
ORIGINAL ARTICLE
Machine learning-based immune phenotypes correlate with STK11/KEAP1
co-mutations and prognosis in resectable NSCLC: a sub-study of the
TNM-I trial
M. Rakaee1,2,3*, S. Andersen3,4, K. Giannikou1,5, E.-E. Paulsen3,6, T. K. Kilvaer3,4, L.-T. R. Busund2,7, T. Berg2,7,
E. Richardsen2,7, A. P. Lombardi7, E. Adib1,8, M. I. Pedersen3, M. Tafavvoghi9, S. G. F. Wahl10,11, R. H. Petersen12,13,
A. L. Bondgaard14, C. W. Yde15, C. Baudet15, P. Licht16, M. Lund-Iversen17, B. H. Grønberg10,11, L. Fjellbirkeland18,
Å. Helland19,20,21, M. Pøhl22, D. J. Kwiatkowski1,23y & T. Donnem3,4y
1Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA; 2Department of Clinical Pathology, University Hospital of North
Norway, Tromso; 3Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso; 4Department of Oncology, University Hospital of North Norway,
Tromso, Norway; 5Division of Hematology and Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, USA; 6Department of
Pulmonology, University Hospital of North Norway, Tromso; 7Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway; 8Lank Center for
Genitourinary Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA; 9Department of Community Medicine, UiT The Arctic University of
Norway, Tromso; 10Department of Oncology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim; 11Department of Clinical and Molecular Medicine,
Norwegian University of Science and Technology, Trondheim, Norway; 12Department of Cardiothoracic Surgery, Copenhagen University Hospital, Rigshospitalet,
Copenhagen; 13Department of Clinical Medicine, University of Copenhagen, Copenhagen; 14Department of Pathology, Copenhagen University Hospital, Rigshospitalet,
Copenhagen; 15Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen; 16Department of Cardiothoracic Surgery, Odense
University Hospital, Odense, Denmark; 17Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo; 18Department of Respiratory
Medicine, Oslo University Hospital, University of Oslo, Oslo; 19Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo
University Hospital, Oslo; 20Department of Oncology, Oslo University Hospital, Oslo; 21Department of Clinical Medicine, University of Oslo, Oslo, Norway;
22Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; 23Department of Medical Oncology, Dana-Farber Cancer Institute,
Boston, USA
*Corresp
E-mail: m

yThese a
0923-75

(http://cre

578
Available online 24 April 2023
Background: We aim to implement an immune cell score model in routine clinical practice for resected non-small-cell
lung cancer (NSCLC) patients (NCT03299478). Molecular and genomic features associated with immune phenotypes in
NSCLC have not been explored in detail.
Patients and methods: We developed a machine learning (ML)-based model to classify tumors into one of three
categories: inflamed, altered, and desert, based on the spatial distribution of CD8þ T cells in two prospective (n ¼
453; TNM-I trial) and retrospective (n ¼ 481) stage I-IIIA NSCLC surgical cohorts. NanoString assays and targeted
gene panel sequencing were used to evaluate the association of gene expression and mutations with immune
phenotypes.
Results: Among the total of 934 patients, 24.4% of tumors were classified as inflamed, 51.3% as altered, and 24.3% as
desert. There were significant associations between ML-derived immune phenotypes and adaptive immunity gene
expression signatures. We identified a strong association of the nuclear factor-kB pathway and CD8þ T-cell
exclusion through a positive enrichment in the desert phenotype. KEAP1 [odds ratio (OR) 0.27, Q ¼ 0.02] and
STK11 (OR 0.39, Q ¼ 0.04) were significantly co-mutated in non-inflamed lung adenocarcinoma (LUAD) compared to
the inflamed phenotype. In the retrospective cohort, the inflamed phenotype was an independent prognostic factor
for prolonged disease-specific survival and time to recurrence (hazard ratio 0.61, P ¼ 0.01 and 0.65, P ¼ 0.02,
respectively).
Conclusions: ML-based immune phenotyping by spatial distribution of T cells in resected NSCLC is able to identify
patients at greater risk of disease recurrence after surgical resection. LUADs with concurrent KEAP1 and STK11
mutations are enriched for altered and desert immune phenotypes.
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INTRODUCTION

The characteristics of the tumor microenvironment, notably
immune cell subsets, have attracted the attention of re-
searchers in the field of immuno-oncology.1 Identifying
immunotherapy biomarkers will become easier as knowl-
edge increases about tumor and host immune-specific traits
that affect prognosis and treatment responses. Wide dif-
ferences in patient responses to treatment underscore the
importance of predictive biomarkers for selecting optimal
treatment strategies.2 However, the current spectrum of
biomarkers is extremely limited, particularly those that are
studied in large prospective clinical trials.

There is strong evidence that CD8þ cytotoxic T lym-
phocytes (CTLs) play an important role in immune
checkpoint treatment response.3 CTLs interact with tumor-
associated antigens on the target cells through the major
histocompatibility complex class-I and T-cell receptor com-
plex and can initiate apoptosis in malignant cells.4 Effective
CTL-mediated cytotoxicity requires direct contact between
CTLs and tumor cells, thus it is increasingly recognized that
the spatial distribution of CTLs in the tumor microenviron-
ment may indicate, or correlate with, divergent responses
to immunotherapy.5,6 Three main phenotypes have been
identified for tumor-immune classification, namely: (i)
inflamed (or hot), with high levels of CTLs in the intra-
tumoral compartment; (ii) altered, with moderate overall
CTL infiltration; and (iii) desert (or cold), with none or scarce
CTLs near tumor cells.7 The association of clinical outcomes
based on immune phenotypes has been documented,8 but
there is still no standardized method for defining the spatial
distribution of CTL infiltrates. Furthermore, the molecular
characteristics and mechanisms that shape the geographical
distribution of CTLs are uncertain.

The TNM (tumorenodeemetastasis) system is the gold
standard for non-small-cell lung cancer (NSCLC) staging,
providing guidance for the assessment of prognosis and the
optimal treatment approach. However, there is significant
heterogeneity in outcome within the same TNM stage.9 Given
the potential importance of spontaneous tumor immunity,
as well as that induced by immune checkpoint
inhibition treatment, incorporating immunological informa-
tion into lung cancer staging may be an important advance in
more precise cancer staging and prognostication.10 For
instance, immune scoring based on the assessment of CD8þ
and CD3þ T lymphocytes in tumor subregions (intratumoral,
and the tumorestromal interface)was recently recommended
for inclusion into the European Society for Medical Oncology
(ESMO) Clinical Practice Guidelines for gastrointestinal cancers
and the World Health Organization’s (WHO) classification of
digestive system tumors.11 Moreover, there is a comparable
clinical application of immune status for breast cancer.12 We
have previously reported on the utility of in situ immune
components to predict outcomes after tumor resection in
patients with early-stage NSCLC tumors,13,14 and on responses
to immunotherapy in advanced-stage tumors.15,16

Therefore, our intent was to develop a tumor-immune
phenotype classifier and to test it in a prospective
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Scandinavian trial (NCT03299478; TNM-I). Recognizing the
limitations of manual assessment of tumor-immune pheno-
type, including time requirement and large interobserver
variability,17 we pursued a machine learning (ML)-based
approach. This ML method was used for categorizing tumor-
immune phenotypes in patients with stage I-IIIA NSCLC in the
TNM-I trial, similar to, but extending our previous work.15 In
addition, we examined the potential association of tumor-
immune phenotype with genomic alterations and prognosis.

PATIENTS AND METHODS

The current study comprises 934 patients with resected
stage I-IIIA NSCLC. The patients were from two independent
cohorts: a multi-institutional Scandinavian clinical trial
(NCT03299478; TNM-I, n¼ 453; Copenhagen and Odense in
Denmark and Tromso and Trondheim in Norway), and a
retrospective collection from centers in the Northern Nor-
way health region (UNN, n ¼ 481).

In the TNM-I cohort, patients were prospectively enrolled
between August 2016 and February 2022. A web-based
case report form (REDCap) was used for collecting histo-
pathological and clinical data. In the UNN cohort, patients
were operated on between 1990 and 2010.13 In the TNM-I
cohort, tumor staging and classification was in accordance
with the latest guidelines [TNM American Joint Committee
on Cancer (AJCC) eighth edition; WHO 2015]. Patients from
the UNN cohort were restaged and reclassified according to
this newer staging system.

DNA (n ¼ 215) and RNA (n ¼ 132) analyses were carried
out using the TruSight Oncology 500 HT (TS0500, Illumina,
San Diego, CA; Supplementary Figure S1, available at
https://doi.org/10.1016/j.annonc.2023.04.005) and Pan-
Cancer Immuno-Oncology 360 (IO360, NanoString, Seattle,
WA) panels, respectively, in the TNM-I dataset.

The immune phenotyping of CD8/pan-cytokeratin (pCK)
stained whole-tissue images was based on supervised ML
models using QuPath (v.0.2.3)18 on developmental (TNM-I)
and validation (UNN) cohorts. Figure 1A summarizes the
workflow used in the development of the algorithm.
Training and evaluation of the ML model was conducted on
453 images of the TNM-I clinical trial, and tested further on
the retrospective UNN cohort. The UNN cohort employed
the same algorithms developed in the TNM-I set, with no
modifications. For phenotyping, the cut-off was based on
the lower (88 cells/mm2) and upper (814 cells/mm2) quar-
tile values of CD8þ cell density in intratumoral and stromal
compartments, respectively, in the entire material.8

Detailed methods are reported in the Supplementary
Material, available at https://doi.org/10.1016/j.annonc.
2023.04.005.

RESULTS

Tissue classifier model development and immune
phenotyping

A total of 934 stage I-IIIA NSCLC patients who had surgical
resection as primary therapy were studied from one
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Figure 1. Machine learning (ML)-based immune phenotyping of whole-slide images (WSI) in non-small-cell lung cancer (NSCLC).
(A) The workflow of the developed ML model in the TNM-I cohort (n ¼ 453) and further validation in the UNN (n ¼ 481) dataset. (B) Example images of representative
desert, altered, and inflamed in situ immune phenotypes are shown based on the spatial distribution of CD8þ in the stromal and intratumoral compartments. The
images in the upper row show immunohistochemistry (IHC) co-staining for CD8/pan-cytokeratin (brown/yellow). Images of classified tissue with ML overlay are shown
in the lower row. The stromal area/cells are represented by the green color. The tumor epithelial area/cells are represented by the blue color. The CD8þ cytotoxic T
lymphocytes (CTL) are represented by the red color. (C) Range of CD8þ density in different subregions [intratumoral (red dashed line ¼ Q1, 88 CD8þ/mm2) and
stromal (red dashed line ¼ Q3, 814 CD8þ/mm2)]. The distribution of immune phenotypes across the entire cohort (n ¼ 934) is shown in a pie chart.
ANN, artificial neural networks; MLP, multilayer perceptron; ROIs, regions of interest.
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prospective (TNM-I; 2016-2022) and one retrospective
(UNN; 1990-2010) cohort. Baseline patient and tumor
characteristics of the TNM-I and UNN cohorts were
different, due to major changes in patient demographics
and behaviors during collection (Table 1). For example, the
contemporary TNM-I cohort had a higher proportion of
patients with stage I NSCLC (54% versus 43%), former/never
filtered cigarette/loose tobacco smokers (69% versus 37%),
adenocarcinoma histology (68% versus 44%), and females
(56% versus 34%), compared to the historical UNN cohort,
as well as a higher median age at diagnosis (77 versus 68
years).

An ML-based pixel classifier was designed and trained to
segregate tissue into two distinct compartments: stromal
and intratumoral. To confirm the accuracy of the pixel
classifier, a comparison was carried out with manual region
annotation by a pathologist (ER) on a randomly selected
subset (n ¼ 100, excluding the training set). The intraclass
correlation coefficients (ICCs) of CD8þ cell counts between
automated and manual tissue segments were 0.99 for
stromal subregions and 0.98 for intratumoral subregions
(Supplementary Figure S2, available at https://doi.org/10.
1016/j.annonc.2023.04.005).

In both cohorts (n¼ 934), and in intratumoral and stromal
subregions, the median [interquartile range (IQR)] number of
CD8þ cells was 186 (88-382) and 485 (266-814) per mm2,
respectively (Supplementary Figure S3, available at https://
doi.org/10.1016/j.annonc.2023.04.005). Samples were
580 https://doi.org/10.1016/j.annonc.2023.04.005
classified into three immune phenotypes by spatial distri-
bution of CD8þ cells (Figure 1B). The fraction of samples
classified as inflamed, altered, and desert phenotypes was:
15%, 58.1%, and 26.9% for the TNM-I cohort; 33.5%, 44.7%,
and 21.8% for the UNN cohort (Supplementary Figure S3,
available at https://doi.org/10.1016/j.annonc.2023.04.005);
and 24.4%, 51.3%, and 24.3% for the combined cohort
(Figure 1C).
Immune phenotyping characterization by gene expression

ML-derived immune phenotypes were compared with im-
mune gene expression profiles for 132 patients from the
TNM-I cohort using whole-tissue sections. The profiles were
assessed using a NanoString panel (IO360) comprising 770
immune-specific genes and 39 signatures (Supplementary
Figure S4, available at https://doi.org/10.1016/j.annonc.
2023.04.005). The adaptive cell subset signature scores
were significantly increased stepwise from desert to
inflamed subtypes (Figure 2A). For innate immunity signa-
tures, macrophage scores (P < 0.01) and dendritic cell
scores (P < 0.001) showed an association with immune
phenotypes, while mast cell, neutrophil, and natural killer
cell scores did not (Supplementary Figure S5, available at
https://doi.org/10.1016/j.annonc.2023.04.005). In addition,
macrophage/tumor-infiltrating lymphocyte (TIL) and
neutrophil/TIL score ratios were highest in desert tumors
and lowest in inflamed subgroups (Supplementary
Volume 34 - Issue 7 - 2023
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Table 1. Baseline characteristics of the TNM-I and UNN cohorts for 934
resected stage I-IIIA NSCLC patients

TNM-I cohorta

n [ 453 (%)
UNN cohortb

n [ 481 (%)
Pc Total

n [ 934 (%)

Cohort type Prospective Retrospective
Inclusion time 2016-2022 1990-2010
pStage 0.004
Stage I 243 (54) 207 (43) 450 (48)
Stage II 127 (28) 157 (33) 284 (30)
Stage IIIA 83 (18) 117 (24) 200 (22)

pN status 0.06
N0 342 (76) 341 (71) 683 (73)
N1 or N2 105 (23) 140 (29) 245 (26)
Nx 6 (1) 6 (1)

pT status 0.002
T1 191 (42) 181 (38) 372 (40)
T2 171 (38) 167 (35) 338 (36)
T3 62 (14) 83 (17) 145 (15)
T4 29 (6) 50 (10) 79 (8)
Age, median (range) 77 (40-86) 68 (39-85) 0.2 68 (39-86)

Gender <0.001
Female 247 (56) 163 (34) 410 (44)
Male 206 (45) 318 (66) 524 (56)

Histology findings <0.001
LUAD 308 (68) 213 (44) 521 (56)
LUSC 126 (28) 261 (54) 387 (41)
Otherd 19 (4) 7 (2) 26 (3)

LUAD subtype 0.002
Solid 83 (27) 85 (40) 168 (32)
Acinar 141 (46) 74 (35) 215 (41)
Papillary 30 (10) 36 (17) 66 (13)
Micropapillary 10 (3) 15 (7) 25 (5)
Lepidic 22 (7) 3 (1) 25 (5)
Othere 22 (7) 22 (4)

Smoking <0.001
Current 139 (31) 304 (63) 443 (47)
Former/never 314 (69) 177 (37) 491 (53)

ECOG 0.02
0 332 (73) 279 (58) 611 (65)
1 99 (22) 169 (35) 268 (29)
2 18 (4) 33 (7) 51 (5)
Unknown 4 (1) 4 (1)

Surgery type <0.001
Pulmonectomy 6 (1) 113 (23) 119 (13)
Lobectomy 436 (96) 346 (72) 782 (83)
Wedge 11 (3) 22 (5) 33 (4)

PD-L1 (TPS %) NA
<1 113 (25) 113 (25)
1-49 152 (34) 152 (34)
�50 138 (30) 138 (30)
Unknown 50 (11) 50 (11)

Significant P-values in bold (P < 0.05).
ECOG, Eastern Cooperative Oncology Group; LUAD, lung adenocarcinoma; LUSC,
lung squamous cell carcinoma; NA, not assessed; PD-L1, programmed death-ligand
1; pN, pathological node; pStage, pathological staging; pT, pathological tumor; TPS,
tumor proportion score.
aIncluding samples from the following centers: Tromso, Trondheim, Odense, and
Copenhagen.
bIncluding samples from the following centers: Tromso and Bodø.
cP values were based on c2 test.
dIncluding adenosquamous carcinoma, large cell carcinoma, and sarcomatoid.
eIncluding mucinous, fetal, and colloid adenocarcinoma.
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Figure S5, available at https://doi.org/10.1016/j.annonc.
2023.04.005).

We found no association between immune phenotypes
and immune checkpoint gene expression (including PDCD1,
LAG3, TIGIT, CTLA4, CD274, PDCD1LG2, HAVCR2, IDO1, and
VSIR; Supplementary Figure S6, available at https://
doi.org/10.1016/j.annonc.2023.04.005). In contrast,
Volume 34 - Issue 7 - 2023
immunohistochemistry (IHC) assessment of programmed
death-ligand 1 (PD-L1) expression showed that high (�50%)
PD-L1 tumors had a far greater frequency of the inflamed
phenotype (25%) than tumors with either no PD-L1 expres-
sion (8%) or PD-L1 1%-49% (10%; c2 P < 0.001; Figure 2B).

We then carried out NanoString pathway analysis to
identify biological processes that were substantially
changed across immune phenotypes.19 As expected, overall
immune-related gene sets were highly up-regulated in
inflamed phenotypes, while oncogenic pathways were
enriched in desert phenotypes. Importantly, in addition to
apoptosis and epigenetic regulatory metagenes, the nuclear
factor (NF)-kB pathway was among the most attenuated
gene sets in altered versus desert phenotypes (Figure 2C).
This observation was further confirmed by gene set
enrichment analysis using Reactome dataset, which showed
that non-canonical NF-kB (Q ¼ 0.02), cytokines (Q ¼ 0.1),
and T regulatory (Q ¼ 0.2) pathway signaling had a signif-
icant negative enrichment score in inflamed versus altered
phenotypes (Figure 2D, Supplementary Figure S7, available
at https://doi.org/10.1016/j.annonc.2023.04.005).
Immune phenotypes and genomic changes

Next, we examined whether these immune phenotypes had
different mutational profiles, in order to determine whether
specific gene mutations have an effect on tumor immuno-
genicity. The DNA was analyzed using next-generation
sequencing with the TSO500 panel, which detects 523
cancer-associated gene alterations. The variant classification
of samples (n ¼ 215; TNM-I cohort) is shown in
Supplementary Figure S8, available at https://doi.org/10.
1016/j.annonc.2023.04.005. In brief, the median (range)
number of non-synonymous variants per sample was 12
(1-89), with the predominant mutation type of missense
single nucleotide variants and the most common nucleotide
change of C > A.

Since lung adenocarcinoma (LUAD) and squamous cell
carcinoma (LUSC) have different genomic profiles and mu-
tation patterns, we analyzed these tumors separately. The
distributions of the most common mutations in each his-
tological subgroup are shown in Figure 3A and B. In LUAD
(n ¼ 137), TP53 (42%), KRAS (31%), and STK11 (21%) were
among the most commonly mutated genes, whereas in
LUSC (n ¼ 68), TP53 (82%), LRP1B (40%), ROS1 (18%), and
PIK3CA (15%) were among the most commonly mutated
genes. Mutation frequencies of the top 20 genes in the
TNM-I cohort were similar to those seen in The Cancer
Genome Atlas (TCGA) and Genomics Evidence Neoplasia
Information Exchange (GENIE) (BPC NSCLC v2.0) lung
(LUAD and LUSC) datasets (Supplementary Figures S9 and
S10, available at https://doi.org/10.1016/j.annonc.2023.04.
005).20,21

After stratification of the analysis, based on immune
phenotypes across histology, compared to inflamed LUAD
(n ¼ 72), non-inflamed (altered and desert, n ¼ 65)
cases were significantly enriched for mutations in KEAP1
[odds ratio (OR) 0.27, Q ¼ 0.02] and STK11 (OR 0.39,
https://doi.org/10.1016/j.annonc.2023.04.005 581
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Q ¼ 0.04). Likewise, ATM (OR 4.1, Q ¼ 0.03) and NF1 (OR
7.5, Q ¼ 0.03) mutations were enriched among inflamed
tumors (Figure 3C, Supplementary Figure S11, available at
https://doi.org/10.1016/j.annonc.2023.04.005). Lollipop
plots were constructed to demonstrate the distribution of
all variants on specific functional domains of these genes. In
the non-inflamed subgroup, the majority of somatic varia-
tions were distributed along the functional domains of
STK11 and KEAP1; but in the inflamed subgroup, ATM and
NF1 mutations were mainly located on the non-functional
domain of ATM and NF1 genes (Supplementary
Figure S12, available at https://doi.org/10.1016/j.annonc.
2023.04.005). Among the LUSC cases, no association with
mutations was observed across the immune phenotypes.

Co-mutation analysis of the non-inflamed LUAD subset
showed that both TP53 and KEAP1, and STK11 and KEAP1
mutations often occurred together (P < 0.001;
Supplementary Figure S13, available at https://doi.org/10.
1016/j.annonc.2023.04.005). In the inflamed LUAD subset,
PTPRT with GRM3 and ATRX, SETBP1 with PIK3CG and
SPTA1, NF1 and SPTA1, and PTPRD and KRAS mutations
highly co-occurred, while none were mutually exclusive
(P < 0.001; Supplementary Figure S13, available at https://
doi.org/10.1016/j.annonc.2023.04.005). We then examined
the impact of different immune phenotypes on the likeli-
hood of somatic mutations in 10 cancer-related pathways.22

The inflamed versus non-inflamed phenotypes were signif-
icantly associated with mutations in Wnt (P ¼ 0.004) and
cell cycle (P < 0.001) pathways (Supplementary Figure S14,
582 https://doi.org/10.1016/j.annonc.2023.04.005
available at https://doi.org/10.1016/j.annonc.2023.04.
005).

We also compared tumor mutational burden (TMB) dis-
tribution across different immune phenotypes. The median
(range) TMB was 8.6 mut/Mb (0.6-41 mut/Mb), and there
was no difference in median TMB for the different immune
subtypes. Further, there was no difference in median CD8þ
density (cells/mm2) in different tissue subregions based
on low (<10) versus high (�10) TMB (mut/Mb) levels
(Figure 3D). Consistently, there was no significant difference
in transversion events between inflamed and non-inflamed
phenotypes (Supplementary Figure S15, available at https://
doi.org/10.1016/j.annonc.2023.04.005).
Immune phenotype associations with disease stage and
histology

The distribution of immune phenotypes according to
baseline clinical attributes is shown in Supplementary
Table S1, available at https://doi.org/10.1016/j.annonc.
2023.04.005. No association was observed between the
main histological subgroups or disease stages and immune
phenotypes (Figure 4A). However, in LUAD, micropapillary
and solid subtypes tended to have a higher proportion of
the inflamed [40% (10/25), 27% (45/168), respectively]
subgroup compared to lepidic (12%, 3/25) and papillary
(21%, 14/66) subgroups (c2 P ¼ 0.24, Figure 4A,
Supplementary Table S1, available at https://doi.org/10.
1016/j.annonc.2023.04.005).
Volume 34 - Issue 7 - 2023

https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005
https://doi.org/10.1016/j.annonc.2023.04.005


30

100

300

1000

3000

Intratumoral Stromal Overall

a
a

0

89
P

ro
po

rt
io

n

ZFHX3

ARID1B

EPHA3

PTPRT

SMARCA4

MAGI2

FAT1

SETBP1

MGA

ATM

NF1

PRKDC

KEAP1

EGFR

PTPRD

STK11

SPTA1

LRP1B

KRAS

TP53

9%

9%

9%

9%

9%

9%

9%

10%

10%

11%

12%

12%

14%

14%

15%

21%

23%

31%

31%

42%

0 58
No. of samples

pStage

Phenotype

TruncatingMissense SplicingIn-Frame Multi_Hit

Phenotype

Altered

Desert

Inflamed

pStage

I

II

IIIA

0

47

P
ro

po
rt

io
n

EP300

NF1

ZFHX3

PRKDC

ERBB4

TAF1

SLIT2

EGFR

KDR

ATR

EPHA3

NTRK3

KEAP1

PIK3CA

NFE2L2

ROS1

SPTA1

FAT1

LRP1B

TP53

10%

10%

12%

12%

12%

12%

12%

12%

13%

13%

13%

13%

13%

15%

16%

18%

19%

21%

40%

82%

0 56
No. of samples

pStage

Phenotype

7%

14%

17%

19%

22%

29%

5%

3%

30% 20% 10% 0% 10% 20% 30%

KEAP1

STK11

ATM

NF1

Percent of cases

Inflamed LUAD (n = 72) Non-inflamed LUAD (n = 65)

0.920.44 0.71

compartment

C
D

8+
 c

el
ls

/m
m

2
TMB/Mb

�10

�10

A B

C D
0.86

0.49

0.16

2

16

128

Desert Altered Inflamed

T
M

B
 m

ut
/M

b

Figure 3. Mutation profiling of stage I-IIIA non-small-cell lung cancer (NSCLC) (TNM-I trial).
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TNM-I cohort (right plot).
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In contrast to immune phenotypes, 21 immune-related
genes were significantly up-regulated when comparing
LUAD versus LUSC as baseline (fold change >1.5; Q < 0.05;
Figure 4B). This was further confirmed by pathway analysis
in which immune-related gene sets were enriched in LUAD
compared to LUSC, including antigen-presentation machin-
ery, interferon signaling, and lymphoid compartments
(Figure 4C). Similarly, in addition to a high intratumoral
density of CD8þ (cells/mm2), CD45, T, T helper, macro-
phages, dendritic cell, and mast cell signatures
were significantly higher in LUAD compared to LUSC
(Supplementary Figure S16, available at https://doi.org/10.
1016/j.annonc.2023.04.005). In LUSC, only a few genes
(RORC, DPP4, AREG) were up-regulated, despite the fact
that many carcinogenic pathways were enriched, including
Wnt and Hedgehog, compared to LUAD (Figure 4C).
Volume 34 - Issue 7 - 2023
Immune phenotypes and clinical outcome

The median (IQR) follow-up of the patients was 25 (17-36)
and 83 (45-122) months for the TNM-I and UNN cohorts,
respectively. Due to the short follow-up of the TNM-I
cohort, the association of immune phenotypes with
outcome data was determined only in the UNN cohort. In
the UNN cohort, the median (95% confidence interval) time
to recurrence (TTR) was 73 (52-not reached) months. We
found that immune phenotypes (inflamed, altered, and
desert) were significantly associated with 5-year disease-
specific survival (DSS; 71% versus 57% versus 46%; P ¼
0.002) and TTR (64% versus 51% versus 41%; P ¼ 0.003)
(Figure 5A). Regarding the histology subgroups, immune
inflamed was a positive prognostic factor for DSS (P ¼ 0.01)
and TTR (P ¼ 0.01) in the LUSC subgroup. However, no
significant association with survival was found for patients
https://doi.org/10.1016/j.annonc.2023.04.005 583
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Figure 4. Non-small-cell lung cancer (NSCLC) histology and immune phenotypes.
(A) Distribution of immune phenotypes across main histological [lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)], LUAD subtypes, and
pathological TNM (tumorenodeemetastasis) stages of the entire NSCLC cohort (n ¼ 934). (B) Differential expression of 770 immune-related genes between LUAD and
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Annals of Oncology M. Rakaee et al.
with LUAD (Supplementary Figure S17, available at https://
doi.org/10.1016/j.annonc.2023.04.005).

In multivariable analysis, after adjusting for pathological
stage, histology, Eastern Cooperative Oncology Group per-
formance score, and gender, the immune-inflamed pheno-
type was found to be an independent positive predictive
factor for both DSS (inflamed versus desert, hazard ratio
(HR) 0.61, P ¼ 0.016; altered versus desert, HR 0.73,
P ¼ 0.079; Figure 5B) and TTR (Supplementary Figure S18,
available at https://doi.org/10.1016/j.annonc.2023.04.005).

To explore the relative contribution of different prog-
nostic biomarkers in classifying 5-year DSS and TTR, receiver
operating characteristic (ROC) analysis was carried out
including total, stromal, intratumoral CD8þ (cells/mm2)
density as continuous variable, immune phenotypes, and
TNM granular staging. Followed by TNM staging [DSS area
under the ROC curve (AUC) 0.66, P < 0.001; TTR AUC 0.63,
P < 0.001], immune phenotypes had the highest AUC (DSS
584 https://doi.org/10.1016/j.annonc.2023.04.005
0.58, P ¼ 0.001; TTR 0.56, P ¼ 0.001), while CD8 score in
various tissue compartments (stromal, intratumoral, and
overall) had lower AUC values for predicting risk of recur-
rence and disease survival (Figure 5C, Supplementary
Table S2, available at https://doi.org/10.1016/j.annonc.
2023.04.005).
DISCUSSION

This is the largest comprehensive study applying an auto-
mated procedure (ML) to analyze immune phenotypes in
early-stage NSCLC tumor tissue. Our findings indicate that
the inflamed phenotype is associated with a significantly
lower risk of tumor recurrence and disease mortality in
patients with NSCLC, independent of other clinical or
molecular biomarkers. However, in subgroup analysis, this
association was limited to the squamous cell carcinoma
histology. We also found that non-inflamed immune
Volume 34 - Issue 7 - 2023
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Figure 5. Immune phenotypes and clinical outcome.
(A) KaplaneMeier curves of disease-specific survival (DSS) and time to recurrence (TTR) based on immune phenotypes in the UNN cohort (n ¼ 481). (B) Multivariable
analysis: forest plot of hazard ratio (HR) and 95% confidence interval (CI) for DSS according to known covariates in the UNN cohort. (C) Power of prognostic biomarkers
to predict 5-year DSS (left) and TTR (right). Numbers in the plot represent the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity.
* P < 0.05, ** P < 0.01, *** P < 0.001.
ECOG, Eastern Cooperative Oncology Group; mDSS, median DSS in months; mTTR, median TTR in months; pTNM, pathological TNM (tumorenodeemetastasis).
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phenotypes are characterized by positive enrichment of a
distinct proinflammatory pathway (NF-kB) and tend to have
either or both STK11 and KEAP1 mutations.
ML-based immune phenotyping on whole-slide images

We used ML-based image analysis for immunological phe-
notyping of NSCLC tissues. Similar algorithms have been
used in recent years to analyze histopathological images.23

However, many have used unsupervised deep-learning ap-
proaches, whereas our method was pathologist-supervised,
with specific steps for tissue segmentation based on pixel
classification, and cell recognition based on hematoxylin
and DAB optical density in nuclei. We created and tested
this classification system on two independent lung cancer
datasets. We used the open-source software QuPath, which
has been adapted and validated for digital pathology image
analysis.15 In addition to association of ML-powered im-
mune phenotypes with gene expression immune classifi-
cations (Figure 2A), our artificial neural network tissue
classification algorithm obtained excellent accuracy
compared to rigorous manual stromal and tumoral anno-
tation by pathologists (ICC 0.99 and 0.98, respectively).
Further, it is still not known whether analyses of region of
interest (including tissue microarrays, hotspots, and
selected regions) or whole-slide images are better for
evaluating tissue biomarkers,24 but we consider one of the
Volume 34 - Issue 7 - 2023
strengths of our study to be the use of whole-slide images
for immunological phenotyping.

Regarding the immune phenotyping cut-offs, Park et al.
used the lower intratumoral (106 cells/mm2) and upper
stromal (357 cells/mm2) 25th percentile (1 mm2 patch size)
for hematoxylin and eosin-based TIL analysis in ‘advanced’
NSCLC.8 To our knowledge, this is the first study imple-
menting ML models to immune phenotype of whole-slide
images of ‘early-stage’ NSCLC patients based on CD8þ
CTL density. On the basis of lower and upper 25th per-
centiles in our entire material, we used intratumoral 88
CD8þ/mm2 and stromal 814 CD8þ/mm2. Even though this
classification was supported by gene expression immune
signatures, the proposed cut-offs should be regarded as
hypothesis-generating which should be confirmed in the
TNM-I trial full dataset (n ¼ 1000).
Genomic and immune phenotype

The STK11 gene encodes liver kinase B1, which is a serine/
threonine kinase that regulates and activates multiple
downstream kinases that control metabolism and growth.25

In our cohort, STK11 deficiency affected w21% of LUAD
patients, similar to previous reports (Supplementary
Figure S9, available at https://doi.org/10.1016/j.annonc.
2023.04.005). KEAP1 encodes an adaptor subunit of cullin
3-based E3 ubiquitin ligase, which serves a critical role in
the regulation of the Nuclear factor erythroid 2-related
https://doi.org/10.1016/j.annonc.2023.04.005 585
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factor 2 transcription factor, which is a master regulator of
detoxification and antioxidant genes. Mutations in KEAP1
lead to activation of NRF2, which leads to resistance to
multiple therapeutic interventions including immuno-
therapy.26,27 In our cohort, KEAP1 mutations were found in
14% of LUAD patients. We found that both STK11 and
KEAP1 mutations were associated with a non-inflamed
phenotype, and this was especially strong for tumors with
mutations in both genes, which were much more common
than predicted by chance. However, further investigation is
warranted into the cross-communication between local
immune reactions and STK11/KEAP1 alterations. We also
identified that there is no link between immunological
phenotype and TMB in early-stage (stage I-IIIA) tumors,
which is consistent with our previous findings in a large
cohort of advanced NSCLC patients.15
NF-kB pathway

NF-kB has a key role in the development and function of
regulatory T cells (Treg), which have an immunosuppressive
function that sustains self-tolerance and immune homeo-
stasis.28 Treg are also known to suppress antitumor immune
responses by influencing the function of TILs and macro-
phages. NF-kB signaling is also involved in the regulation of
immune checkpoint expression in tumor cells, by inducing
PD-L1 expression and promoting T-cell suppression, and
thus tumor progression.29 In this study, we found that NF-
kB and Treg pathways are highly enriched in non-inflamed
compared to inflamed tumors. The desert phenotype was
characterized by none or very-low-density CD8þ CTLs, and
was either associated with alteration on oncogenic path-
ways gene sets (e.g. Wnt signaling; Supplementary
Figures S14 and S19, available at https://doi.org/10.1016/
j.annonc.2023.04.005) or with higher macrophage/TIL and
neutrophil/TIL signature scores (Supplementary Figure S5,
available at https://doi.org/10.1016/j.annonc.2023.04.005).
Previous reports show that activation of Wnt signaling
stimulates CTL exclusion in bladder cancer, melanoma, and
NSCLC.30-32 Overall, NF-kB is a promising therapeutic target
promoting lymphocyte infiltration into tumors, turning the
tumor microenvironment into a more inflamed state, and
making it more susceptible to PD-L1 checkpoint blockade.33
Immune phenotypes and clinical outcome

Patients with advanced-stage non-inflamed NSCLC,
including desert and excluded phenotypes, are less likely to
respond to immune checkpoint inhibitors.8 Similar findings
have been reported in patients with advanced renal cell
carcinomas and breast cancer with inflamed immune clas-
sifications, who have an improved response rate and
progression-free survival to immunotherapy.34,35 We pre-
viously reported, in a semi-quantitative manual approach to
tissue microarrays, that stromal CD8þ CTLs had a better
prognostic impact than intratumoral CD8þ CTLs in resected
and early-stage NSCLC.14 The significance of the inflamed
phenotype for prognosis in resected NSCLC is a novel
586 https://doi.org/10.1016/j.annonc.2023.04.005
finding in the current study which uses fully quantitative
and operator-independent methods.

However, we observed no significant prognostic value of
immune phenotypes in LUAD histology, regardless of the
clinical endpoint and found that more LUAD patients with
solid or micropapillary-predominant subtypes are of the
inflamed class than those with other LUAD subtypes. This
unequal distribution of immune phenotypes across LUAD
subtypes may explain why the prognostic significance of
immune phenotypes varies across main histological sub-
groups. Nevertheless, we plan to extend our study to the
full prospective TNM-I trial, which includes a larger number
of LUAD NSCLC patients. Lastly, the results from our com-
parison of the different models also suggest that immune
phenotypes are associated with higher performance power
(AUC) and greater specificity compared to CD8þ subregion
scores (cells per mm2) for predicting the risk of recurrence
and disease mortality.
Study limitations

We developed an automated model for assessing immune
phenotypes and carried out comprehensive investigations
of clinical and genomic features that could confound the
immune cell score model. There were several limitations in
our analysis: there was a relatively short follow-up of the
TNM-I cohort (median 25 months), preventing analyses of
the relationship between immunological phenotypes and
clinical outcomes, and the analysis did not include copy
number variants, which could be of significant importance
in immune-related gene expression profiles of cancer pa-
tients receiving immunotherapy.36

The use of immune checkpoint inhibitors has recently
been introduced in clinical practice both following NSCLC
resection and in the neoadjuvant setting, whereas
sequencing and optimal combinations with, for example,
chemotherapy are being explored. Further, there are several
ongoing trials on the impact of combining immune check-
point inhibitors with adjuvant chemotherapy after NSCLC
resection.37 It will be intriguing to explore whether immu-
nological phenotypes have the potential to provide pre-
dictive information in this area.
Conclusion

This interim analysis of data from a TNM-I clinical trial led to
the development and validation of an ML model that accu-
rately classifies spatial immune phenotypes in full-faced im-
ages on slide of resected NSCLC, using IHC for CD8þ and pCK.
These immune phenotypeswere associatedwith prognosis in
multivariable analysis. Therefore, the ML-driven immune
phenotypes could be a good candidate marker for estab-
lishing a TNM immune cell score in NSCLC.10 In addition,
mutation analysis of immune phenotypes revealed an
association between STK11 and KEAP1 individual and co-
mutations and poor local immune infiltration in LUAD,
which could be a potential resistance mechanism to immune
checkpoint blockade due to lack of tumor immunogenicity.38
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