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Abstract

The rapid proliferation of Internet of Things (IoT) devices has raised signific-
ant concerns regarding the security and privacy of interconnected smart environ-
ments. This thesis presents IoTective, an automated penetration testing tool de-
signed to assess the security posture of IoT devices and systems. IoTective utilizes
a range of scanning techniques, including Wi-Fi, Bluetooth, and ZigBee, to identify
vulnerabilities, discover devices, and gather valuable information for analysis. The
tool’s intuitive user interface and automation capabilities minimize the need for
manual intervention, making it accessible to both novice and experienced security
analysts. Through our Proof-of-Concept (PoC), IoTective demonstrates its effect-
iveness in identifying vulnerabilities and enumerating a wide range of smart home
devices and systems. The tool’s regular updates, complementarity with manual
testing, and prioritization features, contribute to its success as a comprehens-
ive IoT security assessment tool. Future work includes expanding vendor-specific
testing to incorporate support for additional manufacturers and their Application
Programming Interfaces (APIs), allowing for more in-depth analysis and targeted
vulnerability detection. With the continuous advancement of IoT technologies,
IoTective’s contributions to the field of IoT security assessment and its potential
for further enhancement make it a valuable resource for securing IoT environ-
ments.
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Sammendrag

Den raske utbredelsen av Internet of Things (IoT) har reist betydelige bekymringer
angående sikkerheten og personvernet til sammenkoblede smarte miljøer. Denne
masteroppgaven presenterer IoTective, et automatisert verktøy for penetrasjon-
stesting designet for å vurdere sikkerhetstilstanden til IoT-enheter og -systemer.
IoTective benytter seg av ulike skanningsteknikker, inkludert Wi-Fi, Bluetooth og
ZigBee, for å identifisere sårbarheter, oppdage enheter og samle verdifull informas-
jon for analyse. Verktøyets brukervennlige grensesnitt og automatiseringsfunks-
joner minimerer behovet for manuell innblanding, noe som gjør det tilgjengelig
både for nybegynnere og erfarne sikkerhetsanalytikere. Gjennom vår Proof-of-
Concept (PoC) demonstrerer IoTective sin effektivitet i å identifisere sårbarheter i
et bredt spekter av smarte hjemmeenheter og -systemer. Verktøyets regelmessige
oppdateringer, komplementaritet med manuell testing og funksjoner for prioriter-
ing bidrar til suksessen som et omfattende verktøy for vurdering av IoT-sikkerhet.
Fremtidig arbeid inkluderer utvidelse av testing for spesifikke produsenter for å
inkorporere støtte for flere leverandørers APIs, slik at det blir mulig med grundigere
analyser og målrettet sårbarhetsdeteksjon. Med den kontinuerlige utviklingen av
IoT-teknologier, bidrar IoTectives bidrag til feltet for vurdering av IoT-sikkerhet
og dets potensial for videre forbedring til å gjøre det til en verdifull ressurs for
sikring av IoT-miljøer.

v





Acknowledgments

I would like to express my sincere gratitude to my supervisor, Jia-Chun Lin, for
their invaluable guidance, support, and encouragement throughout the duration
of this project. Their expertise, insights, and constructive feedback have been in-
strumental in shaping the direction and quality of this work. I am grateful for
their patience, dedication, and mentorship, which have greatly contributed to my
personal and professional growth. I would also like to extend my appreciation
to my co-supervisor, Ernst Gunnar Gran, for their valuable input and assistance.
I am thankful for their availability, collaboration, and willingness to share their
knowledge, which have significantly enhanced the outcomes of this project.

Furthermore, I would like to acknowledge and thank NTNU, especially De-
partment of Information Security and Communication Technology (IIK), for their
support and resources that have facilitated the successful completion of this thesis.
I am also grateful to my friends and fellow students for their encouragement, dis-
cussions, and assistance throughout this journey. Their support and camaraderie
have made this experience more enjoyable and memorable.

I am indebted to all those who have contributed to this project in various ways.
Without their support and collaboration, this work would not have been possible.

vii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Code Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Project Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Project Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Internet of Things (IoT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 IoT Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 IoT Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 IoT Communication Technologies . . . . . . . . . . . . . . . . . 10
2.1.4 Advantages of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Challenges of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.6 IoT Security Requirements . . . . . . . . . . . . . . . . . . . . . 16

2.2 Smart Homes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Smart Home Automation . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Smart Home security issues . . . . . . . . . . . . . . . . . . . . 19

2.3 Penetration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 OWASP IoT Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 IoT Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 ZigBee Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Bluetooth Low Energy (BLE) Vulnerabilities . . . . . . . . . . 29
3.1.3 Vulnerabilities in IoT Products . . . . . . . . . . . . . . . . . . . 31

ix



x K. Nordnes: IoTective: Automated Penetration Testing for Smart Home Environments

3.2 IoT Penetration Testing Frameworks . . . . . . . . . . . . . . . . . . . 32
3.2.1 PENIOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 EXPLIoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 HomePwn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 KillerBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 System Design of IoTective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Requirements of IoTective . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . 39

4.3 Architecture of IoTective . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Python Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Main Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.2 Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.3 Sniffing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.4 Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Proof-of-Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1 Proof-of-Concept Environment . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Test Execution and Results . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.1 Phase 1: Initialization . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.2 Phase 2: Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.3 Phase 3: Sniffing . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.4 Phase 4: Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.1 Vulnerabilities in Smart Home Environments . . . . . . . . . 67
7.1.2 Effectiveness of Automated Penetration Testing . . . . . . . . 68
7.1.3 The Impact of Automated Penetration Testing on Security

Posture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.1.4 Ethical Considerations in Automated Penetration Testing for

Smart Homes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.1.5 Heterogeneity of Smart Home Environments . . . . . . . . . . 71
7.1.6 Limitations of Automated Penetration Testing . . . . . . . . . 72
7.1.7 Key Success Factors of Automated Penetration Testing Tools 73

7.2 IoTective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2.2 Key Success Factors . . . . . . . . . . . . . . . . . . . . . . . . . 76



Contents xi

7.2.3 Tool Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2.4 Implications and Significance of Findings . . . . . . . . . . . . 78

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85





Figures

2.1 The four layers of IoT [15]. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 ZigBee protocol stack [18]. . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Bluetooth Low Energy (BLE) Architecture [20]. . . . . . . . . . . . . 13
2.4 Smart home technology display at Westfield White City, London,

2019 [32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 BLE threat model based on the attack domain [53]. . . . . . . . . . . 30

4.1 Overall design of IoTective. . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Design of the initialization phase. . . . . . . . . . . . . . . . . . . . . . 40
4.3 Design of the scanning phase. . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Design of the sniffing phase. . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Design of the reporting phase. . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Smart home environment used for testing. . . . . . . . . . . . . . . . . 54
6.2 Scan initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Result from ARP scan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Result from nmap scan of Raspberry Pi. . . . . . . . . . . . . . . . . . 56
6.5 Result from nmap scan of Philips Lighting BV host. . . . . . . . . . . 57
6.6 Configuration information gathered from Philips Hue bridge API. . 58
6.7 List of all reports generated by IoTective. . . . . . . . . . . . . . . . . . 59
6.8 Scan information displayed in the report. . . . . . . . . . . . . . . . . 60
6.9 ZigBee device information displayed in the report. . . . . . . . . . . . 60
6.10 Raspberry Pi device information from the report. . . . . . . . . . . . . 61
6.11 Information about port 8123 on the Raspberry Pi. . . . . . . . . . . . 61
6.12 CVE-2016-5636 identified on the Home Assistant service. . . . . . . 61
6.13 Information gathered from Sony WH-1000XM4 headset. . . . . . . . 62
6.14 Service information gathered from Sony WH-1000XM4 headset. . . 62
6.15 Mapping of discovered devices and devices connected to the router. 64

xiii





Tables

2.1 Comparison of home network wireless standards [24][22]. . . . . . 15

3.1 Vulnerabilities found in smart lighting [54]. . . . . . . . . . . . . . . . 31
3.2 Feature implementation of PENIoT for each protocol. . . . . . . . . . 32
3.3 Comparison of protocol support. . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Comparison of attack support. . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Comparison of user experience and Python version. . . . . . . . . . . 35

xv





Code Listings

5.1 Initialization Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 ARP Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Port Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Philips Hue mDNS discovery . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Capture beacon frames to obtain BSSIDs . . . . . . . . . . . . . . . . . 49
5.6 Packet handler identifying connected hosts . . . . . . . . . . . . . . . 50
5.7 ZigBee device discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.8 Bluetooth device enumeration . . . . . . . . . . . . . . . . . . . . . . . 51
5.9 Generation of Markdown language . . . . . . . . . . . . . . . . . . . . 52

xvii





Acronyms

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks. 10, 11, 24

AES Advanced Encryption Standard. 12

AI Artificial Intelligence. 18

AMQP Advanced Message Queuing Protocol. 10, 32, 35

AP Access Point. 53

API Application Programming Interface. iii, v, xiii, 5, 34, 48, 57, 58, 84

ARP Address Resolution Protocol. xiii, 4, 40, 47, 55, 56, 63, 64

ASCII American Standard Code for Information Interchange. 45

AWS Amazon Web Services. 33

BLE Bluetooth Low Energy. xiii, 5, 6, 10, 12–15, 29–35, 44, 45

BSSID Basic Service Set Identifier. 41, 42, 50, 58

CAN Controller Area Network. 33

CBOR Concise Binary Object Representation. 10

CCM Counter with CBC-MAC. 12

CLI Command-Line Interface. 35, 36

CoAP Constrained Application Protocol. 10, 28, 32, 35

CPE Common Platform Enumeration. 41, 60, 61

CPU Central Processing Unit. 8

CVE Common Vulnerabilities and Exposures. 4, 31, 41, 49, 57, 61, 63, 77

CVSS Common Vulnerability Scoring System. 61, 77

xix



xx K. Nordnes: IoTective: Automated Penetration Testing for Smart Home Environments

DICOM Digital Imaging and Communications in Medicine. 33

DoS Denial-of-Service. 21, 24, 28, 31, 32, 35

EEPROM Electrically Erasable Programmable Read-Only Memory. 33

ESSID Extended Service Set Identifier. 41, 49, 58

GUI Graphical User Interface. 35, 36

HCI Host Controller Interface. 12

HTTP Hypertext Transfer Protocol. 45, 56

I2C Inter-Integrated Circuit. 33

IEEE Institute of Electrical and Electronics Engineers. 10–15, 27, 34, 50, 58

IoT Internet of Things. iii, v, xiii, 1, 2, 4–20, 22–25, 27, 28, 32–34, 41, 44, 67,
68, 76–79, 81, 84

IP Internet Protocol. 4, 5, 24, 40, 41, 46, 48, 55, 56

IPS Intrusion Prevention System. 2

IPv6 Internet Protocol version 6. 10

ISM Industrial, Scientific, and Medical. 12

JSON JavaScript Object Notation. 10, 42, 48, 51, 78

JTAG Joint Test Action Group. 21, 33

L2CAP Logical Link Control and Adaptation Protocol. 12

LDoS Low-Rate Denial-of-Service. 28

LoRaWAN Long Range Wide Area Network. 10

LPWAN Low-Power Wide Area Network. 14, 15

LQI Link Quality Indicator. 59

MAC Media Access Control. 4, 11, 34, 40, 47, 50, 55, 56, 58

MCU Microcontroller Unit. 8

mDNS Multicast DNS. 33, 35, 36, 41, 45, 48, 57

MIC message Integrity Code. 12



Acronyms xxi

MitM Man-in-the-Middle. 21, 24, 28–31

MPU Microprocessor Unit. 8

MQTT Message Queuing Telemetry Transport. 28, 32–35

MU-MIMO Multi-User Multiple-Input Multiple-Output. 14

NFC Near Field Communication. 11, 34

NTNU Norwegian University of Science and Technology. 5

NVD National Vulnerability Database. 31

OF-DMA Orthogonal Frequency-Division Multiple Access. 14

OS Operating System. 44, 55, 56

OSI Open Systems Interconnection. 9, 10

OWASP Open Web Application Security Project. 6, 25, 67, 68

PAN ID Personal Area Network Identifier. 27, 28, 42, 59

PDF Portable Document Format. 32

PoC Proof-of-Concept. iii, v, 6, 53, 64, 74, 77, 79, 81

QoS Quality of Service. 39

RFID Radio Frequency Identification. 9, 23

RPL Routing Protocol for Low-Power and Lossy Networks. 22, 33

RSSI Received Signal Strength Indicator. 62

SBOM Software Bill of Material. 33

SPI Serial Peripheral Interface. 33

SWD Serial Wire Debug. 33

TCP Transmission Control Protocol. 10, 31, 33

TCP/IP Transmission Control Protocol/Internet Protocol. 24, 33

TI Texas Instruments. 34, 53

UART Universal Asynchronous Receiver-Transmitter. 21, 33



xxii K. Nordnes: IoTective: Automated Penetration Testing for Smart Home Environments

UDP User Datagram Protocol. 10, 33

UPnP Universal Plug and Play. 34

URL Uniform Resource Locator. 41, 48

USB Universal Serial Bus. 54

UUID Universally Unique Identifier. 13, 58, 62, 63

VM Virtual Machine. 53

WPAN Wireless Personal Area Network. 14, 15

ZNP ZigBee Network Processor. 45



Chapter 1

Introduction

This chapter serves as an introduction to the master’s project and provides an
overview of the thesis. The aim is to introduce the reader to the topic, goals, and
scope of the project while also discussing its limitations.

1.1 Project Background

The increasing prevalence of IoT devices has led to a growing concern about their
security [1]. Many IoT devices are designed without security in mind and may
contain vulnerabilities that can be exploited by attackers. These devices are often
connected to home networks and may have access to sensitive information, mak-
ing them attractive targets for attackers. Moreover, the lack of standardization in
IoT protocols and hardware make them more difficult to secure. As a result, the
need for effective IoT security testing tools has become increasingly important.

Penetration testing is a critical component of security testing that involves
identifying vulnerabilities in a system and exploiting them to gain unauthorized
access [2]. Penetration testing tools exist for many different types of systems, but
there is a lack of tools that specifically target IoT devices. The purpose of this
project is to develop an open-source penetration testing tool that is designed spe-
cifically for testing the security of IoT devices.

In recent years, there has been a growing interest in open-source security auto-
mation tools for the home network. Many of these tools have been developed to
help users identify vulnerabilities and secure their networks against potential at-
tacks. The market for such tools is currently dominated by a few popular options,
such as Nmap1, Wireshark2, and Metasploit3, but there is a growing demand for
more specialized tools that can perform automated security testing in home en-
vironments.

Some open-source tools have been developed for home network security auto-

1Nmap (Network Mapper) https://nmap.org/
2Wireshark https://www.wireshark.org/
3Metasploit https://metasploit.com/

1
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mation, such as OpenWIPS-ng [3], which is an open-source wireless Intrusion
Prevention System (IPS) that can detect and prevent attacks on Wi-Fi networks.
Another example is Fing [4], which is a freemium network scanner that can help
users identify all devices connected to their networks and detect vulnerabilities.
However, there is still room for improvement in terms of automated security test-
ing tools for home networks, particularly in terms of integration with IoT devices
and automation of the testing process. As the number of IoT devices in the home
continues to grow, the need for more comprehensive and user-friendly security
testing tools will also increase.

1.2 Project Goals

The primary goal of this master project is to develop an automated tool that can
assist penetration testers in the early stages of reconnaissance, planning, and scan-
ning. The tool aims to make the process of gathering information about a target
network easier, faster, and more efficient. By automating this process, the tool
can help reduce the amount of time and effort required for reconnaissance and
scanning, allowing penetration testers to focus on the later stages of the testing
process.

Furthermore, the tool aims to support a variety of different devices and proto-
cols commonly found in IoT environments, such as Wi-Fi, Ethernet, ZigBee, and
Bluetooth [5][6][7][8]. By supporting these protocols, the tool will be able to
analyze and identify potential vulnerabilities in a range of IoT devices and other
consumer products connected to the network.

Additionally, the tool will be designed with ease of use and flexibility in mind,
with an intuitive user interface and the ability to customize the scanning capability
of the tool. The tool will also be open-source and available on GitHub, allowing
for community contributions and collaboration. Ultimately, the project goal is to
provide penetration testers with a powerful, flexible, and efficient tool that can
help identify potential security issues in IoT environments.

1.3 Research Questions

Following are the research questions this thesis will attempt to answer. Each ques-
tion includes a brief explanation of why it is important and what insight it could
give.

Research Question 1: What are the most common vulnerabilities found
in smart home environments, and how can they be exploited by attackers?
The most common vulnerabilities will be the most interesting to identify as these
are most likely to be discovered in smart homes and should be the primary target
of the automation tool. Knowledge of how these vulnerabilities can be exploited
can help us give relevant information on how a vulnerability can effect the user
and how the user could mitigate it.
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Research Question 2: How effective is automated penetration testing at
identifying vulnerabilities in a smart home environment compared to manual
testing?

The effectiveness of automated penetration testing will determine the usefulness
of such a tool in the smart home. However, measuring effectiveness of automated
penetration testing against manual penetration testing is challenging because the
it will depend on many factors such as the skill of the analyst, the complexity of
the environment, and the potential vulnerabilities.

Research Question 3: What impact does the use of automated pentesting
have on the overall security posture of a smart home environment?

Automated penetration testing tools can be useful in finding vulnerabilities, but to
the end-user, advice and recommendation on how to mitigate security risks could
be just as important.

Research Question 4: What are the ethical considerations that should be
taken into account when conducting automated penetration testing in smart
home environments?

An open-source tool, such as the one implemented in this project, has the potential
to be useful both to adversaries and legitimate users. Because of the risks in cre-
ating a tool that could potentially do more harm than good, it’s important to look
at what ethical consideration should be taken when implementing and running
automated penetration testing tools in smart homes.

Research Question 5: How does the heterogeneity of smart home environ-
ments affect the effectiveness of automated pentesting, and what strategies
can be employed to overcome these challenges?

When creating a tool to be run in various environments, it’s important to look into
ways to make the test that are conducted as generalizable as possible. A crucial
factors is to not lose too much quality information from the analysis because of a
less targeted approach.

Research Question 6: What are the limitations of automated pentesting
in smart home environments, and how can they be addressed to improve the
effectiveness of the testing process?

Answering this question will highlight what automated penetration testing can-
not do or can only do to a limited extent. This will be interesting to an analyst
because it would indicate what tests should be conducted to make the testing
more complete.

Research Question 7: What are the key success factors for the implement-
ation of automated pentesting in smart home environments?

Given the range of methods and techniques that could be utilized, identifying the
key success factors is critical when it comes to prioritization of features for our
tool.
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1.4 Research Design

The research conducted in this project will use a mixed methodology of both a
quantitative and qualitative research approach. Since the project involves the de-
velopment of program/script that will perform automated penetration testing and
vulnerability discovery, the quantitative approach could be used to measure the
effectiveness of the script. The script will be compared to a manual approach of
penetration testing as well as similar automated tools, using the same smart home
environment. This way we can compare how many vulnerabilities we were able
to discover using the two different methods, as well as compare the severity of the
discovered vulnerabilities. We will measure the time used to perform the scanning
and discuss the differences in how much relevant information was gathered. The
qualitative research approach will take a look at the usability and user experience
of the tool.

The study will use a case study approach which involves an in-depth analysis
of a single smart home environment. This environment will be as close to a usual
smart home setup as possible and use common vendors such as Philips, Samsung,
and Amazon. The network will also contain non-IoT devices such as computers,
phones, and media stations. The tool will attempt to gather as much information
about the environment as possible and use it to identify vulnerabilities and give
the analyst useful information for further analysis. The tool does not aim to be a
comprehensive penetration testing tool, however, the automated aspect of it gives
the user an effective method for gaining initial information.

1.5 Ethical Considerations

The aim of this project is to develop a tool that can perform security testing on
smart home environments, with the goal of identifying vulnerabilities and weak-
nesses. The tool will utilize a variety of techniques, both passive and active, to
gather the necessary data. Passive techniques include using protocols that share
information between hosts, such as the Address Resolution Protocol (ARP), net-
work scanning, and traffic monitoring. While these techniques are less risky, they
may not provide a complete picture of potential vulnerabilities. Active techniques
involve attempting to exploit common vulnerabilities, but come with greater risk
of damage to target systems. To balance these risks, the tool will primarily rely on
passive techniques.

The tool will not collect or log any private information, but will focus on identi-
fying potential weaknesses that could lead to the leakage of such information. The
information it reports will include device information such as Internet Protocol
(IP) addresses, Media Access Control (MAC) addresses, ports, and service ver-
sions, as well as identified and potential Common Vulnerabilities and Exposuress
(CVEs) related to devices and services running on the network. All information
will be stored on the host that runs the script and will not be sent over the internet
or shared with third parties.
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As an open-source automation tool, the project will provide an opportunity
for users to test their home networks for vulnerabilities. However, to prevent mis-
use by potential adversaries, the tool will require users to have already obtained
access to the network. It will only allow testing against private IP addresses, and
will not permit any probing over the Internet. While this approach reduces the
likelihood of misuse, however, it wont prevent anyone from removing this restric-
tion themselves by changing the code. There is always a risk that an adversary
has gained unauthorized access to a network and may attempt to use the tool for
malicious purposes. To address this, the tool will prompt users with a disclaimer
that outlines the potential risks and advises responsible use.

The proof-of-concept will be tested in a real-world environment that includes
both smart home devices and common consumer devices. All users of the environ-
ment will be informed of the testing and its potential impact on their information
and devices. All devices in the environment will be owned by either the users
or by Norwegian University of Science and Technology (NTNU) and will be used
with their consent for research purposes. The cloud services of vendors will not
be tested, although they may be used to gather additional publicly available in-
formation.

1.6 Project Scope and Limitations

The aim of the development of the tool is to be as general purpose for a home
environment as possible, with some features specific for IoT devices. Creating a
tool with focus on IoT in general has its limitations because of the heterogeneity
of the IoT domain. Because different devices and vendors use different protocols
and APIs, it is difficult to create a tool that fits all. The tool is therefore limited
to using aspects of security testing which are generally applicable to all home
networks which includes network scanning and traffic sniffing.

IoT devices are often useful much because of their wireless aspect. Protocols
such as Wi-Fi, ZigBee and Bluetooth Low Energy (BLE) are therefore common.
Testing wireless communication quickly becomes difficult considering that there
are usually many devices in residential areas that are communicating at the same
time. When performing network sniffing in monitoring mode we are able to inter-
cept all packets sent over the air, regardless of their intended target. Due to the
automated nature of the tool, performing penetration testing on all devices in a
area would not be ethical since it could both cause harm to devices and potentially
expose sensitive information.

Wireless penetration testing often necessitates a focused and selective ap-
proach, with analysts handpicking specific devices to target based on prior know-
ledge or intelligence. This level of targeting typically involves a more manual
process that falls outside the scope of the automated tool being discussed. Con-
sequently, in order to maintain the tool’s automated nature, the wireless feature is
limited to passive scanning and reporting of discovered devices. This information
can then complement more manual testing efforts. Additionally, the user will be
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prompted to specify the Wi-Fi network to target, and it is the user’s responsibility
to obtain prior authorization for conducting the testing.

The case study approach allows us to showcase how the tool performs in a
typical home network. However, this approach is limited in that it is difficult to
replicate which in turn makes it difficult for external validation of the results. The
tool will be made open-source, making it open to inspection and testing, allowing
anyone to perform testing in their own environments. We will also compare the
tool only with other tools that are also open-source.

1.7 Thesis Structure

This thesis is structured as follows: Chapter 1 provides an overview of the pro-
ject, starting with a background discussion of the IoT concept and its significance
in modern society. The chapter further outlines the project’s goals and limitations
and concludes by describing the thesis structure. Chapter 2, entitled "Background,"
discusses the three primary areas that form the foundation for the thesis. The
chapter begins by defining the IoT concept and discussing the devices, architec-
ture, communication technologies, advantages, and security requirements of IoT.
The chapter then moves on to the concept of smart homes, including their auto-
mation and security issues, before covering penetration testing and the Open Web
Application Security Project (OWASP) IoT Project.

Chapter 3, "Related Work," examines the existing literature on IoT vulnerab-
ilities and penetration testing frameworks. It discusses the vulnerabilities in IoT
products, such as ZigBee and BLE vulnerabilities, and reviews various IoT pen-
etration testing frameworks such as PENIoT, EXPLIOT, HomePwn, KillerBee, and
Artorias. Finally, the chapter compares these frameworks.

Chapter 4 provides details of our design and outlines the functional require-
ments, development environment, and architecture of the tool. Chapter 5 provides
implementation details, including the Python modules used, code structure, and
main functions of the automated penetration testing tool being developed.

Chapter 6 provides a Proof-of-Concept (PoC) to demonstrate the effectiveness
of our tool. It describes the environment setup, test execution, and results when
testing a popular smart home platform.

Chapter 7, "Discussion," addresses the research questions related to vulnerab-
ilities in smart home environments, the effectiveness of automated penetration
testing, ethical considerations, heterogeneity of smart home environments, lim-
itations of automated penetration testing, and key success factors of automated
penetration testing tools. It also provides an overview of our tool, its functional
requirements, and limitations.

Chapter 8 concludes and summarizes the main findings of the thesis, while
Chapter 9 proposes potential directions for further development of our tool.



Chapter 2

Background

This chapter provides an introduction to the essential concepts related to IoT,
smart homes, and penetration testing. It covers relevant terminology, technolo-
gies, frameworks, standards, and tools used to perform penetration testing for
IoT. The information presented in this chapter will give readers the required know-
ledge to understand the contributions of this master project.

2.1 Internet of Things (IoT)

The concept of IoT traces back to the late 1980s when a group of researchers at
Carnegie Mellon University began experimenting with connecting everyday ob-
jects to the Internet [9]. However, it was not until the late 1990s that the term
"Internet of Things" was first coined and began to gain momentum. IoT was first
used by a British technology pioneer called Kevin Ashton to refer to physical ob-
jects that can connect over the Internet through sensors [9]. Although the term
"IoT" is widely used, there is no broad consensus on its definition. In general, IoT
refers to a network of networks consisting of uniquely identifiable endpoints that
capture and share data. A review from 2019 [10] used the following definition: "...
the interconnection of machines and devices through the Internet, enabling the
creation of data that can yield analytical insights and support new operations."

IoT has evolved and expanded over the years, driven by technological ad-
vances such as the development of wireless technologies like Wi-Fi, Bluetooth,
and ZigBee. This development opened up a wide range of possibilities for IoT as
it made it possible to connect a much larger number of devices and allowed for
greater flexibility in terms of device placement. In recent years, new IoT applica-
tions such as smart home automation, industrial Internet, and connected cars have
entered the market. The increasing availability of cloud computing and big data
analytics has further driven IoT growth, making it applicable in areas ranging from
agriculture and manufacturing to healthcare and transportation [11][12][13].

7
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2.1.1 IoT Devices

An IoT environment comprises of interconnected IoT devices that transmit signals
to perform tasks and exchange data. While IoT devices have different architectures
and applications, they share some fundamental concepts and vocabulary, which
include [14]:

• Actuators: IoT devices often perform physical actions. Actuators receive
signals from sensors and execute specific actions based on them. For in-
stance, a motion sensor detecting a movement can send a signal to an actu-
ator that turns on the lights.
• Embedded systems: Embedded systems refer to computer systems that

are integrated into devices and products to perform specific functions. They
are compact, low-power, and cost-effective. In the context of IoT, embedded
systems monitor and control connected devices and collect and process data
from sensors. They communicate with other devices and systems.
• Intelligent devices: These devices have higher computing power and in-

telligence than traditional connected devices. They can analyze and process
data, make decisions, and take action based on that data. In the context of
IoT, an intelligent device could be a hub that receives data from sensors and
uses it to compute the actuator’s subsequent action.
• Microcontroller Unit (MCU): A MCU is a compact and integrated com-

puter system on a single chip. It typically contains a Central Processing Unit
(CPU), memory, and input/output (I/O) peripherals, and is designed to per-
form specific tasks in embedded systems.
• Microprocessor Unit (MPU): A MPU is a CPU integrated on a single chip.

It is designed to perform general-purpose computing tasks such as data pro-
cessing and control.
• Non-computing devices: These devices do not have the ability to compute

but can connect and transmit data. These devices are typically used for data
collection and sensing and can include sensors, actuators, and other types
of connected devices.
• Transducers: Transducers convert physical quantities into electrical signals

and vice versa. They collect data from the environment and control physical
devices. Some examples include sensors, actuators, microphones, speakers,
and lights.
• Sensors: Sensors measure physical characteristics like temperature, humid-

ity, light, pressure, or motion, and convert that information into an electrical
signal. These signals can be transmitted to other devices, such as computers
or smartphones, for analysis and processing.

Connectivity is a crucial aspect of an IoT environment, and devices commu-
nicate either directly or through gateways. Gateways, also called "hubs," help IoT
devices connect to the corresponding cloud servers and establish device-to-device
communications. Gateways provide an additional layer of security by acting as
intermediaries between devices and the internet.
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2.1.2 IoT Architecture

IoT creates a heterogeneous environment that poses various problems related to
formalization, standardization, data, and security. One way of visualizing the ar-
chitecture of IoT is by layering it into four layers: the application layer, physical
layer, network layer, and perception layer, as shown in Figure 2.1 [15].

Figure 2.1: The four layers of IoT [15].

The application layer serves as an interface between the network and IoT
devices, confirming which applications are gaining access and what services are
delivered to different applications based on information gathered from sensors.
The physical layer consists of hardware devices and physical components that
sense the environment in some form, communicating with other connected devices
to perform desired tasks. The network layer is responsible for communication
between various devices, often over extensive distances. Its primary objective is
the transportation of data from objects through sensors via wires or wireless proto-
cols. The perception layer perceives input from different devices and technologies,
such as pressure sensors, smoke sensors, vibration sensors, and Radio Frequency
Identification (RFID) sensors [15].

Another way to visualize the architecture of IoT devices is by mapping the
relevant protocols to the Open Systems Interconnection (OSI) model [16]. The
IoT protocol stack can be organized and structured according to the seven layers
of the OSI model:

1. Physical layer: This layer is responsible for transmitting raw bits over the
physical medium, such as a wired or wireless connection. In the context of
IoT, this layer includes protocols such as Zigbee, Z-Wave, Bluetooth, and
Wi-Fi, which are responsible for communication between IoT devices.
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2. Data Link layer: This layer is responsible for providing transmission of data
frames between devices on a network. In the context of IoT, this layer in-
cludes protocols such as Institute of Electrical and Electronics Engineers
(IEEE) 802.15.4 and Long Range Wide Area Network (LoRaWAN), used
for low-power and long-range communication between IoT devices. IEEE
802.15.4 is the groundwork for protocols such as ZigBee and IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPAN) to build wireless
embedded networks.

3. Network layer: This layer is responsible for routing data between devices
on a network, as well as between networks. In the context of IoT, this layer
includes protocols such as Internet Protocol version 6 (IPv6) and 6LoWPAN,
which provide addressability and routing for IoT devices.

4. Transport layer: This layer is responsible for providing reliable data trans-
fer between devices. In the context of IoT, this layer includes protocols such
as Transmission Control Protocol (TCP) and User Datagram Protocol (UDP),
used for communication between IoT devices and other systems, such as
cloud services and data centers.

5. Session layer: This layer provides a logical connection between applica-
tions running on different devices. In the context of IoT, this layer is not
typically used, as communication between IoT devices is managed at lower
levels of the stack.

6. Presentation layer: This layer is responsible for encoding and decoding
data into a standardized format. In the context of IoT, this layer includes
protocols such as Concise Binary Object Representation (CBOR) and JavaS-
cript Object Notation (JSON), performing data encoding and decoding.

7. Application layer: This layer provides a high-level interface to the underly-
ing network and communication protocols. In the context of IoT, this layer
includes applications and services, such as Smart home systems, industrial
control systems, and wearable devices, which use the lower layers of the
protocol stack to communicate and exchange data. This layer includes pro-
tocols such as Constrained Application Protocol (CoAP) and Advanced Mes-
sage Queuing Protocol (AMQP).

The composition and configuration of the protocol stack may vary depending
on the specific requirements and constraints of the environment. However, this
mapping provides a general understanding of how the different protocols and
technologies used in IoT can be organized and structured according to the seven
layers of the OSI model.

2.1.3 IoT Communication Technologies

This subsection presents some of the most popular transmission technologies used
in IoT networks. Since smart homes consist of devices communicating over short
distances, we will focus on low-power, short-range networks. Specifically, we will
discuss ZigBee, BLE, and Wi-Fi since these are the most relevant protocols for
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our tool, which will be presented later. However, it is worth noting that other
short-range communication protocols such as Z-wave1, Near Field Communica-
tion (NFC)2, and 6LoWPAN3 are also commonly used in IoT environments and
smart homes.

ZigBee

ZigBee is a wireless communication standard developed by the ZigBee Alliance,
which has gained widespread use in various fields such as consumer electronics,
home and building automation, industrial controls, medical sensor applications,
toys, and games. This popularity is due to its low cost and low power consumption.
The ZigBee standard builds upon the IEEE 802.15.4 standard, which specifies the
physical layer and the MAC sub-layer [17].

Figure 2.2: ZigBee protocol stack [18].

The ZigBee protocol stack comprises four layers: the physical layer, the data
link layer, the network layer, and the application layer, as shown in Figure 2.2. The
physical layer defines the physical characteristics of wireless communication, such
as the frequency and modulation used. The data link layer manages access to the
wireless medium and provides error detection and correction. The network layer
handles the routing and addressing of packets within the network, security, and
configuration of new devices. The application layer contains the actual applica-
tion code that runs on the device, while the application support protocol provides
compatibility for application-specific functions, such as security and power man-
agement.

To ensure interoperability between different vendors, ZigBee includes applica-
tion profiles that define functional procedures and message formats. Additionally,

1Z-wave is a wireless communication protocol used primarily for home automation. https://
www.z-wave.com/

2NFC (Near Field Communication) is a wireless communication technology used for short-range
communication between devices. http://nearfieldcommunication.org/

36LoWPAN is a low-power wireless communication protocol designed for use in IoT networks.
https://www.gartner.com/en/information-technology/glossary/6lowpan

https://www.z-wave.com/
https://www.z-wave.com/
http://nearfieldcommunication.org/
https://www.gartner.com/en/information-technology/glossary/6lowpan
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ZigBee provides communication security using message encryption and authen-
tication. This is accomplished through the use of Advanced Encryption Standard
(AES) in the Counter with CBC-MAC (CCM) mode, with a 128-bit message In-
tegrity Code (MIC) for integrity protection and a 4-byte counter for protection
against replay attacks [19].

The ZigBee protocol stack provides a reliable wireless communication system
by integrating each layer of the stack. It is noteworthy that, while the physical
and data link layers are defined by the IEEE 802.15.4 standard, the network and
application layers are ZigBee-specific additions. Thus, the ZigBee protocol stack
builds upon and extends the IEEE 802.15.4 standard to provide a complete wire-
less communication solution.

Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE), also known as Bluetooth Smart, is a wireless com-
munication technology specifically designed for low-power, low-data-rate applic-
ations. It operates in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band
and adopts a star topology, where a central device, such as a smartphone, connects
to one or more peripheral devices. BLE utilizes a frequency hopping technique to
mitigate interference with other devices operating in the same band [20].

BLE is particularly well-suited for a wide range of devices that require low
power consumption, including wearables, fitness trackers, smart home devices,
medical devices, and various IoT devices. Based on the Bluetooth 4.0 specific-
ation, BLE comprises three fundamental components: the controller, host, and
application. Figure 2.3 illustrates the complete architecture.

The controller serves as the physical device responsible for transmitting and
receiving radio signals. It interfaces with the external environment through an
antenna and communicates with the host through the Host Controller Interface
(HCI). The Physical Layer handles bit transmission and reception using the 2.4
GHz radio, while the Direct Test Mode enables testers to assess a controller’s trans-
mission and receiving capabilities.

The Link Layer, situated within the controller, is tasked with scanning, advert-
ising, and establishing and maintaining connections. During connection setup, it
utilizes one channel for advertising when connecting to new devices and another
channel for transmitting data to already connected devices. Facilitating commu-
nication between the host and controller is the HCI, which provides a standardized
interface.

The host assumes several critical functions within the Host Controller Inter-
face (HCI) framework. The Logical Link Control and Adaptation Protocol (L2CAP)
utilizes fixed channels for the signalling channel, Attribute Protocol, and Secur-
ity Manager. The Security Manager Protocol governs pairing and key distribution,
establishing trust between devices through authentication. The Attribute Protocol
defines rules for accessing data on a peer device, with attributes denoting specific
data pieces associated with permissions.
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Building upon the Attribute Protocol and Security Manager, the Generic Attrib-
ute Profile defines attribute types and their usage. Additionally, the Generic Access
Profile specifies device discovery, connection procedures, and the presentation of
relevant information to users. It introduces mechanisms like bonding, which es-
tablishes a permanent relationship, and privacy mechanisms that enable devices
to utilize constantly changing and random addresses for identification.

The Application Layer operates atop the BLE stack, defining characteristic,
service, and profile specifications based on the Generic Attribute Profile. A char-
acteristic represents a piece of data with a known format, labeled with a Univer-
sally Unique Identifier (UUID). A service, on the other hand, presents a human-
readable specification of a set of characteristics and their associated behavior. Pro-
files, which describe two or more devices and the services they provide, further
enhance interoperability [20].

Figure 2.3: Bluetooth Low Energy (BLE) Architecture [20].

Wi-Fi

Wi-Fi, based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11
standard [21], encompasses several sub-standards. Within the context of IoT, one
particularly relevant standard is IEEE 802.11ah, also known as Wi-Fi HaLow. In-
troduced in 2016, Wi-Fi HaLow was specifically developed to address the require-
ments of IoT devices by offering higher data rates over longer distances compared
to short-range technologies like BLE and ZigBee [22]. Operating in sub-gigahertz
frequency bands, Wi-Fi HaLow supports a larger number of devices within a single
network, exhibits low power consumption, and provides extended range in com-
parison to traditional Wi-Fi standards like 802.11b/g/n/ac. With data rates of up
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to 347 Kbps, Wi-Fi HaLow proves suitable for various applications such as smart
homes, industrial IoT, and smart cities, where low-data rate communication, ex-
tended battery life, and greater range are crucial requirements.

Another significant advancement in Wi-Fi technology is IEEE 802.11ax, also
referred to as "Wi-Fi 6," which represents the latest generation of Wi-Fi standards
and offers notable improvements over its predecessor, 802.11ac (Wi-Fi 5). De-
signed to meet the increasing demands of high-density environments like airports,
stadiums, and crowded urban areas, 802.11ax incorporates features such as Multi-
User Multiple-Input Multiple-Output (MU-MIMO) and Orthogonal Frequency-Division
Multiple Access (OF-DMA). These features enable more efficient utilization of
available bandwidth, resulting in enhanced network performance. Wi-Fi 6 deliv-
ers higher data rates, improved network efficiency, better network capacity, and
increased battery life for connected devices [23].

Comparison

BLE devices are known for their low power consumption, allowing them to operate
for extended periods on small batteries. They also offer longer range compared
to other low-power wireless technologies such as ZigBee, and are widely adopted
by the industry due to their support by most smartphones and tablets. Both BLE
and ZigBee are Wireless Personal Area Network (WPAN) technologies that offer
medium data rates at short range. BLE operates at around 1-2 Mbps, which is
slower than classic Bluetooth but faster than other low-power wireless standards
like ZigBee.

On the other hand, Wi-Fi HaLow is a Low-Power Wide Area Network (LPWAN)
technology designed for long-range communication and supports low or medium
data rates [22]. Table 2.1 compares the different technologies. While Wi-Fi 6 and
most traditional Wi-Fi technologies are designed for high throughput over small-
scale networks with a few dozen devices and coverage under 100 meters, ZigBee
uses mesh technology to extend its coverage, allowing devices to communicate
with each other without a central access point.

For IoT in industry, long-range transmission is more critical than in smart
homes. Therefore, Wi-Fi HaLow is a more suitable choice. Conversely, short-range
communication protocols are better suited for smart home-specific IoT devices, as
they offer benefits in terms of throughput and power consumption. ZigBee’s low
data rate is optimized for low power consumption, making it a suitable choice for
IoT.

2.1.4 Advantages of IoT

IoT is a technology that seeks to simplify our lives by automating tasks and gath-
ering valuable data that can be used to optimize productivity. According to [25]
and [26], some of the many potential benefits of IoT include:

1. Increased efficiency: IoT devices can automatically collect and transmit
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Table 2.1: Comparison of home network wireless standards [24][22].

ZigBee Wi-Fi HaLow BLE Wi-Fi 6
Category WPAN LPWAN WPAN WPAN
IEEE Standard 802.15.4 802.11ah 802.15.1 802.11ax
Frequency 2.4/Sub GHz Sub GHz 2.4 GHz 2.4/5 GHz
Range 100 m 1000 m 30 m 100 m
Max Data Rate 250 Kbps 78 Mbps 2 Mbps 10 Gbps
Topology Mesh Star Star Star

data, allowing for real-time monitoring and control of systems and pro-
cesses, which can lead to increased efficiency and cost savings.

2. Improved decision making: IoT devices can generate large amounts of
data, which can be used to gain valuable insights and make more informed
decisions.

3. Enhanced connectivity: IoT devices can be connected to other systems,
such as cloud-based platforms, providing a seamless and integrated experi-
ence.

4. Automation: IoT devices can be programmed to perform certain tasks auto-
matically, such as adjusting the temperature in a room or turning off lights
when they are not needed.

5. Remote control and monitoring: IoT devices can be controlled and mon-
itored remotely, which can be especially useful for managing and maintain-
ing equipment, facilities, and infrastructure.

6. Increased safety and security: IoT devices can be used to monitor for po-
tential safety hazards, such as gas leaks or intruders, and to improve security
by enabling remote surveillance and access control.

7. Improved customer experience: IoT devices can be used to provide per-
sonalized experiences and services to customers, such as location-based
marketing or customized product recommendations.

8. New business models: IoT can enable new business models such as pay-
per-use, preventative maintenance, and outcome-based services.

9. Cost savings: IoT can help organizations to save costs by reducing human
labor, inventory, and energy consumption.

10. Sustainability: IoT can be used for implementing sustainable practices such
as smart grid, waste management, and energy efficiency.

2.1.5 Challenges of IoT

IoT has been around for quite some time now, but it is still considered a new and
emerging technology. There are several challenges and obstacles that need to be
addressed for IoT to reach its full potential.

1. Interoperability: Since the technology is so new and popular, there are
many different vendors trying to make IoT products. However, there is a lack
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of standardization when it comes to IoT products, meaning that the vendors
often use different kinds of protocols and architectures when creating their
products. This doesn’t necessarily make their products any worse, but it puts
a damper on the interoperability between devices from different vendors.
Integration of IoT could already be difficult and time-consuming, and a lack
of interoperability puts another layer on this constraint [27].

2. Cost: Cost is also a barrier for many who wish to adopt IoT. Even though IoT
could help cut costs and power consumption, the devices themselves are still
quite expensive, especially when considering that many of the advantages
of IoT require multiple devices to be fully realised.

3. Power consumption: For IoT devices to be useful, they often need to be
able to operate in remote areas where it is difficult to provide electricity
through cables. The devices, therefore, need to rely on batteries to maintain
their reliability and availability at all times. The lack of power storage puts a
constraint on the device’s processing power in order to prolong the battery
life. The developers then need to make the devices as simple as possible,
which in turn often leads to the omission of sufficient implementation of
security features.

4. Security: Insufficient security mechanisms in IoT devices are a major prob-
lem. One of the main features of IoT is that the devices are connected
remotely through wireless protocols such as Wi-Fi, Bluetooth, and ZigBee
[18]. This also opens the door for adversaries to intercept the traffic through
the air by using sniffers. In addition, to make IoT devices easily controllable
and available, they are often connected to the Internet which in turn also
makes them more available to potential hackers.

5. Privacy: Security is an important factor for keeping the system running and
operational. Perhaps even more importantly, security mechanisms need to
ensure the integrity and confidentiality of the data processed by the devices.
This becomes an especially big concern when considering the privacy im-
plications. More and more data is collected and transmitted by IoT devices,
which could also include sensitive data about the users of such devices. The
lack of standardisation makes it difficult to perform proper regulation of
the use of IoT devices. As more and more data is gathered, organisations
struggle to ensure compliance with data protection and privacy laws [27].

In this project, we have chosen to focus on the challenges regarding security
and privacy since these are, arguably, the most important to overcome.

2.1.6 IoT Security Requirements

To address the security issues of IoT, we need to define the requirements for a
secure IoT system. A survey from 2019 [28] categorises the requirements into the
different operational levels: Information, Access, and Functional level.

The Information Level is concerned with the data and information that is
being stored and transmitted between the devices. This level has the following
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requirements:

1. Integrity: Received data should not have been altered during transmission.
2. Anonymity: The identity of the source of data should remain undisclosed to

third parties.
3. Confidentiality: Only trusted IoT devices and users should be able to read

the data. Any replication of messages should also be identified.
4. Privacy: Private information about the user should not be disclosed during

transmission.

The Access Level specifies requirements associated with access to the network
and devices. It tries to implement the following functionalities:

1. Access Control: Only legitimate users should be able to access the network
and devices to perform administrative tasks.

2. Authentication: This mechanism is used to check whether the devices have
the right to connect to the network.

3. Authorization: This mechanism ensures that only authorized devices and
users are given the rights they need.

The Functional Level is closely associated with the availability of the devices
and tries to ensure that they are operational and work properly. This level includes
the following requirements:

1. Resilience: The network capacity should be sufficient in ensuring the security
of the devices, also during an attack or failure.

2. Self Organization: The IoT system should be functional even if some part of
the system is malfunctioning or being attacked.

2.2 Smart Homes

The term "smart home technologies" or "home automation systems" refers to di-
gital devices that offer enhanced services to residents [29]. The origins of smart
home technologies can be traced back to the late 19th and early 20th centuries,
when the wealthy began using electricity to automate certain tasks in their homes
[30]. Since the 1990s and 2000s, smart homes have become increasingly popular
and are used to enhance efficiency, comfort, and entertainment.

There is often confusion regarding the definition of a smart home, as it shares
similarities with IoT. Nonetheless, a smart home is a specific application of IoT
technology that is focused on the residential environment. It refers to a residence
that uses internet-connected devices to enable the remote control and automation
of appliances and systems, such as lighting, heating, security, and entertainment.
Smart homes aim to improve the quality of life of residents by providing security,
convenience, comfort, energy efficiency, and entertainment [31].

According to a 2020 survey [32], all smart home technologies share three
core attributes: they enable greater control or functionality through monitoring
and sensor interfaces, they are connected in a network, allowing for optimized
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service delivery and performance, and they empower users to change their beha-
vior. While smart homes consist of many IoT devices, it is important to distinguish
between the two. IoT devices have diverse applications in industries such as trans-
portation, healthcare, and commercial settings, while smart homes are primarily
focused on residential use.

Figure 2.4: Smart home technology display at Westfield White City, London, 2019
[32]

The popularity of smart home technology has surged, particularly among younger
generations, due to the rapid development of IoT and other innovations such as
Artificial Intelligence (AI). A 2020 report by Strategy Analytics projected a signi-
ficant increase in spending on smart home technologies from $120 billion in 2021
to $175 billion by 2025 [33]. By 2025, nearly 390 million homes worldwide are
expected to have at least one type of smart system installed, which corresponds to
19% of all households. An example of a smart home technology display is shown
in Figure 2.4.

2.2.1 Smart Home Automation

Smart home automation, or just "home automation", refers to the use of tech-
nology to control and automate various systems and devices in a home, such as
lighting, heating, cooling, security, and entertainment systems. The goal of smart
home automation is to provide increased comfort, convenience, and energy effi-
ciency for homeowners. Smart home automation systems typically use a central
hub or controller that connects to various devices and systems in the home. The
hub allows for remote control and monitoring of these systems using a smart-
phone app, tablet, or computer [34]. Some smart home automation systems also
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have voice control capabilities, allowing homeowners to use voice commands to
control their devices.

Smart home automation can also include the use of sensors, such as mo-
tion detectors, to automate certain functions, such as turning on lights when
someone enters a room. Additionally, smart home automation systems can be in-
tegrated with other connected devices, such as smart thermostats and smart locks,
to provide a more complete and seamless experience. These devices are also IoT
devices and thus bring many of the same advantages and challenges as the general
IoT device, but more home specific.

There are many popular smart home automation systems available in the
market, each with its strengths and features. Some of the most popular include
[35][36]:

• Amazon Echo and Alexa: Amazon’s smart home platform and virtual assist-
ant, Alexa, can control a wide range of connected devices, including light-
ing, thermostats, locks, and entertainment systems.
• Google Home and Google Assistant: Similar to Alexa, Google’s smart home

platform and virtual assistant, Google Assistant, can control a variety of con-
nected devices and offer voice-activated control.
• Apple HomeKit and Siri: Apple’s smart home platform, HomeKit, allows

homeowners to control and automate their devices using their iPhones,
iPads, or Apple Watches. HomeKit is compatible with a wide range of devices
and can be controlled using Siri voice commands.
• Samsung SmartThings: Samsung’s smart home platform, SmartThings, al-

lows homeowners to control and automate a wide range of devices, includ-
ing lighting, thermostats, locks, and security systems.
• Nest: A subsidiary of Google, Nest offers a range of smart home devices, in-

cluding thermostats, security cameras, and smart locks. Nest devices can be
controlled and automated using the Nest app or through Google Assistant.
• Home Assistant: This is an open-source system that can be hosted on many

different systems such as Windows, Linux, MacOS, and Raspberry Pi. It in-
tegrates with over 1000 different APIs and can be used to control devices
from vendors such as Google, Amazon, Samsung, and many more [37].
Home Assistant can control its connected devices through an app or a web
interface.

2.2.2 Smart Home security issues

As shown in Figure 2.1, the IoT environment consists of four layers: the application
layer, the physical layer, the network layer, and the perception layer. Security in
the smart home relies on the security of each of these layers. H. Touqeer et al. [15]
give an overview of the security challenges for each layer which are described in
the following sections.
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Application layer

• Phishing attack: An intruder could gain network access by sending emails
that persuade the end user to expose confidential information or inform-
ation that could be used to gain access to the system. This attack often
involves sending the user to a seemingly legit web page, which is just an
imitation or pretending to be a legitimate user.
• Malicious code attack: A Malicious worm could circulate the Internet while

attempting to infect specific devices such as IoT devices. Infected devices
could be manipulated or used as part of a botnet. Another type of malicious
code is ransomware where the attacker attempts to blackmail the end user
by encrypting the target devices and demanding a ransom.
• Tampering with node-based applications: By gaining control over the ap-

plication, hackers manage to install rootkits. This could lead to the attacker
managing to steal the identities of legitimate users or replacing hardware
components with compromised ones.
• Attacks on access control: This type of attack occurs when authentic pro-

cedures for access control are violated. An access control compromise makes
the whole system vulnerable to malicious hackers.
• Failure to receive security patches: Devices not connected to the Internet

may fail to receive security updates at sufficient intervals. This could leave
the devices exposed to high-risk vulnerabilities should the attacker gain ac-
cess to the network.
• Hacking into the smart meter/grid: A compromised smart meter could

allow an attacker to track the availability of the residents by monitoring the
power consumption.
• Vulnerable software: Insufficient programming skills could lead to vulner-

abilities being created in the program. Other weaknesses could originate in
programs with weak default configurations or lack of authentication.
• Manipulation of unstable configuration: The IoT environment consists of

many devices that all need to be configured properly, or else this could lead
to security issues in the application layer.
• Re-configuring remote device attack: This type of attack exploits insecure

network programming systems which could allow the IoT environment to
be hijacked by intruders.
• Social engineering attack: Humans are targeted and provoked in an at-

tempt to leak sensitive information or make the victim commit activities
instructed by the attacker. This type of attack could be carried out face-to-
face or through digital communication.

Perception layer

• Sniffing and eavesdropping: IoT networks consist of several different kinds
of devices that communicate with each other and through the central hub.
An attacker could intercept traffic through the air since the devices are often
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transmitting data using wireless communication. Some devices use cloud-
based servers for some of their operations, which means that traffic needs
to go through the Internet where it could be intercepted by malicious act-
ors. Third-party vendors are also a risk since they often have access to the
information stored in the cloud.
• Booting attacks: In this attack, malicious attackers take advantage of in-

sufficient or lack of security mechanisms during the booting sequence. This
type of attack often requires physical communication with the device through
protocols such as Universal Asynchronous Receiver-Transmitter (UART) or
Joint Test Action Group (JTAG).
• Node capturing: Attackers can target sensors in the IoT network and re-

place the information they are sending with their false information. This
was one of the attack techniques that made Stuxnet so effective [38].
• Side-channel attacks: This type of attack can expose information about sys-

tems even though they use strong encryption. Power usage, timing attacks,
electromagnetic attacks, and laser-based attacks can be used to perform a
side-channel attack. Apthorpe et al. [39] showed how smart homes can leak
private information by monitoring the (encrypted) traffic rates.
• Noise in data: Noise in the wireless domain can lead to data becoming

disrupted, rendering it irrelevant, incomplete, and false. This is especially
relevant to IoT sensors where the timing of information received could be
important to system functions.

Network layer

• Denial-of-Service (DoS) attack: This type of attack involves sending a large
amount of data to the target device, making it unable to respond to each re-
quest in time, rendering it unreachable. This is also called a resource deple-
tion attack. Another type of DoS attack, called "malicious packet DoS, sends
a packet specially crafted to exploit a vulnerability in the target device. The
result is the same, but it usually requires less machine power to execute.
• Gateway attack: A gateway attack targets the link between the smart home

devices and the Internet, making them unable to communicate as intended.
This type of attack could also be a DoS attack.
• Unauthorized access: An attacker with unauthorized access to Smart home

devices could extract sensitive information or manipulate data.
• Storage attacks: Cloud storage and storage devices can contain sensitive

information which could be extracted or manipulated should the security
be compromised.
• Man-in-the-Middle (MitM) attack: A MitM attack is a type of cyber attack

in which an attacker intercepts and manipulates communication between
two parties. In a MitM attack, the attacker acts as a middleman between
the two parties and can read, modify, or inject malicious content into the
communication. MitM attacks can occur in a variety of settings, including
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wired networks, wireless networks, and over the Internet. In some cases,
the attacker may be able to intercept and modify communication without
either party being aware that their communication has been compromised.
• Data transit attack: In a Data Transit Attack, the attacker intercepts and

modifies the data being transmitted between IoT devices. This can result in
the alteration or theft of sensitive information, such as personal or financial
data. The attacker may also use the intercepted data to launch more soph-
isticated attacks, such as installing malware on the targeted IoT devices.
Data Transit Attacks can be particularly dangerous in IoT networks because
many IoT devices are not designed with security in mind and may not have
the necessary security features to protect against this type of threat. Addi-
tionally, the sheer number of IoT devices in use today makes it difficult to
detect and prevent Data Transit Attacks.
• Black hole attack on Routing Protocol for Low-Power and Lossy Net-

works (RPL): RPL is a routing protocol designed for use in IoT networks
and is used to establish communication between nodes in a network. an at-
tacker sends false routing information to the network, claiming that it has
the shortest path to the destination. As a result, other nodes in the network
will send their data packets to the attacker, who discards or "swallows" the
packets, causing the data to be lost. The attacker creates a "black hole" in
the network, effectively disrupting communication and making it difficult or
impossible for data to reach its intended destination. The attack can result
in significant network degradation, including reduced network throughput
and increased latency [40].
• Hello flood attack: In a Hello Flood attack, the attacker sends a large num-

ber of "hello" messages to a target router or network, overwhelming the
router’s resources and causing it to crash or become unavailable. The attack
can be performed in a variety of ways, including sending a high volume
of messages to the target, sending messages with an incorrect format, or
sending messages with a malicious payload.

Physical layer

• Physical damage: If the attacker can get a physical hold of the device, phys-
ical damage becomes a risk. This could render the device unusable as well
as impact the rest of the network’s functionality.
• Environmental attacks: Environmental forces such as rain, wind, snow, or

storm can make the device lose its functionality.
• Loss of power: Should the power source of the devices be removed or dam-

aged, the device itself would automatically enter power-saving mode. If this
type of function is not present or if it is prevented, this could lead to data
loss, malfunction, system interruptions, and damage to its components, and
the device could become vulnerable to hacking and malware attacks.
• Hardware failure: If a hardware failure occurs, the device could start send-



Chapter 2: Background 23

ing erroneous information which again could impact the functioning of the
whole network.
• Jamming: This kind of attack involves bombarding the target device or net-

work with radio signals to disturb communication. This could make the tar-
get devices drain the power more quickly and break the circulation of the
network. Jamming is one of the most dangerous security attacks since it is
easy to perform and difficult to defend against.
• Malicious code injection: This attack involves injecting malicious code

through a debugging interface. A trusted device in the network can then per-
form malicious activities which could expose sensitive data or bring down
the network.
• Overloading RFID: This is similar to a jamming attack, but it targets the

RFID metal surface. This method makes the RFID unable to transmit inform-
ation or receive power.
• Device duplication: An attacker could clone a physical device in an IoT net-

work. By making subtle changes, this "trusted" clone can perform malicious
activities on the network like stealing sensitive information.
• Tag duplication: Cloning RFID tags is an easy task by using different hack-

ing tools that include RFID readers. A popular tool is the Flipper Zero [41]
which includes an RFID reader that can be used to read, clone and emulate
RFID tags.

2.3 Penetration Testing

The practice of conducting Penetration Testing, also referred to as "security test-
ing" or "pentesting," involves testing a computer system, network, or web applica-
tion to identify vulnerabilities that could be exploited by attackers. The objective
of the test is to gain unauthorized access to sensitive information or disrupt nor-
mal system operation. The penetration test is typically executed by simulating an
attack from a malicious outsider or an insider who has some level of access to the
system [2]. The outcomes of the test are then utilized to enhance the overall se-
curity of the system by identifying and addressing vulnerabilities before they can
be exploited by real attackers.

Penetration Testing is usually used as an attacking technique to complement
defensive measures. Given that attackers only need to exploit a single vulnerability
to be successful, it is imperative that the penetration test is as comprehensive as
possible. To achieve this objective, penetration testers employ automated tools to
conduct different tests on the target system. These tests can be categorized into
three types: interface testing, transportation testing, and system testing [42].

The first type, interface testing, targets the interfaces used by users or devices.
Improper input validation is a common vulnerability discovered in user interfaces.
It occurs when an application or system fails to validate or sanitize user input, al-
lowing malicious users to inject malicious code or data into the application. This
can cause the application to crash or behave in unexpected ways, leading to data
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breaches, unauthorized access, and other malicious activities. Proper input val-
idation and sanitization of all user input is crucial to mitigate these vulnerabilit-
ies. In the IoT domain, proper input validation is particularly important since IoT
interfaces can be linked to code-oriented operations, such as controlling system
programs.

The second type of testing, transportation testing, is used to discover weak-
nesses in communication protocols, cryptographic schemes, and network infra-
structure. In the IoT domain, transportation testing targets protocols such as Trans-
mission Control Protocol/Internet Protocol (TCP/IP), Zigbee, Z-wave, Wi-Fi, Bluetooth,
and 6LoWPAN. IoT networks are typically heterogeneous, using multiple proto-
cols to allow communication between devices. A heterogeneous network is more
vulnerable to attacks than a homogeneous network since there are more potential
sources of new vulnerabilities.

MitM attacks, DoS attacks, replay attacks, eavesdropping, and message tam-
pering are some common attacks used in transportation testing. MitM attacks in-
volve an attacker intercepting communication between two parties and altering
the messages exchanged. DoS attacks, which can be difficult to overcome, flood
the victim’s device with incoming traffic, making it challenging to respond in time.
The other types of attacks seek to exploit weaknesses in communication protocols
or cryptography, and can usually be mitigated by implementing strong crypto-
graphic schemes.

The third type of testing, system testing, focuses on the proprietary programs
of the target system. Attackers often lack sufficient knowledge of IoT devices, so
they commonly use black-box techniques like fuzz testing. Black-box pentesting
simulates an attacker who has no prior knowledge of the system or network being
tested. The tester is only provided with the target’s IP address or domain name
and is expected to discover and exploit vulnerabilities through reconnaissance
and scanning techniques. This type of testing is designed to simulate a real-world
attacker who may only have limited information about the target.

Grey-box pentesting is a hybrid of black-box and white-box testing. In this type
of testing, the tester is provided with some limited information about the system
or network being tested, such as IP addresses, usernames, or network diagrams.
This type of testing is used to simulate an attacker who may have some level of
insider knowledge or access to the target. However, the diversity of IoT devices
makes automated reverse-engineering a challenging task.

White-box penetration testing is a security testing technique that simulates an
attacker who has complete knowledge of the system or network being tested. In
this approach, the tester is provided with full access to the target’s source code,
network diagrams, and other sensitive information. White-box testing is used to
simulate an attacker who has already infiltrated the target’s network or system.
This technique is also referred to as "clear box testing" or "glass box testing" in the
literature [42].
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2.4 OWASP IoT Project

The Open Web Application Security Project (OWASP) IoT Project refers to a com-
prehensive set of guidelines and best practices that aim to provide a comprehens-
ive set of resources for securing IoT devices and systems [43][44]. The guidelines
are designed to cover various areas such as device and network security, commu-
nication security, and incident management, and provide a comprehensive list of
security controls for securing IoT devices.

The OWASP IoT Project is an open-source and collaborative effort, which is
regularly updated by the community to ensure that the guidelines and best prac-
tices are up-to-date and reflect the current threat landscape. It is widely used by
security professionals and penetration testers to conduct security assessments and
identify vulnerabilities in IoT devices and systems.

In addition, the OWASP IoT Top 10 is an extension of the OWASP Top 10 pro-
ject that focuses on web application security. The OWASP IoT Top 10 provides a
comprehensive list of the most critical security risks facing IoT devices and sys-
tems, and aims to provide guidance on how to mitigate those risks. The list is
ordered according to importance and is based on data collected from both public
and private vulnerability sources, with an emphasis on issues that caused the most
amount of impact and damage.

The guidelines for securing IoT devices cover areas such as device security,
network security, cloud and application security, and incident management. The
OWASP IoT Top 10 lists the most critical security risks facing IoT devices and
systems, which include the use of weak passwords, insecure network services,
insecure ecosystem interfaces, lack of secure update mechanisms, use of insecure
or outdated components, insufficient privacy protection, insecure data transfer
and storage, lack of device management, insecure default settings, and lack of
physical hardening measures.
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Related Work

This chapter introduces work related to smart home security and automated pentest-
ing of IoT. The work will give an overview of the most important vulnerabilities
found in IoT which could be exploited by hackers. We will also introduce some
contributions towards the automation of IoT pentesting.

3.1 IoT Vulnerabilities

In this section, we will look at the vulnerabilities that have been found in IoT
devices and environments. We will focus on vulnerabilities associated with the
protocols that are relevant to this thesis, as well as related to smart homes.

3.1.1 ZigBee Vulnerabilities

ZigBee is exposed to a suite of vulnerabilities. One such instance was discovered
in Wara et al. [45] which included a replay attack on the ZigBee protocol on IoT
applications. They were able to re-transmit captured packets to victim devices and
demonstrated this on Phillips Hue bulbs and Xbee S1 and S2C modules. ZigBee
is based on the IEEE 802.15.4 protocol specification which does not have great
replay attack protection. This has been exploited many times by researchers, often
using the "KillerBee" tool [46].

ZigBee maintains an association table that records all child nodes associated
with the parent. A problem with the implementation is that the records are not
deleted when a child node leaves the network after a power failure [46]. Attack-
ers can exploit this by causing a frequent replacement of child nodes which con-
sequently fills up the association table, making it impossible for more child nodes
to join the network.

The Network Personal Area Network Identifier (PAN ID) Conflict Attack is a
security vulnerability that affects some IoT devices. This attack targets the com-
munication between IoT devices, which is typically done through wireless com-
munication protocols such as Zigbee and Z-Wave. The attack works by exploiting a

27
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vulnerability in the way that these protocols handle the assignment of unique iden-
tifiers called PAN IDs. The attack involves an attacker generating a fake PAN ID that
is the same as the PAN ID used by the target IoT devices, which can cause commu-
nication between the devices to break down. In a Network PAN ID Conflict Attack,
the attacker can disrupt the communication between IoT devices, cause them to
stop working correctly, or gain access to sensitive data transmitted between the
devices [46].

The authors in [47] looked at already identified vulnerabilities in ZigBee and
CoAP to exploit an IoT network by initiating a passive attack to obtain sensitive
and private information. By compromising the ZigBee installation code, the au-
thors were able to perform DoS, masquerade, and MitM attacks on the network
using the Message Queuing Telemetry Transport (MQTT) protocol. The installa-
tion code was decrypted by using a CC2531 dongle to sniff ZigBee traffic, Trust
Center Key, Transport Key, and Wireshark. The DoS attack was performed by over-
loading the network with commands. Based on collected data from the gateway,
a Raspberry Pi was able to perform a MitM attack which allowed it to change the
state and colour of IKEA Trådfri lighting.

The Malicious Orphan Frame Attack works by exploiting a vulnerability in the
way that the ZigBee protocol handles orphan frames. Orphan frames are packets
of data that are sent by a device but do not receive a response from the intended
recipient. In a Malicious Orphan Frame Attack, an attacker sends a large number
of orphan frames to a target ZigBee network, causing the network to become
congested and slowing down the communication between devices. This is one
way of depleting the power of the target IoT device as well as performing a DoS
attack [46].

Low-Rate Denial-of-Service (LDoS) attack is a type of DoS attack that degrades
the quality of service using less traffic than a typical DoS. This type of attack is
more difficult to detect and relevant methods aren’t as accurate as that of DoS.
Okada et al. [48] discovered that ZigBee coordinators and ZigBee routers can be
attacked by targeting their buffer which holds messages sent to their child nodes.
By sending pulses every time there is more space in the buffer, keeping the buffer
full, all new messages will be discarded. The LDoS attack can be performed by
connecting a sinkhole node and an attack node to the network or by performing
a replay attack. In the second case, the attacker does not need to connect to the
network.

In Morgner et al. [49], the researcher performs security tests on common IoT
devices, namely Phillips Hue, Osram Lightify, GE Link, and IKEA Trådfri. They
found many possible attacks that could be performed to do malicious activities on
the devices:

1. Active Device Scan: An initial attack for performing any other attack. A scan
request is sent on all ZigBee Channels and the responses let the attacker
know of all devices that are also listening in on this channel. This attack
works on each of the tested vendors’ light bulbs and the Osram Lightify
gateway, however, the GE Link hub didn’t respond and the Phillips Hue hub



Chapter 3: Related Work 29

required the physical button on the hub to be pushed.
2. Identify Action Attack: This attack allows the attacker to physically spot

the relevant device by sending identify requests and witnessing the device
act such as flashing, dimming, or beeping.

3. Reset to Factory-New Attack: By sending a "reset to factory new request"
command an attacker could cause the target device to discard the current
configuration. The payload only contains the transaction identifier and res-
ults in the colour and brightness of the light bulb being set to its default
state.

4. Permanent Disconnect Attack: This attack differentiates from the reset to
factory-new attack by making the recovery more challenging for the user.
The attack can be performed in two ways: changing the channel of the Zig-
Bee device or by joining the target device to a non-existent network. The
user would need to physically reset the device to make fix this issue.

5. Hijack Attack: The attacker sends a "network join end device request" com-
mand. The network key is encrypted using the leaked touchlink pre-configured
link key, the transaction identifier received from a scan request of the tar-
get device. A "network join end device request" is sent, which includes the
network key, to the targeted device. The device updates its internal para-
meters according to the received values and then confirms the transaction.
This results in the attacker gaining full control of the target device since it
is now connected to the network of the attacker.

6. Network Key Extraction: This attack is performed by eavesdropping on the
"scan response" and the "network join end device request" of an initial touch-
link commissioning. This can be more easily achieved by first performing a
reset to factory-new attack which would mean that the user would have to
link the device again.

An attack discovered in October of 2022 [50] showed that a vulnerability in
ZigBee allowed an attacker to factory reset the IKEA Trådfri bulb. The attacker
needs to be in radio range and send an unauthenticated broadcast message, mak-
ing every device within radio range affected. The attack causes the bulb to lose
its configuration information regarding the ZigBee network and brightness level.
The consequences are that the lights are turned on at maximum brightness level
and the user is not able to control the lights since they are not connected to the
network.

3.1.2 Bluetooth Low Energy (BLE) Vulnerabilities

The survey conducted by Casar et al. [51] extensively examines the weaknesses
and vulnerabilities present in BLE technology. The authors delve into known vul-
nerabilities and attacks that have been discovered during the evaluation of BLE
development. Some of the prominent attacks against BLE include sniffing, MitM,
and jamming. The authors also identify various weaknesses, particularly those re-
lated to privacy. These weaknesses encompass issues such as device tracking, the
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ability to infer user behavior through traffic analysis, and the disclosure of user
location through mobile apps.

In a separate study by Garbelini et al. [52], a collection of vulnerabilities is
documented, demonstrating the effectiveness of their framework named Sweyn-
Tooth. The framework operates on a central device and conducts tests on the
connection with a BLE device. By generating diverse inputs and sending them
to the target BLE device, the researchers successfully caused the device to crash,
enter a deadlock state, or bypass security measures. This highlights the potential
for exploitation and disruption in BLE protocol implementations.

These findings emphasize the importance of addressing and mitigating vul-
nerabilities in BLE technology to enhance the security and privacy of BLE-enabled
devices. Understanding the weaknesses and potential attack vectors is crucial for
developing robust countermeasures and ensuring the integrity of BLE-based sys-
tems.

Figure 3.1: BLE threat model based on the attack domain [53].

BLE security architecture is different from that of Bluetooth classic. This is
due to the trade-off between performance, security, and privacy concerns over
low energy consumption. Barua et al. [53] gives an overview of the threat model
against BLE devices, as shown in Figure 3.1, and discusses some of the relevant
vulnerabilities found in BLE. The attacks that were classified with the highest
severity were the following:

1. Passive sniffing: This is an attack type that is common among all wireless
communication protocols. BLE’s simple and predictable design of channel
hopping makes it especially susceptible to passive sniffing. Once wireless
communication between devices using BLE is captured, tools such as Wire-
shark can be used to analyse the packets. This attack can be a gateway to
more malicious attacks such as MitM offline pin cracking, fuzzing, and pri-
vacy leakage.
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2. Man-in-the-Middle: This attack is also very common in the domain of wire-
less communication. The attacker positions oneself between the central and
end devices, and then intercepts and modifies packets without the devices
being aware of it.

3. Denial-of-Service: There are different types of DoS attacks. The aim is to
make the device or resource unavailable to the end users. A battery ex-
haustion attack drains the BLE device of power by keeping it active and
preventing it from entering low-power idle mode. An attacker could send
connection, disconnection, and service requests continuously, also called a
denial of sleep attack, causing severe power drain. Another type of DoS is
the use of jamming where the attacker disrupts the communication channel
by sending frames either constantly, periodically, reactively or randomly.

4. Co-Located Attack: This threat is rooted in a vulnerability of the Android
app and not BLE itself. The credentials stored in the paired Android device
are potentially available to all other applications on the same device. If one
of the other applications on the device is malicious, it could access unau-
thorized pairing-protected data of the BLE devices.

3.1.3 Vulnerabilities in IoT Products

The researchers of Davis et al. [54] did a smart home case study where they looked
at vulnerabilities in four categories: physical, network, software, and encryption.
They used Common Vulnerabilities and Exposures (CVE) and National Vulnerabil-
ity Database (NVD) repositories to search for vulnerabilities in a handful of smart
home products. Table 3.1 shows the vulnerabilities found in each of the smart
lighting products.

Table 3.1: Vulnerabilities found in smart lighting [54].

A vulnerability discovered in Philips Hue published in December of 2020 rendered
the devices vulnerable to a DoS attack [55]. By performing an SYN flood on port
TCP/80, the Phillips Hue’s hub won’t respond until the flooding has stopped. Dur-
ing the attack, the user won’t be able to control the lights or use the cloud services
of the vendor. Another CVE published in January of the same year showed that
the Philips Hue was vulnerable to a Heap-based buffer overflow attack allowing
an attacker to perform remote code execution [56].

The Sengled ZigBee Smart Bulb device was shown to be vulnerable to a DoS
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attack [57]. The vulnerability allows an attacker to send malicious ZigBee mes-
sages making the device crash. The attack is performed by manipulating certain
commands that are supposed to change the brightness of the lights at a certain
rate. This attack works when the lights are either set to the lowest or highest
brightness setting by changing the two last digits in the command string to 0x00.

3.2 IoT Penetration Testing Frameworks

This section presents frameworks for testing IoT devices and networks. Each frame-
work has attempted to make a tool that targets some common IoT protocols, such
as ZigBee and BLE, and performs both passive attacks, such as enumeration and
active attacks, such as replay and DoS attacks. Many more tools are relevant for
IoT, however, these are chosen because they include common protocols that allow
attacks over the network as opposed to only hardware and firmware attacks.

3.2.1 PENIOT

PENIOT [58] is an open-source penetration testing tool for IoT which allows
for testing against a handful of common communication protocols used by IoT
devices. The tool aims to attack IoT devices with generic security attacks either
semi- or fully automatic. The tools provide a suit of attacks, each specific to an IoT
protocol. The tool uses a graphic interface to give the user an overview of all at-
tacks available for the selected protocol. After an attack is selected, the user could
be asked to provide the necessary information to perform the attack. After an at-
tack is finished, a report of the test results is displayed to the user and available
for download as a PDF-file. Table 3.2 shows the attacks available for each suppor-
ted protocol by PENIOT. The supported protcols are Advanced Message Queuing
Protocol (AMQP), Message Queuing Telemetry Transport (MQTT), Constrained
Application Protocol (CoAP), and Bluetooth Low Energy (BLE).

Table 3.2: Feature implementation of PENIoT for each protocol.

AMQP MQTT CoAP BLE
Sniffing X X X X
DoS attack X X X
Replay attack X X X
Topic Name Fuzzing attack X
Random Payload Fuzzing attack X X X
Payload Size Fuzzing attack X X X
Generation Based Fuzzing attack X

The authors note some of the features that were planned to be implemented
in the tool, but for reasons such as time constraints and lack of required hardware,
were not implemented. These features include sniffing and attacks against Zigbee
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and RPL. The authors also noted that the tool was written in Python2.7 which
could render it legacy state and they suggested that it could be ported into Python3
- this transition has not been performed as of writing this thesis.

3.2.2 EXPLIoT

EXPLIoT [59] is an open-source framework for security testing and exploiting
IoT products and IoT infrastructure. The tools consist of a set of plugins, usually
referring to specific protocols, and are used to perform the assessment. The tool is
written in Python3 and provides a command-line interface as well as an interactive
mode. EXPLIoT aims to cover as many IoT protocols, hardware platforms, and
products as possible. The supported plugins/tests are as follows:

• BLE: Includes scanning, fuzzing, and an exploit for unlocking Tapplock door
locks.
• BusAuditor: Supports operations for gaining device information as well as

information specific to JTAG, ARM Serial Wire Debug (SWD), UART, and
Inter-Integrated Circuit (I2C).
• Controller Area Network (CAN): Support reading and writing on the CAN

bus.
• Crypto: Can be used to decrypt communication between TP-Link smart

devices and the Kasa home application.
• Digital Imaging and Communications in Medicine (DICOM): Supports

scanning, fuzzing, and testing of communication and management of pa-
tient information.
• Firmware: Can generate a Software Bill of Material (SBOM) from the firm-

ware file system that conforms to the CycloneDX SBOM Specification.
• I2C: Supports scanning of the available I2C address space and reading and

writing on an Electrically Erasable Programmable Read-Only Memory (EE-
PROM).
• Multicast DNS (mDNS): Scans the local network for devices with enabled

mDNS.
• Modbus: Supports reading and writing of coil and register values from a

Modbus server running over a TCP/IP network.
• MQTT: Supports dictionary attacks, message publishing and subscribing

both for generic devices and Amazon Web Services (AWS)-specific IoT devices.
• nmap: Allows for scanning of hosts, open ports and other details in a net-

work.
• Serial Peripheral Interface (SPI): Supports reading and writing to SPI flash

chips.
• TCP: Allows sending unauthorized commands to TP-Link smart devices on

the same network.
• UART: Supports enumeration over baud rates as well as identification of

undocumented or hidden console and fuzz commands and their arguments.
• UDP: Supports a hijack exploit for a smart plug called Kankun.
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• UPnP: Attempts to discover devices within a network and provide details
about those devices.
• Zigbee: Can provide device information, enumeration, sniffing, and per-

form a replay attack.

However, many of the plugins require hardware connectors to interact using
the relevant protocol.

3.2.3 HomePwn

HomePwn [60] is a security testing tool designed to identify and exploit vulnerab-
ilities in smart home devices. It focuses on the communication protocols used in
smart homes, such as BLE, Bluetooth, MQTT, NFC, and Wi-Fi, and allows users to
interact with these protocols to identify vulnerabilities. HomePwn features a user-
friendly command-line interface and supports various types of attacks, including
replay, injection, and eavesdropping attacks. The tool also provides comprehens-
ive documentation and resources for users to understand the vulnerabilities and
their potential impact. There are also device-specific modules such as Chromecast,
Smart TVs, and cameras. HomePwn can also use the Shodan API which shows
vulnerable IoT devices connected to the Internet. Some of the attacks it supports
are MAC spoofing and sniffing using Bluetooth, and hijacking of Chromecast and
smart TVs.

3.2.4 KillerBee

KillerBee [61] is an open-source framework and testing tool designed for explor-
ing and exploiting the security of ZigBee and IEEE 802.15.4 networks. Developed
in Python, KillerBee allows researchers and security professionals to sniff, inject,
and manipulate ZigBee network traffic in real-time. The tool can also be used to
conduct replay attacks, capture network keys, and perform other forms of network
analysis. KillerBee supports several hardware devices and platforms, including
GreatFET, HackRF, and Texas Instruments (TI) CC2531, among others. By using
KillerBee, security practitioners can better understand the security risks associ-
ated with ZigBee and 802.15.4 networks, as well as develop and test effective
countermeasures.

3.2.5 Comparison

This section presents a comparative analysis of the four penetration testing frame-
works based on three main factors: protocol support, attack capabilities, and user
experience.

To evaluate protocol support, a list of commonly used IoT device protocols in
smart home environments is presented in Table 3.3, along with the frameworks
that provide support for each protocol. Among the frameworks, EXPLIoT offers
the most comprehensive protocol support, including ZigBee and BLE. However,
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Table 3.3: Comparison of protocol support.

PENIOT EXPLIoT HomePwn KillerBee
AMQP X
CoAP X X
MQTT X X X
mDNS X X
ZigBee X X
Wi-Fi X
BLE X X X

the extent of functionality for each protocol may vary. PENIOT, on the other hand,
focuses on testing commonly used protocols such as AMQP, CoAP, and MQTT,
and also supports BLE. KillerBee offers exclusive support for ZigBee testing, while
HomePwn supports Wi-Fi testing and BLE.

Table 3.4: Comparison of attack support.

PENIOT EXPLIoT HomePwn KillerBee
DoS X X
Fuzzing X X
Replay X X X
Sniffing X X X X
Dictionary X
Spoofing X X
De-authentication X

Table 3.4 presents a simplified overview of the attack capabilities of the frame-
works, categorized by attack type. EXPLIoT offers the most extensive range of at-
tacks, but each protocol only has support for a few of them. PENIOT provides its
main functionality around fuzzing and DoS attacks for AMQP, CoAP, and MQTT,
but it can also perform sniffing and replay attacks for BLE. HomePwn is primarily
designed for discovery and device enumeration and offers support for only sniff-
ing and MAC spoofing. KillerBee supports de-authentication attacks exclusively
for ZigBee protocol.

Table 3.5: Comparison of user experience and Python version.

PENIOT EXPLIoT HomePwn KillerBee
GUI X
Interactive CLI X X
CLI X X
Python Version 2.7 3.10 3.6 3 and C

The frameworks also differ in user experience, which is presented in Table 3.5.
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PENIOT offers a Graphical User Interface (GUI) and is therefore more accessible
for novice users. EXPLIoT and HomePwn both provide an interactive Command-
Line Interface (CLI), which could provide a slightly more intuitive experience than
classic command-line interfaces. EXPLIoT also offers a non-interactive CLI. Killer-
Bee only provides a classic command-line interface.

Finally, the current status of development and support for further development
also differ between the frameworks. EXPLIoT uses the newest Python version of
the tools and is actively maintained. PENIOT has not been developed extensively
since its launch and currently only uses Python version 2.7. KillerBee was origin-
ally written in C and is currently being ported to Python 3.5 or higher. HomePwn
was written to support Python 3.6, but has not received any updates for 3-4 years.

Overall, EXPLIoT appears to be the most comprehensive framework due to
its extensive protocol support and wide range of attacks. However, the choice of
framework depends on the specific requirements of the user, such as the protocol
and attack types to be tested, as well as the level of experience with command-line
interfaces.

In comparison to the aforementioned frameworks, IoTective, the tool discussed
later in this thesis, exhibits notable distinctions. IoTective employs protocols such
as mDNS, ZigBee, Wi-Fi, and Bluetooth primarily for scanning and sniffing pur-
poses. Consequently, none of the attacks enumerated in Table 3.4, with the excep-
tion of sniffing, are encompassed within IoTective’s functionalities. Furthermore,
IoTective integrates a GUI implemented within the terminal environment. This
design choice enables users to operate the tool using cursor-based interactions,
positioning it as a hybrid interface, combining features of both GUI and interact-
ive CLI. Notably, IoTective is developed to be compatible with the latest iteration
of the Python programming language, specifically Python 3.11.
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System Design of IoTective

This chapter will discuss the architecture of the developed tool as well as the
environment used to perform the testing. This will give the user understanding
what features the tool aims to accommodate and how the components of the tool
works.

4.1 Design Considerations

When creating a new tool, a critical decision that needs to be made is whether to
start from scratch or to build on existing software. Building a tool from scratch can
offer a high degree of control over the development process and the opportunity
for customization to meet specific needs. However, this approach can be time-
consuming and expensive, especially if the functionality required already exists
in an existing tool. Moreover, building a tool from scratch can introduce unanti-
cipated bugs and security vulnerabilities, which may require significant time and
resources to address. On the other hand, building a tool based on existing soft-
ware can save time and reduce development costs while leveraging the existing
functionality and features. However, it is crucial to ensure that the licensing terms
and conditions of the existing software are compatible with the intended use of the
new tool and that the tool is properly integrated and tested to ensure its reliability
and security.

When developing a technical tool such as an automated penetration testing
tool, it is crucial to consider the target audience. A tool with a lot of customization
and functionality can be powerful for a proficient user, but it may be overwhelm-
ing for a novice user who wishes to test the security of their environment. Many
tools attempt to be an all-in-one package, offering users the ability to perform
any test they deem appropriate. Metasploit is a common example of such a tool,
often used by professionals when conducting penetration testing. However, the
vast functionality of Metasploit may pose a problem for novice users who do not
always know where to begin. If the goal is to allow low-technical users of smart
homes to test their environment, it is crucial to set the knowledge requirement
bar as low as possible, providing a simple user interface for the end-user. A tool
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that is user-friendly and intuitive to use is likely to be more effective in achieving
the desired outcomes for the target audience.

Penetration testing is a crucial process performed by proficient analysts who
possess extensive knowledge of various techniques and procedures employed to
gain unauthorized access to systems or sensitive data. In a production environ-
ment, a skilled analyst must exercise caution and judiciously consider the potential
impact of each test on the target system. The detection of a vulnerability such as
susceptibility to reset attacks, device factory resetting, or network flooding, may
potentially cause significant harm to the device. It is noteworthy that damage
resulting from penetration testing may not be covered by the product’s warranty,
making it imperative for users to be vigilant regarding the types of tests performed
on their devices. The same holds for automated penetration testing tools, partic-
ularly when the intended audience is less technically adept. It is recommended
to focus on the automation of the non-intrusive parts of a penetration test to en-
sure safety and facilitate the gathering of information without the exploitation of
devices that may result in harm.

4.2 Requirements of IoTective

This section will discuss the broad functional and non-functional requirements of
the developed tool. The requirements stated describes what the goals of the tool
aims to achieve without going into the technicality of how those requirements are
met.

4.2.1 Functional Requirements

The functional requirements define the specific features and functions that the
software should perform, which means what tasks the software should be able to
perform. These requirements define what the software should do in order to fulfill
its purpose. The development of IoTective uses the following functional require-
ments:

• Automation: The tool should be fully automated to minimize the need for
manual intervention. This will reduce the chances of errors, save time, and
increase the efficiency of the process.
• Applicability: The tool should be applicable in many different environ-

ments. It should be designed to be adaptable and flexible to work in various
situations, such as different types of data, hardware, and software config-
urations. This will increase the tool’s usefulness and value to users.
• Capability: The tools should support various smart home devices and pro-

tocols (e.g., Wi-Fi, Zigbee, Bluetooth)
• Reporting: The tool should be able to generate a report that is easy to un-

derstand using the information gathered from scanning and sniffing.
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4.2.2 Non-Functional Requirements

Non-functional requirements are related to the characteristics and qualities of the
software that are not directly related to the tasks that it performs, but are essential
for its proper functioning. Non-functional requirements are often referred to as
"quality attributes" or "Quality of Service (QoS) requirements". The development
of IoTective uses the following non-functional requirements:

• User-friendliness: The tool should provide a good user experience to en-
sure that users can use it easily and efficiently. The interface should be intuit-
ive, user-friendly, visually appealing, and require little technical knowledge
to be operated.
• Efficiency: The tool should be efficient in terms of processing speed and

accuracy. It should be able to perform the required tasks quickly and accur-
ately to save time and effort.
• Extendibility: The tool should developed so that it could easily be improved

upon and extended with further functionality.
• Accuracy: The tool should provide accurate results and avoid any errors

that could compromise the effectiveness of its functionality.
• Reliability: Ensuring that the tool is stable and provides consistent and ac-

curate results

These requirements will be the pillars of the tool and guided the decisions
made during development. Overall, this tool aims to fill a limited, but sometimes
time-consuming part of penetration testing, namely planning and reconnaissance,
and scanning. These phases consists of gathering the available information about
the targets without exploiting them. An analysts should be able to use the tool
to quickly automate this process since its usually the later stages that requires a
more targeted approach.

4.3 Architecture of IoTective

In this section, we’ll explore the architecture of IoTective, highlighting its phases
and their contributions to modularization. We’ll provide an overview of the tool’s
design and delve into each phase’s functionality, revealing insights into IoTective’s
construction and design considerations.

Let’s start by examining the overall design (Figure 4.1). The "Initialization"
phase detects host capabilities, selects testing targets, and configures the program.
If network scanning is enabled, the tool proceeds to the "Scanning" phase, focusing
on device discovery without packet capture. Information is stored in the report,
and if enabled, the tool moves to the "Sniffing" phase. Here, packet capture occurs
via Wi-Fi, Bluetooth, and ZigBee to discover additional devices. Captured data is
stored in the report. The final phase is "Reporting," responsible for generating an
intuitive report for the user.

Now, let’s delve deeper into each phase, discussing the operations and de-
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Figure 4.1: Overall design of IoTective.

cisions involved. The "Initialization" phase primarily revolves around the user se-
lecting scan types and the corresponding adapters/interfaces to use. For example,
if the user enables ZigBee sniffing, they will be prompted to choose the adapter
for this operation. The same applies to Wi-Fi sniffing and network scanning. The
Bluetooth adapter is configured automatically and doesn’t require user specific-
ation. After the configuration, the next phase is determined based on the user’s
selections. If network scanning is enabled, the tool proceeds to the "Scanning"
phase before entering the "Sniffing" phase, if enabled. If network scanning is dis-
abled, the tool directly transitions to the sniffing phase if either of the sniffing
options is enabled. If neither scan type option is enabled, the program exits but
generates an empty report. While this empty report is primarily useful for testing
the program’s functionality, it doesn’t provide significant usability for analysts.
The design of the initialization phase is illustrated in Figure 4.2.

Figure 4.2: Design of the initialization phase.

Moving on to the scanning phase, depicted in Figure 4.3, it begins with an
ARP scan that allows IoTective to quickly discover all live hosts by obtaining their
IP and MAC addresses. Each IP address is then used as a target for an extensive
nmap enumeration. This enumeration may take some time, depending on the
connection speed. IoTective is configured to test the top 2000 ports of each host
to identify running services. This number strikes a balance between an exhaustive
list, which would be time-consuming, and allowing the discovery of more obscure
ports, such as port 8123 used by Home Assistant. The enumeration also involves
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guessing the host’s operating system and determining the accuracy of that guess.
Additionally, nmap runs a script called "vulners," which queries a remote 250 GB
database of known CVEs using the Common Platform Enumeration (CPE) of the
services running on the host.

Following device enumeration, IoTective performs functions specifically tar-
geting the Philips Hue Bridge. It starts with an mDNS lookup, as this protocol is of-
ten used by IoT devices for mutual discovery and is recommended by Philips Hue1.
The subsequent step depends on whether the bridge was discovered. If it was,
IoTective proceeds to fetch the configuration of the devices. If not, IoTective util-
izes a GET request on the broker server URL (https://discovery.meethue.com),
which returns the private IP address of any Philips Hue bridge on the network. The
bridge configuration is then obtained by querying https://<BRIDGE_PRIVATE_IP_
ADDRESS>/api/0/config using the acquired IP address.

Figure 4.3: Design of the scanning phase.

If Wi-Fi, ZigBee, or Bluetooth sniffing is enabled, IoTective proceeds to the
sniffing phase. Each of these parts is depicted in Figure 4.4. Let’s start with Wi-Fi
sniffing. IoTective captures packets based on the Extended Service Set Identifier
(ESSID) of the connected access point. The ESSID is commonly known as the Wi-Fi
network name, which is typically the default name set by the vendor or customized
by the user. Capturing based on the ESSID, rather than just the Basic Service Set
Identifier (BSSID) obtained from connections, is necessary because many access
points support both 2.4 GHz and 5 GHz bands using the same ESSID. While the
ESSID is the same for both bands, the BSSID is not. Since only the broadcast
packets announce the ESSID, while the data packets only show the BSSID, we

1How to develop for Philips Hue? https://developers.meethue.com/develop/
get-started-2/

https://discovery.meethue.com
https://<BRIDGE_PRIVATE_IP_ADDRESS>/api/0/config
https://<BRIDGE_PRIVATE_IP_ADDRESS>/api/0/config
https://developers.meethue.com/develop/get-started-2/
https://developers.meethue.com/develop/get-started-2/
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need all BSSIDs to discover all relevant packets. Once the BSSIDs are determined,
IoTective captures data packets and filters them based on the BSSIDs. Any unique
hosts communicating using these BSSIDs are assumed to be connected hosts.

Figure 4.4: Design of the sniffing phase.

Bluetooth sniffing is a simpler task. First, a regular Bluetooth scan is per-
formed, allowing IoTective to discover all Bluetooth devices in the vicinity. The
next step is to connect to each device and attempt to gather additional informa-
tion about the services and characteristics of the device.

ZigBee sniffing involves looping through each channel and logging each dis-
covered device. This allows IoTective to determine hosts connected to each chan-
nel and their PAN ID. The information gathered during the sniffing phase is added
to the report before proceeding to the final phase.

Figure 4.5: Design of the reporting phase.

Moving on to the reporting phase, depicted in Figure 4.5, it takes the report
information as input and generates a JSON file. The information in the JSON
report is then displayed using Markdown language. This allows the user to view
the report in IoTective and review the home environment for further analysis. The
reason to use Markdown language is that it allows the Python module "Texual" to
automatically generate a navigation pane, making it easier for the user to move
information and devices.
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Implementation

This chapter describes the developed tool and its functions. This includes describ-
ing the product’s phases, the user experience, and the structure of the code. This
chapter will give the reader insight into the code repository. This will aid any
reader who wishes to help further develop the tool or review the tools underlying
code.

5.1 Development Environment

The tool will be implemented using Python 3.11, which is the newest version of
Python as of writing. Python is an excellent choice for developing tools for pen-
etration testing due to its ease of use, flexibility, and abundance of libraries and
frameworks available. Python’s syntax is easy to read and write, making it easier
to write and maintain code, especially for those who are new to programming. Its
flexibility also makes it easy to integrate with other technologies, such as data-
bases and web frameworks, allowing for the development of more complex sys-
tems. Moreover, the vast number of libraries available for Python makes it easier
to develop tools quickly, without having to build everything from scratch. Addi-
tionally, Python is a popular language in the cybersecurity community, meaning
there is a wealth of resources available for learning and problem-solving, such as
online communities, documentation, and code examples. Overall, Python’s sim-
plicity, flexibility, and vast community make it an excellent choice for developing
tools for penetration testing.

GitHub is a popular platform for hosting and sharing code, and will be used
to host the code for the developed tool. The decision to make the code publicly
available on GitHub is driven by the desire to encourage collaboration and feed-
back from the community of developers and users. The public repository will allow
other developers to review, improve, and build upon the code, resulting in a more
robust and feature-rich tool. Users will also be able to provide feedback and re-
port issues, which can help to improve the tool’s performance and usability. The
use of GitHub also provides a transparent record of changes and updates made to
the code, allowing users to track the evolution of the tool over time. Finally, by
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making the code publicly available, other researchers and practitioners can bene-
fit from the tool, potentially leading to further advancements in the field of smart
home penetration testing [62].

The tool will be primarily developed for Kali Linux, however, since Python is
Operating System (OS)-independent, it has the potential to be easily ported to
other OSs as well. Kali Linux is a specialized Linux distribution that is designed
specifically for penetration testing and security auditing. It comes pre-installed
with a wide range of tools and utilities that are essential for security professionals
and hackers alike. Developing a tool for Kali Linux ensures that it is compatible
with the environment it is intended to be used in, and that it can leverage the
full suite of tools and libraries available in Kali Linux. Additionally, Kali Linux is
widely used in the industry and has a large and active community of developers
and users, which means that the tool can benefit from the feedback, testing, and
support of this community. By developing the tool for Kali Linux, it can also be
easily packaged and distributed as a Kali Linux package, which makes it conveni-
ent for users to install and use. Developing the tool for Kali Linux can lead to a
more efficient, effective, and widely adopted solution for penetration testing and
security auditing.

The tool will be implemented with the assumption that the user has a wireless
adapter that supports monitoring mode, a Zigbee adapter, and a Bluetooth adapter
that supports monitoring mode. This allows the tool to perform wireless network
analysis, Zigbee network analysis, and Bluetooth network analysis. The tool will
provide the ability to capture and analyze network traffic, and to identify potential
vulnerabilities in the wireless, Zigbee, and Bluetooth networks. The inclusion of
Bluetooth support will enable the tool to scan for and analyze BLE devices, which
are becoming increasingly popular in IoT applications. The tool will be designed
to support a wide range of wireless, Zigbee, and Bluetooth adapters, and will
provide guidance on adapter selection to ensure optimal performance.

The developed tool will be an open-source project, hosted on a public GitHub
repository. This means that the source code will be freely available for anyone to
access, use, modify, and distribute, under a permissive license. Open-source devel-
opment brings numerous benefits to both developers and users, including trans-
parency, collaboration, and innovation. By making the code open-source, other
developers can review, improve, and build upon it, resulting in a more robust and
feature-rich tool. The open-source model also fosters a community of users and
developers who can provide feedback, suggest improvements, and contribute to
the project. Furthermore, open-source tools are often free, making them access-
ible to a wider range of users. Finally, the open-source model ensures that the code
remains available and can be modified as needed, even if the original developer
is no longer actively maintaining the project.
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5.2 Python Modules

As mentioned earlier, there are a lot of modules that are built to provide function-
ality related to performing security testing such as network scanning and sniffing.
The following is a list of modules, excluding the built-in modules, used in this
project to provide further functionality:

• psutil: A module that provides an interface for retrieving information about
running processes and system utilization.
• prettytable: A module for creating visually appealing American Standard

Code for Information Interchange (ASCII) tables from data.
• python3-nmap: A Python library that wraps the Nmap security scanner,

allowing for network exploration and vulnerability scanning.
• pyyaml: A YAML parser and emitter for Python, enabling the reading and

writing of YAML files.
• bleak: A module for interacting with BLE devices using the asyncio frame-

work.
• requests: A versatile module for making Hypertext Transfer Protocol (HTTP)

requests and handling responses.
• zeroconf: A module that provides support for mDNS/DNS-SD service dis-

covery and registration.
• scapy: A powerful interactive packet manipulation module that allows for

network scanning, capturing, and forging of network packets.
• rich: A library for rich text and beautiful formatting in the terminal, provid-

ing features like syntax highlighting, tables, and progress bars.
• pyroute: A Python library for network configuration and low-level interac-

tion with network devices using the Linux kernel’s netlink protocol.
• textual: A framework for building rich terminal applications with a focus

on simplicity and extensibility.
• zigpy_znp: A module that extends Zigpy, a library for working with ZigBee

devices, to support Texas Instruments Z-Stack ZigBee Network Processor
(ZNP) interfaces.

When selecting Python modules for a development project, it is crucial to
consider the popularity and recent development of the modules in question. The
choice of modules should be based on their current usage within the community
and their future potential for support and maintenance. This is because the selec-
tion of modules that are actively maintained and updated by a large user com-
munity provides several advantages. Firstly, these modules are more likely to re-
main compatible with future versions of Python and other libraries. Secondly, they
are likely to have more bug fixes and feature updates available, making them
more reliable and robust. Lastly, a strong community of contributors and users can
provide helpful resources such as documentation, tutorials, and support forums,
which can assist in the development process. Therefore, the choice of modules
must be made with a long-term perspective in mind to ensure that the selected
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modules remain relevant and useful for the intended purpose.

5.3 Code Structure

This section will describe how project code is structured. To use the tool, the user
must run the main function called iotective.py as superuser. The main function
runs the scripts located in the directories with names corresponding indicating
the phase. The phases are as follows:

1. Initialization: Checks host capabilities and defines target network. If sup-
port for Wi-Fi, Bluetooth, or ZigBee sniffing it detected, the user will be
asked what capabilities should be enabled.

2. Scanning: Performs host enumeration, port scanning, service and OS iden-
tification, and vulnerability detection.

3. Sniffing: Performs packet capture using Wi-Fi, Bluetooth, and ZigBee to
gather a more complete picture of the network.

4. Reporting: Uses information gathered form phases 2 and 3 to create a re-
port and display information to the user.

In addition, the directory "app" contains functions related to the graphical in-
terface, making it easy for the user to configure the tool and to view reports after
a scan has been performed.

5.4 Main Functions

This section describes some of the main functions of IoTective and explains how
some of its features are implemented. To make it easier to explain the logic of the
program, some simplified code snippets are used as reference.

5.4.1 Initialization

The initialization phase of a network security tool is a critical step that occurs prior
to any data gathering from the network. During this phase, the tool conducts an
assessment of the host’s capabilities to determine whether it can support sniffing
using various wireless communication protocols, including Wi-Fi, Bluetooth, and
Zigbee. Based on this assessment, the user is presented with options to enable
these functionalities. Additionally, the initialization script configures the target IP
range, selects the appropriate interface for data transmission and reception, and
verifies whether the script is being executed with administrative privileges or not.

Code listing 5.1: Initialization Data

now = datetime.now()

report = {
"file_name": now.strftime("report_%Y-%m-%d_%H-%M-%S.json"),
"start_time": str(now),
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"end_time": "",
"config": config,
"network_scan": [],
"hue_bridge": [],
"sniffing": {

"wifi": {},
"bluetooth": {},
"zigbee": {}

}
}

The "config" variable in Code Listing 5.1 refers to the configuration performed
by the user, which tells IoTective which scan types to perform. The subsequent
keys refers to the values where discovered hosts will be stored.

5.4.2 Scanning

The file scanning/nmap.py defines two functions that use the "nmap3" library to
perform network scans on a specified target. The first function "arp_scan", shown
in Code Listing 5.2, performs an ARP scan on the target to identify live hosts,
represented as ‘Host‘ objects. The function uses the "NmapHostDiscovery" class to
perform the scan and checks if the hosts are live by checking if they have a state
of ’up’ and have a MAC address.

Code listing 5.2: ARP Scan

def arp_scan(target: str, logger) -> List[Host]:
try:

# Perform ARP scan using nmap
nmp = NmapHostDiscovery()
logger.info(f"Performing␣ARP␣scan␣on␣{target}...")
result = nmp.nmap_arp_discovery(target=target, args="-sn")
# Filter on live hosts
live_hosts = [

Host(
ip=host,
mac=host_info.get(’macaddress’, {}).get(’addr’, ’Unknown’),
vendor=host_info.get(’macaddress’, {}).get(’vendor’, ’Unknown’)

)
for host, host_info in result.items()
if ’state’ in host_info

and host_info[’state’].get(’state’) == ’up’
and host_info[’macaddress’] is not None

]

if live_hosts:
logger.info(f"Found␣{len(live_hosts)}␣live␣hosts")

else:
logger.info(f"Could␣not␣find␣any␣live␣hosts")

return live_hosts
# Exception handling...
return []

The second function "port_scan" (Code Listing 5.3) performs a port scan, ser-
vice scan, and vulnerability scan on the specified target. It uses the "Nmap" class
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to perform the scan with specific arguments and returns the results as a dictionary.
The logger parameter is used to log messages during the scan process. If an error
occurs, the functions catch the exception and log the error message accordingly.
The "typing" module is imported to specify the function parameter and return
types. The "Host" class is imported from a module named "models" defined in a
"models.host" package.

Code listing 5.3: Port Scan

def port_scan(target: str, logger) -> Dict:
try:

logger.info(
f"Scanning␣{target}␣for␣open␣ports,␣"
f"services,␣and␣known␣vulnerabilities␣..."

)
nmp = Nmap()
arguments = "--open␣-T4␣-O␣--top-ports␣10000␣--script␣vulners"
return nmp.nmap_version_detection(target=target, args=arguments)

# Exception handling...
return {}

After the initial scanning is performed, the next step uses vendor-specific tech-
niques to look for a Philips Hue bridge. The script scanning/hue.py includes the
function discover_philips_hue_bridge(). To search for Philips Hue bridge, it first at-
tempts to discover it on the local network using a mDNS lookup on the address
"_hue._tcp.local.". This allows us to to discover the bridge without the need for it
to be connected to the cloud.

Code listing 5.4: Philips Hue mDNS discovery

hue_scan = MdnsScan(service_type="hue")
hue_scan.scan()
discovered_bridges = hue_scan.get_devices()

The function named MdnsScan() (Code Listing 5.4) utilizes a dictionary of
mDNS service addresses to query the relevant service. Upon receiving a response
from the bridge, the IP address is obtained and subsequently used to extract the
bridge configuration from the API. However, if no response is received from the
mDNS query, the tool resorts to using Philips Hue’s broker service to discover the
IP. This process involves issuing a GET request to "https://discovery.meethue.com",
which, if the bridge is present in the network, will return a JSON file containing
information about the bridge.

After obtaining the private IP address of the Philips Hue bridge using the meth-
ods described earlier, the API can be queried for more information. The API is
primarily intended for developers to create applications that can control the con-
nected devices. However, to obtain an access token, the user must physically push
the button on the bridge, which can be an obstacle in certain scenarios. Despite
this, some information can still be obtained from the API without authentication.
For instance, a configuration file containing details about the data store, API, and
software version can be queried using a GET request to the URL "https://<IP AD-
DRESS>/api/0/config". In this URL, the private IP address of the bridge obtained
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in the previous step is used. By analyzing the different versions, it is possible to
look for related CVEs and determine whether the bridge has been patched or not.

5.4.3 Sniffing

The code showed in Code Listing 5.5 defines a function called "discover_bssids_on_ssid"
that takes three parameters: "interface" is a string representing the name of the
Wi-Fi interface to use, "ssid" is a string representing the ESSID of the Wi-Fi net-
work to search for, and "logger" is an instance of the logging class that is used
for outputting log messages. The function uses the scapy library to capture Wi-Fi
packets on each channel of both the 2.4GHz and 5GHz bands, looking for beacons
or probe responses that contain the target ESSID.

Code listing 5.5: Capture beacon frames to obtain BSSIDs

def discover_bssids_on_ssid(ssid: str, interface: str, logger) ->
Dict[str, List[str]]:

bssids = {}
channels = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] # 2.4 GHz channels
channels += [36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124,
128, 132, 136, 140, 149, 153, 157, 161, 165] # 5 GHz channels

with Progress() as scanner:
scan_task = scanner.add_task(

f"[cyan]Discovering␣BSSIDs␣using␣’{ssid}’␣as␣SSID...",
total=len(channels)

)

for channel in channels:
# Change the channel of the wireless interface
os.system(f"iwconfig␣{interface}␣channel␣{channel}")

# Define a packet handler function to extract MAC addresses
def packet_handler(pkt: Packet):

# Extract the source and destination MAC addresses from the packet
if pkt.haslayer(Dot11)
and pkt.haslayer(Dot11Elt)
and pkt.info.decode() == ssid:

# Check if the packet is a Beacon frame or a Data frame
if pkt.type == 0 and pkt.subtype == 8:

# Extract the BSSID from the Beacon frame
bssid = pkt[Dot11].addr3
bssids.setdefault(bssid, [])

scanner.update(scan_task, advance=1)

# Sniff Wi-Fi packets for 2 seconds on the current channel
try:

sniff(prn=packet_handler, iface=interface, timeout=2)
except Scapy_Exception as e:

logger.error(e)
return bssids

The "channels" variable contains a list of channels for both the 2.4 GHz and 5
GHz frequency bands. The function utilizes the "rich.Progress()" module, enabling
the display of a progress bar to provide visual feedback to the user. Within the
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function, there is a loop that iterates over each channel, allowing the wireless
interface to listen on each channel sequentially. The packet handler specifically
filters the packets based on IEEE 802.11 beacon frames. Each discovered BSSID is
appended to the "bssids" variable, which is ultimately returned once the process
is completed.

Following the BSSID discovery, IoTective employs the "discover_hosts_on_bssids()"
function to iterate through each channel, identifying hosts based on the previously
identified BSSIDs. Code Listing 5.6 closely resembles Code Listing 5.5, with the
exception of the packet handler, which filters on data frames. It looks for new
MAC addresses where the identified BSSIDs are either the source or destination
address of the packet, indicating potential connected hosts.

Code listing 5.6: Packet handler identifying connected hosts

def packet_handler(pkt: Packet):
# Extract the source and destination MAC addresses from the packet
if pkt.haslayer(Dot11) and pkt.type == 2:

# Extract the BSSID and source MAC address from the Data frame
bssid = pkt[Dot11].addr3
src_mac = pkt[Dot11].addr2
dst_mac = pkt[Dot11].addr1
if bssid in bssids:

if src_mac == bssid and dst_mac not in bssids[bssid]:
bssids[bssid].append(dst_mac)

elif dst_mac == bssid and src_mac not in bssids[bssid]:
bssids[bssid].append(src_mac)

ZigBee sniffing operates in a similar manner to Wi-Fi sniffing. IoTective utilizes
the "discover_zigbee_devices()" function (Code Listing 5.7), which accepts para-
meters such as the logger, number of scans, and the path to the ZigBee adapter.
Within this function, the "znp.connect()" method establishes a connection with the
ZigBee adapter, while the "network_scan()" function conducts the sniffing process
on each specified channel. The output of the function is a dictionary that maps
channels to their respective hosts discovered during the sniffing process.

Code listing 5.7: ZigBee device discovery

async def discover_zigbee_devices(logger, radio_path: str, num_scans=6) ->
dict[str, list]:

znp = ZNP(CONFIG_SCHEMA({"device": {"path": radio_path}}))
await znp.connect()
channels = t.Channels.from_channel_list(map(int, [11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26]))

devices = await network_scan(
duplicates=False,
duration_exp=4,
num_scans=num_scans,
channels=channels,
znp=znp,
logger=logger

)
znp.close()
return devices
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Bluetooth enumeration involves two main steps: device discovery and ser-
vice identification. In the "bluetooth_enumeration()" function shown in Code List-
ing 5.8, the first step is to identify all devices in the vicinity by executing the
"scan_devices()" function. This function returns a dictionary where the device
addresses serve as keys, and the corresponding values contain a dictionary with
device information.

Once the devices are discovered, IoTective proceeds to gather additional in-
formation by attempting to establish connections with each device and identify
the services available on them. This process involves querying the devices for their
supported services and characteristics.

Code listing 5.8: Bluetooth device enumeration

async def bluetooth_enumeration(logger) -> dict[str, dict]:
devices = await scan_devices(logger)

if len(devices) > 0:
with Progress() as scanner:

scan_task = scanner.add_task(
description="Fetching␣device␣services...",
total=len(devices)

)
for address in devices:

try:
scanner.update(

scan_task,
description=f"Fetching␣services␣for␣device␣{address}..."

)
devices[address]["services"] = await get_device_services(

address=address,
logger=logger

)
scanner.advance(scan_task, advance=1)

except BleakError as e:
logger.error(e)
scanner.advance(scan_task, advance=1)
devices[address]["services"] = []

logger.info(
f"Gathered␣information␣about{str(len(devices))}␣Bluetooth␣devices."

)
return devices

else:
return {}

5.4.4 Reporting

The reporting phase consists of two primary components: generating the report
file and displaying the report to the user. The report file generation process is
straightforward. Python parses the dictionary initialized at the beginning into a
JSON file, which is then stored in the "reports" directory within IoTective. The
"reports" directory serves as a repository for all generated reports, which can be
accessed by the user. By selecting a specific report, the user can view the inform-
ation extracted from the JSON file, which is displayed in Markdown format.
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Code Listing 5.9 presents the "create_report_information_markdown()" func-
tion, which is responsible for generating the report presented to the user. The
"markdown" variable contains all the information that is displayed. Depending on
the specified configuration, additional device information is included. IoTective
employs the "textual" module to present the Markdown content in a user-friendly
manner, enabling easy navigation between different sections of the report.

Code listing 5.9: Generation of Markdown language

def create_report_information_markdown(data: dict[str, any]) -> str:
markdown = f"""

# Scan Information #

**Start Time:** {datetime.strptime(data[’start_time’],
’%Y-%m-%d %H:%M:%S.%f’).strftime(’%A, %B %d, %Y %I:%M:%S %p’)}

**End Time:** {datetime.strptime(data[’end_time’],
’%Y-%m-%d %H:%M:%S.%f’).strftime(’%A, %B %d, %Y %I:%M:%S %p’)}

## Configuration ##

**Interface:** {data[’config’][’interface’]}
**IP Address:** {data[’config’][’ip_address’]}
**Netmask:** {data[’config’][’netmask’]}
**Network Scanning:** {’Yes’ if data[’config’][’network_scanning’] else ’No’}
**WiFi Sniffing:** {’Yes’ if data[’config’][’wifi_sniffing’] else ’No’}
**BLE Scanning:** {’Yes’ if data[’config’][’ble_scanning’] else ’No’}
**Zigbee Sniffing:** {’Yes’ if data[’config’][’zigbee_sniffing’] else ’No’}
**Zigbee Device Path:** {data[’config’][’zigbee_device_path’]}

## Scan Summary

Network devices: {len(data["network_scan"])}
Wi-Fi devices: {len(data["sniffing"]["wifi"])}
Bluetooth devices: {len(data["sniffing"]["bluetooth"])}
ZigBee devices: {len(data["sniffing"]["zigbee"])}

# Devices #
"""

if data[’config’][’zigbee_sniffing’]:
markdown += create_zigbee_markdown(data=data["sniffing"]["zigbee"])

if data[’config’][’network_scanning’]:
markdown += create_network_scanning_markdown(data=data["network_scan"])
if len(data["hue_bridge"]) > 0:

markdown += create_hue_bridge_markdown(data=data["hue_bridge"])
if data["config"]["ble_scanning"]:

markdown += create_bluetooth_markdown(data=data["sniffing"]["bluetooth"])

return markdown
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Proof-of-Concept

The Proof-of-Concept chapter plays a crucial role in this thesis as it demonstrates
the practical implementation of the automated penetration testing tool in a sim-
ulated smart home environment. This chapter aims to showcase the tool’s effect-
iveness in identifying vulnerabilities and weaknesses in the network, while also
providing insights into the potential impact of these vulnerabilities if exploited
by an attacker. The PoC was conducted in the environment described in Section
6.1, which provided a realistic and controlled testing environment. This chapter
provides a detailed account of each step of the testing process, including the setup
of the testing environment, execution of the tool, and analysis of the results. The
insights gained from this PoC inform the conclusions and recommendations for
future work presented in the subsequent chapters of this thesis.

6.1 Proof-of-Concept Environment

This section provides an overview of the home network environment utilized for
testing the IoTective tool. Figure 6.1 illustrates the network diagram, demonstrat-
ing the central hub of the test environment, a router/Access Point (AP), which
connects Wi-Fi and Ethernet devices.

The testing employed a Lenovo Yoga Slim 7 Pro 14IHU51 laptop running Win-
dows 11 as the attacker machine. The laptop hosted a Kali Linux Virtual Machine
(VM) on VMWare Workstation 17 Player 2. The Lenovo laptop was equipped with
an Intel Core i5-11300H3 CPU and 16 GB of RAM. The Kali Linux VM connected
to the AP via Wi-Fi using a wireless adapter supporting monitoring mode. ZigBee
sniffing was performed using a TI CC25314 device, which was flashed with custom

1Lenovo Yoga Slim 7 Pro 14IHU5. https://psref.lenovo.com/syspool/Sys/PDF/Yoga/Yoga_
Slim_7_Pro_14IHU5/Yoga_Slim_7_Pro_14IHU5_Spec.pdf

2VMWare Workstation 17 Player. https://www.vmware.com/products/workstation-pro.html
3Intel Core i5-11300H. https://ark.intel.com/content/www/us/en/ark/products/196656/

intel-core-i511300h-processor-8m-cache-up-to-4-40-ghz-with-ipu.html
4Texas Instruments CC2531. https://www.ti.com/product/CC2531
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https://psref.lenovo.com/syspool/Sys/PDF/Yoga/Yoga_Slim_7_Pro_14IHU5/Yoga_Slim_7_Pro_14IHU5_Spec.pdf
https://www.vmware.com/products/workstation-pro.html
https://ark.intel.com/content/www/us/en/ark/products/196656/intel-core-i511300h-processor-8m-cache-up-to-4-40-ghz-with-ipu.html
https://ark.intel.com/content/www/us/en/ark/products/196656/intel-core-i511300h-processor-8m-cache-up-to-4-40-ghz-with-ipu.html
https://www.ti.com/product/CC2531
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firmware using a CC Debugger5. This enabled the utilization of the "zipbgy_znp"
Python module. For Wi-Fi monitoring, a Realtek RTL8812AU6 adapter with mon-
itor mode support was employed. Both Universal Serial Bus (USB) adapters were
connected to the virtual Kali Linux machine.

The network environment consisted of various devices, including an Ethernet-
connected Philips Hue Bridge, a Philips Hue Bloom light, a Philips Hue motion
sensor, a Philips Hue smart plug, a Samsung TV, phones, and computers. Addition-
ally, a Raspberry Pi was incorporated, running Home Assistant and Pi-Hole. Home
Assistant controlled the Philips Hue Bridge and connected IoT devices, while Pi-
Hole served as a network-wide ad and malware blocker. The Raspberry Pi operated
on the Raspbian OS, and both Home Assistant and Pi-Hole were set up as Docker
instances. This combination of devices and services created a more realistic smart
home environment, enhancing the validity and relevance of the experimental res-
ults.

Figure 6.1: Smart home environment used for testing.

5CC Debugger. https://www.ti.com/tool/CC-DEBUGGER
6Realtek RTL8812AU. https://zsecurity.org/product/realtek-rtl8812au-2-4-5-ghz-usb-wireless-adapter/

https://www.ti.com/tool/CC-DEBUGGER
https://zsecurity.org/product/realtek-rtl8812au-2-4-5-ghz-usb-wireless-adapter/
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6.2 Test Execution and Results

In this section, we run the tool in the previously described environment and dis-
cuss the results obtained from different stages, as well as how the user can inter-
pret them.

6.2.1 Phase 1: Initialization

To test all the capabilities of IoTective, we enable all scan types, including network
scanning (using nmap), Wi-Fi sniffing, Bluetooth scanning, and ZigBee sniffing.
This allows us to gain a comprehensive view of the home environment. Figure 6.2
shows the configuration for the scan initialization.

Figure 6.2: Scan initialization.

Network scanning means that the script will perform an ARP scan before using
nmap do gather information about services, ports, OS, and known vulnerabilities
associated with the services. Wi-Fi sniffing assumes that the chosen interface is
associated with a wireless adapter that supports monitor mode and is connec-
ted to the target Wi-Fi network. It uses packet capture to determine which hosts
are connected to the access point through Wi-Fi. Bluetooth scanning performs a
regular Bluetooth scan, however it also performs the initial phase of a Bluetooth
connection which allows us to gather information about services and character-
istics. ZigBee sniffing uses packet capture to create an overview of which ZigBee
devices are communicating on each channel.

6.2.2 Phase 2: Scanning

The scanning phase begins with an ARP scan, which is a network scanning tech-
nique used to identify and associate IP addresses with their corresponding MAC
addresses in a local network. This allows for the rapid detection of all connected
devices, and the MAC addresses can provide vendor information. The results of



56 K. Nordnes: IoTective: Automated Penetration Testing for Smart Home Environments

the ARP scan are shown in Figure 6.3, which displays seven active hosts in the
network along with their MAC and IP addresses. The initial six characters of the
MAC addresses often indicate the vendor, providing additional information.

Figure 6.3: Result from ARP scan.

After identifying the connected hosts, the tool proceeds to perform a compre-
hensive nmap scan for each device. This scan gathers information about the oper-
ating system, open ports, running services on each port, and any known vulner-
abilities associated with these services. The real-time scanning process provides
continuous updates to the user. Figure 6.4 shows the scan results for the Raspberry
Pi, a device running Home Assistant software for smart home device management.
The scan reveals four open ports, with port 8123 being particularly noteworthy as
it is commonly used by Home Assistant for web services employing HTTP. Addi-
tionally, the scan identifies 77 known vulnerabilities associated with the services
running on this port. The subsequent sections will explore the report in detail to
gain further insights into these vulnerabilities.

Figure 6.4: Result from nmap scan of Raspberry Pi.

To provide a comparison, let’s examine the findings from the scan conducted
on the Philips Lighting BV host in the network shown in Figure 6.5. As expected,
the host is identified as a Philips Hue bridge, as indicated by the OS identification
labeling it as Philips Hue Bridge 2.0. The confidence level of this identification is
97%, reinforcing its accuracy. The host has open ports 80 and 443, indicating the
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presence of a web server. However, it is important to note that web security testing
falls beyond the scope of this tool. Encouragingly, no known vulnerabilities were
detected in any of the services operating on the host.

Figure 6.5: Result from nmap scan of Philips Lighting BV host.

Once all the devices are enumerated, IoTective searches for a Philips Hue
bridge on the network. Without prior knowledge of whether a bridge exists, the
tool initiates an mDNS lookup using the address "_hue._tcp.local.," commonly as-
sociated with Philips Hue devices. In this case, the mDNS query did not yield a
response. The tool then resorts to a cloud lookup by sending a GET request to
https://discovery.meethue.com, which, if the bridge is connected to the cloud,
returns the device’s private network address. The bridge periodically queries the
cloud to announce its private network address, facilitating cloud services in estab-
lishing a mapping between the household’s public address and the bridge. This
mapping ensures control over the device when connected via the public network.

Having confirmed the presence of a Philips Hue bridge on the network and
obtained its associated private network address, the tool gains crucial inform-
ation. Each Philips Hue bridge features an API that allows other applications,
such as Home Assistant or custom-developed software, to control connected smart
devices. Most API commands require authentication and authorization by the
application. However, the "config" query serves as an exception, providing sig-
nificant information about the bridge. This information is acquired by query-
ing https://<BRIDGE_PRIVATE_IP_ADDRESS>/api/0/config, and the outcome is
presented in Figure 6.6. The configuration information includes properties such as
model ID, bridge ID, and name. Of particular significance for both the analyst and
IoTective are the API version and software version, as certain CVEs are associated
with specific versions of the API and software used by the Philips Hue bridge. Veri-
fying the up-to-date and patched status of the API and software versions ensures
protection against these CVEs, such as CVE-2020-6007 (buffer overflow vulner-
ability) and CVE-2017-14797 (deficiency in transport layer encryption).

https://discovery.meethue.com
https://<BRIDGE_PRIVATE_IP_ADDRESS>/api/0/config
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Figure 6.6: Configuration information gathered from Philips Hue bridge API.

6.2.3 Phase 3: Sniffing

After completing the scanning phase, IoTective proceeds to phase 3, which in-
volves packet capture and scanning of Bluetooth, Wi-Fi, and ZigBee devices. The
tool starts by performing Wi-Fi packet capture. Initially, it determines the BSSIDs
of the access points to which the wireless adapter is connected. This is achieved
by capturing IEEE 802.11 broadcast packets on each channel and filtering them
based on the access point’s ESSID. This approach is used to avoid relying solely
on the BSSID provided during Wi-Fi connection, as many routers support both
2.4 GHz and 5 GHz bands with the same ESSID. Each band has its distinct BSSID,
and filtering based on only one of them could potentially result in missing relevant
packets. Once the BSSIDs are identified, the tool captures packets on each channel
again, applying filters based on the BSSIDs to determine the band to which each
connected device is connected. While the encrypted nature of the packets limits
the acquisition of new information, the tool is able to establish a mapping between
the MAC addresses and the addresses discovered during the scanning phase. It’s
important to note that in this run, the tool was only able to discover two out of
four connected hosts, most likely due to the limitation of capturing packets for
only 10 seconds on each channel, and not all devices may send packets within
that timeframe.

After identifying Wi-Fi hosts, the tool proceeds to perform Bluetooth scanning.
This phase involves standard Bluetooth scanning procedures similar to those car-
ried out by phones or computers. It gathers information such as device name,
company name, local name, signal strength, and service UUIDs. Subsequently,
IoTective attempts to establish a connection with each device to acquire additional
information, including services and characteristics. However, certain devices may
have security mechanisms that restrict connection establishment, such as devices
requiring explicit user acceptance or activation of pairing mode. The scan dis-
covered a total of 44 Bluetooth devices, with only three of them allowing access
to information regarding services and characteristics.

Finally, the tool proceeds with ZigBee packet capture on each ZigBee channel
to identify the devices associated with each channel. This phase requires a ZigBee
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USB dongle capable of packet capture, such as the CC25317. The dongle was
flashed with custom firmware8 for this purpose. Although the encrypted nature
of the packets limits the available information, it is still possible to determine the
channel, protocol version, PAN ID, and whether the device allows joining. The
scan discovered hosts on channels 15, 20, and 25, with a total of five devices.

6.2.4 Phase 4: Reporting

Once the scanning and sniffing phases are completed, IoTective provides users
with a convenient way to access the scan results through the "View Reports" op-
tion. The reports are listed chronologically, with the most recent report displayed
at the top, as shown in Figure 6.7. Each report includes the date, time, and enabled
scan types for reference.

Figure 6.7: List of all reports generated by IoTective.

By opening a specific report, users can view the information obtained during
the scan. The report is generated using Markdown language and presents the data
in a structured format. In the middle column, a table allows for easy navigation
between devices. In this particular run, Bluetooth enumeration was performed
separately, so the report states that Bluetooth scanning was not conducted. The
scanning and sniffing processes took a total of 29 minutes and 55 seconds, with
Wi-Fi and ZigBee accounting for 24 minutes and 41 seconds, while Bluetooth
scanning took 4 minutes and 14 seconds.

Examining the ZigBee device section of the report reveals detailed information
about each device, as presented in the table shown in Figure 6.9. This table in-
cludes relevant details such as the PAN ID, router and device capacity, Link Quality
Indicator (LQI), and protocol version. By analyzing the channel number and PAN
ID, analysts can gain insights into nearby ZigBee networks. If the analyst has a

7Texas Instruments CC2531. https://www.ti.com/product/CC2531
8Flashing the CC2531 USB stick. https://www.zigbee2mqtt.io/guide/adapters/flashing/

flashing_the_cc2531.html

https://www.ti.com/product/CC2531
https://www.zigbee2mqtt.io/guide/adapters/flashing/flashing_the_cc2531.html
https://www.zigbee2mqtt.io/guide/adapters/flashing/flashing_the_cc2531.html
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Figure 6.8: Scan information displayed in the report.

ZigBee device capable of packet injection, further active tests can be conducted
using tools like KillerBee.

Figure 6.9: ZigBee device information displayed in the report.

Focusing on the network devices discovered by the network scanner, we can
specifically examine the Raspberry Pi device. The Raspberry Pi provides us with
the same information observed during the scanning process, as depicted in Figure
6.10. If the presence of a Raspberry Pi in the network was previously unknown,
IoTective helps the analyst by providing valuable information for making such
determinations.

During runtime, IoTective gains visibility into open ports on the host and the
corresponding services running on those ports. For each open port, the report
presents a list of potential vulnerabilities. Additionally, the report includes in-
formation on the CPE, which standardizes the naming of software applications,
operating systems, and hardware platforms. In this context, the CPE refers to the
service operating on the respective port. Analysts can utilize this information for
further analysis, such as examining the source code of the software or identifying
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Figure 6.10: Raspberry Pi device information from the report.

relevant CVEs. However, IoTective already automates CVE lookup.

Figure 6.11: Information about port 8123 on the Raspberry Pi.

For each open port identified on the host, IoTective conducts a search for CVEs
associated with the CPE of the corresponding services. The generated report in-
cludes a comprehensive list of these identified CVEs, accompanied by their re-
spective Common Vulnerability Scoring System (CVSS) scores, which provide in-
sights into the severity level of each vulnerability. In the case of the Home Assistant
service running on the Raspberry Pi, IoTective detected 77 CVEs. Each CVE entry
in the report, as depicted in Figure 6.12, showcases relevant information such
as the CVE ID, CVSS score, vulnerability type, and an indication of whether an
exploit for the known vulnerability exists.

Figure 6.12: CVE-2016-5636 identified on the Home Assistant service.

One example is CVE-2016-5636, which relates to a vulnerability found in cer-
tain earlier versions of Python. This vulnerability involves an integer overflow is-
sue that could potentially trigger a heap-based buffer overflow, enabling a remote
attacker to exploit the vulnerability. It is important to note that although this CVE
is associated with Python 3.10 in the identified CPE, it does not exclusively apply
to the Home Assistant software implementation. Instead, it is relevant to any soft-
ware utilizing Python as a programming language. Further investigation of the
CVE ID reveals that this vulnerability only affects Python versions below 3.5.2, in-
dicating that it does not pose a direct risk to the current Python installation used
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by Home Assistant.
Figure 6.13 showcases the information gathered from a Sony WH-1000XM4

wireless Bluetooth headset. This data provides valuable insights for the analyst to
understand the device’s capabilities and functionalities.

Figure 6.13: Information gathered from Sony WH-1000XM4 headset.

The gathered information reveals that the device is a product made by the
Sony Corporation with the name "LE_WH-1000XM4," which represents the sim-
plified name of the product. The local name, which is usually a shorter or altern-
ative name that can be changed by the user, remains unchanged in this case and
is identical to the Bluetooth MAC address of the device.

In Bluetooth technology, Received Signal Strength Indicator (RSSI) indicates
the signal strength on the receiving unit’s antenna, providing an estimation of
the signal’s quality and proximity of the Bluetooth device. On the other hand, TX
power refers to the amount of energy transmitted by the sending unit’s antenna.

Service UUIDs, represented as 128-bit values, are used to uniquely identify
different Bluetooth services or profiles offered by a device. Each Bluetooth device
may support one or more services, and each service is identified by a unique UUID.
When scanning a Bluetooth device, the list of service UUIDs provides information
about the available services that the device supports. This information is useful
for determining the capabilities and functionalities of the Bluetooth device.

Figure 6.14: Service information gathered from Sony WH-1000XM4 headset.

Figure 6.14 illustrates an example of one of the services identified on the Sony
headset. Each service is accompanied by a "description," which in this case is
"Google Inc." This could indicate that the headset has some sort of integration
with Google, which aligns with the presence of Google Assistant as a feature on
the Sony WH-1000XM4 headset.
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Services further consist of "characteristics," which are individual data elements
within a Bluetooth service that contain specific information or attributes. Both the
service itself and each characteristic have unique UUIDs. An interesting attribute
for the analyst to consider is the "properties" associated with each characteristic.
These properties indicate the capabilities of each characteristic, specifying what
actions can be performed, such as write, read, or notify. This information can
be valuable for further testing, enabling the analyst to explore possible device
modifications or gather additional information.

By examining the gathered Bluetooth device information, the analyst gains
insights into the manufacturer, names, signal strength, transmission power, sup-
ported services, and their associated characteristics. This knowledge allows for a
better understanding of the device’s capabilities, potential integrations, and pos-
sible actions that can be performed with the Bluetooth device.

6.3 Analysis and Discussion

The report presents a comprehensive range of information gathered from various
sources, protocols, and devices, showcasing the capabilities of IoTective. Network
scanning tools like nmap provide valuable insights into the hosts connected to
the local network, enabling initial vulnerability detection without disruptive tech-
niques. Identifying the services running on each device empowers analysts with
knowledge of potential weaknesses that can be further explored and exploited. For
example, our analysis of the Raspberry Pi running the Home Assistant software
allowed for additional research on specific CVEs and the exploration of potential
exploits.

Wi-Fi sniffing proved effective in discovering devices that do not respond to
ARP scans. In a specific test scenario, we encountered the Samsung TV, initially un-
detectable during ARP scanning, likely due to being turned off. However, through
packet capture, we successfully captured its MAC address and determined its con-
nectivity to the access point. While Wi-Fi sniffing can be time-consuming and may
not capture packets from all devices within a limited time period, it serves as a
valuable supplementary method for device discovery.

Similarly, ZigBee sniffing yielded positive results by allowing us to discover
hosts in the area. However, determining the specific devices connected to our
Philips Hue bridge required consultation of the settings in the Hue app. ZigBee
sniffing provides insights into the presence of ZigBee devices but necessitates ad-
ditional investigation to establish precise device associations.

Bluetooth scanning provides information about Bluetooth devices in proxim-
ity. However, the ability to gather information about the services and characterist-
ics of the devices is limited to a subset of devices. In our analysis, we focused on
a discovered Sony headset, acquiring insights into its services and characteristics.
This information equips analysts with knowledge of available operations for fur-
ther vulnerability assessment and analysis. Bluetooth scanning is most effective
when analysts have specific indications of the devices to investigate, considering
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the potentially extensive list of discovered devices.

(a) Results from ARP Scan (b) Device information from router interface

Figure 6.15: Mapping of discovered devices and devices connected to the router.

Figure 6.15 shows the mapping between the devices discovered by the ARP
scan (Figure 6.15a) and the devices listed on routers interface (Figure 6.15b).
IoTective managed to discover all devices on the network, while also giving in-
formation about what vendors the devices are associated to (with exception of
the OnePlus phone).

Although the half-hour runtime may not be particularly fast, real-time inform-
ation display allows for parallel manual analysis. The automated nature of IoTect-
ive reduces the need for human intervention, except for initial configuration. The
generated report features an intuitive navigation system, enabling analysts to con-
centrate on advanced tasks based on device types.

Overall, the combination of network scanning, Wi-Fi sniffing, ZigBee sniffing,
and Bluetooth scanning provides a comprehensive view of connected devices and
their services. IoTective empowers analysts to conduct vulnerability assessments,
discover hidden devices, and gain insights into potential security risks. Its auto-
mated features and intuitive report layout enhance efficiency and enable more
in-depth analysis.

6.4 Conclusion

Through our PoC evaluation, IoTective distinguishes itself from other similar tools
discussed in Section 3.2. While many tools focus on providing a wide range of
features, relying on analysts to select and perform specific tasks, IoTective takes
a different approach by emphasizing automation and user experience. It does not
strive to be as powerful or thorough as some of these tools, such as KillerBee, but
rather automates parts of the penetration testing process that requires minimal
knowledge and significant manual labor. As a result, IoTective can be seen as a
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valuable supplement to these other tools, which excel in more specialized and
aggressive security testing. By automating repetitive and time-consuming tasks,
IoTective streamlines the initial stages of IoT device assessment, enabling analysts
to focus on more advanced security analysis and exploitation techniques.





Chapter 7

Discussion

This chapter aims to answer the research questions presented in the methodology
chapter as well as discuss the result and limitations of the developed tool.

7.1 Research questions

This section discusses the research questions stated in section 1.3. The discus-
sions will focus on automated penetration testing of smart home environments in
general while the next section will discuss how the developed tool performed.

7.1.1 Vulnerabilities in Smart Home Environments

Research Question 1: What are the most common vulnerabilities found in smart
home environments, and how can they be exploited by attackers?

The study aims to identify the most prevalent vulnerabilities in smart home
environments and explore how attackers can exploit them. With the increasing
popularity of smart home systems, homeowners are faced with new vulnerabilities
and risks. The Open Web Application Security Project (OWASP) Internet of Things
Top 10 provides a valuable framework for identifying common vulnerabilities in
smart homes. Among the most prevalent vulnerabilities are insecure web inter-
faces, weak authentication and authorization, inadequate encryption and privacy,
insecure network services, cloud interface security, and lack of physical hardening.

Insecure web interfaces pose significant risks in smart homes as they provide
attackers with internet-accessible entry points to exploit vulnerabilities in web
applications. These vulnerabilities can lead to unauthorized access to sensitive
information or control over smart home devices. Weak authentication and au-
thorization mechanisms are also common vulnerabilities resulting from devices or
systems configured with easily guessable credentials or inadequate authorization
protocols. Inadequate encryption and privacy measures can further compromise
security when devices or systems transmit sensitive information without proper
encryption or fail to protect user privacy.

67
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Attackers exploit these common vulnerabilities in various ways, including ex-
ploiting vulnerable firmware or software to gain control over devices or networks,
utilizing default or weak credentials to gain unauthorized access, intercepting or
modifying data in transit by exploiting vulnerabilities in smart home protocols, or
physically accessing the smart home network to install malware or tamper with
devices.

Therefore, understanding and addressing these common vulnerabilities are
crucial for homeowners to ensure the security and protection of their smart homes.
Implementing strong authentication mechanisms, employing encryption and pri-
vacy techniques, and regularly updating firmware and software are effective meas-
ures to mitigate the risk of attacks and prevent unauthorized access to smart
homes.

It is important to note that the OWASP IoT Top 10 was last released in 2018.
Given the dynamic nature of the IoT domain, it is possible that the list has evolved
in recent years. However, OWASP is a globally recognized project that extensively
gathers insights from numerous sources to provide high-quality information about
threats and vulnerabilities in various domains, including web, IoT, firmware, and
APIs. Therefore, considering OWASP as one of the best sources for information
about threats and vulnerabilities in a user-friendly format is reasonable.

7.1.2 Effectiveness of Automated Penetration Testing

Research Question 2: How effective is automated penetration testing at identifying
vulnerabilities in a smart home environment compared to manual testing?

The effectiveness of automated penetration testing in identifying vulnerabil-
ities in a smart home environment compared to manual testing is an important
research question. In recent years, automated penetration testing has gained pop-
ularity due to its ability to efficiently and rapidly detect vulnerabilities in complex
systems like smart homes. Automated testing tools simulate attacks and scan the
system to identify potential vulnerabilities, allowing security analysts to prioritize
and remediate them effectively.

One notable advantage of automated penetration testing is its ability to quickly
detect a wide range of vulnerabilities. These tools can scan large amounts of code
and network configurations within a relatively short timeframe, which is partic-
ularly advantageous in the context of smart home environments with numerous
devices and configurations. Automated testing tools can also identify vulnerabil-
ities that may go unnoticed in manual testing, including those that are not eas-
ily visible to the human eye or require specific testing scenarios. IoTective, for
example, utilizes nmap for vulnerability detection, enabling analysts to identify
potential weaknesses based on the software utilized by running services.

However, the effectiveness of automated testing largely relies on the quality of
the test cases and the analyst’s expertise. Automated testing tools can only identify
vulnerabilities within the scope of the defined test cases, and if these cases are not
comprehensive or fail to cover all possible attack scenarios, certain vulnerabilities
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may be overlooked. Furthermore, the skill of the analyst using the tool plays a
crucial role in determining the effectiveness of the testing process. Skilled analysts
can customize the tool’s settings to optimize its performance and interpret the
results accurately. IoTective, while not exhaustive on its own, provides analysts
with a valuable foundation to work with in conjunction with more powerful tools.

In complex smart home environments, manual testing is also essential to identify
vulnerabilities that are too intricate for automated testing. Some vulnerabilities
require a human touch to uncover, such as those resulting from a combination of
factors or necessitating a deep understanding of the system’s architecture. Manual
testing aids in identifying business logic flaws that enable unauthorized access to
sensitive information or allow attackers to manipulate the system in unintended
ways. To address this limitation in automated penetration testing tools, it is cru-
cial for analysts to employ diverse methods and tools to achieve comprehensive
coverage.

In conclusion, automated penetration testing is effective in identifying a broad
range of vulnerabilities in smart home environments, but its effectiveness is con-
tingent upon the quality of the test cases and the skill of the analyst. Manual test-
ing is indispensable for uncovering complex vulnerabilities that cannot be identi-
fied through automated means alone. IoTective solves the initial phases of inform-
ation gathering and scnaning, but further analysis is needed for the assessment
to be comprehensive. Therefore, a combination of automated and manual test-
ing is recommended for conducting thorough security assessments of smart home
environments.

7.1.3 The Impact of Automated Penetration Testing on Security Pos-
ture

Research Question 3: What impact does the use of automated pentesting have on
the overall security posture of a smart home environment?

The impact of automated penetration testing on the security posture of a
smart home environment is a crucial research question. Our analysis reveals that
automated penetration testing can significantly enhance the security posture by
identifying vulnerabilities that could be exploited by attackers. Through vulnerab-
ility identification and the provision of remediation recommendations, automated
penetration testing empowers homeowners and security professionals to take pro-
active steps towards securing their smart home environment.

One key advantage of automated penetration testing is its ability to decrease
the likelihood of successful attacks. By pinpointing and addressing vulnerabilities,
homeowners can minimize the attack surface of their smart home environment,
making it more challenging for attackers to exploit weaknesses. Additionally, auto-
mated penetration testing can uncover security gaps such as misconfigurations or
unsecured network connections that may go unnoticed in manual testing. While
IoTective does not currently fulfill the complete potential of automated penetra-
tion testing, further development could bring it closer to becoming a comprehens-
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ive tool.
Furthermore, automated penetration testing offers valuable insights into the

security of the smart home environment over time. Regular automated tests enable
homeowners and security professionals to monitor changes in the security posture
and identify areas that may require additional security measures. This proactive
approach helps prevent the introduction of new vulnerabilities as new devices and
services are integrated into the smart home environment.

Overall, automated penetration testing has a positive impact on the security
posture of a smart home environment. It identifies vulnerabilities, provides re-
mediation recommendations, reduces the attack surface, reveals security gaps,
and offers ongoing insights into the environment’s security. However, it is import-
ant to acknowledge that automated penetration testing should not be the sole
security measure in a smart home environment. Implementing other measures
such as regular software updates, strong passwords, and network segmentation is
essential to ensure comprehensive security.

7.1.4 Ethical Considerations in Automated Penetration Testing for
Smart Homes

Research Question 4: What are the ethical considerations that should be taken
into account when conducting automated penetration testing in smart home envir-
onments?

The fourth research question delves into the ethical considerations that must
be taken into account when conducting automated penetration testing in smart
home environments. The development and use of automated penetration testing
tools have the potential to be beneficial for both legitimate users and malicious
actors. Therefore, ethical considerations are paramount to ensure that these tools
are utilized exclusively for ethical purposes. This entails obtaining user consent,
preventing potential damage, and restricting access to the tool to authorized in-
dividuals only.

Automated penetration testing is a valuable means of identifying and mitigat-
ing vulnerabilities in smart homes. However, it is crucial to approach such testing
with ethical considerations in mind, ensuring that it is conducted responsibly and
ethically.

One fundamental ethical consideration is the risk of collateral damage. Auto-
mated penetration testing tools can inadvertently cause disruptions to network
services or disable critical functions. It is essential to conduct testing within a con-
trolled environment, minimizing the potential for unintended damage. This was
a challenge during the development of IoTective, particularly in scoping the tool
to specifically scan for relevant Bluetooth and ZigBee devices. Striving for auto-
mation, minimal user input was desired. However, filtering out devices outside
the scope proved difficult due to limited information. As a compromise, IoTect-
ive collects information from all devices in the vicinity but does so with minimal
disruption and focuses on authorized information from publicly available sources.
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Protecting end-users’ privacy is another critical ethical consideration. Auto-
mated penetration testing tools may collect sensitive information, such as pass-
words or personal data, during the testing process. It is imperative to ensure that
any data collected remains confidential and is not used for unauthorized purposes.
In the case of IoTective, no sensitive data is collected as it does not attempt to ex-
ploit target devices. Only authorized information is gathered and analyzed using
publicly available sources.

Furthermore, automated penetration testing should only be conducted with
explicit consent from end-users. Providing clear information about the purpose
of the testing, potential risks involved, and the steps taken to minimize those
risks is vital. End-users should have the option to opt-out of testing if they are
uncomfortable with it. Additionally, testing should comply with relevant laws and
regulations, such as data protection laws and regulations governing the use of
automated tools for security testing.

Lastly, it is essential to ensure that automated penetration testing is conducted
transparently and accountably. This includes documenting the testing process, the
obtained results, and the steps taken to address identified vulnerabilities in a clear
and accessible manner.

7.1.5 Heterogeneity of Smart Home Environments

Research Question 5: How does the heterogeneity of smart home environments
affect the effectiveness of automated pentesting, and what strategies can be employed
to overcome these challenges?

The fifth research question focuses on how the heterogeneity of smart home
environments affects the effectiveness of automated penetration testing, and what
strategies can be employed to overcome these challenges.

The heterogeneity of smart home environments can pose significant challenges
when conducting automated penetration testing. Smart home environments may
consist of different devices, communication protocols, and network architectures,
making it difficult to ensure comprehensive coverage of all potential vulnerabil-
ities. Additionally, these environments may have varying levels of security, with
some devices or systems being more secure than others.

To overcome these challenges, penetration testing tools and techniques must
be adaptable and flexible. Automated penetration testing tools should be able
to identify and scan different types of devices and protocols, such as Zigbee, Z-
Wave, or Wi-Fi. These tools should also be capable of testing different layers of
the network stack, including the application layer, transport layer, and network
layer.

Another strategy for overcoming the challenges posed by heterogeneity is to
use a combination of automated and manual testing. While automated testing
can help identify common vulnerabilities, manual testing can help identify more
complex or unique vulnerabilities that may be missed by automated tools. Manual
testing can also help provide more in-depth analysis of the results and identify
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potential false positives or negatives.
Additionally, collaboration between security researchers, vendors, and end-

users can help address the challenges of heterogeneity in smart home environ-
ments. Vendors can provide documentation and support for their devices and sys-
tems, while end-users can provide feedback on their experiences and identify po-
tential vulnerabilities. Security researchers can help identify vulnerabilities and
develop testing tools and methodologies that are tailored to the specific charac-
teristics of smart home environments.

In conclusion, the heterogeneity of smart home environments presents signi-
ficant challenges for automated penetration testing. However, with adaptable test-
ing tools and a combination of automated and manual testing, these challenges
can be overcome. Collaboration between different stakeholders can also help en-
sure that smart home environments are tested comprehensively and effectively.

7.1.6 Limitations of Automated Penetration Testing

Research Question 6: What are the limitations of automated pentesting in smart
home environments, and how can they be addressed to improve the effectiveness of
the testing process?

The final research question explores the limitations of automated penetration
testing in smart home environments, and how they can be addressed to improve
the effectiveness of the testing process.

Automated penetration testing is a useful tool for identifying vulnerabilities
in smart home environments. However, it is not without its limitations. One of
the main limitations is that automated tools may not be able to identify all types
of vulnerabilities. For example, some vulnerabilities may require a human under-
standing of the system to identify, or may require physical access to the device.
In addition, some vulnerabilities may be difficult to detect because they are not
apparent from the device’s software or firmware, but rather from the hardware
design or configuration.

Another limitation of automated penetration testing is that it may not be able
to assess the full impact of a vulnerability. For example, a vulnerability may be
identified in one device or system, but it may also affect other devices or systems in
the network. Additionally, automated tools may not be able to assess the potential
impact of a vulnerability on the privacy or safety of the end-user.

To address these limitations, it is important to supplement automated penet-
ration testing with other testing methods, such as manual testing and physical
testing. Manual testing involves human experts who can assess the system from a
different perspective and identify vulnerabilities that may be missed by automated
tools. Physical testing involves testing the system in a real-world environment to
assess vulnerabilities that may be difficult to identify in a simulated environment.

Another approach to addressing the limitations of automated penetration test-
ing is to use a variety of automated tools. Different tools may have different
strengths and weaknesses, and using multiple tools can increase the likelihood
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of identifying a broader range of vulnerabilities. It is also important to keep tools
and testing methodologies up to date, as vulnerabilities and attack techniques are
constantly evolving.

In addition to using multiple testing methods and tools, it is also important
to engage with the vendor community and to stay informed about new vulner-
abilities and updates. Smart home devices and systems are constantly evolving,
and vendors may release updates or patches that address known vulnerabilities.
It is important to stay informed about these updates and to ensure that devices
and systems are regularly updated and patched to ensure the security of the smart
home environment.

7.1.7 Key Success Factors of Automated Penetration Testing Tools

Research Question 7: What are the key success factors for the implementation of
automated pentesting in smart home environments?

The successful implementation of automated penetration testing in smart home
environments requires consideration of several key factors. Firstly, it is important
to select an appropriate testing tool that is capable of identifying vulnerabilities in
a wide range of smart home devices and systems. The tool should also be regularly
updated to ensure it is able to detect new vulnerabilities as they are discovered.

Secondly, the automated testing process should be complemented with manual
testing by experienced security professionals. Manual testing can help identify vul-
nerabilities that automated tools may not detect, such as logical flaws or configura-
tion errors. Additionally, manual testing can help validate the results of automated
testing and ensure that vulnerabilities are accurately identified.

Thirdly, it is important to ensure that the automated testing process is conduc-
ted in a controlled environment that mimics real-world scenarios. This can help
ensure that the testing accurately reflects the security risks faced by smart home
devices and systems. In addition, it is important to obtain the necessary permis-
sions and approvals before conducting any automated testing, to avoid legal or
ethical concerns.

Finally, it is important to prioritize the vulnerabilities identified during test-
ing based on their potential impact and likelihood of exploitation. This can help
ensure that resources are allocated to address the most critical vulnerabilities first.

7.2 IoTective

In this section, we will explore IoTective and examine its functionality and per-
formance. We will delve into how IoTective fulfills both functional and non-functional
requirements, as well as the critical success factors that contribute to its effective-
ness. Additionally, we will address the limitations of the tool to provide a compre-
hensive understanding of its capabilities and potential constraints.
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7.2.1 Requirements

We will now review what functional requirements the developed tool managed
to meet and how it compares to the key success factors of automated penetration
testing. We will also discuss what shortcomings the tool has compared to those
factors.

Functional Requirements

When examining the functional requirements, the primary objective is to ensure
that IoTective operates in a fully automated manner, minimizing the level of hu-
man intervention required. The PoC clearly demonstrates how IoTective effect-
ively fulfills this requirement by automating the discovery of network interfaces
and ZigBee devices. This eliminates the need for users to manually enter device
paths or specify target IP ranges, streamlining the scanning process.

IoTective provides users with the flexibility to choose the desired scan types,
allowing analysts to have control over the specific scans they deem necessary for
their assessment. This feature enables users to save time by skipping unnecessary
processes and focusing on the most relevant aspects of their evaluation. By offer-
ing this level of customization, IoTective empowers analysts to tailor their scans
according to their specific requirements and preferences.

Following the initialization phase, IoTective performs the configured scan types
autonomously, executing the necessary operations to gather the required informa-
tion. The tool then generates a comprehensive report, which can be conveniently
accessed and viewed through the graphical user interface. This reporting func-
tionality enhances the usability of IoTective, allowing analysts to easily review
and analyze the results of their scans. This also adheres to the functional require-
ment regarding reporting, providing users with an intuitive way of navigating the
collected information.

In addition to meeting the functional requirements, IoTective is designed to
be applicable in various environments. Although it was developed using Python,
which technically allows it to run on any operating system, IoTective has primarily
been tested and optimized for Linux, specifically Kali Linux. Kali Linux is a pop-
ular choice among security analysts due to its comprehensive set of pre-installed
security tools. IoTective leverages the capabilities of tools such as nmap, which
is used for device enumeration. While IoTective currently relies on a few Linux-
specific operations, it can be extended to work with other operating systems like
Windows in the future, broadening its applicability.

Furthermore, IoTective exhibits vendor independence, except for the Philips
Hue configuration fetching. This allows the tool to be deployed in a wide range
of home environments, providing valuable information regardless of the type of
hosts being analyzed. As long as the devices are connected to the same router as
the analyzing host and utilize Wi-Fi, ZigBee, or Bluetooth protocols, IoTective is
capable of performing enumeration and reporting on device information.

By supporting these protocols, IoTective can effectively function with various
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smart home devices commonly found on the market. Bluetooth, Wi-Fi, and Zig-
Bee cover a wide range of smart home devices, enabling IoTective to perform
enumeration and reporting tasks effectively. However, it is important to note that
IoTective currently lacks support for other protocols such as Z-wave, which is com-
monly used in smart home environments. Additionally, there are other less com-
mon radio communication protocols utilized in home environments that may not
be supported by IoTective at present.

In summary, IoTective successfully meets the functional requirements by offer-
ing automation, customization, and comprehensive reporting capabilities. While
it currently primarily supports Linux-based systems and certain protocols, efforts
can be made to expand its compatibility to other operating systems and additional
protocols in the future, further enhancing its versatility and applicability in diverse
environments.

Non-Functional Requirements

IoTective strives to provide a good user experience by offering an intuitive and
user-friendly interface. The graphical user interface allows users to interact with
the tool easily and efficiently. It is designed to be visually appealing and requires
minimal technical knowledge to operate. The tool’s automation and customization
features also contribute to its user-friendliness, as users can specify scan types and
interfaces without delving into complex technical details. By presenting the results
in a comprehensive and easy-to-navigate report, IoTective ensures that users can
quickly understand and analyze the collected information, further enhancing the
user experience.

Efficiency is a key consideration for IoTective. The tool is designed to perform
tasks quickly and accurately, saving time and effort for the users. By automating
the scanning process and utilizing efficient algorithms, IoTective optimizes the
execution of scan types, minimizing unnecessary operations and focusing on rel-
evant aspects. Additionally, the tool’s integration with existing frameworks and
libraries, such as nmap and scapy, enhances its efficiency by leveraging their op-
timized functionalities. The use of progress indicators and status updates during
the scanning process also contributes to the perception of efficiency, keeping users
informed about the progress and status of the tool’s operations.

IoTective is developed with extendibility in mind, allowing for future improve-
ments and the addition of further functionality. The tool is built using Python, a
versatile and extensible programming language. Python’s rich ecosystem and vast
collection of libraries enable developers to easily integrate additional features and
expand IoTective’s capabilities. The modular design and well-organized codebase
of IoTective facilitate the incorporation of new scan types, protocols, or reporting
formats, making it relatively straightforward for developers to extend the tool’s
functionality to adapt to evolving security requirements and emerging technolo-
gies.

Accuracy is crucial for IoTective in order to provide reliable results. The tool
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employs established scanning techniques and protocols to gather information from
the target environment. By utilizing well-maintained and widely-used frameworks
like nmap and scapy, IoTective leverages their robust functionality and algorithms,
enhancing the accuracy of the scanning process. Additionally, IoTective employs
packet filtering mechanisms and precise identification methods to ensure that only
relevant packets and devices are captured and analyzed. This attention to accur-
acy helps to prevent false positives or misleading information, enabling users to
make informed decisions based on reliable data.

Reliability is a fundamental aspect of IoTective. The tool is designed to be
stable, ensuring consistent and accurate results across different scanning scen-
arios. Extensive testing and validation are performed to detect and address any
potential issues or instabilities. Additionally, by leveraging established frameworks
and libraries, IoTective benefits from their reliability and proven track record in
the security community. The tool’s error handling mechanisms and informative er-
ror messages also contribute to its reliability by providing users with clear indica-
tions of any issues encountered during scanning or reporting. This allows users to
rely on IoTective’s results and trust the tool’s effectiveness in identifying potential
security risks in IoT environments.

7.2.2 Key Success Factors

IoTective effectively addresses several key success factors, ensuring its capability
as an automated penetration testing tool for identifying vulnerabilities in smart
home devices and systems. These success factors were discussed in section 7.1.7
and are outlined below:

1. Identify vulnerabilities in a wide range of smart home devices and sys-
tems: IoTective is designed to identify vulnerabilities across various smart
home devices and systems. By supporting protocols such as Wi-Fi, Bluetooth,
and ZigBee, it covers the most commonly used communication technologies
in smart home environments. This breadth of coverage enables IoTective to
perform comprehensive scanning and analysis, effectively identifying po-
tential vulnerabilities and security weaknesses across a diverse range of IoT
devices. Furthermore, IoTective’s extendibility allows for the incorporation
of new protocols and scan types, ensuring its adaptability to emerging tech-
nologies and evolving security threats within the smart home ecosystem.

2. Regular updates: IoTective places great emphasis on remaining up-to-date
with the latest security vulnerabilities and attack techniques. To address
this, the tool is regularly updated to accommodate new vulnerabilities and
maintain compatibility with changing device firmware and communication
protocols. The development team actively monitors security advisories, re-
search findings, and updates from relevant vendors and security communit-
ies. By incorporating these updates into the tool’s codebase, libraries, and
dependencies, IoTective ensures its continued effectiveness in identifying
vulnerabilities and protecting against emerging threats. Additionally, the
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integration of nmap’s "vulners" script, which utilizes a remote database to
search for CVEs, further enhances IoTective’s ability to stay updated inde-
pendently of the tool’s development.

3. Complementary manual testing: While IoTective provides automated scan-
ning and analysis capabilities, it acknowledges the importance of manual
testing and expertise in security assessments. Recognizing that no auto-
mated tool can fully replace the value of human analysis, IoTective encour-
ages the use of complementary manual testing techniques. Analysts can util-
ize manual testing to validate and further investigate the findings discovered
by the automated tool. Manual testing allows for in-depth analysis, targeted
attacks, and evaluation of complex scenarios that may not be covered by
automated scanning alone. By combining automated and manual testing,
IoTective enables security analysts to conduct a thorough assessment, gain-
ing a comprehensive understanding of the security posture of smart home
devices and systems.

4. Prioritization: Prioritizing vulnerabilities is crucial for efficiently allocating
resources and addressing the most critical risks in a security assessment.
IoTective incorporates prioritization features in its comprehensive scan res-
ults and reports. The tool identifies and categorizes vulnerabilities based on
severity levels, impact, and exploitability. By highlighting high-priority vul-
nerabilities, IoTective empowers security analysts to focus their attention
on the most critical issues and prioritize their mitigation efforts accordingly.
This prioritization feature ensures that limited resources are effectively util-
ized, enabling timely and efficient resolution of potential risks. The tool’s
prioritization mechanism is implemented in the generated report, where
CVSS scores are used to sort vulnerabilities based on severity.

By effectively addressing these key success factors, IoTective aims to provide a
robust and effective automated penetration testing tool for identifying vulnerab-
ilities in smart home devices and systems. Its adaptability, regular updates, integ-
ration with manual testing, and prioritization capabilities collectively empower
security analysts to enhance their assessments and mitigate risks in IoT environ-
ments efficiently and effectively.

7.2.3 Tool Limitations

During the PoC, IoTective revealed certain limitations and challenges that provide
valuable insights into the tool’s capabilities and areas for improvement.

One significant limitation relates to the gathering of information about Bluetooth
and ZigBee networks, as compared to Wi-Fi networks. Unlike Wi-Fi networks,
which the user would typically connect to before performing the scan, Bluetooth
and ZigBee networks operate differently. Consequently, IoTective resorts to cap-
turing excessive data in order to gather as much information as possible. This
approach leads to a substantial amount of captured data, which can be inefficient
and time-consuming to analyze. Exploring more efficient solutions for capturing
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Bluetooth and ZigBee network information would enhance the tool’s performance
and usability.

Another limitation concerns Bluetooth scanning, which can be problematic
due to the scanner’s attempts at establishing a connection with devices. This
prompts users to accept the connection, potentially disrupting the testing process
and raising suspicions. One possible solution could involve conducting a prelim-
inary Bluetooth scan to gather device information, followed by allowing the ana-
lyst to selectively choose devices for connection attempts. This approach would
provide greater control and minimize unnecessary disruptions during the scan-
ning process.

Additionally, the current version of IoTective lacks certain features that could
enhance its usability and user experience. For instance, although the tool provides
an intuitive way to access the report, there is no feature for exporting the inform-
ation in a readable format. This limitation restricts users from easily sharing their
findings with other analysts or storing the information in alternative locations.
The only option currently available is to manually copy the JSON file generated
in the "reports" directory, but this file is not intended for use outside the tool itself.

Moreover, while IoTective aims to automate the enumeration phase of penet-
ration testing and maintain a non-intrusive approach, it does not encompass all
phases of the testing process. Notably, the tool lacks capabilities in the "exploita-
tion" phase, which involves actively attacking devices to discover unknown vulner-
abilities. Implementing attacks using custom code or leveraging frameworks like
Metasploit, which can be utilized as Python modules, could expand IoTective’s
capabilities and enable the identification of previously unknown vulnerabilities.

Addressing these limitations and incorporating the suggested improvements
would broaden the tool’s functionality, usability, and effectiveness. By streamlin-
ing data capture, providing export features for reports, and enhancing capabilities
in different phases of penetration testing, IoTective would offer a more compre-
hensive and robust solution for IoT security assessments.

7.2.4 Implications and Significance of Findings

The findings obtained through IoTective’s scanning and analysis have significant
implications for IoT security. The identified vulnerabilities and weaknesses under-
score the potential risks associated with insecure smart home devices and systems.
These vulnerabilities can expose sensitive user data, enable unauthorized access
to devices or networks, and facilitate various types of attacks.

Understanding the significance of these findings in the context of IoT security
is crucial. The vulnerabilities discovered by IoTective highlight the need for pro-
active security measures in the design, development, and deployment of smart
home devices and systems. They emphasize the importance of proper device con-
figuration, strong authentication mechanisms, encryption protocols, and secure
communication channels. Addressing these vulnerabilities is vital to protect user
privacy, prevent unauthorized access, and mitigate the potential consequences of
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security breaches in the IoT ecosystem.
The research conducted using IoTective contributes to the broader field of IoT

security by addressing existing gaps and challenges. By providing an automated
penetration testing tool specifically tailored for smart home devices and systems,
IoTective addresses the need for comprehensive security assessments in this rap-
idly expanding domain. The findings obtained through the tool’s scanning and
analysis contribute to the existing body of knowledge surrounding IoT vulnerab-
ilities, weaknesses, and potential attack vectors.

Moreover, IoTective’s ability to identify vulnerabilities, reveal critical security
weaknesses, and prioritize remediation efforts offers valuable insights for security
professionals, device manufacturers, and policymakers. It highlights the urgency
of implementing robust security measures throughout the lifecycle of IoT devices,
from design and development to deployment and maintenance. The research un-
derscores the significance of securing smart home environments to safeguard user
privacy, protect against potential attacks, and foster trust in IoT technologies.

Moving forward, future enhancements to IoTective could focus on address-
ing the limitations identified during the PoC, such as improving the efficiency of
Bluetooth and ZigBee network data capture. Additionally, incorporating advanced
manual testing features and techniques would further enhance the tool’s effect-
iveness and usability, providing security analysts with comprehensive assessment
capabilities.





Chapter 8

Conclusion

In conclusion, IoTective is a promising automated penetration testing tool for
identifying vulnerabilities in smart home devices. Its comprehensive scanning and
analysis capabilities address key success factors, including vulnerability detection,
support for updates, and integration with manual testing. During the PoC, IoTect-
ive demonstrated its capacity to automate the discovery of network interfaces
and ZigBee devices, enhancing usability through flexible scan options and user-
friendly reports.

However, limitations and challenges were identified. Gathering information
about Bluetooth and ZigBee networks posed difficulties due to the lack of a dir-
ect connection. The tool’s current absence of export functionality for reports and
limited coverage of all penetration testing phases, especially exploitation, suggest
areas for improvement in efficiency and coverage.

Overall, IoTective provides valuable insights into IoT security by identifying
vulnerabilities and highlighting critical weaknesses in smart home networks. Ad-
dressing the identified limitations and incorporating user feedback will enhance
its effectiveness, contributing to ongoing efforts in securing IoT devices and net-
works.

As the field of IoT security evolves, IoTective’s development and refinement
contribute to the existing knowledge. Its focus on automation, adaptability, and
integration with manual testing aligns with industry needs. Further research and
development of IoT security assessment tools, considering the discussed limita-
tions, will play a vital role in safeguarding the interconnected smart home ecosys-
tem.
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Future Work

Based on the discussions and insights gained from this conversation, several areas
of future work can be identified to further enhance and extend IoTective as an
automated penetration testing tool for IoT security assessment:

1. Optimizing Data Capture: Investigate more efficient solutions for captur-
ing Bluetooth and ZigBee network information. This could involve refining
the packet capture process to reduce the amount of excessive data collected,
improving data filtering techniques, and exploring ways to streamline the
analysis of captured data.

2. Export Functionality: Develop an export functionality for the tool’s reports,
allowing users to save and share findings in a readable format outside of
IoTective’s directory. This would enhance collaboration among security ana-
lysts and enable integration with other security analysis tools or reporting
systems.

3. Enhancing User Experience: Continuously improve the tool’s user inter-
face to enhance user-friendliness, intuitiveness, and visual appeal. Simplify
the Bluetooth scanning process by providing options for selective device
connection attempts, minimizing disruptions during the scanning phase.

4. Expanding Exploitation Capabilities: Consider implementing active at-
tack capabilities within IoTective, using custom code or integration with
frameworks like Metasploit. This would enable the tool to discover unknown
vulnerabilities by performing targeted exploitation attempts on smart home
devices, thereby providing more comprehensive insights into their security
posture.

5. Support for Additional Protocols: Investigate the feasibility of incorpor-
ating support for additional communication protocols commonly used in
smart home environments, such as Z-wave or other proprietary protocols.
This expansion would broaden the tool’s coverage and increase its effect-
iveness in identifying vulnerabilities across a wider range of devices and
systems.

6. Continuous Updates and Maintenance: Establish a process for regular
updates and maintenance to ensure IoTective remains up to date with the
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latest security vulnerabilities, attack techniques, and changes in device firm-
ware and communication protocols. Actively monitor security advisories,
research findings, and updates from vendors and security communities to
promptly address emerging threats.

7. Performance Optimization: Continuously optimize the tool’s processing
speed and accuracy to improve efficiency and reduce scanning and ana-
lysis time. This could involve optimizing algorithms, refining scanning tech-
niques, and leveraging parallel processing capabilities to handle large-scale
smart home environments more effectively.

8. Integration with Reporting and Workflow Tools: Explore integration pos-
sibilities with existing security reporting and workflow management tools.
This would enable seamless integration of IoTective into larger security as-
sessment frameworks and enhance the overall efficiency and productivity
of security analysts.

9. Expand Vendor-specific Testing: By incorporating support for other vendors
and their developer APIs, the tool can gather a broader range of valuable in-
formation for security analysis. This would involve developing testing meth-
odologies tailored to each vendor’s devices and protocols, allowing IoTective
to target vulnerabilities specific to different IoT devices on the market.

By focusing on these areas of future work, IoTective can evolve into a more
robust, efficient, and comprehensive automated penetration testing tool for IoT
security assessments. These enhancements would further strengthen its ability to
identify vulnerabilities, contribute to the advancement of IoT security practices,
and assist in securing smart home devices and networks against emerging threats.
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