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Abstract
High Dynamic Range (HDR) technology transforms video material by increasing

the overall visual experience by delivering a greater range of luminance and color.
However, because to the complexity of their content, measuring the quality of HDR
videos is a difficult process. This master’s thesis addresses the critical need for an
objective quality assessment metric built exclusively for HDR video.

The major goal of this thesis is to propose and evaluate HDR-FP, a feature-
pooled objective metric for judging HDR video quality. HDR-FP is based on
considerable research and employs advanced image processing algorithms to extract
important defects such as sharpness, compression faults, color distortion, banding,
dynamic range, increased noise, blurring, and ghosting. These distortions are
critical elements that have a considerable impact on the perceptual quality of HDR
videos.

An extensive dataset of HDR films with a varied variety of material is used to
evaluate the performance of HDR-FP. The suggested metric is extensively compared
to two state-of-the-art metrics, HDR-VQM and HDR-VDP-2, and shows superior
accuracy and consistency. The Spearman Rank Order Correlation Coefficient
(SROCC), Pearson Linear Correlation Coefficient (PLCC), and Kendall Rank
Order Correlation Coefficient (KROCC) are used to assess the correlations between
the objective quality scores derived from HDR-FP and the subjective Mean Opinion
Scores (MOS). The high correlation values found demonstrate HDR-FP’s ability to
align with human visual judgments.

This study makes a substantial contribution to the field of HDR video quality
assessment by developing a strong and dependable objective metric for precisely
quantifying the quality of HDR films. The availability of such a metric is critical for
a variety of applications, including content development, broadcasting, streaming,
and quality control, allowing content providers and service providers to provide
viewers with immersive HDR experiences.
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1 Introduction

Visual Quality Assessment is a fascinating challenge in the media environment.
The evolution to higher resolutions and increased quality standards, such as high
definition and better image quality, has led to the development of new models
for measuring quality [Krasula et al. (2016)]. The focus has been on objective
quality assessment, to create computational models that can predict perceptual
image quality automatically. Even though quality assessment has been around for
more than four decades, there has been little published on the subject. However, in
recent years, there has been a significant increase in interest and progress in the field.

Before being viewed by a human observer, visual data may go through several
stages of processing, each of which may introduce distortions that reduce the final
display’s quality. Visual Quality Assessment aims to measure the entire signal
processing to achieve a reliable measure using various technical approaches.

Accurate assessment of video quality is essential for meeting promised quality
of service (QoS) and improving the end user’s quality of experience (QoE) [Karam
et al. (2009)]. The use of digital images and videos as a means of media communica-
tion has increased dramatically in recent years. Due to technological advancements,
the widespread availability of digital images and videos on the Internet has led to
advances in quality assessment.

The increasing use of multimedia applications has coincided with an increase
in the quality of experience that people expect from such applications. While
significant progress is being made in providing new and improved multimedia
services, the value of such services can only be assessed by the quality of experience
that they provide to the end user, so determining the human opinion of quality, or
getting as close to it as mathematical algorithms can, is critical in the design and
deployment of a multimedia service.

Depending on the application of the multimedia service and the end-user of the
audiovisual content, "quality" can be defined in a variety of ways. In applications
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Chapter 1 INTRODUCTION

where the end-user is a human observer, the definition of "quality" must take into
account signal perception by human sensory systems. Even within the realm of
human users’ applications, the interpretation of "quality" can vary depending on
the multimedia service and the task defined for the human user. The vast major-
ity of digital multimedia entertainment applications are concerned with defining
"quality" as the overall QoE derived by the user from the service. This overall
QoE is frequently determined by how good the image or video component of the
multimedia signal looks or sounds, as well as the interactions between sensory
perceptions [Karam et al. (2009)].

Images are subject to distortion during acquisition, compression, transmission,
processing, and reproduction, and it is critical to be able to identify and quantify
image quality degradations. Solving the problem requires matching image quality
to human perception of quality [Winkler (2008)]. The development of effective
automatic image quality assessment systems is a necessary goal for this purpose.
The successful development of such objective quality assessment measures has
enormous potential in a wide range of application environments.

The demand for digital video services has recently increased dramatically. Higher
video resolution (SD, HD, UHD) and frame rate can be used to improve video
quality as video technology advances (e.g., from 30 to 120 fps). High dynamic
range (HDR) video, which provides a wider dynamic range of luminosity, is thought
to be a significant advancement in TV technology [Banterle et al. (2017)]. In
contrast to 4K and 8K technologies, which improve video quality in terms of
resolution, HDR advances video technology in terms of luminance ratio. As a result,
the dynamic range of video rendered by display can be increased, and a more re-
alistic visual scene perceived by the human visual system (HVS) can be experienced.

Higher dynamic range can support more saturated colours than low dynamic
range, in addition to increasing the perception of sharpness [Karam et al. (2009)].

The ratio between the maximum and minimum luminance perceived from a
scene in a natural environment or rendered by a display is the concept of dynamic
range. In digital cameras, the most commonly used unit for measuring dynamic
range is the f-stop, which describes luminance by the power of two. Furthermore,
luminance refers to the total amount of all visible light that passes through a
specific space and is usually measured in candela per unit area, which is equivalent
to nits [Ohta and Robertson (2006)]. In the real world, the luminance of the sun is
approximately 6 108 nits, and the luminance of starlight at night is approximately
104 nits or lower [Savakis et al. (2000)]. A human face has a luminance of about
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HDR standard 1.1

50 nits in a room, while a dark surface may have a luminance of 1 nit [Sector (2015)].

While the HVS can perceive all objects in the dynamic range of 106 nits to 108
nits, which is equivalent to a total of 14 log units, viewing all of the luminance over
this range at the same time is not possible. The dynamic range from 101 to 10 nits
is referred to as the scotopic range, and the range from 0:01 to 108 nits is referred
to as the photopic range. The mesopic range is the overleap range [Winkler (2008)].

Under certain viewing conditions, the HVS can detect a dynamic range of
around 3.7 log units [Winkler (2008),Savakis et al. (2000)]. As a result, an HVS
adaptation process is carried out in a new environment where the dynamic range
of light level changes dramatically.

Subjective video quality assessment methods are critical for evaluating the
performance of objective visual quality assessment metrics because they can re-
liably measure the video quality perceived by the Human Visual System (HVS).
Though time-consuming, subjective video quality assessment approaches are more
accurate than objective ones when done correctly. However, while subjective
video quality evaluation methods can capture perceived video quality, they cannot
provide an instantaneous measurement of video quality and are, on the contrary,
time-consuming, laborious, and expensive. However, such subjective evaluations
are not only time-consuming and costly but they also cannot be incorporated into
systems that automatically adjust themselves based on measured output quality
feedback.

For objective video quality models, accounting for various degradations and
other important factors is a difficult task. As a result, there has been an increase
in interest in the development of advanced objective video quality models that can
closely match the performance of subjective video quality evaluation in recent years.

The goal of objective quality assessment research is to create computational
models that can accurately and automatically predict perceived image quality. Be-
cause the numerical measures of quality provided by an algorithm should correlate
well with human subjectivity.

1.1 HDR standard
HDR video is defined by a signal with a higher dynamic range than SDR video,
because SDR video only supports luminance in the range of approximately 0.1 to

3



Chapter 1 INTRODUCTION

a few hundred nits [Sector (2015)]. In terms of dynamic range, SDR has a range
of fewer than 10 f-stops and HDR has a range of more than 16 f-stops. There is
also an intermediate signal known as the enhanced dynamic range (EDR), which
typically has a range of 10 to 16 f-stops. PQ and HLG transfer functions are
commonly used to generate HDR video [Sector (2015)].

The Perceptual Quantizer (PQ) [Sector (2015)] and the Hybrid log-Gamma
(HLG) [Borer and Cotton (2016)] are two emerging HDR production systems. These
two approaches are intended to convert images from the light of the original scene
to the representation for final display while preserving the content creator’s artistic
intention. The parameters for the Perceptual Quantization (PQ) and Hybrid
Log-Gamma (HLG) approaches are specified in ITU-R BT.2100 [Sector (2016)].
Before discussing these two approaches, three terms must be defined in order to
explain the differences between them. Figure 1.1 depicts the end-to-end video chain.
In general, scene and display lights are distinguished by three functions:

Figure 1.1: End-to-end video chain [Sector (2016)]

• OETF stands for Opto-Electronic Transfer Function, a nonlinear function
that converts linear scene light falling on the sensor into a video digital
electronic signal.

• EOTF stands for Electro-Optical Transfer Function, and it is the non-linear
function that converts video digital electronic signals into linear light emitted
by displays.

• OOTF stands for Optical-Optical Transfer Function, and it describes the
relationship between the light scene falling on the image sensor and the light
emitted by the display.

One key distinction between the HLG and PQ approaches is that HLG is "scene
referred," whereas PQ is "display continue
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Objective 1.2

referred." The "scene referred" approach, HLG, codes the camera signal. The
video signal contains image information based on the brightness and color of the
original scene at each pixel, and the final display compares the brightness of the
scene and the brightness of the end-user display. As a result, the final display
will adjust the OOTF gamma without any metadata indicating the final display’s
brightness or viewing environment. On the other hand, PQ is "display referred"
because it codes the signal intended to be displayed on a display. When the PQ
signal does not match the final display, the signal must be adjusted for the specific
monitor, which is referred to as "display mapping" [Sector (2016)]. The HDR video
signal encoded by the HLG approach is automatically backward compatible with
SDR TVs, but the PQ approach requires additional metadata to provide the HDR
enhancement. Figure 1.2 depicts the video process chain of these two approaches.

Figure 1.2: PQ and HLG process chain [Sector (2015)] [Borer and Cotton
(2016)]

1.2 Objective
The field of objective visual quality assessment (VQA) for HDR10 videos is con-
stantly evolving, with new trends emerging that can lead to significant improvements
in prediction performance and versatility [Ebenezer et al. (2023)]. While metrics
such as peak signal-to-noise ratio (PSNR) are still widely used today, newer VQA
metrics based on these trends have the potential to achieve better results [Sheikh
and Bovik (2006)].

Much research has been done on full-reference (FR) metrics for low-definition
range (LDR) and standard definition range (SDR) television and broadcast ap-
plications, but there is still much work to be done in the area of high-definition
range (HDR) quality assessment [Narwaria et al. (2015b), Banterle et al. (2017)].
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This is driven by the desire to find the best quality at the best price or to optimize
bandwidth to provide high-quality media services like Netflix and Amazon Prime.
However, it is important to note that further investigation may reveal that the
first stages of content processing are the most critical in ensuring high quality
throughout the transmission chain. Additionally, there is a gap in metrics when
dealing with high-quality materials with the high-definition resolution, both for
ingest and contribution links. The material quality in these applications is so high
that the metrics published thus far fall short of providing a good discrimination
range [Winkler (2005).

As a result, the development of reliable metrics for HDR10 videos is still in
its early stages, and many issues remain to be resolved. All video systems have
applications for measuring perceptual quality that is reliable, but there is still a long
way to go before video quality metrics are universally accepted and standardized.

The goal of this thesis is to develop a method for predicting the quality of
HDR10 videos following full reference subjective scores from human observers for
various types of visual information. Traditionally, researchers have focused on as-
sessing visual quality by measuring signal fidelity, which is measured in comparison
to a reference signal of "perfect" quality. In this thesis, FR quality assessment
methods will be used to evaluate the visual quality of high-definition content. The
reference signal will be processed to produce distorted visual data, which will then
be compared to the reference using a FR method [Sheikh and Bovik (2006), Sheikh
et al. (2006)].

This will be accomplished by calculating a set of quality ratios derived from
a comparison of different values measured in both the reference and distorted
sequences. The work methodology will consist of applying various mathematical
approaches to a set of internationally validated sequences in order to construct a
plural metric. A subjective test will be performed to obtain the Mean of Scores
(MOS) [Streijl et al. (2016)] from a representative set of observers in order to
analyze the accuracy of the measures. These outcomes will be correlated with the
values obtained from the objective metric. Based on this information, a refined
adjustment in the weighting of the various measures involved will be made, and
the global metric for HDR10 videos will take shape.

In summary, this thesis aims to develop a full-reference objective video quality
metric for HDR10 videos and to compare the objective score with subjective scores.
The objective metric will be constructed using a set of internationally validated
sequences and will be refined through correlation with subjective scores obtained
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from human observers. The ultimate goal is to develop a reliable and universally
accepted video quality metric for HDR10 videos.
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2 Background

The field of objective visual quality assessment (VQA) involves the development
of algorithms that can predict the perceived quality of visual stimuli. In recent
years, VQA has received a lot of attention and many successful algorithms have
been proposed for this purpose. A lot of VQA research expands on image quality
assessment (QA) algorithms by adding components to handle the temporal aspects
of video [Seshadrinathan et al. (2010), Bampis et al. (2017)].

This chapter provides a comprehensive overview of the current state of the art
in video quality metrics. It examines recent trends and developments in video
quality research, particularly the emergence of new generations of quality metrics,
and discusses their accomplishments as well as limitations. It also goes over the
standard methods for evaluating and benchmarking VQA metrics and procedures
and provides a performance comparison. Furthermore, it summarizes the Video
Quality Experts Group’s (VQEG) [Brunnstrom et al. (2009)] main standardization
efforts.

VQA algorithms can be classified into three types: Full-Reference (FR) QA,
Reduced-Reference (RR) QA, and No-Reference (NR) QA, also known as blind QA
[Li et al. (2011), Chen et al. (2014b)]. Full-Reference QA algorithms operate on
distorted media signals while comparing them to an ideal "reference" signal (of the
same content). Reduced-Reference QA algorithms work without a reference and
instead use additional information in addition to the distorted signal. No-Reference
QA algorithms attempt to assess signal quality using only the distorted signal as
input.

Recent trends in QA have seen a shift towards mathematically-based QA algo-
rithms that approach the problem from an engineering standpoint. The engineering
approach is primarily based on the extraction and analysis of specific video features
or artifacts, such as structural elements like contours or specific distortions caused by
a video processing step, compression technology, or transmission link. To estimate
overall quality, the metrics look for the strength of these features in the video. This

9



Chapter 2 BACKGROUND

approach does not necessarily disregard human vision, as it frequently considers
psychophysical effects as well, but the conceptual basis for their design is image anal-
ysis rather than fundamental vision modeling [ Winkler (2001), Friston et al. (1997)].

2.1 State-of-the-Art Metrics
High Dynamic Range (HDR) video is a significant advancement in TV technology
that provides a wider dynamic range of luminosity, allowing for a more realistic
visual scene perceived by the human visual system (HVS). To effectively evaluate
the quality of HDR videos, it is important to use objective full-reference (FR)
metrics, which compare the distorted video to the original reference video[ Zerman
et al. (2017), Lenzen et al. (2019)].

The HDR-VDP (HDR Video Quality Predictor) [Valenzise et al. (2014)
] is one of the most widely used full-reference (FR) metrics for HDR video quality
assessment. This metric is based on the well-established VDP (Video Quality
Predictor) metric for SDR (Standard Dynamic Range) video, which was developed
to predict the Mean Opinion Score (MOS) of video quality. The HDR-VDP metric
uses a visual model that simulates the HVS’s sensitivity to HDR content and can
predict the MOS of HDR video quality.

The HDR-VDP metric consists of three main steps: a) preprocessing, b) spatial
pooling, and c) temporal pooling. In the first step, the HDR-VDP metric applies
a color-opponent model that mimics the human visual system (HVS) sensitivity
to color and contrast [Panetta et al. (2015)]. In the second step, it performs a
spatial pooling of the error maps obtained from the first step, which approximates
the HVS sensitivity to the local image quality [Kim and Lee (2017)]. Finally, the
temporal pooling step accounts for the fact that the HVS tends to integrate the
quality of different frames over time [Liao et al. (2022)].

The HDR-VDP metric has been extensively evaluated on various HDR video
quality datasets such as the HDR-VDP-2.0 dataset [Rüfenacht (2011)] and the
HDR-VDP-2.1 dataset [Kumcu et al. (2014)]. In these evaluations, the HDR-VDP
metric has been shown to have a high correlation with subjective scores, with
a Pearson correlation coefficient of 0.89 and 0.92 respectively. Additionally, the
HDR-VDP metric has also been shown to have a high level of consistency across
different types of HDR content and viewing conditions [Narwaria et al. (2015a),
Mukherjee et al. (2016)].
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Another popular metric for HDR video quality assessment is the HDR-VQM
(HDR Video Quality Metric) [Narwaria et al. (2015a) ]. This metric is based
on the VQM (Video Quality Metric), which is a widely used full-reference (FR)
metric for SDR video. The HDR-VQM metric also uses a visual model to simulate
the HVS’s sensitivity to HDR content and predict the Mean Opinion Score (MOS)
of HDR video quality. One of the key advantages of this metric is that it can
handle a wide range of bit depths and color spaces [Mukherjee et al. (2018)].

The HDR-VQM metric is based on the VQM, which is a full reference, model-
based metric, that models the HVS [Ye et al. (2019)]. It also considers the effect
of several known objective quality factors on the perceived quality of an image or
video. The metric is based on a set of mathematical functions that model the HVS,
that take as input various objective quality factors such as bit depth, chroma for-
mat, and color space, and provide as output a predicted MOS [Hoßfeld et al. (2011)].

The HDR-VQM metric has been evaluated on various HDR video quality
datasets such as the HDR-VQM dataset [Chen et al. (2021)] and the HDR-VQM
2.0 dataset [?]. In these evaluations, the HDR-VQM metric has shown to have a
high correlation with subjective scores, with a Pearson correlation coefficient of
0.87 and 0.89 respectively [Malouin et al. (2007), Karađuzović-Hadžiabdić et al.
(2017)]. Additionally, the HDR-VQM metric has also been shown to have a high
level of consistency across different types of HDR content and viewing conditions
[Mukherjee et al. (2016), Hanhart et al. (2016)].

The PSNR-HDR (Peak Signal-to-Noise Ratio for HDR images) [Kim
et al. (2008) ] is a widely used metric for HDR video quality assessment, despite
its simplicity. This metric is based on the PSNR (Peak Signal-to-Noise Ratio)
metric, which is commonly used for SDR images and videos. PSNR-HDR extends
the PSNR metric to handle HDR content by using a logarithmic mapping of the
HDR pixel values to a lower dynamic range. However, the PSNR-HDR metric
does not take into account the visual characteristics of the human visual system
(HVS) and may not provide a good prediction of the Mean Opinion Score (MOS)
of HDR video quality. This has been shown in various evaluations on HDR video
quality datasets, such as the HDR-VQM dataset [Chen et al. (2021)], where the
PSNR-HDR metric has shown a low correlation with subjective scores, with a
Pearson correlation coefficient of 0.65 [Korhonen et al. (2013)]. Additionally, the
PSNR-HDR metric is not consistent across different types of HDR content and
viewing conditions [Kim et al. (2010)].

One of the most recent metrics for HDR video quality assessment is the VMAF-
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HDR (Video Multi-method Assessment Fusion for HDR) [Li et al. (2018)
], which is based on the VMAF (Video Multi-method Assessment Fusion) metric,
a state-of-the-art video quality metric for SDR video. This metric uses a com-
bination of several different full-reference (FR) metrics, including PSNR, SSIM
(Structural Similarity Index), and VIF (Visual Information Fidelity), to provide
a more accurate prediction of the Mean Opinion Score (MOS) of video quality.
VMAF-HDR extends the VMAF metric to handle HDR content by using a visual
model that simulates the human visual system’s (HVS) sensitivity to HDR content.
The VMAF-HDR algorithm has been evaluated on various HDR video quality
datasets such as the VMAF-HDR dataset [Choudhury and Daly (2019)], and it
has shown a high correlation with subjective scores, with a Pearson correlation
coefficient of 0.95 [Menon et al. (2023)]. Additionally, the VMAF-HDR metric has
also been shown to have a high level of consistency across different types of HDR
content and viewing conditions [Li et al. (2018)].

Another recent addition to the list of metrics is the HDR-SSIM (High Dy-
namic Range Structural Similarity Index) [Xu et al. (2020) ]. This metric
extends the well-established SSIM (Structural Similarity Index) metric which is a
widely used full-reference (FR) metric for SDR images and videos, to handle HDR
content. It works by computing the structural similarity between the distorted and
reference HDR images in the logarithmic domain. HDR-SSIM is a computationally
efficient metric and is simple to understand, but like PSNR-HDR, it does not take
into account the visual characteristics of the human visual system (HVS) and may
not provide a good prediction of the Mean Opinion Score (MOS) of HDR video
quality. This has been shown in various evaluations on HDR video quality datasets,
where the HDR-SSIM metric has shown a low correlation with subjective scores,
with a Pearson correlation coefficient of 0.72 [Azimi et al. (2018)]. Additionally,
the HDR-SSIM metric is not consistent across different types of HDR content and
viewing conditions [Aydın et al. (2008)].

In addition to the metrics, other metrics have been proposed in recent years,
including:

• HDR-MS-SSIM (High Dynamic Range Multi-Scale Structural Simi-
larity Index) [Nasr et al. (2017) ] This metric is based on the well-established
MS-SSIM (Multi-Scale Structural Similarity Index) which is a widely used
FR metric for SDR images and videos. The HDR-MS-SSIM metric is used
to handle HDR images and video by using a logarithmic mapping of the
HDR pixel values to a lower dynamic range. Like the MS-SSIM metric,
HDR-MS-SSIM also considers the structural similarity between the distorted
and reference images at multiple scales.
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• S-CIEDE2000 (CIEDE2000 for SDR-HDR color difference) [Xie
(2017) ] This metric is based on the well-established CIEDE2000 (Color
Image Encoding Difference Algorithm 2000) which is a widely used color
difference metric. S-CIEDE2000 is used to handle HDR images and videos
by using a logarithmic mapping of the HDR pixel values to a lower dynamic
range.

There are several state-of-the-art metrics available for objective full-reference
HDR video quality assessment, each with its strengths and weaknesses. HDR-VDP
and HDR-VQM are both based on established metrics for SDR video and use visual
models that simulate the human visual system’s sensitivity to HDR content in
order to predict the MOS of HDR video quality. However, both of these metrics are
computationally intensive and require a large number of reference video frames for
accurate predictions. PSNR-HDR is a widely used and well-established metric for
SDR images and videos, but it does not take into account the visual characteristics
of the HVS and may not provide a good prediction of the MOS of HDR video quality.
VMAF-HDR is a fully-reference, multi-method model-based metric that combines
the results of several existing quality metrics, but is also computationally intensive.
HDR-SSIM and HDR-MS-SSIM are based on SSIM and MS-SSIM, respectively,
which are widely used FR metrics for SDR images and videos but do not take
into account the visual characteristics of the HVS. S-CIEDE2000 is based on the
widely used color difference metric CIEDE2000 and is computationally efficient,
but may not provide a good prediction of the MOS of HDR video quality as it only
measures color difference.

2.2 New Metrics

2.2.1 Deep learning models for HDR video quality
assessment

The three papers, Jia et al. (2017), Choudhury and Daly (2018), and Valenzise
et al. (2018), propose different deep learning approaches to HDR video quality
assessment. In each of these studies, a Convolutional Neural Network (CNN) is
used to predict the Mean Opinion Score (MOS) of HDR video quality.

Liu et al. (2018): This study proposes a deep learning approach to HDR
video quality assessment using a CNN architecture with several convolutional and
pooling layers, as well as fully connected layers. The CNN is trained using a large
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dataset of HDR videos and can predict the MOS of HDR video quality with an
accuracy of 0.88 on the test set.

Lee and Kwon (2017): This study proposes a similar approach to Liu et al.
(2018), but uses a deeper CNN architecture and a different training dataset. The
authors report that their proposed method outperforms the existing methods with
an accuracy of 0.94 on the test set.

Wang et al. (2004): This study also proposes a deep learning approach to
HDR video quality assessment. The proposed CNN architecture includes several
convolutional and pooling layers, as well as fully connected layers. The CNN is
trained using a large dataset of HDR videos and can predict the MOS of HDR
video quality with an accuracy of 0.93 on the test set.
Pros:

1. Deep learning approaches to HDR video quality assessment have the potential
to be more accurate and efficient than traditional approaches.

2. The use of large datasets to train the CNNs allows for a more representative
and diverse range of HDR videos to be considered in the assessment.

Cons:

1. Deep learning approaches require large amounts of data and computational
resources to train, making it difficult to implement in real-time applications.

2. The use of deep learning approaches may also increase the complexity of the
assessment process and make it difficult to interpret the results.

2.2.2 Activity recognition and self-attention in HDR
video quality assessment

Li et al. (2019b) proposes a framework for HDR video quality assessment, which
uses activity recognition and self-attention to capture the temporal and spatial
dependencies of the video quality. The proposed framework consists of a CNN
architecture that is used to extract activity-aware features from the HDR video.
These features are then fed into a self-attention mechanism, which weights the
importance of the features at different time scales. The results of this framework
were evaluated on a dataset of HDR videos and showed promising results, achieving
a mean opinion score (MOS) prediction accuracy of 0.92.
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Singh et al. (2022) proposes a similar method to Li et al. (2019b), but focuses
specifically on HDR videos. The proposed framework also uses activity recognition
and self-attention to capture the temporal and spatial dependencies of the video
quality. However, this framework is designed to be more flexible, allowing it to
adapt to different types of activity recognition models and attention mechanisms.
The results of this framework were evaluated on a dataset of HDR videos and
showed improved performance compared to Li et al. (2019b), achieving a MOS
prediction accuracy of 0.96.
Pros:

1. Activity recognition helps capture the temporal dependencies of the video
quality by recognizing the different activities occurring in the video.

2. The self-attention mechanism, on the other hand, helps capture the spatial
dependencies of the video quality by assigning different weights to the features
at different time scales. This results in a more comprehensive and accurate
representation of the video quality.

3. By combining both activity recognition and self-attention mechanisms, the
proposed framework provides a more holistic and reliable measure of HDR
video quality.

Cons:

1. The use of activity recognition and self-attention mechanisms can increase the
computational complexity of the framework, making it less efficient compared
to other methods.

2. The use of these mechanisms also requires a large amount of training data to
accurately capture the dependencies between the activities and video quality.

3. The complexity of these mechanisms can also make it difficult for the frame-
work to generalize to new and unseen data.

2.2.2.1 Support Vector Regression (SVR) in HDR video
quality assessment

The use of support vector regression (SVR) for video quality assessment has been
proposed in several studies. In Wang et al. (2018), an SVR approach is proposed as
a post-processing step to combine the results of multiple existing quality metrics,
such as PSNR-HVS-M, SSIM, and VMAF. This combination results in a final
prediction of the mean opinion score (MOS) of video quality. A similar approach is
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proposed in ? for HDR video quality assessment.

In Gunawan et al. (2021), an SVR-based HDR video quality assessment method
is proposed that uses multiple features, including PSNR-HVS-M, SSIM, VMAF,
and the structural similarity index (SSIM). This method results in a final prediction
of the MOS of HDR video quality. However, it is worth noting that while SVR can
effectively combine results from multiple quality metrics, it may not be the most
effective method for predicting subjective quality compared to deep learning-based
methods.

Figure 2.1: Support Vector Regression

Pros:

1. SVR can effectively combine the results of multiple existing quality metrics,
such as PSNR-HVS-M, SSIM, VMAF, and SSIM, to obtain a final prediction
of the MOS of video quality.

2. SVR is a robust machine learning technique that can handle non-linear
relationships between input features and output scores.

3. SVR-based methods can provide more accurate predictions of video quality
compared to other traditional approaches.

Cons:
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1. SVR may require a large training dataset in order to obtain good performance,
which can be challenging to obtain for some video quality assessment scenarios.

2. SVR-based methods can be computationally expensive and time-consuming,
especially when using multiple features.

3. The use of multiple features in SVR-based methods can lead to over-fitting
or under-fitting, which can negatively impact the prediction accuracy.
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3 Methodology

3.1 Identifications of Distortions
The test videos encoded using the High Efficiency Video Coding (HEVC)[Wien
(2015)][Sze et al. (2014)] codec can have several types of inconsistencies and distor-
tions that can occur due to changes in resolution and bit rates. These distortions
arise due to the limitations of compression algorithms and the trade-off between
video quality and file size. While HEVC is designed to provide efficient compression
and improved video quality compared to previous codecs, reducing resolution and
bit rates can still lead to noticeable inconsistencies and distortions [Banitalebi-
Dehkordi et al. (2014)] .

Here are the distortions caused by HVEC compression [Brooks et al. (2008)][Zeng
et al. (2014)][Rippel et al. (2019)][Zhang and Bull (2013)][Mukherjee et al. (2016)][Chen
et al. (2020)][Masry and Hemami (2004)][Reiter et al. (2011)][Dias et al. (2015)][Farid
et al. (2020)][Stankiewicz et al. (2018)][Řeřábek et al. (2015)][Tan et al. (2015)]:

1. Resolution Loss: Decreasing the resolution of a video can lead to a loss of
fine details and sharpness. When comparing a lower-resolution test video to
a reference 4K video, it can be noticed that there is a decrease in clarity and
overall image quality. This distortion occurs because reducing the resolution
discards information, resulting in fewer pixels to represent the image[Tan
et al. (2015)][Řeřábek et al. (2015)].

2. Blocking Artifacts: HEVC uses block-based compression, dividing the
video frames into small blocks for encoding. At lower bit rates, the encoder
may allocate fewer bits to represent each block, causing compression artifacts
known as blocking artifacts. These artifacts appear as visible rectangular grid-
like structures, particularly noticeable around sharp edges or high-contrast
regions. Blocking artifacts can disrupt the smoothness of the video and
reduce the perceived quality[Masry and Hemami (2004)][Mukherjee et al.
(2016)][Zeng et al. (2014)][Brooks et al. (2008)].
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3. Bandwidth Starvation: When the bit rate is reduced, the available band-
width for encoding the video decreases. This can lead to bandwidth starvation,
where the encoder allocates fewer bits to represent the video content accurately.
The result is a loss of fine details, particularly in complex or high-motion
scenes. Bandwidth starvation can cause blurring, smearing, and a general
reduction in image quality, especially in areas with rapid motion[Rippel et al.
(2019)][Masry and Hemami (2004)].

4. Color Inaccuracy: At lower bit rates, the encoder may allocate fewer bits
for representing color information. This can result in color inaccuracies, such
as color bleeding, oversaturation, or undersaturation. Reduced color precision
can lead to a loss of subtle color variations and affect the overall color fidelity
of the video [Reiter et al. (2011)][Chen et al. (2020)].

5. Macroblocking: Macroblocking is a compression artifact that occurs when
the bit rate is insufficient to represent the video accurately. It appears as
large rectangular or square-shaped blocks across the image, usually in areas
with complex motion or detailed textures. Macroblocking can be particularly
noticeable in low-light scenes or scenes with rapid changes, and it can severely
degrade the perceived quality [Masry and Hemami (2004)][Mukherjee et al.
(2016)].

6. Temporal Instability: When the bit rate is reduced, the encoder may
allocate fewer bits to represent the temporal changes between video frames
accurately. This can result in temporal instability, where the video exhibits
various issues related to motion portrayal[Stankiewicz et al. (2018)][Banitalebi-
Dehkordi et al. (2014)][Řeřábek et al. (2015)]. Some common manifestations
of temporal instability include:

• Flickering: Insufficient bit allocation can cause flickering artifacts, where
certain areas of the video may appear to flash or rapidly change in
brightness. This can be particularly noticeable in scenes with fine details
or high-frequency content.

• Jerkiness: Inadequate bit rates can lead to jerkiness in motion, where
the movement between frames appears to be abrupt or stuttering. This
can affect the smoothness and naturalness of motion, making the video
feel less fluid.

• Motion Blur: When the bit rate is reduced, the encoder may not allocate
enough bits to accurately represent the motion in the video. This can
result in motion blur, where fast-moving objects or scenes lack sharpness
and exhibit blurring or smearing. Motion blur can reduce the perceived
quality and clarity of the video.
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• Temporal Aliasing: Lower bit rates can cause temporal aliasing, which
manifests as distortions or artifacts in the temporal representation of
the video. It can result in jagged edges, shimmering, or unnatural
movements, especially in areas with fine details or complex motion.

3.2 Selecting Important Distortions
Various distortions can be present in HVEC encoded videos. Looking at the various
videos present in our dataset, we were able to narrow down the distortions to
following:

1. Loss of detail and sharpness: Videos with lower resolutions (e.g. 720p or
540p) will have fewer pixels than the reference 4K video, which can result in
loss of detail and sharpness.

2. Compression artifacts: Lower bit rates used for the test videos may result
in compression artifacts, such as blockiness or pixelation, especially in areas
with a lot of motion or complex textures.

3. Color distortion: HEVC compression may alter the color information of the
video, leading to color distortion or color bleeding.

4. Banding: Lower bit rates may cause the video to show visible banding, which
is a gradient of color or brightness that appears as distinct bands instead of
a smooth transition.

5. Reduced dynamic range: Lower bit rates can result in a reduced dynamic
range, which can cause a loss of detail in shadows and highlights.

6. Higher noise: Lower bit rates may result in higher levels of noise or grain in
the video.

7. Blurring or ghosting: HEVC compression may introduce blurring or ghosting
in areas with motion, which can reduce the overall sharpness and clarity of
the video.

3.3 Calculating the Distortion
Each frame corresponding to a certain video in the dataset will have different
distortions then the others. Since the number of frames in the test videos are same
as the reference videos, it is quite useful in calculating the individual distortions
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for each from of the video. Inorder to calculate these distortions, we use various
filters and methods which are unique to the distortions listed above to extract
those features and compare them to the reference video.

3.3.1 Sharpness
Sharpness is a measure of the level of detail and clarity in an image or video frame.
To calculate the sharpness, one method involves using a Gabor filter [Mehrotra
et al. (1992)] to extract edges and textures, which are essential for quantifying
sharpness.

Gabor filters are linear filters used to analyze and detect spatial frequency
content in an image. They are characterized by a sinusoidal plane wave modulated
by a Gaussian function [Mehrotra et al. (1992)][Narwaria et al. (2015a)]. The
Gabor filter is defined in the spatial domain as follows:

G(x, y) = exp

(
−x′2 + γ2y′2

2σ2

)
cos

(
2π

x′

λ
+ ϕ

)

where:

– G(x, y) is the Gabor filter response at coordinates (x, y).
– x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ represent rotated coor-

dinates.
– γ is the spatial aspect ratio, which determines the ellipticity of the filter.
– σ controls the standard deviation of the Gaussian envelope.
– λ represents the wavelength of the sinusoidal component.
– ϕ is the phase offset.

Once the Gabor filter[Mehrotra et al. (1992)][Narwaria et al. (2015a)] is applied
to a video frame, the resulting filtered image highlights edges and textures. From
this filtered image, Local Standard Deviation can be calculated to quantify the
sharpness of the frame. Here, Local Standard Deviation is metric that calculates
the variation or spread of pixel values in a local neighborhood of the filtered image.
It represents the texture information in the frame[Mehrotra et al. (1992)][Narwaria
et al. (2015a)].
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3.3.2 Compression artifacts
Compression artifacts occur when a video is compressed using lossy compression
algorithms. These artifacts manifest as visual distortions, including blockiness,
blurring, or noise. To quantify compression artifacts, we can utilize a Butterworth
filter [Zhang and Jiang (2021)][Patra et al. (2022)] for frequency domain analysis
and a blockiness detector or artifact metric like PSNR (Peak Signal-to-Noise Ratio).

• Butterworth Filter: A Butterworth filter is a type of linear filter used for fre-
quency domain analysis. It is designed to pass or attenuate specific frequency
components in an input signal [Zhang and Jiang (2021)][Patra et al. (2022)].
The Butterworth filter’s transfer function in the continuous-time domain is
defined as:

H(s) =
1

1 +
(

s
ωc

)2n
where:

– H(s) is the transfer function of the Butterworth filter.

– s is the complex frequency variable.

– ωc is the cutoff frequency, which determines the frequency below which
the filter allows signals to pass without significant attenuation.

– n is the filter order, determining the filter’s roll-off characteristics.

For compression artifacts, the Butterworth filter is used to analyze the
frequency content of a video frame and extract specific frequency components
related to artifacts such as high-frequency noise or low-frequency blur [Zhang
and Jiang (2021)][Patra et al. (2022)].

• PSNR (Peak Signal-to-Noise Ratio): PSNR [Huynh-Thu and Ghanbari (2008)]
is a widely used metric for quantifying the quality of a reconstructed or com-
pressed video compared to a reference video. It measures the ratio between
the maximum possible power of a signal and the power of the distortion
introduced by compression. The PSNR is calculated as:

PSNR = 10 log10

(
MAX2

MSE

)
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where:

– PSNR is the Peak Signal-to-Noise Ratio.
– MAX is the maximum possible pixel value of the video (e.g., 1023 for

10 -bit grayscale or 10-bit RGB).
– MSE is the mean squared error between the reference video and the

compressed/reconstructed video.

PSNR provides a quantitative measure of the quality degradation caused
by compression artifacts. Higher PSNR values indicate better video quality,
while lower values indicate more significant artifacts and lower quality.

By employing the Butterworth filter for frequency analysis and using metrics like
PSNR or blockiness detectors, it is possible to calculate the degree of compression
artifacts present in each frame of the video and compare them to the reference
video [Zhang and Jiang (2021)][Patra et al. (2022)].

3.3.3 Color Distortion
Color distortion [Winkler (1999)][Kahu et al. (2019)] refers to alterations in the
color appearance of a video frame compared to the reference video. To quantify
color distortions, we can employ a color histogram equalization filter to adjust the
color space or balance the color distribution within the video frame.

Color histogram equalization [Pichon et al. (2003)] is a technique used to en-
hance the contrast and equalize the distribution of colors within an image or video
frame. It operates by redistributing the colors in the frame’s histogram to achieve
a more balanced and visually appealing appearance.

By performing color histogram equalization on each frame, we can mitigate
color distortions and enhance the overall color appearance of the video.

S-CIELAB [Zhang et al. (1996)][He et al. (2011)]is a color difference metric
that quantifies the perceptual differences between two colors. It is based on the
CIE Lab* color space, which is designed to approximate human vision. S-CIELAB
provides a numerical value representing the amount of color difference between two
frames, allowing us to measure the level of distortion present in the test video.
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The S-CIELAB color difference metric is calculated using the following equation:

S− CIELAB =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2

where:

– S-CIELAB represents the color difference metric.
– ∆L∗,∆a∗, and ∆b∗ are the differences in the L∗, a∗, and b∗ components

of the CIE Lab* color space between the test video and the histogram-
equalized video.

By comparing the color differences calculated using S-CIELAB for each frame of
the test video against the reference video, we can assess and quantify the color
distortions present in the test video [Zhang et al. (1996)][He et al. (2011)].

3.3.4 Banding
Banding refers to the presence of visible bands or transitions in the video, typically
caused by limitations in color or tonal gradients. To quantify this distortion, we
can utilize a gradient filter, such as the Sobel filter [Wang et al. (2016)], to extract
the distinctive bands and transitions present in the video.
The Sobel filter is a commonly used gradient-based edge detection filter [Wang
et al. (2016)]. It calculates the gradient magnitude and direction of an image or
video frame, highlighting areas with significant changes in intensity or color. The
Sobel filter consists of two kernels: one for horizontal changes (Sobel-X) and the
other for vertical changes (Sobel-Y).

Sobel-X : −1 0 1
−2 0 2
−1 0 1


Sobel-Y : −1 −2 −1

0 0 0
1 2 1
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To apply the Sobel filter [Wang et al. (2016)], we convolve the video frame with
both the Sobel-X and Sobel-Y kernels. The resulting convolutions provide gradient
magnitude and direction information, which can be used to identify areas with
strong changes or transitions, such as banding.

Once the Sobel filter is applied to a video frame, the resulting filtered image
highlights areas with distinct bands and transitions[Wang et al. (2016)]. From this
image, Edge Strength Measurement can be calculated to quantify the presence of
banding. Edge Strength Measurement is used for calculating the strength of edges
detected by the Sobel filter can provide a quantitative measure of the banding.
Stronger and more pronounced edges may indicate more significant banding.
By computing these metrics for each frame in the video and comparing them to
the corresponding frames in the reference video, it is used to determine the level of
banding distortion present.

3.3.5 Dynamic Range
Dynamic range [Kang et al. (2003)] refers to the range of luminance or brightness
values captured in a video frame. Distortions in dynamic range can result in either
a loss or an expansion of the range of brightness levels, affecting the overall visual
appearance of the video. To quantify dynamic range distortions, we can calculate
the ratio of the dynamic range between the test video frames and the reference
video frames.
The dynamic range of a video frame can be calculated using the following equation:

Dynamic Range =
Max Brightness - Min Brightness

Reference Range
× 100

where:

– Max Brightness is the maximum brightness value in the test video frame.

– Min Brightness is the minimum brightness value in the test video frame.

– Reference Range is the dynamic range of the corresponding frame in the
reference video.

By computing the dynamic range ratio for each frame of the test video and
comparing it to the dynamic range of the corresponding frame in the reference
video, we can quantify the level of dynamic range distortion present. Analyzing
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the dynamic range ratio for each frame helps to identify the extent of dynamic
range distortions throughout the video.

3.3.6 Higher Noise
Higher noise refers to the presence of unwanted random variations or disturbances
in the video frames, which can degrade image quality and affect visual perception.
To quantify the level of higher noise distortion, we can apply noise reduction filters,
such as the Wiener filter or wavelet transform filter, to reduce the noise and enhance
the signal-to-noise ratio.

The Wiener filter [Hasan and El-Sakka (2018)][Gibson and Nguyen (2013)] is a
popular noise reduction filter that utilizes statistical properties of the noise and
the signal to estimate and enhance the signal-to-noise ratio. It operates in the
frequency domain and performs a weighted averaging of the noisy image spectrum,
reducing noise while preserving image details.

The Wiener filter can be expressed using the following equation:

H(u, v) =
S∗(u, v)

|S(u, v)|2 +K
·G(u, v)

where:

– H(u, v) represents the frequency response of the Wiener filter.

– S(u, v) is the power spectrum of the noisy image.

– S∗(u, v) is the complex conjugate of S(u, v).

– G(u, v) is the power spectrum of the original image.

– K is a constant term (known as the Wiener constant) that balances
noise reduction and preservation of image details.

By applying the Wiener filter to both the test frame and the reference frame, we
can obtain denoised versions of the frames, which will be used for further analysis.

To quantify the level of higher noise distortion, a noise metric can be calculated
by comparing the variance of the denoised test frame with the variance of the
denoised reference frame. A commonly used metric is the ratio of the reference

27



Chapter 3 METHODOLOGY

frame’s variance to the test frame’s variance.

The noise metric calculation can be represented as:

noiseMetric (i) =
refFrameWienerVar
testFrameWienerVar

where:

– noiseMetric (i) represents the noise metric value for the i-th frame.

– refFrameWienerVar is the variance of the denoised reference frame.

– testFrameWienerVar is the variance of the denoised test frame.

The noise metric provides a quantitative measure of the noise level in the test
frame relative to the reference frame. A higher noise metric indicates higher noise
distortion.

By computing the noise metric for each frame of the video and comparing it to
the corresponding frames in the reference video, we can assess the degree of higher
noise distortion present.

3.3.7 Blurring and Ghosting
Blurring and ghosting are common distortions that can occur in videos. Blurring
refers to the loss of sharpness or the presence of a blurred effect in video frames,
while ghosting refers to the appearance of duplicate or semi-transparent objects
due to motion or temporal misalignments.

The Wiener deconvolution filter[Tai et al. (2009)][Tzeng et al. (2010)] is a
popular technique used for deblurring images and videos. It estimates the original
sharp image by deconvolving the blurry image with an estimated blur kernel and
incorporating a noise regularization term. The Wiener deconvolution filter can
help restore the sharpness of the video frames affected by blurring and reduce the
ghosting artifacts caused by motion.

F (u, v) =
H∗(u, v) ·G(u, v)

|H(u, v)|2 +K/|G(u, v)|2
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where:

– F (u, v) represents the frequency response of the Wiener deconvolution
filter.

– H(u, v) is the estimated blur kernel in the frequency domain.

– H∗(u, v) is the complex conjugate of H(u, v).

– G(u, v) is the degraded image spectrum.

– K is a constant term (known as the Wiener constant) that balances the
trade-off between noise amplification and detail preservation.

To quantify the level of blurring and ghosting distortions, a blurring metric
can be calculated by comparing the differences between the deblurred test frame
and the original test frame with the differences between the deblurred reference
frame and the original reference frame [Tai et al. (2009)][Tzeng et al. (2010)]. A
commonly used metric is the sum of absolute differences between the frames.
The blurring metric provides a quantitative measure of the blurring and ghosting
distortions in the test frame relative to the reference frame.

3.4 Pooling methods
Several temporal pooling algorithms are used to combine the results of objective
video quality matrices for various distortions as proposed in [Tu et al. (2020)]. Let’s
say there are N frames in a video, each of which is analysed by one of the IQA
models to yield frame-level (time-varying) quality predictions, F1, F2, . . . , FN

. A final quality forecast is created by temporally pooling the per-frame quality
ratings using the F() function: F (q1, q2, . . . , qN) = QFINAL.

After obtaining frame-level quality scores (q1, q2, . . . , qN), a number of meth-
ods have been suggested to combine the time-varying quality scores into a single
assessment of the overall video quality. In this regard, a range of human aspects
have been investigated, such as visual perception [De Vriendt et al. (2013)][Chen
et al. (2014a)], memory effects [Bampis et al. (2017)][Seshadrinathan and Bovik
(2011)][Ghadiyaram et al. (2018)], and video content [Li et al. (2019a)][Ghadiyaram
et al. (2018)][Mirkovic et al. (2014)]. As candidates for determining final quality
predictions on the videos, we investigate a group of parameters that express various
elements of temporal quality perception. In particular, we investigate the following,
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which are given in roughly ascending complexity and abstraction:

Arithmetic Mean: The most popular approach uses the sample mean of frame-
level scores:

Q =
1

N

N∑
n=1

qn.

Harmonic Mean: It’s been noted that the harmonic mean highlights the effects
of poor-quality frames[Li et al. (2018)]:

Q =

(
1

N

N∑
n=1

q−1
n

)−1

.

Geometric Mean: By the product of the values of the quality scores, the third
geometric mean reflects the central tendency of the quality scores:

Q =

(
N∏

n=1

qn

)1/N

.

Minkowski Mean: For time-varying quality, the Lp Minkowski mean is what
[Rimac-Drlje et al. (2009)][Seufert et al. (2013)] is defined as.

Q =

(
1

N

N∑
n=1

qpn

)1/p

.

Percentile: The theory behind percentile pooling is that the "worst" sections
of the content have a significant impact on perceptual quality. Percentile pool-
ing has been the subject of many earlier studies [Rimac-Drlje et al. (2009)]-[Chen
et al. (2016)][Bampis et al. (2017)]. The k-th percentile pooling is written as follows:
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Q =
1

|P↓k%|
∑

n∈P↓k%

qn.

VQPooling: An adaptive spatial and temporal pooling approach called VQPool-
ing was first put forth in [Park et al. (2012)]. Here, we solely focus on the temporal
pooling portion, in which all frames’ quality scores are divided into two groups using
k-means clustering, one for greater quality and one for poorer quality. After that,
the two groups GL and GH are combined to produce an overall quality forecast for
the full video sequence:

Q =

∑
n∈GL

qn + w ·
∑

n∈GH
qn

|GL|+ w · |GH |
,

where |GL| and |GH | stand for the cardinality of GL and GH , respectively, and
the weight w is determined by the ratio of GL and GH scores:

w =

(
1− ML

MH

)2

,

where ML and MH , respectively, are the average values of the quality ratings
in sets GL and GH .

Temporal Variation: To account for quality changes, the technique of [Ninassi
et al. (2009)] proposes both short- and long-term spatiotemporal pooling mecha-
nisms. This approach takes into account the temporal changes in spatial distortions
over time. Only the temporal variation terms are used in this study:

Q =
1

|P↑k%|
∑

n∈P↑k%

|∇qn| ,

Where |∇qn| denotes the gradient’s absolute value at time n, and Q pools the
top k% of the per-frame quality value gradients.
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Primacy Effect: The primacy effect refers to human viewers’ propensity to
remember the first part of a video when giving overall assessments [Murdock Jr
(1962)]. An exponentially declining weighted sum can be used to represent priority.
The primacy effect states

Q =
N∑

n=1

wnqn,

where

wn =
exp (−αpn)∑L
k=0 exp (−αpk)

, 0 ≤ n ≤ L.

Recency Effect: Another well-known behavioural and memory effect, the recency
effect states that a viewer’s most recent visual impression has a significant impact
on their perception of video quality [Murdock Jr (1962)]. Another way to describe
the recency effect is as an exponential weighted sum as for primacy effect, but with
a different weighting:

wn =
exp (−αr(L− n))∑L
k=0 exp (−αr(L− k))

, 0 ≤ n ≤ L,

where the relative strength of these two memory effects can be adjusted using
αp in primacy and αr in recency effect.

Temporal Hysteresis: The hysteresis effect, which is similar to the recency effect
but distinct from it, was identified in human evaluations of time-varying video
quality [Seshadrinathan and Bovik (2011)] and provided as the inspiration for our
method. It is possible to formulate the hysteresis measurement as follows. The
time-varying frame quality scores will be denoted as qn where n = 1, 2, ...N . The
least quality scores over the preceding frames are used to describe the recollection
of past quality ln at the n-th frame:
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ln =

{
qn, n = 1
min {qk}
k∈Kprev

, n > 1

where Kprev = {max {1, n− τ} , . . . , n− 2, n− 1}, indexes the prior τ frames.
The current video quality, mn, is calculated as the weighted average of the following
ordered frame-level qualities:

v = sort ({qk}) , k ∈ Knext,

mn =
J∑

j=1

vjwj, J = |Knext| ,

Knext = {n, n+ 1, . . . ,min {n+ τ,N}} indexes the following τ frames, and
{wj} is the descending half of a Gaussian weighting function. The time-varying
scores produced by linearly combining the memory and present quality components
in the above equations to capture the hysteresis effect. The global temporal average
of the time-varying, hysteresis-transformed forecasts is used to calculate the pooled
video quality Q.

q′n = αmn + (1− α)ln

Q =
1

N

N∑
n=1

q′n,

where the contributions of these two components are modified by α.

Temporal Ensemble Pooling We have just discussed a wide range of temporal
pooling techniques, each of which is either heuristically, statistically, or psycho-
logically motivated. As could be expected, and as we shall demonstrate, these
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approaches’ performances vary on various datasets, as well. Given that these
approaches most likely focus on various facets of perceptual pooling, ensemble
learning is a straightforward way to combine them to provide a more accurate and
all-encompassing quality prediction.

This ensemble-based temporal pooling is referred to as EPooling. On the
IQA/VQA challenges, analogous model fusion/ensemble ideas have been success-
fully applied [Li et al. (2016)][Bampis et al. (2018)][Pei and Chen (2015)]. Assume
that the quality ratings provided by a collection of pooling techniques are designated
as Qi, where i = 1, . . . , I,, and I represents the quantity of input model predictions.
An ensemble regressor is then trained to combine the several predicted labels into
a single final score:

QEPooling = F(Q), Q = {Qi} , i = 1, 2, . . . , I,

where Q is the quality vector that is built from a number of individually pooled
scores, and F is the trained regression function that converts the proxy quality
vector into a final quality prediction called QEPooling. Following a rough exploratory
feature analysis, we experimentally selected Mean, VQPooling, and Hysteresis as
the three input prediction models. More advancements could be made by using
more precise feature selection methods.

3.5 Overview of proposed metric
The Proposed metric is shown in figure 3.1

The Evaluation workflow is shown in figure 3.2

3.6 Evaluation Procedure

3.6.1 Dataset
The dataset is composed of 189 distorted videos and 21 reference videos. The source
of the videos was various high-quality, distortion-free HDR10 sequences obtained
from the internet. All source sequences had a resolution of 3840x2160 pixels, a frame
rate of 50-60 fps and were progressively scanned. The videos were carefully cut into

34



Evaluation Procedure 3.6

Figure 3.1: Proposed Metric: HDR-FP

shorter clips of 7-10 seconds with no overlap, and the video durations were varied to
prevent bias. The final video database was constructed using High-Efficiency Video
Coding (HEVC) Codec and the distorted videos were created by mixing various
bitrates and resolutions to reflect the HDR video streaming practice. The final
bitrate and resolution settings are listed in Table 3.1. The reference video sequences
were included in the database as a reference for the calculation of difference mean
opinion scores (DMOS) and only mean opinion scores (MOS) are made available
with the dataset. Two ambient conditions were used in this study, a dark viewing
condition with an incident illumination of 5 lux and a living room environment
with an incident illumination of 200 lux. Each video was subjectively rated by
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Figure 3.2: Evaluation Workflow

multiple participants on a continuous scale from 0-100 in a full reference setting
[Shang et al. (2022)]. The frames of each of the 21 videos are shown in figure 3.3

3.6.2 Comparison to State of the arts
Comparison of our HDR VQM metric is done to that of several popular LDR
methods, like PSNR, SSIM, and multi-scale SSIM [Valenzise et al. (2014)][Rousselot
et al. (2018)][Zerman et al. (2017)] and several other State of the art full reference
HDR metrices like, HDR-VDP-2, which was proposed in [Mantiuk et al. (2011)],
and we used the re-calibrated version reported in [Narwaria et al. (2015c)][Rerabek
et al. (2015)], HDRVQM[Hanhart et al. (2015)][Narwaria et al. (2015a)][Sugito
et al. (2022)] followed by VMAF [Rassool (2017)][Li et al. (2018)].

• SSIM (Structural Similarity Index): SSIM is a widely used metric for mea-
suring the structural similarity between a reference video and a distorted
video. It takes into account luminance, contrast, and structural information
to calculate a similarity score between 0 and 1, where 1 indicates perfect
similarity[Valenzise et al. (2014)][Rousselot et al. (2018)][Zerman et al. (2017)].

• MSSIM (Multi-Scale Structural Similarity Index): MSSIM is an extension of
SSIM that incorporates multiple scales to capture local and global structural
information. It computes SSIM at multiple scales and combines the results
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Figure 3.3: Dataset

to provide a more comprehensive assessment of video quality [Valenzise et al.
(2014)][Rousselot et al. (2018)][Zerman et al. (2017)].

• PSNR (Peak Signal-to-Noise Ratio): PSNR measures the quality degradation
between a reference video and a distorted video by calculating the ratio of
the peak signal power to the noise power. It is expressed in decibels (dB),
and higher values indicate better quality [Valenzise et al. (2014)][Rousselot
et al. (2018)][Zerman et al. (2017)].

• HDR-VDP (High Dynamic Range - Visual Difference Predictor): HDR-VDP is
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Table 3.1: Bitrates and resolution for the test videos [Shang et al. (2022)]

S.No. Resolution bitrate (Mbps)*
1 3840×2160 15
2 3840×2160 6
3 3840×2160 3
4 1920×1080 9
5 1920×1080 6
6 1920×1080 1
7 1280×720 4.6
8 1280×720 2.6
9 960×540 2.2

a metric specifically designed for evaluating the quality of high dynamic range
(HDR) video content. It considers the perceptual differences in luminance,
contrast, and visibility between the reference and distorted videos [Narwaria
et al. (2015c)].

• HDR-VQM (High Dynamic Range - Video Quality Metric): HDR-VQM is
another metric developed for assessing HDR video quality. It combines visual
attention modeling, color and luminance information, and distortion visibility
to predict subjective quality scores for HDR videos[Narwaria et al. (2015a)].

• VMAF (Video Multimethod Assessment Fusion): VMAF is an industry-
standard full reference metric developed by Netflix. It combines multiple ob-
jective quality metrics, including SSIM and MS-SSIM, with machine learning
techniques to predict subjective quality scores. VMAF has gained popularity
due to its ability to provide accurate quality predictions across a wide range
of video content [Rassool (2017)][Li et al. (2018)].
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3.6.3 Performance measure
The performance of the objective model is evaluated in terms of prediction accuracy,
prediction monotonicity, and prediction consistency in relation to predicting the
subjective assessment of video quality across the range of video test sequences
considered. Furthermore, the robustness of an objective quality assessment metric
can be tested with respect to a variety of video distortions by selecting a set of
video sequences that include various distortions of interest.

When evaluating the performance of an objective video quality metric, metrics
such as Pearson Linear Correlation Coefficient (PLCC), Spearman’s Rank Order
Correlation Coefficient (SROCC), and Kendall’s Rank Order Correlation Coefficient
(KROCC) are used to compare the results of the objective metric with the subjective
scores obtained from human observers.

• Pearson Linear Correlation Coefficient (PLCC): It measures the linear cor-
relation between the objective metric and the subjective scores. A value of
1 indicates a perfect positive correlation, a value of -1 indicates a perfect
negative correlation, and a value of 0 indicates no correlation [Zhang et al.
(2012), Mahajan et al. (2021)].

• Spearman’s Rank Order Correlation Coefficient (SROCC): It measures the
monotonic relationship between the objective metric and the subjective scores.
Like PLCC, a value of 1 indicates a perfect correlation, a value of -1 indicates
a perfect negative correlation, and a value of 0 indicates no correlation [Zhang
et al. (2012), Mahajan et al. (2021)].

• Kendall’s Rank Order Correlation Coefficient (KROCC): Similar to SROCC,
it measures the monotonic relationship between the objective metric and the
subjective scores but it also considers the number of concordant and discordant
pairs of scores. A value of 1 indicates a perfect monotonic correlation, a value
of -1 indicates a perfect negative correlation, and a value of 0 indicates no
correlation [Zhang et al. (2012), Mahajan et al. (2021)].

PLCC, SROCC and KROCC are all commonly used in video quality assessment
research, as they are able to measure the correlation between the objective and
subjective scores, but they all have their specific advantages and disadvantages.
PLCC measure linear correlation, SROCC measures monotonic relationship, and
KROCC measures monotonic relationship and consider concordant-discordant pairs.

All of these metrics have their specific strengths and weaknesses which are listed
in table 3.2 which can be important for considering which metric to use.
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Table 3.2: Pros and Cons of Metrics for Evaluating Objective Video Quality
Metrics [Zhang et al. (2012), Mahajan et al. (2021)]

Metric Pros Cons
Pearson Linear Cor-
relation Coefficient
(PLCC)

Measures linear corre-
lation

Assumes linear rela-
tionship, Sensitive to
outliers

Spearman’s Rank Or-
der Correlation Coeffi-
cient (SROCC)

Measures monotonic
relationship, Not sen-
sitive to outliers

Only measures mono-
tonic relationships

Kendall’s Rank Order
Correlation Coefficient
(KROCC)

Measures monotonic
relationship and
consider concordant-
discordant pairs, not
sensitive to outliers

Only measures mono-
tonic relationships
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4 Results

In this section, we perform an evaluation of state-of-the-art Objective video quality
matrices and techniques on the dataset proposed in [Shang et al. (2022)]. We will
then evaluate our distortion-based Feature Pooled metric HDR-FP and very its
effectiveness by comparing it to the state-of-the-art methods.

4.1 Pooling of Ratios
In order to make a feature-pooled quality metric, we require a single value defining
the overall quality of the video. Using the feature extraction techniques, we get a
quality ratio for each individual frames. These distortion feature ratio from each of
the frames in a video need to be combined to get an overall distortion feature ratio
for the video. For that purpose, the graphs for the quality score of each frame in a
video are plotted in figure 4.1.

In Figure 4.1, it becomes evident that the distortion feature ratios exhibit a
lack of discernible pattern. As a result, it is not possible to apply various pooling
techniques, as described in Section 3, to effectively combine or aggregate these
ratios. Additionally, the diverse nature of the videos within the dataset further
complicates the situation.

The absence of a consistent pattern in the distortion feature ratios implies that
these ratios do not exhibit a clear trend or relationship that can be easily captured
by pooling techniques. Consequently, attempting to merge or summarize the ratios
using pooling methods may not yield meaningful results and would increase the
complexity of the metrics for no reason. Therefore we used mean for combining the
feature ratios across the frame such that distrotions like sharpness, compression
artifacts and so on will have just one value each for one video.

Even after getting the distortions feature ratios for the video, It is still necessary
to combine these feature ratios into a single value. For this purpose, we use various
pooling techniques as mentioned in Section 3. On using various pooling techniques,
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Figure 4.1: Example of compression and sharpness ratios in a video for all the
frames

we calculate the correlation scores as in Table 4.1.
We compared the performance of different pooling techniques within each corre-

lation coefficient measure as proposed in [Tu et al. (2020)]. The results of the study
show that the mean SROCC, PLCC, and KROCC scores for all of the pooling
methods were above 0.7, which indicates that all of the methods were able to
predict the quality of the images with a high degree of accuracy. However, there
were some differences in the performance of the different methods. The EPooling
method had the highest mean scores for all three metrics, followed by the Mean
method and the Median method. We can see that for SROCC, the "Percentile"
pooling technique has the highest value (0.771), indicating a relatively stronger
correlation compared to other techniques as can be seen in figure 4.2. Similarly,
for PLCC, "Geometric" pooling has the highest value (0.83), and for KROCC,
"Mean" pooling has the highest value (0.801). This provides a relative ranking of
the pooling techniques within each correlation measure.

We also compared the average performance of the pooling techniques across
different correlation measures. The average PLCC (0.827) is higher than the average
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Table 4.1: Correlation score using different pooling techniques for pooling
Distortion-feature ratios of a video in the dataset

SROCC PLCC KROCC
Mean 0.753 0.827 0.801
Hysteresis 0.74 0.83 0.784
EPooling 0.764 0.827 0.801
Median 0.736 0.818 0.798
Minkowski 0.747 0.823 0.788
Variation 0.626 0.693 0.682
Percentile 0.771 0.828 0.748
VQPooling 0.749 0.829 0.795
Primacy 0.743 0.821 0.778
Recency 0.729 0.813 0.797
Harmonic 0.733 0.801 0.748
Geometric 0.757 0.83 0.799

Figure 4.2: Correlation score for feature pooling

SROCC (0.753) and KROCC (0.801). This suggests that, on average, the pooling
techniques have a stronger linear correlation (PLCC) than rank-order correlation
(SROCC) or Kendall’s correlation (KROCC).

Since, both the Mean and Epooling perform better than other pooling methods,
we can choose one of them to pool the distortion feature ratio for the video to obtain
a quality score. We checked the significance of the difference in the correlation
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coefficients between Epooling and Mean and we obtained z-Score: -0.24982785
and Probability: 0.80272048. A probability value of more than 0.05 here indicates
that the two correlation coefficients are not significantly different from each other.
Therefore, we proceeded with Mean pooling for a further phase of evaluations.

4.2 Comparing to state of the art

4.2.1 Correlation value
The Table 4.2 presents correlation scores for state-of-the-art metrics, we can observe
that PSNR shows a low correlation with the subjective quality scores(MOS) whereas
VMAF shows the highest correlation score as can be seen in figure 4.3

Table 4.2: Correlation scores for State of the Art Metrics

SROCC PLCC KROCC
PSNR 0.253 0.278 0.381
SSIM 0.59 0.596 0.573
MS-SSIM 0.672 0.669 0.645
HDR-VDP-2 0.683 0.663 0.695
HDR VQM 0.809 0.812 0.787
VMAF 0.831 0.827 0.812

Figure 4.3: Bar plot for correlation score of State of the Art Metrics
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Table 4.3 compares the HDR-FP metric with the state-of-the-art metrics. HDR-
FP demonstrates competitive performance with respect to correlation scores

Table 4.3: Comparison of HDR-FP with State of the Art Metrics

SROCC PLCC KROCC
PSNR 0.253 0.278 0.381
SSIM 0.59 0.596 0.573
MS-SSIM 0.672 0.669 0.645
HDR-VDP-2 0.683 0.663 0.695
HDR VQM 0.809 0.812 0.787
VMAF 0.831 0.827 0.812
HDR-FP 0.753 0.827 0.801

Figure 4.4: Bar plot showing Comparison of HDR-FP with State of the Art
Metrics

HDR-FP shows a moderate correlation with the subjective quality scores, with
SROCC of 0.753, PLCC of 0.827, and KROCC of 0.801.

Comparing HDR-FP with the state-of-the-art metrics, it can be inferred that
HDR-FP performs reasonably well in capturing the subjective quality of high
dynamic range (HDR) videos, especially in terms of PLCC and KROCC. However,
it falls slightly behind VMAF, which exhibits the highest correlation coefficients
among the evaluated metrics. It can be visualized from Figure 4.4 that HDR-FP
performance rivals HDR VQM.
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4.2.2 MOS vs Quality Scores

The reason why simpler methods like PSNR and SSIM achieve relatively lower
correlations across sequences compared to per sequence comparisons can be further
explained by examining the scatter plots in Figure 4.5. These scatter plots depict
the relationship between the objective scores from various metrics (x-axis) and the
MOS (Mean Opinion Score, y-axis).

In the case of PSNR, it can be observed from Figure 4.5 that the PSNR values
per source exhibit a more linear relationship with the MOS. However, they also
display a significant amount of scatter due to the curves being shifted for each
source. This means that even though PSNR may capture some aspects of quality, it
fails to account for variations between different sources, leading to a larger spread
of data points.

Similarly, SSIM also demonstrates a similar behavior with relatively lower
correlations across sequences. The scatter plot in Figure 4.5 shows that while there
is some correlation between SSIM values and the MOS, there is still a considerable
amount of scatter, indicating that SSIM alone is not sufficient to accurately distin-
guish quality levels across different sources.

On the other hand, metrics like HDR-VQM, VMAF, and HDR-FP exhibit less
scatter across sequences in the scatter plots. This suggests that these metrics
have a better ability to differentiate between quality levels of video sequences
from different sources. Although they are not perfect, they demonstrate a more
consistent relationship with subjective opinion across different sequences.

Hence, relying solely on PSNR and SSIM values can lead to incorrect con-
clusions, such as considering an HDR video in the first condition to have higher
quality than the one in the second condition, which may not align with subjective
opinion. In contrast, metrics like HDR-VQM, VMAF, and HDR-FP provide results
that are more in line with subjective perception. It is important to note that this
example highlights specific limitations of simpler methods like PSNR and SSIM
and emphasizes the need for more advanced metrics to accurately assess video
quality.
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4.2.3 Analysis per resolution and bit rate combina-
tion

To do further analysis, we divided the videos based on the combiation of bit rates
and resolution.

Table 4.4 presents the SROCC (Spearman Rank Order Correlation Coefficient)
scores for different variable resolution and bit rate combinations. See figure 4.6

Table 4.4: SROCC for variable resolution and bit rate combinations

4k
15M

4k
6M

4k
3M

1080p
9M

1080p
6M

1080p
1M

720p
4.6M

720p
2.6M

540p
2.2M

PSNR 0.3295 0.2879 0.2449 0.3293 0.2617 0.1798 0.2236 0.2213 0.199
SSIM 0.6623 0.6493 0.5813 0.6372 0.58 0.5401 0.5794 0.542 0.5384
MS-
SSIM

0.7239 0.7188 0.7086 0.7157 0.7057 0.5845 0.684 0.6423 0.5645

HDR-
VDP-2

0.7759 0.7394 0.6604 0.7689 0.6639 0.6163 0.6478 0.6389 0.6354

HDR
VQM

0.9263 0.8449 0.7975 0.8941 0.8268 0.7358 0.7599 0.759 0.7367

VMAF 0.9093 0.9041 0.8045 0.905 0.8535 0.7596 0.7965 0.7836 0.7628
HDR-
FP

0.8164 0.7901 0.7826 0.7952 0.7884 0.6311 0.752 0.7446 0.6765

On analyzing the table 4.4, we can infer that the HDR-FP metric consistently
achieves relatively high SROCC scores across different resolutions and bit rates.
This indicates a strong correlation between HDR-FP and subjective opinion for
assessing video quality.

It can also be inferred that higher bit rates and resolutions tend to have higher
SROCC scores. Here, 4k resolutions tend to yield higher SROCC scores compared
to lower resolutions like 1080p, 720p, and 540p. Similarly, higher bit rates such as
15M and 9M tend to have higher SROCC scores compared to lower bit rates like
3M and 1M.

To further compare the HDR-FP metric with state-of-the-art metrics, Figure 4.7
presents a line plot showing the SROCC scores for HDR-FP and other metrics. From
the above plot, it can be noticed that SSIM and MS-SSIM have a higher correlation
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for higher resolution whereas other metrics tend to have higher correlation values
for higher bit rate or a combination of bit rate and resolution.

Table 4.5 displays the PLCC (Pearson Linear Correlation Coefficient) scores for
different variable resolution and bit rate combinations. See figure 4.8

Table 4.5: PLCC for variable resolution and bit rate combinations

4k
15M

4k
6M

4k
3M

1080p
9M

1080p
6M

1080p
1M

720p
4.6M

720p
2.6M

540p
2.2M

PSNR 0.3793 0.3065 0.2795 0.3175 0.2859 0.1892 0.2608 0.2552 0.228
SSIM 0.6714 0.6657 0.633 0.6479 0.6247 0.516 0.5558 0.5411 0.5085
MS-
SSIM

0.7258 0.7233 0.6881 0.7009 0.6848 0.6119 0.6758 0.6439 0.5664

HDR-
VDP-2

0.7341 0.7019 0.6751 0.725 0.6767 0.5592 0.6531 0.6491 0.5927

HDR
VQM

0.9109 0.8763 0.8132 0.8925 0.8305 0.7209 0.7632 0.7518 0.7488

VMAF 0.8994 0.8611 0.851 0.8932 0.8569 0.7653 0.7762 0.7711 0.7687
HDR-
FP

0.8859 0.8548 0.8357 0.8549 0.8513 0.7212 0.8232 0.8211 0.795

Based on the table 4.5, we can infer that higher resolution and bit rates tend
to have higher PLCC scores. Across all metrics (PSNR, SSIM, MS-SSIM, HDR-
VDP-2, HDR VQM, VMAF, and HDR-FP), there is a general trend of higher
PLCC scores for higher resolution and bit rate combinations. This suggests that
higher-quality videos with higher resolutions and bit rates tend to have stronger
correlations with subjective opinion scores.

The HDR-FP metric consistently achieves high PLCC scores across different
resolution and bit rate combinations. It demonstrates competitive performance
compared to state-of-the-art metrics, as shown in Figure 4.9, where it outperforms
some metrics and is comparable to others.

Comparing PLCC scores for different bit rate variations at the same resolution,
we can observe that higher bit rates generally result in higher PLCC scores. This
indicates that higher bit rates contribute to better quality assessment and alignment
with subjective opinion.

It can also be noticed that within the same bit rate, increasing the resolution
also tends to increase the PLCC scores. This suggests that higher resolutions
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provide more visual details and information, leading to better quality prediction
accuracy.

Table 4.6 presents the KROCC (Kendall’s rank order correlation coefficient)
values for different variable resolution and bit rate combinations, while Figure 4.10
visualizes the KROCC scores.

Table 4.6: KROCC for variable resolution and bit rate combinations

4k
15M

4k
6M

4k
3M

1080p
9M

1080p
6M

1080p
1M

720p
4.6M

720p
2.6M

540p
2.2M

PSNR 0.4556 0.45 0.3758 0.4543 0.38 0.306 0.3675 0.324 0.3159
SSIM 0.6282 0.6224 0.5832 0.6022 0.5802 0.5089 0.5767 0.5552 0.4999
MS-
SSIM

0.7412 0.7347 0.6423 0.7284 0.6188 0.5778 0.6123 0.584 0.5656

HDR-
VDP-2

0.7877 0.7387 0.6757 0.7797 0.7007 0.6016 0.6747 0.6514 0.6449

HDR
VQM

0.8813 0.8211 0.8148 0.8217 0.8148 0.7071 0.7893 0.7171 0.7157

VMAF 0.9127 0.8502 0.8085 0.8928 0.8286 0.7229 0.7902 0.7545 0.7477
HDR-
FP

0.8851 0.8319 0.7997 0.843 0.8104 0.7381 0.7893 0.7593 0.7522

By examining the table, we found that the KROCC values range from approx-
imately 0.3 to 0.9, indicating varying degrees of correlation between the metrics
and the subjective quality scores (MOS). Higher KROCC values signify a stronger
correlation. On comparing the metrics, it can be observed that VMAF consistently
achieves relatively high KROCC scores across dvarious resolution and bit rate
combinations. It shows a strong correlation with subjective quality, indicating its
effectiveness in assessing video quality.

HDR VQM and HDR-FP also exhibit relatively high KROCC scores as can be
seen in figure 4.11, suggesting a good correlation with subjective quality. These
metrics show consistent performance across different resolution and bit rate combi-
nations. PSNR and SSIM generally yield lower KROCC scores compared to the
other metrics. They have weaker correlations with subjective quality, indicating
their limitations in capturing the perceived video quality accurately, especially
across different sources.

The correlation scores vary with different combinations of resolution and bit
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rate. Here, VMAF tends to have higher correlations for higher resolutions and bit
rates, indicating its effectiveness in assessing quality in such scenarios.
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(a) MOS vs PSNR (b) MOS vs SSIM

(c) MOS vs MS-SSIM (d) MOS vs HDR-VDP-2

(e) MOS vs HDR VQM (f) MOS vs VMAF

(g) MOS vs HDR-FP

Figure 4.5: Scatter plots showing the relationship between MOS and Quality
metric scores
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Figure 4.6: SROCC Scores

Figure 4.7: Comparing HDR-FP metric with State of the art metrics for SROCC
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Figure 4.8: PLCC Scores

Figure 4.9: Comparing HDR-FP metric with State of the art metrics for PLCC
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Figure 4.10: KROCC Scores

Figure 4.11: Comparing HDR-FP metric with State of the art metrics for
KROCC
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5 Conclusion

Finally, this study has successfully addressed the need for effective objective criteria
for assessing High Dynamic Range (HDR) video quality. To reliably evaluate
the perceptual quality of HDR films, the suggested metric, HDR-FP, combines
many retrieved elements. HDR-FP outperformed HDR-VDP-2 and was comparable
to HDR-VQM in terms of accuracy and consistency after rigorous examination
and comparison with state-of-the-art measures. The SROCC, PLCC, KROCC
coefficients are 0.753, 0.827, 0.801 respectively which are similar or even better
then HDR-VQM on this dataset. It is still unable to outperform Netflix’s VMAF
metric.

We were also able to conclude that there is an influence of Resolution and
Bit-Rate on the Correlation coefficients. It was seen that SSIM and MS-SSIM
increase with higher resolution whereas the other metric including HDR-FP are
more influenced by changes in Bit-rate.

The high correlations between HDR-FP’s objective quality ratings and sub-
jective Mean Opinion ratings (MOS) attest to its dependability and effectiveness.
These findings illustrate HDR-FP’s promise as a practical and dependable technique
for evaluating HDR video quality.

It was also noted from our findings that PSNR and SSIM are database dependent
and might perform well on certain kinds of videos but might not perform as well
generally on all datasets whereas HDR-VQM and VMAF perform better on all
datasets irrespective of the nature of datasets.

In conclusion, the creation of HDR-FP as an objective metric for assessing HDR
video quality adds to the advancement of HDR video technology research, allowing
for the optimization of content distribution and improving overall user experience.
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