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Deep Learning for Improved Precision and
Reproducibility of Left Ventricular Strain in
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Lasse Lovstakken, MSc, PhD, and Bjørnar Grenne, MD, PhD, Trondheim, Kristiansand, Oslo, Arendal, Levanger,
Norway; and Stockholm, Sweden

Aims: Assessment of left ventricular (LV) function by echocardiography is hampered by modest test-retest
reproducibility. A novel artificial intelligence (AI) method based on deep learning provides fully automatedmea-
surements of LV global longitudinal strain (GLS) and may improve the clinical utility of echocardiography by
reducing user-related variability. The aim of this study was to assess within-patient test-retest reproducibility
of LV GLS measured by the novel AI method in repeated echocardiograms recorded by different echocardi-
ographers and to compare the results to manual measurements.
Methods: Two test-retest data sets (n = 40 and n = 32) were obtained at separate centers. Repeated record-
ings were acquired in immediate succession by 2 different echocardiographers at each center. For each data
set, 4 readers measured GLS in both recordings using a semiautomatic method to construct test-retest inter-
reader and intrareader scenarios. Agreement, mean absolute difference, and minimal detectable change
(MDC) were compared to analyses by AI. In a subset of 10 patients, beat-to-beat variability in 3 cardiac cycles
was assessed by 2 readers and AI.
Results: Test-retest variability was lower with AI compared with interreader scenarios (data set I: MDC = 3.7 vs
5.5, mean absolute difference = 1.4 vs 2.1, respectively; data set II: MDC = 3.9 vs 5.2, mean absolute differ-
ence = 1.6 vs 1.9, respectively; all P < .05). There was bias in GLS measurements in 13 of 24 test-retest inter-
reader scenarios (largest bias, 3.2 strain units). In contrast, there was no bias in measurements by AI. Beat-to-
beatMDCswere 1,5, 2.1, and 2.3 for AI and the 2 readers, respectively. Processing time for analyses of GLS by
the AI method was 7.9 6 2.8 seconds.
Conclusion: A fast AI method for automated measurements of LV GLS reduced test-retest variability and
removed bias between readers in both test-retest data sets. By improving the precision and reproducibility,
AI may increase the clinical utility of echocardiography. (J Am Soc Echocardiogr 2023;36:788-99.)
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Abbreviations

AI = Artificial intelligence

ASE = American Society of

Echocardiography

GLS = Global longitudinal
strain

ICC = Intraclass correlation
coefficient

LV = Left ventricle, ventricular

LVEF = Left ventricular
ejection fraction

MDC = Minimal detectable
change

ROI = Region of interest
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INTRODUCTION

Reliable test-retest reproduc-
ibility is critical for the utility of
diagnostic tests, although rarely
assessed or discussed in echocar-
diographic studies. Suboptimal
test-retest reproducibility ham-
pers traditional quantification of
left ventricular (LV) ejection frac-
tion (LVEF), which is crucial in
everyday decision-making for
diagnosis, follow-up, prognostic
evaluation, and treatment in
large patient groups.1-5 Left
ventricular global longitudinal
strain (GLS) has been
introduced as a parameter for
LV function that could
outperform LVEF, in terms of
both reproducibility and prognostic value.1 However, the present
semiautomatic methods for analyses of LV GLS are still limited by
reader dependency that introduces measurement variability and
adds to the time-consuming process of analyzing echocardiographic
images.6 Thus, measurement of LV GLS is underused in everyday
clinical practice. To overcome these challenges, there is need for a
fast, feasible, and more reproducible method to gain diagnostic and
clinical benefits.

Deep learning, one of the most recent advancements in machine
learning and a key component in artificial intelligence (AI), now en-
ables computer algorithms to learn from annotated images without
prior feature extraction. The field of deep learning can lead to a para-
digm shift in cardiac imaging by changing the echocardiographic
workflow.7 By reducing time-consuming manual measurements
and the variability related to image interpretation, both the repro-
ducibility, efficiency, and efficacy of echocardiography may be
improved. Automated AI-based measurements of LV GLS could
also improve diagnostic and prognostic accuracy.8

Recently, a fully automated deep learning–based AI method was
shown to provide high feasibility and accuracy for measurements of
LV GLS.9 This is the first AI-based GLS software to include a deep-
learning network specifically trained to perform the motion estima-
tion task, which could improve tracking accuracy compared with
contour tracing or traditional block- and feature-matching algo-
rithms.10 However, although a fully automated deep-learning algo-
rithm reproduces the same result every time when applied to the
exact same images, repeated echocardiographic recordings always
introduce image differences due to variations in probe positioning,
angulation, and tilt, as well as the patient’s position, breathing, and
heart rate. Therefore, it is of great importance to quantify how an
automated AI method influences measurement agreement when
analyzing repeated echocardiograms within patients. Such knowl-
edge is lacking for automated measurements of LV GLS.

Thus, we aimed to study the test-retest reproducibility of LV GLS
measured by the fully automated AImethod comparedwith an estab-
lished semiautomatic method when analyzing within-patients
repeated echocardiographic recordings acquired by different echo-
cardiographers. There is no easily obtainable gold standard for true
LV GLS, and the purpose of our study was not to assess the accuracy
of the established or the novel method.
METHODS

Study Design Overview

We performed a reproducibility study in 2 data sets of test-retest
echocardiographic recordings from 2 independent academic centers
in Norway (Graphical Abstract). The study was designed to simulate a
realistic clinical test-retest situation where LV GLS was measured in
images from 2 separate recording sessions in each patient, acquired
by 2 different echocardiographers. To minimize the variability caused
by differences in physiological conditions, the test-retest recording ses-
sions were acquired in immediate succession. Each of the test-retest
data sets was recorded by 2 different echocardiographers for each
institution, in total 4 different echocardiographers. Both recordings
in each patient were analyzed by a total of 4 readers, that is, the 2
who recorded the echocardiograms and 2 not participating in the im-
age recording process. The latter 2 readers analyzed the data sets from
both institutions. All readers measured LVGLS using a semiautomatic
reference method. Thus, a total of 6 readers participated in the study,
labeled by letters from A to F. Supplemental Online Table 1 lists each
reader’s medical position and experience in transthoracic echocardi-
ography. Readers A and B analyzed both data sets from each institu-
tion. Readers C and D were unique for data set I, whereas readers E
and Fwere unique for data set II. For each data set, this allowed for the
construction of 12 unique test-retest scenarios where the 2 recordings
were analyzed by different readers (test-retest interreader scenarios)
and 4 scenarios where the 2 recordings were analyzed by the same
reader (test-retest intrareader scenarios). All measurements were per-
formed blinded to clinical data and the results of other readings.
Finally, the repeated recordings in each patient were analyzed by
the AI method. The agreement of the repeated-recording test-retest
inter- and intrareader scenarios was assessed and compared to the re-
sults when both recordings were analyzed by the AI method.
Material

Data set I was from a cohort of patients with a history of hospital-
ization due to suspected acute coronary syndrome and was collected
at Sørlandet Hospital Arendal, Norway. Data set II was collected as
part of the Trøndelag Health Study (the HUNT Study), a cross-
sectional health study in central Norway. Both data sets included
repeated echocardiographic recordings in random samples of the
study populations, performed to investigate measurement variability
in echocardiography. Complete test-retest echocardiograms with
cine-loops from the 3 standard apical views were available for 40
and 32 subjects, respectively. There was no selection based on cardiac
disease or image quality, and thus the 2 data sets contained echocar-
diographic recordings with a wide range of cardiac function and im-
age quality.
Echocardiographic acquisitions were performed with GE Vivid 7

(data set I) and GE Vivid E95 (data set II), both from GE Vingmed
Ultrasound. Acquisitions were performed in accordance with
European Association of Cardiovascular Imaging and American
Society of Echocardiography (ASE) recommendations.11,12

Image quality was visually assessed per segment in a standard 18-
segment LV model. Each segment was scored as missing if outside
the image sector or if the myocardiumwas indistinguishable from sur-
rounding structures due to artifacts. Examinations were classified as
good quality if no segments were missing from any of the 3 apical
views, fair quality if 1 to 2 segments were missing, and poor quality
if >2 segments were missing.



HIGHLIGHTS

� Deep-learning AI provides efficient automated GLS measure-

ments in echocardiograms.

� Deep-learning AI produces consistent GLS measurements in

repeated echocardiograms.

� Automated GLS measurements using deep learning improve

test-retest reproducibility.
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The study was approved by the Regional Committee for Medical
and Health Research Ethics (REC IDs 53,266 and 13,083) and was
conducted in compliance with the ethical principles of the
Declaration of Helsinki.
Global Longitudinal Strain Measured by the
Semiautomatic Method

Semiautomatic LV GLS was analyzed with a commercially available
and widely used speckle-tracking software (2DS, EchoPAC SWO ver.
203, GE Ultrasound). This reference method is one of the most well-
studied applications for strain measurements, and one of the few being
validated using both sonomicrometry and cardiac magnetic resonance
imaging.13 Measurements were performed as recommended by the
European Association of Cardiovascular Imaging and ASE.12 End dias-
tole was defined by the semiautomatic software and only corrected if
needed by visual assessment. End systole was identified manually by
the aortic valve closure. The readers identified endocardial and epicar-
dial borders by visual assessment and manually corrected the default
region of interest (ROI) proposed by the speckle-tracking software if
needed. Manual ROI adjustment was required in most patients.
Software-specific default values of spatial and temporal smoothing
were used, and automatic drift compensation was applied by default.
Examinations were rejected if >2 adjacent segments of a single view
were missing. Left ventricular GLS was calculated as the average
from the 3 standard apical views. A representative single beat was
selected and analyzed from each of the standard apical views. In addi-
tion, 2 readers analyzed 3 consecutive beats per recording in a random
subset of 10 patients to assess beat-to-beat variability.
To quantify possible differences in manual adjustments of the ROI

initiation between readers, the end-diastolic ROI centerline length
and ventricular length were calculated on the basis of ROI centerline
positional data provided by the semiautomatic software, which were
available for reader A (ASE level II, experience: >300 strain analyses)
and reader B (ASE level II, experience: >50 strain analyses).
Global Longitudinal Strain Measured by the AI Method

An in-house-developed AI method based on deep learning was
used to perform automated image analyses and measurements of
LV GLS (Figure 1). The AI method utilized artificial neural networks
to perform key tasks such as image view classification, cardiac event
timing, image segmentation, andmotion estimation. The components
of the AI method were trained using different databases and training
strategies. The view classification was trained on approximately 250
patients, the event timing model on 500 patients, and the segmenta-
tion model on more than 600 patients. The motion estimation
method was first pretrained on roughly 50,000 image pairs of syn-
thetic data of different moving objects rendered on random back-
grounds in addition to sequences from an animation movie. After
this, transfer learning was conducted on 105 video sequences, or
roughly 3,000 image pairs of simulated ultrasound data with ground
truth motion derived from a biomechanical model. Finally, 100 re-
cordings of real patient data were used for fine-tuning of the model.
For this step, image quality was first assured by an expert, followed
by extensive augmentation based on ROI initiation and motion
tracking made by the semiautomatic speckle-tracking method. All da-
tabases included patients with large variation in LV morphology and
function. To measure LV GLS, reference points were seeded along
the centerline of the ROI defined by the segmentation network in
the frame classified as end diastole by the timing network. The line
drawn through these points constituted the length of themyocardium
at baseline. The positions of the reference points were updated by the
motion estimation network per frame through the cardiac cycle. In
contrast to traditional methods for motion estimation in echocardiog-
raphy, this novel approach applies a deep neural network to estimate
myocardial motion by using state-of-the-art, learning-based optical
flow mapping tailored for ultrasound images, where the myocardial
displacement is estimated between successive frames.12 Additional
details regarding the AI method have been described elsewhere.9,10

Left ventricular GLS was calculated as the Lagrangian peak nega-
tive strain. Similar to the reference method, peak strain was calculated
for all 3 standard apical views, and the reported LV GLS was calcu-
lated as the average of these 3 values. The AI method measured
and reported LV GLS based on the single middle beat of the 3 cycles
of each recorded view (1 beat) and as the beat-to-beat average of all 3
cycles (3-cycle beat-to-beat average).
Beat-to-Beat Variability

Beat-to-beat variability was studied by randomly selecting 10 pa-
tients from data set I. Two blinded readers (readers A and B)
analyzed GLS in 3 consecutive cardiac cycles for each of the 3 apical
views in both the first and second echocardiographic recordings.
The exact same cine-loops and cycles were analyzed by both
readers. This resulted in 60 cine-loops of 3 consecutive beats
analyzed by both readers and a total of 360 reference measure-
ments. The beat-to-beat variability by the 2 readers was compared
to the results by the AI method.
Statistics

As data were normally distributed, continuous variables are pre-
sented as mean6 SD. Categorical variables are presented as numbers
and percentages. Bland-Altman analyses were performed to assess
test-retest measurement variability. Bias and limits of agreement
were calculated for each test-retest scenario.14 Measurement repro-
ducibility was quantified by estimating the standard error of measure-
ment (SEM) calculated as the root mean squared average of within-
patient SDs. We calculated the minimal detectable change (MDC)
as 1.96 � O2 times the SEM. In beat-to-beat assessments, the SEM
and MDC were calculated using the within-recording SDs. The coef-
ficient of variation was calculated as SEM divided by the mean of all
measurement pairs multiplied by 100. Intraclass correlation coeffi-
cients (ICCs) were calculated using a 2-way mixed-effect absolute
agreement model. A 2-sided paired t test was used to test whether
the average within-patient SDs of 2 scenarios were statistically
different. The difference between AI and the average interobserver
and intraobserver scenarios was calculated for mean absolute differ-
ence, SEM, MDC, coefficient of variation, and ICC. The jackknife
technique was used to calculate the SE of the difference estimates



Figure 1 Schematic illustration of our in-house-developed AI method for automated measurements of LV GLS. The input was
echocardiographic studies containing 4-chamber (4ch), 2-chamber (2ch), and apical long-axis views (Aplax). Four deep-
learning networks were used for the key tasks of view classification, timing of cardiac events, image segmentation, and motion
estimation. To measure LV GLS, the current view was defined by the view classification network, the end-diastolic frame was de-
tected by the timing network, and a line was drawn through points seeded along the centerline of the myocardial segmentation
mask. The position of these seeded points and the resulting centerline of the myocardium were updated through the cardiac cycle
by the flow fields produced by the motion estimation network. Lagrangian peak negative strain wasmeasured in the 3 apical views,
and the average GLS was reported.
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and a Z test was used to test whether the differences were significantly
different from 0. P < .05 was considered statistically significant.
All statistical analyses were performed using Python 3.7.4 (Python

Software Foundation) code based on open-source statistical Python
packages (SciPy 1.5.4, Pingouin 0.5.3, and Statsmodels 0.12.1).
Exact 95% CI of the limits of agreement were calculated using
code based on the method proposed by Shieh.15
RESULTS

Demographic characteristics of the 2 populations are summarized in
Table 1. Patients in data set I were older and had slightly lower LVEF
and more comorbidity compared with patients in data set II. None of
the patients were excluded based on image quality. The AI method
succeeded in classifying the correct view in 96% (231/240) of the re-
cordings in data set I and 97% (187/192) of the recordings in data set
II. Further, the AI method correctly classified cardiac events (end dias-
tole, systole, and end systole) in 99% (238/240) of recordings in data
set I and 97% (187/192) of recordings in data set II. Image segmenta-
tion, estimation of cardiac motion, and measurement of LV GLSwere
possible in all examinations when the correct view and timing of
events were verified. Total processing time for LV GLS per patient
was 7.9 6 2.8 seconds.
Data Set I Test-Retest Reproducibility

In data set I, the mean LV GLS measured by the 4 readers using the
semiautomatic reference method ranged from �17.2% 6 3.0% to
�20.1% 6 3.2%, whereas LV GLS measured by the AI method
was�16.0%6 2.4%. The averageMDCs, mean absolute differences,
SEM, coefficients of variation, and ICCs of the test-retest scenarios are
presented in Table 2. Compared with themean of the interreader sce-
narios, use of AI reduced MDC (3.7 vs 5.5, respectively, P < .05).

When LV GLSs in the 2 recordings were analyzed by different
readers (interreader scenarios), a significant bias between readers
was observed in 9 of 12 scenarios, with a largest absolute bias of
3.2 strain units (Figure 2). When LV GLSs in the 2 recordings were
analyzed by the same reader (intrareader scenarios), a significant
bias of 0.8 strain units was found in 1 of 4 scenarios (Figure 3).
Using AI for measurement of LV GLS in both recordings (AI scenario)
resulted in no significant bias.
Data Set II Test-Retest Reproducibility

In data set II, mean LV GLS measured by the 4 readers using the
semiautomatic reference method ranged from �17.7% 6 2.6% to
�19.2%% 6 2.7%%, whereas LV GLS measured by AI was
�16.8% 6 2.7%. The average MDCs, mean absolute differences,
SEM, coefficients of variation, and ICCs of the test-retest scenarios
are presented in Table 2. Compared with the mean of the inter-
reader scenarios, use of AI reduced MDC (3.9 vs 5.2, respectively,
P < .05).

When LV GLSs in the 2 recordings were analyzed by different
readers (interreader scenarios), a significant bias between readers
was observed in 4 of 12 scenarios, with the largest absolute bias of
1.6 strain units (Figure 4). When LV GLS in the 2 recordings was
analyzed by the same reader (intrareader scenarios), there was no sig-
nificant bias observed in any of the scenarios (Figure 5). Similarly, us-
ing AI for measurement of LV GLS in both recordings (AI scenario)
resulted in no significant bias.
Beat-to-Beat Reproducibility Substudy

Beat-to-beat reproducibility of LV GLS in 3 consecutive cardiac cycles
was improved whenmeasurements were performed by AI compared
with conventional semiautomatic measurements by the 2 readers
(SEM = 0.55, 0.75, and 0.84 for AI, reader A, and reader B, respec-
tively, P < .05). Correspondingly, the MDC was lower for the AI
method compared with the 2 readers (MDC = 1.5, 2.0, and 2.3 for
AI, reader A, and reader B, respectively, P < .05).

Influence of Image Quality on Test-Retest Variability

There was a trend toward lower mean absolute difference with better
image quality. Mean absolute difference (SD) strain (%) for AI mea-
surements and the intraobserver scenarios were 2.0 (1.3) and 1.9
(1.2) and in recordings graded as having poor image quality.
Correspondingly, in recordings with good image quality, themean ab-
solute difference was approximately 40% lower, with a mean abso-
lute difference (SD) strain (%) of 1.3 (0.9) and 1.2 (0.7),
respectively, with overlapping CIs according to image quality and be-
tween methods (Supplemental Online Figure 1).
DISCUSSION

This is the first study to demonstrate that measurements of LV GLS
using a fully automated AI method based on deep learning improves
within-patient test-retest reproducibility in echocardiography. The
test-retest reproducibility of AI-based measurements was favorable
compared to interreader scenarios and comparable to the intrareader
scenarios. In repeated echocardiographic examinations performed by
different echocardiographers, the bias observed in the interobserver
scenarios, representing systematic between-operator differences,
was removed when analyses of LV GLS were performed by AI rather
than by 2 different human readers using a semiautomatic reference
method. These findings strongly support that the fast and reliable
automated measurement of LV GLS provided by AI can improve
echocardiographic assessment of LV function and should be consid-
ered for implementation in clinical practice.

The Clinical Implications of Improved Test-Retest
Reproducibility in Repeated Echocardiograms

A reproducible and accurate evaluation of LV function is needed to
provide optimal diagnosis and treatment to the individual patient.
Correspondingly, changes or lack of changes in LV function are funda-
mental for clinical decision-making throughout the spectrum of heart
diseases and constitute pillars for guideline-based decisions in patients
with heart failure and valvular heart disease and in cardio-
oncology.16-18 Good within-patient test-retest reproducibility between
repeated echocardiograms is therefore paramount for correct clinical
decisions but is often overlooked in echocardiographic research. As
the test and retest echocardiograms for each patient in our study
were recorded without time delay at the same day, the differences be-
tween the 2 recordings relate to differences introduced by acquisitions
or readings, and not real changes of LV function. Artificial intelligence
may improve the ability to reveal true changes in LV function by
removing the bias introduced by different readers. The many reader
combinations of the present study resulted in a wide range of observed
interobserver variability, which illustrates the importance of having
multiple readers when reporting interobserver variability in clinical
research.

Although the variability in assessment of LV function has been re-
ported to be better with LVGLS compared with LVEF, reproducibility



Table 1 Study populations

Parameter Data set I (n = 40) Data set II (n = 32)

Demographics:

Age, years 67 6 11 (46-89) 60 6 13 (28-88)

Gender, male 27 (68) 15 (47)

Body mass index,
kg/m2

27 6 4 (19-34) 28 6 4 (22-40)

Heart rate, bpm 74 6 15 (44-132) 66 6 10 (42 - 95)

Systolic blood

pressure, mm Hg

142 6 19 (100-176) 130 6 17 (102-172)

Comorbidity, n (%)

Hypertension 30 (75) 11 (34)

Coronary artery

disease

29 (72.5) 0 (0)

Echocardiographic

recordings:

LVEF, % 52 6 7 (34-65) 60 6 5 (47-72)

End-diastolic

volume, mL

100 6 21 (58-156) 118 6 26 (42-186)

End-systolic volume,

mL

49 6 14 (27-78) 47 6 13 (18-88)

Frame rate, frames

per second

73 6 10 (50-95) 79 6 6 (61-100)

Image quality
recording 1:

Good (0/18

segments missing)

20 (50) 13 (41)

Fair (1-2/18

segments missing)

12 (30) 10 (31)

Poor (>2/18
segments missing)

8 (20) 9 (28)

Image quality

recording 2:

Good (0/18
segments missing)

18 (45) 13 (41)

Fair (1-2/18

segments missing)

15 (37.5) 12 (37)

Poor (>2/18

segments missing)

7 (17.5) 7 (22)

Categorical data are presented as numbers n (%) and continuous

data as mean 6 SD (range).

Table 2 Test-retest reproducibility of GLSmeasurements for
interreader, intrareader, and AI scenarios

Parameter Data set I Data set II

Mean absolute
difference, strain

units (%):

Interreader
scenarios, mean

(range)

2.1* (1.5-3.4) 1.9* (1.4-2.6)

Intrareader

scenarios, mean
(range)

1.5 (1.4-1.6) 1.7 (1.4-2.0)

AI scenario 1.4 1.6

SEM, strain units (%):

Interreader
scenarios, mean

(range)

2.0* (1.3-2.8) 1.7* (1.2-2.4)

Intrareader

scenarios, mean
(range)

1.3 (1.2-1.5) 1.6* (1.2-2.0)

AI scenario 1.3 1.4

MDC, strain units (%):

Interreader
scenarios, mean

(range)

5.5* (3.8-7.6) 5.2* (3.3-6.5)

Intrareader

scenarios, mean
(range)

3.7 (3.4-4.0) 4.5* (3.4-5.7)

AI scenario 3.7 3.9

Coefficient of variation,
%:

Interreader

scenarios, mean

(range)

9.6* (6.7-15) 9.2* (6.3-12.6)

Intrareader

scenarios, mean

(range)

7.0 (6.7-7.2) 8.7 (6.6-11.1)

AI scenario 7.2 8.5

ICCs:

Interreader

scenarios, mean

(range)

0.72 (0.49-0.85) 0.63 (0.41-0.81)

Intrareader

scenarios, mean

(range)

0.84 (0.82-0.88) 0.67 (0.52-0.78)

AI scenario 0.84 0.70

*Significant difference (P < .05) between the mean and the AI sce-

nario.
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might still be a major clinical challenge.19,20 Ideally, serial measure-
ments of any clinical metric should be performed by the same reader.
However, in many clinical scenarios it is impractical or impossible to
always have the same reader present for serial analyses. Compared
with interobserver scenarios, the use of AI for repeated analyses of
LV GLS reduced the MDC and mean absolute difference and
removed the systematic bias, thus indicating improved reproducibility
comparable to what could be achieved by repeated analyses by the
same experienced reader.
Interpretation of Findings in the Context of Previous
Studies

Even though there are commercially available fully automated
methods for LV GLS measurements, we are not aware of any previ-
ous study evaluating test-retest reproducibility of such methods in
repeated echocardiograms. It is expected that fully automated mea-
surements in general have an advantage with respect to reproduc-
ibility, but whether the present findings could be extended to other
fully automated methods must be evaluated in dedicated studies.
Only a few studies have reported repeated echocardiogram test-
retest performance of commercially available semiautomatic
methods for LV GLS measurements, and with a wide range of vari-
ability.20-24 Moreover, these studies were single center and
measurements were performed by only 1 or 2 readers. Readers



Figure 2 Data set I: test-retest interreader scenarios. Bland-Altman plots presenting bias and limits of agreement for the 12 inter-
reader scenarios constructed by measurements made by readers A, B, C, and D using the semiautomatic reference method (A–L)
and for the AI scenario without manual input (M and N). The gray shaded areas represent the 95% CI of estimates.
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Figure 3 Data set I: test-retest intrareader scenarios. Bland-Altman plots presenting bias and limits of agreement for the 4 test-retest
scenarios constructed when the same reader A, B, C and D analyzed both the first and second image recording (A–D) and for the AI
test-retest scenario without manual input (E and F). The gray shaded areas represent the 95% CI of estimates.
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trained at different institutionsmay have slightly different conventions
for how to perform manual adjustments when using the
semiautomatic method for GLS measurements. Thus, the variability
presented in our study may be more representative of the everyday
clinic.

Variability in LV GLS between readers may have several contrib-
uting factors. By visual inspection of the ROIs extracted from the
semiautomated method it seemed that the initiation of the ROIs
was important for whether the endocardium and trabeculae as
opposed to the myocardium were tracked. This was supported by
quantification of the length of the ROI midline and the ventricular
length, which differed significantly between observers. This tendency
seemed to be particularly prominent in the apical region
(Supplemental Online Figure 1) and more pronounced with less
manual adjustment of the ROIs. Results for absolute strain values
were on average higher for the reader who systematically positioned
the ROI closer to the LV cavity. In a scenario where all readers were
using the AI method, variations in LV GLS due to individual differ-
ences in ROI initiation would have been eliminated. These findings
illustrate some of the benefits of standardization of measurements



Figure 4 Data set II: test-retest interreader scenarios. Bland-Altman plots presenting bias and limits of agreement for the 12 inter-
reader scenarios constructed by measurements made by readers A, B, E, and F using the semiautomatic reference method (A–L)
and for the AI scenario without manual input (M and N). The gray shaded areas represent the 95% CI of estimates.
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Figure 5 Data set II: test-retest intrareader scenarios. Bland-Altman plots presenting bias and limits of agreement for the 4 test-retest
scenarios constructed when the same reader A, B, E, and F analyzed both the first and second image recording (A–D) and for the AI
test-retest scenario without manual input (E and F). The gray shaded areas represent the 95% CI of estimates.
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by automated AI software, even when the semiautomatic algorithms
seem to track adequately.

Themean LVGLSmeasured by AI was in the lower range of what
has previously been reported with strain measured by speckle-
tracking. However, the difference between AI and the semiauto-
matic speckle-tracking method is in line with the differences previ-
ously observed between ultrasound systems22 and also with the
validation studies of the novel AI method.9 Intervendor, intersoft-
ware, and intermodality variability is a known issue in strain imaging,
and slightly different normal ranges have been reported for different
vendors and analysis packages. The mean LV GLS in the present pa-
per also corresponds to previously reported relative change in
apical-to-basal ventricular length and strain measured by tissue
Doppler.25 Thus, small differences between the different methods
are expected.
Beat-to-Beat Assessment

Assessment of beat-to-beat reproducibility revealed similar MDCs for
both readers using the semiautomatic method, whereas MDC was
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lower for the AI method. This implies that the ability to identify subtle
changes in LV GLS is improved by using AI.

An important advantage of the AI method is that averaged beat-to-
beat measurements of LV GLS are easily calculated within seconds,
whereas this is very time-consuming using a semiautomatic method.
This advantage of the AI method could be of great benefit when per-
forming measurements in patients with irregular rhythms such as
atrial fibrillation, where it is recommended to perform averaged mea-
surements of at least 5 cardiac cycles.26
Limitations

The examinations of data set I were acquired using an older genera-
tion ultrasound system than that used for data set II (Vivid 7 vs Vivid
E95). The older ultrasound system may have produced lower image
quality than the newer system, and this could contribute to the differ-
ence in results between data sets. However, older generation ultra-
sound systems are still widely used worldwide, and including a data
set acquired by these scanners therefore improves the generalizability
of the results.

The participating readers were all experienced in echocardiogra-
phy, but with variable practice in strain imaging. However, intra-
reader variability for the less experienced readers was not
statistically inferior compared with the 2 most experienced readers,
indicating that test-retest variability is an issue even within experi-
enced observers. The readers’ experience could therefore not
explain why AI had less variability than semiautomatic measure-
ments. Moreover, the level of experience by the observers resembles
many echo laboratories, which the authors believe adds to the clin-
ical relevance of this study.

The proposed AI software is vendor independent and could
potentially be used to analyze images from any other ultrasoundma-
chine. However, in this study the same vendor was used for all image
acquisitions and reference measurements, and the results can there-
fore not be generalized to other ultrasound systems without further
validation. Moreover, there is no gold standard for measuring LV
GLS, and thus, it was not possible to conclude whether the reference
method or the AI method produced the most accurate estimate of
LV function. Therefore, the aim was not to compare the values of
LV GLS obtained by the AI method with those obtained by the semi-
automatic method but rather to investigate the test-retest and beat-
to-beat variability of the AI method. Even though the novel AI-based
LV GLS method has demonstrated good agreement with reference
and this study shows the benefits of the method with respect to
reproducibility, data on the clinical accuracy and prognostic impact
should be documented before large-scale clinical implementation.
There are commercially available automated LV GLS methods.
We are, however, not aware of studies reporting on the test-retest
performance of these methods, and comparisons to the current
method must be addressed in future work.
CONCLUSION

The novel and fully automated AI method based on deep learning
successfully provided consistent within-patient test-retest measure-
ments of LV GLS in repeated echocardiograms recorded by different
echocardiographers. The AI method removed bias and reduced test-
retest variability compared with the case where different readers used
conventional semiautomatic methods to measure LV GLS. The fast
performance and high feasibility of the AI method may allow for
real-time strain calculations performed during echocardiographic ac-
quisitions in the future, thereby facilitating implementation of LV
GLS and improving the workflow in clinical echocardiography.
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