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Abstract

A comprehensive understanding of the marine environment in the offshore area requires
phase-resolved wave information. For far-field wave propagation, computational efficiency
is crucial, as large spatial and temporal scales are involved. For the near-field extreme
wave events and wave impacts, high resolution is required to resolve the flow details and
turbulence. The combined use of a computationally efficient large-scale model and a high-
resolution local-scale solver provides a solution that combines accuracy and efficiency.
This article introduces a coupling strategy between the efficient fully nonlinear potential
flow (FNPF) solver REEF3D::FNPF and the high-fidelity computational fluid dynamics
(CFD) model REEF3D::CFD within the open-source hydrodynamics framework REEF3D.
REEF3D::FNPF solves the Laplace equation together with the boundary conditions on
a sigma-coordinate. The free surface boundary conditions are discretised using high-
order finite difference methods. The Laplace equation for the velocity potential is solved
with a conjugated gradient solver preconditioned with a geometric multi-grid provided
by the open-source library hypre. The model is fully parallelised following the domain
decomposition strategy and the MPI protocol. The waves calculated with the FNPF solver
are used as wave generation boundary conditions for the CFD based numerical wave tank
REEF3D::CFD. The CFD model employs an interface capturing two-phase flow approach
that can resolve complex wave structure interaction, including breaking wave kinematics
and turbulent effects. The presented hydrodynamic coupling strategy is tested for various
wave conditions and the accuracy is fully assessed.

INTRODUCTION

In the last decades, the use of computational fluid dynamics (CFD) based numerical wave
tanks (NWT) for the simulation of wave hydrodynamics has been increasing significantly.
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Prominent examples of this development are the papers by Jacobsen et al Jacobsen et al.
(2012) which introduced the wave generation toolbox waves2foam to OpenFOAM and Higuera
et al. Higuera et al. (2013) which presented a similar modification to the open-source CFD
model as well. Several commercial CFD codes exist which offer the capability to generate
waves, such as StarCCM+ Westphalen et al. (2012); Pakozdi et al. (2012).

Another NWT that solves the Navier-Stokes equations is REEF3D, which employs the
level-set method for the free surface together with high-order discretization schemes Bihs
et al. (2016). These models share the idea of solving wave hydrodynamics as two-phase flow
together with interface capturing. With this approach, the free surface can be deformed
beyond the point of breaking and demanding wave problems can be solved. Examples are
breaking wave interaction with monopiles Alagan Chella et al. (2019), complex structures
Aggarwal et al. (2019) and strong deformations of the free surface due to the impact of
moving solid structures Kamath and Bihs (2017).

Some of the advantages of the CFD based NWTs are their ability to resolve the complex
free surface under breaking waves as well as considering viscous effects. On the other hand,
for pure wave propagation over long distances with or without breaking, they can be less
than ideal as the grid and time step requirements lead to relatively high use of computational
resources. For wave propagation in wave tanks or wave basins away from structures, the effects
of wave breaking need to be accounted for but are not required to be fully resolved as is the case
around structures where the breaking wave impact leads to significantly increased wave forces.
Instead, the effect of the breaking waves can be incorporated through a modification of the
wave kinematics mimicking the energy dissipation that takes place in the breaking process. As
a consequence, an efficient one-phase potential flow solver is an attractive option for the phase-
resolved far-field wave solution. In several papers, Engsig-Karup et al. have highlighted the
possibilities of finite differences based fully-nonlinear potential flow models, see e.g. Engsig-
Karup et al. (2009, 2012, 2016), a type of wave model first introduced by Li and Fleming
(1997). More recently, a fully-nonlinear potential flow (FNPF) model was incorporated in
the open-source hydrodynamics suite REEF3D Bihs et al. (2020); Wang et al. (2019, 2021).
REEF3D::FNPF makes use of the high-order spatial and temporal discretization schemes and
the high-performance capabilities for parallel computing available in this framework.

The idea is to utilize each model to their advantage, i.e. employing the potential flow
solver for the far-field, while resolving the breaking wave with a two-phase flow CFD solver.
Paulsen et al. Paulsen et al. (2014) have shown the possibility of coupling OceanWave3D with
OpenFOAM for focused breaking wave impact with a cylindrical structure. Baquet et. al.
Baquet et al. (2017) combined the in-house potential flow solver TPNWT with the commercial
CFD software StarCCM+ for three-hour irregular wave simulations in a two-dimensional wave
tank.

In most previous studies, the potential flow solver and the CFD solver are often provided by
different developers. This requires the engineers to understand the numerical architecture of
both models and the interface between the solvers tends to be more challenging. In this paper,
the different solvers of the same open-source hydrodynamics software REEF3D are coupled,
REEF3D:FNPF for the non-linear wave propagation and REEF3D:CFD for the breaking
wave modeling. Since both solvers are part of the same numerical framework, the numerics
are more consistent and the coupling interface can be more robust and straightforward. For
most practical purposes, only one-way coupling is required where the potential flow solution
prescribes the wave boundary condition in the viscous solver. At first, a validation study is
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performed for a two-dimensional numerical wave tank with regular waves. Here, the numerical
results are compared with analytical wave solutions. Then, breaking waves over a submerged
reef Irschik et al. (2002) are calculated. The numerical results for the breaking wave case are
compared with experimental data from large-scale wave flume experiments.

NUMERICAL MODEL

REEF3D::FNPF

The fully non-linear potential flow model REEF3D::FNPF is based on the idea of using finite
difference discretization schemes on three-dimensional grids. Several simplifications are made,
such as inviscid and incompressible fluid and irrotational flow, and as such the governing
equation for the flow is the Laplace equation:

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 (1)

As an elliptic equation, the Laplace equation for the flow potential is fully governed by the
boundary conditions, which are required on all domain boundaries for the velocity potential
Φ. Simple Neumann boundary conditions are used at walls or inflow wave generation (non-
relaxation zone type). Kinematic boundary conditions for the potential are required at the
bed, where the fluid particle cannot penetrate the solid boundary:

∂Φ

∂z
+
∂h

∂x

∂Φ

∂x
+
∂h

∂y

∂Φ

∂y
= 0, z = −h. (2)

The boundary conditions at the free surface require special attention. The fluid particles
should remain at the free surface, at the same time, the pressure at the free surface is equal to
the atmospheric pressure. Resulting from this, the kinematic free surface boundary condition
for the free surface elevation η is formulated Li and Fleming (1997):

∂η
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=− ∂η
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+
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)2
)
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(3)

For the free surface velocity potential Φ̃(x, y, t), the dynamic free surface boundary con-
dition is defined as:
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− gη, z = η.

(4)
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where x = (x, y) represents the horizontal location and w̃ is the vertical velocity at the
free surface.

With the boundary conditions in place, the Laplace equation is then solved with a finite
difference scheme on a σ-coordinate grid. The Laplace equation is solved with the conjugated
gradient BiCGStab solver van der Vorst (1992) preconditioned with the geometric multigrid
solver PFMG Ashby and Flagout (1996) provided by the open-source linear solver library
hypre. The σ-coordinate is transferred from a Cartesian grid following:

σ =
z + h (x)

η(x, t) + h(x)
(5)

Through the σ-coordinate transformation, the velocities can be calculated as follows, once
the velocity potential Φ is obtained:

u (x, z) =
∂Φ (x, z)

∂x
=
∂Φ (x, σ)

∂x
+
∂σ

∂x

∂Φ (x, σ)

∂σ
, (6)

v (x, z) =
∂Φ (x, z)

∂y
=
∂Φ (x, σ)

∂y
+
∂σ

∂y

∂Φ (x, σ)

∂σ
, (7)

w (x, z) =
∂σ

∂z

∂Φ (x, σ)

∂σ
. (8)

The waves are generated at the wave generation zone using the relaxation method Mayer
et al. (1998), the relaxation function Γ(x̃) is shown in Eqn. (9). In the wave generation zone,
the free-surface elevation and velocities are ramped up to the designed theoretical values.
At the numerical beach for the numerical wave tank without structures, a reverse process
takes place and the flow properties are restored to hydrostatic values following the relaxation
method using an improved relaxation function Chen et al. (2019). For the cases where break-
ing occurs, the post-breaking waves are absorbed with active wave absorption Schäffer and
Klopman (2000).

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1] (9)

where x̃ is scaled to the length of the relaxation zone.
The spatial discretization of the free surface elevation and velocity potential in the kine-
matic and dynamics free surface boundary conditions are solved with the fifth-order WENO
(weighted essentially non-oscillatory) scheme Jiang and Shu (1996). This scheme can handle
large gradients accurately by considering the local smoothness and weighting the different
ENO stencils accordingly, with the smoothest stencil assigned the largest weights. For the
time treatment, a third-order accurate TVD Runge-Kutta scheme Shu and Osher (1988) is
used. Adaptive time stepping is used in order to determine the time step size while keeping a
constant CFL number which is based on phase velocity. The model is fully parallelized follow-
ing the domain decomposition strategy, employing parallel communication via MPI (Message
Passing Interface).
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Breaking wave algorithm

The presented FNPF model applies single-valued free surfaces and thus it is not possible
to resolve an over-turning breaker as in a CFD model Bihs et al. (2016). However, correct
detections of wave breaking events and calculations of energy dissipation can be achieved with
effective breaking wave algorithms.

A steepness-induced wave breaking is detected with a wave steepness criterion:

∂η

∂xi
≥ β. (10)

where β is the threshold of wave slope at the wavefront.
The depth-induced wave breaking is initialised when the vertical velocity of the free-surface

exceeds a fraction of the shallow water celerity Smit et al. (2013):

∂η

∂t
≥ αs

√
gh. (11)

αs = 0.6 is recommended as it works well with most of the waves based on the study of
Smit et al. (2013). g is gravitational acceleration and h is still water depth.

After the detections of the wave breaking events, artificial viscous damping terms are
introduced in the free surface boundary conditions around the breaking region as defined by
Baquet et al. (2017). During the wave breaking process, the free surface boundary conditions
Eqn. 3 and Eqn. 4 are modified as the following:
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(13)

where νb is the artificial turbulence viscosity. νb = 1.86 is used based on the calibrations
against CFD models Baquet et al. (2017). Alternatively, a geometric filtering algorithm Jensen
et al. (1999) can also be used to smoothen the free surface and achieve energy dissipation.
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REEF3D::CFD

The incompressible fluid flow is described by the three-dimensional Reynolds-Averaged Navier-
Stokes equations (RANS), which are solved together with the continuity equation for prescrib-
ing momentum and mass conservation:

∂ui
∂xi

= 0 (14)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ gi (15)

where u is the velocity averaged over time t, ρ is the fluid density, p is the pressure, ν is
the kinematic viscosity, νt is the eddy viscosity and g the acceleration due to gravity.

In the current paper Reynolds-Averaging is performed and consequently, the eddy viscosity
νt in the RANS equations is calculated through the two-equation k-ω model Wilcox (1994).
This turbulence model consists of the two equations for the turbulent kinetic energy k and
the specific turbulent dissipation ω:

∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − βkkω (16)

∂ω

∂t
+ uj

∂ω

∂xj
=

∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
+
ω

k
αPk − βω2 (17)

where Pk is the turbulent production rate, the empirical coefficients are defined as α = 5
9 ,

βk = 9
100 , β = 3

40 , σk = 2 and σω = 2.
At the free surface, the turbulent length-scales are suppressed, in effect dissipation tur-

bulent kinetic energy Naot and Rodi (1982). As this physical phenomena is not directly
incorporated in the k-ω model, the specific turbulent dissipation at the free surface needs to
be defined as shown and validated in Bihs et al. (2016) and Kamath et al. (2019):

ωs =
c
− 1

4
µ

κ
k

1
2 ·
(

1

y′
+

1

y∗

)
(18)

where cµ = 0.07 and κ = 0.4. The variable y′ is the virtual origin of the turbulent length
scale, and was empirically found to be 0.07 times the mean water depth Hossain and Rodi
(1980).

The pressure as the driving force of the fluid flow is modeled with Chorin’s projection
method Chorin (1968) for incompressible fluids. Following this strategy, the pressure gradient
is removed from the momentum equations in the first step. The updated velocity after each
Euler step of the time discretization is the intermediate velocity U∗i . The Poisson equation
for pressures is formed by calculating the divergence of the intermediate velocity field:

− ∂

∂xi

(
1

ρ (φn)

∂p

∂xi

)
= − 1

∆t

∂u∗i
∂xi

(19)

As the Laplace equation in REEF3D::FNPF, the Poisson equation is solved with hypre’s
conjugated gradient BiCGStab solver van der Vorst (1992) preconditioned with the geometric
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multigrid solver PFMG. The new pressure corrects the velocity field, making it divergence-
free. The convective terms of the RANS equations are discretized with the fifth-order WENO
scheme Jiang and Shu (1996) in the conservative finite-difference framework. For the time
treatment of the momentum and the level-set equations, a third-order accurate TVD Runge-
Kutta scheme is employed, consisting of three Euler steps Shu and Osher (1988).

φ(1) = φn + ∆tL (φn)

φ(2) =
3

4
φn +

1

4
φ(1) +

1

4
∆tL

(
φ(1)

)
φn+1 =

1

3
φn +

2

3
φ(2) +

2

3
∆tL

(
φ(2)

) (20)

All variables are solved on a staggered Cartesian mesh, ensuring tight velocity pressure
coupling. In the case of solid structures, an immersed boundary method is used through the
implementation of ghost cells Berthelsen and Faltinsen (2008).

The free surface is captured with the level-set function Osher and Sethian (1988), which
is defined as a signed distance function:

φ(~x, t)


> 0 if ~x ∈ phase 1

0 if ~x ∈ Γ

< 0 if ~x ∈ phase 2

(21)

The Eikonal equation |∇φ| = 1 is valid, ensuring that the distance function property
is achieved. The level-set function is coupled with the flow solver through the convection
equation for the level-set function:

∂φ

∂t
+ uj

∂φ

∂xj
= 0 (22)

The convection term in Eq. (22) is solved with the Hamilton-Jacobi version of the WENO
scheme Jiang and Peng (2000). For time stepping, the third-order TVD Runge-Kutta scheme
is used Shu and Osher (1988). In order to continuously maintain the signed distance property
and mass conservation, a PDE based reinitialization equation is solved Sussman et al. (1994):

∂φ

∂t
+ S (φ)

(∣∣∣∣ ∂φ∂xj
∣∣∣∣− 1

)
= 0 (23)

where S (φ) is the smoothed sign function Peng et al. (1999).

Hydrodynamic Coupling

In this paper, a one-way hydrodynamic coupling (HDC) approach is presented. The velocities
and free surface elevation from the non-viscous potential flow solver are transferred to the
viscous solver. In the process, the grid generator DIVEMesh in the open-source hydrody-
namic framework REEF3D is used to interpolate the flow information stored in the σ-grid
from the non-viscous solver to the Cartesian grid in the viscous CFD solver. A linear inter-
polation scheme is applied in the current studies. After the flow information is collected and
interpolated, DIVEMesh decomposes the computational domain from the N1, the number of
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sub-domains in the non-viscous potential flow region, to N2, the new number of sub-domains
to be used in the CFD domain. This allows for flexible combinations of parallel computations
in the non-viscous and viscous domains. A coupling zone following the relaxation method is
arranged at the inlet boundary of the CFD domain to initialise the flow information obtained
from the non-viscous model and propagate waves to its computational domain. The pressure
field is, however, not prescribed in the coupling zone inside the CFD domain. Similarly, the
velocity field in the air phase in the CFD domain is not prescribed. The hydrodynamic pres-
sure and the air velocities are calculated automatically in the CFD domain using the given
flow information from the non-viscous model. This reduces the sensitivity at the coupling
boundary in the CFD domain while maintaining accuracy.

A flow chart that summarises the HDC process in REEF3D is presented in Fig. 1.

Sigma-grid -> Cartesian gridLinear interpolation:

u,v,w

surface elevation

Sigma-grid

N1 processors

DIVEMesh

REEF3D::FNPF

Linear interpolation: Sigma-grid -> Cartesian grid

Re-decomposition:    N1->N2 processors

Cartesian grid

N2 processors

Relaxation method

REEF3D::CFD

Figure 1: Hydrodynamic coupling (HDC) procedure implemented in REEF3D.

RESULTS

Empty Wave Tank

In the first step, the hydrodynamic coupling procedure is tested with a two-dimensional (2D)
wave propagation over constant water depth. A 2nd-order Stokes wave with a wave height of
0.1 m and a wavelength of 4 m over a water depth of 2 m is generated in the fully nonlinear
potential flow solver REEF3D::FNPF. The numerical wave tank of the potential flow domain
is 100 m long in the direction of wave propagation. A one-wavelength wave generation (WG)
zone using the relaxation method is located at the inflow boundary and a two-wavelength
numerical beach (NB) is arranged at the outflow boundary. The CFD domain starts from
Xc = 60 m, where the hydrodynamic coupling takes place, until the end of the numerical
wave tank. As a result, the CFD domain is only 40 m long in the wave propagation direction.
A one-wavelength hydrodynamic coupling zone is used to initialise the flow information from
the potential flow model following the relaxation method used in the wave generation zone.
The potential flow model simulates 200 s wave propagation while the CFD model obtains the
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flow information from tc = 100 s and simulates the wave propagation for 80 s. The schematics
of the numerical wave tank set-up for the FNPF domain and the CFD domain is illustrated
in Fig. 2.

WG NB FNPF

CFDNBHDC

Xc

Figure 2: Schematics of the numerical wave tank set-up of the FNPF and the CFD domains
for the simulation of wave propagation over constant water depth. WG stands for the wave
generation zone, NB is the numerical beach, HDC represents the hydrodynamic coupling zone
between the models and Xc is the location where the coupling procedure and the CFD domain
starts.

In the potential flow domain, the horizontal cell size is 0.1 m and 12 cells are arranged
in the vertical direction. The 200 s simulated is performed with 4 processors (2.7GHz Intel
Xeon E5) for 231 s. In the CFD simulation, a uniform cell size of 0.04 m is used. The 80
s simulation takes 1588.6 s in the CFD domain with 12 processors of the same type. The
simulated time history of the free surface elevation in the potential flow domain and the HDC
domain are compared at the coupling boundary at x = 60 m and near the end of the wave
tank at x = 90 m, as shown in Fig. 3.

175 180 185 190 195 200
-0.05

0

0.05
FNPF HDC Theory

(a) x = 60 m

175 180 185 190 195 200
-0.05

0

0.05
FNPF HDC Theory

(b) x = 90 m

Figure 3: Comparison of the wave surface elevation time history in the simulation of wave
propagation over constant water depth. (a) at x = 60 m, (b) at x = 90 m.

It is seen that both the potential flow simulation and the HDC simulation produce high-
quality wavefields that match the wave phase, as well as wave amplitude, provided by the
wave theory. The surface elevation time history in the CFD domain overlaps with the FNPF
domain, indicating little error in the coupling process.

However, the coupling process might be sensitive to the configuration of the coupling zone.
In the following test, different Lc, length of the coupling zone, are investigated. The surface
elevation time histories at x = 90 m are compared with Lc = 0.25λ, 0.5λ, λ and 2λ, where
λ is the wavelength. The comparison is shown in Fig. 4. It is seen that the wave phase is
shifted when only 0.25 wavelength is used for the coupling zone and the wave amplitude is
amplified when 0.5 wavelength is used. In order to obtain an accurate representation of the
wave propagation, at least one wavelength is required for the coupling zone.

9



Wang, W. et al., 2022

190 191 192 193 194 195 196 197 198 199 200

time (s)

-0.05

0

0.05

0.1

w
av

e 
el

ev
at

io
n

 (
m

)

FNPF HDC-025 HDC-050 HDC-100 HDC-200 Theory

Figure 4: Comparison of free surface elevation time history in the simulations of regular
wave propagation over constant water depth using different lengths of hydrodynamic coupling
zone. HDC-025, HDC-050, HDC-100 and HDC-200 represent the cases with the lengths of
hydrodynamic coupling zone equal to 0.25, 0.5, 1.0 and 2.0 wavelengths.

Breaking Wave

One of the limitations of non-viscous models with the afore-described form of the boundary
conditions is the lack of ability to represent the geometry of strong overturning breaking
waves, where the free surface is multiple-valued. In this case, only viscous CFD models are
able to capture the complicated overturning wave crest geometry. The hydrodynamic coupling
(HDC) combines the fast computational speed of the non-viscous potential flow model and
the ability to reproduce overturning breaking wave crest of the viscous CFD model. This
distinguishes the HDC approach to be advantageous and attractive for many engineering
problems, especially when both large-scale wave propagation and local-scale wave breaking are
important considerations. In this section, wave breaking over a submerged reef are simulated
using both the potential flow approach and the HDC approach. The numerical setup follows
the experiment at the Large Wave Flume (GWK), Hannover, Germany by Mo et al. Mo et al.
(2007) and Irschik et al. Irschik et al. (2002). The longitudinal length of the numerical wave
tank is 300 m, the water depth at the wave generation zone is 3.8 m. A submerged reef with a
slope of 1:10 starts at 179 m from the wave generation zone and rises up to 2.3 m at x = 201
m, while remaining constant afterwards until the end of the numerical wave tank. In the
potential flow FNPF domain, a wave generation zone is arranged at the inlet boundary and a
numerical beach is arranged at the outlet boundary. The CFD domain starts at the coupling
locations marked as Xc and an HDC zone is used to transfer the flow information from the
potential flow domain to the CFD domain. The outlet boundary of the CFD domain stops at
x = 210 m, after the wave breaking takes place. Here, an active absorption method is used at
the outlet boundary to eliminate unwanted wave reflection at the shallow water region. The
schematics of the numerical wave tank setup is shown in Fig. 5. In the first test, the coupling
location is arranged to be ahead of the beginning of the underwater slope at Xc = 150 m. The
flow information at 50 s is used as input in the CFD domain. A horizontal cell size of 0.5 m
is used in the FNPF domain, together with 15 cells in the vertical direction. The simulation
of 140 s is finished in 106 s with 4 processors (2.7GHz Intel Xeon E5) using the potential flow
model. In the CFD domain, a Cartesian grid with a uniform cell size of 0.05 m is used. For
a duration of 50 s, the simulation is finished in 1.48 h with 12 processors the same as those
used in the potential flow simulation.

The simulated surface elevation time histories at several different locations on the slope
are compared among the potential flow simulation, the hydrodynamic coupling simulation
and the experimental measurements, as shown in Fig. 6. As can be seen, the time histories
are generally in good agreement with each other both in terms of wave phase and amplitude.
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WG
FNPF

CFD

NB

HDC

Xc

Figure 5: Schematics of the numerical wave tank set-up of the FNPF and the CFD domains
for wave breaking over a submerged reef.

However, noticeable differences at the wave breaking location near x = 201 m can be observed
in Fig. 6c and the close-in view in Fig. 6d. First, the HDC simulation achieves an identical
surface elevation with the experiment at the spilling breaker at t = 82.7 s. The steep wavefront
is well preserved in the HDC model while the potential flow model starts to dissipate energy
slightly prematurely when the wave breaker is detected. More visible differences are seen at
t = 90.3 s where a plunging breaker takes place. Here, the HDC simulation captures a much
steeper wavefront that resembles the measurements, though a slightly lower crest height is
observed due to the unstable nature of the wave breaker crest. The potential flow model
predicts a similar wave crest height but fails to represent the steep wavefront. The time
history shows that the HDC approach is much more appropriate for the study of slamming
loads on structures.

60 65 70 75 80 85 90 95 100

-0.5

0

0.5

1

1.5

FNPF HDC EXP

(a) x=197.1 m

60 65 70 75 80 85 90 95 100

-0.5

0

0.5

1

1.5

FNPF HDC EXP

(b) x=198.1 m

60 65 70 75 80 85 90 95 100

-0.5

0

0.5

1

1.5

FNPF HDC EXP

(c) x=201.0 m

80 82 84 86 88 90 92 94 96 98 100

-0.5

0

0.5

1

1.5

FNPF HDC EXP

(d) x=201.0 m (close-in view)

Figure 6: Comparison of the free surface elevation time history at different locations among
REEF3D::FNPF, hydrodynamic coupling in REEF3D::CFD and experimental measurements
for wave breaking over a submerged reef.

In order to confirm the wave breaking scenarios and demonstrate the complicated breaking
wave crest geometry, the simulated wavefields from both the potential flow NWT and the HDC
NWT are shown in Fig. 7 and Fig. 8 for t = 82.7 s and t = 90.3 s respectively. Here, significant
differences are observed between the two simulations. The steep wavefront is well preserved
and presented in Fig. 7b in comparison to Fig. 7a for the spilling wave breaker at t = 82.7. In
Fig. 8, the plunging wave breaker with an overturning wave crest at t = 90.3 is represented in
the HDC simulation while the geometrical feature is lost in the potential flow simulation. The
comparison confirms the wave breaking scenarios as can be derived from the surface elevations
and reassures the advantage of the HDC approach for breaking wave simulations. The CFD
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domain is only between 150 m and 210 m in the current setup, which is only 1/5 of the entire
experimental setup. As a result, the computational cost of the HDC approach is also nearly
only 1/5 that of using the CFD simulation alone.

(a) (b)

Figure 7: Spilling wave breaker at 82.7 s rendered with velocity magnitude in the simulations
at (a) in REEF3D::FNPF domain and (b) in REEF3D::CFD domain.

(a) (b)

Figure 8: Plunging wave breaker at 90.3 s rendered with velocity magnitude in the simulations
at (a) in REEF3D::FNPF domain and (b) in REEF3D::CFD domain.

However, it is also noted that the HDC approach is sensitive to the choice of the coupling
locations. The numerical coupling needs to consider the critical wave events. If the coupling
takes place too early, the advantage of minimising computational cost is reduced. If the
numerical coupling takes place too late, the CFD domain might have received flow information
after the critical wave events, and thus loses the advantage of capturing the complicated
viscous and turbulent wave phenomena. To demonstrate this effect, the HDC simulations
with different coupling locations Xc = 150, 170 and 190 m are used and the time histories at
x = 201 m are compared in Fig. 9. It is seen that the numerical simulations with Xc = 150 and
170 m produce similar results and the steep wavefronts at breaking waves are represented.
However, if the flow information is transferred to the CFD domain at Xc = 190 m, the
breaking waves are not well represented and the numerical results from the HDC approach
are nearly identical to the potential flow simulation.
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Figure 9: Free surface elevation time history at x = 201.0 m with different hydrodynamic
coupling locations for wave breaking scenarios over a submerged reef.

CONCLUSION

The presented article describes the procedure to perform one-way hydrodynamic couplings
(HDC) between a non-viscous fully nonlinear potential flow solver and a viscous CFD solver
within the open-source hydrodynamic framework REEF3D. The velocities and free surface
elevation from the potential flow solver on a σ-grid are transferred to the CFD domain as
inputs. The grid generator DIVEMesh in the REEF3D framework interpolates the flow in-
formation into the Cartesian grid in the CFD domain and re-decomposes the computational
domain to allow parallel computations with different numbers of processors in the non-viscous
and viscous models. A relaxation method is used to initialise the flow information from the
potential flow domain and propagate the waves in the CFD domain.

The study of wave propagation over a constant water depth proves the effectiveness and
accuracy of the presented HDC method. It also shows the sensitivity of the coupling zone
length on the quality of the wavefield in the CFD domain. The study on wave breaking over
a submerged reef confirms the advantage of the HDC approach by combining the computa-
tional efficiency of the non-viscous potential flow solver and the ability to represent strong
overturning breaking waves of the viscous CFD solver.

In general, the presented HDC approach within REEF3D is seen to be effective and
accurate. In the future, high-order interpolation methods are to be explored to further increase
the flexibility and accuracy at the coupling boundary. Studies on wave slamming loads on
monopoly structures in a 3D NWT are also planned in the future to further validate the HDC
methodology and address its engineering significance.
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