satisfies |g(k∆x)| ≤ 1 which is the criterion for stability.

This means that the method is unconditionally stable for the diffusion equation.
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