
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Robin Fissum

An introduction to primes in short
intervals

Master’s thesis in MSMNFMA
Supervisor: Kristian Seip
May 2023





Robin Fissum

An introduction to primes in short
intervals

Master’s thesis in MSMNFMA
Supervisor: Kristian Seip
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Abstract
In this thesis, we give an introduction to the study of primes in short intervals: the prime number
theorem is equivalent to the statement that the number of primes in the interval (x, x+h] is asymptotic
to h/ log x when h = x, and we investigate if not the same can be said for h < x.

We begin by discussing the Riemann zeta function, and how the Riemann hypothesis, Lindelöf
hypothesis and the density hypothesis are related to its zeros. Afterwards, we derive the explicit
formula for the second Chebyshev function, and relate this to the number of primes in an interval.
Together with some moderate assumptions on the zeros of zeta, we prove Hoheisel’s theorem: the
assertion that h = o(x) is permissible. Next, the Riemann hypothesis is assumed, and we show that
an asymptotic formula then holds when

√
x log x = o(h); we also give an account of Cramér’s theorem

for prime gaps. Towards the end, we show how Selberg’s mean-square method gives insight into the
case h <

√
x, and some of the associated obstacles and heuristics for intervals of this length.

Sammendrag (abstract in Norwegian)
I denne oppgaven gir vi en introduksjon til studiet av primtall i korte intervaller: Primtallsatsen er
ekvivalent med utsagnet om at antall primtall i intervallet (x, x+ h] er asymptotisk med h/ log x n̊ar
h = x, og vi undersøker om ikke det samme kan sies for h < x.

Vi begynner med å diskuter Riemanns zetafunksjon, og hvordan Riemannhypotesen, Lindelöf-
hypotesen og tetthetshypotesen er relatert til dens nullpunkter. Deretter utleder vi den eksplisitte
formelen for den andre Chebyshevfunksjonen, og relaterer denne til antall primtall i et intervall.
Sammen med noen moderate antagelser om nullpunktene hos zeta, beviser vi Hoheisels teorem:
utsagnet om at vi kan tillate oss h = o(x). Videre antar vi Riemannhypotesen, og viser at en
asymptotisk formel da holder n̊ar

√
x log x = o(h); vi kommer ogs̊a inn p̊a Cramérs teorem for

primtallsgap. Mot slutten viser vi hvordan Selbergs kvadratgjennomsnittsmetode gir innsikt i tilfellet
h <

√
x, samt noen av de assosierte utfordringene og formodningene rundt intervall av denne lengden.
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1 INTRODUCTION

1 Introduction
In this thesis we investigate the ancient question:

How many primes are there in an interval?

Before we can get to the bottom of this, we give a short overview of the fundamental concepts
and notation in this section. Afterwards, we discuss the Riemann, Lindelöf and density hypotheses in
Section 2, and some relationships between these; this is necessary in order to understand the bigger
picture. In Section 3 we prove the explicit formula for the second Chebyshev function, a fundamental
tool for our investigation, which we use in Sections 4, 5 and 6, where we attempt to give a partial
answer to the question above.

Our journey begins with the zeta function.

1.1 The Riemann zeta function
Throughout the text, s = σ + ti denotes a complex number in which σ and t are real numbers; this
has become standard practice in the field. The Riemann zeta function, ζ(s), is the function defined
by

ζ(s) =
∞∑

n=1
n−s

whenever σ > 1, and extended to a meromorphic function on C by means of analytic continuation.1
This function is regular, that is, holomorphic and single-valued, except for a simple pole of residue 1
at s = 1, and satisfies everywhere the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1 − s)ζ(1 − s),(1)

or, in its symmetric form,

ζ(s)Γ
(s

2

)
π−s/2 = ζ(1 − s)Γ

(1 − s

2

)
π−(1−s)/2,(2)

with Γ(s) denoting the usual gamma function.
The main reason that the zeta function is so important in number theory is its connection with

prime numbers. This is because of the Euler product,

ζ(s) =
∏

p

(1 − p−s)−1,(3)

valid for σ > 1, where the product on the right runs over the prime numbers. Indeed, this identity is
an analytic formulation of the fundamental theorem of arithmetic: ‘analytic’, since the left-hand side
is a meromorphic function of a complex variable, and ‘fundamental theorem of arithmetic’, because
the left- and right-hand sides are defined as a sum over the positive integers and as product over the
primes, respectively.

Of particular importance is the question about the location of the zeros of ζ(s). From (3) one can
deduce that ζ(s) is never zero for σ > 1, and from (1) it is straightforward to see that ζ(s) is zero
whenever s is a negative even integer; these zeros are therefore known as the trivial zeros of ζ(s). Any
other zero of ζ(s) is known as a nontrivial zero, which we denote in general by

ρ = β + γi,(4)
1n−s is defined as e−s log n, where log denotes the principal branch of the logarithm.

1



1 INTRODUCTION

with β and γ real. A precise determination of the location of the nontrivial zeros would have far-
reaching consequences in number theory. Indeed, the statement that ζ(s) has no zeros on the line
σ = 1 is known to be equivalent to the prime number theorem, that is, to the assertion that

π(x) ∼ x

log x

as x → ∞, where π(x) denotes the prime counting function, and ‘∼’ an asymptotic equivalence
(defined below).

The statements above, together with the relation ζ(s) = ζ(s), show that the nontrivial zeros (4)
must be confined to the vertical strip 0 < σ < 1, lie symmetrically about (but not on) the real axis,
and lie symmetrically about the line σ = 1

2 . This vertical strip is known as the critical strip, and the
line σ = 1

2 , as the critical line. Riemann [29] conjectured that all of the nontrivial zeros lie on the
critical line, a still-unproven statement now known as the Riemann hypothesis:

Conjecture 1.1 (Riemann hypothesis). If ρ = β + γi is a nontrivial zero of the Riemann zeta
function, where β and γ are real numbers, then β = 1

2 .

1.2 Some functions in analytic number theory
Throughout the paper N, N+, R, C, P and P∗ denote the collections of nonnegative integers, positive
integers, real numbers, complex numbers, prime numbers and prime powers, respectively. We some-
times write pn for the nth prime, so that p1 = 2, p2 = 3, . . . , and γn for the nth positive ordinate
among the nontrivial zeros ρ, where 0 < γ1 ≤ γ2 ≤ . . . .

In addition to Γ(s) denoting the gamma function and ⌊x⌋ the greatest integer less than or equal
to x, we define

π(x) =
∑
p≤x

1 (the prime-counting function),

ψ(x) =
∑

pm≤x

log p (the second Chebyshev function),

Π(x) =
∑

pm≤x

1
m

(Riemann’s auxiliary function), and

Λ(x) =
{

log p if x = pm for p ∈ P and m ∈ N+

0 otherwise (the von Mangoldt function),

for x ∈ R, where p ≤ x and pm ≤ x means that the summation is taken over all primes or prime
powers less than or equal to x, respectively, and where an empty sum is defined equal to zero.

We also define (the Landau xi function)

ξ(s) = 1
2s(s− 1)π−s/2Γ

(s
2

)
ζ(s).

Then ξ(s) is an entire function, and the zeros of ξ(s) are precisely the nontrivial zeros of ζ(s) (with
the same multiplicities). Moreover, Equation (2) shows that ξ(s) satisfies the particularly simple
functional equation

ξ(s) = ξ(1 − s).

Other functions will be specified when needed.

2



1 INTRODUCTION

1.3 Asymptotic analysis
When we write f(x) = O(g(x)) or f(x) ≪ g(x), then we mean that there exists a constant C > 0 such
that |f(x)| ≤ C|g(x)| for all values of x under consideration, typically for all x ≥ x0. The constant C
(not unique) is sometimes referred to as the implied constant of the relation. If f and g depend on an
additional parameter, such as ε, then so may C and x0, in which case we write f(x) = Oε(g(x)) or
f(x) ≪ε g(x). The statement that f(x, y) = O(g(x, y)) holds uniformly over some range of x and y,
say, x ∈ X and y ∈ Y , means that the implied constant is absolute; that is, a fixed positive number,
so long as x and y stay confined to these ranges.

Further, we write f(x) ∼ g(x) and f(x) = o(g(x)), as x → x0, if the limit

lim
x→x0

f(x)
g(x)

is equal to 1 or 0, respectively; the number x0 may be infinite.
The notations above also apply to classes of functions. Thus, O(1) denotes a bounded function,

and o(1) a vanishing function, with respect to the variables under consideration.

3



2 THREE CONJECTURES ON THE ZETA FUNCTION

2 Three conjectures on the zeta function
In Section 2.4, we discuss the relationship between three unproven conjectures on the Riemann zeta
function: the Riemann hypothesis, the Lindelöf hypothesis and the density hypothesis. Before we can
state the two latter hypotheses, we need to introduce some notation and derive some results pertaining
to the zeros, and to the growth of ζ(s) on vertical lines. We begin with a classical result that quantifies
the density of nontrivial zeros inside the critical strip.

2.1 The number of nontrivial zeros
For a real number T , we denote by N(T ) the number of nontrivial zeros ρ with 0 < γ ≤ T , counted
with multiplicity. It was proved nonrigorously by Riemann [29], and later rigorously by von Mangoldt
[37], that the number N(T ) grows approximately like T log T as T → ∞. We will follow a proof of
this fact due to Backlund [3], which makes clever use of the functional equation for ξ(s), but we first
need two lemmas.

Lemma 2.1. Suppose that f(s) is a regular function on an open set containing the disc |s− s0| ≤ R,
and that f(s0) ̸= 0. If f(s) has m or more zeros when counted with multiplicity inside the disc
|s− s0| ≤ r, where 0 < r < R, then

(R
r

)m

≤
max

|s−s0|=R
|f(s)|

|f(s0)| .

For proof, see [18] pp. 49–50.
Second, we need a lemma which bounds the vertical growth of ζ(s). In light of the next section,

the following will suffice.

Lemma 2.2. For any real σ0, there exists a positive constant A = A(σ0), such that

|ζ(σ + ti)| = O(tA)

uniformly for σ ≥ σ0 as t → ∞.

Proof. We use Abel’s summation formula (A2.1) to write

∑
n≤X

n−s = ⌊X⌋
Xs

+ s

ˆ X

1

⌊x⌋
xs+1 dx = s

s− 1 − 1
2 − s

ˆ X

1

P (x)
xs+1 dx−

(
X−sP (X) + 1

s− 1X
−s+1

)
for σ > 1 and X > 0, where P (x) is the 1-periodic function defined by2

P (x) = x− ⌊x⌋ − 1
2 .(5)

Since P (x) is bounded, the terms inside the brackets vanish as X → ∞, and we are left with

ζ(s) = s

s− 1 − 1
2 − s

ˆ ∞

1

P (x)
xs+1 dx(6)

(in fact for σ > 0). Now apply integration by parts N times to put this in the form

ζ(s) = s

s− 1 − 1
2 − s(s+ 1) · · · (s+N)

ˆ ∞

1

PN (x)
xs+N+1 dx,(7)

2P (x) is the 1-periodic extension of the restriction to [0, 1) of the 1st Bernoulli-polynomial B1(x) = x − 1/2.

4



2 THREE CONJECTURES ON THE ZETA FUNCTION

where P0(x) = P (x) and Pn+1(x) =
´ x

1 Pn(y)dy for n ≥ 0. Then

PN (x) = 1
(N + 1)! (x− ⌊x⌋)N+1 − 1

2 ·N ! (x− ⌊x⌋)N

is bounded, which together with (7) shows that |ζ(σ+ti)| = O(|t|N+1) uniformly for σ ≥ −N+δ > −N
as t → ∞. The claim follows upon choosing N so large that −N < σ0.

Theorem 2.3. As T → ∞, we have

N(T ) = T

2π log
( T

2π

)
− T

2π +O(log T ).

Proof. Let us work with ξ(s) in place of ζ(s). This is simpler, because the functional equation
ξ(s) = ξ(1 − s) allows us to break the problem into smaller pieces. Begin by assuming that T > 0,
and that T does not coincide with any of the ordinates γ. Then ξ(s) has exactly 2N(T ) zeros in
the interior of the rectangle R = [−1, 2] × [−T, T ], and none on its boundary. Since ξ(s) is an entire
function, we may use the argument principle, without obstructions, to conclude that

4πN(T ) =
[
arg ξ(s)

]
∂R
,

where the right hand side denotes the increment of arg ξ(s) as the complex number s traverses once
around the boundary of R in the positive sense. From the definition of ξ(s), we have further

[
arg ξ(s)

]
∂R

=
[
arg 1

2s(s− 1)
]

∂R
+

[
arg ϕ(s)

]
∂R
,

where ϕ(s) = π−s/2Γ(s/2)ζ(s). The first term on the right is 4π, again by the argument principle,
since s(s− 1)/2 has its only two zeros in the interior of R, and no poles. Since now ϕ(s) = ϕ(s) and
ϕ(s) = ϕ(1 − s) for all s, the second term must be equal to 4

[
arg ϕ(s)

]
L

, where L consists of the
segment from 2 to 2 + Ti followed by the segment from 2 + Ti to 1

2 + Ti. Putting this together, we
obtain

πN(T ) = π +
[
arg π−s/2]

L
+

[
arg Γ

(s
2

)]
L

+
[
arg ζ(s)

]
L
.(8)

The first term is [
arg π−s/2]

L
=

[
− 1

2 t log π
]

L
= −1

2 T log π.

The second term can be estimated using Stirling’s formula (A2.2) (with α = 1/4). This gives

[
arg Γ

(s
2

)]
L

=
[
Im log Γ

(s
2

)]
L

= Im log Γ
(1

4 + T

2 i
)

− Im log Γ(1)

= Im
((

− 1
4 + T

2 i
)

log
(T

2 i
)

− T

2 i+ 1
2 log(2π)

)
+O(T−1)

= T

2 log
(T

2

)
− T

2 − π

8 +O(T−1).

Substituted into (8), we find that3

N(T ) = T

2π log
( T

2π

)
− T

2π + 7
8 + S(T ) +O(T−1)

3A more precise version of the error term can be attained from a Stirling-series representation of the gamma function,
see e.g., §§6.5–6.7 in Edward’s book [11].
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2 THREE CONJECTURES ON THE ZETA FUNCTION

with

S(T ) = 1
π

[
arg ζ(s)

]
L

= 1
π

arg ζ
(1

2 + Ti
)
,

where the last argument is defined by continuous variation along L.
So far the terms have been straightforward to estimate accurately, but this is not so easy for S(T ).

The fact that

Re ζ(2 + ti) =
∞∑

n=1

cos(t logn)
n2 ≥ 1 −

∞∑
n=2

1
n2 = 2 − π2

6 = 0.35506 . . .

tells us that the variation in arg ζ(s) along the vertical component of L is bounded in absolute value
by π, so we can concentrate our attention on the horizontal segment from 2 + Ti to 1

2 + Ti. As a
matter of fact, since ζ(σ) converges to 1 from above as σ → ∞, the estimate

|ζ(σ + ti) − 1| =
∣∣∣∣ ∞∑

n=2
n−(σ+ti)

∣∣∣∣ ≤ ζ(σ) − 1(9)

shows that ζ(σ + ti) converges to 1 uniformly in t as σ → ∞. Thus, there must exist a real constant
σ∗, such that Re ζ(s) > 0 whenever σ > σ∗. It would therefore suffice to consider the variation in
arg ζ(s) over the segment from σ∗ + Ti to 1

2 + Ti. The smallest constant σ∗ with this property was
computed to 100 digits in [10], the first of which are σ∗ = 1.19234 . . . .

Here is one way of showing that [arg ζ(s)]L = O(log T ); Let m denote the number of distinct
points s′ in {2} × (0, T ] ∪ ( 1

2 , 2] × {T} for which Re ζ(s′) = 0: then∣∣[arg ζ(s)]L
∣∣ ≤ (m+ 1)π.

Indeed, when s traverses one of the m + 1 pieces of L subdivided by the s′, then arg ζ(s) does not
change more that π, since Re ζ(s) does not change sign there.

As argued above, there are no s′ on the segment from 2 to 2 + Ti, so m must be equal to the
number of distinct points 1

2 < σ < 2 for which Re ζ(σ + Ti) = 0. This is in turn precisely equal to
the number of distinct zeros of

g(s) = ζ(s+ Ti) + ζ(s− Ti)
2

in the interval 1
2 < s < 2 on the real axis, because g(s) is regular on C\{1±Ti} and equals Re ζ(s+Ti)

whenever s is a real number (this follows from ζ(s) = ζ(s) ).
We can bound the number m by applying Lemma 2.1 to g(s) and the discs |s − 2| ≤ 3/2 and

|s − 2| ≤ 7/4. If we suppose that T > 2, then g(s) is certainly regular in the largest disc, and the
lemma yields

(7
6

)m

≤
max

|s−2|=7/4
|g(s)|

|g(2)| =
max

|s−2|=7/4
|ζ(s+ Ti) + ζ(s− Ti)|

2Re ζ(2 + Ti) ≤
max

|s−(2+T i)|=7/4
|ζ(s)|

Re ζ(2 + Ti) ≤
C(T + 7

4 )A

2 − π2

6
,

where C > 0 and A > 0 are chosen using Lemma 2.2, such that |ζ(s)| ≤ CtA for all t ≥ 1
4 and σ ≥ 1

4 .
Taking the logarithm on both sides, we get

m ≤
log

( 6C
12−π2

)
log(7/6) + A

log(7/6) log
(
T + 7

4
)

≤ D log T(10)

for some absolute constant D > 0. This proves the claim for T > 2 not coinciding with any γ. For
T equal to some γ > 0, we may apply the bound (10) with T + ε in place of T , and let ε → 0+. By
continuity, the inequality remains valid for ε = 0, and our proof is complete.

6



2 THREE CONJECTURES ON THE ZETA FUNCTION

Theorem 2.3 has the following useful corollary.

Corollary 2.4. As T → ∞, we have

∑
0<γ≤T

1
γk

=



O(1) if k > 1,

log2 T

4π − log(2π) log T
2π +O(1) if k = 1,

T 1−k log T
2π(1 − k) − 1

2π

( log(2π)
1 − k

+ 1
(1 − k)2

)
T 1−k +O(1) if 0 < k < 1,

N(T ) = T log T
2π − log(2πe)T

2π +O(log T ) if k = 0,

T 1−k log T
2π(1 − k) − 1

2π

( log(2π)
1 − k

+ 1
(1 − k)2

)
T 1−k +O(T−k log T ) if k < 0,

and, if k > 1, ∑
γ>T

1
γk

= log T
2π(k − 1)T k−1 + 1

2π

( 1
(k − 1)2 − log(2π)

k − 1

) 1
T k−1 +O

( log T
T k

)
.

Proof. We begin by writing the asymptotic formula for N(T ) in the form

N(T ) = T log T
2π − θT

2π +O(log T ),(11)

where θ = log(2πe), and where the terms are arranged in decreasing order of magnitude. By Abel’s
summation formula (A2.1), we have

∑
0<γ≤T

1
γk

= N(T )
T k

+ k

ˆ T

1

N(t)
tk+1 dt(12)

for k ∈ R and T ≤ ∞, where, in the case of T = ∞, both sides are finite only for k > 1, with the first
term on the right taking the value zero. If we substitute (11) into (12), then the result is

∑
0<γ≤T

1
γk

=
( log T

2πT k−1 − θ

2πT k−1 +O
( log T
T k

))
+

( k

2π

ˆ T

1

log t
tk

dt− kθ

2π

ˆ T

1

dt
tk

+O
(ˆ T

1

log t
tk+1 dt

))
.

Using the integration formulae (A2.6) through (A2.8) from the Appendix, this gives us

∑
0<γ≤T

1
γ

= log T
2π − θ

2π +O
( log T

T

)
+ log2(T )

4π − θ log T
2π +O

(ˆ T

1

log t
t2

dt
)

= log2 T

4π − log(2π) log T
2π +O(1).

And, if k ̸= 1,∑
0<γ≤T

1
γk

= log T
2πT k−1 − θ

2πT k−1 + k

2π

( 1
(k − 1)2 − log T

(k − 1)T k−1 − 1
(k − 1)2T k−1

)
− kθ

2π

( 1
(1 − k)T k−1 − 1

1 − k

)
+ E(T, k)

= log T
2π(1 − k)T k−1 − 1

2π

( log(2π)
1 − k

+ 1
(k − 1)2

) 1
T k−1 + 1

2π

(k(2 − k)
(k − 1)2 + k log(2π)

1 − k

)
+ E(T, k),

7



2 THREE CONJECTURES ON THE ZETA FUNCTION

with an error term

E(T, k) ≪ log T
T k

+
ˆ T

1

log t
tk+1 dt ≪


1 if k > 0,
log2 T if k = 0,
T−k log T if k < 0.

When k > 1, we may similarly compute∑
γ>T

1
γk

=
∑
γ>0

1
γk

−
∑

0<γ≤T

1
γk

= k

ˆ ∞

T

N(t)
tk+1 dt− N(T )

T k

=
( k

2π

ˆ ∞

T

log t
tk

dt− kθ

2π

ˆ ∞

T

dt
tk

+O
(ˆ ∞

T

log t
tk+1 dt

))
−

( log T
2πT k−1 − θ

2πT k−1 +O
( log T
T k

))
= k log T

2π(k − 1)T k−1 + k

2π(k − 1)2T k−1 − kθ

2π(k − 1)T k−1 − log T
2πT k−1 + θ

2πT k−1 +O
( log T
T k

)
= log T

2π(k − 1)T k−1 + 1
2π

( 1
(k − 1)2 − log(2π)

k − 1

) 1
T k−1 +O

( log T
T k

)
.

2.2 Growth of zeta on vertical lines
As we saw above, there is an intricate connection between the distribution of nontrivial zeros of ζ(s)
and its growth on vertical lines. For a real number σ, we define the Lindelöf function µ(σ) by

µ(σ) = inf{a ≥ 0 : ζ(σ + ti) = O(ta) as t → ∞} = lim sup
t→∞

log |ζ(σ + ti)|
log t .

In light of Lemma 2.2, it is clear that µ(σ) is a well defined function. Moreover, it is easily seen that
µ(σ) = 0 for σ > 1, since the estimate (9) shows that ζ(s) is bounded in each half-plane σ ≥ 1 + δ
with δ > 0. This can be extended to µ(1) = 0 without too much work. To see this, write

ζ(s) =
N−1∑
n=1

n−s +
∞∑

n=N

n−s =
N−1∑
n=1

n−s + N1−s

s− 1 + N−s

2 − s

ˆ ∞

N

P (x)
xs+1 dx

for σ > 1, where P (x) is the function defined in Equation (5). Since |P (x)| ≤ 1/2 for all real x, we
obtain

|ζ(σ + ti)| ≤ 1 + 1
2 + · · · + 1

N − 1 + 1√
(σ − 1)2 + t2

+ 1
2N +

√
σ2 + t2

2N .

Taking N = ⌊t⌋ and letting σ → 1+, we conclude that |ζ(1 + ti)| = O(log t) as t → ∞, which
immediately implies µ(1) = 0.4

Remark 2.5. Beware of the infimum in the definition of µ(σ): it says that, for any ε > 0, we have
ζ(σ+ ti) = O(tµ(σ)+ε) as t → ∞; the same need not be true if ε = 0. Also note that, since ζ(s) = ζ(s),
µ(σ) may equivalently be defined as the infimum of all a ≥ 0 such that ζ(σ+ ti) = O(|t|a) as |t| → ∞.

We now make the following claim

Proposition 2.6. The Lindelöf function satisfies

µ(σ) = 1
2 − σ + µ(1 − σ)

for all real σ.
4Here we implicitly used that the nth harmonic number is O(log n). See e.g., (A2.3) in the Appendix.
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2 THREE CONJECTURES ON THE ZETA FUNCTION

Proof. We begin with the asymmetric functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1 − s)ζ(1 − s),

where s = σ + ti. We assume throughout that σ is fixed and t > 0; we want to investigate what
happens when t → ∞. Taking absolute values and then the logarithm of both sides, we get

log |ζ(σ + ti)| = σ log(2) + (σ − 1) log(π) + log
∣∣∣ sin

(πσ
2 + πt

2 i
)∣∣∣

+ log |Γ(1 − σ − ti)| + log |ζ(1 − σ − ti)|.(13)

Since

| sin(x+ yi)|2 = | sin(x) cosh(y) + cos(x) sinh(y)i|2

= sin2(x)
(ey + e−y

2

)2
+ cos2(x)

(ey − e−y

2

)2

= e2y

4 + e−2y

4 + 1
2

(
sin2(x) − cos2(x)

)
= e2y

4 + e−2y

4 − cos(2x)
2

(
= cosh(2y) − cos(2x)

2

)
for real x and y, we have

log
∣∣∣ sin

(πσ
2 + πt

2 i
)∣∣∣ = 1

2 log
(1

4eπt + 1
4e−πt − 1

2 cos(πσ)
)

= 1
2 log

(1
4eπt

)
+ 1

2 log
(
1 + e−2πt − 2 cos(πσ)e−πt

)
= πt

2 − log(2) +O(e−πt).(14)

Now, if t > 0, then the principal logarithm

log(−ti) = log(t) − π

2 i.

Using this in Stirling’s formula (A2.2) (with α = 1 − σ) then yields

log Γ(1 − σ − ti) =
(1

2 − σ − ti
)(

log(t) − π

2 i
)

+ ti+ 1
2 log(2π) +O(t−1)

=
(1

2 − σ
)

log(t) − πt

2 + 1
2 log(2π) +

(
t−

(1
2 − σ

)π
2 − t log t

)
i+O(t−1).

Therefore,

log |Γ(1 − σ − ti)| = Re log Γ(1 − σ − ti)

=
(1

2 − σ
)

log(t) − πt

2 + 1
2 log(2π) +O(t−1).(15)

If we now plug (14) and (15) into (13), then we get as a result

log |ζ(σ + ti)| = σ log(2) + (σ − 1) log(π) + πt

2 − log(2) +O(e−πt)

+
(1

2 − σ
)

log(t) − πt

2 + 1
2 log(2π) +O(t−1) + log |ζ(1 − σ − ti)|

=
(
σ − 1

2

)
log

(
2π
t

)
+O(t−1) + log |ζ(1 − σ − ti)|.

9



2 THREE CONJECTURES ON THE ZETA FUNCTION

Finally, if we exponentiate both sides and rearrange, then we see that∣∣∣ ζ(σ + ti)
ζ(1 − σ − ti)

∣∣∣ =
(2π
t

)σ−1/2
eO(1/t) =

(2π
t

)σ−1/2(
1 +O(t−1)

)
(16)

holds.5 This implies the stated result. To see this, note that for any ε > 0, we have |ζ(σ + ti)| =
O(tµ(σ)+ε) and |ζ(1 − σ − ti)| = O(tµ(1−σ)+ε). Substituting these estimates one by one into the
equation above gives

|ζ(1 − σ − ti)| = O(tµ(σ)+σ−1/2+ε) and |ζ(σ + ti)| = O(tµ(1−σ)−σ+1/2+ε)

as t → ∞. By definition of the Lindelöf function, this implies

µ(1 − σ) ≤ µ(σ) + σ − 1
2 + ε and µ(σ) ≤ µ(1 − σ) − σ + 1

2 + ε,

and, since ε > 0 was arbitrary, that µ(σ) = 1
2 − σ + µ(1 − σ).

Since µ(σ) is zero for σ ≥ 1, we immediately get

Corollary 2.7. If σ ≤ 0, then

µ(σ) = 1
2 − σ.

We can in fact say something more general about the behaviour of the Lindelöf function.

Proposition 2.8. The Lindelöf function µ(σ) is convex.

Proof. Let σ1 and σ2 be real numbers with σ1 < σ2. Suppose that for each of j = 1, 2, we have

|ζ(σj + ti)| ≤ Ajt
pj

for t ≥ tj , where the Aj , pj and tj are positive constants. Let t0 = max(t1, t2). We claim that there
is a constant C > 0, such that

|ζ(σ + ti)| ≤ Ctk(σ)

for all σ + ti in the vertical strip Vt0 = {σ1 ≤ σ ≤ σ2, t ≥ t0 > 0}, where

k(σ) = p1 + p2 − p1

σ2 − σ1
(σ − σ1)

is the linear function that interpolates the points (σ1, p1) and (σ2, p2).
To this end, let ε > 0 and consider

Fε(s) = log |ζ(s)| − k(σ) log(t) − εt.

Since the Laplacian of Fε, k(σ)t−2, is nonnegative wherever it is defined, the function Fε is subhar-
monic on Vt0 , except at any point where ζ(s) = 0, in which case Fε has a singularity and assumes the
value −∞. Suppose for the moment that ζ(s) has no zeros in Vt0 . Then, on the vertical part of the
boundary of Vt0 , we have

Fε(σj + ti) = log |ζ(σj + ti)| − k(σj) log(t) − εt ≤ log(Aj) + pj log(t) − k(σj) log(t) − εt

= log(Aj) − εt ≤ log(Aj).
5The estimate (16) for the chi function χ(s) = ζ(s)/ζ(1 − s) can be found in Titchmarsh [35] p. 95 and incorrectly

stated in Edwards [11] p. 185; see also Footnote †, p. 19 in Edward’s book.
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2 THREE CONJECTURES ON THE ZETA FUNCTION

In other words, Fε(s) must be bounded above on ∂Vt0 , with

Fε(s) ≤ max
(

logA1, logA2, max
σ1≤σ≤σ2

(
log |ζ(σ + t0i)| − k(σ) log(t0)

))
≤ logC

for some appropriate choice of C = C(t0) > 0. Further, by Lemma 2.2, we may find positive constants
A and D, such that

|ζ(s)| ≤ AtD

in Vt0 . Thus,

Fε(σ + Ti) = log |ζ(σ + Ti)| − k(σ) log(T ) − εT ≤ log(A) +D log(T ) − k(σ) log(T ) − εT

= O(log T ) − εT.

Since ε > 0, this implies that

Fε(σ + Ti) ≤ logC

for all σ1 ≤ σ ≤ σ2, provided T is chosen sufficiently large, say, T ≥ T0.
This shows that the subharmonic function Fε is bounded above by logC on the boundary of

V
(T )

t0
= {σ1 ≤ σ ≤ σ1, t0 ≤ t ≤ T}. According to the weak maximum principle,6 this is possible only

if Fε(s) ≤ logC on all of V (T )
t0

. Since there is no loss in making T larger, we find that the same must
be true in V ∞

t0
= Vt0 . In other words,

|ζ(s)| ≤ Ctk(σ)eεt

on all of V . Now, the choice of ε > 0 was arbitrary, so by continuity the same must be true if ε = 0.
That is, |ζ(s)| ≤ Ctk(σ) on V .

This proves our claim from the beginning at the proof, and it now only remains to relate this to
the Lindelöf function. This is straightforward: for any δ > 0, we have (by definition of the Lindelöf
function) that

pj = µ(σj) + δ

is an admissible choice for the pj , in the sense that

|ζ(σj + ti)| ≤ Aj(δ)tµ(σj)+δ for t ≥ tj(δ).

With this choice for the pj , we have

k(σ) = k∗(σ) + δ,

and hence

|ζ(σ + ti)| ≤ C(δ)tk
∗(σ)+δ ∀s ∈ Vt0(δ),

where k∗(σ) is the linear function that interpolates the points (σ1, µ(σ1)) and (σ2, µ(σ2)). This implies
that µ(σ) ≤ k∗(σ) + δ and hence, since δ > 0 was arbitrary, that µ(σ) ≤ k∗(σ) for σ1 ≤ σ ≤ σ2.

The same is true even if Vt0 contains points where ζ(s) = 0. Indeed, we may exclude from Vt0 a
collection of open discs around these zeros, whose radii are chosen independently and so small that
that the bounds we used remain true on the boundary of the resulting ‘perforated’ strip; we omit the
details.

This shows that µ(σ) is convex, given that the choice of σ1 and σ2 was arbitrary.
6Suppose f, g ∈ C(U) ∩ C2(U), where U is a bounded domain. If f and g are subharmonic and harmonic on U ,

respectively, and if f ≤ g on ∂U , then f ≤ g holds throughout U .
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Since µ(0) = 1
2 and µ(1) = 0, we obtain at once

Corollary 2.9. If 0 ≤ σ ≤ 1, then

µ(σ) ≤ 1
2(1 − σ).

Besides the statement of Corollary 2.9, we have not commented on the value of µ(σ) for 0 < σ < 1.
This is because it is an open problem. However, since µ(σ) is a nonnegative function that is convex,
zero for σ ≥ 0, and equal to 1

2 − σ for σ ≤ 0, we always have

µ(σ) ≥ µL(σ) =


1
2 − σ if σ ≤ 1

2 ,

0 if σ ≥ 1
2 .

By convexity of µ(σ), these functions are the same function if and only if it is true that µ( 1
2 ) = 0.

The question about the truth of this equality is so important that it has its own name.

Conjecture 2.10 (Lindelöf hypothesis). For any ε > 0, we have

ζ
(1

2 + ti
)

= O(tε)

as t → ∞. Equivalently, µ( 1
2 ) = 0.

2.3 Zero-density estimates
If σ and T are real numbers, then we let N(σ, T ) denote the number of nontrivial zeros ρ for which
σ ≤ β < 1 and 0 < γ ≤ T , counted with multiplicity. The function N(σ, T ) is nonincreasing as a
function of σ (for T fixed), and nondecreasing as a function of T (for σ fixed). Also,

N(σ, T ) +N(1 − σ, T ) = N(T ),

provided that σ does not coincide with the abscissa β of any zero. The true size of N(σ, T ) as a
function of σ and T hinges on the Riemann Hypothesis, and

N(σ, T ) =
{
N(T ) = N0(T ) if σ ≤ 1/2,
0 if σ > 1/2,

provided that the Riemann hypothesis is true, where N0(T ) denotes the number of zeros 1
2 + γi with

0 < γ ≤ T , counted with multiplicity.
Upper bounds for N(σ, T ) in terms of σ and T are known as zero-density estimates. Since

T log T
4π ∼ 1

2N(T ) ≤ N( 1
2 , T ) ≤ N(T ) ∼ T log T

2π ,

the relation

N( 1
2 , T ) = O(T log T ) = O(T 1+ε)(17)

holds for any fixed ε > 0 as T → ∞, while N( 1
2 , T ) = O(T ) fails to be true for the same reason. We

also have

N(1, T ) = 0 = O(logε T ) = O(T ε)(18)

12



2 THREE CONJECTURES ON THE ZETA FUNCTION

for any ε > 0 as T → ∞.
For these reasons, it is common to write zero-density estimates on the form

N(σ, T ) = O
(
Tλ(σ)(1−σ)f(T )

)
,

where the bound holds uniformly in a range of σ as T → ∞, with f(T ) typically being either T ε for
some fixed ε > 0, or some power of log T . The factor 1−σ in the exponent is natural, for the following
reason: if λ(σ) is constant and equal to 2, then the resulting exponent, 2(1 −σ), is the linear function
which is 1 at σ = 1

2 and 0 at σ = 0. In other words, it is the linear interpolation of the exponents of
T in (17) and (18) in the limit as ε → 0.

As we explain in the next section, the question of whether we can take λ(σ) = 2 is so interesting
in and of itself that it also has its own name.

Conjecture 2.11 (Density hypothesis). For any ε > 0, we have

N(σ, T ) = O(T 2(1−σ)+ε)

uniformly in 1
2 ≤ σ ≤ 1 as T → ∞.

Closely related to zero-density estimates are the so-called zero-free regions for ζ(s). These are
regions that, as the name suggests, do not contain any zeros of ζ(s). As mentioned in the Introduction,
all of the nontrivial zeros of the zeta function lie inside the critical strip and symmetrically about both
the real and critical lines. Because of this symmetry, the zero-free regions are usually expressed by
saying that ζ(s) has no zeros with

σ ≥ 1 −A(t) and t ≥ t0,

where A(t) is a function of t with 0 ≤ A(t) < 1
2 and t0 is some positive constant.

Theorem 2.12. Each of the following defines a region where ζ(s) has no zeros:

σ ≥ 1 − A

log t , t ≥ t0;(19)

σ ≥ 1 − A log log t
log t , t ≥ t0;(20)

σ ≥ 1 − A

(log t)10/11+ε
, t ≥ t0;(21)

σ ≥ 1 − A

(log t)2/3(log log t)1/3 , t ≥ t0.(22)

Here A > 0 and t0 > 3 are constants that need not be the same in each case. Any ε > 0 may be taken
in (21), possibly subject to increased values of A and t0.

It is outside the scope of this project to prove these here, but we can give a summary of how
they came to be. The zero-free region (19) was obtain independently by Hadamard and de la Vallée
Poussin, and represents the first significant zero-free region to the left of the line σ = 1. To prove
it, the ‘only’ thing that is needed is an equation that relates the logarithmic derivative of ζ(s) to its
zeros, and the fact that 2(1 + cos θ)2 ≥ 0.7

The enlarged regions (20), (21) and (22) are due to Littlewood, Tchudakoff [34], and Koborov [24]
and Vinogradov [36], respectively. In one way or another, they all rely on establishing cancellation
among the terms in an exponential sum (also called trigonometric sum); that is, a sum of the form∑

n∈SX

e2πif(n),(23)

7We are simplifying heavily here. A detailed proof may be found in [18].
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where f is a function and SX a set that may evolve with the parameter X. More specifically, (20)
may be proved by estimating (23) using an appropriate integral, while (21) and (22) can be proved
using Vinogradov’s esimates for exponential sums (to quote Titchmarsh, ‘This is in some ways very
complicated’).8

The region determined by (22) is effectively the largest known zero-free region for ζ(s); The
regions (19)–(21) are included for historical reasons, but we will find that much can be proved using
only Tchudakoff’s region (21).

2.4 Relationships between the hypotheses
A relationship between the Lindelöf hypothesis and the number N(σ, T ) was established by Backlund
[4], where we proved
Theorem 2.13 (Backlund, 1918). The Lindelöf hypothesis is true if and only if

N(σ, T + 1) −N(σ, T ) = o(log T )

for every fixed σ > 1
2 as T → ∞.

If the Riemann hypothesis is true, then N(σ, T ) is zero whenever σ > 1
2 , and so

Corollary 2.14. If the Riemann hypothesis is true, then so is the Lindelöf hypothesis.
The density hypothesis has its origin in Ingham’s article [19], where he showed the following.

Theorem 2.15 (Ingham, 1937). If ζ( 1
2 + ti) = O(tc) for some fixed c > 0 as t → ∞, then

N(σ, T ) = O
(
T 2(1+2c)(1−σ) log5 T

)
uniformly for 1

2 ≤ σ ≤ 1 as T → ∞.
If the Lindelöf hypothesis is true, then c may be taken arbitrarily small and positive, which implies

the following.
Corollary 2.16. If the Lindelöf hypothesis is true, then so is the density hypothesis.

In fact, we shall require a strengthened version of the density hypothesis in which the logarithmic
powers are taken seriously.
Conjecture 2.17 (Strong density hypothesis). There exists a constant η ≥ 1, such that

N(σ, T ) = O
(
T 2(1−σ) logη T

)
uniformly for 1

2 ≤ σ ≤ 1 as T → ∞.
Proof of Theorems 2.13 and 2.15 can be found in textbooks on the zeta function.9 It should

be noted that Ingham’s proof of Theorem 2.15 does not, at least without substantial modification,
generalise in such a way that Corollary 2.16 remains true with the strong density hypothesis in place
of the density hypothesis. In other words, this is the situation:

Riemann hypothesis

Lindelöf hypothesis Strong density hypothesis

Density hypothesis

Backlund obvious

Ingham obvious

Question: Is the Lindelöf hypothesis stronger than the strong density hypothesis, vice versa, or
neither?

8[35], p. 98.
9For example in Titchmarsh [35], Theorems 9.18 and 13.5.
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3 The explicit formula for ψ(x)
The goal of this section is to prove the explicit formula for the second Chebyshev function ψ(x).
This formula expresses a fundamental relation between the distribution of prime powers and the
distribution of zeros of the Riemann zeta function, which we put to use in the following sections. In
order to derive the formula, we first consider some lemmas in Section 3.1 before we prove the explicit
formula in Section 3.2.

3.1 Some lemmas
Our first lemma is a special case of Perron’s formula. Some inequalities in the proof are marked with
‘†’, indicating that an improvement of these inequalities may give a better error term in the lemma.

Lemma 3.1. If y > 0 and c > 0 are fixed real numbers, then

1
2πi

ˆ c+∞i

c−∞i

ys

s
ds =


0 if 0 < y < 1,
1/2 if y = 1,
1 if y > 1,

(24)

where ys is defined as es log y, with log y denoting the real-valued logarithm of y. If the integral to
the left (with the factor 1

2πi ) is denoted by I(y), then we define it as the Cauchy principal value
lim

T →∞
I(y, T ) in the case when y = 1, where

I(y, T ) = 1
2πi

ˆ c+T i

c−T i

ys

s
ds.

Moreover, if we write I(y) = I(y, T ) + ∆(y, T ) for T ≥ 0, then

|∆(y, T )| <


yc

πT | log y |
if y ̸= 1,

c

πT
if y = 1,

(25)

if T > 0, and

|∆(y, T )| < yc for all y > 0 and T ≥ 0.(26)

Proof. Suppose in the first instance that y > 1, and let R be the rectangle whose vertices are

c+ V i, −X + V i, −X − Ui, c− Ui

for X,U, V > 0, see Figure 1.
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3 THE EXPLICIT FORMULA FOR ψ(x)

Figure 1

Since ys/s is regular on C \ {0} with a simple pole of residue 1 at s = 0, we have by the residue
theorem that

1
2πi

∧
“

∂R

ys

s
ds = 1.(27)

On the segment of ∂R from −X + V i to −X − Ui, we have |ys/s| = y−X/
√
X2 + t2 ≤ y−X/X, and

hence ∣∣∣∣ˆ −X−Ui

−X+V i

ys

s
ds

∣∣∣∣ ≤ (U + V )y
−X

X
.

Taking the limit as X → ∞ in (27) while keeping U and V fixed therefore gives

1
2πi

ˆ c+V i

c−Ui

ys

s
ds = 1 − 1

2πi

ˆ c−Ui

−∞−Ui

ys

s
ds︸ ︷︷ ︸

J(−U)

+ 1
2πi

ˆ c+V i

−∞+V i

ys

s
ds︸ ︷︷ ︸

J(V )

.(28)

The integrals J(−U) and J(V ) are absolutely convergent. Indeed,

|J(−U)| = 1
2π

∣∣∣∣ˆ c−Ui

−∞−Ui

ys

s
ds

∣∣∣∣ = 1
2π

∣∣∣∣ˆ c

−∞

yσ−Ui

σ − Ui
dσ

∣∣∣∣ †
≤ 1

2π

ˆ c

−∞

yσ

√
σ2 + U2

dσ

<
1

2π

ˆ c

−∞

yσ

U
dσ = yc

2πU log y = yc

2πU | log y |
,(29)

and similarly

|J(V )| < yc

2πV | log y |
.(30)

If we now take the limit as U, V → ∞ in (28), using the bounds (29) and (30), then we get (24) in
the case when y > 1. Also, upon taking U = V = T > 0 in (28), we have

|∆(y, T )| = |I(y) − I(y, T )| = |1 − I(y, T )| = |J(−T ) − J(T )|
†
≤ |J(−T )| + |J(T )| < yc

πT | log y |
,

and hence (25) holds for y > 1.
Now suppose that 0 < y < 1 is fixed, and let R∗ denote the rectangle whose vertices are

X + V i, c+ V i, c− Ui, X − Ui

for U, V > 0 and X > c , see Figure 2.
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Figure 2

Since X > c > 0, the pole of ys/s at s = 0 lies outside of R∗. Hence, by the residue theorem (now
taking the integral with the negative orientation):

1
2πi ∨

“
∂R∗

ys

s
ds = 0.(31)

On the segment from X + V i to X − Ui, we have |ys/s| ≤ yX/
√
X2 + t2 ≤ yX/X, so∣∣∣∣ˆ X−Ui

X+V i

ys

s
ds

∣∣∣∣ ≤ (U + V )y
X

X
.

Taking the limit as X → ∞ in (31) while keeping U and V fixed therefore gives

1
2πi

ˆ c+V i

c−Ui

ys

s
ds = 1

2πi

ˆ ∞−Ui

c−Ui

ys

s
ds︸ ︷︷ ︸

J∗(−U)

− 1
2πi

ˆ ∞+V i

c+V i

ys

s
ds︸ ︷︷ ︸

J∗(V )

.(32)

The integrals J∗(−U) and J∗(V ) are also absolutely convergent, since

|J∗(−U)| = 1
2π

∣∣∣∣ˆ ∞−Ui

c−Ui

ys

s
ds

∣∣∣∣ = 1
2π

∣∣∣∣ˆ ∞

c

yσ−Ui

σ − Ui
dσ

∣∣∣∣ †
≤ 1

2π

ˆ ∞

c

yσ

√
σ2 + U2

dσ

<
1

2π

ˆ ∞

c

yσ

U
dσ = −yc

2πU log y = yc

2πU | log y |
,(33)

and similarly

|J∗(V )| < yc

2πV | log y |
.(34)

Hence, letting U, V → ∞ in (32) and using (33) and (34), we obtain (24) in the case when 0 < y < 1.
Moreover, if we take U = V = T > 0 in (32), then we get

|∆(y, T )| = |I(y) − I(y, T )| = |0 − I(y, T )| = |J∗(T ) − J∗(−T )|
†
≤ |J∗(T )| + |J∗(−T )| ≤ yc

πT | log y |
.

Now suppose that y = 1. Then a straightforward computation gives

I(1, T ) = 1
2πi

ˆ c+T i

c−T i

ds
s

= 1
2π

ˆ T

−T

dt
c+ ti

= 1
2π

ˆ T

−T

c− ti

c2 + t2
dt = 1

π

ˆ T

0

c

c2 + t2
dt,

17



3 THE EXPLICIT FORMULA FOR ψ(x)

since the real and imaginary parts of (c − ti)/(c2 + t2) are even and odd functions of t, respectively.
Therefore,

I(1) def= lim
T →∞

I(1, T ) = 1
π

ˆ ∞

0

c

c2 + t2
dt = 1

π
arctan

(∞
c

)
= 1

2 ,

which proves (24) for y = 1. Furthermore,

0 < ∆(1, T ) = I(1) − I(1, T ) = 1
2 − I(1, T ) = 1

π

ˆ ∞

T

c

c2 + t2
dt

†
<


c

π

ˆ ∞

T

dt
t2

= c

πT
if T > 0,

1
π

ˆ ∞

0

c

c2 + t2
dt = 1

2 < 1 = yc,

so that (25) and (26) hold for y = 1.
To establish (26) in the case when y ̸= 1 and T > 0, let Γ and Γ∗ denote the arcs of the circle

|s| =
√
c2 + T 2 from c+ Ti to c− Ti that lie to the left and right of the line σ = c, respectively, see

Figure 3.

Figure 3

If we let Γ = Γ for y > 1, and Γ = Γ∗ for 0 < y < 1, then

∆(y, T ) = I(y) − I(y, T ) = I(y) −
(
I(y, T ) + 1

2πi

ˆ
Γ

ys

s
ds

)
+ 1

2πi

ˆ
Γ

ys

s
ds = 1

2πi

ˆ
Γ

ys

s
ds,

since the bracketed term equals I(y) by the residue theorem.10 Accordingly,

|∆(y, T )|
†
≤ length(Γ)

2π max
s∈Γ

∣∣∣ys

s

∣∣∣ < 2π
√
c2 + T 2

2π · yc

√
c2 + T 2

= yc,

since |ys| = yσ ≤ yc on Γ.11 By continuity of the integrand, this bound also holds if T = 0. This
completes the proof of the lemma.

Remark 3.2. The inequalities (25) and (26) can be combined in saying that

|∆(y, T )| <


yc min

(
1, 1
πT | log y |

)
if y ̸= 1,

min
(
1, c

πT

)
if y = 1,

10This is true both for y > 1 and 0 < y < 1.
11See Footnote 10.
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3 THE EXPLICIT FORMULA FOR ψ(x)

for T ≥ 0, where the finite value is understood if T = 0. The full proof was included for both of the
cases y > 1 and 0 < y < 1 because J(−U) for y > 1 is not easily expressible in terms of, say, J∗(U)
for 0 < y < 1.

We make a small digression on the exact error terms in Lemma 3.1, since the bounds attained are
susceptible to improvement. A straightforward computation shows that

I(y, T ) = 1
π

ˆ T

0
Re

( yc+ti

c+ ti

)
dt = yc

π

ˆ T

0

c cos(t log y) + t sin(t log y)
c2 + t2

dt,

so that I(y), I(y, T ) and ∆(y, T ) are all real for y, T, c > 0, with I(y) and ∆(y, T ) having a discontinuity
at y = 1. Moreover, the proof of Lemma 3.1 shows that the exact error term is given by12

∆(y, T ) =


J(−T ) − J(T ) if y > 1,
1
π

ˆ ∞

T

c

c2 + t2
dt if y = 1,

J∗(T ) − J∗(−T ) if 0 < y < 1.

For y > 1, this can be written in various ways,

J(−T ) − J(T ) = 1
2πi

ˆ c−T i

−∞−T i

ys

s
ds− 1

2πi

ˆ c+T i

−∞+T i

ys

s
ds = 1

2πi

ˆ c

−∞

yσ−T i

σ − Ti
− yσ+T i

σ + Ti
dσ

= 1
π

ˆ c

−∞
Im

( yσ−T i

σ − Ti

)
dσ = 1

2πi

ˆ c

−∞

yσ

σ2 + T 2

(
y−T i(σ + Ti) − yT i(σ − Ti)

)
dσ

= 1
2πi

ˆ c

−∞

yc

σ2 + T 2

(
Ti(yT i + y−T i) − σ(yT i − y−T i)

)
dσ

= 1
π

ˆ c

−∞

yσ

σ2 + T 2

(
T cos(T log y) − σ sin(T log y)

)
dσ,

and similarly for 0 < y < 1:

J∗(T ) − J∗(T ) = 1
π

ˆ ∞

c

Im
( yσ+T i

σ + Ti

)
dσ = 1

π

ˆ ∞

c

yσ

σ2 + T 2

(
σ sin(T log y) − T cos(T log y)

)
dσ.

Alternatively, one may use the circular arc Γ for y ̸= 1, to write

∆(y, T ) = 1
2πi

ˆ
Γ

ys

s
ds = 1

2π

ˆ θ−

θ+

eα cos(θ) cos(α sin θ)dθ + i

2π

ˆ θ−

θ+

eα cos(θ) sin(α sin θ)dθ,

with α = log(y)
√
c2 + T 2, θ+ = arctan(T/c) and θ− =

{
2π − arctan(T/c) if y > 1,
− arctan(T/c) if 0 < y < 1.

To prove the explicit formula for ψ(x) in the next section, we also need some lemmas bounding
ζ′

ζ (s) at various locations in the plane.13

Lemma 3.3. There exists a constant AΩ > 0 such that∣∣∣∣ζ ′

ζ
(s)

∣∣∣∣ ≤ AΩ log(2|s|)

throughout the ‘perforated’ half-plane

Ω = {s ∈ C : σ ≤ −1 and |s+ 2n| ≥ 1
2 for all n ∈ N+}.

12Be sure to note the asymmetry between the formula for y > 1 and the formula for 0 < y < 1.
13The notation ζ′

ζ
(s) is short for ζ′(s)

ζ(s) , the logarithmic derivative of the zeta function.
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3 THE EXPLICIT FORMULA FOR ψ(x)

Remark 3.4. The set Ω contains every vertical line {−q + ti : t ∈ R}, where q is an odd positive
integer.

Lemma 3.5. There exists a constant A≡ > 0 and real numbers (Tm)∞
m=1, such that

m < Tm < m+ 1,

for all m, and such that ∣∣∣∣ζ ′

ζ
(σ + Tmi)

∣∣∣∣ ≤ A≡ log2 Tm

for all m and all −1 ≤ σ ≤ 2.

For proof of Lemmas 3.3 and 3.5, the reader may consult Theorems 26 and 27 in Ingham’s classical
tract [18], and note that log(|s| + 1) ≤ log(2|s|) throughout Ω.

Lemma 3.6. We have

−ζ ′

ζ
(1 + η) < 1

η

for all real η > 0.

Proof. Write Equation (6) on the form

ζ(σ) = σ

σ − 1 − σI(σ), I(σ) =
ˆ ∞

1

x− ⌊x⌋
xσ+1 dx,

for real σ > 1. If we differentiate this equation logarithmically, then we get

ζ ′

ζ
(σ) + 1

σ − 1 = 1 − (2σ − 1)I(σ) − σ(σ − 1)I ′(σ)
σ − σ(σ − 1)I(σ) .(35)

The denominator on the right is positive, being equal to (σ − 1)ζ(σ). Also,

I ′(σ) = −
ˆ ∞

1

(x− ⌊x⌋) log x
xσ+1 dx < 0,

so that −σ(σ − 1)I ′(σ) in the numerator of (35) is positive as well. Thus, it suffices to show that the
term 1 − (2σ− 1)I(σ) in the numerator is positive. But since I(σ) = 1

σ−1 − ζ(σ)/σ, this is equivalent
to showing that

ζ(σ) > σ2

(σ − 1)(2σ − 1)

when σ > 1. This is not too hard, since

ζ(σ) =
∞∑

n=1
n−σ > 1 +

ˆ ∞

2
x−σdx = 1 + 21−σ

σ − 1 = (σ − 1 + 21−σ)(2σ − 1)
(σ − 1)(2σ − 1) >

σ2

(σ − 1)(2σ − 1) .

This shows that

ζ ′

ζ
(σ) + 1

σ − 1 > 0

when σ > 1, and the claim now follows upon taking σ = 1 + η.
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3 THE EXPLICIT FORMULA FOR ψ(x)

3.2 The explicit formula
We are going to prove the explicit formula for ψ(x) in this section, and our proof borrows inspira-
tion and some notation from the classical proof.14 This is going to require some amount of tedious
calculation, and we therefore begin by giving an explanation of how the formula arises, and why the
function ψ(x) needs adjustment.

By applying logarithmic differentiation and thereafter Abel’s summation formula to the Euler
product (3), we obtain the identity

−ζ ′

ζ
(s) = s

ˆ ∞

1

ψ(x)
xs+1 dx (σ > 1).(36)

Thus, after the change of variable x = e2πy, we have

− 1
σ + ti

· ζ
′

ζ
(σ + ti) =

ˆ ∞

−∞

(
2πψ(e2πy)e−2πσy

)
e−2πtyidy(37)

(since ψ(x) is zero when x < 1). The right hand side is the Fourier transform ‘at t’ of the function
f(y) = 2πψ(e2πy)e−2πσy, and it is conceivable that the Fourier inversion theorem would express this
function as an integral involving −(ζ ′/ζ)(s). However, it is clear that Equation (36) will remain
true even if ψ(x) is modified on a set of (Lebesgue) measure zero, and so we cannot expect such an
inverted formula to hold identically for all x. On the other hand, the function f is piecewise smooth
and belongs to L1(R), and so the only thing missing for the inversion theorem to recover f is the
property that

lim
ε→0

f(y − ε) + f(y + ε)
2 = f(y)

at each point in its domain.15 This is an easy fix: we define

ψ♭(x) = lim
ε→0

ψ(x− ε) + ψ(x+ ε)
2 = 1

2

( ∑
pm≤x

log p+
∑

pm<x

log p
)

for x ∈ R. Then ψ(x) and ψ♭(x) agree almost everywhere, equations (36) and (37) remain true with
ψ♭ in place of ψ, and the inversion theorem yields

2πψ♭(e2πy)e−2πσy = −
ˆ ∞

−∞

1
σ + ti

· ζ
′

ζ
(σ + ti)e2πytidt.

Or, reverting back to x and noting that the right-hand side may be written as a path integral:

ψ♭(x) = − 1
2πi

ˆ σ+∞i

σ−∞i

xs

s
· ζ

′

ζ
(s)ds.

We would now get an explicit formula for ψ♭(x), rather than ψ(x), by writing the last integral as a
sum of residues, using the residue theorem and an appropriate contour of integration.

The function ψ♭(x), sometimes called the normalised Chebyshev function, is equal to ψ(x) unless
x coincides with a prime power: in which case it equals ψ(x) − 1

2 Λ(x). The explicit formula is
conveniently expressed in terms of ψ♭(x), as shown in

14See e.g. [18] pp. 75–80, [9] §17, [22] §10, [27] §12 or [21] pp. 300–303. Observe also the difficulties in typesetting
−(ζ′/ζ)(s) in a satisfactory manner.

15See [38], Theorem 7.5, p. 171. Functions with this property may be called JD-regular, since they assume the
arithmetic mean of their left and right limits at their Jump Discontinuities, and since they appear in the Jordan-
Dirichlet test for the convergence of Fourier series.
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3 THE EXPLICIT FORMULA FOR ψ(x)

Theorem 3.7. If x > 1, then

ψ♭(x) = x−
∑

ρ

xρ

ρ
− ζ ′

ζ
(0) − 1

2 log
(
1 − x−2)

.(38)

The sum
∑

ρ is taken over the nontrivial zeros of ζ(s), counted with multiplicity, and is defined as the
limit of the symmetric sum

S(x, T ) =
∑

|γ|<T

xρ

ρ

as T → ∞. Moreover, if we write
∑

ρ x
ρρ−1 = S(x, T ) +R(x, T ), then there exists a constant C > 0

such that

|R(x, T )| ≤ C
(x log2(xT )

T
+ log x

)
for all x ≥ 3 and T ≥ 1.16

Proof. Suppose x > 1, c > 1 and T > 0. Then

ψ♭(x) =
∞∑

n=1
Λ(n)I( x

n ) =
∞∑

n=1
Λ(n)I( x

n , T ) +
∞∑

n=1
Λ(n)∆( x

n , T )

=
∞∑

n=1

Λ(n)
2πi

ˆ c+T i

c−T i

(x/n)s

s
ds+

∞∑
n=1

Λ(n)∆( x
n , T )

= 1
2πi

ˆ c+T i

c−T i

xs

s

∞∑
n=1

Λ(n)
ns

ds+
∞∑

n=1
Λ(n)∆( x

n , T )

= 1
2πi

ˆ c+T i

c−T i

xs

s

(
− ζ ′

ζ
(s)

)
ds+

∞∑
n=1

Λ(n)∆( x
n , T ),(39)

where I( x
n ), I( x

n , T ) and ∆( x
n , T ) denote the quantities of Lemma 3.1, and where the interchange of

the order of summation and integration is justified by uniform convergence of
∑∞

n=1 Λ(n)n−s on a
compact set containing the segment from c− Ti to c+ Ti. From our definition of Λ(n), we have

∞∑
n=1

Λ(n)∆( x
n , T ) = Λ(x)∆(1, T ) +

∞∑
n=1
n̸=x

Λ(n)∆( x
n , T ),(40)

for all x > 1, wherein

|Λ(x)∆(1, T )|


= 0 if x ̸∈ P∗,

< log(x) min(1, c
πT ) for all x > 1,

≤ Λ(x) min(1, c
πT ) for all x > 1,

(41)

and ∣∣∣∣ ∞∑
n=1
n ̸=x

Λ(n)∆( x
n , T )

∣∣∣∣ < ∞∑
n=1
n ̸=x

Λ(n)( x
n )c min(1, 1

πT | log(x/n)| ).(42)

16The lower bounds on x and T are imposed in order to deal with the complication that log x and log(xT ) vanish for
x = 1 and xT = 1, respectively.
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3 THE EXPLICIT FORMULA FOR ψ(x)

Suppose n ≤ 3x
4 . Then x

n ≥ 4
3 , so that | log

(
x
n

)
| = log

(
x
n

)
≥ log

( 4
3
)
. This gives us

∑
n≤ 3x

4

Λ(n)( x
n )c min(1, 1

πT | log(x/n)| ) ≤ xc min(1, 1
πT log(4/3))

∞∑
n=1

Λ(n)
nc

= xc min(1, 1
πT log(4/3))

(
− ζ ′

ζ
(c)

)
.(43)

Similarly, if n ≥ 5x
4 , then x

n ≤ 4
5 , so that | log

(
x
n

)
| = log

(
n
x

)
≥ log

( 5
4
)
. Therefore,

∑
n≥ 5x

4

Λ(n)( x
n )c min(1, 1

πT | log(x/n)| ) ≤ xc min(1, 1
πT log(5/4))

(
− ζ ′

ζ
(c)

)
.(44)

It remains to consider the terms where 3x
4 < n < 5x

4 and n ̸= x. We split these into two different
cases.

Case 1: 3x
4 < n < x.

If there is no prime power n with 3x
4 < n < x, then there is nothing to consider, since all the terms

of (40) corresponding to these values of n are zero in that case. Otherwise, let p∗
x denote the largest

prime power in this interval. Then

log
(
x

p∗
x

)
= − log

(
p∗

x

x

)
= − log

(
1 − x− p∗

x

x

)
>
x− p∗

x

x
.

Therefore, the term corresponding to n = p∗
x to the right in (42) is bounded by

Λ(p∗
x)

(
x

p∗
x

)c

min(1, x

πT (x− p∗
x) ) ≤ ( 4

3 )c log(x) min(1, x

πT (x− p∗
x) ).(45)

For any other prime power n in this interval, we may write n = p∗
x − ν with 0 < ν < x/4. This yields

log
(x
n

)
≥ log

(
p∗

x

n

)
= − log

(
n

p∗
x

)
= − log

(
1 − ν

p∗
x

)
>

ν

p∗
x

.

The contribution of these terms to the right in (42) is therefore bounded by∑
0<ν<x/4
p∗

x−ν∈P∗

Λ(p∗
x − ν)( x

p∗
x−ν )c min(1, p∗

x

πTν
) ≤ ( 4

3 )c log(x)
∑

0<ν<x/4
ν∈Z

min(1, p∗
x

πTν
)

≤ ( 4
3 )c log(x) p

∗
x

πT

∑
0<ν<x/4

ν∈Z

1
ν

≤ 1
π ( 4

3 )c log(x) log(x+ 1) x
T
,(46)

since
∑

0<ν<x/4
ν∈Z

1
ν ≤ log(x+ 1) for all x ≥ 0 (cf. (A2.3) in the Appendix).

Case 2: x < n < 5x
4 .

Again, if there is no prime power n with x < n < 5x
4 , then we are done. Otherwise, let P ∗

x denote the
smallest prime power in this interval. Then∣∣∣∣log

(
x

P ∗
x

)∣∣∣∣ = − log
(
x

P ∗
x

)
= − log

(
1 − P ∗

x − x

P ∗
x

)
>
P ∗

x − x

P ∗
x

.
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Therefore, the term corresponding to n = P ∗
x to the right in (42) is bounded by

Λ(P ∗
x )

(
x

P ∗
x

)c

min(1, P ∗
x

πT (P ∗
x − x) ) ≤ log

( 5x
4

)
min(1, 5x

4πT (P ∗
x − x) ).(47)

For any other prime power n in this interval, we may write n = P ∗
x + ν with 0 < ν < x/4. This yields∣∣∣log

(x
n

)∣∣∣ = log
(n
x

)
> log

(
n

P ∗
x

)
= − log

(
P ∗

x

n

)
= − log

(
1 − ν

n

)
>
ν

n
.

The contribution of these terms in (42) is therefore bounded by∑
0<ν<x/4
P ∗

x −ν∈P∗

Λ(P ∗
x + ν)( x

P ∗
x +ν )c min(1, P

∗
x + ν

πTν
) ≤ log

( 5x
4

) ∑
0<ν<x/4

ν∈Z

min(1, 5x
4πTν )

≤ 5
4π log

( 5x
4

) x
T

∑
0<ν<x/4

ν∈Z

1
ν

≤ 5
4π log

( 5x
4

)
log(x+ 1) x

T
.(48)

Collecting the terms.
For simplicity, let ⟨x⟩ = dist(x,P∗ \ {x}) denote the distance from x to the nearest prime power that
is not equal to x. In particular, x− p∗

x, P
∗
x − x ≥ ⟨x⟩ provided that p∗

x and P ∗
x exist. Equations (39)

through (48) now give, for x > 1, c > 1 and T > 0:∣∣∣∣ψ♭(x)− 1
2πi

ˆ c+T i

c−T i

xs

s

(
− ζ ′

ζ
(s)

)
ds

∣∣∣∣
≤ Λ(x) min(1, c

πT ) + ( 4
3 )c log(x) min(1, x

πT ⟨x⟩ ) + log
( 5x

4
)

min(1, 5x
4πT ⟨x⟩ )

+ xc min(1, 1
πT log(4/3))

(
− ζ ′

ζ
(c)

)
+ xc min(1, 1

πT log(5/4))
(

− ζ ′

ζ
(c)

)
+ 1

π ( 4
3 )c log(x) log(x+ 1) x

T
+ 5

4π log
( 5x

4
)

log(x+ 1) x
T
.

Let us concretize these bounds. Take c = c(x) = 1 + 1
log(x+e−1) and suppose that T ≥ 3. Then

(i) 1 < c < 2 for x > 1, and xc ≤ ex.

(ii) In particular, − ζ′

ζ (c) ≤ log(x+ e − 1) by Lemma 3.6.

(iii) c
πT ≤ 2

3π < 1, so that min(1, c
πT ) = c

πT ≤ 2
πT .

(iv) 1
πT log(4/3) ≤ 1

3π log(4/3) < 1, so that min(1, 1
πT log(4/3) ) = 1

πT log(4/3) .

(v) 1
πT log(5/4) ≤ 1

3π log(5/4) < 1, so that min(1, 1
πT log(5/4) ) = 1

πT log(5/4) .

This yields ∣∣∣∣ψ♭(x)− 1
2πi

ˆ c+T i

c−T i

xs

s

(
− ζ ′

ζ
(s)

)
ds

∣∣∣∣
≤ 2

πT Λ(x) + ( 4
3 )2 log(x) min(1, x

πT ⟨x⟩ ) + log
( 5x

4
)

min(1, 5x
4πT ⟨x⟩ )

+ e
π

(
1

log(4/3) + 1
log(5/4)

)
x log(x+e−1)

T

+ 1
π ( 4

3 )2 log(x) log(x+ 1) x
T + 5

4π log
( 5x

4
)

log(x+ 1) x
T .(49)
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Modifying the contour.
Let q be an odd positive integer, and R the rectangle whose vertices are

c+ Ti, −q + Ti, −q − Ti, c− Ti,

see Figure 4.

Figure 4: The red and purple dots are the poles of ζ ′/ζ in R that lie outside and inside of the critical
strip, respectively.

In order to avoid that ζ(s) has a zero on the horizontal segments of ∂R, replace T by T̃ , the
smallest Tm from Lemma 3.5 that is greater than or equal to T . From the residue theorem applied to
g(s) = − xs

s
ζ′

ζ (s) over R, we get

1
2πi

ˆ c+T̃ i

c−T̃ i

g(s)ds =
∑

ω∈int(R)
g(ω)=∞

Res
s=ω

g(s) − 1
2πi

( ˆ −q+T̃ i

c+T̃ i

+
ˆ −q−T̃ i

−q+T̃ i

+
ˆ c−T̃ i

−q−T̃ i

)
g(s)ds.(50)

The (necessarily simple) poles of g in int(R) are 1, 0, and −2k for 1 ≤ k ≤ q−1
2 , as well as any

nontrivial zero ρ = β + γi of ζ(s) with |γ| < T̃ . The residues at these points are17

Res
s=1

g(s) = lim
s→1

−xs

s
(s− 1)ζ

′

ζ
(s) = −xRes

s=1

ζ ′

ζ
(s) = x,

Res
s=0

g(s) = lim
s→0

−xs ζ
′

ζ
(s) = −ζ ′

ζ
(0),

Res
s=−2k

g(s) = lim
s→−2k

−xs

s
(s+ 2k)ζ

′

ζ
(s) = −x−2k

−2k Res
s=−2k

ζ ′

ζ
(s) = −x−2k

−2k ,

Res
s=ρ

g(s) = lim
s→ρ

−xs

s
(s− ρ)ζ

′

ζ
(s) = −xρ

ρ
Res
s=ρ

ζ ′

ζ
(s) = −xρ

ρ
Nρ,

where Nρ denotes the order of the nontrivial zero ρ of ζ(s). Accordingly,

∑
ω∈int(R)
g(ω)=∞

Res
s=ω

g(s) = x−
∑

|γ|<T̃

xρ

ρ
− ζ ′

ζ
(0) −

(q−1)/2∑
k=1

x−2k

−2k .(51)

17A zero of f of order n is a simple pole of f ′/f with residue n, and a pole of f of order n is a simple pole of f ′/f
with residue −n.
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The vertical integral to the right in (50) can be bounded using Lemma 3.3. We have∣∣∣∣ 1
2πi

ˆ −q−T̃ i

−q+T̃ i

−xs

s

ζ ′

ζ
(s)

∣∣∣∣ ≤ 1
2π

ˆ T̃

−T̃

x−q

q
AΩ log

(
2
√
q2 + t2

)
dt ≤ AΩT̃

πqxq
log

(
2
√
q2 + T̃ 2

)
.(52)

Since x > 1, this integral vanishes as q → ∞ when T̃ stays fixed.
For the horizontal integrals to the right in (50), we consider the ranges −1 ≤ σ ≤ 2 and

−q ≤ σ ≤ −1 separately. We first have, by Lemma 3.5:∣∣∣∣ 1
2πi

ˆ c±T̃ i

−1±T̃ i

−xs

s

ζ ′

ζ
(s)ds

∣∣∣∣ ≤ A≡ log2 T̃

2πT̃

ˆ c

−1
xσdσ ≤ A≡ log2 T̃

2πT̃

ˆ c

−∞
xσdσ

= A≡ log2 T̃

2πT̃
xc

log x ≤ eA≡

2π · x log2 T̃

log(x)T̃
.(53)

For the leftmost part of these integrals, we have again by Lemma 3.3∣∣∣∣ 1
2πi

ˆ −1±T̃ i

−q±T̃ i

−xs

s

ζ ′

ζ
(s)ds

∣∣∣∣ ≤ AΩ

2π

ˆ −1

−q

xσ log
(
2
√
σ2 + T̃ 2

)√
σ2 + T̃ 2

dσ ≤
AΩ log

(
2T̃

)
2πT̃

ˆ −1

−∞
xσdσ

=
AΩ log

(
2T̃

)
2πT̃x log(x)

,(54)

since υ(σ) = log
(

2
√

σ2+T̃ 2
)

√
σ2+T̃ 2

is decreasing for18 σ ≥ σ(T̃ ) =
{√

(e/2)2 − T̃ 2 if |T̃ | ≤ e/2,
0 if |T̃ | > e/2,

and since

T̃ ≥ 3 > e/2 ≥ σ(T̃ ).

Conclusion
In the limit as q → ∞, we get from equations (39), (49), (50), (51), (52), (53) and (54):

ψ♭(x) = x−
∑

|γ|<T̃

xρ

ρ
− ζ ′

ζ
(0) − 1

2 log
(
1 − x−2)

+R(x, T̃ ),(55)

with

|R(x, T̃ )| ≤ eA≡

π
· x log2 T̃

log(x)T̃
+
AΩ log

(
2T̃

)
πT̃x log(x)

+Q(x, T̃ ),(56)

where Q(x, T̃ ) is three-line upper bound specified by Equation (49). Since Q(x, T̃ ) → 0 when T̃ → ∞
and x > 1 is kept fixed, we obtain the explicit formula (38) from (55) and (56) for x > 1. For x ≥ 3
and T̃ ≥ 3 specifically, we have log

( 5x
4

)
, log(x+ e − 1), log(x+ 1) ≤ 2 log(x) and log(x) > 1, and so

the bound takes the explicit form

|R(x, T̃ )| ≤ eA≡

π
· x log2 T̃

log(x)T̃
+ AΩ

π
·

log
(
2T̃

)
T̃ x log(x)

+ 2
πT̃

Λ(x) + ( 4
3 )2 log(x) min(1, x

πT̃ ⟨x⟩
)

+ 2 log(x) min(1, 5x

4πT̃ ⟨x⟩
) + 2e

π

(
1

log(4/3) + 1
log(5/4)

)
x log(x)

T̃

+ ( 32
9π + 5

π ) log2(x) x

T̃

≤ M
x log2(xT̃ )

T̃
+K log x ≤ max(M,K)

(
x log2(xT̃ )

T̃
+ log x

)
18v′(σ) = σ(1 − log

(
2
√

σ2 + T̃ 2
)

)(σ2 + T̃ 2)−3/2.
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with M = eA≡
π + 2e

π ( 1
log(4/3) + 1

log(5/4) ) + 32
9π + 5

π and K = AΩ
π + 2

3π + ( 4
3 )2 + 2.

Now this applies only with T̃ in place of T , but according to Lemma 3.5, we always have T̃ −T < 2
for T ≥ 3. From the definition of R(x, T ) and Equation (38), we have additionally

R(x, T̃ ) −R(x, T ) =
∑

T ≤|γ|<T̃

xρ

ρ
,

with ∣∣∣∣ ∑
T ≤|γ|<T̃

xρ

ρ

∣∣∣∣ ≤ 2x
T

∑
T ≤γ<T̃

1 ≤ 2x
T

∑
T ≤γ<T +2

1 ≤ 2Ax log T
T

.

for some constant A > 0. Thus, we obtain

|R(x, T )| ≤ 2Ax log T
T

+M
x log2(xT̃ )

T̃
+K log x

≤ 2Ax log T
T

+M
x log2(x(T + 2))

T
+K log x

≤ M̃
x log2(xT )

T
+K log x ≤ max(M̃,K)

(
x log2(xT )

T
+ log x

)
(57)

for all x, T ≥ 3 with M̃ = 2A + M(log(18)/ log(9))2, since x(T + 2) < 2xT , and since log(2λ) ≤
(log(18)/ log(9)) log(λ) for λ = xT ≥ 9.

The bound (57) can now be seen to hold in fact for x ≥ 3 and T ≥ 1. Indeed, the smallest
ordinate of a nontrivial zero is T0 = 14.1347 . . . (see [39]), which implies that R(x, T ) = R(x, T0) for
all 0 < T ≤ T0. It therefore suffices to show that x log2(xT )/T ≥ x log2(xT0)/T0 for these values of
T . The function f(T ) = log2(xT )/T is increasing on (1/x, e2/x) and decreasing on (e2/x,∞), and so
the claim is obvious if x ≥ e2. If x < e2, then it suffices to show that f(1) ≥ f(T0). The resulting
equation T0 log2(x) ≥ log2(xT0) can then be seen to hold for all x ≥ 3.

There are many formulas similar to (38) that can be proved in essentially the same way as Theorem
3.7 was proved above. We only mention one of these here, which we are going to need later.

Proposition 3.8. If ψ1(x) =
´ x

1 ψ(t)dt =
∑

n≤x Λ(n)(x− n) for x ∈ R, then

ψ1(x) = x2

2 −
∑

ρ

xρ+1

ρ(ρ+ 1) − x
ζ ′

ζ
(0) + ζ ′

ζ
(−1) −

∞∑
r=1

x1−2r

2r(2r − 1)(58)

for x ≥ 1.

To prove this, a generalisation of Lemma 3.1 is needed. A derivation can be found in [19].
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4 PRIMES IN SHORT INTERVALS: WEAK HYPOTHESES

4 Primes in short intervals: weak hypotheses

4.1 Introduction

The prime number theorem tells us that the number of primes in [0, x] and [x, 2x] are both asymptotic
to x(log x)−1, and in fact that19

ψ(x+ xϑ) − ψ(x)
{

∼ xϑ if ϑ ≥ 1,
= o(x) if ϑ < 1,

and π(x+ xϑ) − π(x)


∼ xϑ

ϑ log x if ϑ ≥ 1,

= o
( x

log x

)
if ϑ < 1.

(59)

Moreover, Gauss observed that the density of primes is well approximated by (log t)−1, in the sense
that

π(x) ∼
ˆ x

2

dt
log t .

We can therefore guess that

π(x+ h) − π(x) ≈
ˆ x+h

x

dt
log t ≈ h

log x,

provided x is large and h is small compared to x. It would therefore be interesting to know if an
asymptotic prime number theorem such as (59) holds for the interval (x, x+ h], where h = h(x) is a
nonnegative function that is smaller than x in the sense that h = o(x) as x → ∞. An interval of this
form is usually called a short interval.

Such asymptotic formulae can of course not hold for arbitrarily small h. For example, if h is
bounded, then the infinitude of x for which π(x+h) −π(x) > 0, has been established unconditionally
only in the case when h ≥ 246 (see [28]). Moreover, Maier [25] showed that the asymptotic formula
π(x + h) − π(x) ∼ h(log x)−1 is false for h = logA x, for any fixed number A. Our attention will
therefore be restricted to those functions h that grow faster than this.

We shall mainly be concerned with estimates of the difference ψ(x+ h) − ψ(x), the reason being

Proposition 4.1. Let h be a function of x such that h = o(x log x) and log x log log x = o(h). Then
the statements

ψ(x+ h) − ψ(x) ∼ h and π(x+ h) − π(x) ∼ h

log x

(as x → ∞), are either both true or both false.

Proof. For simplicity, let F•[ · ] be the one-step forward difference operator, defined for functions f
and g, and x ∈ R, by

Fg[f ](x) = f
(
x+ g(x)

)
− f(x).

Recall the definition of the function Π(x) = Σpm≤x m
−1, and let us write Π(x) = π(x) +E(x). By

19See the Appendix for elaboration.
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Abel’s summation formula (A2.1), we then have, for y ≥ x > 1,

ψ(y) − ψ(x) =
∑

x<n≤y

Λ(n) = log(y)Π(y) − log(x)Π(x) −
yˆ

x

Π(t)
t

dt

= log(y)π(y) − log(x)π(x) + log(y)E(y) − log(x)E(x) −
yˆ

x

Π(t)
t

dt

= Fy−x

[
log(·)π(·)

]
(x) + Fy−x

[
log(·)E(·)

]
(x) −

yˆ

x

Π(t)
t

dt.(60)

Take y = x+ h, where h = h(x) ≥ 0. Then

Fh

[
log(·)f(·)

]
(x) = log(x)Fh[f ](x) + log

(
1 + h

x

)
f(x+ h)

for ‘any’ function f . If we use this in Equation (60) for f = π and f = E, and divide through by
log x, then we get

Fh[ψ](x)
log x = Fh[π](x) + Fh[E](x) +

log
(
1+ h

x

)
π(x+ h)

log x +
log

(
1+ h

x

)
E(x+ h)

log x − 1
log x

x+hˆ

x

Π(t)
t

dt

= Fh[π](x) + Fh[E](x) +
log

(
1+ h

x

)
Π(x+ h)

log x − 1
log x

x+hˆ

x

Π(t)
t

dt.(61)

Observe that

log
(
1+ h

x

)
Π(x)

log x = Π(x)
log x

x+hˆ

x

dt
t

≤ 1
log x

x+hˆ

x

Π(t)
t

dt ≤ Π(x+h)
log x

x+hˆ

x

dt
t

=
log

(
1+ h

x

)
Π(x+ h)

log x .

This implies that the two last terms to the right in (61) together are nonnegative, with

0 ≤
log

(
1+ h

x

)
Π(x+ h)

log x − 1
log x

x+hˆ

x

Π(t)
t

dt ≤
log

(
1 + h

x

)
log x

(
Π(x+h) − Π(x)

)
≤ h

x log x
∑

x<pm≤x+h

1
m

= h

x log x
∑

x<pm≤x+h

log p
m log p ≤ h

x log2 x

∑
x<pm≤x+h

log p

= h

x log2 x
Fh[ψ](x) = o

(Fh[ψ](x)
log x

)
,(62)

since h = o(x log x).
It remains only to consider Fh[E](x). To this end we take N = ⌊log2(x+h)⌋, and use the definition
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of E to estimate

Fh[E](x) =
∑

x<pm≤x+h
m≥2

1
m

=
N∑

m=2

∑
x<pm≤x+h

1
m

=
N∑

m=2

1
m

∑
x1/m<p≤(x+h)1/m

1

=
N∑

m=2

π
(
(x+ h)1/m

)
− π(x1/m)

m
=

N∑
m=2

π
(
x1/m + (x+ h)1/m − x1/m

)
− π(x1/m)

m

≤
N∑

m=2

(x+ h)1/m − x1/m + 1
m

=
N∑

m=2

x1/m
(
(1 + h

x )1/m − 1
)

+ 1
m

≤
N∑

m=2

hx1/m

xm2 +
N∑

m=2

1
m

≤ h√
x

( ∞∑
m=2

1
m2

)
+ logN

= O
( h√

x
+ log log x

)
= o

( h

log x

)
.(63)

In the third line we used the bound (A2.4) for the prime-counting function, and in the fourth line we
used Bernoulli’s inequality (A2.5) together with the bound (A2.3) for the harmonic series. The last
line follows from the assumptions on h.

Thus, (61), (62) and (63) give

Fh[π](x) = Fh[ψ](x)
log x

(
1 + o(1)

)
+ o

( h

log x

)
,(64)

from which the stated claim follows easily.

An asymptotic formula for π(x + h) − π(x) also gives us for free an upper bound on prime gaps,
which in our case can be stated as

Proposition 4.2. Suppose that h = h(x) is such that log x = o(h) and

π(x+ h) − π(x) ∼ h

log x

as x → ∞. Then

pn+1 − pn ≤ h(pn)

for all sufficiently large n.

Proof. By assumption, we have that h(log x)−1 goes to infinity with x, and the asymptotic equivalence
therefore implies that there exists a positive x0 such that π(x + h) − π(x) ≥ 1 for all x ≥ x0; In
particular, h is positive when x ≥ x0. Let pn be any prime with pn ≥ x0. Then (pn, pn + h(pn)]
contains at least one prime, and one of these must be pn+1. As such, we have

pn+1 − pn ≤ h(pn).

4.2 Hoheisel’s theorem and generalisations
We are now ready to begin our investigation proper. Our starting point is the explicit formula for
ψ(x), on the form

ψ(x) = x−
∑

|γ|≤T

xρ

ρ
+O

(x log2(xT )
T

+ log x
)
,
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uniformly for x ≥ 3 and T ≥ 1. If h goes to infinity with x in such a way that h = o(x) (or, in general,
h ≪ x), then

ψ(x+ h) = x+ h−
∑

|γ|≤T

(x+ h)ρ

ρ
+O

(x log2(xT )
T

+ log x
)
,

and hence

ψ(x+ h) − ψ(x) − h = −
∑

|γ|≤T

C(ρ) +O
(x log2(xT )

T
+ log x

)
,(65)

uniformly for x ≥ x0(h) ≥ 3 and T ≥ 1, where

C(ρ) = (x+ h)ρ − xρ

ρ

(the dependence of C(ρ) on x and h is implicitly understood).
The point is: if the right hand side of (65) is o(h) as x → ∞ for suitable choices of h = h(x) and

T = T (x), then the conclusion is that

ψ(x+ h) − ψ(x) ∼ h

as x → ∞. In our search for such a pair (h, T ), we make the simplifying assumption that h and T are
chosen in such a way that

log x = o(h),(66)
x log2(xT ) = o(hT ),(67)

because this reduces the O-term in (65) to o(h). The restriction (66) is not important in light of
Maier’s theorem, while (67) will be seen to put a restriction on h and T which is difficult to overcome
using the strategies employed here; we discuss this briefly in Section 6.

We can derive two general bounds on the number C(ρ). If h ≪ x, then we have we have first

|C(ρ)| ≤ (x+ h)β + xβ

|γ|
≪ xβ

|γ|
(68)

uniformly over all ρ = β + γi as x → ∞, by the triangle inequality. On the other hand, we have by
integration

|C(ρ)| =
∣∣∣ˆ x+h

x

tρ−1dt
∣∣∣ ≤
ˆ x+h

x

tβ−1dt ≪ hxβ−1(69)

as x → ∞.

Remark 4.3. In terms of real and imaginary parts, it can be computed that

C(ρ) = (x+ h)βP (x+ h) − xβP (x)
β2 + γ2 + (x+ h)βQ(x+ h) − xβQ(x)

β2 + γ2 i and

|C(ρ)|2 =
(x+ h)2β − 2(x+ h)βxβ cos

(
γ log

(
1 + hx−1))

+ x2β

β2 + γ2 ,

where

P (t) = β cos(γ log t) + γ sin(γ log t),
Q(t) = β sin(γ log t) − γ cos(γ log t),

P 2(t) +Q2(t) ≡ 1 and
P (x+ h)P (x) +Q(x+ h)Q(x) = (β2 + γ2) cos

(
γ log

(
1 + hx−1))

.
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We are going to use the bounds (68) and (69) to estimate the sum
∑

|γ|≤T C(ρ). In general, it is
useful to consider the nontrivial zeros of ζ(s) which lie to the left and right inside the critical strip
separately.20 We therefore introduce a constant 1

2 ≤ κ < 1 and write∑
|γ|≤T

C(ρ) =
∑

|γ|≤T
β<κ

C(ρ) +
∑

|γ|≤T
β≥κ

C(ρ).(70)

We make a trivial estimate of the first sum using (69), to obtain∑
|γ|≤T
β<κ

C(ρ) ≪ h
∑

|γ|≤T
β<κ

xβ−1 ≤ hxκ−1N(T ) ≪ hxκ−1T log T,

which is o(h) if

T log T = o(x1−κ)(71)

as x → ∞.
For the first theorem we would like to prove, it suffices to use (69) when bounding the second sum

to the right in (70) as well. Let β1 ≤ β2 ≤ . . . ≤ βm denote the abscissas of the zeros ρ = β + γi of
ζ(s) for which β ≥ κ and 0 < γ ≤ T . If φ(σ) = xσ−1, then

∑
|γ|≤T
β≥κ

C(ρ) ≪ h
∑

0<γ≤T
β≥κ

xβ−1 = h

m∑
n=1

φ(βn) = h
( m∑

n=1
1 −

m∑
n=1

(
1 − φ(βn)

))

= h
(
N(κ, T ) −

m∑
n=1

ˆ 1

βn

φ′(σ)dσ
)

= h
(
N(κ, T ) −

ˆ 1

κ

φ′(σ)
∑

n
βn≤σ

1 dσ
)

= h
(
N(κ, T ) −

ˆ 1

κ

φ′(σ)
(
N(κ, T ) −N(σ, T )

)
dσ

)
= h

(
xκ−1N(κ, T ) + log(x)

ˆ 1

κ

xσ−1N(σ, T )dσ
)
.(72)

The term
xκ−1N(κ, T ) ≪ xκ−1T log T

vanishes assuming (71), so it remains only to investigate the integral in (72).
At this point, we need to apply heavier machinery to get further. It suffices to use (a weakened

version of) Tchudakoff’s zero-free region (21): Tchudakoff’s result implies that ζ(s) has no zeros in a
region of the form σ ≥ L(t), t ≥ t0, where

L(t) = 1 − A(t) log log t
log t ,

and where A(t) is an increasing function that goes to infinity with t.
Now assume that

N(σ, T ) = O
(
Tα(1−σ) logη T

)
20Throughout we assume, of course, that there may exist zeros which are nontrivial and do not lie on the critical line.
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uniformly in 1
2 ≤ σ ≤ 1 as T → ∞, for some constants α ≥ 2 and η ≥ 1. Then

log(x)
ˆ 1

κ

xσ−1N(σ, T )dσ = log(x)
ˆ L(T )

κ

xσ−1N(σ, T )dσ

≪ log(x) logη(T )
ˆ L(T )

κ

( x

Tα

)σ−1
dσ

= log(x) logη(T )
log(x/Tα)

(( x

Tα

)L(T )−1
−

( x

Tα

)κ−1
)
.

Take T = xθ, where 0 < θ < α−1 ≤ 1
2 .21 Then x/Tα = x1−θα > 1, and so

log(x)
ˆ 1

κ

xσ−1N(σ, T )dσ ≪ log(x) logη(T )
log(x/Tα)

(( x

Tα

)L(T )−1
−

( x

Tα

)κ−1
)

≤ logη(x)
1 − θα

x(1−θα)(L(T )−1)

≪ logη(x) exp
(

−(1 − θα) log(x)A(T ) log log T
log T

)
= logη(x) exp

(
−(1 − θα) log(x)A(xθ) log(θ) + log log x

θ log x

)
≪ logη(x) exp

(
−(1 − θα)θ−1A(xθ) log log x

)
= (log x)η−(1−θα)θ−1A(xθ).(73)

This vanishes as x → ∞ provided that

(1 − θα)θ−1A(xθ) − η(74)

is positive and bounded away from zero for all sufficiently large x. It is sufficient (but not necessary)
to assume that θ is constant with 0 < θ < α−1 for this to hold. But then we are close to a conclusion,
since with our choice of T , we have

T log T = θxθ log x = o(x1−κ)

for any fixed κ ∈ [ 1
2 , 1 − θ) ⊂ [ 1

2 , 1), so that (71) is satisfied. To get to the goal, we need only choose
h such that (66) and (67) are true. But with T = xθ, this is equivalent to

x1−θ log2 x = o(h),

and together with the assumption that h = o(x), it is clear that we can take h = xϑ for any fixed
1−θ < ϑ < 1. Since θ may by taken arbitrarily close (but not equal) to α−1, we arrive at the following
conclusion, first proved by Hoheisel [17].22

Theorem 4.4 (Hoheisel, 1930). If N(σ, T ) = O(Tα(1−σ) logη T ) uniformly for 1
2 ≤ σ ≤ 1 as

T → ∞, then

ψ(x+ xϑ) − ψ(x) ∼ xϑ

as x → ∞, for any fixed 1 − α−1 < ϑ < 1.
21We use the notation T = xθ and h = xϑ repeatedly throughout the chapter.
22This is not word-for-word what Hoheisel proved. For example, the zero-free region σ ≥ L(t) was established by

Tchudakoff after the publication of Hoheisel’s article. Hoheisel worked with the specific values α = 4 and η = 6, and
a slightly weaker zero-density estimate: it is apparently usual to cite authors in the field not by the results that they
proved, but by the immediate generalizations of their results, which were discovered later.
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The best zero-density estimate one can hope for that is of the form required in Theorem 4.4 is the
truth of the density hypothesis (α = 2). In light of Propositions 4.1 and 4.2, this yields

Corollary 4.5. If the strong density hypothesis is true, i.e., if N(σ, T ) = O(T 2(1−σ) logη T )
uniformly for 1

2 ≤ σ ≤ 1 as T → ∞, where η ≥ 1, then

ψ(x+ xϑ) − ψ(x) ∼ xϑ as x → ∞,

π(x+ xϑ) − π(x) ∼ xϑ

log x as x → ∞,

pn+1 − pn = O(pϑ
n) as n → ∞,

all hold for any fixed 1
2 < ϑ < 1.

Remark 4.6. Equation (59) and Corollary 4.5 can be combined in saying that

π(x+ xϑ) − π(x) ∼ min(1, ϑ−1) xϑ

log x

for any fixed ϑ > 1
2 as x → ∞, provided that the strong density hypothesis is true.

Before we consider an unconditional result that follows from Hoheisel’s theorem, we want emphasise
that (74) can be made to vanish also if one allows θ to depend on x and approach α−1 from below as
x → ∞, although the improvement of the conclusion is minimal. For example, in agreement with (21),
the choice A(t) = log log t is admissible. Thus, if we write θ(x) = α−1 − ∆(x) for 0 < ∆(x) = o(1),
then it is sufficient that there exists a constant C > 0, such that x ≥ x0 implies

(1 − θα)θ−1A(xθ) − η ≥ C

(1 − θα) log(θ log x) − (C + η)θ ≥ 0
∆(x) log log x ≥ (C + η)α−1 − (C + η)∆(x) − ∆(x) log

(
α−1 − ∆(x)

)
∆(x) ≥ (C + η)α−1 + o(1)

log log x .

So, for any constant D > (C + η)α−1, we can in fact take

T = xθ = xα−1−D(log log x)−1
= xα−1

exp
(

−D
log x

log log x

)
.

The resulting requirement on h obtained from (67) is

x1−α−1
log2(x) exp

(
D

log x
log log x

)
= o(h),

and the factor log2(x) exp(. . .) on the left grows slower than any power of x, but faster than any power
of log x.

It is known that

N(σ, T ) = O(T 12
5 (1−σ) log9 T )(75)

uniformly for 1
2 ≤ σ ≤ 1 as T → ∞, and this may be the best known zero-density estimate of this

form over the range 1
2 ≤ σ ≤ 1.23 Using this in Theorem 4.4 yields unconditionally

ψ(x+ x
7

12 +ε) − ψ(x) ∼ x
7

12 +ε,

23See [21], Equation (11.29), p. 275.
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for any fixed ε > 0 as x → ∞.
Corollary 4.5 shows how sharp a result we get under the strong density hypothesis, but we have not

yet commented on what is obtainable using merely the density hypothesis. For this we can employ
almost exactly the same arguments used in deriving Hoheisel’s theorem, except with one caveat.
The density hypothesis on the form N(σ, T ) = O(T 2(1−σ)+ε) has the defect that the exponent of T
approaches ε (> 0) as σ → 1 from the left, although there are no zeros to the right of σ = 1. As
a consequence, we would end up with an extra factor T ε = xεθ in Equation (73), resulting in an
unacceptable conclusion.

To remedy this defect, we can use the fact that

N(σ, T ) = O
(
T

35
36 (1−σ) log16 T

)
(76)

uniformly for 152
155 ≤ σ ≤ 1 as T → ∞.24 Assuming κ < 152

155 , we reconsider the integral from (72) by
writing

log(x)
ˆ 1

κ

xσ−1N(σ, T )dσ = log(x)
ˆ 152

155

κ

xσ−1N(σ, T )dσ + log(x)
ˆ 1

152
155

xσ−1N(σ, T )dσ.

Using the density hypothesis, we have first

log(x)
ˆ 152

155

κ

xσ−1N(σ, T )dσ ≪ log(x)T ε

ˆ 152
155

κ

( x

T 2

)σ−1
dσ = T ε log(x)

log(x/T 2)

(( x

T 2

)− 3
155 −

( x

T 2

)κ−1
)

≪ T ε log(x)
log(x/T 2)

( x

T 2

)− 3
155 = 1

1 − 2θx
εθ−(1−2θ) 3

155 ,

which vanishes as x → ∞ if θ < 1
2 (1 + 155

6 ε)−1 < 1
2 . To the right, (76) yields

log(x)
ˆ 1

152
155

xσ−1N(σ, T )dσ ≪ log17(x)
ˆ L(T )

152
155

( x

T
35
36

)σ−1
dσ = log17(x)

log
(

x

T
35
36

)(( x

T
35
36

)L(T )−1
−

( x

T
35
36

)− 3
155

)

≪ log17(x)
log

(
x

T
35
36

)( x

T
35
36

)L(T )−1
= log16(x)

1 − 35
36θ

x−(1− 35
36 θ)A(xθ) log log(xθ)(log xθ)−1

≪ (log x)16−(1− 35
36 θ)θ−1A(xθ) log log x,

which vanishes automatically because A(xθ) → ∞ and θ < 1
2 < 36

35 . Since ε > 0 may be chosen
arbitrarily small, and since the assumptions are otherwise the same as in the derivation of Hoheisel’s
theorem, we reach the following conclusion.

Proposition 4.7. Corollary 4.5 remains true if ‘strong density hypothesis’ is replaced by ‘density hy-
pothesis’. In particular, Corollary 2.16 then implies that Corollary 4.5 holds if the Lindelöf hypothesis
is true.

There are two comments to be made here. First, the density hypothesis in its natural form is
really the assertion that, for any ε > 0,

N(σ, T ) = O
(
T (2+ε)(1−σ))

uniformly for 1
2 ≤ σ ≤ 1 as T → ∞. Indeed, the zero-density estimate (76) shows that this is

equivalent to density hypothesis 2.11, except that value of N(σ, T ) near σ = 1 has been corrected.
24See [21], Theorem 11.3, p. 277.
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Second, it is tempting to try to use a zero-density estimate25 of Halász and Turán [15] over the
interval σ ∈ [ 3

4 + δ, 152
155 ] when estimating the integral in (72), in an attempt to improve the conclusion

under the Lindelöf hypothesis. However, the best known bound for N(σ, T ) over this interval, under
the Lindelöf hypothesis, is still only that which is given by the density hypothesis. But the resulting
estimate

log(x)
ˆ 3

4 +δ

1
2

xσ−1N(σ, T )dσ ≪ xθε−( 1
4 −δ)(1−2θ)

requires that we take θ < 1
2 , so no stronger result is attained under this assumption.

It is also possible to reach interesting conclusions if we merely assume that the strong density
hypothesis has been established in the rightmost part of critical strip, as is the case for the estimate
(76). An example of such a result is given by Ivić.26

Theorem 4.8 (Ivić, 1979). Suppose N(σ, T ) = O(Tα(σ)(1−σ) logη T ) uniformly for 1
2 ≤ σ ≤ 1 as

T → ∞, where η ≥ 1, and where α(σ)(1 − σ) ≤ 1 for all σ. Suppose further that there exist constants
1
2 < κ < 1 and α0 > 2, such that

1. α(σ) ≤ α0 for 1
2 ≤ σ ≤ κ,

2. α(σ) ≤ 2 for κ ≤ σ ≤ 1.

Then

ψ(x+ h) − ψ(x) ∼ h

as x → ∞, provided

h(x) ≥ x1−α−1
0 logb x,

where b is any fixed number satisfying

b >
η + 2

α0(1 − κ) .

Proof. To prove this, we need to reconsider the sum in (65). As before, we split the sum at σ = κ,∑
|γ|≤T

C(ρ) =
∑

|γ|≤T
β<κ

C(ρ) +
∑

|γ|≤T
β≥κ

C(ρ),(77)

but we now assume that T > x/h, as we may in light of (67). Let us begin by considering the
sum over the zeros ρ whose real parts are at least κ . Since we have two bounds for C(ρ), namely
C(ρ) ≪ hxβ−1 and C(ρ) ≪ xβ/|γ|, it is convenient to further split these zeros into two classes,
according to if |γ| ≤ x/h or |γ| > x/h. This allows us to use the best bound in each case, as follows.∑

|γ|≤T
β≥κ

C(ρ) ≪ h

x

∑
|γ|≤x/h

β≥κ

xβ +
∑

x/h<|γ|≤T
β≥κ

xβ

|γ|

= h

x

∑
|γ|≤x/h

β≥κ

(xβ − xκ) + hxκ

x

∑
|γ|≤x/h

β≥κ

1 +
∑

x/h<|γ|≤T
β≥κ

xβ
( 1

|γ|
− 1
T

)
+ 1
T

∑
x/h<|γ|≤T

β≥κ

xβ .(78)

25For any ε, δ > 0, we have N(σ, T ) = O(T ε) uniformly for 3
4 + δ ≤ σ ≤ 1 as T → ∞, assuming the Lindelöf

hypothesis.
26See [21], Theorem 12.8, p. 316, or [20]. Beware that there is a typo in lines 12 and 13 on p. 317 of [21], where two

instances of ‘T ’ should be replaced by ‘t’.
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In the second line we have ‘recentred’ the summation, since this allows for easy bounding by comparing
with appropriate integrals. We now bound these four terms, starting with the second and the fourth.27

hxκ

x

∑
|γ|≤x/h

β≥κ

1 = 2xκN(κ, x
h )( x

h )−1 ≪ max
κ≤σ≤1

(
xσ max

x/h≤t≤T
(N(σ, t)t−1)

)
.(79)

In a similar manner, the computation (72) gives us

1
T

∑
x/h<|γ|≤T

β≥κ

xβ ≤ x

T

∑
|γ|≤T
β≥κ

xβ−1 = 2xκN(κ, T )T−1 + 2 log(x)
ˆ 1

κ

xσN(σ, T )T−1dσ

≪ log(x) max
κ≤σ≤1

(
xσ max

x/h≤t≤T
(N(σ, t)t−1)

)
.(80)

To handle the first and third term of (78), let 1S denote the indicator function for the set S. Then
we have, for 0 ≤ a < b,∑

a<|γ|≤b
β≥κ

(xβ − xκ) = log(x)
∑

a<|γ|≤b
β≥κ

ˆ β

κ

xσdσ = log(x)
∑

a<|γ|≤b
β≥κ

ˆ 1

κ

xσ1[κ,β](σ)dσ

= log(x)
ˆ 1

κ

xσ
∑

a<|γ|≤b
β≥κ

1[κ,β](σ)dσ = log(x)
ˆ 1

κ

xσ
∑

a<|γ|≤b
β≥σ

1 dσ

= 2 log(x)
ˆ 1

κ

xσN(σ, a, b)dσ,(81)

where N(σ, a, b) denotes N(σ, b) −N(σ, a). Using this with a = 0 and b = x/h gives us the first term
of (78) as

h

x

∑
|γ|≤x/h

β≥κ

(xβ − xκ) = 2 log(x)h
x

ˆ 1

κ

xσN(σ, x
h )dσ = 2 log(x)

ˆ 1

κ

xσN(σ, x
h )( x

h )−1dσ

≪ log(x) max
κ≤σ≤1

(
xσ max

x/h≤t≤T
(N(σ, t)t−1)

)
.(82)

To bound the third term of (78), we again compare with an integral.∑
x/h<|γ|≤T

β≥κ

xβ
( 1

|γ|
− 1
T

)
=

∑
x/h<|γ|≤T

β≥κ

xβ

ˆ T

|γ|

dt
t2

=
∑

x/h<|γ|≤T
β≥κ

xβ

ˆ T

x/h

1[|γ|,T ](t)
t2

dt

=
ˆ T

x/h

1
t2

∑
x/h<|γ|≤T

β≥κ

xβ1[|γ|,T ](t)dt =
ˆ T

x/h

1
t2

∑
x/h<|γ|≤t

β≥κ

xβdt

=
ˆ T

x/h

1
t2

∑
x/h<|γ|≤t

β≥κ

(
xβ − xκ)dt+

ˆ T

x/h

1
t2

∑
x/h<|γ|≤t

β≥κ

xκdt

= 2 log(x)
ˆ T

x/h

1
t2

ˆ 1

κ

xσN(σ, x
h , t)dσdt+ 2

ˆ T

x/h

xκ

t2
N(κ, x

h , t)dt,(83)

27The double maximum exists because N(σ, t)t−1 for σ fixed is piecewise nonincreasing and upper semicontinuous
function of t, and so is xσ max

x/h≤t≤T
(N(σ, t)t−1) as a function of 1 − σ.

37



4 PRIMES IN SHORT INTERVALS: WEAK HYPOTHESES

where we used (81) with a = x/h and b = t in the last line. Here,
ˆ T

x/h

1
t2

ˆ 1

κ

xσN(σ, x
h , t)dσdt =

ˆ T

x/h

1
t2

ˆ 1

κ

xσ
(
N(σ, t) −N(σ, x

h )
)
dσdt

=
ˆ T

x/h

1
t

ˆ 1

κ

xσN(σ, t)
t

dσdt−
ˆ T

x/h

1
t2

ˆ 1

κ

xσN(σ, x
h )dσdt

≤
(
log(T ) − log

(
x
h

))
max

κ≤σ≤1

(
xσ max

x/h≤t≤T
(N(σ, t)t−1)

)
−

(nonnegative
quantity

)
≪ log(x) max

κ≤σ≤1

(
xσ max

x/h≤t≤T
(N(σ, t)t−1)

)
,(84)

since x/h < T ≤ x. Moreover,
ˆ T

x/h

xκ

t2
N(κ, x

h , t)dt =
ˆ T

x/h

xκ

t2
(
N(κ, t) −N(κ, x

h )
)
dt

=
ˆ T

x/h

1
t
xκN(κ, t)t−1dt− xκN(κ, x

h )
ˆ T

x/h

dt
t2

≤
(
log(T ) − log

(
x
h

))
xκ max

x/h≤t≤T
(N(κ, t)t−1) −

(nonnegative
quantity

)
≪ log(x) max

κ≤σ≤1

(
xσ max

x/h≤t≤T
(N(σ, t)t−1)

)
.(85)

Equations (78) through (85) now give us the collective bound∑
|γ|≤T
β≥κ

C(ρ) ≪ log2(x) max
κ≤σ≤1

(
xσ max

x/h≤t≤T
(N(σ, t)t−1)

)
,(86)

where the log2(x) comes from equations (83) and (84).
For the term of (77) taken over the roots with β < κ, we can consider the roots to the left or right

of the critical line separately, so that∑
|γ|≤T
β<κ

C(ρ) =
∑

|γ|≤T
β≤1/2

C(ρ) +
∑

|γ|≤T
1/2<β<κ

C(ρ).(87)

Using (69), we trivially have∑
|γ|≤T
β≤1/2

C(ρ) ≪ h√
x
N(T ) ≪ hT log T√

x
≪ hT log x√

x
= o(h)(88)

since T ≤ x, and provided that

T = o(
√
x(log x)−1).(89)

And, in the same way that (86) was deduced, we get∑
|γ|≤T

1/2<β<κ

C(ρ) ≪ log2(x) max
1/2≤σ≤κ

(
xσ max

x/h≤t≤T
(N(σ, t)t−1)

)
.(90)

It is time to concretise the bounds obtained so far, and for this we use the Koborov-Vinogradov
zero-free region. Let therefore

L(t) = 1 −A(log t)−2/3(log log t)−1/3

38



4 PRIMES IN SHORT INTERVALS: WEAK HYPOTHESES

denote the function to the right in (22), and put

h = xa logb(x) and T = xc logd(x), so
x/h = x1−a log−b(x) and hT = xa+c logb+d(x),

for constants a, b, c, d, that should be chosen such that h is minimised. The restrictions imposed on h
and T as x → ∞ give us the additional information that

h = o(x) =⇒ a < 1 ∨ (a = 1 ∧ b < 0),(i)
limx→∞ h(x) = ∞ =⇒ a > 0 ∨ (a = 0 ∧ b > 0),(ii)

T ≤ x =⇒ c < 1 ∨ (c = 1 ∧ d ≤ 0),(iii)
T ≥ 1 =⇒ c > 0 ∨ (c = 0 ∧ d ≥ 0),(iv)

T = o(
√
x(log x)−1) =⇒ c < 1

2 ∨ (c = 1
2 ∧ d < −1),(v)

x log2 x = o(hT ) =⇒ a+ c > 1 ∨ (a+ c = 1 ∧ b+ d > 2).(vi)

The first two give 0 ≤ a ≤ 1, but the case a = 1 can be ignored, since it gives a much larger h than
we desire. We can also ignore a = 0, since by Maier’s theorem this choice of h is too small. Thus,
0 < a < 1. The fourth and fifth give 0 ≤ c ≤ 1

2 , but we will see later that we need in fact c < 1
2 . The

sixth gives a+ c ≥ 1, or in other words a ≥ 1 − c. Since we want to minimize h, we should take a as
small as possible. For a given c, this achieved by choosing a = 1 − c, and we better choose c > 0. But
then a+ c = 1, so the sixth implication forces b+ d > 2. We can handle this by demanding b+ d = 3,
i.e., d = 3 − b, and assume that b > 0. In summary, we have

h = x1−c logb(x), T = xc log3−b(x), x/h = xc log−b(x)

for 0 < c ≤ 1
2 and b > 0.

Equation (86) together with the assumptions on N(σ, T ) for σ ≥ κ, yield∑
|γ|≤T
β≥κ

C(ρ) ≪ log2(x) max
κ≤σ≤1

(
xσ max

x/h≤t≤T
(N(σ, t)t−1)

)
≪ log2(x) max

κ≤σ≤L(x)

(
xσ max

x/h≤t≤T
(tα(σ)(1−σ)−1 logη t)

)
≤ (log x)2+η max

κ≤σ≤L(x)

(
xσ max

x/h≤t≤T
(tα(σ)(1−σ)−1)

)
= (log x)2+η max

κ≤σ≤L(x)
(xσ(x/h)α(σ)(1−σ)−1)

= h(log x)2+η max
κ≤σ≤L(x)

(
x · (x/h)−α(σ))σ−1

= h(log x)2+η max
κ≤σ≤L(x)

(
x · (xc log−b(x))−α(σ))σ−1

≤ h(log x)2+η max
κ≤σ≤L(x)

(
x · (xc log−b(x))−2)σ−1

= h(log x)2+η max
κ≤σ≤L(x)

(
x(1−2c)(σ−1)(log x)2b(σ−1))

≤ h(log x)2+η max
κ≤σ≤L(x)

x(1−2c)(σ−1)

= h(log x)2+η exp
(

−A(1 − 2c)(log x)1/3(log log x)−1/3
)

= o(h)

as x → ∞. In the third line we used t ≤ x to pull out the logarithm, and in the fourth line we used
that α(σ)(1 − σ) ≤ 1, so that the inner maximum is attained at t = x/h. The seventh line used that
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α(σ) ≤ 2 for κ ≤ σ ≤ 1, together with the fact that the outer exponent σ− 1 is negative. In the ninth
line we used that the exponent 2b(σ − 1) of the logarithm is negative. Finally, in the tenth line we
assumed that c < 1

2 , so that (1 − 2c)(σ− 1) is an increasing function of σ, and the maximum happens
at σ = L(x).

In a similar manner, Equations (87) through (90) yield∑
|γ|≤T
β<κ

C(ρ) ≪ hx−1/2T log(x) + log2(x) max
1/2≤σ≤κ

(
xσ max

x/h≤t≤T
(N(σ, t)t−1)

)
≪ o(h) + (log x)2+η max

1/2≤σ≤κ

(
xσ(x/h)α(σ)(1−σ)−1)

= o(h) + (log x)2+η max
1/2≤σ≤κ

(
xσ+cα(σ)(1−σ)−c(log x)−bα(σ)(1−σ)+b

)
= o(h) + x−c(log x)2+η+b max

1/2≤σ≤κ

(
xσ+cα(σ)(1−σ)(log x)−bα(σ)(1−σ))

= o(h) + x−c(log x)2+η+b max
1/2≤σ≤κ

(
xσ(xc log−b(x))α(σ)(1−σ))

≤ o(h) + x−c(log x)2+η+b max
1/2≤σ≤κ

(
xσ(xc log−b(x))α0(1−σ)),

where the last line used that α(σ) ≤ α0 and 1 − σ ≥ 0 for 1
2 ≤ σ ≤ κ. If we suppose that c ≤ α−1

0 ,
then this last maximum must occur at σ = κ, because then the combined exponent σ+ cα0(1 − σ) of
x is nondecreasing, and the combined exponent −bα0(1 − σ) of log x is increasing. Therefore,∑

|γ|≤T
β<κ

C(ρ) ≪ o(h) + x−c(log x)2+η+bxκ(xc log−b(x))α0(1−κ)

= o(h) + hxκ+cα0(1−κ)−1(log x)2+η−bα0(1−κ).

The exponent κ+ cα0(1 − κ) − 1 is nonpositive when c ≤ α−1
0 , so that the power of x is bounded. To

make the entire expression o(h) it therefore suffices to choose b such that the exponentiated logarithm
vanishes. That is, such that

b >
2 + η

α0(1 − κ) .

This completes the proof of Ivić’s theorem.

As an application, it is known by the works of M. Julita [23] that, for any ε > 0, we have
N(σ, T ) = O

(
Tα(σ)(1−σ) logη T

)
uniformly for 11

14 + ε ≤ σ ≤ 1, where η ≥ 1 and α(σ) ≤ 2.28 If we use
this together with the estimate (75) in Theorem 4.8 (with α0 = 12

5 , η = 9, κ = 11
14 + ε, 0 < ε < 10−3),

then we obtain

ψ(x+ h) − ψ(x) ∼ h

for h ≥ x
7

12 log22 x as x → ∞.
At this point it is clear that the methods we have employed so far are close to their breaking point,

with a fundamental barrier for h in the vicinity of
√
x. We may therefore ask how strong a result that

one can possibly hope for. This is discussed in the next section.

28See also [21], §11.7.
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5 Primes in short intervals: the Riemann hypothesis
In the present section, we are going to see what information we can squeeze out about primes in
short intervals by assuming the Riemann hypothesis. This will ultimately require a reconsideration
of the explicit formula for ψ(x), in which the error term (introduced by replacing

∑
ρ with

∑
|γ|≤T )

is reduced by a logarithmic factor.
As a point of reference, the estimates further down may be compared to the classical results due

to Littlewood and von Koch:

Theorem 5.1. On the one hand, we have

ψ(x) − x = O(xΘ log2 x)

as x → ∞, where Θ denotes the supremum of the real parts of the nontrivial zeros of ζ(s). On the
other hand,

ψ(x) − x = Ω±(
√
x log log log x)

as x → ∞. Here, f(x) = Ω±(g(x)) means that there exists a constant C > 0 and sequences (xn)∞
n=1

and (x′
n)∞

n=1 tending to infinity, such that

f(xn) > Cg(xn) and f(x′
n) < −Cg(x′

n)

for all n.

5.1 Prime number theorem under the Riemann hypothesis
A convenience of Theorem 5.1, is that it gives at once

Corollary 5.2. If the Riemann hypothesis is true and
√
x log2 x = o(h), then ψ(x+ h) −ψ(x) ∼ h as

x → ∞.

Proof. If the Riemann hypothesis is true, then we have ψ(x) − x = O(
√
x log2 x) by Theorem 5.1, so

ψ(x+ h) − ψ(x) − h ≪
√
x+ h log2(x+ h) ≪ max(

√
x log2 x,

√
h log2 h) = o(h).

We are next going to show that the conclusion of Corollary 5.2 can be improved by a logarithmic
factor of x. This was first made possible by the work of Cramér [5, 6], although he did not state this
result explicitly. Cramér’s approach was to investigate the function V (z) =

∑
γ>0 eρz, for z in the

upper half-plane, and, using estimates for this function, he further derived several estimates pertaining
to ψ(x)−x, as well as Cramér’s theorem (discussed in the next section). For example, he showed that

ψ(x) = x−
∑

ρ

xρ

ρ
e−|γ|/x3

+O(log2 x)

as x → ∞, where the convergence of the sum on the right has been accelerated using so-called
convegence factors.

This is as much as we will dwell on Cramér’s results, and that is simply because shorter proofs of
these results have been discovered later. Our investigation follows Goldston’s article [13]. In short,
Goldston’s contribution was to enlarge the range of T ’s for which the estimate

ψ(x) = x−
∑

|γ|≤T

xρ

ρ
+O(

√
x log x)

holds, from T ≥
√
x to T ≥

√
x(log x)−1. This will be our next goal as well, and we begin with a

lemma due to Littlewood.

41
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Lemma 5.3 (Littlewood). If z and w are complex numbers with |z| ≤ 1
2 and |zw| ≤ 2, then

∣∣(1 + z)w − 1 − wz
∣∣ ≤ 13

5 |w|(|w| + 1)|z|2.

Proof. For simplicity of notation, let r = |z| and µ = |w|. The claim is trivially true if zw = 0, so
suppose that r > 0 and µ > 0. By the generalized binomial theorem, we have

|(1 + z)w − 1 − wz| =
∣∣∣ ∞∑

n=2

w(w − 1) · · · (w − n+ 1)
n! zn

∣∣∣ ≤
∞∑

n=2

µ(µ+ 1) · · · (µ+ n− 1)
n! rn

= (1 − r)−µ − 1 − rµ,

so that

|(1 + z)w − 1 − wz|
|w|(|w| + 1)|z|2 ≤

∞∑
n=2

µ(µ+ 1) · · · (µ+ n− 1)
µ(µ+ 1)n! rn−2 = (1 − r)−µ − 1 − rµ

µ(µ+ 1)r2 .

If r is fixed, then this upper bound is an increasing function of µ, since the coefficients in front of the
rn−2 in the second sum are increasing functions of µ if n ≥ 3 (and constant if n = 2). Its maximal
value is therefore attained when µ = 2/r (where |zw| = 2), implying

|(1 + z)w − 1 − wz|
|w|(|w| + 1)|z|2 ≤ (1 − r)−2/r − 3

2(r + 2) .

We claim that the function on the right increases strictly with r for 0 < r < 1/2 (this is in fact true
for all r < 1, if we take care of the removable singularity at r = −2). Indeed, its derivative is

d
dr

[
(1 − r)−2/r − 3

2(r + 2)

]
=

2(r + 2)(1 − r)−2/r
(
2r−2 log(1 − r) + 2r−1(1 − r)−1)

− 2
(
(1 − r)−2/r − 3

)
22(r + 2)2

=
(r + 2)

(
2r−2 log(1 − r) + 2r−1(1 − r)−1)

− 1
2(r + 2)2(1 − r)2/r

+ 3
2(r + 2)2

=
(r + 2)(1 + (2 − 2

3 )r + (2 − 2
4 )r2 + (2 − 2

5 )r3 + · · · ) − 1
2(r + 2)2(1 − r)2/r

+ 3
2(r + 2)2

> 0,

where we used Taylor expansions log(1 − r) = −
∑∞

n=1
rn

n and (1 − r)−1 =
∑∞

n=0 r
n in the second-to-

last line. Thus, the maximum in our case must be attained where r = |z| = 1/2, finally yielding

|(1 + z)w − 1 − wz|
|w|(|w| + 1)|z|2 ≤

(1 − 1
2 )− 2

1/2 − 3
2( 1

2 + 2)
= 13

5 ,

as desired.

We are now ready to derive a stronger version of the explicit formula for ψ(x).

Theorem 5.4 (Goldston). If the Riemann hypothesis is true, then there exists a constant T0 > 1,
such that ∣∣∣ψ(x) − x+

∑
|γ|≤T

xρ

ρ

∣∣∣ < x

2T + 2
√
x log T(91)

whenever x ≥ 3 and T ≥ T0.
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Proof. Let ψ1(x) denote the function from Proposition 3.8. Since ψ(x) is a nondecreasing function,
we have

ψ1(x− ℓ) − ψ1(x)
−ℓ

= 1
ℓ

ˆ x

x−ℓ

ψ(t)dt ≤ ψ(x) ≤ 1
ℓ

ˆ x+ℓ

x

ψ(t)dt = ψ1(x+ ℓ) − ψ1(x)
ℓ

(92)

for ℓ > 0, and our first objective is to estimate the difference quotients on the left and right. Assume
that x ≥ 3, and that ℓ satisfies 1 ≤ ℓ ≤ x/2. Then x± ℓ > 1, and the explicit formula (58) yields

ψ1(x± ℓ) − ψ1(x)
±ℓ

= x± ℓ

2 −
∑

ρ

(x± ℓ)ρ+1 − xρ+1

±ρ(ρ+ 1)ℓ − ζ ′

ζ
(0) −

∞∑
r=1

(x± ℓ)1−2r − x1−2r

±2r(2r − 1)ℓ .

If we denote the sum of the last two terms on the right by K = K(x, ℓ), then it is the case that
|K| < 3. Indeed,

ζ ′

ζ
(0) = log(2π) = 1.8378 . . . < 2,

and, by the triangle inequality,∣∣∣ ∞∑
r=1

(x± ℓ)1−2r − x1−2r

±2r(2r − 1)ℓ

∣∣∣ ≤
∞∑

r=1

(x− ℓ)1−2r + x1−2r

2r(2r − 1) ≤
∞∑

r=1

( x
2 )1−2r + x1−2r

2r(2r − 1)

≤
∞∑

r=1

( 3
2 )1−2r + 31−2r

2r(2r − 1) ≤
∞∑

r=1

1
2r(2r − 1)

= log 2 = 0.6931 . . . < 1,

since ℓ ≤ x/2, and since each exponent 1 − 2r is negative.
We will handle the sum over the ρ’s by splitting the sum at height T . The sum over the large ρ’s

can then be bounded as follows, using Corollary 2.4,∣∣∣∣ ∑
|γ|>T

(x+ ℓ)ρ+1 − xρ+1

±ρ(ρ+ 1)ℓ

∣∣∣∣ ≤ 2(x+ ℓ) 3
2 + x

3
2

ℓ

∑
γ>T

1
γ2 ≤ 2

(x+ x
2 ) 3

2 + x
3
2

ℓ

∑
γ>T

1
γ2

= 2 ·
((3

2

) 3
2 + 1

)x 3
2

ℓ

( log T
2πT +O

( 1
T

))
≤ 24

25 · x
3
2 log T
ℓT

whenever T ≥ T1, where T1 > 1 is an absolute constant.
For the small ρ’s, we write∑

|γ|≤T

(x± ℓ)ρ+1 − xρ+1

±ρ(ρ+ 1)ℓ =
∑

|γ|≤T

xρ

ρ
+

∑
|γ|≤T

vρ,

with

vρ = (x± ℓ)ρ+1 − xρ+1 ∓ ℓ(ρ+ 1)xρ

±ρ(ρ+ 1)ℓ = xρ+1 ·
(1 ± ℓ

x )ρ+1 − 1 ∓ (ρ+ 1) ℓ
x

±ρ(ρ+ 1)ℓ .

Suppose that T ≤ x
ℓ . Then the numerator of the last factor on the right satisfies the assumptions of

the lemma with z = ± ℓ
x and w = ρ+ 1. Indeed |z| ≤ x/2

x = 1/2, and

|zw| =
∣∣∣ ℓ
x

(ρ+ 1)
∣∣∣ ≤ ℓ

x
(|ρ| + 1) < ℓ

x

(
|γ| + 3

2

)
≤ ℓ

x

(
T + 3

2

)
≤ ℓ

x
· x
ℓ

+ 3ℓ
2x ≤ 1 + 3

4 < 2.
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As such, we get

|vρ| ≤ x
3
2 ·

13
5 |ρ+ 1|(|ρ+ 1| + 1) ℓ2

x2

|ρ||ρ+ 1|ℓ
= 13

2
ℓ√
x

|ρ+ 1| + 1
|ρ|

≤ 13
2

ℓ√
x

|ρ| + 2
|ρ|

= 13
2

ℓ√
x

(
1 + 2

|ρ|

)
<

13
2

ℓ√
x

(
1 + 2

|γ|

)
<

13
2

ℓ√
x

(
1 + 2

14

)
< 3 ℓ√

x
.

This gives further ∣∣∣ ∑
|γ|≤T

vρ

∣∣∣ ≤ 6 ℓ√
x
N(T ) = 6 ℓ√

x

(T log T
2π +O(T )

)
<
ℓT log T√

x

whenever T2 ≤ T ≤ x/ℓ, with T2 > 1 another absolute constant.
Let us collect the results obtained so far. If we let g = O<1(f) mean that |g| < |f |, then we have

ψ1(x± ℓ) − ψ1(x)
±ℓ

= x± ℓ

2 −
∑

|γ|≤T

xρ

ρ
+O<1

(x 3
2 log T
ℓT

)
+O<1

(ℓT log T√
x

)
,

if x ≥ 3, 1 ≤ ℓ ≤ x/2 and T3 ≤ T ≤ x/ℓ, where T3 > 1 is yet another absolute constant. The
term K(x, ℓ) was absorbed into the first error term, possibly subject to an increase in the smallest
permitted value of T , because∣∣∣24

25 · x
3
2 log T
ℓT

+K
∣∣∣ < 24

25 · x
3
2 log T
ℓT

+ 3 = x
3
2 log T
ℓT

(24
25 + 3 ℓT

x3/2 log T

)
≤ x

3
2 log T
ℓT

(24
25 + 3 1√

x log T

)
≤ x

3
2 log T
ℓT

(24
25 + 1√

3 log T

)
<
x

3
2 log T
ℓT

if, say, T ≥ exp( 25√
3 ) + 1 (in particular, we may take T3 = max(exp( 25√

3 ) + 1, T1, T2)).
If we now use (92), then we obtain∣∣∣∣ψ(x) − x+

∑
|γ|≤T

xρ

ρ

∣∣∣∣ < ℓ

2 + x
3
2 log T
ℓT

+ ℓT log T√
x

= ℓ

2 +
√
x log T

( x

ℓT
+ ℓT

x

)
.

under the same restrictions. We see that the contribution of the two last terms is minimal when
ℓT = x, in which case ∣∣∣∣ψ(x) − x+

∑
|γ|≤T

xρ

ρ

∣∣∣∣ < x

2T + 2
√
x log T.(93)

The dependence on the parameter ℓ may now be obliterated. Indeed, our investigation has led us to
the assumptions x ≥ 3, 1 ≤ ℓ ≤ x/2 and T3 ≤ T = x/ℓ, which implies that (93) holds independently
of ℓ provided only that the inequality T3 ≤ T ≤ x is satisfied.

Finally, if T ≥ x ≥ 3, then the truncated explicit formula presented in Theorem 3.7 has an error
term which is less than or equal to an absolute constant times

x log2(xT )
T

+ log x = x log2 x

T
+ 2x log x log T

T
+ x log2 T

T
+ log x

= 2
√
x log T

(√
x log2 x

2T log T +
√
x log x
T

+
√
x log T
2T + log x

2
√
x log T

)
= (2

√
x log T )O

(
(log T )−1)

,
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where the implied constant in the last line is absolute, as can be seen by substituting the estimates
T ≥ x and T ≥

√
xT across the denominators. Thus, the estimate (93) is seen to hold also if both

T ≥ x ≥ 3 and T ≥ T4 are true, with T4 > 3 an absolute constant. It therefore holds for all x ≥ 3
and T ≥ max(T3, T4).

Remark 5.5. The difference quotients used in the estimate (92) can be thought of as weighted sums
of the form

∑∞
n=1 w(n)Λ(n). Indeed, using the identity ψ1(x) =

∑
n≤x(x− n)Λ(n), we see that

ψ1(x± ℓ) − ψ1(x)
±ℓ

=
∞∑

n=1
w±(n)Λ(n),

where

w+(t) =


1 if 1 ≤ t ≤ x,
(x+ℓ)−t

ℓ if x < t ≤ x+ ℓ,

0 otherwise,
and w−(t) =


1 if 1 ≤ t ≤ x− ℓ,
x−t

ℓ if x− ℓ < t ≤ x,

0 otherwise.

These quotients therefore correspond to over- and under-estimates of ψ(x) using piecewise linear
weight functions.

Corollary 5.6. Assume that the Riemann hypothesis is true. Then

ψ(x) = x−
∑

|γ|≤T

xρ

ρ
+O(

√
x log x)(94)

uniformly for T ≥
√
x(log x)−1 as x → ∞. Moreover,∣∣∣ψ(x) − x+

∑
|γ|≤

√
x(log x)−1

xρ

ρ

∣∣∣ < 3
2

√
x log x(95)

for all sufficiently large x.

Proof. By Goldston’s theorem, 5.4, if
√
x(log x)−1 ≤ T ≤ x and x is sufficiently large, then∣∣∣ψ(x) − x+

∑
|γ|≤T

xρ

ρ

∣∣∣ < x

2
√
x(log x)−1 + 2

√
x log x = 5

2
√
x log x.

As we showed in the proof of Goldston’s theorem, if T ≥ x, then the explicit formula from Theorem
3.7 has error term

(2
√
x log T )O((log T )−1) ≪

√
x = o(

√
x log x),

and so (94) follows. To get (95), we simply substitute T =
√
x(log x)−1 into the estimate (91). This

yields ∣∣∣ψ(x) − x+
∑

|γ|≤
√

x(log x)−1

xρ

ρ

∣∣∣ < x

2
√
x(log x)−1 + 2

√
x log

(√
x(log x)−1)

= 3
2

√
x log(x) − 2

√
x log log x

<
3
2

√
x log x

for all sufficiently large x.
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We also get this corollary, whose first appearance in print was likely in Selberg’s article [31].29

Corollary 5.7. If the Riemann hypothesis is true, then

ψ(x+ h) − ψ(x) ∼ h,

π(x+ h) − π(x) ∼ h

log x,

both hold as x → ∞, provided that h ≤ x and
√
x log x = o(h). The statement is meaningful and true

so long as h = h(x) is defined on a sequence (xn)∞
n=1 tending to infinity, and the bound h ≤ x needs

only hold for all sufficiently large x.

We give two proofs of this fact. The first proof uses Goldston’s theorem, while the second proof
is more direct. They both ultimately rely on the explicit formula for ψ1(x). By virtue of Proposition
4.1, it suffices to prove the first formula.

Proof 1. We apply Goldston’s theorem, assuming that x ≥ 3, x+ h ≥ 3 and T ≥ T0. This gives us∣∣∣ψ(x) − x+
∑

|γ|≤T

xρ

ρ

∣∣∣ < x

2T + 2
√
x log T and

∣∣∣ψ(x+ h) − (x+ h) +
∑

|γ|≤T

(x+ h)ρ

ρ

∣∣∣ < x+ h

2T + 2
√
x+ h log T.

Now suppose that h ≪ x. Then the bounds on the right are both

≪ x

T
+

√
x log T =: f(x, T ).

On one hand, we want to choose T = T (x) such that f(x, T ) is as small as possible. On the other hand,
we want T to be as small as possible, such that the resulting sums Σ|γ|≤T become as small as possible.
For a given x ≥ 3, the minimum of f(x, T ) is attained at T =

√
x, where f(x,

√
x) = 1

2
√
x log x+

√
x

(in particular, there is no way to avoid
√
x log x ≪ f(x, T ) using this strategy). But T can be taken

smaller than this, since a simple inspection shows that f(x, T ) ≪
√
x log x so long as

√
x(log x)−1 ≪ T

and log T ≪ log x. We therefore take T =
√
x(log x)−1, and obtain as a result

ψ(x+ h) − ψ(x) = h−
∑

|γ|≤
√

x(log x)−1

(x+ h)ρ − xρ

ρ
+O(

√
x log x)

as x → ∞.
Under the Riemann hypothesis, we have from (68) and (69),

C(ρ) = (x+ h)ρ − xρ

ρ
≪ min

( h√
x
,

√
x

|γ|

)
,

where the bound h/
√
x is generally better for small values of |γ|, and

√
x/|γ| the best for large |γ|. Let

us try to find the ‘sweet spot’ which balances between these two bounds. We introduce a parameter
1 ≤ λ ≤

√
x(log x)−1, and write∑

|γ|≤
√

x(log x)−1

C(ρ) =
∑

|γ|≤λ

C(ρ) +
∑

λ<|γ|≤
√

x(log x)−1

C(ρ).

29Equation 4, p. 88. See also Footnote 3 on the same page.
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The contribution of the small zeros is then∑
|γ|≤λ

C(ρ) ≪ hN(λ)√
x

≪ hλ log λ√
x

.

This is not o(h) unless λ = o(
√
x(log x)−1). Indeed, if we take λ =

√
x(φ log x)−1, where 1 ≤ φ(x) ≤√

x(log x)−1, then

λ log λ√
x

=
log

(√
x(φ log x)−1)
φ log x = 1

2φ − logφ
φ log x − log log x

φ log x = 1
2φ + o(1),

which vanishes if and only if φ goes to infinity with x.
The contribution of the large zeros is then, according to Corollary 2.4,

∑
λ<|γ|≤

√
x(log x)−1

C(ρ) ≪
√
x

∑
√

x(φ log x)−1<γ≤
√

x(log x)−1

1
γ

=
√
x

(
log2(

√
x(log x)−1)
4π +O

(
log

√
x

log x

)
− log2(

√
x(φ log x)−1)

4π −O
(

log
√
x

φ log x

))
≪

√
x

(( log x
2 − log log x

)2
−

( log x
2 − logφ(x) − log log x

)2
)

+O(
√
x log x)

=
√
x

(
log(x) log(φ) − log2(φ) − 2 log(φ) log(log x)

)
+O(

√
x log x)

≪
√
x log(x) log(φ) +O(

√
x log x)

We therefore have

ψ(x+ h) − ψ(x) = h+ o(h) +O
(√
x log(x) log(φ)

)
+O(

√
x log x),

and, if we take h =
√
x log(x)φ(x),

ψ(x+ h) − ψ(x) ∼ h.

The second proof follows an outline by Montgomery and Vaughan [27].30

Proof 2. The estimation of ψ(x + h) − ψ(x) =
∑

x<n≤x+h Λ(n) may be more forgiving if the sum is
not so brutally started at n = x and ended at n = x+ h (compare this with Remark 5.5). That is, it
may be easier to estimate if the sum is ‘smoothed’ somewhat.

Let 2 ≤ ∆ ≤ h ≤ x, and define the piecewise linear weight function w by

w(t) = w(t, x, h,∆) =



0 if t ≤ x− ∆,
t−(x−∆)

∆ if x− ∆ ≤ t ≤ x,

1 if x ≤ t ≤ x+ h,
(x+h+∆)−t

∆ if x+ h ≤ t ≤ x+ h+ ∆,
0 if t ≥ x+ h+ ∆.

30Exercise 2, Section 13.1.1.
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Using the formula ψ1(λ) =
∑

n≤λ Λ(n)(λ − n), together with some algebra, we can write the von
Mangoldt function weighted by w as follows:

∞∑
n=1

Λ(n)w(n) =
∑

x−∆<n≤x

Λ(n)n− x+ ∆
∆ +

∑
x<n≤x+h

Λ(n) +
∑

x+h<n≤x+h+∆

Λ(n)x+ h+ ∆ − n

∆

= 1
∆

( ∑
x−∆<n≤x

Λ(n)(n− x+ ∆) +
∑

x<n≤x+h

Λ(n)∆ +
∑

x+h<n≤x+h+∆

Λ(n)(x+ h+ ∆ − n)
)

= 1
∆

(
ψ1(x+ h+ ∆) +

∑
x−∆<n≤x

Λ(n)(n− x+ ∆) +
∑

x<n≤x+h

Λ(n)∆ −
∑

n≤x+h

Λ(n)(x+ h+ ∆ − n)
)

= 1
∆

(
ψ1(x+ h+ ∆) − ψ1(x+ h) +

∑
x−∆<n≤x

Λ(n)(n− x+ ∆) −
∑
n≤x

Λ(n)∆
)

= 1
∆

(
ψ1(x+ h+ ∆) − ψ1(x+ h) −

∑
x−∆<n≤x

Λ(n)(x− n) −
∑

n≤x−∆

Λ(n)∆
)

= 1
∆

(
ψ1(x+ h+ ∆) − ψ1(x+ h) − ψ1(x) +

∑
n≤x−∆

Λ(n)(x− ∆ − n)
)

= ψ1(x+ h+ ∆) − ψ1(x+ h) − ψ1(x) + ψ1(x− ∆)
∆ .

But if we use the explicit formula for ψ1 on this last expression, then we are left with

h+ ∆ − 1
∆

∑
ρ

S(ρ) +O
( 1
x∆

)
,

assuming x− ∆ ≥ 1 and ∆ = o(x), where

S(ρ) = (x+ h+ ∆)ρ+1 − (x+ h)ρ+1 − xρ+1 + (x− ∆)ρ+1

ρ(ρ+ 1) .

We may bound S(ρ) in three different ways as follows. First,

S(ρ) =
ˆ x+h+∆

x−∆
∆w(t)tρ−1dt ≪ ∆ sup

t∈R
w(t)

(
(x+ h+ ∆) − (x− ∆)

)
(x− ∆)− 1

2 ≪ h∆√
x
.

Second,

|S(ρ)| ≤ 1
|γ|

(∣∣∣ (x+ h+ ∆)ρ+1 − (x+ h)ρ+1

ρ+ 1

∣∣∣ +
∣∣∣xρ+1 − (x− ∆)ρ+1

ρ+ 1

∣∣∣)
= 1

|γ|

(∣∣∣ˆ x+h+∆

x+h

tρdt
∣∣∣ +

∣∣∣ ˆ x

x−∆
tρdt

∣∣∣) ≤ ∆
|γ|

(
√
x+ h+ ∆ +

√
x)

≪ ∆
√
x

|γ|
.

Third, we have, by estimating trivially,

S(ρ) ≪ x
3
2

γ2 .
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Comparing these bounds, we find that the best one for different sizes of |γ| can be summarised as

S(ρ) ≪



h∆√
x

if |γ| ≤ x/h,

∆
√
x

|γ|
if x/h < |γ| ≤ x/∆,

x3/2

γ2 if |γ| > x/∆.

Applying these to bound 1
∆

∑
ρ S(ρ), we get

1
∆

∑
|γ|≤x/h

S(ρ) ≪ 1
∆ · h∆√

x
N

(x
h

)
≪ h√

x
· x
h

log x
h

=
√
x log x

h
≪

√
x log x,

1
∆

∑
|γ|>x/∆

S(ρ) ≪ x
3
2

∆
∑

γ>x/∆

1
γ2 ≪ x

3
2

∆ ·
log x

∆
x
∆

=
√
x log x

∆ ≪
√
x log x,

and
1
∆

∑
x/h<|γ|≤x/∆

S(ρ) ≪ 1
∆ · ∆

√
x

∑
x/h<γ≤x/∆

1
γ

=
√
x

( log2( x
∆ )

4π +O(log x

∆) −
log2( x

h )
4π −O(log x

h
)
)

≪
√
x log

(
x2

∆h

)
log

(
h

∆

)
+O(

√
x log x)

≪
√
x log(x) log

(
2h
∆

)
,

where the factor 2 has been included in the numerator to absorb the O(
√
x log x). Putting this

together, we get
∞∑

n=1
Λ(n)w(n, x, h,∆) = h+ ∆ +O

(√
x(log x) log

(2h
∆

))
,

where the dependence of w on all the parameters has been made explicit again. In particular,
∞∑

n=1
Λ(n)w(n, x+ ∆, h− 2∆,∆) = (h− 2∆) + ∆ +O

(√
x+ ∆ log(x+ ∆) log

(2(h− 2∆)
∆

))
= h− ∆ +O

(√
x(log x) log

(2h
∆

))
so long as ∆ ≤ h/3.

The point is that, since ψ(x+ h) − ψ(x) =
∑

x<n≤x+h Λ(n), we have

∞∑
n=1

Λ(n)w(n, x+ ∆, h− 2∆,∆) ≤ ψ(x+ h) − ψ(x) ≤
∞∑

n=1
Λ(n)w(n, x, h,∆)

by construction, and hence

ψ(x+ h) − ψ(x) = h+O(∆) +O
(√

x(log x) log
(2h

∆

))
.
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Taking ∆ =
√
x log x, this implies in particular

ψ(x+ h) − ψ(x) = h+O
(√

x(log x) log
( 2h√

x log x

))
uniformly for 3

√
x log x ≤ h ≤ x, and

ψ(x+ h) − ψ(x) ∼ h

for h =
√
x log(x)f(x); provided f goes to infinity with x in such a way that 3 ≤ f ≤

√
x(log x)−1.

5.2 Cramér’s theorem
The results of the preceding section are interesting by themselves, but what do they have to say when
it comes to prime gaps? Well, using Proposition 4.2, we get

pn+1 − pn ≤ √
pn log2(pn)f(pn) and

pn+1 − pn ≤ √
pn log(pn)f(pn)

for all sufficiently large n, from Corollaries 5.2 and 5.7, respectively, where f is any function that
goes to infinity with x. It is in fact possible to remove the appearance of the annoying function f
altogether, and this, Cramér was the first to put in print. We follow a simpler proof.31

Theorem 5.8 (Cramér, 1920). Suppose that the Riemann hypothesis is true. Then

pn+1 − pn = O(√pn log pn)

as n → ∞.

Proof. Let 0 < ε < 1
2 be fixed, and h a parameter depending on x, such that xε < h < x1−ε whenever

x ≥ 3. We will consider the moving interval I(x, 2h) = (x, x+ 2h] as x → ∞, in two different ways.
Suppose first that I(x, 2h) does not contain any primes. Then neither does the subinterval I(t, h) =

(t, t+ h] for x ≤ t ≤ x+ h, which by necessity implies (with N = ⌊log2(t+ h)⌋):

ψ(t+ h) − ψ(t) =
∑

t<pm≤t+h
m≥2

log p =
N∑

m=2

∑
t1/m<p≤(t+h)1/m

log p

≤
N∑

m=2

log(t+ h)
m

(
π((t+ h)1/m) − π(t1/m)

)
= log(t+ h)

N∑
m=2

π(t1/m + (t+ h)1/m − t1/m) − π(t1/m)
m

≤ log(t+ h)
N∑

m=2

(t+ h)1/m − t1/m + 1
m

≤ log(t+ h)
N∑

m=2

t1/m((1 + h
t )1/m − 1) + 1
m

≤ log(t+ h)
N∑

m=2

t1/m · h
t · 1

m + 1
m

≤ h log(t+ h)√
t

∞∑
m=2

1
m2 + log(t+ h)

N∑
m=2

1
m

= Oε

(h log x√
x

+ log x log log x
)
,

31Ivić [21], Theorem 12.10. This proof was outlined by Ingham [19]: see Footnote §, p. 256.
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where the implied constant depends only on ε (this fact is crucial for the proof). In particular, we
conclude from this that

ˆ x+h

x

ψ(t+ h) − ψ(t)dt = Oε

(h2 log x√
x

+ h log x log log x
)

= o(h2).(96)

We now want to estimate this integral once again by using the explicit formula for ψ( · ).
We recall that

ψ(t) = t−
∑

|γ|≤T

xρ

ρ
+O

( t log2(tT )
T

+ log t
)

uniformly for t ≥ 3 and T ≥ 1, so that

ψ(t+ h) = t+ h−
∑

|γ|≤T

(t+ h)ρ

ρ
+O

( (t+ h) log2 (
(t+ h)T

)
T

+ log(t+ h)
)

uniformly for t+ h ≥ 3 and T ≥ 1. Restricting t again to the interval x ≤ t ≤ x+ h, then t ≪ε x and
t+ h ≪ε x as x → ∞, so that

ψ(t+ h) − ψ(t) = h−
∑

|γ|≤T

C(ρ) +Oε

(x log2(xT )
T

+ log x
)

(now C(ρ) = ((t+ h)ρ − tρ)/ρ). Take T = x, with the conclusion that

ψ(t+ h) − ψ(t) = h−
∑

|γ|≤x

C(ρ) +Oε(log2 x).

We can now integrate this relation over t ∈ (x, x+ 2h], obtaining
ˆ x+h

x

ψ(t+ h) − ψ(t)dt = h2 −
∑

|γ|≤x

ˆ x+h

x

C(ρ)dt+Oε(h log2 x).

We introduce an auxiliary parameter 3 < λ < x. Then we have first

∑
|γ|≤λ

ˆ x+h

x

C(ρ)dt =
∑

|γ|≤λ

ˆ x+h

x

(t+ h)ρ − tρ

ρ
dt =

ˆ x+h

x

∑
|γ|≤λ

ˆ t+h

t

zρ−1dzdt

=
ˆ x+h

x

ˆ t+h

t

z− 1
2

∑
|γ|≤λ

zβidzdt ≤
ˆ x+h

x

ˆ t+h

t

z− 1
2 · 2N(λ)dzdt

= O
(h2λ log λ√

x

)
,(97)

where the implied constant is absolute, since z− 1
2 ≤ t−

1
2 ≤ x− 1

2 . Also, by actually computing the
integral, we get

∑
λ<|γ|≤x

ˆ x+h

x

(t+ h)ρ − tρ

ρ
dt =

∑
λ<|γ|≤x

(x+ 2h)ρ+1 − 2(x+ h)ρ+1 + xρ+1

ρ(ρ+ 1)

≪ε x
3
2

∑
|γ|>λ

γ−2 = Oε

(
x

3
2

log λ
λ

)
(98)
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by Corollary 2.4.
Thus, the estimates (96), (97) and (98) yield

o(h2) = h2 +O
(h2λ log λ√

x

)
+Oε

(
x

3
2

log λ
λ

)
+Oε(h log2 x).

Now take λ = x/h. Then this reduces to the statement that

o(h2) = h2 +Oε(h
√
x log x).

But this is impossible if h = C
√
x log x with C > 0 sufficiently large. Thus, (x, x + 2C

√
x log x]

contains a prime for all x ≥ x0, and so

pn+1 − pn ≤ 2C√
pn log pn

for all primes pn ≥ x0. This completes the proof.

The proof of Cramér’s theorem given above, although instructive, can be rendered unnecessary: if
the Riemann hypothesis is true, then ‘Cramér’s bound’ follows from Corollary 5.7 and the following
result.
Proposition 5.9. Let F denote the collection of all real-valued partial functions on R such that

1. Each h = h(x) ∈ F is defined for arbitrarily large values of x, and

2. Each h = h(x) ∈ F satisfies h(x) ≤ x for all sufficiently large values of x in its domain.
Suppose that

∀h ∈ F :
(

lim
x→∞

x∈domain(h)

h(x)√
x log x

= ∞
)

=⇒
(
π

(
x+ h(x)

)
− π(x) ∼ h(x)

log x as x → ∞
)
.

Then Cramér’s bound pn+1 − pn = O(√pn log pn) holds as n → ∞.
Proof. For the sake of readability, let p(n) := pn denote the nth prime. If Cramér’s bound does not
hold, then there exists a strictly increasing sequence of positive integers (nk)∞

k=1 such that

lim
k→∞

p(nk + 1) − p(nk)√
p(nk) log p(nk)

= ∞.

Let D = (p(nk))∞
k=1, and define h : D → R by

h
(
p(nk)

)
= p(nk + 1) − p(nk) for k ≥ 1.

On the one hand, it follows from Theorem 4.4, Equation (75), and Propositions 4.1 and 4.2, that
h(p(nk)) = o(p(nk)) as k → ∞ (thus, h(x) ≤ x for all sufficiently large x ∈ D; also h ∈ F). On the
other hand,

lim
x→∞

x∈domain(h)

h(x)√
x log x

= lim
k→∞

h(p(nk))√
p(nk) log p(nk)

= lim
k→∞

p(nk + 1) − p(nk)√
p(nk) log p(nk)

= ∞.

Thus, we have by assumption

π
(
x+ h(x)

)
− π(x) ∼ h(x)

log x
as x → ∞. However, taking x = p(nk), we see that this implies

1 = π
(
p(nk + 1)

)
− π

(
p(nk)

)
∼ p(nk + 1) − p(nk)

log p(nk) ≥ p(nk + 1) − p(nk)√
p(nk) log p(nk)

→ ∞,

which is impossible.32 Thus, Cramér’s bound must hold.

32The same contradiction can be attained also if one demands h to be a function defined on (a, ∞) for some a > 0:
simply extend the function in the proof by defining h(x) = xϑ for x ̸= p(nk), where ϑ is fixed with 1/2 < ϑ < 1.
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6 Primes in short intervals: beyond the Riemann hypothesis
Although it is outside the scope of this project to make an extensive list of every fact concerning the
difference ψ(x+ h) − ψ(x), it would nevertheless be interesting to consider what kind of results that
could conceivably be proved in the future. Much of subsequent work and conjectures on primes in
short intervals is based on Selberg’s article [31] as well as probabilistic models for the prime numbers.
The latter will not be discussed here, but we will discuss some of Selberg’s results.

6.1 The work of Selberg
Selberg relaxed the requirement that an asymptotic prime number theorem has to hold for all x > 0,
to ‘almost all x > 0’:

A statement P is said to be true for almost all x > 0 if there exists a set E ⊂ (0,∞) such that P is
true as x → ∞ through any sequence of numbers in (0,∞) \E, and such that λ((0, x) ∩E) = o(x) as
x → ∞, where λ denotes the Lebesgue measure.33 In other words, the statement P is true except on

a (asymptotically) small set E of exceptional points.

Note that this is completely unrelated to the notion of ‘almost everywhere’ from measure theory.
Such a relaxation allows for results that are valid for much shorter intervals than in the preceding

sections. Selberg proved, among other things:

Theorem 6.1 (Selberg, 1943). Suppose that

N(σ, T ) = O
(
Tα(1−σ) logη T

)
uniformly for 1

2 ≤ σ ≤ 1 as T → ∞, where α ≥ 2 and η ≥ 1. Let h be a positive and increasing
function of x such that

1. h(x)/x is decreasing for x > 0 with lim
x→∞

h(x)/x = 0, and

2. lim inf
x→∞

log h(x)
log x > 1 − 2α−1.

Then we have

π
(
x+ h(x)

)
− π(x) ∼ h(x)

log x

for almost all x > 0.

Proof. We follow Selberg’s proof except for some small modifications, allowing for general values of α
and η.34

If we assume throughout that 3 ≤ T ≤ x, then we may use the explicit formula (38) to write

ψ(x) = x−
∑

|γ|<T

xρ

ρ
+O

(x log2 x

T

)
.

Let also y be a real number confined to the range x ≤ y ≤ 2x, and r = r(x) ≥ 1 a real parameter
which we may specify later at our convenience. If we define δ implicitly by eδ = 1 + r−1, then

ψ
(
y + y

r

)
− ψ(y) − y

r
= −

∑
|γ|<T

eδρ − 1
ρ

yρ +O
(x log2 x

T

)
.

33We write ‘statement’ here, and not ‘proposition function P (x)’, because the statement may not be local around x,
but global, as is the case in Selberg’s theorem.

34The generalised statement appears in Montgomery [26], p. 131. Selberg worked with α = 77
29 + ε and η = 5, the

best known values at the time. Cf. Footnote 22 below Hoheisel’s theorem.
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For a given 0 < ε < 1/α, take T = x2/α−ε. Moreover, write log x ≤ xε/4, assuming x ≥ x0(ε) ≥ 3,
say, to obtain

ψ
(
y + y

r

)
− ψ(y) − y

r
= −

∑
|γ|<T

eδρ − 1
ρ

yρ +O
(
x1−2/α+3ε/2)

.

From this, it now follows that

1
x

ˆ 2x

x

∣∣∣ψ(
y + y

r

)
− ψ(y) − y

r

∣∣∣2
dy = O

(
1
x

ˆ 2x

x

∑
|γ|<T

∑
|γ′|<T

eδρ − 1
ρ

· eδρ′ − 1
ρ′

yρ+ρ′dy
)

+ O
(
x2−4/α+3ε

)
(99)

(we used the estimate (A+B)2 ≪ A2 +B2 here, together with the relation |z|2 = zz).
Note that ∣∣∣∣eδρ − 1

ρ

∣∣∣∣ =
∣∣∣∣ ˆ δ

0
eλρdλ

∣∣∣∣ ≤
ˆ δ

0
eλβdλ = eδβ − 1

β

∗
≤ eδ = e log

(
1 + 1

r

)
<

e
r
,

where the inequality ∗ holds by virtue of

0 < δβ < δ = log
(

1 + 1
r

)
<

1
r

≤ 1 < 1.7507 . . . ,

with 1.7507 . . . denoting the positive real solution to the equation ex − 1 = ex. Therefore,

1
x

ˆ 2x

x

∑
|γ|<T

∑
|γ′|<T

eδρ − 1
ρ

· eδρ′ − 1
ρ′

yρ+ρ′dy = O

(
1
xr2

∑
|γ|<T

∑
|γ′|<T

ˆ 2x

x

yρ+ρ′dy
)

= O

(
1
r2

∑
|γ|<T

∑
|γ′|<T

2ρ+ρ′+1 − 1
ρ+ ρ′ + 1

xρ+ρ′
)

= O

(
1
r2

∑
|γ|<T

∑
|γ′|<T

1
1 + |γ − γ′|

xβ+β′
)

= O

(
1
r2

∑
0<γ<T

x2β
∑

|γ′|<T

1
1 + |γ − γ′|

)
.(100)

In the third line we used the simple estimates

|2ρ+ρ′+1 − 1| ≤ 2β+β′+1 + 1 < 9,
1

|ρ+ρ′+1|
1

1+|γ−γ′|
= 1 + |γ − γ′|√

(1 + β + β′)2 + |γ − γ′|2
< sup

θ≥0

1 + θ√
1 + θ2

=
√

2,

and for the last line we used∑
|γ|<T
|γ′|<T

xβ+β′

1 + |γ − γ′|
=

∑
|γ|<T
|γ′|<T
β≥β′

xβ+β′

1 + |γ − γ′|
+

∑
|γ|<T
|γ′|<T
β<β′

xβ+β′

1 + |γ − γ′|
≤ 2

∑
|γ|<T
|γ′|<T
β≥β′

xβ+β′

1 + |γ − γ′|

= 4
∑

0<γ<T
|γ′|<T
β≥β′

xβ+β′

1 + |γ − γ′|
≤ 4

∑
0<γ<T

x2β
∑

|γ′|<T
β′≤β

1
1 + |γ − γ′|

≤ 4
∑

0<γ<T

x2β
∑

|γ′|<T

1
1 + |γ − γ′|

.
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The inner sum in (100) can be estimated as follows:

∑
|γ′|<T

1
1 + |γ − γ′|

=
∞∑

n=1

∑
|γ′|<T

n−1≤|γ−γ′|<n

1
1 + |γ − γ′|

≤
⌊2T ⌋+1∑

n=1

1
n

∑
|γ′|<T

n−1≤|γ−γ′|<n

1

≪
⌊2T ⌋+1∑

n=1

log T
n

≪ log2 T ≤ log2 x,(101)

since

{ρ′ : |γ′| < T and n− 1 ≤ |γ − γ′| < n} = ∅

when n ≥ 2T + 1 > |γ| + T + 1, and since

N(n) −N(n− 1) = O(logn) = O(log T ).35

Now take 1 ≤ r ≤ x2/α−2ε. Then

x2−4/α+3ε = x2

(x2/α−2ε)2(xε/4)4 ≤ x2

r2 log4 x
(102)

for x ≥ x0(ε).

Thus, we get from (99), (100), (101) and (102);

1
x

ˆ 2x

x

∣∣∣ψ(
y + y

r

)
− ψ(y) − y

r

∣∣∣2
dy = O

(x2 log2 x

r2

∑
0<γ<T

x2β−2
)

+O
( x2

r2 log4 x

)
.(103)

From (21), it follows that ζ(s) has no zeros in a region of the form σ ≥ L(t), t ≥ t0, where

L(t) = 1 − (log log t)2(log t)−1.

(continued on the next page.)

35Ingham [18], Theorem 25 a, p. 70.
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Using this together with the identity
´ β

−1 x
2(σ−1)dσ = x2β−2−x−4

2 log x , we get

∑
0<γ<T

x2β−2 = 2 log(x)
∑

0<γ<T

ˆ β

−1
x2(σ−1)dσ + x−4

∑
0<γ<T

1

≪ log(x)
∑

0<γ<T

ˆ β

−1
x2(σ−1)dσ

= log(x)
ˆ 1

−1

∑
0<γ<T

β≥σ

x2(σ−1)dσ

= log(x)
ˆ 1

−1
x2(σ−1)N(σ, T )dσ

≪ (log x)η+1
ˆ L(x)

−1

(
Tα

x2

)1−σ

dσ

≤ (log x)η+1
(
Tα

x2

)1−L(x) ˆ L(x)

−1
dσ

≤ 2(log x)η+1
(
x(2/α−ε)α

x2

) (log log x)2
log x

≤ 2(log x)η+1x−ε(log log x)2(log x)−1

= 2(log x)η+1e−ε(log log x)2

≪ 1
log6 x

.

In the fifth line we used that L(T ) ≤ L(x) ultimately holds for x sufficiently large36, and in the sixth
line we used that the integrand increases with σ (since Tα/x2 = x−αε < 1).

Plugging this into (103) yields the bound

1
x

ˆ 2x

x

∣∣∣ψ(
y + y

r

)
− ψ(y) − y

r

∣∣∣2
dy = O

( x2

r2 log4 x

)
.(104)

Now suppose that h(x) satisfies conditions 1 and 2. Then we may make ε smaller if necessary,
and so assume that h(x) ≥ 2x1−2/α+2ε for x ≥ x1(ε) ≥ x0(ε). Thus, if we take r = x′

h(x′) for
x1(ε) ≤ x ≤ x′ ≤ 2x, then

r <
x′

2(x′)1−2/α+2ε
= 1

2(x′)2/α−2ε ≤ 22/α−1−2εx2/α−2ε < x2/α−2ε.

That is, this choice of r satisfies the assumptions for (104). Using the fact that this r = r(x′) increases
with x′, we get

log x
x

ˆ x′+ x
⌊log x⌋

x′

∣∣∣ψ(
y + h(x′)

x′ y
)

− ψ(y) − h(x′)
x′ y

∣∣∣2
dy = O

(h2(x)
log3 x

)
,(105)

provided x ≤ x′ < x′ + x
⌊log x⌋ ≤ 2x. This implies that

ψ
(
y + h(x′)

x′ y
)

− ψ(y) − h(x′)
x′ y <

h(y)
log y

36Recall that T ≤ x2/α−ε ≤ x. The function 1 − L(t) is decreasing for e < t < exp(exp(2)) and increasing for
t > exp(exp(2)) = 1618.177 . . .
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for x′ ≤ y ≤ x′ + x
⌊log x⌋ , except in a subset E1 of

[
x′, x′ + x

⌊log x⌋
]

of Lebesgue measure

λ(E1) = O
( x

log2 x

)
.(106)

Indeed,

log x
x

ˆ
E1

∣∣∣ψ(
y + h(x′)

x′ y
)

− ψ(y) − h(x′)
x′ y

∣∣∣2
dy ≥ log x

x

ˆ
E1

h2(y)
log2 y

dy ≫ h2(x)λ(E1)
x log x ,

which would violate (105) if (106) did not hold.
Moreover, if y ∈

[
x′, x′ + x

⌊log x⌋
]

does not belong to this exceptional subset E1, then

ψ
(
y + h(y)

)
− ψ(y) − h(y) ≤ ψ

(
y + h(x′)

x′ y
)

− ψ(y) − h(x′)
x′ y + h(x′)

x′ y − h(y)

<
h(y)
log y + h(y)( y

x′ − 1) ≤ h(y)
log y + h(y)

⌊log x⌋

≤ h(y)
log y + h(y)

⌊log y
2 ⌋

<
3h(y)
log y ,

since h(y)/y ≤ h(x′)/x′ and h(x′) ≤ h(y), and where the last inequality holds for y > 15, say.
If we apply the argument above for the specific choices

x, x+ x

⌊log x⌋
, x+ 2x

⌊log x⌋
, . . . , x+ ⌊log x⌋ − 1

⌊log x⌋
x

for x′, then we find that

ψ
(
y + h(y)

)
− ψ(y) − h(y) < 3h(y)

log y(107)

for y ∈ [x, 2x], except in a subset E2 of [x, 2x] of measure

λ(E2) = O
( x

log2 x
· log x

)
= O

( x

log x

)
.

If we substitute x
2 , x

4 , x
6 , . . . in place of x, then, since the implied constant in the bound for λ(E2)

will be the same in all cases, we get that (107) holds for all y ∈ (0, x), except in a subset E3 of (0, x)
of measure

λ(E3) = O
( x

log x

)
.

An identical argument can be used to show that

ψ
(
y + h(y)

)
− ψ(y) − h(y) > −3h(y)

log y

for y ∈ (0, x), except in a subset E4 of (0, x) of measure

λ(E4) = O
( x

log x

)
.

Thus, ∣∣ψ(
y + h(y)

)
− ψ(y) − h(y)

∣∣ < 3h(y)
log y
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for y ∈ (0, x), except in a subset E of (0, x) of measure

λ(E) = λ(E3 ∪ E4) = O
( x

log x

)
= o(x).

That is,

ψ
(
x+ h(x)

)
− ψ(x) = h(x) +O

(h(x)
log x

)
holds for almost all x > 0. By virtue of Equation (64), this implies the stated result.

By taking h(x) = xε and assuming the strong density hypothesis, we get:

Corollary 6.2. Suppose that the strong density hypothesis is true. That is, suppose that N(σ, T ) =
O

(
T 2(1−σ) logη T

)
uniformly for 1

2 ≤ σ ≤ 1 as T → ∞, where η ≥ 1. Let ε > 0. Then we have

π(x+ xε) − π(x) ∼ xε

log x

for almost all x > 0. In particular, the measure of the collection of X ∈ (0, x) such that [X,X +Xε]
does not contain a prime is o(x).

These results show that we can get an asymptotic prime number theorem for much shorter intervals
if we allow for a few exceptions. Even more can be proved under the Riemann hypothesis: Selberg
showed the Riemann hypothesis implies π(x+ h) − π(x) ∼ h(log x)−1 for almost all x > 0, so long as
h = h(x) is increasing, h/x is decreasing, and

lim
x→∞

x

h
= lim

x→∞

h

log2 x
= ∞.

That is, we would get an ‘almost- prime number theorem’ so long as the length of the interval grows
faster than log2 x.

6.2 Further investigations
In addition to the results above, there are many conditional results and conjectures about primes in
short intervals. For example, by assuming the Riemann hypothesis and various additional properties
of the distribution of the ordinates γ of the nontrivial zeros of ζ(s), Heath-Brown [16] showed that
some improvements are possible:

ψ(x) − x = o(
√
x log2 x),

pn+1 − pn = O
(√

pn log pn

)
,

and even

π(x+ h) − π(x) > 0

for almost all x > 0, so long as log x = o(h).
Sadly, Heath-Brown’s estimate for the size of prime gaps is nowhere close to what we expect to be

the truth. For example, assuming π(x+h)−π(x) ∼ h(log x)−1, Proposition 4.2 gives pn+1−pn ≤ h(pn)
for n sufficiently large. This is clearly not optimal, since the assumption says that the interval (x, x+h]
contains about h(log x)−1 primes. Thus, if the primes were evenly distributed over this interval (which
they are unlikely to be), then our best naive guess would be that the bound is closer to

pn+1 − pn ≤ length of interval
number of primes = h

h(log x)−1 = log x.
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This is much smaller than h if, say, h = xϑ for some fixed ϑ > 0. The problem here is, of course, that
the primes may all be clumped together in one half of the interval.

A cause of this discrepancy can be illustrated as follows. If we take x = pn and x + h = pn+1 in
the explicit formula (38), then we see that

pn+1 − pn =
∑

ρ

pρ
n+1 − pρ

n

ρ
+O(log pn),

if there are no prime powers between pn and pn+1. This shows explicitly the relation between prime
gaps and sums of the form ∑

ρ

(x+ h)ρ − xρ

ρ
or

∑
ρ

xρ

ρ
.

Estimating these sums is in fact the crux of the matter: the proofs in Section 4 consisted of estimating
the first sum using a rather naive strategy of ‘taking the absolute value and using the triangle in-
equality.’ Unfortunately, this eliminates all possibility that there may be some significant cancellation
among the different terms of the sum.

To round off, we mention this reformulation of Selberg’s result due to Saffari and Vaughan [30]:

Theorem 6.3. If the Riemann hypothesis is true, then

1
x

ˆ 2x

x

∣∣ψ(t+ θt) − ψ(t) − θt
∣∣2dt = O

(
θx log2

(2
θ

))
uniformly for x ≥ 4 and 0 < θ ≤ 1.37

The left hand side of Saffari and Vaughan’s estimate is the average value of the integrand for
x ≤ t ≤ 2x, and an argument similar to the one in the proof of Proposition 6.1 reveals that

ψ(t+ θt) − ψ(t) − θt = O(
√
θx log x)

for x−1 ≤ θ ≤ x and x ≤ t ≤ 2x, expect for t in a subset of [x, 2x] of Lebesgue measure o(x). Taking
h = θt, then h and θx have the same order of magnitude, which gives some justification of the following
conjecture of Montgomery and Vaughan.38

Conjecture 6.4. For every ε > 0, we have

ψ(x+ h) − ψ(x) = h+Oε(
√
h xε)

uniformly for 2 ≤ h ≤ x as x → ∞.

In other words, it is conceivable that an asymptotic prime number theorem for the interval (x, x+h]
holds for small h close to Maier’s lower bound, logA x (all A > 0), but the exact threshold remains a
mystery.

37For more estimates of similar type, the reader may want to have a look at [14]. We would like to thank Ofir
Gorodetsky and ‘user 2734364041’ for making us aware of the result: this matter, as well as the density hypothesis were
discussed on the threads [1] and [2].

38[27], Conjecture 13.4.
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APPENDIX

Appendix

A.1 Primes in long intervals

By the prime number theorem, we have

lim
x→∞

ψ(x)
xϑ

= lim
x→∞

π(x)
xϑ/ log x =

0 if ϑ > 1,
1 if ϑ = 1,
∞ if ϑ < 1,

(A1.1)

and also

1 = lim
x→∞

ψ(x+ xϑ)
x+ xϑ

= lim
x→∞

ψ(x+ xϑ)
xϑ

· 1
1 + x1−ϑ

= lim
x→∞

ψ(x+ xϑ)
x

· 1
1 + xϑ−1 .

Thus,

lim
x→∞

ψ(x+ xϑ)
xϑ

= 1 + lim
x→∞

x1−ϑ =

1 if ϑ > 1,
2 if ϑ = 1,
∞ if ϑ < 1,

and(A1.2)

lim
x→∞

ψ(x+ xϑ)
x

= 1 + lim
x→∞

xϑ−1 =

∞ if ϑ > 1,
2 if ϑ = 1,
1 if ϑ < 1.

(A1.3)

In a similar manner, the prime number theorem gives

1 = lim
x→∞

π(x+ xϑ)
x+ xϑ

log
(
x+ xϑ

)
= ϑ lim

x→∞

π(x+ xϑ)
xϑ/ log x · 1

1 + x1−ϑ
+ lim

x→∞

π(x+ xϑ)
x+xϑ

log(x+xϑ)︸ ︷︷ ︸
∼1

·
log

(
1 + x1−ϑ

)
log(x+ xϑ)︸ ︷︷ ︸

Fϑ(x)

(A1.4)

= lim
x→∞

π(x+ xϑ)
x/ log x · 1

1 + xϑ−1 + lim
x→∞

π(x+ xϑ)
x+xϑ

log(x+xϑ)︸ ︷︷ ︸
∼1

·
log

(
1 + xϑ−1)

log(x+ xϑ)︸ ︷︷ ︸
Gϑ(x)

.(A1.5)

An elementary calculation shows that

lim
x→∞

Fϑ(x) =
{

0 if ϑ ≥ 1,
1 − ϑ if ϑ < 1, and lim

x→∞
Gϑ(x) =

{
1 − ϑ−1 if ϑ > 1,
0 if ϑ ≤ 1.

Hence, Equations (A1.4) and (A1.5) yield

lim
x→∞

π(x+ xϑ)
xϑ/ log x =

{
∞ if ϑ = 0,
ϑ−1(1 − Fϑ(∞))(1 + lim

x→∞
x1−ϑ) if ϑ ̸= 0, =

ϑ−1 if ϑ > 1,
2 if ϑ = 1,
∞ if ϑ < 1,

(A1.6)

lim
x→∞

π(x+ xϑ)
x/ log x = (1 −Gϑ(∞))(1 + lim

x→∞
xϑ−1) =

∞ if ϑ > 1,
2 if ϑ = 1,
1 if ϑ < 1.

(A1.7)
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In particular, Equations (A1.1)–(A1.3) and (A1.6)–(A1.7) give

lim
x→∞

ψ(x+ xϑ) − ψ(x)
xϑ

=

1 − 0 if ϑ > 1,
2 − 1 if ϑ = 1,
∞ − ∞ if ϑ < 1,

=
{

1 if ϑ ≥ 1,
indeterminate if ϑ < 1,

lim
x→∞

ψ(x+ xϑ) − ψ(x)
x

=

∞ − 1 if ϑ > 1,
2 − 1 if ϑ = 1,
1 − 1 if ϑ < 1,

=

∞ if ϑ > 1,
1 if ϑ = 1,
0 if ϑ < 1,

lim
x→∞

π(x+ xϑ) − π(x)
xϑ/ log x =

ϑ−1 − 0 if ϑ > 1,
2 − 1 if ϑ = 1,
∞ − ∞ if ϑ < 1,

=
{
ϑ−1 if ϑ ≥ 1,
indeterminate if ϑ < 1, and

lim
x→∞

π(x+ xϑ) − π(x)
x/ log x =

∞ − 1 if ϑ > 1,
2 − 1 if ϑ = 1,
1 − 1 if ϑ < 1,

=

∞ if ϑ > 1,
1 if ϑ = 1,
0 if ϑ < 1,

which implies (59).

A.2 Miscellaneous results
Let λ1 ≤ λ2 ≤ . . . be a sequence of real numbers with lim

n→∞
λn = ∞, and (cn)∞

n=1 any sequence of
complex numbers. For real t, define St = {n ∈ N+ : λn ≤ t}; this is then a finite set.

If X ≥ λ1 and φ ∈ C1([λ1, X], C), then Abel’s summation formula holds true:∑
n∈SX

cnφ(λn) = −
ˆ X

λ1

φ′(t)
∑

n∈St

cn dt+ φ(X)
∑

n∈SX

cn.(A2.1)

In particular, if λn = γn exhaust the ordinates of the nontrivial zeros of ζ(s) in the upper half plane,
and each cn = 1, then

∑
n∈St

cn = N(t). A proof of the formula may be found in [18] (Theorem A, p.
18).

Let α ∈ C and 0 < δ ≤ π. Then the following version of Stirling’s formula is true, which states
that

log Γ(s+ α) =
(
s+ α− 1

2

)
log(s) − s+ 1

2 log(2π) +O(|s|−1)(A2.2)

uniformly in the angle |arg s| ≤ π−δ as |s| → ∞, where the branches of the logarithms are chosen to be
real on the positive real axis. This formula appears as stated in [18], but an instructive and modernised
derivation may be found in [33] (Theorem 2.3 in the Appendix and its associated exercises).

We always have

∑
2≤n≤x

1
n

{
= 0 if x < 2,
≤ log x if x ≥ 1.

(A2.3)

Proof. It suffices to prove the logarithmic bound assuming x ≥ 2. Since t−1 is a decreasing function
of t, we have ∑

2≤n≤x

1
n

≤
ˆ x

1
t−1dt = log x.

For all α, β ≥ 0, we have

π(α+ β) − π(α) < β + 1(A2.4)
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Proof. Exercise.

Using the convention that 00 = 1, we have the (Bernoulli) inequality

(1 + a)b ≤ 1 + ab(A2.5)

for all real a ≥ −1 and 0 ≤ b ≤ 1.

Proof. The only nontrivial case is when a > −1 and 0 < b < 1. Take t = 1 + a, so that we must prove
tb − 1 ≤ b(t− 1) for t > 0. Both sides are equal to zero if t = 1 (where a = 0). Now differentiate both
sides with respect to t to find ∂

∂t [tb − 1] = btb−1 and ∂
∂t [b(t− 1)] = b. Since 0 < b < 1, we have

btb−1 < b · 1b−1 = b if t > 1 and btb−1 > b if 0 < t < 1. This implies the stated result.

On the positive axis, we have

ˆ log t
tm

dt ≡


− log t

(m− 1)tm−1 − 1
(m− 1)2tm−1 if m ̸= −1,

1
2 log2 t if m = 1.

(A2.6)

In particular, if T > 0, then

ˆ T

1

log t
tm

dt =


1

(m− 1)2 − log T
(m− 1)Tm−1 − 1

(m− 1)2Tm−1 if m ̸= 1,

1
2 log2 T if m = 1,

(A2.7)

ˆ ∞

T

log t
tm

dt = log T
(m− 1)Tm−1 + 1

(m− 1)2Tm−1 if m > 1.(A2.8)

The end.
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602, 1936.

[35] E. C. Titchmarsh. The Theory of the Riemann Zeta-function. Oxford science publications. Oxford
University Press, 1986. Revised second edition by D.R. Heath-Brown, 2007.

[36] I. M. Vinogradov. A new estimate for ζ( 1
2 + it). Izvestiya Akademii Nauk SSSR. Seriya Matem-

aticheskaya, 22(2):161–164, 1958.

[37] H. von Mangoldt. Zur Verteilung der Nullstellen der Riemannschen Funktion ξ(t). Mathematische
Annalen, 60:1–19, 1905.

[38] A. Vretblad. Fourier Analysis and Its Applications, volume 223 of Graduate Texts in Mathematics.
Springer New York, NY, 2003. Corrected second printing, 2005.

[39] R. G. Wilson. A058303 - OEIS. Decimal expansion of the imaginary part of the first nontrivial
zero of the Riemann zeta function. https://oeis.org/A058303, December 2000.

64

https://oeis.org/A058303



	Abstract
	Preface
	Contents
	Introduction
	The Riemann zeta function
	Some functions in analytic number theory
	Asymptotic analysis

	Three conjectures on the zeta function
	The number of nontrivial zeros
	Growth of zeta on vertical lines
	Zero-density estimates
	Relationships between the hypotheses

	The explicit formula for psi(x)
	Some lemmas
	The explicit formula

	Primes in short intervals: weak hypotheses
	Introduction
	Hoheisel's theorem and generalisations

	Primes in short intervals: the Riemann hypothesis
	Prime number theorem under the Riemann hypothesis
	Cramér's theorem

	Primes in short intervals: post-Riemann hypotheses
	The work of Selberg
	Further investigations

	Appendix
	A.1 Primes in long intervals
	A.2 Miscellaneous results

	References

