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ABSTRACT

The purpose of this master’s thesis is to calculate the seismic response of the
Moon to resonance with gravitational waves in general relativity and Brans-Dicke
gravity. It has been suggested to place seismometers on the surface of the Moon
to listen for gravitational wave signals. The response of three different models for
the Moon has been considered.
The Post Minkowskian theory is considered in short and concluded to be a highly
useful tool for further study into areas of interest with strong curvature of space-
time. The theory is not useful for our purposes of the Moon’s response to gravi-
tational waves, but a valuable method for future work involving any region with
a strong gravitational field.
Other theories of gravity than Einstein’s general theory of relativity can add ob-
servable polarisation of the produced gravitational waves. To measure these po-
larisations are therefore of high interest if one wishes to look for theories of gravity
beyond general relativity. One such theory is scalar-tensor theory of Brans-Dicke.
An additional scalar polarisation is produced in this theory and we have in this
thesis calculated the response of a potential Moon detector to this new scalar po-
larisation.
We find that a scalar polarised gravitational wave will excite a distinguishable
signal from the plus- and cross-polarisations from general relativity. It is deter-
mined that given a gravitational signal of strength h0, the three models in question
would produce a signal of magnitude ≈ h0 × 1011 cm. The detection of gravita-
tional waves using the Moon’s normal modes is therefore determined as possible
given seismometers with a high enough sensitivity.
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SAMMENDRAG

Formålet med denne masteroppgaven er å beregne den seismiske responensen til
Månen ved respons av dens normal modus med gravitasjonsbølger i generell rel-
ativitetsteori og Brans-Dicke-gravitasjon. Det har blitt foreslått å plassere seis-
mometre på månens overflate for å lytte etter gravitasjonsbølgesignaler. Respon-
sen til tre forskjellige modeller for månen har blitt vurdert.
Post Minkowskian teori er kort vurdert og konkludert med å være en svært nyttig
verktøy for å studere områder av intresse med sterk krumning av romtid. Teorien
er ikke nyttig for å studere Månens respons til gravitasjonsbølger, men en viktig
metode for framtidig arbeid som involverer områder med sterke gravitasjonsfelt.
Andre teorier om gravitasjon enn Einsteins generelle relativitetsteori kan legge til
observerbare polariseringer av de produserte gravitasjonsbølgene. Å måle disse
polarisasjonene er derfor av stor interesse hvis man ønsker å lete etter alternative
gravitasjonsteorier utover generell relativitetsteori. En slik teori er skaler-tensor
teorien Brans-Dicke. En ekstra skalarpolarisering produseres i denne teorien, og vi
har i denne oppgaven beregnet responsen til en potensiell Månedetektor på denne
nye skalarpolariseringen.
Vi har funnet at en skalarpolarisert gravitasjonsbølge vil eksitere en unik modus
som vil kunne skilles fra moduser eksitert fra pluss- og krysspolarisasjonen fra
generell relativitetsteori. Det er fastslått at gitt en gravitasjonsbølge med am-
plitude h0, forutsier de tre nevnte modellene et signal med størrelse ≈ h0 × 1011

cm. Vi konkluderer derfor med at det er mulig å oppdage gravitasjonsbølger ved
å bruke egenmodusene til Månen, forutsatt at seismometrene har tilstrekkelig høy
sensitivitet.
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CHAPTER

ONE

INTRODUCTION

1.1 Lunar gravitational wave detection and Brans-
Dicke gravity

The year is 1916 and one year has passed since Einstein published the general
theory of relativity. A theory which will turn out to have a profound and endur-
ing impact on our understanding of gravity. Einstein’s new theory also predicts
a new phenomenon, gravitational waves. These waves are ripples in spacetime
travelling at the speed of light throughout the Universe. It would take almost
100 years before Einstein’s predictions of gravitational waves would be detected.
The collaboration of LIGO managed to detect an extremely tiny signal from two
orbiting merging black holes [1]. With this detection, a new era in astronomy has
begun and many detectors have been proposed to further study what we might
learn from this new and interesting signal. In this thesis we will look deeper into
one of these detectors and study the response of the normal modes of the Moon
to gravitational waves.

The idea of using the Moon as a detector for gravitational waves is not new.
Weber [2] was the first to come up with the detector concept of a resonant bar
detector and A. Ben-Menahem [3] suggested gravitational waves could be detected
on Earth using Weber’s resonant bar idea. The Apollo 17 mission brought seis-
mometers that attempted to detect gravitational waves on the surface however
they ran into a technical problem and the data were useless [4]. There have also
been attempts at spherical detectors of much smaller scales than the Earth and
Moon such as MiniGRAIL [5], however, they remained unsuccessful in the attempt
of detecting gravitational waves.

The main goal of this thesis is to study the resonance response of the Moon to
gravitational waves given three different Moon models. This detection of gravita-
tional waves using the normal modes of the Moon could become a reality in the
next decades. It has the potential to be a valuable detector working in parallel
with new gravitational wave detectors such as LISA [6] and the Einstein Tele-
scope [7]. The Moon’s response is dependent on the interior geology. Accurate
measurements, therefore, require further knowledge of the geology of the Moon’s
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CHAPTER 1. INTRODUCTION 3

interior. The sensitive frequency range of this detector is directly determined by
the geology. The detector concept could therefore prove to be more sensitive in
a certain range of the frequency spectrum than other planned detectors. The de-
pendence on the Moon’s eigenfrequencies led to the analysis of multiple models
for the Moon. It will be of interest to see the displacement we can expect to get at
resonance, what normal modes of the Moon we expect the gravitational wave will
excite, and for what frequency one might expect to detect gravitational waves. It
will also be interesting to see the frequency range this detector is most sensitive
to and the general behaviour of the response as a function of the frequency of
gravitational waves. In conclusion, this thesis will derive an expression for the
resonance response of the Moon predicted by three models in general relativity
and Brans-Dicke gravity [8]. We will also elaborate on the response of the Moon
to a gravitational wave in Brans-Dicke gravity with the frequency range of the
gravitational wave.

1.2 Structure of the thesis
The thesis is effectively split into two parts. The first part has no mention of
the Moon and focuses on general relativity and Brans-Dicke gravity with the goal
of deriving the polarisation and source terms of gravitational waves for the two
theories. In Chapter 2 we consider the post-Minkowskian approximation. In
Chapter 3 we will consider the Landau-Lifshitz formulation of general relativity
and Brans-Dicke gravity. With this formulation as a starting point, we will derive
the polarisation tensor in general relativity and Brans-Dicke gravity. The second
part of the thesis starts of the theory of elasticity and it is in this part we en-
counter the normal modes of a spherical body for the first time. From this, we
derive the expression for the response of the Moon to a gravitational wave for
both toroidal and spheroidal oscillations. We will see how one can greatly simplify
the expressions arising from a quadrupole-quadrupole moment. In Chapter Five
we present and discuss our numerical integration of the predicted response from
the Earth and Moon models. We begin by considering the response in general
relativity before we continue to Brans-Dicke gravity.

1.3 Notation
In this thesis, we will use the following conventions, the mainly positive spacetime
metric such that for flat space the metric is

ηµν = diag(−1, 1, 1, 1). (1.1)

Four vectors are written with Greek letter indices and spatial vectors with Latin
letter indices. We assume Einstein’s summation convention. The four gradient is
given by

∂µ =
∂

∂xµ
, (1.2)

with double indices meaning the double derivative

∂µν =
∂

∂xµ
∂

∂xν
. (1.3)
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For a cross product between two vectors aα and bβ we will use,

ci = ϵijkajbk, (1.4)

where ϵijk is the Levi-Civita tensor. For the differentiation for vectors or tensors,
we will at times employ the notation

∂µuν = uν,µ. (1.5)

For the curl of a vector aα we use,

ϵijkak,j. (1.6)

We will encounter vectors and functions with many indices, especially in Chapter 4.
We have therefore chosen the notation as follows: We set indices describing four
and three vectors to the above-mentioned notation. Other indices representing
some property of the variable are to be inside the parenthesis unless otherwise
specified. For the radial spherical unit vector, we then have the notation e

(r)
i .

The r in parenthesis represents that it is the radial unit vector and the indices
i represent the vector nature. For the Legendre polynomials and other functions
which have indices we put them into the parenthesis. For the Legendre polynomial
for example with l and m we then have

P (ml)(x) = Pm
l (x) (1.7)

where Pm
l is the standard notation. Given spherical bodies are of key interest

in the thesis we will use a spherical coordinate system defined in the standard
mathematical notation.

ê
(r)
i = sin θ cosϕê

(x)
i + sin θ sinϕê

(y)
i + cos θê

(z)
i , (1.8a)

ê
(θ)
i = cos θ cosϕê

(x)
i + cos θ sinϕê

(y)
i − sin θê

(z)
i , (1.8b)

ê
(ϕ)
i = − sinϕê

(x)
i + cosϕê

(y)
i . (1.8c)

1.3.1 Expression summary

The thesis will include expressions that have rather complicated forms. We, there-
fore, summarize some expressions here.

• gαβ Metric tensor

• gαβ Gothic metric tensor

• Hαµβν Landau-Lifshitz tensor density

• hαβ Gravitational potentials

• Ijk Multipole moment (in Chapter 3)

• Ijk Stress tensor(in Chapter 4)

• E jk Polarisation tensor

• ϵϵjk Strain tensor

• jl(x) Bessel function

• P (ml)(x) Associated Legendre polynomial



CHAPTER

TWO

THE POST MINKOWSKIAN THEORY

2.1 Formulation of Post-Minkowskian Theory

Post-Minkowskian theory, or as we shall call it, Post-Minkowskian approximation
is a procedure to approximate the behaviour of phenomena described by general
relativity. This approximation procedure excels for weak gravitational fields, but
can for other purposes than what will be used in this thesis adequately describe
stronger fields as well. In the Post-Minkowskian approximation, the gravitational
field is expanded in powers of the gravitational constant G. To make the best use
of Post-Minkowskian approximation it is useful to rewrite the field equations in
a form more suitable for the approximation procedure that will follow. We will
therefore begin with an introduction to the Landau-Lifshitz formulation of general
relativity. From this, we will arrive at a wave equation for a soon-to-be-introduced
gravitational potential hαβ. It is the goal of this section to derive an approximate
expression for this gravitational potential in powers of c−n. This chapter is heavily
inspired by chapter 6 of reference [9].

2.1.1 Landau-Lifshitz formulation of general relativity

To implement the post-Minkowskian theory on Einstein’s field equation it is useful
to express the field equations in the Landau-Lifshitz formulation. This is an
equivalent formulation to Einstein’s theory, although it is not equivalent in its
usefulness. It will be useful for our purposes. In the Landau-Lifshitz framework,
one works with the Gothic metric instead of the standard metric tensor which is
defined as

gαβ =
√
−ggαβ. (2.1)

Here gαβ is the inverse metric and
√
−g is the square root of the metric deter-

minant. To get the field equations in this formalism we will require the tensor
density built from the Gothic metric,

Hαµβν = gαβgµν − gανgβµ. (2.2)

We mention that Hαµβν is a tensor density. Tensor densities are objects which
differ from tensors only by the multiplication of a determinant of the metric. We
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wish to connect this new tensor density to the Einstein tensor such that we can
rewrite the field equations. The tensor density Hαµβν satisfies the general identity,

∂µνH
αµβν = 2(−g)Gαβ +

16πG

c4
(−g)tαβLL, (2.3)

where Gαβ is the Einstein tensor known from the standard field equations and tαβLL
takes on the complicated form

−(g)tαβLL =
c4

16πG

(
∂λg

αβ∂µg
λµ − ∂λg

αλ∂µg
βµ +

1

2
gαβgλµ∂ρg

λν∂νg
µρ

− gαλgµν∂ρg
βν∂λg

µρ − gβλgµν∂ρg
αν∂λg

µρ + gλµg
νρ∂νg

αλ∂ρg
βµ

+
1

8
(2gαλgβµ − gαβgλµ)(2gνρgστ − gρσgντ )∂λg

ντ∂µg
ρσ

)
. (2.4)

We now have a connection between the new tensor density Hαµβν and the Einstein
tensor Gαβ. With (2.3) we can write the field equations with Hαβµν giving us,

∂µνH
αµβν =

16πG

c4
(−g)(Tαβ + tαβLL), (2.5)

where Tαβ is the energy-momentum tensor of the matter distribution. This does
not seem to have gotten us into a more favorable position than before in regard
to the approximation procedure. It is however at this point that we can use the
harmonic gauge conditions.

2.1.2 Harmonic gauge conditions

For the field equations (2.5) we have not considered the harmonic coordinate
conditions,

∂βg
αβ = 0, (2.6)

which comes from our freedom of choosing a coordinate system to describe the
inherent physics. We make a short motivation of why this statement holds. We
make the assumption that we have some coordinate system such that ∂βgαβ ̸= 0,
and then pick a new coordinate system described by the coordinates x′µ which is
connected to the old coordinate system xα by x′µ = fµ(xα). The Gothic metric in
this new coordinate system is now,

∂ν′g
µ′ν′ = ∂ν′

√
−g′gµ′ν′ +

√
−g′∂ν′gµ

′ν′ . (2.7)

Using the identity, Γσ
σβ = 1√

−g
∂β
√
−g [9] in the first term we get,

∂ν′g
µ′ν′ =

√
−g′

[
Γσ
σν′g

µ′ν′ + ∂ν′g
µ′ν′
]
. (2.8)

Relabeling ν ′ −→ β and expanding gµ′β = ∂αf
µgαβ by the transformation rule of

the metric under a coordinate transformation we get,

∂ν′g
µ′ν′ =

√
−g′

[
Γσ
σβg

αβ∂αf
µ + ∂β(g

αβ∂αf
µ)
]
, (2.9)
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where the term in the bracket parenthesis is just the curved spacetime d’Alembertian
□ = gµν∇µ∇ν applied on fµ. We then get at last,

∂ν′g
µ′ν′ =

√
−g′□fµ. (2.10)

If we were to choose four harmonic functions fµ, then □fµ = 0 and one can
therefore always find a coordinate system where the harmonic coordinate condition
on the Gothic metric holds. We proceed to rewrite the equations of motion by a
new potential hαβ which is constructed of the Minkowski metric and the Gothic
metric tensor,

hαβ = ηµν − gαβ. (2.11)

The harmonic coordinate condition implies then that,

∂βh
αβ = 0. (2.12)

From now we will call these the harmonic gauge condition. We can write the
earlier equation of motion (2.5) in terms of the new potential instead of gαβ,

∂µνH
αµβν = −□hαβ + hµν∂µνh

αβ − ∂µh
αν∂νh

βµ. (2.13)

If we rewrite by moving the −□hαβ on the l.h.s and ∂µνHαµβν to the r.h.s we get
the wave equation,

□hαβ = −16πG

c4
ταβ, (2.14)

where
ταβ = (−g)(Tαβ + ταβLL + ταβH ), (2.15)

and we defined ταβH as the last three terms of (2.13). Explicitly we have that,

(−g)ταβH =
c4

16πG

(
∂µh

αν∂νh
βµ − hµν∂µνh

αβ
)
. (2.16)

From the harmonic condition, we then get that ταβ satisfies

∂βτ
αβ = 0. (2.17)

It is worthwhile to mention that this is an exact formulation of general relativity
and no approximation has taken place yet. We have formulated the field equations
in this way because they are especially easy to work with when we are to derive an
approximated expression for gravitational waves at a later stage. The equations
of (2.14) are called the relaxed Einstein equations. What separates them from
the general Einstein equations of general relativity is the gauge conditions. It is
the combination of the relaxed Einstein equations and the gauge condition which
are equivalent to the usual formulation of general relativity and not the relaxed
equation alone.

2.1.3 Solution to the wave equation

We are now interested in the solution to the wave equation (2.14). We will find the
solution by making the assumption that we can write the potential as an expansion
in powers of the gravitational constant. The form of the potential is then

hαβ = Gkαβ1 +G2kαβ2 + . . . (2.18)
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This expansion in powers of G is the Post-Minkowskian expansion. Such an ex-
pansion in its current form looks like an asymptotic expansion. We say this is
an asymptotic expansion since we are expanding in powers of the gravitational
constant G, a value with dimensions. It is however a representation or placeholder
expansion parameter and the real expansion parameter depends on the problem
at hand and should be dimensionless. Assuming we have such an expansion to the
analytical potential, then mathematically we require for this expansion to converge
that,

gαβ(x)− g
(n)
αβ (x) = O(Gn+1), (2.19)

when x is in the domain of the manifold and g(n)αβ (x) is the sum of n terms in the
expansion. The procedure to find hαβn (x) is by iteration. One starts by setting
hαβ0 = 0 which implies that g0αβ = ηαβ. From the Minkowski metric, we can
construct the terms of the effective energy-momentum tensor Tαβ, ταβLL and ταβH

where ταβLL[h0] and ταβH [h0] are zero. This is the zeroth iteration and we move on to
the first iteration. In the first iteration, one takes the effective energy-momentum
tensor of the zeroth iteration and inserts it into the wave equation,

□hαβ = −16π

c4
ταβ0 . (2.20)

We should be able to integrate this wave equation, at least in principle since the
source term is known. For the second iteration, one follows the same procedure.
One then takes the effective energy-momentum tensor resulting from the first
iteration and inserts it into the wave equation for the second order term for the
potential hαβ2 . Doing n iterations of this procedure we end up with the potential

hαβn = Gkαβa +G2kαβ2 + . . . (2.21)

We must at the end also invoke the gauge condition of

∂βh
αβ
n = 0. (2.22)

In the procedure, we have not used the gauge condition until after the iterations.
We could not have invoked it after every iteration as trying this one will realize
leads to contradictions. It is therefore important to only do the iterative procedure
on the relaxed Einstein equations and leave the gauge condition for the very end.
This procedure is quite demanding calculation-wise. We, therefore, refer to Chap-
ter 7 of [9] for further details on simplifications. We will not require the procedure
here for our further studies of the Moon. This procedure is however extremely
useful when studying places with strong curvature of spacetime. It could be a
valuable tool for anyone studying the production of gravitational waves through
binaries and are interested in the spacetime close to the rotating astrophysical
objects. It also can sufficiently describe spacetime at a safe distance to neutron
stars and could be of interest for further study into the observation of continuous
gravitational wave observations.

2.1.3.1 Formal solution of the wave equation

The formal solution of the wave equation takes on the form

hαβ(x) =
4G

c

∫
G(x, x′)ταβ(x′)d4x′ (2.23)
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where x describes the field point, x′ is the source point and G(x, x′) is the retarded
Green function. For (2.23) to satisfy the wave equation the Green function must
satisfy the following equation when acted upon by the Minkowski operator □ =
ηµν∂µ∂ν ,

□G(x, x′) = −4πδ(x− x′), (2.24)

and is given as

G(x, x′) =
δ(ct− ct′ − |x− x′|)

|x− x′|
. (2.25)

If we consider a general function ψ satisfying the wave equation

□ψ(x) = −4πµ(x), (2.26)

where µ is the source function, then a general solution to this equation is

ψ(x) =

∫
δ(ct− ct′ − |x− x′|)

x− x′
µ(x′)d4x′ =

∫
µ(t− |x− x′|/c, x′)

|x− x′|
d4x′. (2.27)

2.1.4 Near zone and wave zone

To simplify the calculations in the Post-Minkowskian approximation procedure
we will split the integration domain into two zones, a near zone and a wave zone.
We call the near zone N and the wave zone W . We relate the zones to the wave
equation by the properties

tc = characteristic time scale of a source, (2.28)

ωc =
2π

tc
= characteristic frequency of the source, (2.29)

λc =
2πc

ωc

= ctc = characteristic wavelength of the radiation from the source.

(2.30)

The characteristic time scale tc is the time for there to be a noticeable change in the
system of interest. For us, this is the source. From the characteristic wavelength
we define the near- and wave zone

near zone : r ≪ λc (2.31)
wave zone : r ≫ λc (2.32)

To do the integral (2.27) we divide the integral domain into a near zone domain
N (x) and a wave zone domain W(x). The boundary between these two domains
is called R, where R is of the same order of magnitude as λc. We can therefore
write the wavefunction as

ψ(x) = ψN (x) + ψW(x). (2.33)

We wish to study signals of gravitational waves far away from the sources, and so
we are only interested in the case of the field point being in the wave zone and the
source point laying in the near zone. We, therefore, assume ψ(x) ≃ ψN (x) where
ψ is the wavefunction describing the exact solution of a wave equation while ψN
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is the approximated wave integrated in the near zone. We shall only include the
integration over the near zone in what follows. We can rewrite the integrand as

µ(t− |x− x′|/c, x′)
|x− x′|

=

∫
µ(t− |x− x′|/c, y)

|x− x′|
δ(y − x′)d3y (2.34)

=

∫
g(x, x′, y)δ(y − x′)d3y (2.35)

We now expand g(x, x′, y) in terms of x′. We know x′ is small given that we are
in the near zone. A Taylor expansion around x′ = 0 gives

g(x, x′, y) = g(x, 0, y) +
∂g

∂x′j
x′j +

1

2

∂2g

∂x′j∂x′k
x′jx′k + . . . (2.36)

Since g(x, x′, y) only depends on |x− x′|, then ∂g/∂x′j = −∂g/∂xj, such that we
can rewrite the Taylor expansion as

g(x, x′, y) = g(x, 0, y)− ∂g

∂xj
x′j +

1

2

∂2g

∂xj∂xk
x′jx′k + . . . (2.37)

Given that we differentiate with respect to x instead of x′ we can set x′ = 0 before
taking the derivative as the derivative is evaluated at x′ = 0 regardless. This has
made the g function independent of x′ and a sole function of |x| = r and y. The
Taylor expansion simplifies to

g(x, x′, y) = g(x, 0, y)− ∂g(r, 0, y)

∂xj
x′j +

1

2

∂2g(r, 0, y)

∂xj∂xk
x′jx′k + . . . (2.38)

which we can write as a sum,

g(x, x′, y) =
∞∑
l=0

(−1)l

l!
x′L∂Lg(r, 0, y), (2.39)

here L is shorthanded for the indices L = j1j2...jl. If we insert this back into our
earlier expression for the wave equation we get

ψN (t, x) =
∞∑
l=0

(−1)l

l!
∂L

(
1

r

∫
M
µ(t− r/c, x′)x′Ld3x′

)
. (2.40)

This is our expression for the wave function in the near zone which we will take
into use a number of times later on in this thesis. Here M is the surface of constant
time bounded by the boundary R between the near- and wave zone.

2.2 The gravitational wave potential
In this section, we will implement the ideas of section 2.1. We begin by recalling the
main aspects of the last section: We found in the Landau-Lifshitz formulation of
general relativity that the field equations take the form of a wave equation with the
potential hαβ and the effective energy-momentum tensor ταβ as the source term.
We had to include the harmonic gauge condition as well for the new field equations
to stay equivalent to the standard field equations of general relativity. For the
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approximation procedure, we began with an effective energy-momentum tensor
equal to the energy-momentum tensor Tαβ formed from the matter distribution.
This is inserted into the wave equation which then has to be solved. Solving the
wave equation leads us to a new metric tensor gαβ which we use to construct a new
effective energy-momentum tensor. This effective energy-momentum tensor goes
again into a wave equation we must solve and one continues this procedure until
one has reached the required accuracy. We will in this section find an expression
for the gravitational potential in the near zone,

2.2.1 Wave zone gravitational potential

We recall from (2.40) that the gravitational potential can be written as

hαβN (t, x) =
4G

c4

∞∑
l=0

(−1)l

l!
∂L

[
1

r

∫
M
ταβ(τ, x′)x′Ld3x′

]
, (2.41)

when the field point is taken in the wave zone and the source point is taken in
the near zone, where τ is here the retarded time. We will employ the conservation
equation ∂βτ

αβ = 0 to simplify the first terms of our expansion. We will require
the identities,

τ 0j = ∂0(τ
00xj) + ∂k(τ

0kxj), (2.42a)

τ jk =
1

2
∂00(τ

00xjxk) +
1

2
∂p(2τ

p(jxk) − ∂qτ
pqxjxk). (2.42b)

We also define the notation of the multiple moments,

I(τ) =
∫
M
c−2τ 00(τ,x)d3x, (2.43a)

Ij(τ) =

∫
M
c−2τ 00(τ,x)xjd3x, (2.43b)

Ijk(τ) =

∫
M
c−2τ 00(τ,x)xjxkd3x. (2.43c)

Restricting our focus on the h00 component of the potentials and writing the term
for l = 0 by itself while keeping the sum for l ≥ 1 we have that,

h00 =
4G

c4r

∫
M
τ 00d3x′ +

4G

c4

∞∑
l=1

(−1)l

l!
∂L

[
1

r

∫
M
τ 00(τ, x′)x′Ld3x′

]
.

We define the l = 0 term as the monopole moment,

M0 =

∫
c−2τ 00(τ, x)d3x, (2.44)

which approximately satisfies a conservation law. If we take the time derivative
of M0 and use ∂0τ 00 = ∂iτ

0i then we can rewrite (2.44) into a surface integral over
∂M which is small by the near zone assumption. The l = 1 contribution includes,

M0R
j
0 =

∫
M
c−2τ 00(τ,x)xjd3x, (2.45)
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where Rj
0 is the position of the center of mass in the domain M. It turns out that

this l = 1 contribution vanishes and the reason for this is that,

d

dτ

∫
M
c−2τ 00xjd3x = P j + surface integral, (2.46)

where,

P j =

∫
M
c−1τ 0j(τ, x)d3x, (2.47)

is the near zone momentum and we get a surface integral by using (2.42a). We
can choose a reference frame where P j = 0, in the rest frame of the system. We
might also set the centre of mass position Rj

0 to zero by placing the centre of mass
at the spatial origin of the harmonic coordinates. We can therefore set the whole
l = 1 term to zero for h00. For h0j we get for the l = 0 term,

h0j{l=0} =
4G

c4
1

r

∫
M
τ 0j(τ, x′)d3x′, (2.48)

which we rewrite to

4G

c4
1

r

(∫
M
∂0τ

00(τ, x′)xjd3x′ +

∫
M
∂kτ

0k(τ, x′)xjd3x′
)

(2.49)

by the use of the identity (2.42a). This is equivalent to

4G

c3r
İj + surface term. (2.50)

Since İj = P j + surface integral we can remove this contribution by our choice of
reference frame. The l = 1 contribution is

h0j{l=1} = −4G

c4
∂0

[
1

r

∫
M
τ 0j(τ, x′)x′0d3x′

]
− 4G

c4
∂k

[
1

r

∫
M
τ 0j(τ, x′)x′kd3x′

]
.

(2.51)
We will focus on the second term, which we rewrite as,

4G

c4
1

r2

∫
M
τ 0j(τ, x′)x′kd3x′. (2.52)

Dropping the prime and using the identity (2.42b) we get,

4G

c4
1

r2

∫
M
τ 0jxkd3x =

2G

c4
1

r2

∫
M

(
İjk − ϵmjkJm

0

)
d3x, (2.53)

where Jm
0 is the angular momentum in the near zone. Finally studying the hjk

term and more specifically the l = 0 part of the expression we can simplify to

hjk{l=0} =
2G

c4r
Ïjk + surface terms, (2.54)

where the identity,

τ jk =
1

2
∂00(τ

00xjxk) +
1

2
∂p(2τ

p(j)xk) − ∂qτ
pqxjxk), (2.55)
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was used. Summarizing what we have found for all components of the gravitational
potential we have found that the components of the potential can be simplified
to,

h00N =
4GM0

c2r
+

4G

c2

∞∑
l=2

(−1)l

l!
∂L

[
IL(τ)

r

]
, (2.56a)

h0jN = −2G

c3
(n× J0)

j

r2
− 2G

c3
∂k

[
İjk(τ)

r

]

+
4G

c4

∞∑
l=2

(−1)l

l!
∂L

[
1

r

∫
M
τ 0j(τ, x′)x′Ld3x′

]
, (2.56b)

hjkN =
2G

c4
Ïjk(τ)

r
+

4G

c4

∞∑
l=1

(−1)l

l!
∂L

[
1

r

∫
M
τ jk(τ, x′)x′Ld3x′

]
, (2.56c)

where differentiation, here written with a dot, is with respect to the retarded
time τ = t − r/c. With these equations, we could, given that we know the
effective energy-momentum tensor calculate the gravitational potential from a
source described by ταβ. We shall for further purposes require only the general
shape of the potentials of (2.56) in the zone where we make the assumption that
r is so big only the terms proportional to r−1 will be included.
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CHAPTER

THREE

GRAVITATIONAL WAVES IN GENERAL
RELATIVITY AND BRANS-DICKE GRAVITY

3.1 Gravitational field and polarization in general
relativity

Before we proceed to examine gravitational waves in Brans-Dicke gravity we re-
view gravitational waves in general relativity. We will introduce concepts and
approximations that will continue to be useful once we go to the more compli-
cated theories. This chapter is inspired by Chapters 11 and 13 of [9].

3.1.1 Decomposition of the gravitational potential

We continue to consider the far-away wave zone in which the gravitational poten-
tials hαβ from (2.56) take on the forms,

h00 =
4GM

c2R
+

G

c4R
C(τ,N), (3.1a)

h0j =
G

c4R
Dj(τ,N), (3.1b)

hjk =
G

c4R
Ajk(τ,N). (3.1c)

It is interesting to note that these potentials satisfy the wave equation □hαβ =
−16πταβ/c4 given that ταβ falls of at least as fast as R−2. We now decompose
the components of the gravitational potential into irreducible components. Using
the harmonic gauge condition we can remove four degrees of freedom greatly sim-
plifying the final expression of our gravitational wave. We split Dj and Ajk into
longitudinal and transversal components as such:

Dj = DN j +Dj
T , (3.2)

Ajk =
1

3
δjkA+

(
N jNk − 1

3
δjk
)
B +N jAk

T +NkAj
T + Ajk

TT . (3.3)

We have split Dj into one longitudinal part with direction N j and two transverse
parts. We therefore have NjD

j
T = 0. Similarly, but slightly more complicated for

15
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Ajk, we split Ajk into a trace part A, a longitudinal tracefree partB, a longitudinal-
transverse part Aj

T and a transverse-traceless part Ajk
TT . So we must necessarily

have that NjA
j
T = 0 and NjA

jk
TT = 0. We now proceed with the harmonic condi-

tion.

3.1.2 Harmonic gauge condition on the polarization

The next goal is to put a restriction on the longitudinal and transverse components
of the gravitational wave by using the harmonic gauge condition. We can write
the harmonic gauge condition as,

1

c
∂τh

00 + ∂kh
0k = 0, (3.4a)

1

c
∂τh

0j + ∂kh
jk = 0. (3.4b)

We can simplify these relations by the use of the identity,

∂jh
αβ = −1

c
Nj∂τh

αβ, (3.5)

which is true whenever we neglect terms that are O(R−2). We arrive at this
identity by observing from (3.1) that the three components of consideration under
the differentiation ∂jh

αβ are ∂jR−1, ∂jτ and ∂jN. Of these three terms only ∂jτ
results in a term of O(R−1) that is ∂jτ = ∂j(t − R/c) = −Nj/c. Using (3.5) for
(3.4a) and (3.4b) we then have,

∂τ (h
00 − h0kNk) = 0, (3.6a)

∂τ (h
0j − hjkNk) = 0. (3.6b)

Inserting our expansions (3.1a), (3.1b) and (3.1c) into (3.6a) and (3.6b) we get
equations for the undetermined C(τ,N), Dj(τ,N) and Ajk(τ,N),

∂τ

(
4GM

c2R
+

G

c4R
C − G

c4R
(DNk +Dk

T )Nk

)
= 0, (3.7)

and

∂τ

(
G

c4R
(DN j +Dj

T )−
(
G

c4R

1

3
δjkA+

(
N jNk − 1

3
δjk
)
B+

+N jAk
T +NkAj

T + Ajk
TT

)
Nk

)
= 0. (3.8)

Equation (3.7) can be simplified to,

∂τC = ∂τD, (3.9)

so C and D are equal up to an integration constant. Equation (3.8) can be
simplified as well giving us the two equations

∂τD = ∂τ

(
1

3
A+

2

3
B

)
, (3.10)

∂τD
j
T = ∂τA

j
T , (3.11)
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and so Dj
T and Aj

T are also equal up to an integration constant. We can set
these constants equal to zero because a τ dependence in C would correspond to
an unphysical shift in the total gravitational mass M and a τ dependence in Dj

would fall off as R−2 instead of R−1. So we write,

C = D, (3.12a)

D =
1

3
A+

2

3
B, (3.12b)

Dj
T = Aj

T . (3.12c)

We have successfully removed four redundant components of the gravitational
potential. In this section, we began with ten components before we reduced the
number of relevant components to six. We move forward and simplify again, now
taking advantage of the wave zone.

3.1.3 The Transverse-Traceless gauge

As mentioned, we can simplify our expression in the far away zone even further,
removing another four redundant components. We do this by requiring the har-
monic gauge condition ∂βh

αβ to hold. Let us first discuss how the gravitational
potential transform under a gauge transformation.

3.1.3.1 Gauge transformation of hαβ

We assume that the metric of an area of spacetime can be adequately described
by the Minkowski metric and an additional small deviation compared to the flat
spacetime. Even though we have made this simplification of the metric, the physics
should still stay invariant of a Lorentz transformation. The coordinate will then
transform under a Lorentz transformation as,

x′µ = xµ + ζµ (3.13)

the metric will therefore transform as,

g′µν = gµν − ∂µ(ηνγζ
γ)− ∂ν(ηµγζ

γ) +O(ϵ2). (3.14)

We are interested in how the gravitational potential transforms under a gauge
transformation. We must therefore first write the metric in terms of the gravita-
tional potential hαβ. We know from our definition of hαβ that

gαβ =
√
−g(ηαβ + hαβ). (3.15)

Since hαβ is of order G we can expand the
√
−g term in powers of hαβ and only

keep the first order terms. The expansion of the determinant is,

√
−g =

(
1− 1

2
hµµ +O(h2)

)
(3.16)

and so the metric is,

gµν =

(
1− 1

2
hγγ +O(h2)

)
(ηµν + hµν) = ηµν + hµν −

1

2
hγγηµν +O(h2). (3.17)
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From (3.14) and (3.17) we see that the gravitational potential transform according
to the following rule,

hαβ −→ hαβ − ∂αζβ − ∂βζα + (∂µζ
µ)ηαβ, (3.18)

under a gauge transformation.

3.1.3.2 Simplification of hαβ

It follows from the gauge transformation derived in the last section, (3.18) that
the harmonic gauge condition under a coordinate transformation is now,

∂βh
αβ −→ ∂βh

αβ − ∂β∂
αζβ − ∂β∂

βζα + ∂β(∂µζ
µ)ηαβ

= ∂βh
αβ − ∂α(∂βζ

β)−□ζα + ∂α(∂µζ
µ)

= ∂βh
αβ −□ζα. (3.19)

For the harmonic gauge condition to hold we must have that □ζα = 0. We now
employ the approximation that the field point is such far away from we only need
to consider terms up to O(R−1). We split ζ into a time- and spatial-dependent
part. We then have for ζ that,

ζ0 =
G

c3R
α(τ,N) +O(R−2), (3.20a)

ζj =
G

c3R
βj(τ,N) +O(R−2). (3.20b)

We can also split the βj into a transverse and longitudinal piece

βj = βN j + βj
T . (3.21)

We now have all the tools we require to simplify the gravitational potentials. Using
(3.1a), (3.12a) and (3.18) we get for h00,

h00 −→ 4GM

c2R
+

G

c4R

1

3
(A+ 2B)− 2∂0ξ0 + (∂µξ

µ)η00. (3.22)

Taking now use of (3.20) and (3.21) we conclude that the potential h00 transform
as,

h00 −→=
4GM

c2R
+

G

c4R

1

3
(A+ 2B) +

G

c4R
∂τα +

G

c4R
∂jβ

j. (3.23)

Using the differentiation rule for the wave zone in the last term and remembering
that βj

TNj = 0 we get that the potentials transform like,

h00 −→ 4GM

c2R
+

G

c4R

1

3
(A+ 2B) +

G

c4R
∂τα− G

c4R
∂τβ. (3.24)

We can do the same for h0j,

h0j −→ G

c4R

(
1

3
(A+ 2B)N j + Aj

T

)
− G

c3R
∂0βj − G

c3R
∂jα,

=
G

c4R

(
1

3
(A+ 2B)N j + Aj

T

)
+

G

c4R
∂τβ

j +
G

c4R
∂ταN

j,
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and finally hjk,

hjk −→ hjk − ∂jβk − ∂kβj + (∂0α + ∂iβ
)δjk

= hjk + ∂τβN
kN j + ∂τβN

jNk + ∂ταδ
jk − ∂τβN

iNiδ
jk,

= hjk + 2∂τβN
kN j + ∂ταδ

jk − ∂τβδ
jk,

=
1

3
δjkA+

(
N jNk − 1

3
δjk
)
B +N jAk

T +NkAj
T + Ajk

TT ,

+ 2∂τβN
kN j + (∂τα− ∂τβ)δ

jk.

This results in the transformation rules,

1

3
(A+ 2B) −→ 1

3
(A+ 2B) + ∂τα + ∂τβ,

Aj
T −→ Aj

T + ∂τβ
j
T

1

3
(A+B) −→ 1

3
(A+B) + ∂τα− ∂τβ

B −→ B + 2∂τβ,

which then results in the changes by the gauge transformation

A −→ A+ 3∂τα− ∂τβ,

B −→ B + 2∂τβ,

Aj
T −→ Aj

T + ∂τβ
j
T ,

Ajk
TT −→ Ajk

TT .

Since we can arbitrarily choose α and β as long as hαβ satisfy the wave equation
through ζ we can choose an α and β so that A,B and Aj

T can be set to zero. In
this way, all radiative degrees of freedom of the gravitational wave are contained
in Ajk

TT . We have therefore shown that by the harmonic gauge condition, we can
greatly simplify the expression for the gravitational potentials. Inserting into the
expansion of (3.1) the simplifications of C = D, D = 1/3A+2/3B, Dj

T = Aj
T and

A = B = Aj
T = 0 we get,

h00 =
4GM

c2R
, (3.25a)

h0j = 0, (3.25b)

hjk =
G

c4R
Ajk

TT (τ,N). (3.25c)

The gravitational potentials now have a very simple form which we will take great
use of.

3.2 The polarization tensor for General relativity
We wish to create a transverse-traceless projector. We start forming a projection
operator on the subspace orthogonal to N. This can be written as

P j
k = δjk −N jNk, (3.26)
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which we can then use to create the transverse-traceless projector

(TT )jkpq = P j
pP

k
q − 1

2
P jkPpq. (3.27)

To describe the polarisation of the gravitational wave we require a coordinate
system. We choose the following,

N = [sin θ cosϕ, sin θ sinϕ, cos θ], (3.28a)

ϑ = [cos θ cosϕ, cos θ sinϕ,− sin θ] (3.28b)

φ = [− sinϕ, cosϕ, 0], (3.28c)

Using the identity δjk = N jNk + ϑjϑk + φjφk, the projection operator can be
written as

P jk = ϑjϑk + φjφk, (3.29)

and our transverse-traceless operator becomes

(TT )jkpq = (ϑjϑp + φjφp)(ϑ
kϑq + φkφq)−

1

2
(ϑjϑk + φjφk)(ϑpϑq + φpφq). (3.30)

We want to decompose Ajk
TT into two main parts described by the vectors ϑi and φj

that are left invariant when acted upon by the transverse-traceless operator. We
are therefore interested in what combination of ϑ and φ remains unchanged when
acted upon by our projection operator. Let us look at (TT )jkpqϑjϑk for example,

(TT )jkpqϑjϑk =

(
(ϑjϑp + φjφp)(ϑ

kϑq + φkφq)−
1

2
(ϑjϑk + φjφk)(ϑpϑq + φpφq)

)
(ϑjϑk)

= ϑpϑq −
1

2
ϑpϑq −

1

2
φpφq,

=
1

2
(ϑpϑq − φpφq),

and let us look at φjφk as well,

(TT )jkpqφjφk =

(
(ϑjϑp + φjφp)(ϑ

kϑq + φkφq)−
1

2
(ϑjϑk + φjφk)(ϑpϑq + φpφq)

)
(φjφk)

= φpφq −
1

2
ϑpϑq −

1

2
φpφq

=
1

2
(ϑpϑq − φpφq)

Thus a tensor Ajk
+ = A+(ϑ

jϑk − φjφk) is left unchanged when acted upon by the
transverse traceless-operator. We do not show it here, but similarly for ϑjϑk−φjφk

the combination ϑjφk+φkϑj stays unchanged when acted upon by the transverse-
traceless operator. We can therefore write the transverse traceless part of our
potential as

Ajk
TT = A+(ϑ

jϑk − φjφk) + A×(ϑ
jφk + φkϑj). (3.31)

Having started with ten components we have managed to reduce the number
of relevant components for a gravitational wave in general relativity to just two
components. A plus component A+ and a cross component A×. We proceed to
show how these polarisations affect spacetime.
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3.3 Geodesic deviation
The gravitational wave will slightly deviate the displacement vector between test
particles in a detector. We obtain the details from the equation of geodesic devi-
ation,

D2ξα

ds2
= −Rα

βγδu
βξγuδ. (3.32)

It is possible to simplify this equation in the low-velocity limit, i.e. uα = (−c, 0),
D2ξα

ds2
= −c2Rα

0γ0ξ
γ. (3.33)

Another simplification can also be made. We can change the covariant derivative
D/ds to d/dt if we assume that the test masses are slowly moving,

d2ξj
dt2

= −c2R0j0kξ
k. (3.34)

We proceed to calculate the Riemann tensor R0j0k. Writing it out as Christoffel
symbols we get,

R0j0k = g00R
0
j0k

= g00
[
∂0Γ

0
kj − ∂kΓ

0
0j + Γ0

0λΓ
λ
kj − Γ0

kλΓ
λ
0j

]
.

Using now the definition of the Christoffel symbols,

Γa
bc =

1

2
gad(gdb,c + gdc,b − gbc,d), (3.35)

we find two different terms to first order in hαβ. From (3.17) we have that gαβ
is defined as gαβ = ηαβ + hαβ − 1

2
hηαβ such that the derivative of the Christoffel

symbol written in terms of the gravitational potential is,

∂eΓ
a
bc = ∂e

(
1

2
gad(gdb,c + gdc,b − gbc,d)

)
=
∂e
2

(
(ηad + had − 1

2
hηad)(hdb,c −

1

2
(hηdb),c + hdc,b −

1

2
(hηdc),b

− hbc,d +
1

2
(hηbc),d)

)
=

1

2
∂e(h

a
b,c + hac,b − h ,a

bc − 1

2
ηabh,c −

1

2
ηach,b +

1

2
ηbch

,a) +O(h2).

We can insert this expression back into the Riemann tensor which now becomes

R0j0k = g00

[
1

2
∂0(h

0
k,j + h0j,k − h ,0

kj − 1

2
η0kh,j −

1

2
η0jh,k +

1

2
ηkjh

,0))

+
1

2
∂k(h

0
0,j + h0j,0 −

1

2
η00h,j −

1

2
η0jh,0 +

1

2
η0jh

,0

]
= −

[
1

2
(∂0jh0k + ∂0kh0j − ∂00hkj + ∂kjh00 + ∂k0h0j−

− ∂k0h0j −
1

2
∂00hδjk +

1

2
∂kjh)

]
= −

[
1

2
(∂0jh0k + ∂0kh0j − ∂00hkj + ∂kjh00 −

1

2
∂00hδjk +

1

2
∂kjh)

]
(3.36)
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Having an expression for the simplified Riemann tensor in terms of the gravita-
tional potential we can now get an explicit expression for Ajk

TT in (3.25). By the
use of (3.36) and (3.34) we now get,

c2R0j0k = − G

2c4R

∂2

∂τ 2
Ajk

TT (τ,N), (3.37)

If we integrate the equation of geodesic deviation,
d2ξj
dt2

= −c2R0j0kξ
k =

G

2c4R

∂2

∂τ 2
Ajk

TT (τ,N)ξk, (3.38)

to first order in displacement we get for ξ(t),

ξj(t) = ξj(0) +
G

2c4R
Ajk

TT (τ,N)ξk(0). (3.39)

3.3.1 Gravitational wave on a ring of particles

The transverse-traceless part of the potential Ajk
TT takes on a simple form if we

imagine a gravitational wave traveling purely in the z-direction such that N =
(0, 0, 1). This implies that θ = 0 and we are free to choose ϕ = 0. The transverse-
traceless part of the potential is then in matrix form,

Ajk
TT =

A+ A× 0
A× −A+ 0
0 0 0

 (3.40)

Let us imagine a ring of particles and ask how a gravitational wave effects this
ring as it passes through. The displacement for one particle from the center of a
ring is given by the solution to the geodesic equation,

ξj(t) = ξj(0) +
G

2c4R
Ajk

TT ξk(0). (3.41)

After inserting for Ajk
TT this leads to,

x(t) = x0 +
G

2c4R
(A+x0 + A×y0), (3.42)

y(t) = y0 +
G

2c4R
(A×x0 − A+y0). (3.43)

where to be clear, the positions in the Cartesian coordinates are here assumed
to be in the plane orthogonal to the momentum vector of the gravitational wave.
This shows how we get an elliptical polarization. The time evolution of the plus
polarisation over one period is shown in figure 3.3.1 and the time evolution for the
cross polarisation is shown in figure 3.3.2.

3.4 Introduction to Brans-Dicke gravity
We give a short introduction to Brans-Dicke gravity and derive expressions which
will be useful for section 3.8. This section is based on section 13.5.1 of reference
[9]. We will begin with the Brans-Dicke action before we proceed to derive the
field equations. Inspired by the Landa-Lifshitz formalism of general relativity we
will perform a similar procedure for the new field equations in Brans-Dicke. This
will provide an excellent starting point to approximate the gravitational potential
for this theory in the wave zone.
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t = 0 t = T/4 t = T/2 t = 3T/4 t = T

Figure 3.3.1: Time evolution of the plus polarisation of a gravitational wave on
a ring of particles over the period T . The arrows represent the movement of the
particles.

t = 0 t = T/4 t = T/2 t = 3T/4 t = T

Figure 3.3.2: Time evolution of the cross polarisation of a gravitational wave on
a ring of particles over the period T . The arrows represent the movement of the
particles.

3.4.1 The Brans-Dicke action

In Brans-Dicke gravity an additional field is introduced. We no longer have just a
metric field gµν as in general relativity but an additional scalar field which we call
ϕ. The physical effect of this new field is understood in the gravitational constant
which no longer is constant but is instead dependent on the spacetime position.
We begin with the action for Brans-Dicke gravity [9] which is

Sg =
c3

16πG0

∫ √
−g
(
ϕR− ω(ϕ)

ϕ
gαβ∂αϕ∂βϕ− V (ϕ)

)
d4x, (3.44)

and the matter part of the action is,

Sm =

∫ √
−gL(m, gαβ)d4x, (3.45)

wherem includes all the matter variables and ω is a parameter to be determined by
experiments. We observe that the matter part of the Lagrangian does not include
the scalar field ϕ so the scalar field does not couple directly to any matter variable.
We now wish to derive the field equations and connect these field equations with
the field equations from general relativity. The reason behind this will be clear
shortly. We could vary the metric and scalar field in the action and retrieve the
field equations in the standard way, however, this leads to some complicated and
not useful equations for our purpose. We use instead the auxiliary metric g̃αβ
which is connected to the familiar metric gαβ through the relation,

gαβ = (ϕ/ϕ0)g̃αβ, (3.46)
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where ϕ0 is just some constant which we can choose at convenience later. The
motivation for this change lies in the fact that using the auxiliary metric instead
of the usual metric leads to field equations more optimal for our purposes of the
Minkowskian approximation as this will remove the coupling of the new Ricci
scalar with the scalar field. Moving on we wish to rewrite the action in terms of
our new auxiliary metric. We, therefore, require to rewrite the Ricci scalar R in
terms of only the auxiliary metric, ϕ0 and ϕ. This is a simple but long calculation
which result turns out to be

R =(ϕ0/ϕ)

{
R̃ + 6

[
∂α

(
g̃αβ

1

2
∂β lnϕ

)
+ Γ̃α

αµ

(
g̃µβ

1

2
∂β lnϕ

)]
−6

(
1

2
∂α lnϕ

)(
g̃αβ

1

2
∂β lnϕ

)}
.

The term,

∂α

(
g̃αβ

1

2
∂β lnϕ

)
+ Γ̃α

αµ

(
g̃µβ

1

2
∂β lnϕ

)
, (3.47)

is a total derivative,∇̃α

(
1/2g̃µβ∂β lnϕ

)
, and can be removed by Gauss theorem in

four dimensions. We insert our expression for the Ricci scalar into the gravitational
action (3.44) which then takes the form,

Sg =
c3

16πG̃

∫ √
−g̃
[
R̃− 2ω(ϕ) + 3

2ϕ2
g̃αβ∂αϕ∂βϕ− ϕ0V (ϕ)

ϕ2

]
d4x, (3.48)

where G̃ = G0/ϕ0. We have up until this point not made a comment on ϕ0. We see
here that it has a physical interpretation as the change on the bare gravitational
constant G0 with the measured constant G̃. The Ricci scalar is now alone in the
action which is what we wished to accomplish by introducing the auxiliary metric.
The matter action will necessarily also change,

Sm =

∫ √
−g̃(ϕ/ϕ0)

2L(m,ϕ, g̃αβ)d4x. (3.49)

We can now vary the action with respect to the auxiliary metric g̃αβ and the scalar
field ϕ. For the variation w.r.t g̃αβ we obtain the field equations,

G̃αβ −
1

2
Θ̃αβ =

8πG̃

c4
T̃αβ, (3.50)

where G̃αβ is the Einstein tensor in terms of the auxiliary metric, Θ̃αβ is given by

Θ̃αβ =
2ω + 3

ϕ2

(
∂αϕ∂βϕ− 1

2
g̃αβ g̃

µν∂µϕ∂νϕ

)
− ϕ0V (ϕ)

ϕ2
g̃αβ, (3.51)

and T̃αβ is the auxiliary energy momentum tensor from the variation of g̃αβ on
Sm. Varying the scalar field gives us another field equation,

g̃αβ∇̃α∇̃βϕ+ F̃ =
8πG̃

c4
ϕ

2ω + 3
g̃αβT̃αβ. (3.52)
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Here ∇̃α is the covariant derivate defined in terms of the auxiliary metric and,

F̃ =
1

2

d

dϕ

[
ln

(
2ω + 3

ϕ2

)]
g̃αβ∂α∂β −

ϕ2/ϕ0

2ω + 3

d

dϕ

(
V (ϕ)

ϕ2

)
. (3.53)

Equations (3.50) and (3.52) are the field equations of scalar-tensor gravity and
were the goal of this section. In their current form, they are perfectly correct,
however, we shall rewrite them to better suit our approximation scheme.

3.4.2 Landau-Lifshitz formulation of Brans Dicke

Motivated by the Landau-Lifshitz formulation used for general relativity back in
chapter 2 we introduce a gothic metric for the auxiliary metric,

g̃αβ =
√
−g̃g̃αβ. (3.54)

We create a tensor H̃αµβν by the gothic metric in the same way as equation (2.2).
Using the identity of (2.3) with the auxiliary tensor H̃αµβν we arrive at,

∂µνH̃
αµβν =

16πG̃

c4
(−g̃)

(
T̃αβ + t̃αβϕ + t̃αβLL

)
, (3.55)

where t̃αβLL is defined in the same way as (2.4) with the replacement of the standard
metric with the auxiliary metric and t̃αβϕ is defined in terms of (3.51) as,

t̃αβϕ =
c4

16πG̃
Θ̃αβ. (3.56)

We now wish to create an analog of equation (2.14) for the gravitational potential
h̃αβ defined by,

h̃αβ = ηαβ − g̃αβ. (3.57)

We begin with the identity

∂µνH̃
αµβν = −□h̃αβ − 16πG̃

c4
(−g̃)t̃αβH , (3.58)

where t̃αβH is defined in the same way as (2.16). We also use the conformal harmonic
gauge condition,

∂βh̃
αβ = 0, (3.59)

which follows from the harmonic gauge condition so that we can rewrite (3.55) to
the wave equation

□h̃αβ = −16πG̃

c4
τ̃αβ, (3.60)

where τ̃αβ is the effective energy momentum tensor which consists of

τ̃αβ = (−g̃)(T̃αβ + t̃αβϕ + t̃αβLL + t̃αβH ). (3.61)

It is at this point we will employ the solution of the wave equation as the expansion
over multipoles from equation (2.40) with ψ −→ h̃αβ and µ −→ 4G̃

c4
τ̃αβ. It follows then
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that the solution to the wave equation for the auxiliary gravitational potentials
are given by (2.56). We therefore get for the auxiliary gravitational potential,

h̃00 =
4G̃M̃

c2R
+

2G̃

c4R
¨̃IjkNjNk +O(c−5), (3.62a)

h̃0j =
2G̃

c4R
¨̃IjkNk +O(c−5) +O(R−2), (3.62b)

h̃jk =
2G̃

c4R
¨̃Ijk +O(c−5). (3.62c)

We managed to rewrite the first field equation of the Brans-Dicke gravity into
a wave equation and find an approximate expression in the wave-zone with the
additional restriction to only keep terms up to O(R−2). We can do a similar thing
for the field equation for the scalar field. For this we will require the identity,

g̃αβ∇̃α∇̃βϕ =
1√
−g̃

∂α(g̃∂βϕ) =
1√
−g̃

(□ϕ− h̃αβ∂αβϕ). (3.63)

Inserting (3.63) into the field equation of (3.52) results in the wave equation,

□ϕ = −8πG̃

c4
τS, (3.64)

with the source term,

τS =−
√

−g̃ ϕ

2ω + 3
T̃ +

c4

16πG̃

d

dϕ

[
ln

(
2ω + 3

ϕ2

)]
(ηαβ − h̃αβ)∂αϕ∂βϕ

− c4

8πG̃

(
h̃αβ∂αβϕ+

√
−g̃ ϕ

2/ϕ0

2ω + 3

d

dϕ

(
U(ϕ)

ϕ2

))
. (3.65)

It is possible to greatly simplify this expression using the post-Minkowskian ap-
proximation and expanding ω(ϕ) in powers of c−2. There is a thorough analysis
in [9], however as the details are not very relevant for our purposes we simply
state the result. For additional information and insights see section 13.5 of [9].
By the post Minkowskian approximation and the expansion of ω(ϕ) we have that
the scalar energy momentum τS tensor is equal to ζϕ0τ̃

00/(1− ζ) to first order in
a post-Newtonian expansion and satisfies,

c−2τS =
ζϕ0

1− ζ

(
c−2τ̃ 00 − 1

c2
µ+O(c−3)

)
, (3.66)

where,

µ = ρ∗
(
v2 +

(
1

2
+ 2λ

)
U

)
+ 3p− 1

4πGc2

(
7

4
− 3ζ + λ

)
∇2U2. (3.67)

Here ρ∗ is the rescaled mass density, v is the velocity field, p is the pressure, λ is a
function of the ω parameter from the Brans-Dicke action and U is the Newtonian
gravitational potential written out explicitly in terms of our variables,

U =
G̃

1− ζ

∫
ρ∗(t,x′)

|x− x′|
d3x′. (3.68)
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Now we can again use (2.40) to solve the wave equation for our scalar field (3.64).
The solution is then,

ϕ = ϕ0 +
G̃

c2R

[
IS − 1

c
İj
SNj +

1

2c2
Ïjk
S NjNk +O(c−3)

]
. (3.69)

In reference [9] there is a sign error in the 1
c
İj
SNj part of the above expression,

this error has been confirmed by the author. We can in the same manner as for
the earlier multipole moments define a scalar multipole moment as

IS =

∫
M
c−2τS(τ,x)d

3x, (3.70a)

Ij
S =

∫
M
c−2τS(τ,x)x

jd3x, (3.70b)

Ijk
S =

∫
M
c−2τS(τ,x)x

jxkd3x. (3.70c)

Another error was found in (3.70) where the above equations were missing a factor
of c−2. This error has also been confirmed by the author. It is useful for notational
purposes to also define multipole moments associated with µ,

E(τ) =
∫
M
µ(τ,x)d3x, (3.71a)

E j(τ) =

∫
M
µ(τ,x)xjd3x, (3.71b)

E jk(τ) =

∫
M
µ(τ,x)xjxkd3x. (3.71c)

Inserting now (3.67) into (3.70) we can get an expression for the scalar multipole
moments in terms of the new multipole moments E ,

IS =
ζϕ0

1− ζ

[
M̃ − 1

c2
E +O(c−3)

]
(3.72a)

Ij
S =

ζϕ0

1− ζ

[
− 1

c2
E j +O(c−3)

]
(3.72b)

Ijk
S =

ζϕ0

1− ζ

[
Ĩjk − 1

c2
E jk +O(c−3)

]
(3.72c)

We define a combination A as

A = E(τ) + 1

c
Ė j(τ)Nj −

1

2
Ïjk(τ)NjNk, (3.73)

and arrive at a new expression for ϕ/ϕ0,

ϕ/ϕ0 = 1 +
2ζG

c2R

[
M − 1

c2
A(τ,N) +O(c−3)

]
. (3.74)

This is the final result of this section and will be used at the end of this chapter
to get an expression for the source terms of the scalar polarisation of gravitational
waves in Brans-Dicke gravity.
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3.5 Polarization of GW in alternative gravity
We wish to find an expression for the polarization of gravitational waves in alterna-
tive theories of gravity. Alternative theories of gravity are a broad term including
an enormous variety of different theories. We, therefore, restrict ourselves quite
a lot: We will mean scalar-vector-tensor gravity for alternative gravity and most
specifically for the theory of Brans and Dicke. We will comment on scalar-vector-
tensor gravity, but with a main focus on scalar-tensor gravity. Our approach is
using Post-Minkowskian theory to expand an exact formulation of general relativ-
ity to an approximation scheme suitable for weak gravitational fields. However,
first, we require an expression for the polarisation for a general theory. If we
allow the source to be time-dependent and to emit gravitational waves then the
stationary potentials in the far-away zone are supplemented by,

∆hαβ =
G

c4R
Aαβ(τ,N) (3.75)

We decompose this into irreducible pieces in the same way as before in 3.1,

∆h00 =
G

c4R
C(τ,N) (3.76)

∆h0j =
G

c4R
Dj(τ,N) (3.77)

∆hjk =
G

c4R
Ajk(τ,N) (3.78)

We summarize how h00, h0j and hjk transforme under a gauge transformation,

∆h′00 = ∆h00 +
G

c4R
(∂τα + ∂τβ) (3.79)

∆h′0j = ∆h0j +
G

c4R
∂τ (α + β)N j +

G

c4R
∂τβ

j
T (3.80)

∆h′jk = ∆hjk +
G

c4R

[
1

3
∂τ (3α− β)δjk +

(
N jNk − 1

3
δjk
)
2∂τβ + 2N j∂τβ

k
T

]
(3.81)

Comparing this with the expression for Ajk in equation (3.8) we summarize how
the irreducible pieces of ∆hαβ transform under a gauge transformation.

C
′
= C + ∂τ (α + β)

D
′
= D + ∂τ (α + β)

Dj′

T = Dj
T + ∂τβ

j
T

A′ = A+ ∂τ (3α− β)

B′ = B + 2∂τβ

A
′j = Aj

T + ∂τβ
j
T

A
′jk
TT = Ajk

TT . (3.82)

We have the freedom to choose α, β and βj
T . This freedom means that we for

example can choose to set C to zero, however then A and B are no longer zero.
No matter what choices we make we end up with six independent degrees of
freedom. Thus a more complicated expansion of the gravitational potential has
appeared for the more general theory compared to general relativity.
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3.6 Geodesic deviation revisited
What is the physical meaning of the six remaining degrees of freedom? We expect
two of these to arise as the h+ and h× modes from general relativity, however, how
do the remaining four polarizations affect test particles in a detector? For this we
require to revisit the equation of geodesic deviation,

d2ξj
dt2

= −c2R0j0kξ
k. (3.83)

We will proceed in the same manner as for general relativity in section 3.3 only
now we have six independent helicity states instead of two. Similarly for general
relativity, we can write the linearized Riemann tensor as

R0j0k = −
[
1

2
(∂0jh0k + ∂0kh0j − ∂00hkj + ∂kjh00 −

1

2
∂00hδjk +

1

2
∂kjh)

]
. (3.84)

We now continue to find a connection between the linearized Riemann tensor and
our irreducible representation of ∆hαβ. Inserting our expansion of the gravitational
potentials (3.1) into (3.84) including (3.82) we get,

c2R0j0k = − G

2c4R

∂2

∂τ 2
E jk(τ,N), (3.85)

where,
E jk = (δjk −N jNk)AS +N jNkAL + 2N (jA

k)
V + Ajk

TT , (3.86)

and AS, AL and AV are,

AS = −1

6
(A+ 2B − 3C), (3.87a)

AL =
1

3
(A+ 2B + 3C − 6D), (3.87b)

Ak
V = Ak

T −Dk
T . (3.87c)

Here the subscript S stands for scalar, L for longitudinal and V for vectorial. In
the same way as for general relativity we can integrate the equation of geodesic
deviation,

d2ξj
dt2

= −c2R0j0kξ
k =

G

2c4R

∂2

∂τ 2
E jk(τ,N)ξk, (3.88)

to first order in displacement and we end up with

ξj(t) = ξj(0) +
G

2c4R
E jk(τ,N)ξk(0). (3.89)

We now use a vector basis (N, ϑ, φ) defined in equation (3.28) to easier describe
the wave modes. We define,

AV 1 = ϑkA
k
V ,

AV 2 = φkA
k
V ,

A+ =
1

2
(ϑjϑk − φjφk)A

jk
TT ,

A× =
1

2
(ϑjφk − φjϑk)A

jk
TT .
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t = 0 t = T/4 t = T/2 t = 3T/4 t = T

Figure 3.6.1: Time evolution of the scalar polarisation of a gravitational wave
on a ring of particles over the period T . The arrows represent the movement of
the particles.

Inserting this into E jk we get a new expression for the polarisation tensor,

E jk =AS(ϑjϑk + φjφk) + ALN
jNk + 2AV 1N

(jϑk)

+ 2AV 2N
(jφk) + A+(ϑ

jϑk − φjφk) + A×(ϑ
jφk + φjϑk). (3.90)

We see that the gravitational potential is described by six independent compo-
nents, AS, AL, AV1 , AV2 , A+ and A×. If the wave travels in the z-direction then
ϑ = 0. We may also choose φ = 0 and the polarisation tensor E jk can now be
displayed in the simple matrix form of

Ejk =

AS + A+ A× AV1

A× AS − A+ AV2

AV1 AV2 AL

 (3.91)

Comparing with the polarisation tensor from general relativity (3.40) where it
was also assumed a direction of the gravitational wave in the +z direction shows
that we have arrived at an additional four components. Detecting any additional
polarisations would be a possible way of looking for theories of gravity beyond
general relativity. In this simple form, we can also discuss how each polarisation
component would affect spacetime. For our purposes, we will only focus on the
plus, cross, and scalar part of the polarisation tensor. However adding a vector
field in addition to the scalar field added in Brans-Dicke gravity would result in
the vector components of AV1 , AV2 and the longitudinal component AL.

3.7 Source of Brans-Dicke polarisation

We have derived the polarisation tensor for gravitational waves in Brans-Dicke
gravity. There is however more to the scalar-tensor theory than a change of the
polarisation. In this section, we will derive an expression for the scalar polarisation
given the monopole, dipole and quadrupole moment of a source and we will observe
that the effect of adding a scalar potential to our Lagrangian leads to additional
terms for the three polarisations in this new theory. The derivation in this section
is based on section 13.5.5 of [9]. We begin by writing out the gravitational potential
in Brans-Dicke theory. This is from (3.57) and (3.46) given as,

hαβ = (ϕ/ϕ0)h̃
αβ + (1− ϕ/ϕ0)η

αβ. (3.92)
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where ϕ/ϕ0 is given from (3.69) as,

ϕ/ϕ0 = 1 +
2ζG

c2R

[
M − 1

c2
A(τ,N) +O(c−3)

]
. (3.93)

We recall the expressions of h00, h0j and hjk in the wave zone (2.56). We have now
a more complicated effective energy-momentum tensor τ̃ and we use (2.56) for
h̃00, h̃0j and h̃ij with τ̃ of (3.61) with the approximation used for τ̃S in (3.66). We
also make the assumption of r ≫ λc such that we can neglect all terms which are
of at least O(R−2). Inserting this into (3.92) we arrive at the following expression
for the gravitational potential,

h00 =
2(2− 3ζ)GM

c2R
+

G

c4R

[
2(1− ζ)ÏjkNjNk + 2ζA(τ,N) +O(c−1))

]
, (3.94a)

h0j =
G

c4R
+
[
2(1− ζ)ÏjkNk +O(c−1)

]
, (3.94b)

hjk =
2ζGM

c2R
δjk +

G

c4R

[
2(1− ζ)Ïjk − 2ζAδjk +O(c−1)

]
. (3.94c)

If we now compare with the general decomposition (3.1) we get for each of the
components,

A = 2(1− ζ)Ïpp − 6ζA, (3.95a)

B = 3(1− ζ)Ï⟨jk⟩NjNk, (3.95b)

C = 2(1− ζ)Ï⟨jk⟩NjNk +
2

3
(1− ζ)Ïpp + 2ζA (3.95c)

D = 2(1− ζ)Ï⟨jk⟩NjNk +
2

3
(1− ζ)Ïpp (3.95d)

Aj
T = 2(1− ζ)P j

pÏ
⟨pk⟩Nk, (3.95e)

Dj
T = 2(1− ζ)P j

pÏ
⟨pk⟩Nk, (3.95f)

Ajk
TT = 2(1− ζ)ÏjkTT . (3.95g)

Here I⟨jk⟩ = Ijk − 1
3
Ipp. By the use of equation (3.87) we then get the different

components of the polarisation vector as

AS = 2ζA, (3.96a)
AL = 0, (3.96b)

Aj
V = 0, (3.96c)

Ajk
TT = 2(1− ζ)ÏjkTT . (3.96d)

Making the assumption of a gravitational wave traveling in the +z-direction then
theNj vector from (3.28) simplifies to (0, 0, 1). Inserting our simplified components
(3.96) into our expression of the gravitational potential in (3.94c) we get that the
known polarisations of h+ and h× from general relativity take the slightly different
form in Brans-Dicke gravity,

h+ =
G

rc4
(1− ζ)(Ïxx(τ)− Ïyy(τ)), (3.97)
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h× =
2G

rc4
(1− ζ)Ïxy(τ), (3.98)

Inserting for A and approximating µ ≃ ρ in the low-velocity limit we get for the
new scalar polarisation,

hS =
2G

rc2
ζ

[
M(τ) +

1

c
Ḋz(τ)− 1

2c2
Ïzz(τ)

]
. (3.99)

Here the x- and y directions on the quadrupole moment comes from the plus- and
cross-polarisation comes from the chosen z−direction of the gravitational wave.
Similarly for the scalar polarisation only here is the z− direction on the dipole
and quadrupole moment instead. We note one of the main differences between
Brans-Dicke and general relativity: We cannot remove the monopole and dipole
term as the scalar field does not satisfy a conservation law. Therefore, we have
a contribution from the monopole and dipole moment of the gravitational wave
source, which do not produce gravitational waves in general relativity. Letting
ζ −→ 0 we observe that we recover general relativity as a limit as is expected.



CHAPTER

FOUR

GRAVITATIONAL WAVE RESONANCE IN
SPHERICAL MODELS

In this chapter we will derive two expressions for the response of a spherical body
to a gravitational wave, a toroidal response and a spheroidal response. With these
expressions, we will calculate the displacement in an Earth model and finally Moon
models. For this, we will require some fundamental background from the theory of
infinitesimal elasticity and make simplifying assumptions for the spherical Earth
and Moon body. Finally, we will need the help of spherical Bessel functions with
relations before we can arrive at our final equations for the oscillations.

4.1 Infinitesimal theory of elasticity

4.1.1 Lamé parameters and the stress-strain relation

We explain in this section the basics of infinitesimal elasticity. We follow the same
procedure as Sections 1.1, 1.2 and 1.3 from reference [10]. The goal is to relate the
stress tensor Iij to the strain tensor ϵij and the Lamé parameters which describe
the properties of the elastic medium. We begin by defining an elastic body. An
elastic body is a body in which the relative position of internal parts of the body
may move when subject to external body or surface forces and the body returns
to its initial state after the forces are removed. For any body in consideration, we
will ignore any rotation and motion of the entire body. Cauchy’s strain tensor ϵij
describes infinitesimal strains and is defined as

ϵij =
1

2
(ui,j + uj,i). (4.1)

The interpretation of the strain tensor is as follows. Given some line element
dri = nidr with direction ni, where |n| = 1, we get under some displacement
dr −→ dr′ that

niϵijnj =
dr′ − dr

dr
. (4.2)

Or in other words, the strain tensor components give the change in position per
unit length in the direction of ni. To give a more physical understanding of the
strain tensor we can look at what the different components of the tensor represents

33
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when we contract the tensor ninj and ϵij. If ni is in the form

ni = lê1i +mê2i + nê3i (4.3)

then ninjϵij = ϵ can be written

ϵ = l2ϵ11 +m2ϵ22 + n2ϵ33 + 2mnϵ23 + 2nlϵ31 + 2lmϵ12. (4.4)

The interpretation of the elements should now be clear. Taking the ϵ11 element
as an example we see that it is the extension of a line element which in the
unstrained case lies parallel to the ê1i direction. The diagonal elements are called
normal strains while the off diagonal elements are called shearing strains. The off
diagonal elements, say ϵ12 for example, is the decrease in the angle between two line
element which were parallel to the unit vectors ê1i and ê2i before the deformation.
To summarize, the strain tensor describes the deformation of a material from an
applied stress. We should therefore be able to find some relation between the stress
tensor and our strain tensor. Let us begin by making the simple assumption that
the deforming process will take place without any changes in temperature. We
also assume that the deformation is sufficiently slow such that the kinetic energy
of the particles can be neglected. We now assume that we already have a deformed
body and that we superimpose an additional displacement δui. The work done by
surface tractions and body forces Fi is then

δW =

∫
S

(dSiIij)δuj +

∫
V

ρ(Fiδui)dV =

∫
V

[(Iijδui),j + ρFiδui] dV. (4.5)

We can recast the divergence of the stress tensor and displacement δui by using
the equation of equilibrium Iij,j = −ρFi such that

(Iijδui),j + ρFiδui = (Iijδui),j − Iij,jδui = Iijδui,j = Iijδϵij. (4.6)

Inserting back into our expression for δW we get that the work can be expressed
as the contraction of the stress tensor with the strain tensor

δW =

∫
V

IijδϵijdV. (4.7)

From (4.7) we see that δϵij is the increment of the strain by the extra displacement
δui. If we now set our focus on a small volume element dV , then we get

δW = Iijδϵij. (4.8)

The total work is the integral over W . Since we assumed an elastic material our
path in the integral is independent of the final work, the integral must therefore
be a total differential. We can then write

dW = Iijδϵij. (4.9)

This can be written with the stress tensor alone as

Iij =
∂W

∂ϵij
. (4.10)
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We now rename W as the strain energy density. We assume W is only dependent
on the strain ϵij and that the strain tensor components are sufficiently small such
that we can Taylor expand W in powers of strain tensor components and later
throw away the higher order terms. We expand W as

W = a0 + bijϵij + Cijklϵijϵkl +O(ϵ3). (4.11)

Setting a0 = 0 by normalizing the energy such that ϵij = 0 at zero energy and
requiring that the energy must be in a minimum state at ϵij = 0, leading to bij = 0.
This results in I(ϵij) becoming a quadratic equation in ϵij,

Iij = Cijklϵkl. (4.12)

This is a generalization of Hooke’s law. We are however not quite done yet. We
shall now make some assumptions to simplify Cijkl in such a way to reach a stress
strain relation for an isotropic medium. The Cijkl tensor contains 34 components
in its most general form, however not all of these components need to necessarily
be independent. Should we have a homogeneous material then the components
are constant. Also since the stress tensor and the strain tensor are symmetric we
have

Cijkl = Cjikl = Cijlk. (4.13)

By the additional relation Cijkl = Cklij we are left with just 21 independent
components. The isotropic assumption imply we can write the tensor in the general
form

Cijkl = λδijδkl + µ(δikδjl + δilδjk) + ν(δikδjl − δilδjk). (4.14)

This follows from the fact that the tensor components retain their value by a
rotation transformation. By (4.13) we see that ν = 0 and we are left with

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (4.15)

Inserting this into (4.12) we get the famous stress strain relation for an isotropic
material

Iij = λδijuk,k + µ(ui,j + uj,i). (4.16)

Here λ and µ are known as Lamé parameters and are determined for each material
from experiments.

4.1.2 Cauchy’s equation of motion

We consider a continuous distribution of matter in motion with respect to some
inertial reference frame. We assume there exist a boundary which we name S
such that the density field ρ(r, t) and velocity field vi(r, t) is defined inside a
volume V which is enclosed by S. An element ρdV can be totally described by its
velocity vector in a given fixed reference frame. We call this small element ρdV
a particle. We focus our interest on the total change of a field A which describe
some property of the particle when it moves on a certain path in a time interval
dt. We introduce a covariant derivative D/Dt. This should be understood in
the same way we introduce the covariant derivative in general relativity. If one
would measure some change in the field A at a fixed point, then ∂tA would suffice.
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However since one could make a measurement while being in a reference system
which is moving, we have to add a term which describes the spatial change in A
along the reference frames trajectory over the time dt. This covariant derivative
is therefore defined as

DA

Dt
:=

∂A

∂t
+ vi

∂A

∂xj
. (4.17)

The total mass, linear momentum Pi(t) and angular momentum Mk(t) is then

m =

∫
V

ρdV, Pi(t) =

∫
V

viρdV, Mk(t) =

∫
V

(ϵijkrivj)ρdV. (4.18)

Assuming that the total mass of the system is conserved, Λ is the total force
applied and Γ is the total torque applied about the origin of the inertial reference
frame, then the following equations will hold in the volume V ,

Dm

Dt
= 0, (4.19a)

D

Dt
Pi(t) = Λi, (4.19b)

D

Dt
Mi(t) = Γi. (4.19c)

The first equation restates the conservation of mass, the second equation is the
Newton Euler principle of linear momentum and the final equation is the Newton-
Euler principle of angular momentum. The total applied force Λi can be split into
two parts. A body force term ρFi and a surface force term niI ij which acts on
the boundary S. We can therefore write the total force acting on the continuous
medium as

Λi =

∫
S

(IijdSi) +

∫
V

ρFidV =

∫
V

(Iij,j + ρFi)dV, (4.20)

where we used Gauss’s theorem to change from a boundary integral to a volume
integral. We can split the total torque in the exact same way

Γk =

∫
S

ϵijkri(dSaIaj) +

∫
V

ϵijkriρFjdV (4.21)

If we apply the covariant derivative to equation (4.19a) we get

Dm

dt
=

D

Dt

∫
V

ρdV =

∫
V

[
Dρ

Dt
+ ρvi,i

]
dV =

∫
V

[
∂ρ

∂t
+ (ρvi),i

]
dV = 0. (4.22)

If we instead now consider the covariant derivative of ρvi then we can use (4.19b)
and arrive at

Λi =
D

Dt

∫
V

viρdV =

∫
V

[
D(ρvi)

Dt
+ ρvivj,j

]
dV

=

∫
V

[
ρ
Dvi
Dt

+ vi

(
Dρ

Dt
+ ρvj,j

)]
dV =

∫
V

(
ρ
Dvi
Dt

)
dV
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Combining this with equation (4.20) we arrive at Euler’s equation of motion,

Iij,j + ρFi = ρ
Dvi
Dt

. (4.23)

This is a more general version of the equation of motion that will be the basis
of the calculations which follow. We make the assumption that the velocity field
vi(r, t) is given by

vi =
Dui
Dt

=
∂u

∂t
+ viuj,j ≃

∂u

∂t
. (4.24)

This approximation holds as long as | ∂ui

∂xj
| ≪ 1, and we then have

Dvi
Dt

≃ ∂2ui
∂t2

. (4.25)

Inserting (4.25) into (4.23) and writing the displacement as the Fourier trans-
formed displacement

ui(t) =

∫ ∞

−∞
ui(ω)e

iωtdω, (4.26)

we get the equation,
Iij,j + ρFi + ρω2ui = 0. (4.27)

This is Cauchy’s equation of motion for the infinitesimal theory of elasticity and
will be the equation used to describe the oscillations of the Earth and Moon in
the rest of the thesis. Additional assumptions are a spherical Earth and Moon
and the spherical coordinate system (r, θ, ϕ) will be used with the mathematical
notation with the origin at the center of the sphere. The models which will be
considered are described by a density ρ and the two Lame parameters λ and µ
with the gravitational acceleration g determined from the density.

4.2 Hansen vectors
To describe the oscillations of spherical models we will first discuss the Hansen
vectors in spherical coordinates. Let us begin by considering the motion of a
homogenous isotropic elastic solid subjected to the body force distribution F i(r, t).
The displacement on this body is described by the Navier equation,

α2(ui,i),j − β2ϵjak(ϵabcuc,b),k + Fj = ∂ttuj. (4.28)

Introducing the Fourier transform of the displacement uj(r, t) and the force per
unit mass F j(r, t),

uj(r, ω) =

∫ ∞

−∞
uj(r, t)e−iωtdt, (4.29a)

F j(r, ω) =

∫ ∞

−∞
F j(r, t)e−iωtdt. (4.29b)

Inserting the Fourier transformed expressions into the equation of motion results
in a new equation of motion,

α2(ui,i),j − β2ϵjak(ϵabcuc,b),k + Fj + ω2uj = 0. (4.30)
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We can now split the displacement uj into two parts which we denote as u(α)j and
u
(β)
j such that uj = u

(α)
j + u

(β)
j . We make the assumptions that ϵabcu

(α)
c,b = 0 and

u
(β)
i,i = 0. If we let Fj = 0 then we can now split the equation of motion into two

equations,
(∂ii + ω2/α2)u

(α)
j = 0, (4.31a)

(∂ii + ω2/β2)u
(β)
j = 0. (4.31b)

For the following we define for notation k(α) = ω/α and k(β) = ω/β. Now we
wish to introduce the Hansen vectors. We consider the curvilinear coordinates
(q1, q2, q3). We also introduce a vector ai which is orthogonal to the surface created
by q1 = constant. We are interested in a spherical coordinate system. The Hansen
vectors can be a valuable representation for other types of coordinate systems as
well however we will stick with the spherical coordinate system. For the spherical
coordinate system, we then have that ai = rê

(r)
i . We can now define the Hansen

vectors in a spherical coordinate system. The three vectors Mi, Ni, Li are defined
from the three potentials Ψ, χ,Φ as,

Mi = ϵibcΨac,b (4.32a)

Ni =
1

k(c)
ϵiak(ϵabcχac,b),k (4.32b)

Li =
1

k(c)
Φ,i, (4.32c)

where the potentials are solutions to the scalar Helmholtz equation. We do not
distinguish between the potentials and assume that the potential can be separated
into the form Ψ = f(r)Y (θ, ϕ). Inserting this into (4.32) we get,

Mi = fCi, (4.33a)

k(c)Ni =

[
(k(c))2(rf) +

∂2

∂(rf)r2

]
Pi +

1

r

∂(fr)

∂r
Bi, (4.33b)

k(c)Li =

(
∂f

∂r

)
Pi +

1

r
fBi (4.33c)

where Ci, Pi and Bi are vector surface harmonics and vectors that depend only on
θ and ϕ. They are defined in spherical coordinates as,√

l(l + 1)C
(ml)
i (θ, ϕ) = ϵijk(rk,jY (θ, ϕ)), (4.34a)

P
(ml)
i = ê

(r)
i Y (ml)(θ, ϕ), (4.34b)√

l(l + 1)B
(ml)
i (θ, ϕ) = rY

(ml)
,i (θ, ϕ). (4.34c)

Here P (ml)(θ, ϕ) is the associated Legendre polynomial. The Hansen vectors are
linearly independent and a general displacement can therefore be written as some
linear combination of the Hansen vectors. As the Hansen vector themselves are
a combination of the vector surface harmonics Ci, Pi, Bi we can write a general
displacement in the form of,

ui(r) = U(r)P
(ml)
i (θ, ϕ) + V (r)

√
l(l + 1)B

(ml)
i (θ, ϕ)

+W (r)
√
l(l + 1)C

(ml)
i (θ, ϕ), (4.35)
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where U(r), V (r) and W (r) are some functions of r. Inserting (4.35) into our
earlier equations of (4.31a) and (4.31b) we will get equations for U(r), V (r) and
W (r).

4.3 Radially inhomogeneous self-gravitating spher-
ical model

It is practical to employ vectors that reflect the spherical symmetry. We can in
general write the displacement as a linear combination of the three Hansen vectors,

ui(r, t) =
∑
σ,m,l

α(ml)M
(ml)
i + β(ml)N

(ml)
i + γ(ml)L

(ml)
i , (4.36)

where α(ml), β(ml) and γ(ml) are some constants. Oscillations in which the displace-
ment only consists of a sum of Mi vectors are defined as toroidal oscillations while
oscillations where the displacement only consists of Ni and Li vectors are defined
as spheroidal oscillations. The Hansen vectors takes on specific forms depending
on the symmetries of the system. We will use the form respecting the spherical
symmetry of the Earth and Moon bodies.

4.3.1 Assumptions

Let us consider some assumptions to simplify our system. In general we can say
that a realistic spherical body will possess a certain amount of initial stress. This is
additional stress to any disturbing additional force and would have to be taken into
account for a realistic model. We therefore make a separation of a disturbed model
with initial stresses and a disturbed model with initial stress and an additional
stress. We make seven assumptions on our system.

1. We neglect small quantities of second or higher order.

2. The initial stress I(i)
jk of the model is in equilibrium and totally described by

hydrostatic pressure,

I(i)
jk = −p(0)δjk, where, ∂jp

(0) = −g(0)ρ(0)ê(r)j . (4.37)

3. A small element carries its initial stress with it under a displacement and
may get additional stresses depending on the compression and distortions it
is affected by under the displacement. In other words p(0)(r) = p(0)(r− u).

4. The stress can in a strained state be separated into an initial equilibrium
stress part and an elastic stress part. The initial stress is then, by assumption
3,

I(i)
jk (r) = −p(0)(r− u)δjk. (4.38)

While the elastic stress follows the usual stress-strain relation

I(e)
jk (u) = λδjkui,i + µ(uj,k + uk,j). (4.39)
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5. The only body force is the force of gravity which we derive from the gravi-
tational potential Ψ:

Fj = ∂jΨ. (4.40)

6. The values of ρ and Ψ are assumed to be split into an equilibrium part ρ(0)
and Ψ(0), and a small perturbation ρ(1) and Ψ(1).

7. The quantities ρ, λ, µ, g and Ψ are independent of any angles θ and ϕ and
only radial dependent.

With these assumptions, we can simplify our equations of motion to an easier
solvable form. We do this in the following section.

4.3.2 Simplified differential equations

It is the goal of this section to arrive at a simplified version of the differential
equation (4.27). We begin by employing some of our assumptions to get the first
term in equation (4.27) in an simpler form,

Ijk,j = I(i)
jk,j + I(e)

jk,j. (4.41)

Using our assumptions for the initial stress (4.38) and the identity (fδjk),j = fk
we can simplify the divergence of the initial stress tensor as

I(i)
jk,j = (−(p(0) + g(0)ρ(0)ur)δjk),j = −(p(0) + g(0)ρ(0)ur),k, (4.42)

where ur is not a vector but the radial component of the displacement. For the
elastic stress I(e)

jk we can write out the divergence of the stress tensor in spherical
coordinates using (4.39) as

I(e)
jk,j = (λuj,j),k + µ(uk,jj + (uj,j),k +

dµ

dr

(
2
∂uk
∂r

+ ϵkabê
(r)
a (ϵbcdud,c)

)
, (4.43)

where we in the last term used that

ê
(r)
j (uj,k + uk,j) = 2

∂uk
∂r

+ ϵkabê
(r)
a (ϵbcdud,c). (4.44)

Having applied our assumptions to the first term of (4.27) we move on to the
second term. We start by applying our assumptions to the density which by the
continuity equation satisfies

ρ(r) = ρ(0)(r− u) · (1− ui,i) = ρ(0)(r)− (ρ(0)ui),i. (4.45)

With the assumptions on the gravitational potential and using the identity (fVj),j =
fVj,j + f,jVj to get the first term, we can write

ρFj =

(
ρ(0) − dρ(0)

dr
ur − ρ(0)uk,k

)
(ψ,j − g(0)ê

(r)
j ),

= ρ(0)ψ,j + g(0)
(
dρ(0)

dr
ur + ρ(0)uk,k − ρ(0)

)
ê
(r)
j . (4.46)
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Adding (4.42),(4.43) and (4.46) together we arrive at our differential equation
subject to our assumptions,

µ(uk,jj + (uj,j),k) +
dµ

dr

(
2
∂uk
∂r

+ ϵkabê
(r)
a (ϵbcdud,c)

)
+ (λui,i),k

+ ρ0((ψ − g(0)ur),k + g0ê
r
kui,i) + ω2ρ(0)uk = 0. (4.47)

Let us now consider the gravitational potential. The potential Ψ obeys the Poisson
equation,

Ψ,jj = −4πGρ. (4.48)

Inserting our expansion of the potential Ψ = Ψ(0)+ψ into (4.48) we conclude that
the perturbation of the gravitational potential also satisfies a similar equation,

ψ,ii = −4πGρ′ = 4πG(ρ(0)uj),j. (4.49)

Equation (4.47) and (4.49) are our differential equation system which we will have
to solve under boundary conditions which we will discuss next.

4.3.3 Boundary conditions

We must also include boundary conditions which our system must satisfy. The
ultimate goal is to set up a system of differential equations which can be solved
numerically. We will do this in the next sections for first toroidal- and then
spheroidal oscillations. The differential equation from the last section should be
solved under the boundary conditions

1. The solution is well defined at the origin.

2. The stresses vanish at the deformed surfaces and stay continuous at an in-
ternal deformed surface of discontinuity.

3. The displacements are continuous at an internal surface of discontinuity, with
the exception of a solid-liquid interface where only the radial displacement
is continuous.

4. The gravitational potential and its radial derivative are continuous at the
deformed surface of the earth at an internal deformed surface of discontinuity.

Mathematically these boundary conditions can be written more concise. If we
imagine there is a surface of discontinuity at r = c and look at the stress close to
this surface in a strained state we get

Ijk(c+ ur) = Ijk(c) + ur

(
∂Ijk

∂r

)
r=c

= I(e)
jk (c)− p0(c)δjk. (4.50)

The additional elastic stress at c and at c + ur is equal to the first order in ur.
We also see that a small element of the medium carries its initial stress with it
when it moves from one place to another. Boundary condition 4 regards only the
gravitational potential. Mathematically it says that

Ψ(1) = Ψ(2) and
dΨ(1)

dr
=
dΨ(2)

dr
at r = c+ ur. (4.51)
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Index 1 and 2 represents Ψ being evaluated at opposite points of the surface of
discontinuity. We expand Ψ into its equilibrium value and its perturbation and
neglect any value to higher than linear order. The boundary condition can then
be written,

ψ(1) +Ψ(01) + ur
dΨ(01)

dr
= ψ(2) +Ψ(02) + ur

dΨ(02)

dr
, (4.52a)

dψ(1)

dr
+
dΨ(01)

dr
+ ur

d2Ψ(01)

dr2
=
dψ(2)

dr
+
dΨ(02)

dr
+ ur

d2Ψ(02)

dr2
(4.52b)

If we just look at the unstrained state then ψ = 0 and ur = 0 and,

Ψ(01) = Ψ(02),
Ψ(01)

dr
=
dΨ(02)

dr
, r = c. (4.53)

Taking use of the Poisson equation we see that

d2Ψ(0)

dr2
+

2

r

dΨ(0)

dr
= −4πGρ(0). (4.54)

From (4.52) and (4.52) we can now set restrictions on the deviation ψ,

ψ(1) = ψ(2), ψ̇(1) − 4πGρ(01)ur = ψ̇(2) − 4πGρ(02)ur. (4.55)

At the free surface we then must have that,

ψ = ψ(e), ψ̇ − 4πGρ(0)ur = ψ̇(e), (4.56)

where ψe is the gravitational potential outside the spherical model.

4.4 Toroidal Oscillations

4.4.1 Differential equation system for numerical integration

We begin our discussion of oscillations with toroidal oscillations. It turns out that
spheroidal oscillations will give a much bigger contribution to the oscillations from
gravitational wave interactions, but we give a discussion on toroidal oscillations
regardless. This is firstly for the sake that toroidal oscillations are mathematically
simpler, but still similar enough so that ideas can be grasped more quickly when
we arrive at the spheroidal case. Secondly to compare the results we will present
in chapter five to other sources and check the validity of our model. For purely
toroidal oscillations ur and uµ,µ both vanish. The equation of motion (4.47) then
simplifies to

µuj,ii +
dµ

dr

(
2
∂uj
∂r

+ ϵjabê
(r)
a (ϵbcdud,c)

)
+ ω2ρ(0)uj = 0. (4.57)

A radially inhomogenous model has parameters which only depends on the radius.
With this in mind we make the ansatz that the displacement takes on the form

uj =
∑
σ,m,l

y1(r)
√
l(l + 1)C

(σml)
j (θ, ϕ), σ = c, s. (4.58)
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σ represents the sum over the core and mantle. We split the displacement into a
sum over the core and mantle to make sure that the solution is indeed well defined
at both the origin and in all parts of the mantle. We insert our ansatz into (4.47)
and arrive at a new differential equation for y1,

µ

(
d2y1
dr2

+
2

r

dy1
dr

)
+
dµ

dr

(
dy1
dr

− y1
r

)
+ ω2ρ(0)y1 −

l(l + 1)

r2
µy1 = 0. (4.59)

By boundary condition 2 we must have that the stresses vanish at the core-mantle
boundary. We therefore define a function y2 such that this function is zero at the
boundary. We write the stress in the radial direction and defining y2 as

ê
(r)
i Iij =

∑
σ,m,l

y2(r)
√
l(l + 1)C

(σml)
j (θ, ϕ), σ = c, s. (4.60)

We find y2 more explicitly by the insertion of (4.58) into Iij(u) to be

y2 = µ

(
dy1
dr

− y1
r

)
. (4.61)

Boundary condition 2 requires the following conditions on y2,

y2 = 0 at r = b and r = a. (4.62)

Our only problem now is that the differential of the second Lamé parameter causes
problems for the numerical integration. This problem arrives from the fact that
we do not have an analytic expression for the parameter. We instead have a set
of data points. We can however rewrite our equations to avoid this problem. We
use the equivalent system of differential equations

dy1
dr

=
y1
r
+
y2
µ
,

dy2
dr

=

(
l2 + l − 2

r2
µ− ω2ρ(0)

)
y1 −

3

r
y2. (4.63)

This is our final result for this subsection. With this differential system together
with the boundary conditions we can find the toroidal eigenfrequencies for our
Earth and Moon models by numerical integration.

4.4.2 Induced toroidal motion from gravitational waves

The displacement of the mode Tm l given the n’th eigenfrequency from a force
distribution f

(n)
i (r(0)) and surface stresses T (0)

ij (u) to a radially heterogeneous,
anelastic self-gravitating Earth or Moon model is given as,

u
(nml)
i (r, t) =

∫
V

G(nml)
ji (r|r(0), t)f (n)

j (r(0))d3r(0)

+

∫
S

G(nml)
ji (r|r(0), t)[n(0)

k · T (0)
kj (u)]dS(r

(0)). (4.64)
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Here G(nml) is the toroidal Green tensor taken from section 6.3.3.2 of [3], which is
given as the product over the eigenvectors, a normalisation and the time-dependent
effect,

G(nml)
ij (r|r(0), t) =M

∗(nlm)
i (r)M

(nlm)
j (r(0))ḡ(n)(t)(Λ

(nml)
T )−1. (4.65)

The time dependent effect ḡ(t), the normalization Λ(nml) and the vector M (nml)
i

are given by

ḡ(t) =
1

2π

∫ ∞

−∞

g(ω)

ω2
n − ω2 + iωωn/Qn

e(iωt)dω, (4.66)

Λ
(nml)
T = 4π

l(l + 1)

2l + 1

∫ a

0

[yT1n]
2ρ0(r)r

2dr, (4.67)

M
(nml)
i = yT1n(r)

√
l(l + 1)C

(lm)
i (θ, ϕ). (4.68)

Here ω is the frequency of the gravitational wave, g(ω) is the source function, and
Qn is the dissipation parameter. The source function g(ω) deserves additional
comments. This is the Fourier transform of the time-dependent part of the source
of interest. If we are observing a source that produces gravitational waves which
are an infinite monochromatic wave, then g(t) = eiωgwt and g(ω) = δ(ω − ωgw).
Given some model, we showed that we can find the eigenfrequency ωn = ωnlm and
yT1n(r). We now proceed to simplify our expression for the displacement so that
we can calculate its value. We begin by studying the Lagrangian density of an
elastic continuum. The Lagrangian with displacement ui, density ρ, stress tensor
T ij and strain tensor Eij is in non-relativistic solid mechanics given by

L =
1

2
ρ

(
∂ui

∂t

)(
∂ui
∂t

)
− 1

2
(T ijEij). (4.69)

We extend the strain tensor by the metric perturbation tensor hij such that Eij −→
Eij + hij. The stress tensor extends to T ij −→ T − µhij, where µ is the second
Lamé parameter. The new Lagrangian is by the replacement of Eij with Eij+hij,

L = L− 1

2
(hijTij). (4.70)

The metric perturbation tensor hij obeys the equations

∇2hij − 1

c2
∂2

∂t2
hij = 0, ∇jh

ij = 0. (4.71)

We can now find the equations of motion by using the Lagrangian density and
arrive at,

∂t(ρu̇
i) = ∇jT

ij −∇j(µh
ij). (4.72)

The driving force from the plane gravitational wave is then

f (n)j(r) = −∇i(µh
ij) = −∂µ

∂r
ê
(r)
i hij. (4.73)

We assume the incoming gravitational wave is of the form

hij = h0Eije(−ikir
i), (4.74)
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where ki is the wave vector written out in terms of the direction of the wave pi as,

ki =
ωgw

c
pi, (4.75)

of the gravitational wave, ϵij is the polarization tensor and h0 is the dimensionless
source amplitude parameter. Combining everything we can rewrite (4.82) to

u
(nml)
j (r, t) =−

∫
V

µ̇(r)G(nml)
ij (r|r(0), t)(ê(r)a hai)d3r(0)

+ µ(R)

∫
S

G(nml)
ij (r|R, t)(ê(r)a hai)dS(0)(R).

We can simplify this expression to

u
(nml)
j (r, t) = h0(Λ

(nml))−1ḡ(t)y1n(r)
√
l(l + 1)C

∗(lm)
j (θ, ϕ)FT (4.76)

where

FT =−
∫ a

0

dµ

dr
y1n(r)r

2dr

[
E ij
√
l(l + 1)

∫ 2π

0

∫ π

0

ê
(r)
i C

(lm)
j e−ikara sin θdθdϕ

]
+R2µ(R)y1n(R)

[
E ij
√
l(l + 1)

∫ 2π

0

∫ π

0

ê
(r)
i C

(lm)
j e−ikaRa

sin θdθdϕ

]
. (4.77)

It is with this equation we will calculate the response of our models to gravitational
waves. A long calculation shows that we can write our expression for FT as a sum
which we will show to quickly converge. We show this calculation in appendix A.
This gives us a much easier calculation of the toroidal displacement. The integral
for FT is expanded in terms of the Wigner symbols. Our expansion for FS is then
from appendix A,

FT =− 8πi
∞∑

l1=0

l1∑
ml=−l1

(2l1 + 1)i−l1Y ∗ml
l1

(e, λ)

(
l1 l 1
0 0 0

)
H l1m1

lm (λ, e, ν)

∫ a

0

µ̇yT1n(r)jl1(kr)r
2dr + 8πiµ(a)a2yT1n(R)

∞∑
l1=0

l1∑
ml=−l1

(2l1 + 1)

i−l1jl1(ka)Y
∗m1
l1

(e, λ)

(
l1 l 1
0 0 0

)
H l1m1

lm (λ, e, ν). (4.78)

Here (λ, e, ν) are angles that depend on the entrance angle of the gravitational
wave. The additional H l1m1

lm (λ, e, ν) function introduced above comes from the
polarisation tensor in (4.77). Since we have rewritten the integral as a sum, we are
now contracting the polarisation tensor with the tensors of T 0,±1,±2 from Appendix
A. Given a coordinate system where the origin is in the centre of the sphere model
and the Cartesian coordinates are described by x, y, z, we define the angles λ
and e through the momentum vector p of the gravitational wave in the Cartesian
coordinate system such that,

pi = (sin e cosλ, sin e sinλ, cos e). (4.79)
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This defines the angles of e and λ, however ν is not mentioned yet. The angle ν is
the angle that the plane of the momentum vector pi makes with the z-axis. The
form of H l1m1

lm (λ, e, ν) is therefore given by,

H l1m1
lm (λ, e, ν) =

k=2∑
k=−2

Ak sin
2−k
(e
2

)
cos2+k

(e
2

)
eikλ+2iν . (4.80)

Given that we have assumed a spherical non-rotating body, one can always rotate
the coordinate system in such a way as to consider an especially simple combina-
tion of entrance angles. H l1m1

lm then takes on the simplified form of,

H l1m1
lm =

i

2
√
2

√
(l +m)(l −m+ 1)

(
l1 l 1
m1 m− 1 −1

)
. (4.81)

when e = 0, λ = 0 and ν = π/4, which corresponds to the gravitational wave mo-
mentum vector pi being aligned with the êzi unit vector. Starting with equation
(4.76) we now have all the required ingredients to calculate the toroidal displace-
ment at a radius r, time t, and angles θ and ϕ for a radially heterogeneous, anelas-
tic self-gravitating, spherical model by calculating and inserting (4.68), (4.67) and
(4.78) into (4.76).

4.5 Spheroidal Oscillations

4.5.1 Differential equation system for y1 and y3

This section is based on section 6.3.4 of reference [10]. We recall how spheroidal
oscillations were defined as displacements described by the N and L Hansen vectors
only. In spheroidal coordinates, these vectors are made up of the vector surface
harmonics P and B vectors and a general displacement can be written as

uj(r) =
∑
σ,m,l

(
y1n(r)P

(σml)
j (θ, ϕ) + y3n(r)

√
l(l + 1)B

(σml)
j (θ, ϕ)

)
. (4.82)

We recall that the vectors P and B take on a specificly simple form in spherical
coordinates,

P
(ml)
i (θ, ϕ) = ê

(r)
i Y m

l , (4.83a)√
l(l + 1)B

(ml)
i (θ, ϕ) = r∇iY

m
l , (4.83b)

where Y (ml) = P (ml)(cos θ)eimϕ in which P (ml)(x) is the associated Legandre poly-
nomial. In the same way as for the toroidal case we have made the assumption
that we can split the displacement into a radial scalar function part and an angle
dependent vector part. We also assume that the gravitational perturbation can
be written as

ψ(r) =
∑
σ,m,l

y5n(r)Y
(σ)m
l (θ, ϕ). (4.84)

Our procedure is as follows. We insert (4.82) and (4.84) into the differential
equations (4.47) and (4.49). In return we get a differential equation system for
y1, y3 and y5. Rewriting the system so that no parameter takes on a derivative and
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we have a system close to ready for numerical integration. A tedious, but not too
complicated calculation of inserting (4.82) into (4.47) and setting the coefficients
of P (ml)

i and B(ml)
i to zero leads to the system

µ

(
2
dX

dr
− l(l + 1)

r
Z

)
+
d(λX)

dr
+ 2µ̇

dy1
dr

+ ρ(0)
(
dy5
dr

− 4πGρ(0)y1 + g(0)
(
X − dy1

dr
+

2

r
y1 + ω2y1

))
= 0,

(λ+ 2µ)
X

r
− d

dr
(µZ)− µ

Z

r
+ 2µ̇

(
dy3
dr

+ Z

)
+ ρ0

(
1

r
(y5 − g(0)y1) + ω2y3

)
= 0. (4.85)

where

X =
dy1
dr

+
2

r
y1 −

l(l + 1)

r
y3, (4.86)

Z =
1

r
(y1 − y3)−

dy3
dr

. (4.87)

To accommodate for the boundary conditions and to make a system of first order
differential equations instead of two second order differential equations we calculate
the elastic stresses. Using (4.82) and the elastic stress definition we can write the
stress tensor contracted with the radial unit vector as

ê(r)µ I ij
(e) =

∑
σ,m,l

(
y2(r)P

σml
j (θ, ϕ) + y4(r)

√
l(l + 1)B

(σml)
j (θ, ϕ)

)
, (4.88)

where y2 and y4 are given by

y2 = λX + 2µ
dy1
dr

= (λ+ 2µ)
dy1
dr

+
2λ

r
y1 − λ

l(l + 1)

r
y3, (4.89)

y4 = µ

(
Z + 2

dy3
dr

)
= µ

(
1

r
(y1 − y3) +

dy3
dr

)
. (4.90)

We now insert (4.84) into (4.49) to get a differential equation for y5, the result is

d2y5
dr2

+
2

r

dy5
dr

− l(l + 1)

r2
y5 = 4πG(ρ(0)X + ρ̇(0)y1). (4.91)

If we take the value of ψ outside the boundary of the spherical model then by
∇2ψe = 0 we can write the boundary condition as

dy5
dr

− 4πGρ(0)y1 = − l + 1

r
y5 at r = R. (4.92)

We define a y6 as

y6 =
dy5
dr

− 4πGρ(0)y1. (4.93)

We can summarize the boundary conditions as

y2 = 0, y4 = 0, y6 +
l + 1

r
y5 = 0 at r = R. (4.94)



48 CHAPTER 4. RESONANCE IN SPHERICAL MODELS

We now treat each y1, y2, ..., y6 as independent variables. With this we can create
the first-order differential equation system,

dy1
dr

= − 2λ

(λ+ 2µ)r
y1 +

1

λ+ 2µ
y2 +

l(l + 1)λ

(λ+ 2µ)r
y3, (4.95a)

dy2
dr

=

[
−ω2ρ(0) − 4

g(0)ρ0
r

+
4µ(3λ+ 2µ)

(λ+ 2µ)r2

]
y1 −

4µ

(λ+ 2µ)r
y2,

+
l(l + 1)

r

[
g(0)ρ(0) − 2µ(3λ+ 2µ)

(λ+ 2µ)r

]
y3 +

l(l + 1)

r
y4 − ρ0)y6 (4.95b)

dy3
dr

= −1

r
y1 +

1

r
y3 +

1

µ
y4 (4.95c)

dy4
dr

=

[
g(0)ρ(0)

r
− 2µ(3λ+ 2µ)

(λ+ 2µ)r2

]
y1 −

λ

(λ+ 2µ)r
y2,

+

(
−ω2ρ(0) + ((2l2 + 2l − 1)λ+ 2(l2 + l − 1)µ)

2µ

(λ+ 2µ)r2

)
y3,

− 3

r
y4 −

ρ0
r
y5 (4.95d)

dy5
dr

= 4πGρ(0)y1 + y6, (4.95e)

dy6
dr

= −4π
l(l + 1)

r
Gρ(0)y3 +

l(l + 1)

r2
y5 −

2

r
y6. (4.95f)

This system is to be used in the mantle. In the core on the other hand we have

µ = 0, y2 = λX, y4 = 0. (4.96)

And we get a simpler differential equation system,

dy1
dr

= −2

r
y1 +

1

λ
y2 +

l(l + 1)

r
y3,

dy2
dr

= −
(
ω2ρ(0) +

4g(0)ρ(0)

r

)
y1 +

l(l + 1)

r
g(0)ρ(0)y3 − ρ(0)y6,

dy5
dr

= 4πGρ(0)y1 + y6

dy6
dr

= −4π
l(l + 1)

r
Gρ(0)y3 +

l(l + 1)

r2
y5 −

2

r
y6.

The paramter function y4 is zero in the core, but the parameter funtion y3 is not.
The expression for y3 in the core comes from (4.95d) using the conditions of (4.96)
so that y3 satisfies,

y3 =
1

ω2r

(
g0y1 −

1

ρ0
y2 − y5

)
. (4.97)

We now have close to everything we need to proceed with the numerical integra-
tion. With a spherical-core-mantle model, we can now employ these two differen-
tial equation systems starting in the core and continuing throughout the mantle.
The details of the numerical procedure in finding the eigenfrequencies and the
radial functions y1, y2, ..., y6 will be explained in detail at the end of this chapter.
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4.5.2 Induced spheroidal motion from gravitational waves

We employ the same tactic as before with the toroidal Green tensor now switched
with the spheroidal Green tensor taken from section 6.3.4.1 of [3],

G(nml)
ij (r|r(0), t) = Q

∗(nml)
i (r)Q

(nml)
j (r(0))ḡ(t)(Λ

(nml)
S )−1, (4.98)

where the vector Qi is given as

Q
(nml)
i (r) = y1n(r)P

(lm)
i (θ, ϕ) + y3n(r)

√
l(l + 1)B

(lm)
i (θ, ϕ). (4.99)

And the normalization Λ
(nml)
S is given by

Λ
(nml)
S =

4π

2l + 1

∫ R

0

(
(y1n)

2 + l(l + 1)(y3n)
2
)
ρ(0)(r)r2dr. (4.100)

Using (4.98) and inserting (4.99) and (4.100) we get a similar expression to (4.76)
for the induced displacement from the spheroidal oscillations

u
(nml)
j (r, t) = h0(Λ

nml
S )−1ḡ(t)Q

∗(nml)
j (r)(FS1 + FS2), (4.101)

where FS1 and FS2 are given by

FS1 = −
∫ R

0

µ̇y1n(r)r
2dr

(
E ij

∫ 2π

0

∫ π

0

ê
(r)
i P

(lm)
j e−ikara sin θdθdϕ

)
+

+R2µ(a)y1n(R)

(
E ij

∫ 2π

0

∫ π

0

ê
(r)
i P

(lm)
j e−ikaRa

sin θdθdϕ

)
, (4.102a)

FS2 = −
∫ R

0

µ̇y1n(r)r
2dr

(
E ij

∫ 2π

0

∫ π

0

ê
(r)
i

√
l(l + 1)B

(lm)
j e−ikara sin θdθdϕ

)
+

+R2µ(a)y1n(R)

(
E ij

∫ 2π

0

∫ π

0

ê
(r)
i

√
l(l + 1)B

(lm)
j e−ikaRa

sin θdθdϕ

)
.

(4.102b)

We wish to again simplify our expressions for FS1 and FS2 . To do this we will
study the quadrupole moment of a continuous mass distribution. With respect to
a given coordinate system this is given as the volume integral

Dij =

∫
V

(3rirj)ρ(r)dV. (4.103)

Given a displacement such that ri −→ ri + ui then to first order we get the change
of quadrupole moment as

δDij =

∫
V

3(riuj + uirj)ρdV. (4.104)

If we consider only a single spheroidal mode, then we can represent the displace-
ment contribution to δDµν by

u
(nml)
j = y1nP

ml
j + y3n

√
l(l + 1)Bml

j . (4.105)
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Inserting (4.105) into (4.104) we can rewrite the total quadruple moment for a
mode into a P vector and B vector part such that

δD(P )
ij = 3

∫ R

0

y1n(r)ρ
(0)(r)r2dr

∫ 2π

0

∫ π

0

(
ê
(r)
i P

(ml)
j + P

(ml)
i ê

(r)
j

)
sin θdθdϕ,

(4.106a)

δD(B)
ij = 3

∫ R

0

y3n(r)ρ
(0)(r)r2dr

∫ 2π

0

∫ π

0

(√
l(l + 1)(ê

(r)
i B

(ml)
j +B

(ml)
i ê

(r)
j )
)
sin θdθdϕ.

(4.106b)
Neglecting the phase factor we can recast the amplitude coefficients in terms of

the quadruple moment changes

FS1 =
R2µ(R)y1n(R)−

∫ R

0
µ̇y1n(r)r

2dr

3
∫ R

0
ρ0y1n(r)r3dr

(E ijδD(P )
ij ), (4.107)

FS2 =
R2µ(R)y3n(R)−

∫ R

0
µ̇y3n(r)r

2dr

3
∫ R

0
ρ0y3n(r)r3dr

(E ijδD(B)
ij ). (4.108)

We arrive at a new interpretation of the amplitude coefficients. They are the
quadrupole-quadrupole interaction between the gravitational wave and the elastic
spherical body. It is worthwhile to rewrite the integrals of the change in the
quadrupole moment. From appendix B we have that the integral

I
(P )
ab (k) =

√
l(l + 1)

∫ 2π

0

∫ π

0

ê(r)a P
(ml)
b (θ, ϕ)e−ikir

i

sin θdθdϕ, (4.109)

can be written as

I
(P )
ab (k) =4π

∞∑
l1=0

l1∑
m1=−l1

(2l1 + 1)i−l1jl1(kr)Y
∗m1
l1

(e, λ)

(
l1 l2 2
0 0 0

)
·

·

(
2∑

j=−2

Γ(j)

(
l1 l 2
m1 m j

))
. (4.110)

And the integral

I
(B)
ab (k) =

√
l(l + 1)

∫ 2π

0

∫ π

0

ê(r)a B
(ml)
b (θϕ)e−ikir

i

sin θdθdϕ, (4.111)

can be written as

I
(B)
ab (k) = 4π

∞∑
l1=0

l1∑
m1=−l1

(2l1 + 1)i−l1jl1(kr)Y
∗m1
l1

(e, λ)

(
l1 l 0
0 0 0

)
·

·

(
2∑

j=−2

D(j)Γ
(j)
ab

)
. (4.112)

If the sums converge quickly enough then this would be a useful expansion of the
integrals. The integrals take a particular simple form at k = 0 as then the Bessel
function turns into jl1(0) = δl1,0. Forcing l1 = 0 for a nonzero result puts strict
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restrictions on the Wigner symbols in D(j) and the integrals take on the much
simpler forms

I
(P )
ab (k = 0) =

4π

5
δl,2(Γ

(0)δm,0 − Γ(1)δm,−1 + Γ(−1)δm,1 + Γ(2)δm,−2 + Γ(−2)δm,2),

I
(B)
ab (k = 0) =

12π

5
δl,2(Γ

(0)δm,0 − Γ(1)δm,−1 + Γ(−1)δm,1 + Γ(2)δm,−2 + Γ(−2)δm,2).

If we insert this into the equation for the change in the quadrupole moment (4.106)
we get a tensor of Kronecker delta’s which we will later contract with the polari-
sation tensor,

δDP + δDB =
24π

5
√
6
δl,2

∫ R

0

(y1n + 3y3n)ρ0(r)r
2dr ×∆ (4.114)

where

∆ =


δm,2 + δm,−2 −

√
2
3
δm,0 iδm,2 − iδm,−2 δm,1 + δm,−1

iδm,2 − iδm,−2 −δm,2 − δm,−2 −
√

2
3
δm,0 −iδm,−1 + iδm,1

δm,1 + δm,−1 −iδm,−1 + iδm,1
2
3

√
6δm,0

 .

This is a very interesting result because even though the wave number for our
gravitational wave is not zero it will be close enough to zero for it to create
resonance in the Moon such that the expression above will be the main contribution
to the change in quadrupole moment. This is because the argument of the Bessel
function kr is much smaller than one, i.e. kr ≪ 1. If we study the approximation
of the Bessel function jl(x) when x≪ 0 we have that,

jl1(x) ≈
1

(2l1 + 1)!!
(x)l1 , (4.115)

From (4.110) and (4.112) we see that if we insert this approximation for jl1(kr)
then for each term in the sum we would add to the total expression something
proportional to (kr)l1 . If kr ≪ 1 then only the first few terms, i.e. l1 = 0 would
be sufficient to calculate a good approximation for the displacement. The total
displacement would then be to a very good approximation described by (4.114).
We can therefore use the simple expression (4.114) to analyse how different grav-
itational wave polarisation of different theories of gravity will excite the same
modes up to a certain accuracy given a small enough resonance frequency. The
quadrupole tensor is to be contracted with the polarisation tensor of the gravi-
tational wave. We can therefore see very quickly that first, l = 2 is the only l
which will give any contribution because of the Kronecker delta δl,2 in front of
the integral. Secondly, if we let the polarisation tensor be of the form of 3.91
then the scalar polarization will give a particularly interesting contribution. The
contraction of (4.114) with 3.91 will give,

hs(δm,2 + δm,−2 −
√

2

3
δm,0) + hs(−δm,2 − δm,−2 −

√
2

3
δm,0) = −2hs

√
2

3
(4.116)

Doing the same for the standard polarisation from general relativity results in a
slightly higher polarisation. It is therefore slightly more difficult to detect a scalar
polarized gravitational wave from the moon than the other polarizations.
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4.6 Numerical integration
To find the response in the radially symmetric Earth and Moon models we must
begin by solving the differential equations system of (4.63) for toroidal oscillations
or (4.95) for spheroidal oscillations. We begin by making all state parameters
ρ(r), λ(r), µ(r), g(r), the radius r, the gravitational constant G and eigenfrequency
ω dimensionless by introducing the dimensionless parameters,

r̃ =
r

R
µ̃(r) =

µ(r)

µr

, ρ̃(r) =
ρ(r)

ρr
,

g̃(r) =
Rρr
µr

g(r), λ̃(r) =
λ(r)

µr

, G̃ =
R2ρ2r
µr

G, ω̃ = R

√
ρr
µr

ω.

We also introduce the augmented ỹ2, ỹ4, ỹ5 and ỹ6

ỹ2 =
R

µr

y2, ỹ4 =
R

µr

y4,

ỹ5 =
µr

R
y5, ỹ6 =

µr

R2
y6.

The new differential equation systems are now ready for numerical integration.

4.6.1 Toroidal oscillations

For toroidal oscillations we have the starting point of equations (4.63). Given
how toroidal oscillations give a zero displacement in the core we only consider the
mantle part of the integration. We must do one final step to ensure the differential
equation system is dimensionless. We define

ŷ2 =
R

µr

y2. (4.117)

With this definition we get the exact same system as (4.63) with the dimensionless
parameters and replacing y2 with ŷ2. We now must solve this system with the
boundary conditions y2(rc/R) = y2(1) = 0. We do this by making a guess for y1,
set the initial condition of y2 = 0 at the core-mantle boundary, and an additional
guess for the eigenfrequency ω. We proceed to solve the system using Runge
Kutta 4 method [11] from rc/R to 1. Varying the eigenfrequency until we satisfy
the second boundary conditions leads us to the correct eigenfrequency. We finish
by normalizing y1 to be 1 at the surface.

4.6.2 Spheroidal oscillations

Our procedure is as follows. We begin by choosing an arbitrary value for the
dimensionless eigenfrequency ω̃. We proceed to split our system into two parts:
A core part and a mantle part. The differential equation system varies slightly
for the different areas of the Earth model. This means that we will perform the
total integration in two steps. We begin the integration in the core at radius r = 0
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with arbitrary starting values to ỹ2 and ỹ6 while all other starting values are set
to zero. We perform the integration from r = 0 to the core-mantle boundary. We
then use the final values of y1, ỹ2, ỹ5 and ỹ6 as initial conditions for the second
integration over the mantle. For y3 we choose an arbitrary starting value at the
core-mantle boundary, while for ỹ4 we set the starting value to be zero as ỹ4(r) is
zero throughout the core. The boundary conditions,

y2(R) = 0,

y4(R) = 0,

y6(R) +
l(l + 1)

R
y5(R) = 0,

must also be satisfied. We wish to constrain the system by varying only the
eigenfrequency ω, however, we must also choose three arbitrary initial conditions.
It is therefore not too arbitrary what we choose these initial conditions to be, they
have to be somehow correlated. To achieve all boundary conditions simultaneously
one could make three sets of initial conditions, creating three sets of linearly
independent solutions. We construct a matrix like follows, y

(1)
2 (R) y

(2)
2 (R) y

(3)
2 (R)

y
(1)
4 (R) y

(2)
4 (R) y

(3)
4 (R)

y
(1)
6 (R) + l(l+1)

R
y
(1)
5 (R) y

(2)
6 (R) + l(l+1)

R
y
(2)
5 (R) y

(3)
6 (R) + l(l+1)

R
y
(3)
5 (R)

 = BC

The boundary conditions can then be written at the mantle boundary as

BC ×

AB
C

 =

00
0

 . (4.118)

This system only has a solution if the determinant is zero. We therefore vary the
eigenfrequency until the determinant changes sign. Then we perform Newtons
method to arrive at a sufficient enough accuracy for the eigenfrequency.

To determine the seismic response from a gravitational wave we also need val-
ues for y1 and y3. We, therefore, need to determine the coefficients A,B and
C. Numerically this is straightforward. We choose nine arbitrary initial values
from the eigenfrequency calculation, and run the differential equation system three
times, once for each set of initial conditions. We the perform Gaussian elimination
on the resulting matrix and given the accuracy of the integration the 3x3 element
of the matrix should approach zero compared to the other nonzero elements. We
can then set this element to zero, effectively choosing C as equal to 1, and find
the resulting values of A and B by simple algebra. Since we have now arrived
at a set of initial conditions which satisfy all boundary conditions simultaneously
we have arrive at the goal of finding the parameter functions y1, y2,..., y6. It is
worthwile to mention here the detail of setting C = 1 or equivalently, set the (3, 3)
element of the matrix to exactly zero. To get a nontrivial solution of (0, 0, 0) we
need the determinant of the matrix to be zero. It should therefore be sufficient to
set this element to zero as long as we realise that this nontrivial solution is just
an approximation and that changing this value from a nonzero number to a zero
number should only be allowed if the number is ≪ 1.
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4.7 The plus-, cross-, and scalar polarisation from
a simple pulsar model

It would be of interest to consider one type of astrophysical object in which we
could predict the response in a Moon detector. For this, we follow the paper of
[12] to derive an expression for the plus, cross, and scalar polarisation produced
from a simple pulsar model. The model in question needs to have some sort of
asymmetry to get a time-dependent dipole and quadrupole moment. We assume
a spherical neutron star with a "mountain" that can be approximated as a point
mass. We say "mountain" in quotation marks as it is not a real mountain, but
some asymmetry on the neutron star. The size of the asymmetry is assumed to be
much smaller than the size of the neutron star. The mass density of the mountain
can then be assumed to take the simple expression of,

ρ = mδ(x−R)δ(y)δ(z), (4.119)

where we here assumed the point mass to be at the surface at the coordinate of
x = R, y = 0 and z = 0. The dipole moment is by the simple expression of the
density easy to calculate. It is then,

Di = (mR, 0, 0). (4.120)

The quadrupole moment is similarly easy to calculate and we get,

I ij =

2
3
mR2 0 0
0 −1

3
mR2 0

0 0 −1
3
mR2

 . (4.121)

The expression for the dipole and quadrupole moments are in the source frame.
To transform them into the wave frame so that they can be inserted into (3.97),
(3.98) and (3.99) we have to transform the dipole and quadrupole moments into
an inertial frame and then into the wave zone. Let the matrix S be a matrix
transformation from the source frame to an inertial frame and let W be a matrix
transformation from an inertial frame to the wave zone. If ϑ is the angle between
the angular momentum vector and the direction of travel for the gravitational
wave then the S matrix has the form,

S =

cosϑ 0 − sinϑ
0 1 0

sinϑ 0 cosϑ

 . (4.122)

If φ(t) is the instantaneous rotational phase of the neutron star, then theW matrix
takes the form,

W =

cosφ(t) − sinφ(t) 0
sinφ(t) cosφ(t) 0

0 0 0

 . (4.123)

Making the assumption that the rotational phase is varying slowly allows us to
Taylor expand φ(t),

φ(t) = φ(0) + 2π
∞∑
l=0

f (l)(0)
tl+1

(l + 1)!
. (4.124)
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where f (l)(0) is the l’th derivative of φ(t) evaluated at t = 0. Using now equation
(3.97), (3.98) and (3.99) we get an expression for each polarisation in terms of
the properties of the pulsar. Let us consider the plus and cross polarisation first,
which by insertion into (3.97) and 3.98 becomes,

h+(t) = h0
1 + cos2 ϑ

2
cos 2φ(t), (4.125a)

h× = h0 cosϑ sin 2φ(t), (4.125b)

where,

h0 =
16π2G

c4
(1− ζ)(Ixx − Iyy)

f 2
0

r
, (4.126)

and Ixx, Iyy is taken in the source frame and f0 is the spin frequency of the star.
Inserting for Ixx and Iyy, we then get,

h0 =
16π2Gm

3c4
(1− ζ)

f 2
0R

2

r
, (4.127)

Assuming the simple form of the dipole moment from (4.120), then for the scalar
polarisation we get with (3.99),

hS(t) = −4πG

rc3
ζ

(
mRf0 sinϑ sinφ(t) +

2π

3c
mR2f 2

0 sin
2 ϑ cos 2φ(t)

)
. (4.128)

Given values for the parameters for the pulsar one could now determine the po-
larisation response by the potential Moon detector through (4.76) or (4.101).
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CHAPTER

FIVE

EARTH AND MOON RESPONSE TO
GRAVITATIONAL WAVES

We have now arrived at the results of this thesis. We begin with an analysis of
the Jefferys-Bullen A’ Earth Model [13] before we continue to a similar analysis
on three Moon models taken from [14]. All models assume a spherical symmetry
with a liquid core and a solid mantle. It is additionally assumed that the core
and mantle are described completely by the radius R, core radius rc, density ρ(r),
and the first and second Lamé parameters λ(r) and µ(r). We will begin with the
Earth model making a comparison to known tabulated values. We will proceed to
study the different Moon models and make comparisons on the eigenfrequencies
and parameter functions yn(r) which are highly relevant for the calculation of the
response of the Moon to gravitational waves. We will then calculate the expected
displacement of the Moon predicted by different models to a gravitational wave
signal. Lastly, we will study the response over a frequency spectrum and make
comments on the frequency range that our models predict to be most sensitive for
a potential gravitational wave detector on the Moon.

5.1 Earth response

5.1.1 Earth model

The Jeffreys-Bullen A’ Model is used to determine the eigenfrequencies of the
Earth. The model is described by the density ρ(r), the radius of the core and
mantle R and rc, and the two Lamé parameters λ(r) and µ(r). The parameters
are shown as a function of radius in figure 5.1.1. The data points are taken from
pages (1057-1059) of [10]. For the following analysis of this chapter we use a linear
interpolation between each data point. The core-mantle boundary is located at
r = 3470km. In figure 5.1.1 this is easily seen for the second Lamé parameter µ(r).
This parameter is exactly zero in the core. We also note how the gravitational
acceleration does not follow the usual relation for the gravitational acceleration,

g0(r) =
4πG

r2

∫ r

0

ρ0(x)x
2dx, (5.1)

where g0(r) is completely determined from the integral over the density ρ(r). We
stated introductory that all models used are completely described byR, rc, ρ(r), µ(r)

57
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Figure 5.1.1: The parameters describing the Jeffreys-Bullen A’ Earth model.
The density is shown in the top-left plot, the first Lamé parameter is shown in the
top-right plot, the second Lamé parameter is shown in the bottom-left plot and
the gravitational attraction is shown in the bottom-right plot.
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and λ(r). Here, g(r) is not mentioned. The gravitational acceleration plotted in
figure 5.1.1 is taken from the same table as the values for ρ, λ and µ. It is for
simplicity kept as is for our discussion and analysis.

5.1.2 Eigenfrequencies for Jeffreys-Bullen A’ Earth model

The four first numerically calculated eigenfrequencies of the Jeffreys-Bullen A’
Earth model are presented in Table 5.1.1, where the numerical procedure was
described in Section 4.5.1 for the toroidal eigenfrequencies and in Section 4.5.2
for spheroidal oscillations. For the toroidal eigenfrequencies, we used the initial

n Earth Model Toroidal Earth Model Spheroidal

0 0.00241 s−1 (4.315) 0.00205 s−1 (3.682)

1 0.00834 s−1 (14.967) 0.00432 s−1 (7.766)

2 0.0142 s−1 (25.508) 0.00691 s−1 (12.392)

3 0.0206 s−1 (36.899) 0.0108 s−1 (19.431)

Table 5.1.1: The first four eigenfrequencies for the Jeffreys-Bullen A’ Earth
model with the numerical dimensionless eigenfrequencies in parentheses.

condition y0 = 1. For the spheroidal eigenfrequencies, we recall that we needed
three sets of three initial conditions and that these sets had to be different or in
some sense linearly independent. These were chosen to be,

set one of initial conditions = (ỹ
(1)
2 , ỹ

(1)
3 , ỹ

(1)
6 ) = (0.4, 0.2, 0.1), (5.2a)

set two of initial conditions = (ỹ
(2)
2 , ỹ

(2)
3 , ỹ

(2)
6 ) = (0.1, 0.1, 0.2), (5.2b)

set three of initial conditions = (ỹ
(3)
2 , ỹ

(3)
3 , ỹ

(3)
6 ) = (0.2, 0.2, 0.3). (5.2c)

To go from the dimensionless eigenfrequency to the value without parentheses in
the table one has to multiply the dimensionless eigenfrequency by the reference
value introduced in section 4.5 such that the differential equation system became
dimensionless. For the first model, this reference value for the frequency was
ωr = 1

R

√
µr

ρr
≃ 0.000557. We will employ the first eigenfrequency to calculate

the displacement from a gravitational wave. We could have chosen any of the
eigenfrequencies, however, as the response will look similar for any of the infinite
choices of eigenfrequencies we restrict ourselves to the first. We will later in this
chapter investigate the response behaviour for varying frequency and will show
that the amplitude of the response is reduced for higher frequencies. In figure
5.1.2 we observe the first parameter functions for the Earth model. We can see
how the boundary condition is indeed satisfied and that the behavior of y1 means
the displacement grows approximately linearly with the distance from the core.

5.1.3 Displacement for Earth model in general relativity

In this section, we will present the displacement of the gravitational wave signal for
the Earth predicted by the model. We will require the eigenfrequencies from the
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Figure 5.1.2: The normalised parameter functions y1 and y2 of the first toroidal
eigenfrequency ω0 ≃ 0.00241s−1 for the Earth model.

last section to determine the parameter functions yn. For the current discussion,
we restrict our analysis to only study the displacement of the model at resonance,
i.e. ωn = ωgw, where ωgw is the frequency of the gravitational wave. We have for
any calculation on the Earth model chosen the quality factor of Q0 = 600 where
this is the same value used in [3]. There could potentially be a difference in the
quality factor of the toroidal and spheroidal oscillations. We assume however that
both oscillations can be described by the chosen value for the quality factor in this
thesis for simplicity.

5.1.3.1 Toroidal displacement at resonance

From the last section, we note that the first eigenfrequency is in the millihertz
range. The total displacement, as seen explicitly from(4.78), depends on kr via the
Bessel function jl(kr). We can use an expansion of the Bessel function to simplify
the expression of the total displacement. As the argument of the Bessel function
will be of the order of ωR/c ≈ 10−5 we can safely employ the approximation

jl1(x) ≈
1

(2l1 + 1)!!
(x)l1 . (5.3)

Since the dependence grows with powers of ωR/c, the biggest contribution comes
from l1 = 0. This term turns out to be zero however1 and we must continue
with the l1 = 1 term to get a nonzero contribution. With this in mind, there are
additional ways to simplify the expression of FT further. We also observe that for
the Wigner symbols with all lower components with zeroes, we must require that
l + l1 is odd to get a nonzero contribution. With l1 = 1 we must then have l = 2.
The only component of FT which depends on m is H l1m1

lm (e, λ, ν). It is difficult at
first glance to observe for which m H l1m1

lm (e, λ, ν) gives a nonzero result as we must
take the angles e, λ, ν into consideration as well. If we consider a gravitational
wave travelling in the z−direction giving us the familiar polarisation tensor from
chapter 3, more specifically (3.40) then the angles are e = 0, λ = 0, and ν = π/4.

1See appendix A for more details.
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H l1m1
lm now simplifies to

H1m1
2m =

i

2
√
2

√
(l +m)(l −m+ 1)

(
1 2 1
m1 m− 1 −1

)
. (5.4)

We now must have that m1 +m − 1 − 1 = 0 and m ̸= −l or m = l + 1. Let us
consider the contribution from l1 = 1. This implies that l = 2. For m we must
then see if any of the combinations of −1 ≤ m1 ≤ 1 and −2 ≤ m ≤ 2 satisfies
m1 +m− 1− 1 = 0. For l = 2 we quickly realize that m = 2 and m = 1 are the
only candidates. However, since the associated Legendre polynomial P 1

2 vanishes
we get that m = 2 is the only combination that survives for l = 2. This simplifies
our expression for FT even further to

FT =
8π

5
√
6

∫ R

0

µ̇yT1n(r)kr
3dr − 8πi

5
√
6
µ(R)kR3yT1n(R). (5.5)

We will now calculate the displacement for the toroidal oscillations from a gravi-
tational wave with the momentum vector determined by the angles e = 0, λ = 0,
and ν = π/4. As discussed it is sufficient to stick to l1 = 1. We let l = 2 and
m = 2 and use (4.76) to calculate the displacement. We leave the parameter
function y1(r) and the vector C(θ, ϕ) out of the discussion for now since y1(r)
is normalized to 1 at the surface and we are mainly interested in the size of the
displacement and not where on the sphere the displacement takes place for now.
Assuming that the incoming gravitational wave is a monochromatic wave with a
signal lasting the time 2τ , the source function can be written as

g(t) = (H(t+ τ)−H(t− τ))eiωgwt, (5.6)

whereH(t) is the Heaviside step function. The effect of the eigenvibration becomes
by (4.67),

ḡ(t) =
g(t)

(ω0 − ωn)2 + ω2
n/(4Qn)

. (5.7)

We assume an amplitude h0 of the gravitational wave and a signal with the length
of the first eigenperiode. We define this as

ξT (t) = h0(Λ
022
T )−1FT ḡ(t). (5.8)

At the surface of the Earth model, the displacement is then,

ξT

(
t =

π

2ω0

)
= h0 × 2.6× 105cm, (5.9)

where Λ022
T and FT are calculated using the normalized parameter function y1(r).

The time was chosen to get the maximum displacement. The displacement for the
toroidal mode Tm l , where m = l = 2 given the discussion from the last section,
at resonance for the first toroidal eigenfrequency is plotted in figure 5.1.3 at the
surface with the same time chosen such that the displacement is maximum. The
plots in figure 5.1.3 deserve a comment. We have assumed that the angles λ, e, ν
defined back in Chapter 4 for the momentum vector of the incoming wave are
chosen such that the function of H l1m1

lm takes on a particularly simple form. In
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Figure 5.1.3: The T2 2 displacement per unit strain (i.e h0 = 1) of the Earth
model to a gravitational wave at resonance with the first eigenfrequency in units
of cm. The top figure is the displacement in the ê(r) direction, the middle figure
in the ê(θ) direction and the bottom figure in the ê(ϕ) direction.
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this simple form, the main contribution of the oscillations comes only from the
T22 mode. If instead a gravitational wave is described by other sets of angles,
then it can excite other modes. The radial displacement in the top figure 5.1.3
is the displacement in the direction of the unit vector êr. The yellow colour
represents a positive displacement out of the sphere while the blue colour is the
negative displacement and points into the sphere. The middle and bottom plot in
Figure 5.1.3 shows the displacement in the direction of ê(θ)i and ê

(ϕ)
i respectively.

For the middle figure of Figure 5.1.3 we recall that a positive displacement in
yellow points in the positive z-direction, in other words, up on the page. A yellow
colour then represents a displacement pointing upwards in the middle figure and
a negative blue colour represents a displacement pointing downwards. For the
bottom figure, a yellow positive displacement points to the right while a negative
blue colour points to the left. We hope this will avoid confusion for the spheroidal
plots following this with the same notations. To summarise, gravitational wave
resonance with the first eigenfrequency of the Earth, predicted by the first model
is a small displacement given by ≈ h0 × 105cm. Given a common source such as
the binary black holes detected by LIGO [1] then we have h0 ≈ 10−21. One can
then expect a displacement of ≈ 10−16cm.

5.1.3.2 Spheroidal displacement at resonance

For the spheroidal oscillations of the Earth model we use equation (4.101) to
find the displacement. We again ignore the vector part and the dimensionless
h0 to get an idea of the response of the Earth body to a gravitational wave at
the first resonance frequency. The parameter functions for the first spheroidal
eigenfrequency in table 5.1.1 are plotted in figure 5.1.4. We observe that the
boundary conditions are satisfied with y2(R) = −1.6× 10−6, y4(R) = −1.1× 10−5

and y6 + 6y5 = 1.4 × 10−5. With the parameter functions, we can now find the
displacement from the spheroidal oscillations from gravitational wave resonance.
We recall from Chapter 4 that the l = 2 mode gives the main contribution when
the argument of the Bessel function kR satisfies kR ≪ 1, or ω0R

c
≪ 1. This

is satisfied for the first eigenfrequency so we assume that the total quadrupole
moment can be approximated to δDP and δDB from (4.114). We then have for
a monochromatic gravitational wave with amplitude h0 ignoring the vector part
Q22

i (θ, ϕ) the response, similar to the definition for the toroidal case, defined as,

ξS(t) = h0(Λ
022
S )−1(FS1 + FS2)ḡ(t), (5.10)

Choosing the time with the maximum response we get,

ξS

(
t =

π

2ω0

)
= h0 × 4.915× 109cm. (5.11)

This is a much bigger response than the toroidal oscillations. This is not un-
expected since for the toroidal case we had to go to the term of l1 = 1 in the
expansion of the integral (6.19), while for the spheroidal case of the expansion
(6.33) and (6.33) gives a nonzero result for the l1 = 0 term. Figure 5.1.5 is the
plot of the displacement in the êr, êθ and êϕ directions for the spheroidal mode S2 2

with the amplitude of the gravitational wave h0 = 1. We see that the displacement
u ≈ h0 × 108 cm. If one had a source with h0 = 10−21 then this would produce
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Figure 5.1.4: The spheroidal parameter functions for the first eigenfrequency of
the Jeffreys-Bullen A’ Earth model.
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Figure 5.1.5: The S2 2 displacement of Earth model per unit strain in units of
cm. The top figure is the displacement in the ê(r) direction, the middle figure is
the displacement in the ê(θ) direction and the bottom figure in the ê(ϕ) direction.
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a displacement on Earth of order ≈ 10−13 cm. A significantly higher contribution
than the toroidal case. This is also in agreement with our approximation scheme
of having to go to l1 = 1 for the toroidal case while l1 = 0 gave a nonzero result
for the spheroidal case.

5.1.4 Displacement for Earth in Brans-Dicke

From Chapter 4 we know that the main contribution of oscillations from scalar
polarised gravitational waves is from the l = 2, m = 0 spheroidal mode, i.e. S0 2 .
We assume a monochromatic source and plot the displacement in figure 5.1.6. We
proceed to also calculate the displacement given a monochromatic gravitational
wave with amplitude h0 ignoring the vector dependent part Q(ml)

i (θ, ϕ) of the
displacement. We arrive at,

ξS

(
t =

π

2ω0

)
= h0 × 3.956× 109cm, (5.12)

which is of the same order as the response from the cross and plus polarisation
as expected, however slightly lower. The S0 2 mode excited from the scalar po-
larisation is very different from the S2 2 mode excited from the plus- and cross
polarisation. We do observe from equation (4.114) that this mode can be exited
in general relativity and no does not need Brans-Dicke to explain a potential ex-
citation of this form. What is new is the fact that if we are aware of where the
gravitational wave is coming from and rotate the coordinate system such that the
polarisation tensor takes on the specifically easy form of (3.91) then one would
have evidence for theories of gravity beyond general relativity.

5.2 Moon response

5.2.1 Moon models

Three different Moon models are studied to analyze the response from gravitational
waves. The three models are taken from reference [14]. We will summarize the
key characteristics of each model in this section. We recall that all models are de-
scribed by the density ρ(r), the Lamé parameters λ(r) and µ(r), and gravitational
acceleration g(r). The parameterization of the models is based on polynomial C1

Bézier curves. The advantage of this method is a non-regular spaced discretion
of the models and no prior constraint on layer thickness or location of seismic
discontinuities. The values used in the models are median values of the model’s
ensembles. For in-depth details of the construction of the models, we refer to refer-
ence [14]. The parameters of the models are shown in figure 5.2.1. Red represents
the first model, blue is the second model, and green is the third model. We can
see some similarities immediately. All models predict to a certain approximation
a similar behavior of all parameters in most of the mantle, while in the core the
parameters for all models depart. Moreover, the models have a slight disagreement
on the core radius. The first Lamé parameter λ(r) is especially interesting as it
completely splits as we reach the core. The models determine the eigenfrequen-
cies of the Moon’s body. For our purpose of determining the displacement by a
gravitational wave, we study the components of (4.58) and (4.82). We see that it
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Figure 5.1.6: The S0 2 displacement of Earth model per unit strain in units of
cm by a scalar polarised gravitational wave. The top figure is the displacement in
the ê(r) direction, the middle figure is the displacement in the ê(θ) direction and
the bottom figure in the ê(ϕ) direction.
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Figure 5.2.1: The parameters ρ(r), µ(r), λ(r) and g(r) of the three Moon models.
Model 1 in red, model 2 in blue and model 3 in green.

is the parameter functions y1 for toroidal oscillations and y1 and y3 for spheroidal
oscillations with the eigenfrequencies which will directly affect the response the
models will predict. We will first consider the predicted eigenfrequencies by the
models.

5.2.2 Eigenfrequencies of Moon models

By the procedure of section 4.4, we can find the eigenfrequencies of the Moon mod-
els. Given that it is possible to measure the eigenfrequency for different modes of
the moon it is interesting to examine if one would get a measurable difference for
the models. We would expect that this difference is not too big for the toroidal
eigenfrequencies as the oscillation only takes place in the mantle and crust. Given
that our models mostly agree in the mantle and the mantle radius is much big-
ger than the crust radius we should expect not too much of a difference here. For
spheroidal oscillations on the other hand we expect to see a bigger difference. Here
the whole model must be taken into account and the core would give some effect
on the eigenfrequencies. We recall that our procedure to find an eigenfrequency
of a model is to vary a test frequency until our constructed determinant which
depends on this frequency and the boundary conditions becomes zero. We summa-
rize the eigenfrequencies in Table 5.2.1. Here the number without a parenthesis is
the eigenfrequency in seconds while the numbers in parenthesis are the dimension-
less eigenfrequency which we include these number for convenience to reproduce
results. To go from the dimensionless value to the real eigenfrequency one has to
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n M1:Toroidal M1:Spheroidal

0 0.00624 s−1 (4.672) 0.00665 s−1 (4.797)

1 0.0182 s−1 (13.648) 0.0116 s−1 (8.696)

2 0.0268 s−1 (20.071) 0.0184 s−1 (13.795)

3 0.0354 s−1 (26.508) 0.0250 s−1 (18.707)

n M2:Toroidal M2:Spheroidal

0 0.00637 s−1 (22.144) 0.00660 s−1 (22.939)

1 0.0185 s−1 (64.407) 0.0119 s−1 (41.264)

2 0.0276 s−1 (95.788) 0.0181 s−1 (62.891)

3 0.0369 s−1 (128.106) 0.0251 s−1 (87.166)

n M3:Toroidal M3:Spheroidal

0 0.00636 s−1 (4.469) 0.00635 s−1 (4.625)

1 0.0183 s−1 (12.896) 0.0119 s−1 (8.381)

2 0.0256 s−1 (18.022) 0.0169 s−1 (11.861)

3 0.0310 s−1 (21.780) 0.0261 s−1 (18.330)

Table 5.2.1: The first four spheroidal eigenfrequencies of the Moon models
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multiply the dimensionless value by the reference value which was chosen for each
model. This is why the dimensionless value for model 2 is much bigger than for
model 1 and model 3. The reference value for the model one is, ωr ≃ 0.00134
s−1, model two ωr ≃ 0.000288 s−1 and for model three ωr ≃ 0.00142 s−1. It is
interesting to note the level of agreement for the eigenfrequencies for all models.
With this motivation, we make a quick analysis of how strongly our parameters
influence the eigenfrequency. We take Moon model 1 into consideration for this.
We make a simpler model which is easier to adjust than the original. This new
simple model is constructed in the following way. We restrict ourselves to only
three different areas: The core, the mantle and the crust and let the parameters
be constant in these areas. We then take the constant values to be the same as
the r = 0 for the core, the average for the mantle and the same as r = R for the
crust. The new simplified model now labeled as M1* is plotted with the original
model in figure 5.2.2
We will use this simplified model to adjust the core-mantle boundary to study
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Figure 5.2.2: Comparison of the Lamé parameters in the Moon model 1 in blue
and in the simplified Moon model 1* in orange. The left figure shows the compar-
ison of the first Lamé parameter λ(r), and the right figure shows the comparison
of the second Lamé parameter µ(r)

how the eigenfrequency varies with the boundary radius. It is interesting to see
how the eigenfrequencies of this new simplified model compare to the original M1
model. The first four eigenfrequencies of the M1* model with the same core radius
as the M1 model are summarised in table 5.2.2. Comparing the eigenfrequencies
of the M1 and M1* models we see that the agreement of the simplified M1* model
with the original model M1 is high. It should therefore be a reasonable start-
ing point to adjust the core-mantle boundary. This variation is plotted in Figure
5.2.3. We observe a change as we move the boundary. It is interesting to note that
the eigenfrequency stays relatively stable with small changes to the core-boundary
radius. Even making a core radius at twice the size of the M1 model keeps the fre-
quency from disagreeing substantially from our original value. We note how the
core-mantle boundary affects the spheroidal frequency in a much higher degree
than the toroidal frequency. To check if the suggested eigenfrequencies indeed are
eigenfrequencies of the system we can plot the parameter functions y1, y2, ..., y6,
and see if they obey the boundary conditions which we recall to be y2 = 0, y4 = 0
and y6 + l(l + 1)y5 = 0 at the surface r = R. It will also be useful to plot y1
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Figure 5.2.3: The variation of the first toroidal eigenfrequency (left) and the
first spheroidal eigenfrequency (right) in s−1 on the core radius rc for the M1*
model
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n Model 1 Toroidal Model 1 Spheroidal

0 0.00624 s−1 (4.672) 0.00665 s−1 (4.797)

1 0.0182 s−1 (13.648) 0.0116 s−1 (8.696)

2 0.0268 s−1 (20.071) 0.0184 s−1 (13.795)

3 0.0354 s−1 (26.508) 0.0250 s−1 (18.707)

n Model 1* Toroidal Model 1* Spheroidal

0 0.00613 s−1 (4.588) 0.00646 s−1 (4.838)

1 0.0182 s−1 (13.624) 0.0114 s−1 (8.559)

2 0.0268 s−1 (20.099) 0.0184 s−1 (13.781)

3 0.0356 s−1 (26.645) 0.0247 s−1 (18.524)

Table 5.2.2: Eigenfrequencies of the M1 and M1* models

and y3 since they are of importance in the calculation of the total displacement
response to the gravitational waves. One can see a small deviation where the dif-
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Figure 5.2.4: Comparison of the normalised toroidal parameter functions y1 and
y2 for the first eigenfrequency of the three main Moon models considered. Moon
model one in red, model two in blue, and model three in green.

ferent y1 and y2 functions start. This is because the core-mantle boundary has a
slightly different value for the three models. In figure 5.2.4 we plotted the param-
eter functions for the three models for the first toroidal eigenfrequency keeping
the colour coding of red for model 1, blue for model 2, and green for model 3.
In figure 5.2.5 we plotted the parameter functions for the three models for the
first spheroidal eigenfrequency keeping again the same colour code. We observe
how the boundary conditions are indeed satisfied. We note that these functions
have been normalized so that their behaviour can be clearly compared. The y1
functions have been normalized so that their value is one at the surface, while y2
have been normalized by their value atr = R/2, as their value at the surface is
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optimally zero making this an obviously bad normalization. From the right plot in
figure 5.2.4 we see that the boundary conditions seem to be satisfied with y2 = 0
for all models. These values are indeed very close to zero as y(1)2 (R) ≈ 0.0002,
y
(2)
2 (R) ≈ −7.5 × 10−5 and y

(3)
2 (R) ≈ 0.0002 Figure 5.2.5 contains the parameter

functions for the first eigenfrequency of the three Moon models. The functions
y1, y3, y5 and y6 have been normalised at the surface of the Moon, while y2 and
y4 are normalized at r = R/2 such that y2(R/2) = y4(R/2) = 1. We observe
an agreement on the general behaviour of all the functions, although we also ob-
serve some deviations. The parameter function y3 stands out, especially as the y3
function for Moon model 3 looks very different from its Moon model 1 and 2 coun-
terparts. This is mostly due to numerical sensitivity. It is interesting to compare
if the boundary conditions for the three models agree with the plots. The values
for the boundary conditions for the three models are summarised in table 5.2.3.
Here BC1 corresponds to y2 = 0, BC2 to y4 = 0 and BC3 to y6+l(l+1)y5 = 0. We
observe that most predominantly for model 2 the boundary conditions are only
loosely satisfied. For model 3 it is closer to the required boundary conditions, but
still not nearly as close as for model 1. Increasing the accuracy of the eigenfre-
quency for Moon model 3 for example leads to a very small change in the value
for the eigenfrequency, but the parameter functions are very sensitive to even a
small change in the eigenfrequency.

Model 1 Model 2 Model 3

BC1 0.000490 0.248127 -0.07140

BC2 -0.000340 -0.242149 0.032954

BC3 0.000336 -0.005468 -0.002932

Table 5.2.3: The boundary conditions for the first spheroidal eigenfrequencies
constructed by y2, y4, y5 and y6 from figure 5.2.5

5.2.3 Displacement for the Moon

This section will present data on the displacement of three Moon models from our
numerical integration procedure explained in Chapter Four. We assume a quality
factor for all Moon models calculations for the first eigenfrequency Q0 = 3300
taken from [14]. Studying the equation for the displacement (4.76) and (4.101) we
observe that the vector part of these expressions does not directly depend on the
models at the surface. We wish to compare the response of the models, so for this
comparison, we use (5.8) for the toroidal response and (5.10) for the spheroidal
case which is as we recall just the response of (4.76) and (4.101) without the vec-
torial part and the amplitude of the gravitational wave. For the spheroidal case.
With the use of ξT and ξS we will compare the response of the different Models.
We begin with the consideration of the toroidal response. By the argument of sec-
tion 5.1.3 we know that the T2 2 mode is of special interest and therefore the only
mode we will consider. Figure 5.2.6 includes the toroidal displacement for the T2 2

mode of Moon model One in spherical coordinates. The shape of the oscillation
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Figure 5.2.5: Comparison of the normalised spheroidal parameter functions
y1, y2, y3, y4, y5 and y6 for the first eigenfrequency of the three main Moon models
considered. Moon model one in red, model two in blue, and model three in green.
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is to be expected from the standard T2 2 oscillations. It is more interesting for our
purposes of studying a potential measurement of gravitational wave resonance on
the Moon to compare the displacement value for each of the models. We include
the plots for the first model to give a visual idea of the predicted response but
since the second and third Moon models will produce a similar shape response we
do not plot these. The differences between the models are captured by ξT and ξS
and their values determined by our numerical integrations are summarised in Ta-
ble 5.2.4 The toroidal displacement shown in figure 5.2.6 shows a higher response
than for the Earth model by a factor of two orders of magnitude. Comparing the
toroidal values of model 2 and model 3 there is a certain agreement with Model 2
having a higher value of 1.530×107cm compared to 7.127×106cm for Model 1 and
7.520 × 106cm for Model 2. It is interesting to note this difference as comparing
just Model 1 and Model 3 the difference is small. Looking back at the model
parameters plot of figure 5.2.1 we do observe that the second model stands out
compared to the other two models close to the surface, particularly for the second
Lamé parameter µ(r). The second Lamé parameter is two orders lower than the
value of the parameter for model 1 and model 3. This might be the source of this
difference as observing that the parameter functions of the models agree quite well
and we believe will have a negligible effect on the final displacement.

We proceed to the displacement from the spheroidal oscillations. By the same
arguments as used for the Earth model, we are mainly interested in the S2 2 and
S−2 2 mode. The S−2 2 mode will give a similar contribution to the S2 2 mode so

we restrict our attention to the S2 2 mode which is plotted in figure 5.2.7 for Moon
model 1. Comparing the three Moon models we see in table 5.2.4 that the three
models agree quite well on the value for ξS for the S2 2 mode. We do observe the
same trend as for the toroidal mode in that the response of model 2 is greater
than the other models with model 3 greater than the model 1 response. The
difference seems to be lower in the spheroidal case. We suspect this arises from
the spheroidal dependence on the parameter values of the core and not just the
mantle as in the toroidal case.

The last mode for discussion is the mode excited by the scalar polarised gravita-
tional wave S0 2 . The response for the first model is plotted in spherical coordinates
in figure 5.2.8. Comparing the values of ξS for the S0 2 mode there is a similar
pattern for the S2 2 mode in that the greatest response is predicted by model 2,
followed by model 3 with the weakest response from model 1. We also observe a
smaller contribution for this mode in the same model as the S2 2 mode. This is in
agreement with the final discussion from Section 4.5. This difference is however
not so large and the response is of a similar order. From our analysis, we therefore
conclude that all the models agree on the order of magnitude for the displacement
from gravitational wave resonance on the Moon. If one could measure the plus-
and cross-polarisation state of a gravitational wave then one should also be able
to detect the scalar polarisation given that it exists.
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Figure 5.2.6: The T2 2 displacement per unit strain h0 = 1 of Moon model 1 to
a plus and cross polarised gravitational wave in units of cm. The top figure is the
displacement in the ê(r) direction, the middle figure in the ê(θ) direction and the
bottom figure in the ê(ϕ) direction.



CHAPTER 5. RESPONSE TO GRAVITATIONAL WAVES 77

-150°-120°-90° -60° -30° 0° 30° 60° 90° 120°150°

-75°
-60°

-45°
-30°

-15°
0°

15°
30°

45°
60°

75° e(r) displacement

1

0

1

1e11

-150°-120°-90° -60° -30° 0° 30° 60° 90° 120°150°

-75°
-60°

-45°
-30°

-15°
0°

15°
30°

45°
60°

75° e( ) displacement

4

2

0

2

4
1e11

-150°-120°-90° -60° -30° 0° 30° 60° 90° 120°150°

-75°
-60°

-45°
-30°

-15°
0°

15°
30°

45°
60°

75° e( ) displacement

5

0

5

1e11

Figure 5.2.7: The S2 2 displacement of Moon model 1 to a plus- and cross-
polarised gravitational wave in units of cm. The top figure shows the displacement
in the ê(r) direction, the middle figure shows the displacement in the ê(θ) direction
and the bottom figure shows the displacement in the ê(ϕ) direction.
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Figure 5.2.8: The S0 2 displacement of Moon model 1 to a scalar polarised
gravitational wave in cm. The top model shows the displacement in the ê(r)

direction, the middle model shows the displacement in the ê(θ) direction and the
bottom model shows the displacement in the ê(ϕ) direction.
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Mode Model One Model Two Model Three

T2 2 7.127× 106cm 1.530× 107cm 7.520× 106cm

S2 2 3.261× 1011cm 5.642× 1011cm 4.814× 1011cm

S0 2 2.663× 1011cm 4.606× 1011cm 3.931× 1011cm

Table 5.2.4: ξT/h0 and ξS/h0 for the different Moon models of the T2 2 , S2 2 and
S0 2 mode.

5.3 Total response over frequency
We have up to this point kept our focus mainly on the first eigenfrequency of the
Moon models. Even though we have presented the first four eigenfrequencies we
have calculated only the response of the Moon from this first eigenfrequency. It
is interesting to see if the response changes as we move to other frequencies for
the incoming gravitational wave. Since we can not guarantee that the frequency
of the signal we hope to detect will exactly match the eigenfrequency of the Moon
or any other spherical body. If we again assume a gravitational wave with the
incoming vector p = (0, 0, 1), then the expression for the main contribution from
spheroidal oscillations is

u
(nml)
i (r, t) = h0(Λ

(nml))−1ḡ(t)Q
∗(nml)
i (r)(FS1 + FS2). (5.13)

We now completely ignore h0 considering only the response per unit strain. We
are also not interested in the vectorial part of the expression, but in its magnitude
and so the vector Qi is ignored as well. We are left with Λ, FS1 , FS2 and ḡ(t). We
define ξnml(t) = (Λ(nml))−1ḡ(t)(FS1 +FS2). We are interested in the total response
and we must therefore sum over the number of eigenfrequencies. We restrict the
analysis to l = 2 and m = 2,

ξtot(t) =
∞∑
n=0

ξn22(t). (5.14)

We choose t such that the response is maximum. We make the assumption that the
response from all the eigenfrequencies adds constructively. If we proceed to assume
a signal of a finite monochromatic wave of 2T0 where T0 is the eigenperiod for the
first eigenfrequency then we have that the source effect on the eigenvibration is

ḡ(t) =
1

(ωn − ωgw)2 + iω2
n/(4Qn)

(H(t+ 2T0)−H(t− 2T0)), (5.15)

where the sinusoidal time dependence was omitted. We plot the gravitational
response per unit strain as a function of the frequency of the incoming gravitational
wave in figure 5.3.1. We choose again a quality factor of Q0 = 3300 for the first
eigenfrequency. For the other eigenfrequencies however we assume a behaviour of
Qn ∝ ω−1

n . We have included the first 37 eigenfrequencies of the Moon model.
We observe a general trend of decreasing response at higher resonances and

the distance between each resonance point decreasing as we move to higher fre-
quencies in Figure 5.3.1. At frequencies smaller than the first eigenfrequency we
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Figure 5.3.1: Comparison of the gravitational wave response between Moon
model 1 and figure taken from [15]. The left figure is the response predicted by
Moon model 1 having taken the first 37 eigenfrequencies into account. The right
figure is the predicted response per unit strain taken from [15] where the first 22
eigenfrequencies are considered.

observe a tiny response. This implies that the detectability of a gravitational wave
signal with a frequency less than millihertz frequency is unlikely from the normal
modes predicted by the first Moon model. We also note on the trend of becoming
broadband detector for higher frequencies. In figure 5.3.1 we observe at frequen-
cies close to ≈ 10−1Hz a difficulty to distinguish peaks. The resonance detector
behaviour transitions into a continuous response with a slow tendency for a lower
response at even higher frequencies than what is plotted. The reason for the de-
crease in magnitude comes from the quality factor Qn at higher n as we have in
our model assumed that it evolves as 1/fn, where fn is the n’th eigenfrequency,
which eventually dies out as the frequency grows. We have also plotted for higher
frequencies than what we have included eigenfrequencies. This means that for a
certain frequency, we no longer have resonance in the calculations even though
there will be on the Moon. This is a limitation from the numerical procedure.

We also wish to comment on a figure taken from [15] as it served as inspira-
tion for the creation of 5.3.1 a. Firstly we note that two figures do agree to a
certain extent for the degree of response. They do however differ when it comes
to many of the eigenfrequencies and their general shape. Reference [15] uses a
different source effect on the eigenvibration given by,

ḡ(t) =
−ω2

gw

ω2
n − ω2

gw + iω2
n/Qn

. (5.16)

For the eigenfrequencies we seem to differ in the model from reference [15]. The
first eigenfrequency for the first Moon model lies at ω0 ≈ 0.006 Hz. The article has
its first eigenfrequency at ω0 ≈ 0.001 Hz however, which means we end up with a
disagreement on the specific values of the eigenfrequencies. Most of the resonance
part of the response for Harms et al. appears in the millihertz range which for
the Moon model is in the 10−2Hz range instead with only one eigenfrequency
in the millihertz range. We also do not use the same quality factors for the
eigenfrequencies. This will have an effect on the response amplitude and might
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give an explanation on why we differ by one order for the first eigenfrequency.
We wish to make one remark when we discuss the figure. We must remember that
we assumed in Chapter 4 when deriving the expression used for FS1 and FS2 that
the frequency of the gravitational wave was ≃ 0 so that we could completely ignore
all terms of the sum over the Wigner symbols except for the l = 0 term. As we
move to higher frequencies these other terms become more and more relevant and
should be included as we move to frequencies close to say 1 Hz. This is because
the l = 1 term in (6.25) and (6.33) from the appendix becomes relevant as ωgwR/c
becomes large enough.
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CHAPTER

SIX

DISCUSSIONS AND CONCLUSION

In this last chapter, we will give a summary of our results and make comments on
any future work.

6.1 Summary

We have now seen how the Earth and Moon respond to gravitational waves in
general relativity and Brans-Dicke gravity. Our calculations predict a maximum
response of approximately h0 × 1011 cm given a dimensionless amplitude of the
gravitational wave h0. It has been found that the response of spheroidal displace-
ments is significantly higher than the toroidal displacement. This is due to the
dominant first term in the series expansion of the integral for the displacement
(4.102).
It has been determined that scalar polarised gravitational waves will excite a dis-
tinguishable normal mode from the modes excited by the plus- and cross-polarised
gravitational waves. The displacement for the scalar polarisation is shown to be
of the same order of magnitude as the displacement predicted by gravitational
waves in general relativity. Possible detection of scalar polarised gravitational is
therefore feasibly given that such a signal exists in nature and is of the same order
of magnitude as the plus- and cross-polarisation of general relativity.
An analysis of the eigenfrequency dependence on the core radius of three current
interior Moon models was performed [14]. It was found that the dependence is
low and a significant change in the core radius would be required for a significant
change to the eigenfrequencies.
It has also been shown that a spherical body response will depend on the fre-
quency of the incoming gravitational wave. A gravitational wave with a frequency
close to the first few eigenfrequencies gives a significantly higher response than the
eigenfrequencies to the higher-order normal modes. We also note that the eigen-
frequencies become more difficult to distinguish as we go to higher normal modes.
The signal response of the Moon is predicted to possess resonance behaviour for
lower frequencies and broadband behaviour for higher frequencies.
We conclude that using the Moon’s normal modes as a detector for gravitational
waves is determined probable and most sensitive in the gravitational wave fre-
quency band of ≃ 0.00665 ± 0.0004 Hz. It was also shown that a Moon detector
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would be a possible way to also look for theories of gravity beyond general rela-
tivity such as the scalar-tensor theory of Brans-Dicke.

6.2 Discussion and Future Work

Our knowledge of the interior of the Moon is for the moment limited. The place-
ment of Lunar gravitational wave antennas on the Moon, therefore, has the po-
tential to improve the accuracy of our current models. This is of great interest
for both geology on the Moon and the potential LGWA detector [15]. An ac-
curate model is of key interest for the purposes of calculating the response from
gravitational waves and would provide more accurate predictions of the response.
We do comment however that by our analysis of the model parameters, any small
deviation from the three models used here will not produce a significantly higher
response in orders of magnitude from the interaction with gravitational waves. It
is perhaps still of interest to have a highly accurate model if one wishes to be able
to put some restrictions on the parameters of a source.
We do, however, not see the accuracy of a Moon model as a big restriction for
the possible detection of gravitational waves. With time the models of the Moon’s
interior will improve drastically. One could also compare the data with LISA given
that these detectors will share some overlap of observational frequency sensitivity
and the gravitational wave data of LISA could potentially help get even more
accurate data for the interior of the Moon.

The dependence of the parameter functions on the different Lamé parameters
could be of interest. The placement of seismometers on the Moon has the po-
tential to greatly improve the models. Another comment is the time frame of
scientific experiments on the Moon [16]. If we wish to detect gravitational waves
using the normal modes on the Moon, then, as suggested in the paper [15] multiple
locations on the Moon with seismometers are optimal. However, as the seismome-
ters will be sensitive to seismic noise it is important to have locations in which
other experiments or commercial projects do not interfere with the detection. It
should therefore be taken into consideration which projects for Moon astronomy
have the highest priority and if perhaps the LGWA detector should have early pri-
ority. The Moon is very quiet compared to Earth, but large projects which plan
on using equipment or construction with the byproduct of seismic noise could be
destructive for the potential deployment and future of an LGWA sensor on the
Moon. It is of interest for future work to see if other projects on the Moon will
interfere with a potential array of seismometers on the Moon. One project worth
mentioning is the detection of the 21-cm line in cosmology and a potential detector
on the far side of the Moon [17] as it is argued that the quiet nature of the dark
side of the Moon is unique for the probing of the dark ages in cosmology.
It is crucial to have sensitive enough equipment for the detection of gravitational
waves using the Moon. One possibility is cryogenic superconducting inertial sen-
sors detailed in reference [18] as is also mentioned in reference [15]. The detector
equipment is outside the scope of this thesis, but a mention of possible equipment
for the realisation of a Lunar Gravitational wave antenna is worthwhile.
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If time would have permitted it, we would have added a section on potential
astrophysical objects which are of interest to the Moon detector. Reference [12],
a paper on pulsars was a source of early inspiration for the thesis. A study of
pulsars with potential for the detection of Brans-Dicke polarisations could provide
interesting results and a restriction on certain parameters of the pulsars in ques-
tion. We also include that other astrophysical objects could be of interest, however
binary identical systems such as two orbiting black holes have a suppressed dipole
emission [19]. One, therefore needs to look for more eccentric sources to hopefully
detect the scalar polarisation.

We have in this thesis not taken rotation into account. The orbital period of
the Moon could provide a unique opportunity for the measurements. Another
comment is the effect of the eigenfrequencies on a rotating body. According to [3]
we will get a degenerate number of eigenfrequencies given that the spherical body
has a rotational frequency Ω that satisfies,

2Ω2

4πGρ
< 1. (6.1)

This could be of interest for later research as this would have an effect on the
differential equations system explained in Chapter 4 and used for the results in
Chapter 5.

Certain sources such as [20] state that there are only five modes that are ex-
cited by gravitational waves in a spherical detector. We have shown that this is
true as a first approximation for our simple expression of (4.114). It is interesting
to consider if one could in theory have a spherical detector for which more modes
are relevant. If one has to include higher order terms of the series of (4.110), then
other modes would also give a response. This is determined by the combination of
the frequency of the gravitational wave, the radius of the spherical detector, and
the speed of light, ωgwR/c. If this combination could approach unity then one
would observe more excited modes. For very big astrophysical objects this could
be realized given high enough frequencies. This then requires that the eigenfre-
quencies of the mentioned object are much higher than what has been considered
in this thesis. The theory and method used have made the assumptions of only a
spherical body with a liquid core and solid mantle described by the density and
the two Lamé parameters. One could therefore in theory study other spherical
astrophysical objects for their response to gravitational wave resonance.
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APPENDIX

A - FT sum expansion

In this appendix, we will derive the expansion of FT in terms of the Wigner
symbols. The derivation is taken from appendix B from reference [3]. The Wigner
symbols take a very complicated form when written out, but is calculation wise
not very difficult. We use the following convention for the Wigner symbols,(

l1 l2 l3
m1 m2 m3

)
=W

∑
n

(−1)l1−l2−m3+n

n!

×
(

Π3
i=1(li +mi)!(li −mi)!

(l1 + l2 − l3 − n)!(l1 −m1 − n)!(l2 +m2 − n)!

)
× (l3 − l2 +m1 + n)!(l3 − l1 −m2 + n)!,

where,

W =

√(
Π3

i=1(2p− 2li)!

(2p+ 1)!

)
δm1+m2−m3 , (6.3)

and 2p = l1 + l2 + l3. The sum goes over positive values for n where the sum stop
when the denominator of the expression becomes negative. It is therefore not an
infinite sum and consists of a finite number of terms. The Wigner symbols possess
some very useful symmetries and rules to quickly determine if it is nonzero. The
symbols are non-zero only when

m1 +m2 +m3 = 0, (6.4)

and,
|la − lb| ≤ lc ≤ |la + lb|, where, a, b, c = 1, 2, 3. (6.5)

Equations (6.4) and (6.5) are of great help in quickly determining if the Wigner
symbols are zero. Especially if the Wigner symbols are included in a sum which
will be the case for us. To arrive at an expansion of FT includes rewriting the
integral

I
(C)
jk (k) =

√
l(l + 1)

∫ 2π

0

∫ π

0

ê
(r)
j C

(ml)
k e−ikir

i

sin θdθdϕ. (6.6)

We begin by writing the C(ml)
k vector in spherical coordinates,√

l(l + 1)C
(ml)
j =

(
ê
(θ)
j

1

sin θ
∂ϕ − ê

(ϕ)
j ∂θ

)
Y m
l . (6.7)
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Here we wish to make it clear that in Y m
l , m and l are not tensor indices, but are

related to the degree and order of the associated Legandre polynomials through,

Y m
l =

√
(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ. (6.8)

We can write this vector in Cartesian components in the following way√
l(l + 1)C

(ml)
j = a

(0)
j Y m

l + a
(1)
j Y m+1

l + a
(2)
j Y m−1

l . (6.9)

Where a(0)j , a(1)j and a(2)j is a combination of Cartesian unit vectors and given by

a
(0)
j = −imê(z)j , (6.10)

a
(1)
j =

i

2

√
(l −m)(l +m+ 1)(ê

(x)
j − iê

(y)
j ), (6.11)

a
(2)
j =

i

2

√
(l +m)(l −m+ 1)(ê

(x)
j + iê

(y)
j ). (6.12)

We now use the expansion of the exponential in terms of the Bessel function and
Y m
l ,

e−ikir
i

=
∞∑

l1=0

l1∑
m1=−l1

(2l1 + 1)i−l1jl1(kr)Y
m1
l1

(θ, ϕ)Y ∗m1
l1

(e, λ). (6.13)

If we now insert (6.9) and (6.13) into (6.6) then we get a new expression for the
integral,

I
(C)
jk (k) =

∞∑
l1=0

l1∑
m1=−l1

(2l1 + 1)i−l1jl1(kr)Y
∗m1
l1

(e, λ)
(
A

(0)
j a

(0)
k + A

(1)
j a

(1)
k + A

(2)
j a

(2)
k

)
,

(6.14)
where,

A
(0)
j =

∫ 2π

0

∫ π

0

ê(r)α Y m1
l1
Y m
l sin θdθdϕ, (6.15)

A
(1)
j =

∫ 2π

0

∫ π

0

ê(r)α Y m1
l1
Y m+1
l sin θdθdϕ, (6.16)

A
(2)
j =

∫ 2π

0

∫ π

0

ê(r)α Y m1
l1
Y m−1
l sin θdθdϕ. (6.17)

To progress we require the identity,∫ 2π

0

∫ π

0

Y m1
l1
Y m2
l2
Y m3
l3

= 4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
. (6.18)

Using this identity back into (6.14) we arrive at the result

I
(C)
jk (k) =4π

∞∑
l1=0

l1∑
m1=−l1

(2l1 + 1)i−l1jl1(kr)Y
∗m1
l1

(e, λ)

(
l1 l2 1
0 0 0

)

×

(
γ
(1)
j ê

(z)
k +

(γ
(2)
j − γ

(3)
j )

√
2

ê
(x)
k −

(γ
(2)
j + γ

(3)
j )

√
2

iê
(y)
k

)
. (6.19)
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The γ(i)j components is a linear combination of a(i)j components which is a linear
combination of the unit Cartesian vectors. If we write it all out then this becomes

γ
(1)
j ê

(z)
k +

(γ
(2)
j − γ

(3)
j )

√
2

ê
(x)
k −

(γ
(2)
j + γ

(3)
j )

√
2

iê
(y)
k =A(0)T (0) +

1

2
A(1)T (1) +

1

2
A(−1)T (−1)

− A(2)T (2) + A(−2)T (−2). (6.20)

Where A(k) contains the Wigner symbols and coefficients from the γ(i)j . The T (k)

and A(k) are given as

T (0) =

0 0 0
0 0 0
0 0 i

 , T (±1) =

 0 0 ∓i
0 0 1
∓i 1 0

 , T (±1) =

∓i 1 0
1 ±i 0
0 0 0

 ,

and,

A(0) = −m
(
l1 l2 1
m1 m2 0

)
−

− 1

2
√
2

√
(l +m)(l −m+ 1)

(
l1 l2 1
m1 m2 − 1 1

)
+

+
1

2
√
2

√
(l −m)(l +m+ 1)

(
l1 l2 1
m1 m2 + 1 −1

)
,

A(1) = −2
m√
2

(
l1 l 1
m1 m− 1 −1

)
−

−
√

(l +m)(l −m+ 1)

(
l1 l 1
m1 m− 1 0

)
,

A(−1) = −2
m√
2

(
l1 l 1
m1 m+ 1 1

)
+

+
√

(l −m)(l +m+ 1)

(
l1 l 1
m1 m+ 1 0

)
,

A(2) =
1

2
√
2

√
(l +m)(l −m+ 1)

(
l1 l 1
m1 m− 1 −1

)
,

A(−2) =
1

2
√
2

√
(l −m)(l +m+ 1)

(
l1 l 1
m1 m+ 1 1

)
.

Inserting (6.20) into (6.19) is the result of this appendix and the expansion we
were interested in.
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B - FS1
and FS2

expansion

In this appendix, taken from appendix C of [3], we will simplify the integrals

I
(P )
jk (k) =

√
l(l + 1)

∫ 2π

0

∫ π

0

ê
(r)
j P

(ml)
k (θ, ϕ)e−ikir

i

sin θdθdϕ, (6.23a)

I
(B)
jk (k) =

√
l(l + 1)

∫ 2π

0

∫ π

0

ê
(r)
j B

(ml)
k (θϕ)e−ikir

i

sin θdθdϕ. (6.23b)

We do one integral at the time. We begin with the P integral. In spherical
coordinates P (ml)

k (θ, ϕ) takes on the form,

P
(ml)
j = ê

(r)
j Y m

l (θ, ϕ), (6.24)

We apply the expansion of the exponential (6.13). We then get the product of êrj êrk
which written in terms of Certesian unit coordinates and the associated Legandre
polynomial is

ê
(r)
j ê

(r)
k =

1

3
δjk +

1

3
Y 0
2 (ê

(x)
j ê

(x)
k − ê

(y)
j ê

(y)
k + 2ê

(z)
j ê

(z)
k )

+
1√
6
Y 1
2

(
ê
(z)
j (ê

(x)
k − iê

(y)
k ) + ê

(z)
k (ê

(x)
j − iê

(y)
j )
)

− 1√
6
Y −1
2

(
ê
(z)
j (ê

(x)
k + iê

(y)
k ) + ê

(z)
k (ê

(x)
j + iê

(y)
j )
)

+
1√
6
Y 2
2 (ê

(x)
j − iê

(y)
j )(ê

(x)
k − iê

(y)
k ) +

1√
6
Y −2
2 (ê

(x)
j + iê

(y)
j )(ê

(x)
k + iê

(y)
k ).

We employ the identity (6.18) to get

I
(P )
ik (k) =4π

∞∑
l1=0

l1∑
m1=−l1

(2l1 + 1)i−l1jl1(kr)Y
∗m1
l1

(e, λ)

(
l1 l2 2
0 0 0

)
·

·

(
2∑

j=−2

Γ(j)

(
l1 l 2
m1 m j

))
(6.25)

Where the Γ(j) is a combination of cartesian unit vectors,

Γ(0) =
1

3
(−ê(x)j ê

(x)
k − ê

(y)
j ê

(y)
k + 2ê

(z)
j ê

(z)
k ), (6.26)

Γ(1) =
1√
6

(
ê
(z)
j (ê

(x)
k − iê

(y)
k ) + (ê

(x)
j − iê

(y)
j )ê

(z)
k

)
, (6.27)

Γ(−1) =
1√
6

(
ê
(z)
j (ê

(x)
k + iê

(y)
k ) + (ê

(x)
j + iê

(y)
j )ê

(z)
k

)
, (6.28)

Γ(2) =
1√
6
(ê

(x)
j − iê

(y)
j )(ê

(x)
k − iê

(y)
k ), (6.29)

Γ(−2) =
1√
6
(ê

(x)
j + iê

(y)
j )(ê

(x)
k + iê

(y)
k ). (6.30)
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We have now arrived at a simpler expression to evaluate for the P vector integral
in our displacement relation. We move on to write the B vector integral as a sum
over Wigner symbols as well. We begin with the relation

√
l(l + 1)B

(ml)
j = ϵikj ê

(r)
i C

(ml)
k . (6.31)

Then we get with the expansion of B(ml)
ν in terms of (6.9),

√
l(l + 1)ê(r)µ B(ml)

ν =ê(r)µ (ϵαβν ê
(r)
α a

(0)
β )Y m

l + ê(r)µ (ϵαβν ê
(r)
α a

(1)
β )Y m+1

l .

+ ê(r)µ (ϵαβν ê
(r)
α a

(−1)
β )Y m−1

l (6.32a)

We have simplified our calculation to studying the products ê(r)µ (ϵαβν ê
(r)
α a

(i)
β ). If

we use the representation from before with Γ then we get five different types of
tensors,

1. Tensors which are zero,

2. Antisymmetric tensors which will give zero when contracted with the polar-
isation tensor,

3. Tensors which has symmetric parts,

4. Nonsymmetric tensors,

5. Symmetric tensors.

We can therefore remove the tensors of the type 1) and 2) and the antisymmetric
parts of 3) and 4). We keep the rest and the integral over the B vector can therefore
be written as

I
(B)
ik (k) = 4π

∞∑
l1=0

l1∑
m1=−l1

(2l1 + 1)i−l1jl1(kr)Y
∗m1
l1

(e, λ)

(
l1 l 0
0 0 0

)
·

·

(
2∑

j=−2

D(j)Γ
(j)
ik

)
. (6.33)
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Where the D(j) is given as

D(0) = − 3

2
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