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Abstract

The origin of ultra-high energy cosmic rays (UHECRs) has remained a mystery for over

100 years and the search for their sources is one of the biggest ongoing challenges in as-

troparticle physics. As UHECRs are charged particles they are deflected by extragalactic

and Galactic magnetic fields during propagation in the Universe, resulting in their arrival

directions not aligning with their source directions. If however, a significant enough frac-

tion of UHECRs originate from a common source, magnetically-induced patterns in their

arrival directions are expected. These might lead us to the discovery of their sources.

This work presents a method on how deep neural networks can be used to search

for such patterns in an all-sky analysis by using a simulated flux of the most energetic

UHECRs. It is shown that by using variations of the Galactic magnetic field model for the

creation of the simulated data, the neural network can be trained to predict source events

exposed to a different inherently unknown deflection. The analysis is applied to different

mass composition scenarios where it shows excellent performance for a small fraction

of proton source events embedded in a large isotropic background. Despite the neural

network performing worse on heavier nuclei, it retains a substantial detection ability for

a higher multiplicity of source events. When applied to data taken by the Pierre Auger

Observatory, two potential regions of interest are identified, showing a noticeably higher

probability of arising in a powerful astrophysical source.
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CHAPTER1
INTRODUCTION

The existence of charged particles arriving at Earth from all directions has been known for

over 100 years now. The discovery of these cosmic rays (CRs) in 1912 by Victor Hess [1]

won him the Nobel Prize in 1936. The most energetic form of these particles above 1 EeV

= 1018 eV are called ultra-high energy cosmic rays (UHECRs) and are the most energetic

particles ever detected by mankind. When they hit the Earth’s atmosphere, they create air

showers consisting of a cascade of secondary particles. The world’s largest ground-based

air shower observatory, Pierre Auger (Auger), measures the particles at ground level to

reconstruct the properties of the primary particle before interaction with the atmosphere.

Yet, in spite of great efforts and progress in this field, it is to this day still unclear which

sources could create particles of these energies and where these sources are located.

When studying UHECRs, their initial arrival directions are either compared to known

source candidates or analysed for possible anisotropies. Although their arrival directions

are highly isotropic at almost all energies, some small and large-scale anisotropies have

been found at the highest energies. Since UHECRs are charged nuclei ranging up to iron,

they are deflected in extragalactic magnetic fields, but predominantly by the Galactic

Magnetic Field (GMF). Therefore, the arrival directions of UHECRs here on Earth do not

directly point back to their origin. When studying the propagation of UHECRs through

the Galactic Magnetic Field, rigidity, defined as the energy over charge ratio, is the key

quantity to describe the magnitude of deflection. If a few sources would contribute an

appreciable UHECR flux here on Earth, we would expect an energy ordering in the ar-

rival direction of the UHECRs since magnetic deflections are inversely proportional to

the rigidity of each particle. In such an instance, UHECRs of the highest energies would

show the lowest order of deflection and a higher degree of correlation with their sources.

Here, machine learning could help in finding such magnetically-induced patterns in their

arrival directions.

In this thesis, deep neural networks are trained on simulations of UHECRs above an
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energy of 32 EeV as they would be observed at Auger. For these simulations, the state-

of-the-art software framework CRPropa3 [2] is used.

Since the exact nature of the GMF is not known several variations of the to-date best

GMF model from Jansson and Farrar (JF12) [3] are created for the machine learning ap-

plications. Furthermore, the performance of the neural network (NN) is tested and com-

pared for several different mass compositions and finally applied to actual data taken by

Auger where it possibly identifies clusters of events that could plausibly be attributed to

astrophysical sources.

This work begins with an introduction to the observed properties of UHECRs on Earth

in Chapter 2, followed by a summary of the most important interaction during propaga-

tion, possible kinds of source candidates, and the modulation of the GMF in Chapter 3.

The different steps for simulating an UHECR flux as could be observed on Earth and the

creation of the different GMF models are explained in Chapter 4. A general overview of

the relevant machine learning methodology needed to create functional deep neural net-

works for the created data set is introduced in Chapter 5. The results of their application

for different mass compositions are presented and discussed in Chapter 6 with a final

conclusion and outlook in Chapter 7.
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CHAPTER2
UHECRS AT EARTH

The flux of CRs reaching Earth is highly dependent on their energy. CRs with energy

below ∼ 1015 eV can be directly measured by satellites [4] or high-altitude balloons, the

latter being how they were discovered in 1912 by Victor Hess [1]. CRs on the high-energy

side of the CR spectrum, on the other hand, need much larger ground-based instruments

for a reasonable detection rate, due to their lower flux. In this chapter the observed prop-

erties of CRs observed here on Earth are briefly introduced, starting with their incident

flux on Earth in Section 2.1, followed by the latest inferences on their composition in Sec-

tion 2.2, and their arrival-direction distribution in Section 2.3. The basic concepts and

equations of CR physics are based on reference [5].

2.1. Cosmic ray energy spectrum at Earth

Because CRs interact with particles in the Earth’s atmosphere, creating vast air-showers

of secondary particles in the process, ground-based detectors need to reconstruct the ini-

tial state particle energy and composition prior to the interactions [6]. The observed en-

ergy spectrum of the CRs can be well approximated by a power-law function with a

differential flux

F(E) =
dN

dE dt dA dΩ
E = E−γ, (2.1)

where dN is the number of CRs passing though a surface element dA with solid angle dΩ

in a time interval dt and energy dE. Measurements of several different air-shower exper-

iments are shown Figure 2.1. Here the flux was multiplied with a factor of E−2.6 to stress

the spectral power law dependency of the distribution and highlight certain observed

points where the power law is broken. These points are labelled as knee, second knee, and

ankle.
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Figure 2.1.: Measurements of the CR spectrum from several different air-shower experi-
ments as a function of the energy-per-nucleus, taken from [7]. In order to highlight the
spectral power-law dependency the energy is multiplied with a factor of E−2.6.

The nature of these points is still the subject of ongoing research and is still unresolved.

The commonly accepted explanation for the knee is that it arises from a change from a

Galactic CR origin for lower energies to an extragalactic one for higher energies [8]. The

"second knee" could then be seen as the end of the Galactic origin of iron CRs [9]. The

flattening at the "ankle" has been confirmed in [10] and may result from a dip structure of

these highly energetic CRs and their interaction with the CMB during propagation, but

this view has recently been disfavored [11]. A further steepening beyond 5 × 1019 EeV

has also been confirmed in [10].

2.2. Composition of UHECRs

At the highest energies, the actual composition is not fully known yet, as the measure-

ments are governed by many uncertainties when detecting the showers of secondary

particles. However, advances have been made by extensive studies using e.g. deep

learning to reconstruct the particle showers in the form of a PhD thesis in [12]. The com-

position of UHECRs is determined by measuring the atmospheric depth Xmax at which

a particle shower reaches the maximum number of constituents. As this depth scales

∝ log(E/A) with energy E and atomic number A, lighter particles of the same energy

penetrate deeper into the atmosphere than heavier ones. The reconstructed Xmax values

derived by measurement from fluorescence detectors (black dots) and the surface array

(squares) at Auger are shown in Figure 2.2a together with the width σ(Xmax) of the dis-

tribution in Figure 2.2b.
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(a) Atmospheric shower depth (b) Standard deviation

Figure 2.2.: The mean of atmospheric shower depth Xmax (a) together with the standard
deviation (b) from measurements of the fluorescence detectors (black dots) and surface
arrays (squares) at Auger. The simulated values for protons (red) and iron (blue) are
shown as coloured lines. Taken from reference [13].

The black dots represent data points from Auger while the red line shows the predic-

tion for a proton and the blue line for an iron-induced particle shower. It can be seen

that the data suggests a heavier composition of the CRs towards higher energies. Just

above an energy of 1018 eV, the composition changes from a proton-dominated composi-

tion towards Helium and Nitrogen which is in agreement with a possible observation of

a Peters cycle [14]. If a source can accelerate CR protons up to a certain maximum energy,

due to their lesser charge, protons will reach this limit before heavier nuclei with higher

charge number Z. Thereby the energy spectrum from such a source on Earth would show

a cutoff of protons first, then Helium and so on.

2.3. UHECR arrival directions

In addition to the energy and composition of UHECRs, their arrival directions are mon-

itored and studied in order to find correlations with possible sources in the universe.

Their distribution however is highly isotropic at almost all energies and shows no signif-

icant enough correlations with any of the assumed possible candidate sources. Searching

for any anisotropies in the arrival-direction distribution is indispensable when looking

for the origin of UHECRs.

2.3.1. Dipole anisotropy

Using an integrated exposure of 76, 800 km2 a large-scale anisotropy has been discovered

at energies beyond 8 EeV with a significance of 6.6 σ [15]. It can be described by a dipole

with an amplitude of 6.5% at a Galactic longitude of -127° and latitude of -13° with an

angular distance to the Galactic centre of 125°, shown in Figure 2.3. It is highly unlikely
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that the sources at these energies are Galactic, as the magnetic field strength of the Milky

Way could not displace the dipole by this amount even for heavier charged nuclei like

iron.

If the UHECR sources have the same spatial distribution of galaxies, an alignment of

the dipolar anisotropies derived from the 2 Micron All-Sky Redshift Survey (2MRS) [16]

with the UHECR dipole is expected. It can be seen that the centre of the 2MRS measure-

ments, denoted by a black diamond, indeed lies approximately within the direction of

the UHECR observed dipole after accounting for the deflections in the GMF. This is indi-

cated by the two arrows, representing a CR of energy 2 EeV and 5 EeV propagated using

the JF12 magnetic field model, respectively. The deflection points towards the 68% and

95% confidence levels of the dipole are shown as black contours around the reconstructed

centre of the UHECR dipole (black cross).

Figure 2.3.: UHECR flux in Galactic coordinates above an energy of 8 EeV and smoothed
with a top-hat function of 45°. The black contours indicate the 68% and 95% confidence
levels while the black cross marks the centre of the identified dipole. Also, the Two
Micron All Sky Redshift Survey’s (2MRS)[16] dipole of galaxies is shown together with
the deflection in the Galactic magnetic field for UHECRs as a function for two different
energies. Taken from [17].

Keeping in mind the large uncertainties in the magnetic field models [3], it is justified

to assume that slight deviations are not in conflict with the galaxy origin interpretation.

The explanation for this displacement is still unresolved. A contributor could be the

movement of the Milky Way relative to that of the CR sources which is referred to as

the Compton-Getting effect [18]. However, with an amplitude of 0.6%, the magnitude of

this Doppler effect is significantly lower than the observed dipole. Other explanations

are that it derives from an inhomogeneous source distribution [19, 20] or that the CRs

originate from a dominant source and are diffused by extragalactic magnetic fields [21].

Nonetheless, all these theories and observations support an extragalactic origin of the

sources above an energy of 8 EeV [17]. The dipole has been further studied in different
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energy bins in [22, 23]. It was shown that the dipole becomes more visible towards higher

energies. This is expected as CRs of higher energies experience a higher attenuation by

cosmic photon fields (see Section 3.1.1) and thereby need to have a closer source origin.

The measured dipole amplitude of the different energy bins is shown in the left panel of

Figure 2.4 together with simulations of a uniform (grey) source distribution and one that

follows the 2MRS (blue). The simulations show a high level of agreement with the data

in both amplitude and energy dependence.

Figure 2.4.: The dipole amplitude as a function of energy above 4 EeV is shown together
with predictions from [24] in the left panel. The right panel shows 2MRS galaxies within
100 Mpc distance with reconstructed dipole directions for different energy bins. Taken
from [23].

Furthermore, in the right panel of Figure 2.4 the contours for the same four energy bins

at 68% confidence level are shown. The grey dots correspond to local galaxies within

100 Mpc and the black cross to the direction of the weighted flux dipole of the 2MRS

distribution of local galaxies. The reconstructed dipole maxima of the contours all point

towards an extragalactic source origin. At the energy of the "ankle" at roughly 0.03 EeV it

was shown in reference [25] that the maximum dipole points towards the Galactic centre,

supporting the assumption of the transition of a Galactic to an extragalactic origin.
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2.3.2. Smaller scale anisotropies

While large-scale anisotropies were discovered at energies between 4–32 EeV, smaller

anisotropies become visible at even higher ones. At above 40 EeV, smaller angular

anisotropies become more dominant, revealing a hot spot in the Centaurus region at

Galactic coordinates b = 19.4°, l = 309.5°, see Figure 2.5.

Figure 2.5.: UHECR flux above 40 EeV as seen from Auger in Galactic coordinates, taken
from reference [26].

Nevertheless, one of the top candidates is the radio-loud galaxy Centaurus A (Cen A),

which has been extensively studied for being the closest active Galactic nucleus (AGN)

with a distance of ∼ 3.8 Mpc and as an AGN hosting possibly several possible accel-

eration sites, see Section 3.2.1, e.g. the different particle emission processes of Cen A

were studied via simulations in [27]. It is often called the so-called "hot spot" and in e.g.

[28, 29] excesses have been searched for in this region. A correlation with a significance

of 3.9σ between the UHECR arrival directions and the direction of Cen A was found in

[28]. Further, a significant deviation from isotropy at a level of 4.2σ is found for a sample

of starburst galaxies [26].
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CHAPTER3
PROPAGATION AND ORIGIN OF

UHECRS

When UHECRs propagate through the vastness of space they not only get deflected

by the Galactic and extragalactic magnetic fields but also interact with different photon

fields, losing energy in the process. This chapter will introduce the most relevant forms

of energy losses in the studied energetic regime of this work in Section 3.1, followed by

different acceleration mechanisms in Section 3.2 and possible candidate sources in Sec-

tion 3.2.1. Finally, the influence on the arrival directions of UHECRs for different GMF

models modulation will be explained in Section 3.3.

3.1. UHECR energy losses

The propagation of UHECRs through space alters their properties. While the magnetic

fields are the origin of their deflection, interactions with the photon fields are the main

cause of energy losses, setting limitations on the possible travel path of the most energetic

particles in the UHECR spectrum.

3.1.1. Photon background fields

Even the seemingly most empty parts of the Universe are filled with diffuse radiation

spanning across large ranges of the electromagnetic spectrum. The most influential ones

for the CR propagation are shown in Figure 3.1. The interaction rate depends on the

UHECR energy, the density of the photon field and the cross-section of the interaction

process.



10 3. Propagation and origin of UHECRs

Figure 3.1.: Spectrum of the most relevant photon background radiation fields interacting
with UHECR during their propagation through the Universe. Shown are the cosmic radio
background (CRB) [30] in red, the cosmic microwave background (CMB) in blue and the
extragalactic background light (EBL) [31] in turquoise. Taken from reference[32].

The least energetic one of the three is the cosmic radio background (CRB) radiation

which dominates up to an energy of ∼ 10-6 eV. It is assumed that its origin is of ex-

tragalactic nature and its measurement thereby impeded by the stronger Galactic radio

background signal present at Earth [30, 31]. Due to the very low energy of these photons,

the interaction is only relevant for the most extremely energetic UHECRs and due to its

lower number density than the CMB the interaction rate is significantly lower.

Of the three presented fields, the cosmic microwave background (CMB) has the high-

est number density with roughly 400 photons per cm3 and is a remnant from the recom-

bination epoch about 400,000 years after the Big Bang when the Universe first became

transparent [33]. It can be described by an almost perfect thermal blackbody spectrum of

temperature T = 2.726K [34] and is one of the most significant pieces of evidence for the

Big Bang theory. The primary interaction is the GZK process [35] where a CR proton of

≥ 5 × 1019 eV has sufficient enough energy to produce a pion with a CMB photon, see

Section 3.1.2. For more insight into the different interactions between CRs and photons

see the next section 3.1.2.

Third, the extragalactic background light (EBL) is made of the most energetic photons

of the three presented background fields. It originates from stars and Active Galactic Nu-

clei (AGN) since the reionization phase of the Universe. Thereby, it is strongly correlated

to the cosmological evolution which complicates its modelling as the indications of the

evolution come mostly from measurements of the changing luminosities of galaxies pop-

ulations at different redshifts [36]. The EBL shows a double peak in its spectrum which

is caused by a large proportion of optical light being absorbed and re-emitted to the IGM

like interstellar dust with a wavelength of 10-4m.
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3.1.2. Cosmic ray interactions with photons

GZK effect

In 1966 Greisen, Zatsepin and Kuzmin [35] postulated an effect, which describes the in-

teraction between a UHECR proton of energy ≥ 5 × 1019 eV with a CMB photon γCMB

creating a pion via an extremely short-lived intermediate ∆+ baryon. The two decay

channels, which constitute approximately 100% of the total branching ratio, are shown in

Equation (4.2).

p + γCMB → ∆+ →

p + π0 → p + 2γ

n + π+ → (p + e− + νe) + (e+ + νe + νµ)
(3.1)

It is assumed that the GZK effect is the cause of the strong cutoff in the UHECR flux and

the end of the CR spectrum is therefore referred to as the GZK cutoff. However, this

effect alone can not fully explain the UHECR data acquired by Auger [37]. This limits the

possible propagation distance for the most energetic UHECR energy regime. Depending

on the production rate, if the most energetic cosmic rays are of extragalactic nature, it is

assumed that their sources must lie within a few hundred Mpc, see Figure 3.2.

Figure 3.2.: Simulation of three different particles of different energies: 1020 eV (dotted
line), 1021 eV (dashed line), and 1022 eV (solid line), as a function of propagated distance.
Taken from reference [38].

Here the interaction of particles at three different energies was simulated as a function

of propagated distance. It can be observed that all of them converge to the same mean

energy of the leading particles after a travelled distance of just over 100 Mpc, making

it impossible to distinguish from a particle of originally higher energy at even larger

distances. This could also explain the pile-up at the ankle, seen in Figure 2.1.
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Electron pair production

With the lowest energy threshold of the introduced processes, the electron pair produc-

tion is dominant for UHECR proton energies of 10-50 ×1018 eV. The interaction can be

written as

p + γ → p + e− + e+ (3.2)

and occurs when a photon γ converts into an electron–positron pair in the electromag-

netic field of the proton.

Photon disintegration

When a nucleus XZ
A with charge number Z and mass number A absorbs a photon γ,

the photon can transform to another species by emitting a proton, neutron or even an

α-particle. In case of proton emission, the process reads

XZ
A + γ → XZ−1

A−1 + p, (3.3)

which is the dominant energy loss process for UHECR of higher mass.
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3.2. Acceleration

So far, the different processes and interactions of UHECRs during propagation in space

have been shown. It is still unclear, what mechanisms can accelerate these particles to

such high energies initially. The acceleration methods can be divided into two main cate-

gories: top-down and bottom-up. The top-down structure corresponds to super-massive

initial particles which create the UHECR due to their decay, while the bottom-up struc-

ture corresponds to charged CRs being accelerated within strong magnetic field regions,

which can be further categorized in stochastic and direct acceleration mechanisms. One

problem with the top-down method is that, if it is true, large photon fluxes will be ex-

pected, which is not in agreement with observations at these energies [39], resulting in a

strong preference for the bottom-up scenario.

Direct acceleration

Direct acceleration considers the charged particles to be accelerated to their final energy

via a "single shot". Only very few objects in the Universe could be powerful enough

to create UHECRs of these energies in such a process. The most likely candidates are

neutron stars, which not only have sufficiently strong magnetic fields but also rotation

periods of only a few microseconds, thereby creating extremely powerful electric fields.

They are assumed to be capable to accelerate protons to 1020 eV at young stages and

nuclei like iron in later ones [40]. For more information on neutron stars, see Section 3.2.1.

Stochastic acceleration

The idea of charged particles being repeatedly deflected by magnetic clouds was orig-

inally proposed by Enrico Fermi in 1949 [41]. It is also referred to as the second-order

Fermi acceleration as the energy gain of the particle is proportional to the square of the

velocity of the magnetic cloud. These clouds move in random directions and can scatter

elastically with charged particles causing them to either lose or gain energy through tail-

on or head-on collisions, respectively, with each collision. As the head-on collisions are

more probable the particle gains a continuous amount of energy ⟨∆E⟩
E ∝ 4

3 β2. The first-

order Fermi acceleration occurs in shocks within the magnetic field. As the name states,

the energy gain in this kind of acceleration is linear and given by ⟨∆E⟩
E ∝ 4

3 β [42, 43]. For

the most energetic CRs, the first-order mechanism is assumed to be more likely as mea-

surements of cloud densities do not fulfil the requirements for the second-order acceler-

ation up to this energy regime [44]. After n interactions via either of the Fermi processes,

a particle of initial energy E0 will have been accelerated to an energy

En =
(

1 − ⟨∆E⟩
E

)n
× E0. (3.4)
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With each encounter and thereby energy gain, the probability of the particle escaping the

acceleration region pesc increases, so that, for an energy Em > En, the number of particles

left can be estimated by

N(Em > En) = N0 ×
∞

∑
i=n

(1 − pesc)
i ∝

(En

Eo

)−γ
. (3.5)

This clearly shows that the resulting spectrum has the form of a power-law function,

falling off with an energy-dependent exponent of

γ =
log(1 − pesc)

log(1 + ∆E/E)
≈ pesc

⟨∆E⟩/E
(3.6)

which has been derived via semi-analytical calculations and simulations to a value of

γrel ≈ 2.1 − 2.3 for relativistic shocks [45, 46]. The acceleration limit is dependent on

several parameters of the acceleration region. A particle of charge Ze within a magnetic

field region of size R, magnetic field strength B, and velocity β of a scattering object can

be accelerated to a maximum energy

Emax[EeV] = Ze × B[µG]× R[kpc]× β. (3.7)

This limitation on these source candidate parameters is called the Hilas criterion and

was introduced by Anthony Michael Hillas in 1984 [47], shown in Equation (3.7) Using

this equation together with the relatively large uncertainties on the different parameters

the maximum reachable acceleration energy of different source candidates is shown in a

Hillas diagram in Figure 3.3.
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Figure 3.3.: Updated Hillas diagram showing different source candidates in a B-R phase
space with their uncertainties on their given parameters. The red or blue line indicates
the region in which iron or protons can be accelerated to 1020eV. Taken from [48].

Here it can be seen that supernovae remnants do not have the sufficient capacity to

accelerate UHECRs of any mass to energies of 1020eV, while AGN might be able to ac-

celerate both heavier charged particles like iron and even simple protons to this energy.

When considering the parameters of the Milky Way with a radius of roughly 20 kpc and

magnetic field strength in a range of µG, the UHECRs of the highest energy are unlikely

to be of Galactic origin.

Although the Hillas criterion is a necessary criterion for any source candidate, it is

definitely not a sufficient one. For instance, the energy loss the particle experiences via

synchrotron radiation or photonuclear and hadronic interactions are not allowed to sur-

pass the energy gain of the acceleration process.

3.2.1. UHECR candidate source classes

Although, for this work, only the source positions of four AGNs: Centaurus A (Cen A),

Messier 87 (M87), Fornax A, Cygnus A (Cyg A), and two hot spots stated in [49] were

considered as the positions of possible source candidates, a short description of all the

different candidate classes seen in Figure 3.3 are given for completeness.

Active Galactic Nuclei

AGN are the most powerful known sources in the Universe and are also strong candi-

dates for sources of the most energetic particles. Additionally, the AGN do not only
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supply one but can have several possible acceleration sites as part of their structure. The

AGN’s source of power is a supermassive black hole (SMBH) at its centre creating a ro-

tating accretion disk around it through its huge gravitational pull. The vicinity of this

SMBH so-called vacuum gaps can be one possible accelerator of the UHECRs, but also

the highly collimated twin jets could be their possible origin. Although not all AGNs

create such a powerful jet and their exact nature is not fully understood, several regions

within it could explain an acceleration of particles to the energies observed here on Earth.

It is observed that these twin jets that outflow highly energetic matter in opposite direc-

tions consist of an inner and an outer larger scale jet, followed by large scale lobes [50]

and a jet termination shock ("hot spot"). All of these regions could be the possible source

of acceleration and some of them could also possibly work in tandem. Several theoretical

acceleration mechanisms in these structures have been tested in [51, 52] Yet, AGNs and

the structure of their jets need to be further studied in order to say which regions within

them could be a possible source of the UHECRs and what exact acceleration method

governs it. Especially multi-messenger astrophysics will play a key element in gaining a

more detailed insight into these sources and their accelerating potential [53].

Gamma ray bursts

Gamma-ray bursts are highly energetic explosions created by an imploding massive star

that becomes a black hole or a neutron star. They are named after their emitting wave-

length of gamma rays and are the most luminous electromagnetic events since the Big

Bang [54]. The burst can range from a few milliseconds to a couple of minutes, followed

by an afterglow of less energetic radiation. They are rare events observed so far only

outside our galaxy and could accelerate CRs via 2nd order Fermi acceleration to high

enough energies. GRBs as candidate sources are extensively discussed in [55].

Neutron stars

Neutron stars are formed by the left-over dense core of a massive star which continues to

collapse by its own gravitational pull. The core becomes so dense that protons coalesce

with electrons and form neutrons, giving the neutron star its name. Most neutron stars

rotate at extreme frequencies, those whose rotation we can observe are called pulsars,

emitting radiation in regular intervals. A fraction of these pulsars may display a possible

source for UHECRs, especially magnetars with huge magnetic and induced electric fields

[56], releasing energy by emission of particle winds and radiation. In [40] it is argued

that the young supernovae shell could prevent protons to escape the acceleration site up

to energies of 1020 eV and iron nuclei even in later stages. As indicated in Figure 2.2, a

heavier composition dominated by iron is assumed towards the high end of the UHECR

spectrum, meaning a source would have to supply an injection of a large quantity of

heavier nuclei from either a metal-rich environment or contain a large enough amount
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of nucleosynthesis. While fireball-type GRBs most likely do not fulfil these requirements

[57], AGNs can have super-solar metallicities, but not with a sufficient enough fraction

above nitrogen [58]. However, a small proportion of iron-rich young neutron stars, that

are embedded in specific supernovae, could explain the UHECR spectrum and compo-

sition observed on Earth [59]. Yet, due to their short lifetime, correlations between them

and the UHECR arrival directions are not expected [48].

3.3. UHECRs in magnetic fields

When a ultra-relativistic particle of charge q = Ze travels with velocity ν⃗ within a mag-

netic field B⃗, it experiences a deflection perpendicular to both the magnetic field lines

and the velocity. In the energy regime of UHECR, the rest mass can be neglected and the

change of direction can be written as

d⃗ν

dt
=

c2

R
(⃗ν × B⃗), (3.8)

where R = E
Ze is the rigidity of the particle. The rigidity is defined as the ratio of the

energy over the charge and is thereby a measure of the magnitude of deflection of a

CR in a magnetic field. Following this equation a CR of smaller rigidity experiences

a larger deflection within a magnetic field and vice versa. Rigidity is the key quantity

when describing the deflection of UHECRs in magnetic fields. For small deflections, the

arrival direction of a charged particle Θ with an energy E can be approximated [60] with

its initial source direction ΘS as

Θ = ΘS +
Ze
E

∫ L

0
d⃗l × B⃗(⃗l). (3.9)

An example of the deflection of particles of different rigidities between 5–100 EV originat-

ing from the same source is shown in Figure 3.4. We note that for simplicity no random

magnetic field components, introduced in the next section, are used here, resulting in a

linear deflection distribution.
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Figure 3.4.: Arrival direction of UHECRs of different rigidities from 5–100 EV propagated
through a simplified JF12 GMF model without any random field components, indicated
by the size and colour of the dots. The original source direction is indicated by the black
star.

Although there are Galactic and extragalactic magnetic fields present in the Universe

the latter is assumed to be subdominant to the Galactic one. Therefore, for simplicity,

only the Galactic deflections are often considered, as we have also done for this work. To

study the propagation and arrival directions of UHECRs, a GMF model is needed, see

Section 3.3.2. However, since the exact GMF is not known, varying the different parame-

ters of the JF12 model allows us to study characteristic deflections of UHECRs.

While the magnetic field structure of other galaxies can be measured from many different

angles the measurement of our own is aggravated from the inside. However, some pos-

sible measurements were made that set some constraints on certain features that can be

compared to observations of other similar spiral galaxies. The most known components

of the GMF are the large-scale regular fields and the small-scale random fields, reviewed

in [61, 62]. By measuring Farraday Rotation Measures (RMs) and polarized synchrotron
emissions constraints on the GMF could be derived.

3.3.1. Magnetic field constraints

When polarized radiation travels true a magnetic field, it experiences a rotation of the

polarisation plane by an angle

θ = λ2RM, (3.10)
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depending on its wavelength λ and the rotation measure (RM). The RMs can be derived

as

RM = 0.81
∫ L

0

(
ne(l)
cm−3

)(B∥(l)
µG

)(
dl
pc

)
(3.11)

with an electron density of the magnetized plasma ne, magnetic field strength B and

path element dl along the line of sight [63]. However, the electron density is not directly

measurable and therefore the RMs are calculated by comparing radiation from the same

source with different wavelengths λ, so that

RM =
θ1,2

λ2
1 − λ2

2
. (3.12)

By deriving the RMs, constraints on the magnetic field can be obtained. In a survey from

2009 this has been done for almost 40,000 extragalactic sources [64], finding several co-

herent large-scale structures. Generally, the Galactic centre displays a large magnitude

of the RMs and lessens towards both the poles and away from the centre. Also, the, in

other galaxies observed spiral arm structure, is supported by the alternating negative and

positive RM values within the Galactic disk [62]. In addition to the RMs, measurements

of polarized synchrotron radiation caused by electrons of relativistic energy scattering

within the GMF have been used to further model the magnetic field structure. It gives

information on the perpendicular GMF component with respect to the line of sight and

has been extensively studied in [65]. Although more observations helped improve the

understanding of the structure of the GMF, the RMs and the polarized synchrotron radi-

ation were the most influential for the improvement of the latest JF12 [3] magnetic field

model used in this work.

3.3.2. Galactic Magnetic Field Models

Despite great efforts in modelling the GMF and measuring its parameters and compo-

nents, many aspects of it still stay eluded. The most known ones on the other hand are

the large-scale regular fields and the small-scale random fields, reviewed in [61, 62]. Sev-

eral modulations have been created over the years, yet many differ quite severely in their

structure. In Figure 3.5 a comparison of the deflection of a 60 EeV proton of three dif-

ferent GMF models is shown including the JF12 (left) [3], the 2010 model from Sun and

Reich (SR10) [66] (middle) and the 2011 Pshirkov, Tinyakov and Kronberg (PTK11)[67]

model (right). It can be seen that the SR10 model only considers a very low level of angu-

lar deflection of the arrival direction while the PT11 model assumes it to be several times

higher in the Galactic plane. The JF12 on the other hand has a far more complex structure

and of all three the largest degrees of deflection with the maximum around the Galactic
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centre.

Figure 3.5.: Comparison of the magnitude of deflection of a 60 EeV proton for three dif-
ferent modulations of the GMF. The previously already mentioned JF12 is shown on the
left, the SR10 in the middle and the PTK11 on the right. Taken from reference [68].

3.3.3. Jansson-Farrar (JF12) Model

The Jansson-Farrar JF12 model [3] is the so far most complete analytic description of the

global magnetic field [69] fitted to polarized synchrotron emission taken by the WMAP7

[70] and over 40,000 RMs [64, 71]. It contains three components: the coherent large scale
field which includes the halo, the disk, and the out-of-plane components, the random
turbulent field, defined by its rms field strength, and the striated field accounting for the

stretching or compressing of the coherent and/or fully random field [68].

Coherent Field

The coherent field has a logarithmic-spiral geometry with a ring of 3–5 kpc in its centre

as shown in the left panel of Figure 3.6. The arms are individually fitted to the RM data

[64].

Figure 3.6.: Top-down onto the plane of the JF12 magnetic field model. The coherent
field is shown left and the random turbulent is on the right. The magnetic field strength
is illustrated by the colour scale while the arrows indicate the magnetic field directions.
The Earth’s position is shown as a blue cross at a distance of 8.5 kpcs from the Galactic
centre. Taken from reference [72].
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Additionally, an out-off-plane halo component often referred to as "X-field" was added,

which was motivated by the observed X-shaped field structures in radio measurements

of different edge-on galaxies [73].

Random turbulent field

Similar to the coherent field the fully random field also has spiral arms but with inde-

pendently fitted rms strengths. The disk component has been superpositioned with a

smooth halo component without any azimuthal structure, illustrated in the right panel

in Figure 3.6. The coherence length Lc of this field can be written as

Lc =
1
5

Lmax
1 − (Lmin/Lmax)5/3

1 − (Lmin/Lmax)2/3 (3.13)

with Lmin and Lmax corresponding to the minimum and maximum variation in the tur-

bulent magnetic field [74]. As the characteristic properties of the turbulent magnetic field

are governed by many uncertainties we varied Lmin and thereby the coherence length Lc

to create different variations of the JF12 model.

Striated field

The striated field allows a random field that averages to zero on large scales to locally

align in some preferred direction. This would arise if a fully random field got stretched

or compressed and this has been the initial intention of including it. Also, a supernova

would be able to locally compress or stretch a coherent field causing a striated field to

arise.

Although the JF12 model showed a great improvement from previous modulations it

still not describes the true structure of the GMF and has faults within it. For example in

[75] it was indicated that the synchrotron emission map used for JF12 might be off by a

factor of ≈ 1/3. Therefore, as the exact structure is still unknown, this has to be consid-

ered in the data creation for the machine learning analysis in Chapter 5.

Additionally, to the variations of Lmin and therefore the coherence length, we also change

the random seed of both the turbulent and striated field component to impede the neural

network to learn just a specific realisation of the GMF model. Similar variations of this

kind were performed in [76].
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CHAPTER4
METHODS

For many unsolved questions regarding the nature and propagation of UHECRs, simu-

lations enable a way of testing theories, running different "what if?" scenarios and visu-

alizing them when real-life measurements are not possible, too expensive or not scalable.

Yet caution has to be taken when interpreting the results as these simulations are lim-

ited by the knowledge they were created with, so their result could be unrepresentative

of the real underlining physics. Nevertheless, simulations have shown great success in

many fields of physics and science in general, e.g. the Pythia [77] simulation program

for high-energy collisions at accelerators like the LHC. Here, simulations have had not

only a large influence on how the detectors should be built but also in the testing of the-

ories of physics beyond the Standard Model (BSM) and the finding of the Higgs boson

in 2012 [78]. For this work, we create simulations of UHECRs as could be observed at

Auger to train a neural network (NN) to detect a fraction of particles originating from a

few sources embedded in a larger isotropic background distribution. We consider sev-

eral different variations of the JF12 GMF model and mass compositions of the UHECRs

before we finally apply the tuned model to data taken by Auger.
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This chapter begins with an introduction of the simulation program and the modules

(Section 4.1) that are used to create the simulated data for this analysis, followed by the

creation of the different variations of the JF12 GMF model Section 4.2. Next, we show

the necessary steps to create a UHECR flux as could be observed at Auger in Section 4.3.

Finally, we show how the different mass compositions can be calculated as a function of

the power-law index in Section 4.4.

4.1. CRPropa 3

CRPropa 3 is the third generation of the open-source simulation framework created to

study the propagation of UHECRs through (extra)Galactic space [2]. For this work, the

fully implemented Python steering of the program was used. For detailed information

on the installation and all its functionalities see the documentation page [79].

Since CRPropa 3.0 it is possible to attain the entire information of each CR at any prop-

agation step. This information is stored in the so-called Candidate class on which each

module acts that are within this class. An overview of the modular structure of CRPropa

3 is shown in Figure 4.1.

Figure 4.1.: Modular structure of CRPropa 3. The Candidate class is acted on by each of
the modules within the class. After each propagation step the Candidate is checked if it
is still active.

4.1.1. Propagation modules

The propagation through Galactic and extragalactic space is simulated by steps, where

for each step the new location, energy and composition of each propagating particle is

calculated based on the stochastic Monte Carlo approach. For each step, a CR thereby
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has a certain probability to interact in one of the ways introduced in Chapter 3. The

chosen step size differs for different propagation modules. For this work, the "Simple

Propagation" was used for the 1D extragalactic (see ??) and "Propagation CK" for the

Galactic simulations through the GMF. The latter is based on the Cash–Karp (CK) algo-

rithm [80] and handles the deflection of CRs by the GMF with a dynamic step size control.

The "Simple Propagation" on the other hand uses a simple rectilinear propagation with

equally binned step sizes.

4.1.2. Magnetic lenses

Computationally it is far more efficient to inverse the propagation of the CRs through the

Galaxy as the majority of particles would miss Earth and thereby their detection, result-

ing in unnecessary computations. Also, the actual amount of detected CRs on Earth

would statistically vary with each simulation. Therefore, particles are usually "back-

tracked" from Earth to the source by just reversing their charge, changing a proton for

example to an anti-proton and switching the Galactic border with the observer. Al-

though this method is computationally a lot more efficient, when the particle number

is increased to a realistic value, this process still takes a significant time, dependent on

the chosen propagation step size. As the simulation of the Galactic propagation in this

method is basically just a one-to-one projection from the Galactic border to the observer

Earth, this process can be replaced by large matrix multiplication [81]. By binning each

point in the sky and multiplying it with a matrix that maps each point at the Galactic

border on a point of the observer’s sky as a function of rigidity, the use of computational

resources can be decreased by a large factor. This matrix, which represents the mapping

from the Galactic border to the observer, is referred to as a "magnetic lens" and is used

throughout this thesis. To create a lens of a resolution similar to the angular resolution of

Pierre Auger, 256 particles are backtracked for each rigidity bin and each pixel. The entire

sphere corresponds to 49152 pixels, which is close to the resolution seen by Auger. For

a chosen rigidity binning of ∆E = 100.02 the computation is very expensive, adding up

to n × 256 × 49152 simulated particles for m propagation steps. As this work only looks

at energies from 32–200 EeV, the simulation can be narrowed down to the corresponding

rigidity range. To cover the deflection up to iron for these energies the lenses are created

ranging from 1–200 EV, resulting in 117 rigidity bins.
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When using a magnetic lens as a propagation module the setup of the simulation can

be summarized as follows

1. An empty so-called "ParticleMapContainer" is created that can store the entire particle

information

2. Particles are added to the map, following the desired distribution, direction and com-

position at the Galactic border.

3. The energy spectrum can be input directly as an injected power law, with a certain

energy range and power law index γ.

4. The lens is applied to this "map" at the Galactic border

5. Random particles are extracted from the "lensed" map following the input given to it.

The amount of extracted particles from the "map" should not exceed the amount of

extracted ones.

The arrival distribution of the extracted particles will then follow one deflected by the

GMF model.

All maps are created with UHECRs ranging from 32–200 EeV following a power law of

γ = −4.2, which is motivated by the observed diffuse spectrum above the spectral break

at roughly 43 EeV from Pierre Auger.

4.2. Variations of the Galactic magnetic field model

To ensure that the neural network does not learn just the specific GMF, we create sev-

eral variations of the JF12 model. At first, we change the random seed of the random

turbulent and striated magnetic field component. Each of the seed variations is used to

create a different data partition for the neural network, explained in Section 5.2. Also, we

create further variations by stepwise increasing the coherence length Lc of the random

turbulent magnetic field from a default value of Lc ≈ 5 to 12.5, 25, 37.5 and 50 parsec. To

visualize these variations, the magnitude of deflection of a particle of rigidity 5 EeV is

illustrated in Figure 4.2 by applying the different GMF lense to a sample healpy [82, 83]

heatmap. Shown are the effects on the heatmap for the default JF12 magnetic field lens,

a seed variation and that of an increased coherence length of Lc = 50 pc.
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(a) Sample heatmap (b) Default JF12 magnetic field lens

(c) Seed variation of the random turbulent and stri-
ated magnetic field components of the JF12 model

(d) Variation of the coherence length Lc = 50 of
random turbulent magnetic field component of the
JF12 magnetic field model.

Figure 4.2.: Comparison of three different variations of the JF12 magnetic field model
lenses applied to a sample heatmap (a). The magnitude of deflection corresponds to a
particle rigidity of 5 EeV.

Although the overall structure is similar, several significant small-scale changes can be

observed for both shown variations. These differences present a crucial aspect to ensure

and validate that the NN does not just learn how to reverse the Galactic propagation.

4.3. Geometrical exposure of the Pierre Auger Observatory

As Auger is a ground-based observatory, the detection of UHECRs is bound by the

Earth’s rotation. Therefore, an exposure function is built into the simulation in the form

of an acceptance or rejection condition. Auger is located in Argentina at a declination of –

35° so that there is a fraction of the Northern sky it can not observe at any given time. The

exposure of an observatory can be written as a function of the declination only measured

in km2 × years, resulting in an effective time-integrated area of the CR flux. The absolute

number of CRs that are measured from each point of the sky is not only dependent on

the actual celestial anisotropies but also depends on the observatory’s relative exposure.

Also, the detectors at Auger are assumed to be first fully efficient at zenith angles below

θm = 80°, resulting in a gradually increasing exposure as seen in equatorial coordinates
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in Figure 4.3a and transformed into Galactic coordinates in Figure 4.3b. Here, the rela-

tive exposure as stated in reference [84] is used, which is a function of declination δ and

detector efficiency θm only:

ω ∝ cos(ao)cos(δ)sin(am) + amsin(a0)sin(δ), (4.1)

where

am =


0 if ξ > 1

π if ξ < −1

cos−1(ξ) otherwise

(4.2)

and

ξ ≡ cos(θm)− sin(a0)sin(δ)
cos(a0)cos(δ)

. (4.3)

The Pierre Auger observatory is located at a latitude of a0 = −35° and we use a detector

efficiency θm = 80° throughout all our simulations.

(a) Equatorial coordinates (b) Galactic coordinates

Figure 4.3.: Exposure as a function on the celestial sphere (a) in equatorial coordinates (b)
in Galactic coordinates.

The arrival direction of 32-200 EeV isotropically distributed protons at the Galactic

border is shown in Figure 4.4a. The same distribution after the JF12 magnetic field lens

and the Auger exposure is applied is in Figure 4.4b. After the propagation, the arrival-

direction distribution is visually still highly isotropic and the particle density can be seen

to increase towards the "hot spot" shown in Figure 4.3b. However, some GMF-induced

small-scale clustering can be observed. The task of the neural network will be to distin-

guish this kind of clustering from one that arises from several particles arriving from the

same source.
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(a) Isotropic distribution (b) Applied lens and exposure

Figure 4.4.: Simulation of an isotropic CR proton distribution (a) at the Galactic border
and (b) propagated via the JF12 magnetic field model with the applied Auger exposure.

4.4. Composition calculation

For simplicity, we choose as starting point to simulate a proton-only composition, how-

ever, this is not representative of the actual observations made by Auger as stated in

Section 2.2. The actual composition is not yet totally resolved but tends to become heav-

ier towards higher energies. In the second run of simulations, we create a pure nitrogen

configuration to view the performance of the NN for still just a single element, but with

a seventh of the rigidity. Finally, we create a mixed composition of several elements mo-

tivated by the actual observations, however, instead of taking all the occurring elements,

a selection of representatives is commonly chosen. Often these elements are P, He, N, Si,

and Fe, as we also do in this work. Their abundance is created based on the elemental

injection fractions f R
A as stated in table 1.4 of [5]. These fractions are given as a relative

ratio at the same rigidity and can be transformed to the ratio at the same energy for a

spectral index γ via

fRR−γ = Φ(R(E)) =
dN
dR

∣∣∣∣ dE
dR

∣∣∣∣ = Φ(E)|Z| = fEE−γZ. (4.4)

Multiplying both sides with Rγ and keeping in mind that E = RZ an expression can be

obtained for the conversion of the composition fraction at the same energy fE and same

rigidity 1

fR = fEZ−γ+1. (4.5)

For an index of γ = −4.2 we acquire an iron-dominated composition with roughly P ≈
2.6%, He ≈ 3.7%, N ≈ 17.5%, Si ≈ 13.3% and Fe ≈ 62.9%. While the deflection of protons

of energy above 32 EeV is of an order of a few degrees as can be seen in Figure 6.14a,

the deflection by the GMF of heavier nuclei becomes so large that the particles can not be

visually assigned to their sources anymore as shown in Figure 6.14b.

1This method was motivated in private communication with D.Ehlert [85].
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(a) Proton-only composition with γ = −4.2 (b) Mixed composition with γ = −4.2

Figure 4.5.: Arrival directions of 7500 UHECRs (green dots) propagated through the de-
fault JF12 magnetic field model originating from 15 sources indicated as black triangles.
Shown are (a) a proton-only composition and (b) a mixed iron-dominated composition
calculated via Equation (4.4).

For the mixed composition, some clustering can still be seen which corresponds to the

fraction of lighter nuclei while for the heavier nuclei, the deflections become so much

larger that they too arrive from almost all directions.
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CHAPTER5
MACHINE LEARNING SETUP

Mankind lives in a data-driven world, producing 97 zettabytes of data in 2022 [86]. In

physics alone, experiments like e.g. the LHC, over 380 petabytes of data were saved

from experiments since its first run [87]. To handle this vast amount of data and shine

a light on all the information hidden within it, large computational resources and effi-

cient algorithms are needed. Here machine learning and deep learning in particular have

shown omens success in finding the underlining truths and patterns in many fields of

physics, which would be incomprehensible to scientists without. For example, the us-

age of cutting-edge machine learning applications at the LHC was a major contributor to

finding the Higgs Boson in 2012 [78]. Although the actual data is often limited, simula-

tions can be used to upscale the data size to possibly find physical patterns using deep

neural networks.

At first, an introduction to the methodology of deep learning is given Section 5.1 fol-

lowed by a detailed walkthrough of the data pre-processing and features extensions in

Section 5.2. The most important hyperparameters are introduced in Section 5.3 and the

different performance measures used for this work in Section 5.4. The final neural net-

work structure is given in Section 5.5.

5.1. Structure of deep neural networks

A neural network (NN), takes a set of input variables or so-called features x1, x2, x3, x4...,

and outputs an array of predictions, called the output layer. All layers in between are

named hidden layers as their outputs are not directly observed. A NN which consists

of at least two or more hidden layers is referred to as a deep neural network. A layer

consists of several nodes that are each connected to all other nodes in the previous and

next layer via so-called weights. An illustration of the structure of a simple deep neural

network is shown in Figure 5.1.
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Figure 5.1.: Illustration of the structure of a deep neural network with 2 hidden layers.

The value of a certain node, also called feature or neuron (as in the brain), is calculated

via the weighted sum of all m incoming connected inputs

Feature =
m

∑
i
(wi × xi) + b. (5.1)

Here, wi is the weight of the corresponding input xi and b is a constant to shift the activa-

tion threshold of that node. If a node is activated or not, and if it is, how much influence

it has on the next layer, is decided by an activation function. The most commonly used

activation function is the ReLU function [88] which is zero for all negative values and x

for positive ones. If thereby, a node has a weighted sum of below zero the node is deac-

tivated and does not influence the next layer. This procedure is similar to the brain and

is also the reason it is called a neuron, which can or can not be switched on. The power

of the neural network lies now in updating the weights in such a way that the final er-

ror on the output is minimized. The error is calculated via the sum over a cost function

measuring the difference between all predictions and true values

J(ω) =
1
m

m

∑
i

Cost(hω(xi), yi). (5.2)

For this work, we create a binary classifier and thus we use the Binary Cross-Entropy
[89] cost function which is given as

Cost(hω(x), y) =

−log(hω(x)) if y = 1

−log(1 − hω(x)) if y = 0.
(5.3)
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This can be rewritten in one line as

J(ω) = − 1
m

m

∑
i
[yi log(hω(xi)) + (1 − yi)(log(hω(xi))]. (5.4)

Hereby, the condition

0 ≤ hω ≤ 1 (5.5)

has to be satisfied via a function A

hω = A(ωTx). (5.6)

A function that can acquire this is the Sigmoid activation function

A(x) =
1

1 + e−x , (5.7)

used for binary classifiers, as it is also done in this work.

By using a process called gradient decent the error can be backpropagated through

the network by calculating the partial derivative of the cost function with respect to each

weight and updating the weights repeatedly as follows

ωj := ωj − η
∂

∂ωj
J(ω). (5.8)

Here η is the step size of each weight update and is referred to as the learning rate, one

of the most important tunable hyperparameters of the NN.

The entire training process can be summarized as follows

0. The very first set of weights is most commonly randomly initialized

1. The values of each node of each layer are calculated by applying an activation function

to the weighted sum (Equation (5.1)) of all incoming connections.

2. For the output layer, the Sigmoid activation function is used to obtain a prediction

value between zero and one.

3. The difference between the predictions and the true labels is calculated via the cost

function Equation (5.2). The goal of the network is to minimize this error.

4. Via gradient descent, the weights are updated by calculating the partial derivative of

the cost function with respect to each weight (Equation (5.8)).

5. Steps 1-4 are repeated for each new data point until the error stops decreasing/ the

prediction ability of the NN stops improving. Hereby, an iteration over the entire

data is referred to as one epoch.
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Finally, a certain threshold on the output node is chosen to distinguish one class from

another. By default, y ≤ 0.5 would correspond in this application for a predicted source

event, while y < 0.5 to an isotropic background event. This threshold can be adjusted

though, if it is advantageous to the general performance of the NN. To speed up the

training process and smoothen the learning curve the weights are often not updated for

each single data example but instead for a so-called "batch" of the data consisting of a

certain amount of samples. This too is a tuneable hyperparameter that has to be adjusted

in order to get the best performance. The most important hyperparameters, and how

they can be changed, are shortly explained in Section 5.3.

5.2. Data pre-processing

Before any training is applied the data set is split into three fractions: the training, the

validation and the test data set, see Figure 5.2. The training data set gets the majority

of the examples (often 70% or more) as it is the data used to update the weights and

actually trains the model. The training set can contain certain so-called "artefacts" which

are specific features that only apply to this fraction of the data. Such learned artefacts

are not desired as the NN should be robust and perform well on any data created by the

same physical laws e.g. in this work the NN should predict if a UHECR originated from

a source or the isotropic background. It is not desired to just learn the source positions of

the training set but to learn the magnetically-induced patterns independent of their exact

arrival direction. Therefore the validation set is used to compare the accuracy and loss of

the new weights on a not trained fraction of the data set. If the loss on the training set

keeps decreasing but not for the validation set, it is a sign that the model is overfitting

and only learning something specific for the training set. The accuracy and loss of a

clearly overfitting NN trained on a pure proton data set are shown in Figure 5.3a. It

can be seen that the loss continues to decrease for the training data set but not for the

validation data set. The NN is learning properties that only apply to the specific training

fraction of the data. Although the validation set is not used to update the weights, it is

used to evaluate the model after each epoch. Different implementations to the network

structure and changes to the hyperparameters as oriented to the learning curve of this

data fraction. It thereby is in a way involved in the training process of the NN and thus

a third fraction, the test data set, is needed. The test data set is used to check the final

performance of the NN. As it has not been seen at any point during the training it can

give an unbiased evaluation of the model. The accuracy on this fraction gives the actual

performance of the NN.

We state here again that to generalize the training of the NN as well as possible, we

use a different random set of source positions and variations of the GMF model for each

fraction. We can thereby evaluate the accuracy and loss during the training process with

the validation set and use it to implement an "early stopping" condition explained in Sec-
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Training set

70%

Test set

15%
Validation set

15%

Figure 5.2.: Used split of input data into training, test and validation set.

tion 5.3. Also while at first, we only use one seed for each data fraction, we from hereon

out use three different seeds for the training data sets to directly include the uncertainty

of the random components in the training process.

Data normalization

When training a NN the normalization of the data set with respect to each input feature

is very important as a feature that contains significantly higher values than others can

become dominant in the training process [90]. Such a feature will acquire a much higher

loss by default without being of actual higher importance to the model’s performance.

As the data set contains on the one hand values up to 2 × 1020 for the energy and on the

other hand coordinates that only reach a value of 2π for the longitude, the training would

be extremely biased. Therefore each input feature has to be normalized to a range [0, 1]

for unbiased training to be acquired.

Feature selection

When training NNs the results can only be as good as the data trained on, therefore a

careful data selection is key. At first, we replace the energy information with its loga-

rithm, which gives us improved results. As the energy follows a power-law distribution

the majority will have relatively small values and a few relatively big ones. Taking the

logarithms naturally reduces the skewness of the distribution while a normalization to

values between zero and one would result in the majority of values being very close to

zero. Training on the logarithm stresses the relative multiplicity in the data by lineariz-

ing the relationship of the power-law distribution and therefore shows to be beneficial

towards the NN’s performance.
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The UHECR data is limited to their energy and arrival direction in Galactic coordinates

only, as the charge is considered an unknown quantity. This is a very small range of

usable data to train on. However, more information can be highlighted for the NN to

gain better performance by combining already existing features in order to create new

ones that represent known relations or correlations of the data set. This is a commonly

used method in machine learning called "feature crossing". At first, we expanded the data

set by adding the distance of each event to its N nearest neighbours to stress the clustering

in the arrival directions of the UHECRs. Also by adding relative spatial information, we

are able to teach the NN to some extent spherical data. Without this information, the NN

has no way to learn that an event just below a longitude of 2π (the maximum value of

this feature) may lie directly next to one at longitude zero (the minimum value of this

feature).

We calculate the angular distance to all other particles in each of the three data set frac-

tions together with the corresponding difference in energy to these particles. At first, we

only consider the closest 5 neighbours and add them to the existing three features, result-

ing in a total of 13 features. The influence of this data extension is shown in Figure 5.3

by monitoring the training and validation loss and accuracy of each epoch. It can be ob-

served that the NN is not able to learn the clustering of the UHECR arrival distribution

just from the energy and arrival coordinates alone. While the loss on the training data

is decreasing, the validation loss is increasing. The model is just learning the specific

source positions of the training set and thereby shows almost no prediction ability for

the validation data with different source positions and a different magnetic field model.

After the feature extension of the 5 nearest neighbours, not only does the performance on

the training set increase but also the validation performance increases to almost the level

of the training one, see Figure 5.3b. To see if the performance can be further improved

for both fractions, we further extend the data to the 10 nearest neighbours, adding 20

new features instead of 10, Figure 5.3c. It can be seen that the performance increases

even more, however, a slight overfit is still observed. A further feature extension to more

nearest neighbours did not show any improvement. We want to note here that the hy-

perparameters of the network have already been adjusted accordingly to some extent. A

detailed introduction to how this is done and the final best performance is achieved is

shown in the next section.
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(a) Unextended data set consisting of the energy
and Galactic arrival coordinates. The NN is learn-
ing the source positions of the training data and
therefore performs poorly on the validation set that
contains different source positions.

(b) The data was extended with the angular dis-
tance and energy difference to the 5 nearest neigh-
bours of each UHECR. The network can learn the
clustering and thereby performs similarly well on
the validation set.

(c) The data was extended with the angular dis-
tance and energy difference to the 10 nearest neigh-
bours of each UHECR.

Figure 5.3.: Loss and accuracy for each epoch with a threshold at 0.5 on the output node.
The NN is trained on 70000 proton UHECRs propagated through the default JF12 mag-
netic field model. The blue and orange lines correspond to the training and validation
data sets respectively.
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(a) Training data set (b) Training data set

(c) Validation data set (d) Validation data set

Figure 5.4.: Comparison between the distribution of source and background UHECRs
of their angular distance of the nearest (left) and 10th nearest neighbour (right) before
normalization.

Furthermore, we try a feature extension motivated by the analytical multiplet search

stated in [91]. Here the so-called multiplets for selected source candidates were analysed

by deriving the correlation coefficient and thrust ratio for certain preselected regions of

interest (ROIs), however, they only considered protons and Helium deflections. Also,

they focused on a "targeted search" meaning they considered each source candidate sepa-

rately. We on the other hand are applying an all-sky search for unknown source positions

and aim towards a heavier nuclei composition as it is suggested by the observations from

Auger. Although they did also apply an all-sky search on Auger data, they had to create

a grid of different ROIs from which they selected those with the highest p-value signifi-

cance. For this work, such a division into different ROIs would have to be done for each

data set fraction individually whereas the optimal size of the ROIs would have to be also

calculated for the different compositions analysed. As this kind of data pre-processing

would take considerable time and effort, with no guarantee of success for heavier nuclei,

it is not included in the scope of this thesis. However, we take their used method as mo-

tivation for a feature extension and derive for a subsample N of UHECRs the correlation
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coefficient

C(u, 1/E) =
Cov(β, 1/E)√

Var(u)Var(1/E)
(5.9)

with variance Var(x) = ⟨(x − ⟨x⟩)2⟩ and angular distance β. We try out several dif-

ferent variations of subsamples N, all based on nearest neighbour calculations for each

UHECR. For example, we select the 10th − 20th, then the 20th − 30th and calculate the

correlation coefficient as stated in Equation (5.9) between the angular distance and the

inverse energy in the hope to capture a correlation with source particles with a higher

degree of deflection. Although some of these features capture local correlations well, it

does not improve the neural network’s performance for higher deflections, due to the

large amount of background particles being included. We note though, that training on

this extension alone does show a decent training ability but does not surpass or improve

as additional features the overall performance of our NN and we thereby chose to discard

it. Motivated by the calculation of the thrust ratio, we added the corresponding exposure

weight of each UHECR as a further feature, visualized in Figure 5.5, yet we observed no

change in performance by this addition either. We did not derive a closely related thrust

ratio feature, as ROIs would be needed for the calculation. Nonetheless, we do not rule

out that a closer combination of our analysis and the thrust ratio method used in [91]

could show to be beneficial in detecting some larger deflected source events.

To study the correlation between the new features, the correlation matrix of the ex-

tended data set is shown in Figure 5.6. It can be seen, that the energy difference to the

nearest neighbours shows a decreasing correlation with the corresponding angular dis-

tance towards particles further apart. The inverse energy difference is also tested as a

feature, however, neither shows any improvement of the network when compared to a

model trained without. Therefore we dropped it which did increase the performance

by a slight margin. This could be possibly explained by the model learning the energy-

dependent clustering structure with the total energy of each UHECR together with the

angular distance and thereby the added information would be redundant. This is sup-

ported by the large correlation with the energy feature itself. Redundant, highly corre-

lated or useless features can be harmful towards the network’s performance [92]. Af-

ter dropping the energy difference the accuracy increased by 1% on both data set frac-

tions. The angular distance on the other hand shows a negative correlation with the class

and also quite some correlation with itself for obvious reasons. This feature showed the

largest improvement for the network by giving the model the ability to capture the clus-

tering structure of the NN. The apparent difference in the distribution between the source

and the background UHECRs can be seen in Figure 5.4 where the nearest and the 10th

nearest neighbour are shown for the training and validation data set of the pure proton

composition.
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Figure 5.5.: Exposure weight for each UHECR’s arrival direction of the validation data
set.

Figure 5.6.: Correlation matrix of the extended data set. The numbers in the brackets
refer to the energy and distance to the Nth nearest particle respectively. Red corresponds
to a positive and blue to a negative correlation respectively, while white indicates no
correlation between the features.
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5.3. Hyperparameters

Parameters of the NN that have to be set before the training process begins, are consid-

ered hyperparameters. It is one of the main challenges towards getting a good perfor-

mance of the NN and they have to be often severely "tuned". An overview of the most

important ones and their functionality are listed in Table 5.1.

Table 5.1.: Selection of some of the most important hyperparameters of an NN.

Hyperparameter Functionality

Layers Total amount of layers

Nodes Number of nodes per layer

Learning rate Step size of each weight update of the gradient decent process

Batch size Number of training samples seen to update the weights

Activation function Decides if/how much a decision impact the neuron has

Epoch Training run over the entire data set

Weight decay Decreases learning rate for higher iterations

Dropout Probability of a node connection dropping out

In order to tune these hyperparameters the loss and accuracy of the training and vali-

dation data set are monitored for each epoch as was already done for the feature selection.

Of the hyperparameters shown in Table 5.1 the learning rate is arguably the most rele-

vant as it dictates the step size of each weight update. If the learning rate is too large

the neural network will continuously jump over the optimum and if chosen too small, it

will take too long or will never reach the minimum loss value. On the other hand, de-

creasing the batch size leads to more weight updates within one epoch as an epoch is an

iteration over the entire data set. This is just one example of how two hyperparameters

are connected with each other and there is no common default setting. There are some

loss functions that tend to work better with higher learning rates and smaller batch sizes

and vice versa. The exact setting has to be found for each problem individually by com-

paring the validation and training loss for each epoch. Due to the counterplay of many

hyperparameters, it is often better to only change one at a time, however, some only show

an improvement in tandem and thereby finding an optimal setting is no easy task. The

following hyperparameters are added to the network structure.
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Batch normalization

Additional to the initial data set normalization, a so-called batch normalization should

be implemented after each activation function. Hereby, during the training process,

each batch is normalized to its zero mean and unit variance after each layer’s activa-

tion function. It enables setting a higher learning rate, accelerating the training process

and also serves as a regularization technique against overfitting [93]. However, for self-

normalizing activation functions, this is not needed (see next section).

Activation functions

Over the years many different activation functions have been designed, each better suited

for certain applications. The already previously introduced and most commonly used

one is the ReLU activation function [88] shown in Figure 5.7a. Although it is often the

default function of use, the ReLU activation function can get trapped in a dead state.

This is the case when the change of the weights is so huge that the output of one layer

becomes extremely low (negative). In this case, it can stay stuck in the negative regime

for the next layers too. As a result, the affected cell can not contribute to the training of

the network. If this occurs more frequently, the performance of the network will never

reach its optimal capacity.

(a) Rectified linear activation function (ReLU) (b) Scaled Exponential Linear Units function
(SELU)

Figure 5.7.: Comparison of the ReLU and the in this work used SELU activation function.

The Scaled Exponential Linear Units (SELU) activation function on the other hand

avoids this problem by enabling negative output values and thus can not deactivate any

nodes. Simultaneously, just like the ReLU, it does not have the problem of vanishing

gradients. For deep neural networks, the gradients can become so vanishingly small,

that they are not able not to change the weights significantly enough. As both the SELU

also has a derivative ≤ 1 for positive input values, this is not a problem. Furthermore,



5.3. Hyperparameters 43

the SELU activation function is self normalizing, as a result, batch normalization is not

necessarily needed. The SELU is a relatively new activation function and therefore not

fully explored yet in many scenarios, however, we experience consistently better results

with it and therefore use it in our model structure. For more information on the SELU

activation function, we refer to reference [94].

Dropout

Dropout is a regularization technique [95] which tackles the overfitting of a NN by adding

a probability of forgetting random connections between two layers for one training iter-

ation. The procedure is illustrated in Figure 5.8. It therefore can help to avoid getting

stuck in a local minimum during training by preventing the model from just memorising

certain insignificant random fluctuations. We added it between every layer, however, we

note that the magnitude has to be adjusted for the different mass composition scenarios.

Figure 5.8.: Illustration of a dropout applied to a deep neural network structure. A prob-
ability is implemented of "forgetting" a connection between two nodes for one training
iteration. Shown is a fully connected deep neural network (left) and the same network
with an applied dropout probability after each layer (right). Taken from [95].

L2 regularization

L2 regularization [96] is another regularization technique. By adding a penalty term to

the loss function that is proportional to the sum of the squared weights it reduces overfit-

ting for higher epochs and is often referred to as weight decay as it continuously reduces

the weight updates in the training process. The setting of it is highly related to the size of

the learning rate and has to be tuned accordingly.

Early stopping

To secure the best set of weights and thereby the best performance of the NN, the model

is saved after each epoch where the error on the validation set has decreased. Additively,
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if the loss value has not decreased for a certain number of epochs in a row the training is

stopped, as generally, the loss will tend to further increase from thereon out. This way not

only will the best model be used but a large amount of unnecessarily spent computational

time can be saved. By fixing this condition to the validation set we can ensure that only

performance improvements that are independent of the exact GMF structure and source

positions are kept.

5.4. Performance measures

There are many different ways to evaluate the performance of a machine learning model.

The measure of choice is highly dependent on the application in use though. While the

previously introduced accuracy is often the beginner’s default, there are many downsides

to it as it does not capture all the aspects of the performance of a NN. It is highly influ-

enced by an imbalance in the distribution of the classes and the chosen threshold on the

prediction output. For example, if a binary data set consists of a class imbalance of 90:10

and the model predicts all data points as the majority class, the accuracy would still give

a value of 90% without any actual prediction ability. Also, for a fixed chosen threshold of

e.g. ≤ 0.5, the accuracy does not account for how well each class is predicted. Meaning,

a model that outputs a prediction note with values for the background very close to zero,

and the positive class very close to one, could yield almost the same accuracy as a model

where the predictions are distributed around 0.4 and 0.6 respectively. This is why other

measures than accuracy are needed to capture the full performance of a NN.

Receiver Operating Characteristic

The Receiver Operating characteristic (ROC) is a threshold-independent performance

measure [97]. It compares the true positive rate (TPR) and the false positive Rate (FPR)

at all thresholds on the output node. The TPR, which is also commonly called recall, is

defined as

TPR =
TP

TP + FN
. (5.10)

Here, FN corresponds to the number of false negatives and TP to the number of true

positives. The recall is also referred to as sensitivity and is here the fraction of correctly

predicted source events with respect to all possible predictable source UHECRs in the

entire data set.

The FPR on the other hand is defined as

FPR =
FP

FP + FN
, (5.11)

where FP are the false positive predictions. The ROC curve is created by plotting the

recall and the FPR values for different thresholds on the output node, shown in Figure 5.9.
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The area underneath the curve (AUC) is then a measure of the performance of the NN

that is independent of the threshold, where a value of one is a perfect score and 0.5 is a

random 50:50 classifier.

Figure 5.9.: ROC curve of the test data set of a mixed composition originating from Cen
A alone. The AUC is shown in the bottom left corner and corresponds to the area under-
neath the blue curve. The red line indicates a random 50:50 classifier with no prediction
ability.

The AUC captures the entire performance of the NN as it also measures how well the

predictions are ranked. It is well suited for a balanced data set between both classes yet

in the case of high imbalance, it becomes unrepresentative as in the regime of only a few

TPs and FPs, small changes can have a large influence on the ROC.

Precision-Recall-Curve

The Precision-Recall-Curve (PRC) is a performance measure that is created by calculating

the precision and the recall for different thresholds on the output node. The precision is

defined as

Precision =
TP

TP + FP
, (5.12)

where TP and FP are the true and false positive predictions respectively. Here, the pre-

cision is the fraction of the correctly predicted source UHECRs with respect to the total

number of predicted source events, those that are true, and those that are not. Just like for

the ROC curve the precision and the recall are calculated for different cuts on the output

node. An example of a PRC is shown in Figure 5.10
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Figure 5.10.: The Precision-Recall-Curve of a proton test data set consisting of 2400 back-
ground CRs and 200 source CRs. This curve has an F-score score of 0.931 and the value
closest to the top right corner corresponds to the best threshold and thereby the best per-
formance.

The PRC focuses on the prediction ability of the positive class while being resistant to

a high-class imbalance towards the background. It is the favoured performance measure

for highly unbalanced data sets as it focuses on minority positive class. When testing the

NN for different ratios of source events embedded in a large isotropic background it is a

well-suited performance measure. By calculating the maximum of the harmonic mean of

the recall and precision, the so-called F-score [98]

F − score =
2 × Precision × Recal

Precision + Recall
, (5.13)

the results of the PRC curve can be compared. An F-score of 1.0 is optimal while the

worst possible one changes with the distribution of the data set indicated in Figure 5.10

as the blue line. We consistently used the ROC-AUC when evaluating a balanced and the

PRC when evaluating an imbalanced test data set.

Furthermore, both the AUC and PCR can be used to derive the best possible threshold

on the output node by determining the point in the curve that encloses the largest area

with respect to both axes. This is shown in Figure 5.10 as the black dot. We thus use the

best threshold to accomplish the best possible prediction performance of the classifier.

5.5. Deep neural network structure

The final structure of the constructed deep neural network is shown in Table 5.2. We

chose a batch size of 64 resulting in the dimension of the input layer being (64, N) where
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N corresponds to the number of input features discussed in the Section 5.2. For the im-

plementation of different functions and hyperparameters we used PyTorch [99], which is

a deep-learning Python library. A deeper and more complex structure showed no per-

formance improvements. For the gradient descent task, we used the AdamW optimizer

Table 5.2.: Deep neural network structure

Layer Layer Type Number of Hidden Units Activation Function
1 Linear 32 SELU
1 Dropout(0.3) - -
2 Linear 64 SELU
2 Dropout(0.3) - -
3 Linear 128 SELU
3 Dropout(0.3) - -
4 Linear 64 SELU
4 Dropout(0.3) - -
5 Linear 32 Sigmoid

[100]. We tried out several different optimizers, activation functions and combinations of

hyperparameters however, we consistently observe better or at least equal results with

the stated selection. Yet, some slight adjustments have to be made to this structure for

the different data sets of the analysis e.g. with more complex deflection patterns we ex-

perience better results for higher dropout probabilities.

Figure 5.11.: Accuracy and loss of final tuned neural network trained on a pure proton
composition. The blue and orange curve corresponds to the training and validation data
set respectively.
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Algorithm Type Reference
XGBoost Boosted Decision Tree [101]
LightGBM Boosted Decision Tree [102]
SGDClassifier Logistic Regressor [103]
ElasticNet Logistic Regressor [103]

5.5.1. Combined neural network

Additionally to the single deep neural network approach, we test extending the method

by making use of several different pre-designed machine learning algorithms and adding

their prediction values to the data set. We thereby hope that other algorithms like ran-

dom forests might catch certain structures in the data set better than our deep neural

network. A list of the machine algorithms used is given in Section 5.5.1. We train each

algorithm individually and then run a linear regression on the data set consisting of all

prediction nodes of the different machine learning models used, including that of our

deep neural network. This is a commonly used method in machine learning to make

use of the specific different strengths of the different algorithms. We then optimize the

hyperparameters of each machine-learning model using a hyperparameter optimization

framework called Optuna [104]. However, as the algorithms perform worse than our

deep neural network on all of the different data sets of Chapter 6, no performance in-

crease could be observed. This could be due to the very limited information given. For

more complex data sets with a large number of input features with very different char-

acteristics, we would expect an improvement, however, due to only having the spatial

information plus the energy it is possible that the deep neural network alone is able to

catch the full information.
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CHAPTER6
SOURCE EVENT DETECTION

USING DEEP LEARNING

In this chapter, we study the performance of the NN for several different scenarios. In

each case, we compare the results in both the limit of infinite statistics for randomly

distributed sources and for different ratios of source-to-background UHECRs for a few

selected candidate sources. At first, we choose a pure proton composition, simplifying

the distinction for the NN due to more local clustering (Section 6.1) followed by a pure

Nitrogen composition in Section 6.2. In both of these pure composition scenarios, we also

analyse the feature importance of the trained networks. Afterwards, we consider a mixed

composition of 5 representative nuclei for the same few candidate sources in and for Cen

A alone in Section 6.3.1. Afterwards, we apply the differently trained models to actual

data taken by Auger to look for possible source clustering events in Section 6.4. Finally,

we shortly compare our work to other methods used to search for magnetically-induced

patterns in the UHECR arrival directions in Section 6.5.

6.1. Pure proton composition

As already stated, we create each data fraction with different seeds for the random tur-

bulent and striated magnetic field component and different random source positions.

However, we use three seeds to create the training sets to avoid the NN learning just

one realisation. The proton data set is shown in Figure 6.1. It can be seen that in this

simplified scenario, the deflection is only a few degrees. The neural network is able to

separate the isotropic background from the source UHECRs with an AUC score of 0.9958

on a balanced data set of 15000 particles. The prediction output of the proton test set is

shown in Figure 6.2 where it can be seen that the network can clearly distinguish the two

classes from each other. Next, we look at the performance for a variation of the coherence



50 6. Source event detection using deep learning

(a) Training data

(b) Validation data

(c) Test data

Figure 6.1.: The three data partitions of the proton-only simulations. The training set (a)
consists of 35000 samples per class and was created with two different realisations of the
JF12 model. The validation (b) and the test (c) set were also created with different seeds
and source positions, consisting of 7500 UHECRs of each class. The green and grey dots
show the arrival directions of the source and isotropic background UHECRs respectively
while the black crosses indicate the source direction.
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Table 6.1.: Comparison of the performance of the proton composition NN applied to dif-
ferent test sets containing 7500 background and 7500 source UHECRs originating from 15
sources. The UHECRs were propagated with different coherence lengths of the random
turbulent magnetic field component.

Lc [pc] 12.5 25 37.5 50
AUC 0.9952 0.9941 0.9948 0.9941

length of the random turbulent field. Table 6.1 shows the AUC for increasing coherence

lengths for a data set of 7500 UHECRs originating from 15 random source positions em-

bedded in 7500 isotropic background particles. The distinction ability does not worsen

as the small deviation can be acquainted with just training fluctuations. Due to the rel-

atively small deflection of protons at these energies and the large source particle count,

the neural network is not much influenced by a significantly increased coherence length.

Figure 6.2.: Ouput node of NN applied to test data set. The NN was trained and tested
on a proton-only composition. The true class of sources and background UHECRs is
presented as green and grey respectively. The NN can clearly distinguish both classes.

This limit of infinite statistics where each source receives such a large amount of UHE-

CRs is of course highly unrepresentative, yet we analyse the performance here just from a

machine learning perspective. The data taken by Auger does clearly not show this degree

of clustering. As we do not know if and how much single sources might contribute to

the UHECR flux observed here on Earth, we test the performance of the NN for different

source-to-background particle ratios. For this we keep the total amount of UHECRs at

2600, motivated by the selected Auger data from [105], and compare the performance of

the NN more precisely for 4 different candidate sources and the coordinates of two hot

spots (HS), as stated in [49]. Although the hot spots are no actual sources we choose to

use their positions as additional origins for the simulations. Due to the very small dis-
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tance between Cen A and HS1, we can test the NN when two sources are this close to

each other and with the HS2 we get another statistic for the lower half of the Galactic

plane. The Galactic coordinates of these candidates and hot spots are listed in Table 6.2

together with the numbering scheme used for them in the skymaps.

Table 6.2.: Galactic coordinates of candidate sources and two hot spot regions used as
origin for the simulations of the source UHECR.

Source Longitude Latitude Number

Cen A 309.51 19.42 0

Cyg A 76.19 5.76 1

Fornax A 240.16° 56.69° 2

M87 283.78 74.49 3

HS1 308° 26° 4

HS2 275° -75° 5

Due to the increasingly high level of imbalance between the two classes, we use the F-

score, see Equation (5.13), as the performance measure. The results are shown in Table 6.3.

Table 6.3.: The performance of the NN after obtaining the best threshold via the F-score
for different source-to-background ratios of 2600 UHECR protons originating from 6 can-
didate source positions, as stated in [49].

Source CRs F-score Errors TP TN FP FN

1000 0.978 45 964/1000 1587/1600 14 31

500 0.954 47 476/500 2077/2100 23 24

200 0.931 28 188/200 2384/2400 16 12

100 0.830 34 83/100 2480/2500 17 17

50 0.653 34 32/50 2529/2500 16 18

It can be seen that the performance only decreases relatively little from 1000 to 200

total source particles. First at 100 and especially at 50 total source events the F-score

drops significantly to a value of 0.653. In this case, each source received on average less

than 10 particles causing the detection ability of the NN to stagnate. However, after

calculating the best threshold on the output node we are still able to correctly find 32/50

particles with 16 FPs and 18 FNs. When considering 100 source protons at a ratio of 1:25,

the NN can find 83/100. For this ratio, we show the full skymap as a function of the

predicted output of the NN Figure 6.3. Here, the grey dots and green dots correspond to

a background and source prediction respectively while a red point on top indicates if this

prediction is wrong, so that all dots without correspond to correct predictions. The initial

source positions are numbered and again indicated by black triangles. The corresponding

source to the numbering scheme can be found in Table 6.2.
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Figure 6.3.: Skymap in Galactic coordinates of 100 source events from 6 candidates
sources embedded in 2500 isotropic background UHECRs. The grey and the green data
points correspond to the NN-predicted background and source particles respectively.
The red dots shown on top indicates a false prediction.

We further analyse the detection ability of the NN for this scenario for the sources

individually. In Figure 6.4 a zoomed-in sky segment is shown of 12 UHECR protons (in-

dicated with circles) originating from M87 (black triangle). The neural network detected

10/12 source particles correctly and has no false predictions for a threshold of 0.3 on the

output node. However, the detection ability of the NN differs for different regions in the

Galactic skymap. Due to the magnetic field being strongest in the Galactic plane, the par-

ticles experience a stronger deflection resulting in the performance of the NN worsening

towards and in the plane. While 10/12 particles are found for M87 with no false predic-

tions the FP and FN are significantly higher in the region of Cen A and Cyg A which lie

close and in the Galactic plane.
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Figure 6.4.: Prediction values of a deep neural network trained on the arrival direction
of UHECRs and tested on 2500 isotropic background and 100 source protons originating
from 6 candidate sources. Shown is a sky segment in Galactic coordinates of the region
around M87 (black triangle) with 12 UHECRs coming from that source (shown as cir-
cles). The colour indicates the probability of a particle being identified as a source. A
value close to zero (grey) corresponds to a background and one closer towards one to a
source prediction

When we look at the region of Cen A and HS1, we can see, that although these sources

got a larger fraction of source particles due to the higher exposure in this part of the

sky, the performance of the NN worsens. This could be explained by the nature of the

two sources being so close to each other making it more difficult for the NN to find the

deflection structure as it has no actual knowledge that there are two sources in this region.

Furthermore, the magnetic field strength becomes increasingly stronger toward the plane

and also thereby the effect of the random fields. We can observe a slight curvature for

the particles from Cen A and a ring-like structure from HS1. In comparison, the UHECRs

from M87 follow a more linear deflection as can be seen in Figure 6.4.
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(a) Prediction output of the NN. (b) Particle energy of the same sky segment shown
in (a).

Figure 6.5.: Sky segment of Cen A and HS1 in Galactic coordinates of 100 source CRs from
the 6 candidate sources embedded in an isotropic background of 2500 particles. Shown
are both (a) the prediction value of the neural network and (b) the particle energy of the
same region. The true source particles are marked by coloured circles.

As we are trying to distinguish a fully random isotropic arrival-direction distribution

from one that shows a certain degree of correlation in the deflection, any effect that in-

duces a higher degree of randomness to the latter will lower the distinction ability of

the NN. For particles of lower rigidity, this effect will be amplified. We train the neural

several times to compare the number of source particles Ns needed for each source to

correctly identify a certain fraction of UHECRs after implementing the best threshold via

the highest F-score. However, we note that the optimal threshold differs when looking at

the performance of each source individually. While a threshold of 0.3 is optimal for M87,

Fornax A needs one of 0.1 for the best performance in this region. This on the other side

will cause M87 to get an additional two FN predictions. Thereby for such an analysis,

it is crucial to test each source for different quantities of emitted source particles indi-

vidually and averaging the results over several training runs. However, this could not

be conducted in the scope of this work. Nevertheless, we can conclude by comparing

the individual performance of several runs together with the results shown in Table 6.3

that for M87, HS2 and HS1 approximately Ns = 10 source particles were needed for a

TP rate of above 80% while for Fornax A and Cen A 15 and 20 particles where needed

respectively to not acquire an equal amount of FPs as TPs. The detection of Cyg A shows

consistently by far the worse results which can be explained by its location directly in

the Galactic plane and on the border of the observable sky of Auger. With such a low

exposure together with lying in the plane, the UHECRs from Cyg A showed a signifi-

cantly lower source probability value than any other source and a threshold below 0.05
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with Ns = 30 was needed to detect half the particles. Additionally, we applied an input

variable analysis of the trained NN using the Python SHAP library [106] to determine the

influence of the different given features. In Figure 6.6 we illustrate the feature importance

ranked from top to bottom of the proton neural network. The colour indicates the value

of the feature and the SHAP value, the influence of this feature on the prediction output

of that example. In this case, a negative SHAP value will correspond to a shift towards a

background prediction and a positive SHAP value towards a source prediction.

Figure 6.6.: Shap summary plot of the proton neural network. The features are ordered
by their influence from top (high influence) to bottom (low influence) on the distinction.
The SHAP value indicates how the effect of a feature value corresponds to the class. A
negative SHAP value of a feature will shift the prediction towards the background class
and a positive towards the source class

We can see that the angular distance to the nearest neighbours has the largest influ-

ence, whereas a large distance shifts the prediction value towards the background and a

small value towards the source prediction. The energy of the particles on the other hand

ranks lowest in importance, however, large energy values have a positive influence on

the prediction value as these experience less deflection. The reason why the energy ranks

so low could be explained by the NN learning the local clustering of protons from the

spatial information alone and thereby the energy information is less needed. We expect
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the importance of the energy information to increase for the Nitrogen deflections. Al-

though we expect the latitude to have a higher influence on the NN than the longitude

due to the stronger deflection within the plane, the clear tendency of higher latitudes

shifting the prediction towards the source class and vice versa is unexpected. By further

analysing the data set we realise that this can be an effect of different ratios of source

to background events in the upper and lower half of the Galactic sky. The source-to-

background events ratio is 0.85:1 in the lower and 1.27:1 in the upper half, thereby the

NN could assume this anisotropy to be a physical property. This is not desired and an

equal source-to-background ratio should be applied, if the latitude is kept as a feature

and such a behaviour is not wanted. We tried replacing, the latitude and longitude with

the exposure value as spatial information and excluding the latitude altogether, however,

none showed an improvement on an unbiased test data set. As this was found in the later

stages of the analysis a total recreation of the simulations was not possible. Furthermore,

the influence of latitude is subdominant to most other features thereby we argue that al-

though this is an undesired training artefact the imbalance is not too large and it does not

alter the results significantly. We can observe a similar tendency for the longitude, how-

ever, its importance is even lower. To avoid such a training artefact in future analysis,

we propose for an all-sky search to set the sources in the form of a grid over the entire

observable sky.

6.2. Pure Nitrogen composition

Next, we study the deflection of a pure Nitrogen composition. We chose the same source

positions and data sizes for the three data fractions as in Figure 6.1. With a charge of

Z = 7, Nitrogen has a significantly lower rigidity at energy above 32 EeV than protons

and thereby a larger degree of deflection. The three data fractions are shown in Figure 6.7.

The NN performs on the presented test data set with an AUC of 0.8775 which is a decrease

of ≈ 0.14 to the pure proton composition. Again we tested the AUC score for the different

coherence length variations of the turbulent magnetic field component. The results are

shown in Table 6.4. Although all scores are slightly lower than the default coherence

length of 5 pc, with 50 pc one scoring the lowest, the differences are insignificant. This

indicates that the NN is able to distinguish the source from the background UHECRs in

the limit of infinite statistics independently of the exact nature of the random turbulent

magnetic field component.
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(a) Training data

(b) Validation data

(c) Test data

Figure 6.7.: The three data partitions of the pure Nitrogen simulations. The training set
(a) consists of 35000 samples per class and was created with two different realisations of
the JF12 model. The validation (b) and the test (c) set were also created with different
seeds and source positions, consisting of 7500 CRs of each class. The green and grey dots
show the arrival directions of the source and isotropic background UHECRs respectively
while the black crosses indicate the source direction.
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Table 6.4.: Comparison of the performance of a NN trained on a pure Nitrogen compo-
sition and applied to test sets generated with variations of the coherence length of the
random turbulent component of the JF12 GMF model.

Lc [pc] 12.5 25 37.5 50
AUC 0.8626 0.8751 0.8651 0.8590

Previously, the deflection of the protons with a minimum rigidity of 32 EV were only a

few degrees. A 32 EeV Nitrogen UHECR on the other hand, would have a corresponding

rigidity of ≈ 4.7 EV which is consistent with the degree of deflection shown in Figure 4.2.

As at these rigidities, the deflection can differ by several degrees for the different varia-

tions we conclude that as desired the NN does not try to learn the precise GMF lens, but

can handle a UHECR data set exposed to a different random turbulent and striated mag-

netic field component. As these are some of the most unknown aspects of the GMF we

hereby present a method to avoid a certain degree of uncertainty in their characteristic

properties. However, this behaviour would have to be tested in order to see if it holds for

even stronger variations of these components.

As for the protons, we also test the NN for different background-to-source particle ratios.

The results are shown in Table 6.5.

Table 6.5.: The performance of the NN after obtaining the best threshold via the F-score
for different source-to-background ratios of 2600 Nitrogen UHECRs originating from 6
candidate source positions, as stated in [49].

Source CRs F-score Errors TP TN FP FN

1000 0.783 425 763/1000 1412/1600 188 237

500 0.595 425 312/500 1863/2100 237 188

200 0.347 385 101/200 2114/2400 286 99

100 0.163 339 33/100 2228/2500 272 67

50 0.142 122 9/50 2469/2550 81 41

The performance is significantly lower than for the pure proton composition, scoring

only an F-Score of 0.142 when only 50 particles originate from sources. For 200 source

particles, the NN detects approximately half correctly but at the cost of a high FP rate.

These results are again gained after we apply the optimal threshold derived from the

best F-score, meaning the cut for scoring the best precision while also obtaining the best

recall. As the source events are clustered less local the nearest neighbour features are

less likely to catch other source particles for a lesser abundance. Here, a better analytical

pre-processing of the data set would be needed to capture these particles, yet none of

our methods shown in Section 5.2 show any increase in performance. For heavier nuclei

with a low abundance of source events, random alignments of background and source

particles will become more of an issue and magnetically-induced patterns less dominant.

However, when we increase the threshold on the output node, the FP rate can be signifi-
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cantly decreased and we thereby look at the events with the highest prediction values. In

the case of 500 source Nitrogen particles 60 source UHECRs can be detected with only 3

FPs, thereby scoring a precision of 0.95. For the 200 source particle scenario, the 9 and in

the 50 source particle scenario the 4 UHECRs with the highest prediction value are TPs

with no FPs. Thereby, although the NN might output less reliable results with respect

to the entire data set, the highest prediction values show to be mostly correct. When

repeating the training process several times we receive consistently similar results. We

also show the feature importance of the Nitrogen-trained network in Figure 6.8 where we

can see that the energy importance increased significantly in comparison to the proton-

trained one. Also, the 7th, 8th, 9th and 10th nearest neighbour distances show the highest

feature importance showing that the NN has captured higher deflections to a certain ex-

tent. Furthermore, the importance of the energy information has increased notably.

Figure 6.8.: Shap summary plot of the Nitrogen neural network. The features are ordered
by their influence from top (high influence) to bottom (low influence) on the distinction.
The SHAP value indicates how the effect of a feature value corresponds to the class. A
negative SHAP value of a feature will shift the prediction towards the background class
and a positive towards the source class.

Both the longitude and the angular distance to the 3rd nearest neighbour show a

flipped correlation compared to the proton model. As the nearest neighbours will less
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likely be of the same source due to the significantly lower rigidity of the Nitrogen UHE-

CRs, the closest neighbours will more commonly be background particles too. The orien-

tation for the longitude changes for the different subsamples used to calculate the SHAP

values. We calculate the SHAP values by selecting 1000 examples of an unbiased test

data set and observe these changes in behaviour for different selections. For the nitrogen

training data, the source-to-background ratio distribution is almost perfectly balanced at

1:1, thus the NN should only find relevant information in correlation with other features.

Therefore a switch of orientation is possible and expected for different subsamples. We

can safely say that the presented input variable analysis clearly indicates a higher impor-

tance of the correlation of the angular distances and the energy of the deflected source

events.
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6.3. Mixed composition

Next, we train and apply the NN on a mixed, 62.9% iron-dominated composition as

stated in Section 4.4. The data set partitions are shown in Figure 6.10 where we can

already visually observe that the source particles now also stretch over the entire observ-

able sky. Some clustering of the lighter elements can still be seen near the source position.

As the data now consists of several elements that immensely differ in their deflection be-

haviour but no information on the particle’s charge is given, the distinction is severely

complicated.

The NN reaches an AUC score of 0.740 on the 15000 equally distributed test set and

thereby a value of roughly 0.14 lower than for the pure Nitrogen scenario. Both the

missing charge information and the increasingly larger influence of the random magnetic

field components on heavier nuclei result in a higher probability of random alignments

of background and source events.

Figure 6.9.: Denisty histogram of the output node of the NN trained on a mixed com-
position. Shown are the normalized prediction values for each element of true source
UHECRs individually. For comparison, the background prediction distribution is given
in grey and the overall distribution is indicated by the brown curve. The NN performs
best on protons, then helium and worst on Silicon and Nitrogen.

We look closer at the prediction output in the limit of infinite statistics of the source

UHECRs for each element individually, shown in Figure 6.9. Due to the different degrees

of deflection, a tendency of performance lessening for lower rigidities would be expected.

However, we can observe that the NN performs best on protons, then Helium, but worst

on Silicon and Nitrogen and not Iron.
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(a) Training data

(b) Validation data

(c) Test data

Figure 6.10.: The three data partitions of the iron-dominated mixed composition simula-
tions. The training set (a) consists of 35000 samples per class and was created with two
different realisations of the JF12 model. The validation (b) and the test (c) set were also
created with different seeds and source positions, consisting of 7500 CRs of each class.
The green and grey dots show the arrival directions of the source and isotropic back-
ground UHECRs respectively while the black crosses indicate the source direction.
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This could be explained by the severely higher number of iron examples in the data set,

resulting in a far denser energy binning. With 62.9% of the UHECRs being iron particles

this is almost 4 times the fraction of Silicon, thus the iron UHECRs will on average have

smaller energy differences, creating possibly better detectable patterns.

Just as for the proton and Nitrogen simulations, the AUC for the different coherence

length variations remains almost unaffected, again indicating that the NN has not learned

a specific realisation of the GMF model, see Table 6.6. However, the model performs sig-

nificantly worse on highly deflected heavy nuclei which are subject to the largest influ-

ence of changes in the turbulent and striated magnetic field components. Therefore it has

to be considered that the AUC comparison may be less representative due to the lower

performance.

Table 6.6.: Comparison of the performance of a NN trained on an iron-dominated mixed
composition and applied to test sets generated with variations of the coherence length of
the random turbulent component of the JF12 GMF model.

Lc [pc] 12.5 25 37.5 50
AUC 0.7394 0.7402 0.7337 0.7293

Table 6.7.: The performance of the NN after obtaining the best threshold via the F-score
for different source-to-background ratios of 2600 UHECRs of 5 representative elements
originating from 6 candidate source positions, as stated in [49].

Source CRs F-score Errors TP TN FP FN
1000 0.675 737 766/1000 1097/1600 503 234
500 0.486 608 286/500 1706/2100 394 214
200 0.334 324 80/200 2196/2400 204 120
100 0.250 114 19/100 2467/2500 33 81
50 0.088 63 2/50 2535/2550 15 48

Looking at the performance of the ratio comparison, shown in Table 6.7, the NN per-

forms noticeably worse on almost all ratios. The prediction skymap for the 500 source

particle scenario is shown in Figure 6.11, where each source except for Cyg A contributed

roughly 90 events of the 500 events. Although some of the more moderate deflections can

be caught by the network it is not able to catch almost any higher-deflected ones. A sig-

nificant fraction of the UHECRs arrive alone or only a very few other source UHECRs

within the next 10 nearest neighbours. The NN thereby is not able to find a significant

enough correlation with other source particles in order to detect them. Due to the signif-

icantly more complex structure, the high uncertainties and the magnitude of deflections

in this scenario, we tried to extend the data set by considering more nearest neighbours

and several variations of the correlation coefficient extension introduced in Section 5.2.

However, none showed any improvement in capturing these events. In the case of only

50 source particles, the NN shows basically no prediction ability anymore and for both

100 and 200 source events it is only able to catch the lighter nuclei and some of the most
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energetic heavier ones. We thereby conclude that the NN fails in the iron-dominated

mixed composition scenario and that both higher statistics and better knowledge of the

GMF deflections that have to be integrated into feature selection are needed. In the rigid-

ity regime of a few EVs, the difference in the degree of randomness between the isotropic

background and the source event is just too insignificant.

Figure 6.11.: Skymap in Galactic coordinates of 500 source events from 6 candidates
sources embedded in 2100 isotropic background UHECRs. The grey and the green data
points correspond to the NN-predicted background and source particles respectively.
The red dots shown on top indicates a false prediction.

6.3.1. Cen A

As the NN fails for the previous scenario, we exclude one source of randomness and train

on a single source instead of a set of randomly distributed ones. For this, we select Cen A

as it is one of the most probable source candidates to date. We train the neural network

again on 70000 equally distributed examples and scores an AUC of 0.9135 on the test set

which is an increase of 0.17 then for the random sources. The prediction output after

deriving the best threshold for the test set is shown in Figure 6.12 Although this is a

highly unrepresentative scenario we show here that the NN is able to detect correctly a

fraction of UHECRs that are largely deflected from Cen A with angular distances above

100°. In this scenario, the neural network will receive no "contamination" of other source

events originating from different sources. Also, Cen A receives the full fraction of source

events resulting in a smaller energy binning of the emitted UHECRs.
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Figure 6.12.: Skymap in Galactic coordinates of the test data set consisting of 7500 back-
ground and 7500 particles from Cen A. The grey and the green data points correspond to
the NN-predicted background and source particles respectively. The red dots shown on
top indicates a false prediction.

Table 6.8.: The performance of the NN after obtaining the best threshold via the F-score
for different source-to-background ratios of 2600 UHECRs of 5 representative elements
originating from Cen A alone.

Source CRs F-score Errors TP TN FP FN

1000 0.914 178 944/1000 1478/1600 122 56

500 0.793 249 439/500 1932/2100 168 61

200 0.614 172 137/200 2291/2400 109 63

100 0.325 257 62/100 2281/2500 219 38

50 0.161 73 7/50 2520/2550 30 43

In several regions of the sky, the NN is able to find largely deflected small multiplets

consisting of 7 iron UHECR events or more. However, these quantities and this energy

binning are not present for the more realistic background-to-source ratios presented in

Table 6.8. Although a slight performance improvement can be seen, only 7/50 source

particles are correctly detected in the 50 source event scenario. With such few events

and several different elements, no significant enough patterns can be found even when

just considering a single source. We conclude here that the current information that we

have given to the NN is not sufficient enough to capture magnetically-induced patterns

of a mixed and heavier-nuclei-dominated UHECR composition. We want to note here

that for a "target search" for events from source candidates the energy spectrum could

be derived individually for each source. As the spectrum here on Earth is dependent

on the distance travelled alone we simulated a 1D extragalactic propagation for the four
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presented candidate sources, see Appendix A Section A.1. These derived energy spectra

could be implemented into the simulations. However, it has to be ensured that the total

energy spectra of both the isotropic background and the source candidates follow the one

observed at Auger. With this, the neural network would be able to better distinguish the

two classes as the energy information will not anymore be the same.

6.4. Auger data

Finally, we apply the differently trained neural networks on data taken by Auger consist-

ing of 2635 UHECRs above and energy of 32 EeV, taken from [105]. The data is shown in

Figure 6.13 and is visually in a high level of agreement with several of our simulations

with just a few source particles. Some small-scale clustering can be observed, however,

this is consistent with background fluctuations.

Figure 6.13.: Arrival directions of 2635 UHECRs above 32 EeV observed by Auger. Taken
from [105].

When applying the different neural networks to the Auger data an optimized threshold

can obviously not be found anymore. Due to the less reliable performance of our neural

network for heavier nuclei and few test particles, we rather focus on those UHECRs that

receive the highest prediction values. Shown in Figure 6.14 are the output nodes of the

proton and Nitrogen trained neural networks applied to the Auger data. Both distribu-

tions show a peak close to zero, indicating a high level of background. Only a few single

UHECRs receive a noticeably higher source probability and could possibly be attributed

to a source, however, their values remain questionable. For all trained models we find
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the highest source probabilities for two small clusters of UHECRs shown in Figure 6.16.

The pure-proton NN shows a mean prediction value of 0.004 for the entire Auger data

set and gives 2 UHECRs a value above 0.1 while the Nitrogen model outputs a mean

prediction value of 0.015 with 4 UHECRs above a threshold of 0.2.

(a) Proton neural network (b) Nitrogen neural network

Figure 6.14.: Ouput node of the (a) proton and (b) Nitrogen trained neural network ap-
plied to the Auger data.

(a) Proton neural network (b) Nitrogen neural network

Figure 6.15.: Sky segment in Galactic coordinates of the 2635 UHECRs observed by
Auger. Shown is the prediction value of a NN trained on a pure Nitrogen composition
indicated by the colour. Taken from [105].
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(a) Proton neural network (b) Nitrogen neural network

Figure 6.16.: Sky segment in Galactic coordinates of the 2635 UHECRs observed by
Auger. Shown is the prediction value of a NN trained on a pure Nitrogen composition
indicated by the colour. Auger data taken from reference [105].

We note that although the source probability of neural networks is disputable, these

two found regions could be of interest for further analysis. We could lower the cut on the

threshold even further but arguably their prediction would be even less trustworthy.

6.5. Comparison to other methods

Finally, we still want to shortly place this work within similar conducted research. In the

already mentioned studies [91] searches for multiplets of proton and Helium nuclei were

performed. By deriving the correlation coefficients and thrust ratios within a preselected

search region for certain source candidates they studied the number of events needed to

surpass a 3σ significance. Our network performs quite well with protons and we expect

it to show similar behaviour still for Helium, which is motivated by Figure 6.9. We gain

comparable values for the number of proton source events needed to assign the majority

of particles to the source class correctly. However, for a better comparison, our analysis

would have to be adjusted so that the neural network would be trained for only singular

sources emitting the same nuclei fractions for stepwise decreasing particle counts Ns and

averaged over several repetitions. We however do not rule out that a closer combination

than presented in Section 5.2 of both methods could show beneficial results. Also, when

they applied their method to Auger data they did not find any significant enough corre-

lations with any candidate sources which is consistent with our results.
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Another method using deep neural networks to study multiplets coming from a few

source candidates was performed in [107]. Here, however, convolutional deep neural

networks (CNNs) were used to reject the null hypothesis as a function of the fraction of

source events Ns, meaning deriving the probability that the arrival-direction distribution

can not result from an isotropic pattern for a certain fraction of source events. Herefore,

the arrival directions were not viewed on an event-to-event basis, but the entire distri-

bution over the observable sky as an image. Thereby they can not determine if some

selected UHECRs come from any given source or not.

We kept our machine learning approach very general by adding as few assumptions

as possible e.g. training on several random source positions and no charge information.

As we were quite pessimistic about the information we included, our results show to

be limited towards more realistic scenarios. In [74] the effect of the random turbulent

magnetic field component on iron nuclei above 60 EeV was extensively studied. It was

shown that the random turbulent field could cause a large distortion effect on the arrival

direction of an iron UHECR for just a relatively small change in its trajectory. As such

a deflection in the GMF model is random by design, detecting a pattern is extremely

difficult as the acquirable information on differences between isotropic background and

source events might just be too insignificant. However, with increased data size we have

shown that a deep-learning approach could pave the way to possibly detect such patterns

in the future. Furthermore, with more limitations and better modelling of the GMF, NNs

could be trained more specifically and better features constructed. Although we used a

fully connected linear neural network, we suggest that a graph neural network (GNN)

[108] might be better suited for the detection of heavier nuclei.
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CHAPTER7
CONCLUSION AND OUTLOOK

The origin of UHECRs is one of the biggest ongoing mysteries in astroparticle physics.

Since charged particles are deflected in the Galactic magnetic field (GMF), searching for

magnetically-induced patterns in their arrival directions might help to finally discover

their sources.

Within this thesis, deep neural networks were used to find magnetically-induced patterns

of UHECRs arriving from a few sources and distinguish them from a larger isotropic

background on an event-to-event basis. For this, simulations of the propagation of UHE-

CRs through the Galactic magnetic field were created to reproduce an arrival-direction

distribution as could be observed by the Pierre Auger Observatory. The neural networks

were trained and tested for different mass composition scenarios, on both randomly dis-

tributed and a few selected candidate sources. Different plausible feature extensions were

tested to stress certain attributes in the data and improve the performance of the network.

It was shown, that by training and validating on different variations of the random and

striated magnetic field components, the network could be made more robust towards

uncertainties in these characteristic properties. We found that for protons, the neural net-

work is able to detect source events in an all-sky search with a high level of accuracy.

To predict more than 80% of the source events correctly, the network needed 10 events

from M87, 15–20 events from Cen A and Fornax A, but required a significantly larger

multiplicity for Cyg A due to its location in the Galactic plane of also lower geometrical

exposure. For pure Nitrogen simulations, the network still maintained a considerable

detection ability when selecting the UHECRs with the highest prediction values, yet, it

showed to be unsuccessful in an iron-dominated mixed composition scenario. From an

input variable analysis, we found that the angular distance feature extension was the

most influential and the energy correlation became increasingly more important for the

nitrogen deflections. However, we also discovered that the placement of the sources for

the simulation of training data is crucial and should be implemented in the form of a grid

in future works. When applying the differently trained networks to data taken by Auger
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we found two regions of interest that could possibly be attributed to a source origin.

Nonetheless, the prediction output of the neural network suggests that the clear majority

arises from an isotropic background within our analysis. As our performance for heavier

nuclei was insufficient on simulated data, this prediction remains however questionable.

We concluded that the currently available data and the knowledge of the Galactic mag-

netic field are not enough to accurately detect heavier-nuclei-dominated source events

from an isotropic background using deep neural networks with such a general approach

as we have presented.

However, extending the simulations to also consider the observations done by the

Telescope Array [109] could show a crucial improvement. Additionally, by individu-

ally analysing different candidate sources and their power-law index, their energy spec-

trum can be adjusted accordingly. When trained on this property, the neural network

could capture such an underlying structure in the observational data. Also, with larger

computational resources we suggest that a graph neural network approach, where each

pixel of the observed sky represents a node in the input layer, might be well suited for

this problem [108]. With the success that convolutional neural networks have shown in

recent years and the increasingly available computational resources, this method could

show more promising results. Furthermore, with more limitations and knowledge on the

deflection of the Galactic magnetic field, more accurate features could be constructed to

better capture correlations between more largely deflected events from a common source.
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APPENDIXA
EXTRAGALACTIC 1D
SIMULATION

A.1. Extragalactic 1D simulation

Although this work studies the Galactic deflection of UHECRs, 1D extragalactic simu-

lations were created to see how the energy spectrum changes with distance. Herefore,

the interaction processes previously introduced in Section 3.1 are already implemented

within the framework of CRPropa and were used as such. For more information on the

different available modules see the documentation page [110]. First, protons originating

from possible candidate sources Centaurus A (Cen A), Cygnus A (Cyg A), Messier 87

(M87) and Fornax A were propagated through 1D extragalactic space. The simulated in-

teraction processes were based on the EBL model of reference [111]. The protons were

injected with a power-law spectrum of γ = −1 at the corresponding distance of each

source. The resulting spectrum at Earth is shown in Figure A.1. It can be seen that Cyg

A experiences a lot softer cutoff at roughly 1020.15 eV than the other sources due to its

far further distance of 232 Mpc. A clear pileup of post-interacted protons can be seen at

energies of 1019.5 − 1019.9 eV and a smaller one for M87 and Fornax A at approximately

1020 eV.

These derived energy spectra could now be implemented into the simulations. How-

ever, it has to be ensured that the total energy spectra of both isotropic background and

that from the source candidates in total follow the one observed at Auger. With this, the

neural network would be able to better distinguish the two classes as the energy infor-

mation will not anymore be the same. The protons from Cen A on the other hand arrive

almost at the same power-law of γ = −1 as they were injected. Cyg falls off with an

index γ = −7.1 from 1019.75 eV and both Fornax A and M87 with roughly γ = −1.4 from

1020 eV. In Figure A.2 the same simulation was run for Cyg A but for also nitrogen and
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iron. Although the curve for nitrogen and iron can be barely distinguished as they are

almost identical, the cutoff for those two heavier elements occurs at even lower energies.

Figure A.1.: Extragalacic 1D propagation of UHECR protons from selected candidate
sources as a function of distance only. The spectrum of Cyg A experiences a lot stronger
cut-off and a far steeper power law. Cen A stays almost at the injection power-law index.

Figure A.2.: Comparison of protons (blue), nitrogen (grey) and iron (green) originating
from Cyg A propagated extragalactic 1D space. Nitrogen and iron are almost indistin-
guishable and experience an earlier cut-off.



ACKNOWLEDGEMENTS

First off, I would like to thank Prof. Dr. Foteini Oikonomou for the opportunity to write

such an exciting Master’s thesis within the NTNU astroparticle physics group. Her su-

pervision and help even outside the scope of this work, went far beyond what could have

been expected. The time and care she invests in her students both on an academic and

a personal level is truly unique. I would also like to thank Domenik Ehlert for helping

me whenever it was needed and Christopher Matthies whose critical comments on my

thesis helped make it what it is now. Also, a thank you goes out to my fellow students

in C4 who not only always had an open ear but also made especially the final phase of

the thesis a lot more enjoyable through our collective hardship and many jokes. I special

thanks go out to Per Arne Selve, for the intense cooperation over the entire duration and

long discussions of which many might have derailed into pointlessness.

Next, I would like to thank Dana King for always being there when I was frustrated

about my model’s performance and lifting my spirits when needed. Finally, I would like

to especially thank my family for their constant support over the last two years, without

them neither this work nor this amazing abroad experience would have been possible.

Thank you!




	Introduction
	UHECRs at Earth
	Cosmic ray energy spectrum at Earth
	Composition of UHECRs
	UHECR arrival directions
	Dipole anisotropy
	Smaller scale anisotropies


	Propagation and origin of UHECRs
	UHECR energy losses
	Photon background fields
	Cosmic ray interactions with photons

	Acceleration
	UHECR candidate source classes

	UHECRs in magnetic fields
	Magnetic field constraints
	Galactic Magnetic Field Models
	Jansson-Farrar (JF12) Model


	Methods
	CRPropa 3
	Propagation modules
	Magnetic lenses

	Variations of the Galactic magnetic field model
	Geometrical exposure of the Pierre Auger Observatory
	Composition calculation

	Machine learning setup
	Structure of deep neural networks
	Data pre-processing
	Hyperparameters
	Performance measures
	Deep neural network structure
	Combined neural network


	Source event detection using deep learning
	Pure proton composition
	Pure Nitrogen composition
	Mixed composition
	Cen A

	Auger data
	Comparison to other methods

	Conclusion and outlook
	Bibliography
	Extragalactic 1D simulation
	Extragalactic 1D simulation

	Acknowledgements

