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ABSTRACT

Sea cages used for salmon farming often contain a large amount of growth-stunted
(“loser”) fish. The presence of loser fish might indicate insufficient welfare fac-
tors or diseases. By monitoring their occurrence, these welfare problems can be
identified and addressed. Current monitoring of loser fish in sea cages is mostly
performed manually. The objective of this study is to design, develop, and validate
a machine-learning solution for automatically monitoring the amount of loser fish
in sea cages. The dataset used in this study consists of images depicting healthy
and loser salmon from a sea cage. Fish in these images are detected using an
object detection algorithm, with a pre-trained fish detection model. Detected fish
are then classified into classes (healthy or loser fish). The number of fish classified
as loser fish is identified and counted. The machine learning solutions investigated
in our study consider the use of a convolutional neural network feature extractor,
principal component analysis for dimensionality reduction, grid search for defin-
ing the best configuration of different classification algorithms, and combinations
of those classification algorithms. In order to optimise these combinations, the
diversity between the classification algorithms is also investigated. This study has
resulted in a framework able to detect multiple fish from images in a sea cage,
detect 74.5% of the fish detected in the ground-truth, and classify each of the de-
tected fish with an accuracy of 92.9%. The proposed solution is a promising tool
for increasing fish welfare, with a significant improvement from manual counting
in terms of effectiveness and reliability.

i



ii

Lakseoppdrettsmerder inneholder ofte et stort antall veksthindrede fisk omtalt
som “taperfisk”. Tilstedeværelsen av taperfisk kan indikere utilstrekkelige velferds-
faktorer eller sykdommer. Ved å overvåke forekomsten av taperfisk kan disse
velferdsproblemene bli identifisert og adressert. Foreløpig overvåking av taperfisk
utføres hovedsakelig manuelt. Formålet med denne studien er å designe, utvikle og
validere en maskinlæringsløsning for automatisk overvåking av mengden taperfisk
i fiskemerder. Datasettet som brukes i denne studien består av bilder som viser
frisk og taper laks fra fiskemerder. Fisk i disse bildene er detektert ved å bruke en
objektdetekteringsalgoritme, med en forhåndstrent fiskedetekteringsmodell. De-
tekterte fisk blir deretter klassifisert i kategorier (frisk eller taper fisk). Antallet fisk
klassifisert som taperfisk blir identifisert og telt. Den undersøkte maskinlæringsløs-
ningen i denne studien betrakter bruken av et konvolusjonelt nevralt nettverk for å
redusere overflødighet i dataen, hovedkomponentanalyse for dimensjonsreduksjon,
grid search for å finne beste konfigurasjoner av forskjellige klassifiseringsalgoritmer
og kombinasjoner av disse klassifiseringsalgoritmene. For å optimalisere disse kom-
binasjonene blir mangfoldet mellom klassifiseringsalgoritmene undersøkt. Denne
studien har resultert i et rammeverk som kan detektere flere fisk fra bilder i en
fiskemerd, og oppdage 74.5% av de samme fiskene som er oppdaget i referense-
dataen og klassifisere hver av de detekterte fiskene med en nøyaktighet på 92.9%.
Den foreslåtte løsningen er et lovende verktøy for å øke fiskevelferden, med en
bedydelig forbedring fra manuell telling angående effektivitet og pålitelighet.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation and Context

Sick fish is commonly referred to as growth-stunted, emaciated, drop-outs, or
simply “loser” [1, 2]. Even though loser fish might be the most offensive term, it
is one of the most commonly used. These are fish that grow too slowly during
their first months in comparison to the rest of the group, likely because of a
combination of insufficient welfare factors [3, 4]. Loser fish is less likely to survive,
often are associated with low animal indicators, and are less likely to grow to an
economically profitable size [3, 4].

The occurrence of loser fish in sea cages can indicate problems with feeding
strategy, water conditions, diseases, or injury [5]. Such problems cause a lack of
welfare and reduce the chance of survival of the fish [3]. The detection of loser fish
is important for establishing the condition of the sea cage, and in order to find and
fix the problems leading to their presence [4]. Currently, the occurrence of loser fish
is detected manually, with no automated system for ensuring consistent or viable
surveillance [1]. Therefore, an automated system is much needed for counting the
amount of loser fish in sea cages, in order to discover problems leading to their
occurrence and, therefore, for improving their welfare.

The main goal of this thesis is to develop a proof of concept of a machine vision
system for loser fish counting and to develop a solution that can be implemented
in sea cages. The main part of the thesis concerns the identification of suitable
models to classify images into two categories healthy or loser depending on whether
the image depicts a healthy or loser fish, respectively. The conducted research
also includes the detection of fish in a sea cage and a counting system. A large
dataset of labelled data is needed for training the detection model. Since this
was not available for this project, the detection of fish consists of a pre-trained
fish detection model instead. The proposed solution receives, as input, images
obtained from underwater cameras mounted inside sea cages.

This thesis builds upon knowledge and experiments conducted through a spe-
cialisation project regarding the same topic, whose associated report can be found
in Appendix A. The knowledge gained from the specialisation project has directed
the focus of this work, and all the experiments have been extended and redone,
with a new dataset, leading to new results and conclusions.

1



2 CHAPTER 1. INTRODUCTION

1.2 Objective and Research Questions
The objective of this work is to design, develop, and validate a framework for
automatically monitoring the amount of loser fish in a sea cage. The framework is
composed of three main components: detection, classification, and counting. The
first one uses an object detection algorithm for detecting fish in underwater images
obtained from a sea cage. The second one uses a machine learning algorithm for
classifying each fish as healthy or a loser. The third one is dedicated to counting the
occurrence of loser fish in the sea cage. In this work, I focus on investigating the
detection, classification, and counting results using a new dataset, exploring the
correlation and diversity of different classification methods, and looking into how
the best-performing and less-correlated classification algorithms can be combined
using ensemble methods.

In this work, we address the following research questions:

RQ1 – What is the performance of a state-of-the-art detector for the fish detection
problem?

In this question, the performance of an object detection method will be
tested using a pre-trained fish detection model, named fish_detection [6].
This method is chosen as it is trained on Open Images v7,1 which is one
of few large datasets containing underwater images of salmon, which makes
the model ideal for detecting different types of fish in a sea cage (especially
salmon). This investigation opens up opportunities for the use of transfer
learning procedures based on pre-trained models for the problem. The pro-
posed pipeline would then be suitable for scenarios where available labeled
training sets are small or are hard to be created.

RQ2 – Which state-of-the-art classification algorithms has the highest effective-
ness performance for the fish classification problem?

In this question, the performance of five different classification algorithms
is tested, considering a grid search procedure for determining proper values
for their hyper-parameters.

RQ3 – How much diversity is there between the classification algorithms used in
the fish classification problem?

In this question, the diversity between the different classification methods
is compared and investigated. The goal is to identify the most promising
classifiers to be combined.

RQ4 – Which state-of-the-art ensemble methods have the highest performance for
the fish classification problem?

In this question, the performance of two different ensemble methods for
combining the classification algorithms is tested.

RQ5 – What is the performance of the proposed loser fish counting system?

In this question, the performance of a loser fish counting system is tested.
1Google Apis, Open Images Dataset V7 and Extensions. https://storage.googleapis.

com/openimages/web/index.html (As of June 2023).
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Figure 1.4.1: Outline of the thesis structure.

1.3 Contributions

For this thesis, a new system for counting the amount of loser fish in sea cages is
introduced. The system is developed using transfer learning and validated using
two different datasets. It consists of three steps: detection, classification (where
an ensemble has been assessed using a pretrained detection model), and counting.

The source code of the different components of the system is available at https:
//github.com/Linda432/fish-counting-system.git (As of June 2023).

1.4 Outline

Figure 1.4.1 shows the structure of the thesis. The thesis consists of five chap-
ters: introduction, background concepts and related work, materials and methods,
results and discussion, and conclusions. The related content to the main compo-
nents of the solution: detection, classification, and counting are highlighted with
different colours. The figure also indicates which research questions (RQ1, RQ2,
RQ3, RQ4, and RQ5) are addressed in each chapter.

Chapter 2 - Background Concepts and Related Work provides back-
ground information on the problem and describes relevant related work. Chap-
ter 3 - Materials and Methods contains a description of the developed method-
ology and materials used during the conducted investigation. Chapter 4 - Re-
sults and Discussion presents all the experiments and results of the developed
solution, as well as a discussion of the obtained results. Finally, Chapter 5 -
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Conclusions summarises the main findings and provides recommendations for
future work.



CHAPTER

TWO

BACKGROUND CONCEPTS AND RELATED WORK

This chapter introduces background concepts related to the investigated problems.
This chapter also overviews relevant related work.

2.1 Background Concepts
This section covers background concepts related to fish welfare and its assessment.

2.1.1 Fish Welfare

Welfare is, according to the Cambridge dictionary, correlated to the physical and
mental health as well as the happiness of a being [7]. Physical healthy can be
measured based on disease, injury, or illness, while mental health can be measured
based on pain, fear, or suffering [8]. There is however a scientific debate regarding
the ability of fish to experience pain or fear. Key [9] examined whether the brain
structures of fish were capable of conveying senses of pain and consciousness. The
conclusions of his study are similar to those of Rose [10]. According to them, such
senses are impossible for fish brains [9, 11].

Others, such as Chandroo [12] and Dunlop [13], suggest, however, that there
exists evidence that nociception in fish is experienced. For example, fish is capable
of experiencing suffering in the form of pain and fear [8]. Rose [10] partially agrees
and explains that they display physiological stress responses to noxious stimuli,
even though they do not experience pain, fear, or emotions, which is potentially
injurious.

Since there is a lot of disagreement regarding the mental senses of fish, it is
impossible to know for sure exactly what a fish experiences. However, if they
experience mental suffering, the nature of their pain or fear should be assessed,
taken into account, and prevented [8].

2.1.2 Fish Welfare Measurement

Welfare can be complicated to be measured but can be split into two welfare
indicator categories: direct (animal-based) and indirect (environment-based). The
animal-based welfare indicators are more directly linked to the state of the fish,
where attributes from the animal itself indicate the lack of welfare needs. Such

5



6 CHAPTER 2. BACKGROUND CONCEPTS AND RELATED WORK

needs can be identified by the condition factor of the fish, the degree of emaciation,
or the existence of damaged gill tissue. Environmental-based welfare indicators
have the opportunity to detect a poor welfare problem before the problem becomes
visible on the fish. Such indicators might be related to the farming system, such
as the water temperature or oxygen levels [14].

Most animal welfare assessment protocols use a combination of animal-based
and environment-based indicators. The predicted appropriate indicators are used
together with different statistical techniques, such as the monitoring program sug-
gested in the Royal Society for the Prevention of Cruelty to Animals (RSPCA)
welfare standards for farmed Atlantic salmon [15], the welfare assessment proto-
col developed by the Norwegian Veterinary Institute [16], or the Salmon Welfare
Index (SWIM) developed by Stien at al. [17] [14].

There is no single measure of welfare for fish, but a combination of phys-
iological, biochemical, and behaviour measures are often used [8]. Ashley [8],
Dawkins [18], Broom [19] and Noble et al. [14] all agree that behaviour measure-
ment might be the most important method to assess welfare. Behaviour measure-
ments indicate the welfare of the fish at the point of observation and can be used
to assess both physical and mental health. A large amount of salmon sea cages
are equipped with underwater cameras, such as fish farmers can use behaviour as
a key tool for monitoring the welfare of fish [14].

2.1.3 Fish Welfare Monitoring

Fish have rich body language, which can indicate their welfare. By using behaviour-
based methods, including their swimming modes, fin displays, gill ventilation, and
skin pigment patterns, their response to food and their position in the water can
be observed and analysed. Poor welfare might be indicated by a low response to
food, slow swimming, and increased group clumping. Other factors to consider are
fish with low condition factors and fish swimming alone. Fish with these factors
are referred to as “loser” fish. These are unhealthy fish, which might be caused by
a combination of insufficient welfare factors, such as parasites, disease, stress, or
environmental factors [4, 14].

About 15-20% of fish in sea cages die before they are big enough to be slaugh-
tered because of insufficient welfare factors. Additionally, there are millions of
loser fish with welfare problems among the surviving fish in the aquaculture in-
dustry [5]. Loser fish are unwanted from a production perspective since they result
in big financial losses and harm the reputation of the industry. They might be
able to survive for a long time, but they often get diseases and do not have a
satisfying life regarding animal welfare [4]. Loser fish are often therefore removed
and euthanized by the fish farmers if detected [3, 4, 5].

This thesis focuses on the automatic detection of loser fish based on images.
It can, therefore, be explored for animal-based welfare assessment.

2.2 Related Work
Detection, classification, and counting methods have been broadly studied and
developed in recent years. Regarding fish, these methods have been highly utilised
for finding the position of fish, creating bounding boxes around detected fish,
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deciding the fish species, evaluating the fish behaviour, tracking fish trajectories,
and counting fish.

Saleh et al. [20] presented a benchmark solution for using visual analysis for
monitoring fish habitats as a step towards sustainable fisheries. Their product,
DeepFish, is a dataset consisting of approximately 40 thousand underwater images
from different marine environments of tropical Australia, created to train and
test methods for several computer vision tasks. The dataset uses classification
labels, point-level, and segmentation labels, which enables models to learn to
automatically monitor fish count, identify their locations, and estimate their sizes.

As a detection method, Muksit et al. [21] developed a deep learning-based fish
detection model called YOLO-Fish. Two versions are created where YOLO-Fish-1
fixes an issue with YOLOv3 1, enhancing it to be able to detect tiny fish. YOLO-
Fish-2 adds Spatial Pyramid Pooling to the first model, improving it to be able
to detect fish in dynamic environments. Two datasets were used for testing the
models, DeepFish, and OzFish, where the models obtained average precision of
76.56% and 75.70%. Their models are more lightweight compared to other versions
of YOLO, with similar performance.

Al Aoi [6] also developed a fish detection model. The proposed model was
trained on a large number of images of different fish species from the Open Images
v7 2 dataset, and using the TensorFlow 3 library. The model was able to detect a
large number of fish from an image and create bounding boxes around them. This
model is investigated for loser detection in this thesis.

With the goal of improving fish welfare, Li et al. [22] proposed a novel method
of abnormal behaviour detection based on image fusion. This would detect early
abnormal behaviour in single fish in real time. Outline information of moving
objects was extracted and the position information of the fish was enhanced. A
method named BCS-YOLOv5 was developed by adding bidirectional feature pyra-
mid network, coordinate attention block, and spatial pyramid pooling to YOLOv5.
This method achieved the best accuracy compared with two other typical models
with an average accuracy of 96.69% at 45 frames per second. The BCS-YOLOv5
method improved the extraction of location information and quantitatively de-
tected similar anomalous behaviour, such that abnormal fish behaviour in aqua-
culture could be detected in real-time.

Wu et al. [23] introduced an effective method for detecting and recognising
the starvation-stress behaviour of individual fish in order to ensure fish welfare.
Their study focused on the precision-feeding strategy of fish and investigated how
stress behaviour could be detected by quantifying the swimming activity of fish
based on their swimming intensity. For computing that, the angular information
of the fish, including the steering angle, tail-bending angle, and turning speed were
considered as key factors. Results obtained via human observation revealed that
their detection and recognition method exhibited good performance in the detec-
tion of starvation-stress behaviour of darkbarbel catfish. Their study reported an

1Joseph Redmon, YOLO: Real-Time Object Detection. https://pjreddie.com/darknet/
yolo/ (As of June 2023).

2Google Apis, Open Images Dataset V7 and Extensions. https://storage.googleapis.
com/openimages/web/index.html (As of June 2023).

3TensorFlow, Create production-grade machine learning models with TensorFlow. https:
//www.tensorflow.org/ (As of June 2023).
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accuracy rate of at least 96.21 ± 1.42%.
Zeng et al. [24] investigated how an Audio Spectrum Swin Transformer (ASST)

model using an acoustic signal and attention mechanism could be utilised in order
to identify the feeding decisions of fish. The feeding behaviour could be identified
based on the acoustics produced by fish chewing feed and activities during feeding.
The ASST network for fish feeding behaviour reached an accuracy of 96.16% and
could effectively divide the feeding intensity into four grades: strong, medium,
weak, and none. The study demonstrated that the model allows for the use of on-
demand feeding and provided a basis for developing intelligent feeding machines.

As for classification, different approaches have been investigated. In a study
by Alsmadi and Almarashdeh [25], the performance of different fish classifica-
tion techniques was compared. The performance was based on the availability of
preprocessing and feature extraction methods, the number of extracted features,
classification accuracy, and the number of fish species recognised. Their study
was based on methods gathered from recent works to enhance the understanding
of preprocessing methods, feature extraction techniques, and classifiers to guide
future research directions and compensate for current research gaps.

Banno et al. [1] developed a fish classification model. Their model was trained
on images collected from sea cages of salmon. Each image contained one single
fish. Images were labelled according to the presence of healthy or loser fish. They
extracted features from the images with a vector size of 2048 features, using a
pre-trained Convolutional Neural Network (CNN) model. A binary classifier with
Support Vector Machine (SVM) was used to classify the images of fish into two
classes: healthy and loser. With this approach, they obtained a classification
accuracy of 97.17% for the test data.

Spampinato et al. [26] proposed an automatic fish classification system oper-
ating in natural underwater environments for assisting marine biologists in un-
derstanding fish behaviour. The fish species classified was Bodianus mesothorax,
Chaetodon trifascialis, Chromis viridis, Dascyllus albisella, Dascyllus aruanus,
Dascyllus reticulatus, Gomphosus varius, Hemigymnus fasciatus, Plectorhinchus
lessonii and Pseudocheilinus hexataenia. The classification system consisted of
two types of features: texture features and shape features. An affine transforma-
tion was also applied to the images to represent fish in 3D by multiple views for
feature extraction. The system obtained an average correct rate of about 92%. A
tracking system was combined with a classification layer associating trajectories
to fish species. Clustering of these trajectories enabled the detection of unusual
fish behaviour.

A Support Vector Machine (SVM)-based technique was utilised by Ogunlana
et al. [27] for eliminating the limitations of K-Nearest Neighbour (KNN), K-mean
Clustering and Neural Network techniques, as well as improving the classification
of fish species. The technique was based on the shape features of fish, where
the body and the fin lengths were extracted. The SVM technique obtained a
classification accuracy of 78.59%, which was significantly higher than obtained for
the other techniques.

Marrable et al. [28] developed a machine-assisted approach for optimising anal-
ysis time and providing rapid reporting of the status of marine ecosystems. The
approach consisted of assigning bounding boxes in underwater environments con-
taining fish as well as detecting and classifying up to 12 fish species. Bounding box
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annotations detected and labelled fish with a recall between 70-89% and species
were labelled with an F1 score of 79%. In their study, 12% of fish were given a
bounding box with species labels, and 88% of fish were located and identified for
manual species labelling. Their machine-assisted approach presented a significant
advancement towards the applied use of deep learning for detecting fish species
with the potential for future fish ecologist uptake but concluded that for now
manual labelling and classification effort was still required.

For counting, some different approaches have been proposed in the literature.
A lightweight fish counting model called LFCNet was developed by Zhao et al. [29]
for fish counting applications of fish farming. Their model consisted of three com-
ponents: encoder, decoder, and generation head. The encoder utilised density
map regression to address the high-density fish issue. The decoder used ghost
modules to compress parameters in mobile device applications. The generation
head adopted three concentrated comprehensive convolution modules and trans-
posed convolution layers to alleviate the computational overhead and recover the
resolution of feature maps. The LFCNet achieved higher counting precision and
stability than other comparable methods and provided a balance between accuracy
and speed in various fish counting scenarios.

Zhang et al. [30] proposed an automated fish counting method using image
density grading and local regression. Fish-connected areas were segmented and
four types of image features were extracted from each area. The proposed method
performed better than current typical fish counting methods and achieved a mean
absolute error of 0.2985, root mean square error of 0.6105, and a coefficient of
determination of 0.9607.

An automatic fish counting method based on a hybrid neural network model
was proposed by Zhang et al. [31]. This method enabled real-time, accurate, objec-
tive, and lossless counting of fish populations in far offshore salmon mariculture.
The counting method consisted of a multi-column convolution neural network
(MCNN), convolution kernels of different sizes, a deeper dilated convolution neu-
ral network (DCNN), and a hybrid neural network model. The counting obtained
an accuracy of 95.06%, and the Pearson correlation coefficient between the esti-
mation and the ground-truth was 99%, which represented an improvement from
CNN- and MCNN-based methods, providing the counting method as an essential
reference for feeding and other breeding operations.

Morais et al. [32] studied the use of computer vision techniques for underwater
visual tracking and counting of fish. The method used a Bayesian filtering tech-
nique which enabled the tracking of objects of varying numbers over time. Their
approach provided relevant information about the characteristics of different fish
species such as swimming ability, time of migration, and peak flow rates. The
system was also able to estimate fish trajectories over time, which was used for
studying the fish behaviour. Performed experiments demonstrated that the pro-
posed method could operate reliably even with severe environmental changes and
handle problems such as occlusions, with an overall accuracy of 81%.

The Ocean Aware project is developing a system for monitoring a fish passage
observation platform, with the use of detection, classification, and counting. As
part of this project, Kandimalla et al. [33] developed and tested an automated real-
time deep learning framework, where they used sensors, sonar, and cameras, as
well as Convolutional Neural Networks and Kalman filters to classify fish by species
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in real-time. They were able to accurately detect and classify eight fish species of
fish using a YOLO machine learning model and a high-resolution imaging sonar
dataset. Fish were also counted using the Norfair object tracking framework with
an optical cameras dataset. Their work demonstrated that deep learning models
can be used to detect, classify species, and track fish using different types of
datasets.

In this work, I use images collected by Banno et al. [1]. I also use part of
the CNN model for creating a feature extraction function, and consider the SVM
classifier as one of the methods for constructing a classification system. The pre-
trained fish detection model by Al Aoi [6] is utilised for detecting fish in images.
For detected fish in underwater images, bounding boxes have been assigned, sim-
ilarly to the approach of Marrable et al. [28]. Similarly to the study of Alsmadi
and Almarashdeh [25], the performance of using preprocessing and feature extrac-
tion methods is evaluated, and the classification accuracy of different classifiers
is compared. As Ogunlana et al. [27], the SVM classifier is also utilised for the
classification model. For the counting system, all the papers covered as related
work have used methods that are different from the one employed in this study
for counting fish.

Different from the initiatives of Li et al. [22], Wu et al. [23], Zeng et al. [24],
and Spampinato et al. [26], this study does not investigate fish behaviour. Also,
this study is not concerned with the detection of different fish species, such as
Aoi [6], Alsmadi and Almarashdeh [25], Spampinato et al. [26], Ogunlana et
al. [27], Marrable et al. [28], Morais et al. [32] and Kandimalla et al. [33]. Fish
tracking, a problem investigated by Spampinato et al. [26], Morais et al. [32],
Kandimalla et al. [33], is not considered in the study described in this thesis.
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THREE

MATERIALS AND METHODS

This chapter provides a description of the research methodology adopted in this
study for monitoring loser fish. The investigated solution consists of three pipelines:
fish detection, fish classification, and fish counting. Each step of the methodology
is described as well as the corresponding materials and methods.

3.1 Loser Fish Counting Framework

Figure 3.1.1 shows the proposed solution for counting fish in sea cages. First,
fish in images from a sea cage are detected. Next, the detected fish are classified.
Finally, the classified fish are counted. As output, the amount of loser fish in the
images from the sea cage is provided.

Figure 3.1.1: Pipeline for the proposed solution.

The first component of the framework refers to the fish detection problem.
Figure 3.1.2 shows the pipeline adopted for the detection. First, images from
the sea cage are provided as input. A bounding box is then created around each
detected fish in an image before each bounding box is cropped into a new image.

Figure 3.1.3 shows the pipeline for the classification system. First, cropped
images are imported as input. Then, five different classification algorithms are
considered. Their results are combined by means of an ensemble method. Lastly,
the fish in the cropped images are classified as either healthy or loser.

Figure 3.1.4 shows the pipeline for the counting step. First, cropped images
from the detection method are provided as input. Then, features from the images
are extracted. Next, the classification model is applied to classifying loser fish.
Lastly, the number of fish classified as loser is counted.

11
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Figure 3.1.2: Pipeline for fish detection.

Figure 3.1.3: Pipeline for fish classification.

3.2 Evaluation Protocol

This section provides a description of the evaluation protocol used for addressing
the different research questions. They refer to the fish detection (Section 3.2.1),
fish classification (Section 3.2.2), and fish counting (Section 3.2.3) problems. The
description of the methodology adopted for addressing each problem is organised
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Figure 3.1.4: Pipeline for fish counting.

into three sections: the dataset used, the evaluation measurements considered in
the assessment of methods, and the implementation aspects related to performed
experiments.

3.2.1 Fish Detection

This section presents the evaluation protocol of the first component of the proposed
framework, fish detection. It refers to RQ1 (Section 1.2 – What is the performance
of a state-of-the-art detector for the fish detection problem?).

3.2.1.1 Dataset

The dataset was created by Banno et al. [1] and consists of 207 images taken
underwater from a sea cage. Each image consists of multiple fish (various amounts
of healthy and loser fish) depicted at different sizes and positions. The images were
taken from different locations, depths, light conditions, and varying water quality.
The dataset is divided into training, validation, and test sets, with 145, 41, and
21 images, respectively; which corresponds to a distribution of 70%, 20%, and
10%. Fish in the training, validation, and test sets were pre-detected and labelled
manually by experts. Each of the images was given a corresponding text file of
registered fish with a position of four coordinates (enclosing bounding box) and a
label (healthy or loser). All images are of size 1920× 1080 pixels.

For the detection part, only the test set from the dataset is used for assessing
the performance of the detection model. The number of images and instances
(number of bounding boxes) are presented in Table 3.2.1.

Table 3.2.1: The dataset used for the assessment of the detection module.

Dataset # of images from sea cage # of bounding boxes

Test set 21 210



14 CHAPTER 3. MATERIALS AND METHODS

3.2.1.2 Evaluation Metric

In order to evaluate the performance of the object detection algorithm, the overlap
between detected bounding boxes and pre-detected bounding boxes was computed
using the intersection over union1 (IoU) metric. For each image in the test set,
the area of overlap between the automatically detected bounding boxes and the
manually detected bounding boxes was computed and divided by the area referring
to the combination of both bounding boxes. In cases in which a bounding box is
automatically or manually detected (ground-truth) without any counterpart, the
intersection over the union score is zero. More formally,

IoU =
Area of Overlap
Area of Union

(3.1)

The bounding boxes are defined by an x-axis horizontally, a y-axis vertically,
and with the center in the top left corner. The overlap was therefore given by sub-
tracting the smallest x-axis right value from the largest left value and multiplying
it with the subtraction of the smallest bottom value and the largest top value.
The area of the union was calculated by summing the area of both corresponding
bounding boxes and subtracting the area of overlap. The overlap for bounding
boxes is given as a percentage score.

3.2.1.3 Implementation Aspects

This section provides an overview of how the fish detection approach was imple-
mented.

• Fish Detection Model: In order to detect multiple fish in an image from
a sea cage, a fish detection method was created. The dataset was considered
to be too small to train a feasible detection model from scratch. Therefore,
a pre-trained fish detection model from Al Aoi [6] was used. This model was
trained on a large dataset of various fish species using Open Images Dataset2

and detects objects that are predicted with more than 60% certainty of being
a fish.

• Create Bounding Boxes: For each fish or a likely detected fish, a bounding
box was created around it. Bounding boxes are encoded as a rectangle of
different sizes based on the shape of the fish.

A Tensorflow framework created by Yu et al. [34] was used together with the
fish detection model for developing the object detection method. Bounding
boxes were created around automatically detected fish, together with the
percentage of how likely each detected object was a fish.

• Crop Bounding Boxes into new Images: Once the bounding boxes
are defined, each bounding box can be cropped into a new image. These
new images of different sizes each contain exactly one fish which is centered
and covers most of the image, i.e., background included is expected to be

1PyImageSearch, Intersection over Union (IoU) for object detection. https://
pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
(As of June 2023).

2The training set comprises 24,403 fish bounding boxes.
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minimal. All the images were labelled with a value of 0 for healthy fish and
1 for loser fish.

For object detection, Tensorflow version 2.11 was used, and protobuf version
3.19.6.

3.2.2 Fish Classification

This section presents the evaluation protocol of the second component of the
proposed framework, fish classification. It refers to the research questions RQ2,
RQ3, and RQ4 (Section 1.2:

• RQ2 – Which state-of-the-art classification algorithms has the highest effec-
tiveness performance for the fish classification problem?

• RQ3 – How much diversity is there between the classification algorithms
used in the fish classification problem?

• RQ4 – Which state-of-the-art ensemble methods have the highest perfor-
mance for the fish classification problem?

3.2.2.1 Dataset

For the classification part, the whole dataset created by Banno et al [1] is used. The
number of images used for training, validation, and test is presented in Table 3.2.2.

For each of the images in the dataset, a bounding box was created around
each manually pre-detected fish (ground-truth) based on their given position and
manually assigned label. The colour of the bounding box was defined based on
the label of the fish. Bounding boxes in yellow are used for healthy fish, while the
red ones refer to loser fish. The label is also displayed as a textual label in the
middle of the image.

Each bounding box was cropped into a new image, similar to the automatically
detected fish. This cropping of images increased the dataset to consist of 1736
images of fish in a sea cage. For the training set 888 images of healthy fish and
306 images of loser fish were obtained. For the validation set, 260 images of healthy
fish and 86 images of loser fish were acquired. For the test set, 171 healthy fish
and 39 loser fish were obtained.

The images of the training, validation, and test set were further divided into
sets of healthy and loser fish based on the cropped images assigned label. The
cropped images in these sets were stored group-wise based on their label and were
shuffled randomly for splitting up the groups before training the classification
model.

3.2.2.2 Evaluation Measurements

• Evaluating the Classification Algorithms: For classification, sklearn
version 1.2.2 were used, as well as joblib version 1.2.0. The classification
algorithms were assessed by taking into account two criteria: accuracy and
F1 score (both for finding healthy and loser). Each classifier was trained
using the training set, and predictions were performed using the validation
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Table 3.2.2: The dataset used for the assessment of the classification module.

Dataset # of images # of healthy instances # of loser instances

Training set 145 888 306

Validation set 41 260 86

Test set 21 171 39

set. The chosen parameters for optimisation for each of the classifiers were
also identified. The training and validation scores for each classifier were
obtained to check if any of the training was overfitting, e.g., fit the training
set too well so that it would not generalise for the validation set.

The classification algorithms were also evaluated based on the accuracy,
precision, recall/sensitivity, specificity3, and F1 score 4, given as percentage
scores. The accuracy tells how good the model is at classifying the data,
given by:

Accuracy =
Number of correct predictions
Total number of predictions

=
TP + TN

TP + TN + FP + FN
(3.2)

where TP stands for true positive, TN stands for true negative, FP stands
for false positive and FN stands for false negative.

The precision tells how many of the positive identifications were actually
correct, given by:

Precision =
Number of correctly classified positive samples

Number of classified positive samples
=

TP

TP + FP
(3.3)

The recall/sensitivity tells how many actual positives were correctly identi-
fied, given by:

Recall =
Number of correctly classified positive samples

Number of positive samples
=

TP

TP + FN
(3.4)

Specificity tells how many of the actual negatives were correctly identified,
given by:

Specificity =
Number of correctly classified negative samples

Number of negative samples
=

TN

TN + FP
(3.5)

F1 score combines the precision and recall results, given by:

F1 = 2× Precision × Recall
Precision + Recall

(3.6)

3Wikipedia, Sensitivity and specificity. https://en.wikipedia.org/wiki/Sensitivity_
and_specificity (As of June 2023).

4Wikipedia, Precision and recall. https://en.wikipedia.org/wiki/Precision_and_
recall (As of June 2023).
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The classifier receiving the highest F1 score was considered as the best clas-
sification algorithm. The performance of the best algorithm was encoded
into a confusion matrix, which contains the results of the model by showing
actual and predicted classes for the dataset samples.

The classification model was developed using a standard Google Colab ses-
sion with an Intel(R) Xeon(R) CPU @2.20GHz, and around 13 GB of RAM.

• Evaluating the Diversity of Classification Algorithms: The corre-
lation of the classification algorithms can determine the diversity in their
classification choices. By investigating their diversity, we can determine to
what extent classifiers provide different views regarding the dataset, i.e., to
what extent classifiers assign different labels to the same samples. The di-
versity of classifiers is computed based on the sample correlation coefficient5,
defined as follows:

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2
(3.7)

This method takes as input two parameters, which are any two classifier
predictions, and compares them for every image to find the correlation be-
tween them. xi is the i-th element of the first classifier predictions, yi is the
i-th element of the second classifier predictions, x̄ is the average of the first
classifier predictions and ȳ is the average of the second classifier predictions.

The correlation is given as a number between 0 and 1, with a high value
corresponding to a high correlation and a low value corresponding to a low
correlation. Pair of classifiers with low correlation and high average F1 scores
are promising to be combined [35].

• Evaluating the Ensemble Methods: The ensemble methods were, simi-
larly to the classification algorithms, evaluated based on the accuracy, pre-
cision, recall/sensitivity, and F1 score, given as percentage scores. For all
ensemble methods, the parameters giving the highest F1 score were evalu-
ated as the best result, and the results of the best ensemble method were also
encoded into a confusion matrix. For the voting-based ensemble method, the
highest F1 score is likely to be achieved when voting with a different amount
of weight for each classifier. For the bootstrap aggregation method, the high-
est F1 score is more likely to be found when different numbers of estimators
are tested.

• Evaluating the Classification Model: The performance of the classifica-
tion model can be evaluated using a previously unseen dataset. The training
and validation sets are already used for creating the model, while the test
set is completely new for the model. By classifying fish cropped from images
in the test set and comparing them to their manually assigned class, the

5Wikipedia, Correlation. https://en.wikipedia.org/wiki/Correlation#Sample_
correlation_coefficient (As of June 2023).
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performance of the model can be assessed. The model is evaluated similarly
as during the development of the model, with regard to the accuracy, preci-
sion, recall/sensitivity, specificity, and F1 score. Confusion matrices are also
computed.

3.2.2.3 Implementation Aspects

• Classification Algorithms

– Feature Extraction: A convolutional neural network (CNN) model
was used for extracting features from images. We used a pre-trained
model ResNet-101, which is a 101-layer deep CNN trained on more
than a million images from the ImageNet6 collection (containing 1000
classes). This CNN model extracted feature vectors of size 2048 from
each image.

– Dimensionality Reduction: ResNet-101 is a general model not spe-
cific to this problem, and the vectors might therefore still contain a lot
of features that are redundant or unimportant for the classification deci-
sion. In our study, we consider the use of principal component analysis
(PCA) for dimensionality reduction. By reducing the dimension of the
features, the classification process becomes faster as well as the model
is expected to be better suited for preventing overfitting. The number
of input features should be less than the number of images, which is
1194 for the training set and 346 for the validation set. For both sets,
we used the 100 principal components that give the highest explained
variance in the sets. The feature vectors for the samples were scaled
using the standardScaler7 function from Scikit-learn, which centralises
the feature vectors around 0 with a standard deviation of 1.

– Classification Pipelines: Classification pipelines enable cross-validation
for multiple steps, enable tuning of different parameters, and improve
the performance of classifiers. Five classification pipelines were eval-
uated. The first classification pipeline uses a linear perceptron which
divides the classes using a single straight line and is sufficient if the
classes are linearly separable. The second classification pipeline uses
Adaline, which is similar to the perceptron, except that the weights
for the learning phase are adjusted based on the inputs instead of the
output of the function. The third classification pipeline uses C-support
vector classification (SVC), which tries to maximize the margin and
incur a penalty when a sample is misclassified, using a one-versus-one
approach for multi-class classification. The fourth classification pipeline
uses the K-nearest neighbors (KNN) classifier, which performs voting
for each class based on Euclidean distances from the N closest samples
to the new sample. Lastly, the fifth classification pipeline uses multi-
layer perceptron (MLP), which divides the classes using multiple layers

6ImageNet. http://www.image-net.org (As of June 2023).
7Scikit-learn, sklearn.preprocessing.StandardScaler. https://scikit-learn.org/stable/

modules/generated/sklearn.preprocessing.StandardScaler.html (As of June 2023).
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and non-linear activation functions, which enables it to separate data
that is nonlinear.
All the classification pipelines used a min-max scaling function, which
scales and translates each feature to a range between 0 and 1, as well
as using a normalisation procedure for centralising the feature vec-
tors around 0 with a standard deviation of 1. A trained classification
pipeline with optimised parameters will be referenced to as a classifier.

– Grid Search: To identifying the best-performing classification algo-
rithm, different configuration parameters should be tested for each clas-
sification pipeline. The exhaustive search method gridSearchCV 8 from
scikit-learn was used for this purpose, using 5 folds for cross-validation
as well as specified parameter values for each estimator. This method
has functions to fit the model to training data, evaluate the score of
the model, and predict the label of new samples. When training the
classifiers through the fit method in gridSearchCV, the desired scoring
parameter can be specified.
All the classifiers used PCA and tested different sizes of principal com-
ponents as parameters for the gridSearchCV method, of 50, 75, 100, and
125 principal components. For the SVC classifier, it was additionally
tested four different kernel types (kernel), linear, rbf, poly, and sigmoid,
and 5 different values for the regularisation parameter (C): 0.001, 0.01,
0.1, 1.0, and 10. For the KNN classifier, it was tested 5 different sizes
of neighbors (N): 3, 5, 7, 9, 11. The MLP classifier used a hidden
layer size of 100 with a maximum of 200 iterations, and 4 different ac-
tivation functions (identity, logistic, tanh, relu), and 3 different solver
methods (lbfgs, sgd, and adam) were considered. The implementation
of Perceptron, Adaline, SVC, MLP, and PCA used a random state of
42.
The classifiers tried to optimise the parameters for two different scoring
methods: accuracy and F1 scores in the classification of loser fish. Each
classifier was trained twice optimising for both accuracy and F1 score
respectively. For each training sequence, the classifiers used the same
parameters. The parameter values giving the highest combined scoring
for both accuracy and F1 score for each classifier were saved and stored
for later use, as well as the corresponding score for accuracy, precision,
recall, sensitivity, and F1 score.

• Diversity of Classification Algorithms

– Compare Diversity: Using the diversity measure of the sample cor-
relation coefficient in Equation 3.7, pairwise agreements are put in a
5× 5 matrix, to display the level of agreement between each of the five
classifiers. Additionally, another such matrix is created, but instead of
measuring the agreement of the predictions, we measure the agreement
regarding correct predictions.

8Scikit-learn, sklearn.model_selection.GridSearchCV. https://scikit-learn.org/
stable/modules/generated/sklearn.model_selection.GridSearchCV.html. (As of 27.
June 2023).
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– Compare Classifier Pairs: Using the correlation measure of dos San-
tos et el. [35] a graph was computed showing the best combination of
classifier pairs. This graph displays which classifier pair has the highest
average F1 score relative to their calculated correlation.

– Visualise Each Classifiers Predicted Label: For understanding
the classifiers even better, each prediction for the validation set was
explored. Each image was therefore displayed with its correct label
and the predicted label of each classifier. Hence, it became easier to
see which images were harder to classify, how many samples classifiers
assigned correct labels, and for which ones classifiers made similar pre-
dictions. Every image that was wrongly classified by all classifiers or
for which only one classifier disagreed with the others was displayed
with their corresponding label for further inspection. Similarly, some
of the images properly labelled by all classifiers are also displayed.

• Ensemble Methods

For improving the classification results of the model further, the results for
each classification algorithm were combined.

– Voting Ensemble: Voting-based ensemble methods were included for
combining the results of the different classifiers’ predictions. The hard
voting ensemble combines the results of the five classifiers (perceptron,
Adaline, SVC, KNN and MLP). By using hard voting, each classifier
provides a label for each image, and the final label assigned will be
the one related to the class receiving the most votes in total. Different
weights were assigned to the algorithms based on their accuracy and
diversity, for optimising the ensemble method. All combinations of the
five classifiers were tested with different weights between zero and five.
Soft voting was also used, with the algorithms able to classify using
percentages (SVC, KNN, and MLP). These algorithms calculate the
probability of how likely the image is to belong to each class, and the
image is classified as belonging to the class receiving the highest proba-
bility score combined. All combinations of the three possible classifiers
were tested with different weights between zero and five. The combi-
nation of weights giving the highest F1 score was then identified.

– Bootstrap Aggregation: The ensemble method, called bagging or
bootstrap aggregation,9 creates several instances of a black-box estima-
tor based on random subsets of the original training set and aggregates
each of their individual predictions to form a final prediction. This
method is used for reducing the variance of a base estimator by intro-
ducing randomisation before ensemble.
For the bootstrap aggregation method, a graph is displayed showing
the F1 score for each number of estimators. The estimator range is
consisting of these numbers: 20, 40, 60, 80, 100, 120, 140, 160, 180,
200, 220, 240, and 260, where an F1 score is calculated for each of

9Scikit-learn, 1.11. Ensemble methods. https://scikit-learn.org/stable/modules/
ensemble.html (As of June 2023).
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them. Here as well, the goal is to get the highest F1 score, as such only
the first estimator of multiple possible estimators giving the highest F1
score is stored and displayed.
The bootstrap aggregation was used with two types of models: logisti-
cRegression and gradientBoostingClassifier. LogisticRegression 10 mod-
els the probability of an event taking place using a linear combination
of one or more independent variables 11. GradientBoostingClassifier
12 for binary classification allows for optimisation of arbitrary differen-
tiable loss functions, where a single regression tree is fit on the negative
gradient of the loss function.

• Classification Model

The test set was used for evaluating the performance of the classification
model. Each manually detected fish from the 21 test set images was cropped
into new images. Then, 210 new images were created, from which features
were extracted before they were classified using the best-performing classifi-
cation method. For each image, the predicted class was compared with the
ground-truth.

3.2.3 Fish Counting

This section presents the evaluation protocol of the third component of the pro-
posed framework, fish counting. It refers to the RQ5 (Section 1.2, RQ5 – What is
the performance of the proposed loser fish counting system?)

3.2.3.1 Dataset

For the counting part, the test set is used. The number of images used is shown in
Table 3.2.1. All automatically detected fish as well as ground-truth detected fish
from the test set were cropped and used as input of the classification model. This
dataset consists of correspondingly 196 images of automatically detected fish and
210 images of manually pre-detected fish.

3.2.3.2 Evaluation Measurements

In order to evaluate the counting system, the actual number of loser fish in the
test set should be known. The number of loser fish in the automatically detected
test set was compared with the amount of loser fish in the manually pre-detected
test set. Annotations were defined by experts.

10Scikit-learn, sklearn.linear_model.LogisticRegression. https://scikit-learn.org/
stable/modules/generated/sklearn.linear_model.LogisticRegression.html (As of June
2023).

11Wikipedia, Logistic regression. https://en.wikipedia.org/wiki/Logistic_regression
(As of June 2023).

12Scikit-learn, sklearn.ensemble.GradientBoostingClassifier. https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html (As of
June 2023).
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3.2.3.3 Implementation Aspects

The fish detection model was used to automatically detect fish in the test set.
The detected fish were cropped into new images, and features were extracted for
all of them, similar to the procedure for the training and validation sets used for
training the classification model. Each image was then classified as healthy or
loser fish using the classification model which received the highest F1 score. The
amount of loser fish was obtained by counting the number of fish predicted as a
loser. The manually detected fish were also manually assigned a class, such as the
amount of loser fish manually detected was obtained by counting and adding each
fish manually classified as a loser.



CHAPTER

FOUR

RESULTS AND DISCUSSION

This chapter presents the results for the fish detection (Section 4.1), fish clas-
sification (Section 4.2), and fish counting (Section 4.3) methods and provides a
discussion about the obtained results.

4.1 Fish Detection

This section contains the results and discussion for the first part of the framework,
fish detection.

4.1.1 Fish Detection: Qualitative Analysis

Figure 4.1.1 shows a test image where a bounding box is created around all de-
tected objects with at least a 60% certainty of being a fish. For this image, each
detected object has a certainty between 68% and 99%. We also observe that all
the detected objects are fish, but there are also more fish in the image that were
not detected. The definition of the certainty percentage regulates the trade-off
between the number of fish and false positives. In the performed experiments,
60% was identified as a reasonable value for avoiding false positives.

In most cases, the biggest fish was the easiest to detect. For each image, the
detected bounding boxes and pre-detected bounding boxes are displayed with their
overlap percentage as seen in Figure 4.1.2. Here, the predicted fish is highlighted in
yellow, and the ground-truth bounding box is highlighted in white. The percentage
of overlap is displayed in the center of the two corresponding bounding boxes in
orange. There are six fish from the ground-truth that were correctly predicted.
One from the ground-truth was not detected by the algorithm. We can also observe
that two correct detections were not annotated. This means that there are some
ground-truth fish that are not found by the object detection model, as well as the
model is able to find some fish that were not annotated. One of the predicted fish,
as seen at the bottom of the image, has received an overlap score of 21%. This
is because there is a ground-truth fish that is overlapping, but since it is not the
same fish, the overlap is small.

There are also some indications of fish that were not detected nor annotated,
such as in the middle of the image, which is zoomed in and outlined in Figure 4.1.3.

23
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Figure 4.1.1: Detected fish with their certainty of being a fish.

Figure 4.1.2: The overlap of detected and ground-truth fish.

Figure 4.1.3: Undetected fish in object detection.

With no overlap, i.e., cases for which the percentage is zero, the percentage score
is not displayed.
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4.1.2 Fish Detection: Quantitative Analysis

The accuracy of the object detection pipeline is affected by both the quality of the
object detection model and the accuracy of the previous annotations. In total, for
all the images in the test set, the object detection pipeline was able to find 196
predicted fish, as shown in Table 4.1.1. Additionally, 146 out of 210 ground-truth
fish were detected. This leads to an accuracy of 146

196
= 74.5%.

Table 4.1.1: Accuracy of the fish detection module.

Fish detection # of labelled bound-
ing boxes (ground-
truth)

# of automatic
detections

# of matches

Bounding boxes 210 196 146

4.2 Fish Classification
This section presents and discusses the results for the second part of the framework,
fish classification.

4.2.1 Image Cropping: Qualitative Analysis

Once fish are detected, the respective bounding boxes are used to define the region
that will be cropped. Figure 4.2.1 shows an example containing an image from
the sea cage, containing multiple fish. This image is from the training set, and the
fish in the image belongs to the ground-truth. A bounding box is created around
each fish, with a colour based on their label. Boxes with a green colour contain a
healthy fish, while boxes with a red colour contain a loser fish. The label of each
fish is also written in the middle of each bounding box. In this image, we can see
that there are seven fish labelled as healthy and one fish labelled as a loser.

Figure 4.2.2 displays two of the cropped images from Figure 4.2.1. Figure 4.2.2a
is a cropped image of one of the healthy fish, while Figure 4.2.2b is a cropped image
of a loser fish.

Since only fish found in the ground-truth from the train set are cropped, there
are some additional fish in the images that are not cropped and therefore not
considered in the training process of classification methods. That might affect the
quality of the classification model.

4.2.2 On the Use of Principal Component Analysis

Figure 4.2.3 shows the results of using 100 principal components for the training
set. The graph in Figure 4.2.3a shows the explained variance ratio in relation to
the number of components. By reducing the number of input features from 1194 to
100 and thereby using only 8.38% of the feature extracted training data, a variance
of 85.14% is preserved. This means that by using only a small proportion of the
dataset, a large amount of information is preserved, making the classification
model almost as good as before, and more effective. Figure 4.2.3b shows the



26 CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.2.1: An image from a sea cage with bounding boxes showing healthy
and loser fish.

(a) A healthy fish. (b) A loser fish.

Figure 4.2.2: Cropped images of healthy and loser fish.

variance of the 10 most significant components, whereas the two most significant
components alone represent 27.1% of the variance in the features.

Similarly, the results of using 100 principal components for the validation set
are shown in Figure 4.2.4. Figure 4.2.4a shows the cumulative explained variance
using up to 100 components for the validation set. By reducing the number of input
features from 346 to 100, using only 28.90% of the feature extracted validation
data, a variance of 90.02% is preserved. Figure 4.2.4b shows the variance of the 10
most significant components for the validation set, where the two most significant
components represent 26.7% of the variance in the features for the validation set.

4.2.3 On the Assessment of Multiple Classifiers

For each of the classifiers, two criteria were assessed: accuracy and F1 scores for
loser fish. For both perceptron and Adaline, the highest scores were achieved
using a number of 100 principal components. For SVC, a number of 125 principal
components, a c-value of 10, and the rbf kernel led to the best results. KNN got the
highest scores using 125 principal components and 3 neighbours, while MLP used
100 principal components, logistic activation function, and Adam solver. Their
scores for the training and validation sets changed, however.

The results for the accuracy score can be seen in Table 4.2.1, and the results
for the F1 score can be seen in Table 4.2.2. The effectiveness measure scores for
the training and validation indicate if the classification model is overfitting the
training data. Concerning accuracy, the scores for the training set are not that
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(a) Highest variance using 100 components
for the training set.

(b) Variance in the 10 most significant
components for the training set.

Figure 4.2.3: Variance explained for the training set using 100 principal compo-
nents.

(a) Highest variance using 100 components
for the validation set.

(b) Variance in the 10 most significant
components for the validation set.

Figure 4.2.4: Variance explained for the validation set using 100 principal com-
ponents.
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different from the scores for the validation set. The results in the training set were
however more accurate for all the classifiers, especially for the SVC and MLP
classifiers where the training set is fitting to 99.8% and 99.9% of the data. Large
differences between the scores for training and validation data were not observed.
In general, the results suggest that overfitting is not an issue.

Table 4.2.1: Training and validation accuracy scores for evaluated classifiers.

Accuracy Perceptron Adaline SVC KNN MLP

Training score 91.2 93.0 99.8 93.4 99.9

Validation score 90.2 88.4 91.6 85.8 91.9

Table 4.2.2: Training and validation F1 scores for evaluated classifiers consider-
ing the loser class.

F1 score for loser Perceptron Adaline SVC KNN MLP

Training score 83.1 85.9 99.7 85.8 99.8

Validation score 79.0 75.6 81.5 66.2 82.7

The five classifiers’ scores for accuracy, precision, recall/sensitivity, specificity,
and F1 score were all similar regardless of the scoring method during training.
Those scores can be seen in Table 4.2.3. The results of the classifiers are evaluated
against each other for each row. The cells highlighted in green show the best
performance for each evaluation method. Red cells refer to the worst effectiveness
scores, while yellow ones relate to medium performance. All numbers are given in
percentages. The MLP classifier performed the best for 3 out of 5 methods and
also yielded the highest F1 score, 82.7%. SVC also performed well for precision
and specificity. KNN performed the worst for the same evaluation metrics for
which MLP was the best. KNN yielded the lowest F1 score of the classifiers, with
66.2%. Adaline performed the worst according to the precision and specificity
metrics, the ones for which SVC performed the best.

Table 4.2.3: Accuracy, precision, recall/sensitivity, specificity, and F1 scores for
the five classifiers in the validation set.

Method Perceptron Adaline SVC KNN MLP

Accuracy 90.2 88.4 91.6 85.8 91.9
Precision 84.2 79.5 90.1 81.4 88.2

Recall/Sensitivity 74.4 72.1 74.4 55.8 77.9
Specificity 95.4 93.8 97.3 95.8 96.5
F1 score 79.0 75.6 81.5 66.2 82.7

Figure 4.2.5 shows the confusion matrix of the MLP classifier, which yielded
the best results of all the classifiers. This classifier misclassifies 19 images of loser
fish as healthy fish and misclassifies 9 images of healthy fish as loser fish. The
confusion matrices for the four other classifiers can be found in Appendix B.
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Figure 4.2.5: Confusion matrix results for the MLP classifier.

4.2.4 On the Assessment of Classifiers’ Diversity

Figure 4.2.6 shows the agreement matrix for all combinations of pairs for the
five classifiers. The matrix is mirrored through the diagonal line. Classifier 1
corresponds to perceptron, classifier 2 to Adaline, classifier 3 to SVC, classifier 4
to KNN, and classifier 5 to MLP. A correlation pair of value 1 indicates a complete
correlation, and a value of 0 has no correlation, also indicated by colour in a range
from white to dark blue.

Figure 4.2.6a shows the correlation when comparing the classifiers’ label pre-
dictions. The graph shows that all the combinations consisting of classifier 4 had
the lowest correlations, whereas the correlation between classifiers 1 and 4 was the
lowest of them all, and the correlation between classifiers 2 and 4 was the second
lowest.

Figure 4.2.6b shows the correlation when comparing whether the classifiers
are predicting the correct label. Here, classifiers 1 and 4 still had the lowest
correlation, while classifiers 2 and 4 had the second lowest correlation. However,
now, classifiers 2 and 3 were associated with the third lowest correlation. The
highest correlation was still observed by classifiers 1 and 5, the second one was
still classifiers 2 and 5. Now, classifiers 1 and 2 were the third most correlated.

All the correlations are lower when considering the correct predictions of clas-
sifiers. This suggests that if the classifiers misclassifies, they have a higher chance
of agreeing with each other. Further investigations are needed to discover the
benefits of combining the classifiers.

Figure 4.2.7 shows the results observed for pairs of classifiers in terms of their
correlation and average F1 scores. The classifiers’ correlations are the same as
earlier, but now their combined scores can be assessed as well. Classifiers 3 and 5
received the highest combined F1 score, while classifiers 1 and 5 had the second
highest, and classifiers 1 and 3 had the third highest. On the other end, classifiers
2 and 4 received the lowest average F1 score, while classifiers 1 and 4 received the
second lowest. Since pairs with low correlation and high F1 scores are the most
promising for being combined, the results suggest that classifiers 1, 2, 3, and 5
could be considered.

Figure 4.2.8 shows the predicted label for each classifier for each image in the
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(a) Correlation based on correct and incor-
rect predictions.

(b) Correlation based on correct predic-
tions.

Figure 4.2.6: Correlation between classifiers. Classifier 1 corresponds to percep-
tron, classifier 2 to Adaline, classifier 3 to SVC, classifier 4 to KNN, and classifier
5 to MLP.

Figure 4.2.7: Correlation versus average F1 score for pairs of classifiers. Classifier
1 corresponds to perceptron, classifier 2 to Adaline, classifier 3 to SVC, classifier
4 to KNN, and classifier 5 to MLP.
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validation set, as well as the images’ correct label. Each healthy fish is indicated
with a white circle, and each loser fish is indicated with a yellow circle. Each
column is an image, and each row is a classifier prediction for each image. The
green circles indicate that the classifier has predicted the correct class label for an
image, while the red circle indicates a wrong prediction. Each row has 44 images,
such that 8 tables were required for visualising every image from the validation
set.

Based on the predictions, if any classifier assigns a wrong label for an image,
there is a high chance that other classifiers also misclassify the same image. These
incorrect predictions are mostly for the loser fish. In fact, we can observe that, for
many of the loser fish, all five classifiers are incorrect. This indicates that loser
fish is harder to classify for all classifiers than healthy fish.

4.2.4.1 Correctly Classified Images: Qualitative Analysis

Figure 4.2.9 shows images containing healthy fish, which have been correctly clas-
sified by all five classification algorithms. In total, there are 230 images. In the
figure, however, only 21 are displayed. The images are of different conditions and
quality regarding water, light, distance, and resolution, which affect how easily the
fish are to be detected. Fish in clear water, high light intensity, high resolution,
and fish swimming alone are likely to be easier to detect and classify than fish in
poorer conditions.

The images displayed in Figure 4.2.10 depict loser fish, which were correctly
classified by all the five classification algorithms. There are in total 41 images, but
here as well, only 21 are displayed. These images also present different conditions
whereas the quality seems to be higher than for the images containing healthy fish
in Figure 4.2.9. This might indicate that the images of loser fish require a higher
quality for being correctly classified by all classifiers.

4.2.4.2 Partially Correctly Classified Images: Qualitative Analysis

All the images displayed in Figure 4.2.11 are of healthy fish, which were correctly
classified by four of the five classification algorithms. There are 14 of these im-
ages. For three of those images, the perceptron is the only classifier that classified
wrongly. For five of the images, Adaline classified wrongly, for two images, SVC
was wrong, and KNN classified wrongly four images. MLP did not classify any of
them wrongly.

The images displayed in Figure 4.2.12 are of loser fish, which were correctly
classified by four of the five classification algorithms. There are in total 18 images.
The perceptron is the only classifier that classified wrongly one of them. Adaline
also classified wrongly one of them, while SVC misclassified two of them. Here,
KNN stands out quite significantly, with 14 images wrongly classified. Similarly
as for the healthy images in Figure 4.2.11 MLP did not misclassify any of them.

All the images displayed in Figure 4.2.13 were correctly classified by only one
of the classification algorithms. There are in total 7 images, consisting of both
healthy and loser fish. One of the images is correctly classified as a loser fish by
Adaline, four of the images are correctly classified as a loser fish by SVC, one
image is correctly classified as a healthy fish by SVC and one image is correctly
classified as a healthy fish by KNN. Those results suggest that SVC might be the
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(a) Visualised correctness for image 1-44.

(b) Visualised correctness for image 45-88.

(c) Visualised correctness for images 89-132.

(d) Visualised correctness for images 133-176.

(e) Visualised correctness for images 177-220.

(f) Visualised correctness for images 221-264.

(g) Visualised correctness for images 265-308.

(h) Visualised correctness for images 309-346.

Figure 4.2.8: Classifiers’ predictions for different images of the validation set.
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(a) Labelled as healthy. (b) Labelled as healthy. (c) Labelled as healthy.

(d) Labelled as healthy. (e) Labelled as healthy. (f) Labelled as healthy.

(g) Labelled as healthy. (h) Labelled as healthy. (i) Labelled as healthy.

(j) Labelled as healthy. (k) Labelled as healthy. (l) Labelled as healthy.

(m) Labelled as healthy. (n) Labelled as healthy. (o) Labelled as healthy.

(p) Labelled as healthy. (q) Labelled as healthy. (r) Labelled as healthy.

(s) Labelled as healthy. (t) Labelled as healthy. (u) Labelled as healthy.

Figure 4.2.9: Healthy fish correctly classified by all five classifiers.
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(a) Labelled as loser. (b) Labelled as loser. (c) Labelled as loser.

(d) Labelled as loser. (e) Labelled as loser. (f) Labelled as loser.

(g) Labelled as loser. (h) Labelled as loser. (i) Labelled as loser.

(j) Labelled as loser. (k) Labelled as loser. (l) Labelled as loser.

(m) Labelled as loser. (n) Labelled as loser. (o) Labelled as loser.

(p) Labelled as loser. (q) Labelled as loser. (r) Labelled as loser.

(s) Labelled as loser. (t) Labelled as loser. (u) Labelled as loser.

Figure 4.2.10: Loser fish correctly classified by all five classifiers.



CHAPTER 4. RESULTS AND DISCUSSION 35

(a) Wrongly classified by
perceptron.

(b) Wrongly classified by
perceptron.

(c) Wrongly classified by
perceptron.

(d) Wrongly classified by
Adaline.

(e) Wrongly classified by
Adaline.

(f) Wrongly classified by
Adaline.

(g) Wrongly classified by
Adaline.

(h) Wrongly classified by
Adaline.

(i) Wrongly classified by
SVC.

(j) Wrongly classified by
SVC.

(k) Wrongly classified by
KNN.

(l) Wrongly classified by
KNN.

(m) Wrongly classified by
KNN.

(n) Wrongly classified by
KNN.

Figure 4.2.11: Healthy fish wrongly classified by one classifier.
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(a) Wrongly classified by
perceptron.

(b) Wrongly classified by
Adaline.

(c) Wrongly classified by
SVC.

(d) Wrongly classified by
SVC.

(e) Wrongly classified by
KNN.

(f) Wrongly classified by
KNN.

(g) Wrongly classified by
KNN.

(h) Wrongly classified by
KNN.

(i) Wrongly classified by
KNN.

(j) Wrongly classified by
KNN.

(k) Wrongly classified by
KNN.

(l) Wrongly classified by
KNN.

(m) Wrongly classified by
KNN.

(n) Wrongly classified by
KNN.

(o) Wrongly classified by
KNN.

(p) Wrongly classified by
KNN.

(q) Wrongly classified by
KNN.

(r) Wrongly classified by
KNN.

Figure 4.2.12: Loser fish wrongly classified by one classifier.
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best-suited classification algorithm for classifying correctly when the classifiers
predict differently. None of the images were classified correctly by only MLP. This
together with the results that none images are wrongly classified by only MLP
might indicate that MLP has the least diversity from the other classifiers.

(a) Correctly classified by
adaline as loser.

(b) Correctly classified by
SVC as loser.

(c) Correctly classified by
SVC as loser.

(d) Correctly classified by
SVC as loser.

(e) Correctly classified by
SVC as loser.

(f) Correctly classified by
SVC as healthy.

(g) Correctly classified by
KNN as healthy.

Figure 4.2.13: Fish wrongly classified by four classifiers.

4.2.4.3 Wrongly Classified Images: Qualitative Analysis

Figure 4.2.14 depicts fish that were incorrectly classified by all the five classification
algorithms. There are 14 of these images, consisting of both healthy and loser fish.
Since only one of these images is of a healthy fish, loser fish might be harder to
classify for all of the classification algorithms. This might be also due to the fact
that the dataset contains more images of healthy fish, such that the classification
model has been able to train more on detecting healthy fish than loser fish.

4.2.5 On the Assessment of Ensemble Methods

The accuracy, precision, recall, specificity, and F1 scores for each ensemble method
are shown in Table 4.2.4. For each row, the results for each ensemble method are
evaluated against each other. The cell containing the best performance for each
evaluation method is highlighted in green. All numbers are given in percentages.
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(a) Labelled as loser. (b) Labelled as loser. (c) Labelled as loser.

(d) Labelled as loser. (e) Labelled as loser. (f) Labelled as loser.

(g) Labelled as loser. (h) Labelled as loser. (i) Labelled as loser.

(j) Labelled as loser. (k) Labelled as loser. (l) Labelled as healthy.

(m) Labelled as loser. (n) Labelled as loser.

Figure 4.2.14: Fish wrongly classified by all five classifiers.
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Hard voting performed the best for 3 out of 5 methods and also yielded the highest
F1 score, 85.0%. Bootstrap aggregation using logistic regression performed the
best for precision and specificity.

Table 4.2.4: Accuracy, precision, recall/sensitivity, specificity, and F1 scores for
the four ensemble methods in the validation set.

Method Hard Voting Soft Voting Logistic
Regression

Boosting
Classifier

Accuracy 92.8 92.2 91.6 91.3
Precision 87.7 88.3 90.1 87.8

Recall/Sensitivity 82.6 79.1 74.4 75.6
Specificity 96.2 96.5 97.3 96.5
F1 score 85.0 83.4 81.5 81.2

4.2.5.1 Voting Ensembles: Hard and Soft Voting

For hard voting, the best weight combination for the five classifiers giving the best
results was using weight 1 for perceptron, 0 for Adaline, 2 for SVC, 0 for KNN, and
1 for MLP. So, even though MLP had the best result on its own, it is not the most
important classifier in the ensemble. This might be since perceptron and MLP has
the highest correlation, so their results often overlap with each other. SVC had
a lower correlation with both perceptron and MLP and might therefore be more
important for complementing the views provided by those in the ensemble.

Figure 4.2.15 shows the confusion matrix which received the highest F1 score
for hard voting. Here, 71 out of 86 loser fish were classified correctly, and 250
out of 260 healthy fish were correctly classified. The differences from the results
observed for the MLP classifier (see Figure 4.2.5) were that now 4 more loser fish
were correctly classified while 1 less healthy fish is classified correctly. This is
considered a relevant improvement given the fact that the main goal is to detect
as many loser fish as possible.

Figure 4.2.15: Confusion matrix for hard voting.

For soft voting, the best combination relied on the use of 1 for SVC, 0 for
KNN, and 4 for MLP. Since perceptron is not included here, MLP’s results did
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not overlap much with those of other classifiers. MLP can, therefore, be considered
the most important classifier for this ensemble.

Figure 4.2.16 shows the confusion matrix for soft voting, which is among those
with the highest observed F1 scores. Here, 18 images of loser fish were misclassified
as healthy fish, while 9 images of healthy fish were misclassified as loser fish. This
is slightly improved from the MLP classifier, with one more correctly classified
image. It is, however, considered worse than the classification for hard voting,
since it misclassified more loser fish images.

Figure 4.2.16: Confusion matrix for soft voting.

4.2.5.2 Bootstrap Aggregation: Logistic Regression and Gradient Boost-
ing Classifier

Figure 4.2.17 shows the graph that encodes how the number of estimators of the
ensemble method affects the received F1 score. The graph consists of a single
line for the whole range of 20-260 estimators. This implies that every number of
estimators is just as good as each other and gives the same result for an F1 score
of 81.5%.

Figure 4.2.18 shows the confusion matrix of bootstrap aggregation using logistic
regression with the highest F1 score. This ensemble method seems to be much
better at classifying healthy fish correctly, with only 7 misclassified images of
healthy fish, but worse at classifying loser fish correctly, with 22 misclassified
images of loser fish. Even though this method seems promising, it is considered
worse for the purpose of this research, i.e., to detect loser fish.

Figure 4.2.19 shows the graph that encodes how the number of estimators
of the ensemble method affects the achieved F1 score. The graph is fluctuating
up and down between an F1 score of 80.0% and 82.5% for the range of 20-260
estimators. The highest F1 score was observed when using 40 estimators. This is,
therefore, considered the most optimal number of estimators for this method.

Figure 4.2.20 shows the confusion matrix of bootstrap aggregation with boost-
ing classifier receiving the highest F1 score. This method misclassified 21 images
of loser fish and misclassified 9 images of healthy fish. It is thereby the ensem-
ble method that classified the most images incorrectly. It however still classified
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Figure 4.2.17: Optimal number of estimators for logistic regression.

Figure 4.2.18: Confusion matrix for logistic regression.

Figure 4.2.19: Optimal number of estimators for gradient boosting classifier.
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more loser fish correctly than the method using bootstrap aggregation with logistic
regression.

Figure 4.2.20: Confusion matrix for gradient boosting classifier.

4.2.6 Fish Classification: Quantitative Analysis

The classification model is evaluated using the test set, and the methods perform-
ing the best for the validation data. Figure 4.2.21 shows the main steps for the
construction of the final classification model. The model was built from top to
bottom, following the steps highlighted in pink. First, features are extracted using
a ResNet-101 model pretrained using ImageNet. Then each of the five classifiers
was trained using grid search for optimising parameter values by optimising F1
score in order to classify loser fish. Each of the classifiers was trained considering
minMaxScaler, standardScaler, and PCA. Lastly, the classifiers were combined
using a voting ensemble, with hard voting. Here, perceptron and MLP received
the same weight, and SVC received twice the weight of perceptron and MLP.

Table 4.2.5 shows the results of the evaluation of the classification model on
the test set. The results are quite similar to the scores achieved by the model
using the validation set. The F1 score reduced from 85% to 81%.

Table 4.2.5: Accuracy, precision, recall/sensitivity, specificity, and F1 scores for
the test set.

Evaluation Metric Test set

Accuracy 92.9
Precision 80.0

Recall/Sensitivity 82.1
Specificity 95.3
F1 score 81.0

The confusion matrix for the evaluation of the model can be seen in Fig-
ure 4.2.22. We can observe that only 7 loser fish are misclassified as healthy fish,
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Figure 4.2.21: Main steps for the definition of the classification model.
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and 8 healthy fish are misclassified as loser fish. The test set is quite small, con-
sisting of only 210 fish images. The results are however promising, showing that
the classification model achieved promising results on completely unseen data.

Figure 4.2.22: Confusion matrix for test set.

4.2.6.1 Wrongly Classified Fish: Qualitative Analysis

For the test set, consisting of 21 images and 210 manually detected fish, 15 fish
were classified wrong. A selection of some of them are shown in Figures 4.2.23,
4.2.24, 4.2.25, 4.2.26, and 4.2.27. Each ground-truth fish is shown with a bounding
box around it as well as its manually assigned label. Each wrongly classified fish is
additionally displayed with a white dashed circle around it. In Figure 4.2.23, 1 out
of 4 detected fish were misclassified. The fish were given a label of healthy when
they should have been classified as loser. In Figure 4.2.24, only 1 fish was labelled
as loser, and was the only fish that the model misclassified. The image is quite
blurry, which might have affected the model’s decision. Figure 4.2.25 contains 4
misclassified fish, whereas one of them is loser and 3 are healthy. In this case, the
fish are swimming in groups, such that some of the bounding boxes contain parts
of other fish as well as the targeted fish. This might have affected the classification
model. Figure 4.2.26 contains 2 misclassified fish, which are both healthy. One of
them is displayed from the front, which might make the class distinction decision
harder. In Figure 4.2.27, one loser fish was misclassified. Overall, the model seems
to be promising at classifying even for challenging scenarios: noisy image quality,
fish swimming in groups, fish appearance from different angles, and fish at different
distances.

4.3 Fish Counting

This section contains the results and discussion for the third part of the framework,
fish counting.
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Figure 4.2.23: One wrongly classified fish.

Figure 4.2.24: One wrongly classified fish.
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Figure 4.2.25: Four wrongly classified fish.

Figure 4.2.26: Two wrongly classified fish.
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Figure 4.2.27: One wrongly classified fish.

4.3.1 Fish Counting: Quantitative Analysis

The assessment of the counting system relied on the ground-truth defined for
the test set. Using the fish detection pipeline, fish were automatically detected
from the test set. The automatically detected fish were classified using the fish
classification pipeline.

The amount of fish predicted for each class, compared to the amount of fish
manually assigned to each class, can be seen in Table 4.3.1. The automatic fish
detection model found 196 fish in the test set images, while 210 fish were annotated
in the ground-truth. Out of these, 73 fish were classified as loser fish, using the
classification model, and 39 were labelled as loser fish in the ground-truth.

Even though 73 and 39 loser fish are quite a big difference, it does not nec-
essarily mean that the counting pipeline is not performing well, i.e., counting an
incorrect number of loser fish. First, manual classification is challenging, and some
of the manual annotations might therefore be incorrect. Secondly, from the de-
tection model, it was discovered that the automatic and manual detection only
detected 146 of the same fish. This means that they have detected only 74.5% of
the same fish. That means that the automatic detection contains 50 fish that was
not included in the ground-truth, and that the ground-truth contains 64 fish that
the automatic detection did not find. The correct class for these extra automati-
cally detected fish is not known, and therefore the correct number of loser fish is
unknown. Since the classification model yielded an accuracy of 92.9% for the test
set, it is believed that about the same accuracy is obtained when classifying in the
counting system.

4.3.2 Automatically Detected Fish Classified as Loser

Even though the correct class for each automatically detected fish is hard to verify,
the correct detection of fish can more easily be validated. Figure 4.3.1 shows some
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Table 4.3.1: Counting of loser fish using the test set.

Fish Counting # of loser fish # of fish % of loser fish

Automatic 73 196 37.2

Manual 39 210 18.6

(a) Classified as loser. (b) Classified as loser. (c) Classified as loser.

(d) Classified as loser. (e) Classified as loser.

Figure 4.3.1: Automatically detected fish classified as loser.
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of the objects predicted as loser fish. While most of them are in fact fish, only some
parts are detected or the quality of the image is poor, making the classification
hard. This is however only the case for a few objects, which could have been
improved if the dataset consisted of enough images to train the detection model
on similar images of salmon in sea cages.
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CHAPTER

FIVE

CONCLUSIONS

This chapter summarises the main findings of this work and points out directions
for future work.

5.1 Summary of Findings
The objective of this study was to design, implement, and validate an automated
system for monitoring the amount of loser fish in sea cages. The occurrence of
loser fish can be an important indicator for establishing and improving fish welfare,
discovering diseases, or identifying improper conditions related to the environment.
With the use of underwater cameras mounted in sea cages, images of fish can be
collected, and single fish can be detected using object detection. Later, detected
fish can be classified using machine learning, and fish classified as loser can be
counted.

In the following, we revisit the raised research questions, indicating associated
key findings:

• RQ1 – What is the performance of a state-of-the-art detector for the fish
detection problem?

This question relates to the fish detection step. Using the test set and a
pre-trained fish detection model, we tested the model by Aoi [6]. The goal
was to investigate the potential of using pre-trained models for the problem,
a common scenario when the amount of labelled data available for training
is not high. The method was able to detect 74.5% of the same fish as the
ground-truth (see the results reported in Section 4.1). That is a promising
result as it suggests it can be worthwhile to replace manual identification
with an automatic approach to ensure an effective and reliable method for
detecting fish in sea cages.

• RQ2 – Which state-of-the-art classification algorithms has the highest effec-
tiveness performance for the fish classification problem?

This question relates to the fish classification step. Here, the performance of
five different classification algorithms was tested using a grid search proce-
dure. The Multi-Layer Perceptron (MLP) classifier yielded the best perfor-
mance with an accuracy of 91.9% (see the results reported in Section 4.2.3).
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These results indicate that the MLP classifier is highly accurate at classify-
ing fish as healthy and loser. By combining it with the detection method,
the MLP classifier becomes a sensible method for finding loser fish in sea
cages.

• RQ3 – How much diversity is there between the classification algorithms
used in the fish classification problem?
This question also relates to the fish classification step. The goal of this
investigation was to identify the most promising classifiers to be combined.
The perceptron, SVC, and MLP classifiers yielded the highest F1 scores for
classification, reaching 79%, 81.5%, and 82.7%, respectively. These clas-
sifiers also led to the highest F1 scores when combined with each other.
The perceptron and MLP classifiers were, however, highly correlated with
each other, making their predictions overlap (see the results reported in Sec-
tion 4.2.4). This made perceptron, SVC, and MLP promising classifiers for
combining, with SVC being the most relevant of them.

• RQ4 – Which state-of-the-art ensemble method has the highest performance
for the fish classification problem?
This question is also related to the fish classification step. Here, the classifi-
cation algorithms are combined using different ensemble methods. The best
performance was observed for a voting-ensemble using hard voting. This
method led to an accuracy of 92.8% using two votes from the SVC clas-
sifier and one vote each from the perceptron and the MLP classifiers (see
the results reported in Section 4.2.5). This result shows that by combining
the classifiers, the classification accuracy was indeed improved from using
only the MLP classifier. The hard-voting ensemble method is therefore a
promising method for classifying fish accurately.
The classification model with the highest F1 score consisted of feature extrac-
tion using CNN, dimensional reduction using PCA, and a hard voting-based
ensemble for combining the classification results of different classification al-
gorithms. This classification model received an accuracy of 92.9% for the
test set (see the results reported in Section 4.2.6). These results are even
better than during the training of the classification method, indicating that
the model is well-suited for classifying new unseen data.

• RQ5 – What is the performance of the proposed loser fish counting system?
This question relates to the fish counting part. Here, the object detection
model and the best-performing classification model were used. Detected
fish were classified as either healthy or loser. The amount of fish classified as
loser was then counted (see the results reported in Section 4.3). Even though
the exact performance of the counting method is unknown, the automatic
counting method provides a more reliable method for counting loser fish
with higher effectiveness and accuracy than manual counting. The proposed
framework is therefore an effective tool for monitoring the occurrence of loser
fish and therefore for contributing to improving fish welfare in sea cages.

This project has been constrained by the time available for conducting the
research. Since this is a master’s thesis, the work has to be conducted in a specific
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amount of time, making it difficult to investigate multiple alternatives for all parts
of the envisioned system. A limited number of classification algorithms and en-
semble methods have been chosen and investigated. The project was also limited
in regard to the amount of available data for training the detection and classifica-
tion models. All these limitations made it challenging to select few but promising
methods for investigation as well as choose appropriate values for parameters and
reasonable approaches. Another challenging aspect of the project has been to op-
timise the machine learning processes for reducing the time consumed for training,
without using a too-powerful computer.

5.2 Future Work
Some possible improvements to the already promising counting system can be
investigated in future work. If a larger dataset is available, the system can be
significantly improved. With more images, the object detection model can be
trained on detecting salmon fish in sea cages, instead of using a pre-trained fish
detection model, specialised in detecting different kinds of fish species. With
an end-to-end detection and classification model, a detection model specifically
trained for detecting salmon can be able to detect a larger amount of fish in the
images. The classification model itself can also be improved with a larger dataset,
as the model would have more images of healthy and loser fish to train on.

The developed system can also be installed in a sea cage to further validate the
results achieved in this study in real-world monitoring settings. Complementary
analyses based on videos can also be performed. For example, videos from sea
cages can be used for assessing fish behaviour similar to the work of Li et al. [22],
Wu et al. [23], Zeng et al. [24], and Spampinato et al. [26]. Since loser fish
swim differently than healthy fish, the classification of healthy and loser fish could
probably have been further improved by this assessment. With the implementation
of fish behaviour assessment in videos, fish tracking could also be implemented,
similarly to the methods presented in the studies of Spampinato et al. [26], Morais
et al. [32], Kandimalla et al. [33]. The goal would be to keep track of which
fish have already been classified and counted. The system can also be tested
with additional classification algorithms (e.g., Decision Trees1 or Naïve Bayes2

classifiers), and other ensemble methods [36]. Another research venue refers to the
use of other consolidated detection methods, such as those based on the YOLO
family [37].

1Scikit-learn, sklearn.tree.DecisionTreeClassifier. https://scikit-learn.org/stable/
modules/generated/sklearn.tree.DecisionTreeClassifier.html (As of June 2023).

2Scikit-learn, Naive Bayes. https://scikit-learn.org/stable/modules/naive_bayes.
html (As of June 2023).
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Abstract—Sea cages often contain a large amount of loser
fish. The presence of loser fish may cause welfare problems
for both healthy and unhealthy fish. By detecting and counting
the occurrence of loser fish, welfare problems can be identified
and addressed. For example, the loser fish can be moved or
euthanized. The objective of this study is to develop and validate a
machine learning solution for detecting and counting the number
of loser fish in a sea cage. The fish are detected using an object
detection algorithm, with a pretrained fish detection model. The
detected fish are classified into classes (healthy or loser fish). The
machine learning solutions investigated in our study consider
the use of a convolutional neural network feature extractor,
principal component analysis for dimensionality reduction, and
the combination of different classification methods. This study
has resulted in an algorithm able to detect multiple fish from
images in a sea cage and classify each of the detected fish with
an accuracy of 97.3 %.

Index Terms—machine learning, classification, convolutional
neural network, fish detector, support vector machine, principal
component analysis, voting-based ensemble, loser fish

I. INTRODUCTION

Welfare corresponds to the physical and mental health and
happiness of a being, according to Cambridge University [1].
Good welfare therefore includes that animals are treated well,
have a life worth living, and experience a good quality of
life, in general without suffering or facing cruel conditions
[2]. Since fish are not seen as a sentient being, their welfare
has been given less concern than the welfare of other farmed
animals [3]. Good fish welfare has however been given more
attention in the last years with establishing their sense of pain
and consciousness [4]. Fish farmers have as a consequence
tried to promote fish welfare, and make the fish thrive, grow,
and stay healthy. That, together with laws and regulations,
such as the Norwegian Animal Welfare Act, the Aquaculture
Act and the Food act, have all contributed to promoting the
welfare of farmed fish [2] [4].

The fish welfare is affected by a lot of parameters, such
as oxygen, feeding strategy, diseases, amount of fish in the
cage, the environment, their safety and so on [5]. All these
factors make it hard to evaluate fish welfare in a standardised
way. As there is no way to measure what fish experience,
we have to rely on indirect measuring methods. Fish needs
have to be fulfilled in order to have a positive impact on their
welfare, and to avoid a negative one. Their welfare is assumed
to be closely affected by the coverage of their needs, and is

indicated by their growth, health and physiological function,
and behaviour [5]. According to Noble et al. [2], their welfare
can be measured by a function-based approach, measuring the
health, growth and performance of the fish; a nature-based
approach, where they have a natural environment and can
have innate species-specific behaviour; or a feelings-based
approach, emphasising the emotions, such as long lasting
negative emotions or the experiencing of pleasure. There is
a lot of overlap among these three approaches, which makes
it very complex and difficult to determine how to best measure
and assess animal welfare [2].

About 60 million fish (15-20%) die before they are big
enough to be slaughtered, because of insufficient welfare
factors, such as diseases, parasites, or injuries. Among the
surviving fish, there are millions of loser fish with welfare
problems in the aquaculture industry [5]. These are fish that
grow too slowly during their first months in comparison to
the rest of the group, probably because of a combination of
insufficient welfare factors [3] [4]. They can be recognised
by their abnormal behaviour and since they often isolate
themselves from the rest of the group close to the surface [2].
Loser fish are seen as unhealthy fish and are unwanted from
a production perspective. Even though they may survive for
long, they often get diseases and do not have a satisfying life
regarding animal welfare [4]. These welfare problems are also
resulting in big financial losses and are harming the reputation
of the aquaculture industry, leading to the loser fish being
sorted away and euthanized if detected by the fish farmers
[3] [4] [5]. Figures 1a and 1b show a healthy and loser fish
respectively.

Loser fish are normally hard to spot, and only detected
manually near the surface [6]. Since fish are often farmed
in large populations, it is especially difficult to monitor or
treat a single fish. Therefore they are often treated as a
population, leading to excess use of medication and handling
of animals who do not need it [4]. If treatment was given
only to the individuals who need it, the animal welfare would
be increased, as well as the environmental impact would
be reduced [4]. There are currently no available methods to
individually recognise and sort fish, but since a lot of loser
fish could remain undetected, especially in deeper water, an
automatic method to monitor the fish should be established, in
order to improve the productivity and the welfare of farmed



fish [6].
The objective of this work is to design, implement, and

validate a method for automatically detecting loser fish in a
sea cage. This will be achieved by using an object detection
algorithm for detecting fish in images from the sea cage, as
well as a machine learning algorithm to classify fish as loser
or healthy. In this work, I focus on investigating which kind
of input gives the best results, find out which pipeline of
classification algorithm works the best, and see if the results
can be further improved by combining the views provided by
different classifiers using a voting-based ensemble.

Section II contains an overview of related work. The section
dedicated to materials and methods, Section III, contains a
detailed description of what have been done, so that the
results can be reproduced. Section IV contains the presentation
of results and solutions, and comparisons between them,
and presents a discussion regarding the work and proposed
solutions based on the defined objective. Section V provides
conclusion and outlines possible future work.

(a) A healthy fish. (b) A loser fish.

Fig. 1: Images of healthy and loser fish.

II. RELATED WORK

Some work has been done toward creating a standardised
way to evaluate fish welfare. Stien et al. [7] presented a
semantic model, SWIM 1.0, for overall welfare assessment
of Atlantic salmon in sea cages. The model was designed to
support a formal and standardised assessment of fish welfare
using a set of selected welfare indicators. Semantic modelling
was used to investigate the known welfare needs of Atlantic
salmon with the feasible welfare indicators [7]. These indica-
tors need to be measurable, and able to be divided into levels
from good to poor welfare. The indicators were weighted
based on literature reviews and based on semantic modelling
concepts. The objective was to estimate the indicator impact
on welfare. The result of the study was a model designed to
calculate welfare indices for salmon in sea cages. The model
also identifies how each indicator contributes to the overall
index and hence discovers which welfare must be improved.

Folkedal et al. [8] continued the work of Stien at al. by
investigating the operational feasibility of the Salmon Welfare
Index Model (SWIM 1.0 and 2.0) for welfare assessment of
Atlantic salmon in sea cages. Ten salmon farms containing
smolts were visited twice to assess the SWIM and to detect the

best and the worst welfare status. Multiple welfare indicators
were applied, and the ranking of the best and the worst ones
were determined. The results of the study concluded that the
SWIM model is a promising tool for documenting the animal
welfare of farmed salmon, serving as a first step towards
standardised monitoring and benchmarking of overall salmon
welfare.

Noble et al. [2] introduced a handbook containing tools for
assessing fish welfare. They collected information about the
welfare of Atlantic salmon in relation to its welfare needs at
different life stages, and investigated how each welfare indi-
cator may be linked to specific welfare needs. The handbook
also assessed which Operational Welfare Indicators (OWI) and
Laboratory-based Welfare Indicators (LABWI) are appropriate
and fit for purpose for different production systems and for
different husbandry routines and operations. As a conclusion,
the handbook suggests a unified scoring system standardised
for different welfare indicators to help farmers assess welfare
and detect potential welfare problems.

Some have tried to recognise and evaluate fish automat-
ically. Banno et al. [6], for example, created a model for
classifying healthy and loser fish. They collected videos from
sea cages and labelled images of fish according to the presence
of loser and healthy fish. A convolutional neural network
(CNN) model was used for extracting features from the
images, using a pretrained model which produced vectors with
2048 features. In order to classify the images, a support vector
machine (SVM) binary classifier was implemented using grid
search to find the best parameters. By doing this, they were
able to obtain an accuracy of 97.17% for the test data when
classifying the fish images. Their work has not considered the
detection problem.

In another study, Al Aoi [9] created a model for fish
detection. This model is pretrained on a large dataset of
various fish species using Open Images V71. The model
creates bounding boxes around detected fish in an image, and
can be easily imported into any project. Yu et al. [10], in
turn, created an open source framework for detecting a large
number of objects in an image, using the TensorFlow library.
The framework makes it easy to construct, train, and deploy
object detection models.

For my work, I used the images collected from Banno
et al. [6], and used part of the CNN model for creating a
feature extraction function. I also used the SVM classifier as a
starting point for creating a classification algorithm. I used the
pretrained fish detection model from Al Aoi [9] for detecting
fish in images, but would have made this model myself if I
had access to a lot of fish images to train the model upon. The
object detection framework from Yu el al. [10] is also used as
a starting point for the object detection algorithm, although the
framework was not able to detect fish or create new images
from bounding boxes.



Fig. 2: Schematic view of the methodology adopted in our study.

III. MATERIALS AND METHODS

A. Schematic of the Solution

Figure 2 shows the research methodology explored in this
study. It displays how loser fish in sea cages is intended
to be counted. It shows the structure of the two problems
investigated in order to count fish: fish detection and fish
classification. The research questions investigated are also
addressed as well as the resources that have been used.

B. Datasets

The dataset used for Problem 1 was created by Banno et
al. [6] and consists of 352 images with a size of 256 × 256
pixels. In this collection, 227 images are labelled as healthy
fish, while 125 images are labelled as loser fish. All the images
contain exactly one fish in the middle of the image, and the
size of the fish seems to be approximately the same, relative
to the size of the images.

For Problem 2, another dataset created by Banno et al. [6]
is used. The images in this dataset consists of multiple fish

1Open Images Dataset V7. https://storage.googleapis.com/openimages/web/
factsfigures v7.html#class-definitions. (As of 18. Nov. 2022).

of different sizes and positions in a sea cage, with a size of
1920×1080 pixels. 50 out of the images contain healthy fish,
and 50, loser fish.

C. Feature Extraction

A file containing the extracted features for the images, as
well as the code for the extraction were also provided by
Banno et al. [6]. Using the pretrained model ResNet-1012,
which is a 101-layer deep CNN trained on more than a million
images from the ImageNet collection3. This model extracts
feature vectors of size 2048 from each image.

D. Fish Detection

An object detection method was created to detect multiple
fish in an image from the sea cage. By importing the fish de-
tection model from Al Aoi [9], and using the object detection
framework created by Yu el al. [10] as a starting point, a fish
object detection algorithm was created. By inserting a number
of fish images received from Banno et al. [6], the algorithm

2Kaggle, ResNet-10. https://www.kaggle.com/datasets/pytorch/resnet101
(As of 24. Nov. 2022).

3ImageNet. http://www.image-net.org (As of 22. Nov. 2022).



created a bounding box around any object that is predicted
with at least 50 % certainly to be a fish. The algorithm then
creates a new image for every fish in a bounding box with
a certain certainty percentage. These new cropped images are
stored into a folder, and later imported into the classification
algorithm.

E. Fish Classification

All the images are labelled into a value of 0 for healthy
fish and 1 for loser fish. The available data was divided into
training and testing sets, corresponding to 70 % and 30 % of
the data, respectively. The model uses the exhaustive search
method GridSearchCV4, from scikit-learn, which implements
a function to fit the model to training data, evaluate the score
of the model, and predict the label of new samples.

This search method uses the supervised machine learning al-
gorithm C-support vector classification (SVC), which requires
a regularisation parameter (C), kernel coefficient (gamma),
and kernel type (kernel). In order to find the best values for
C, gamma, and kernel, the refit=True parameter is used in
the exhaustive search considering 10 different c-values, 10
different gamma-values, and 4 types of kernels. The model
is, in total, fitting 5 folds for each 400 candidates, in total
performing 2000 fits. The best fit values for the parameters
are then obtained as well as the accuracy, precision, recall,
and confusion matrix of the model.

The confusion matrix encodes the results of the model by
showing the actual and predicted classes for the dataset. The
accuracy, the precision, and the recall are used for evaluating
the results and for each, the model is given a percentage score.
The accuracy tells how good the model is at classifying the
data, the precision tells how many of the positive identifica-
tions actually were correct, and the recall encodes how many
of actual positives were correctly identified. An F1 score,
combining the precision and recall, is also used for evaluating
the results. A python program written by Banno et al. [6] is
used as a starting point for developing the fish classification
model. The classification model is developed using a standard
Google Colab session with an Intel(R) Xeon(R) CPU @
2.20GHz, and around 13 GB of RAM.

F. Find out which Input gives the Best Results

1) Find Input Features: At first, the gridSearchCV method
was tested using the full images as input. The method was also
tested using a smaller input size, by means of a CNN feature
extraction procedure applied on full images. The objective is
to improve the results, and classify the images faster. Here a
CNN function is created, based on the provided CNN feature
extraction code, using the pretrained model ResNet-101. Both
the full images and the feature reduced images are imported,
before being run through the gridSearchCV method using
SVC.

4Scikit-learn, sklearn.model selection.GridSearchCV. https://scikit-learn.
org/stable/modules/generated/sklearn.model selection.GridSearchCV.html.
(As of 02. Dec. 2022).

2) Make the Dataset Balanced: In order to make the dataset
balanced, an equal amount of images were used for training
and testing. Since there were 125 images of loser fish, 102
randomly selected images of healthy fish were discarded.
Therefore, we ended up with 125 images left of healthy fish as
well. The model is also made balanced by splitting the training
and test subsets such that they have the same proportions of
class labels as the array containing the labelled images.

3) Parameters for Splitting the Dataset: When splitting the
dataset into training and testing, some parameters have to be
specified such as random state and the size of the test set. The
random state is set to 42, and the test size is 30% of the dataset.
The GridSearchCV algorithm also needs some specifications,
whereas the number of folds for performing cross validation
is set to 4 folds.

4) Check for Overfitting: In order to check if a model is
overfitting, e.g., fit the training set too well, so that it does not
generalise for the test set, the results for the training set and
testing set were also calculated.

5) Dimensionality Reduction with Scaling and PCA: Even
though we used vectors with only 2048 features, there could
still be many features that are redundant or unimportant for the
classification decision, since ResNet-101 is a general model
not specific to this problem. By reducing the dimension of the
features, the model is expected to be better suited for prevent-
ing overfitting and can make the classification process even
faster. The number of input features should be less that the
number of images, and is reduced to the 150 most significant
components. The feature vectors for the samples is also scaled
using the standardScaler function, which centralises the feature
vectors around 0 with a standard deviation of 1.

G. Adding Multiple Classification Algorithms as Pipelines

In order to improve the classifier, 5 pipelines were evaluated.
Those pipelines enable cross validation for multiple steps, en-
able tuning of different parameters, and improve the structure
of the code5. The pipelines use minMaxScaler, standardScaler,
and principal component analysis (PCA), and is implemented
into a gridSearchCV function. Different values for the number
of principal components and number of folds for the cross
validation are tested to find the most optimal values for each
pipeline, and these numbers are saved and stored for later use.

The first pipeline uses a linear perceptron, which divides
the classes using a single straight line, and is sufficient if the
classes are linearly separable6. The second pipeline adaline7

is similar to the perceptron, except for the fact that it adjusts
the weights for the learning phase based on the inputs instead
of the functions output. An SVC pipeline with linear kernel
uses a one-versus-one approach for multi-class classification
where it tries to maximise the margin and incur a penalty when

5Scikit-learn, sklearn.pipeline.Pipeline. https://scikit-learn.org/stable/
modules/generated/sklearn.pipeline.Pipeline.html (As of 18. Nov. 2022).

6Wikipedia, Perceptron, 2022 https://en.wikipedia.org/wiki/Perceptron. (As
of 18. Nov. 2022).

7Wikipedia, ADALINE, 2022. https://en.wikipedia.org/wiki/ADALINE (As
of 18. Nov. 2022).



a sample is misclassified8. The K-nearest neighbors (KNN)
pipeline votes for the corresponding class based on which class
has the most close samples to the new sample9. At last, the
multi-layer perceptron (MLP) pipeline uses multiple layers and
non-linear activation functions, enabling it to distinguish data
that is not linearly separable10.

H. Combining Results using Voting-based Ensemble

A voting strategy was investigated in order to improve the
classification results of the model. By using the 5 classification
algorithms (perceptron, adaline, SVC, KNN, and MLP), the
image would be labelled as belonging to the class that most
algorithms agreed upon.

By using hard voting, all 5 algorithms will decide which
class to classify the given image, and the image will be
classified as the class receiving the most votes. Since some
of the algorithms are more accurate than the others, different
weights are assigned to them based on their accuracy.

Soft voting is also included, whereas only SVC, KNN, and
MLP are used. Here the algorithms calculated the probability
for how likely the image belongs to each of the classes, and
the image is classified as belonging to the class receiving the
total highest probability score combined.

I. Count Number of Loser Fish

Now that the model is trained to classify healthy and loser
fish, it can be used to count the number of loser fish from
a set of images. A function called predict loser count was
created for this purpose. This function takes in an array of the
cropped fish images from the fish detection algorithm, runs
the CNN feature extraction for each of the images, and calls
the predict method using the pretrained classification model.
It counts how many of the images contains a loser fish, by
summing all the images classified with a value of 1. To check
the classification, some fish images are printed with their given
class.

IV. RESULTS AND DISCUSSION

A. Object Detection

The object detection algorithm looks for fish in an image,
and creates bounding boxes around each detected fish. Figure
3 provides an example of result, in which 18 fish are detected.
Each bounding box is displayed with a percentage, showing
how certain the algorithm is that the bounding box is sur-
rounding a fish. Only the bounding boxes with a certainty of
50 % or more are displayed in the figure. The algorithm used
the dataset for Problem 2 (with 50 images containing healthy
fish, and 50 images containing loser fish).

Figure 4 displays a new image, created by cropping the
bounding box out from the original image. A new image is

8Scikit-learn, 1.4. Support Vector Machines. https://scikit-learn.org/stable/
modules/svm.html (As of 18. Nov. 2022).

9Scikit-learn, sklearn.neighbors.KNeighborsClassifier. https://scikit-learn.
org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
(As of 18. Nov. 2022).

10Wikipedia, Multilayer perceptron, 2022. https://en.wikipedia.org/wiki/
Multilayer perceptron (As of 18. Nov. 2022).

Fig. 3: Bounding boxes around detected fish in an image, with
a certainty of 50 % or more.

created for every bounding box with a certainty of 60 %
or more. 1094 new images are created using this cropping
procedure.

Fig. 4: Image of a cropped bounding box.

B. Test Different Inputs for Fish Classification

The dataset for Problem 1 is extremely small, only consist-
ing of 352 images. This is normally not enough to archive
effective results in typical machine vision solutions used in
similar problems. Ideally, there should be many more images
for the model to train and test upon, but this is not available,
so this amount has to be adequately for this model for now.

1) Original Images: This solution considers the full image
as feature vector. It can be considered as a baseline. When
using the SVM classification code employed by Banno et al.
[6] and the original 352 images, the best-performing model
had C=0.000001, gamma = 1000 and kernel = linear. The
C-value tells how precise the model should be, and hence
how much it should avoid misclassifying the samples in the
training set. With higher values of C, the optimisation will
choose a smaller-margin hyperplane for separating the two
classes, if that is better at classifying the training samples
correctly11. The gamma value defines how far the influence of
each training sample reaches, where high values means that the
distance is close. The behaviour of the model is very sensitive
to the gamma value, in which high values of gamma means
that the influence radius of the support vectors only include the
support vector itself and no amount of regularisation with C

11Scikit-learn, RBF SVM parameters. https://scikit-learn.org/stable/auto
examples/svm/plot rbf parameters.html (As of 18. Nov. 2022).



will be able to prevent overfitting12. When the kernel is linear
however, the gamma value is not used, and is irrelevant to the
model13. The kernel being linear means that the hyperplane
separating the data into classes is linear, simply consisting of
straight lines14.

The model is able to predict the correct class for 68.9% of
the dataset, which is the accuracy of the model. The amount
of correctly positive identifications was 45%, which is the
model’s precision. The recall received a score of 29%, which
indicates how many actual positives were correctly identified.

A confusion matrix of the classification model is shown
in Figure 5. This shows how many images in the test set
were correctly classified. 64 images were correctly classified
as healthy fish and 9 were correctly classified as loser fish. 11
images of healthy fish were falsely classified as loser, and 22
loser fish were classified as healthy.

Fig. 5: Confusion matrix of the model using full images.

2) CNN Feature Extraction: By implementing a CNN
feature extraction algorithm, the input was reduced to 2048
features. When using these extracted features instead of the
full images, the best-performing model had C=10 instead of
0.000001, making the model use a smaller-margin hyperplane,
which means that the distance between the hyperplane and the
closest point from each class is smaller. The support vector
machine (SVM) classification then archives a higher accuracy
using a radial basis function (RBF) kernel, which is the default
kernel for SVM classification, instead of the linear kernel.
Thus the gamma value of 0.01 has become relevant, which
regulates the influence distance of each training sample.

The model reaches an accuracy of 94.3%, a precision of
90.3%, and a recall of 90.3%. The confusion matrix has
improved significantly, as can be seen in Figure 6. The speed
of the model has also improved largely, from using about 5.5

12StackExchange, What is the influence of C in SVMs with
linear kernel?, 2020. https://stats.stackexchange.com/questions/31066/
what-is-the-influence-of-c-in-svms-with-linear-kernel (As of 18. Nov.
2022).

13Scikit-learn, sklearn.svm.SVC. https://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVC.html (As of 18. Nov. 2022).

14Medium, In Depth: Parameter tuning for SVC, 2018. https://medium.com/
all-things-ai/in-depth-parameter-tuning-for-svc-758215394769 (As of 18.
Nov. 2022).

hours for the original images to using about 2 minutes for the
extracted images.

Fig. 6: Confusion matrix of the model using CNN feature
extraction.

The distribution of the feature extracted dataset, using
2048 input features, is shown in Figure 7. The x-coordinate
represents the first of the 2048 features, while the y-coordinate
represents the second of the 2048 features. Here the yellow
data points are healthy fish, while the purple ones represent
loser fish. The data points are overlapping a lot, making the
two classes hard to separate.

Fig. 7: Plotting of dataset using 2048 features.

3) Balanced Training Set: When using the balanced train-
ing set, the highest accuracy was achieved with the use of
C=0.1 and with the kernel back to being linear, such that
gamma became irrelevant. The dataset was now a lot smaller,
but the test set was more equally divided. The accuracy,
precision, and recall has all increased to 94.7%.

The confusion matrix, as seen in Figure 8, shows that fewer
images are incorrectly classified. It now leads to two false
positives and two false negatives, making the difference in
amount of misclassified images of false positives and false
negatives smaller, indicating that the results of the model are
less biased. The results are now better and the model is fairer,
making it a better suited classification model.

When using a different amount of images of healthy and
loser fish, the model is taught that healthy fish are more



Fig. 8: Confusion matrix of the model when a balanced
training set is used.

common than loser fish, and will favour the healthy images
when classifying. Using 125 images of each will make it less
biased and the model will classify the healthy and loser fish
more evenly, instead of perfecting the classification of one of
them. Changing from an unbalanced dataset with an accuracy
of 94.3% to a balanced dataset with an accuracy of 94.7%
gives a significant improvement.

4) Check for Overfitting: At first, it was believed that the
model was overfitting, since it was using a very high value of
gamma. This would have made the model unable to generalise
for the test set. It was however discovered that the gamma
value is not used as long as the model uses linear kernel.
Overfitting was also checked by calculating the score of the
model for the training set and testing set. If the score for the
training set had been high, while the score for the testing set
was low, the model would have overfitted. Since they have a
score of 100% and 96%, respectively, the difference is quite
small, making the model fit well without overfitting.

5) Dimensionality Reduction with PCA: Figure 9 shows the
importance of different principal components. By reducing the
number of input features from 2048 to 150, about 96% of the
information is preserved. This makes the classification model
almost as good as before, and much faster. This is therefore a
lot better to use if the classification has to happen fast, such
as when using live-feed images from sea cages as dataset.

Figure 10 shows the importance of the 10 most significant
principal components. The two most significant ones explains
19% of the variance in the dataset.

C. Test Different Pipelines

Table I shows the accuracy, precision, and recall of all
the 5 classification methods using gridSearch with PCA. All
the methods consider the use of either 50 or 75 features
determined by PCA. The green colour in the table shows which
of the algorithms is performing best at accuracy, precision, and
recall, the red colour is visualising the worst performance, and
the yellow colour is for medium performance. All numbers are
given in percentages. MLP has the highest accuracy, SVC and
KNN have the highest precision, and MLP has the highest
recall.

Fig. 9: Explained variance with scaling and PCA of 150
components.

Fig. 10: Explained variance with scaling and 10 most signifi-
cant PCAs.

In total, MLP is performing the best, with a F1 score of
95.9%, and is also the only method which is not worst at
any of the measurements. With the use of MLP the accuracy
of the model has increased from 94.7% to 96%. Precision
has also increased, while recall has decreased slightly. The
number of components for the MLP is chosen to be 50, which
corresponds to about 79% of the total data information. Since
the model is only using 50 input features instead of 2048, the
speed is increased significantly. This is therefore a much better
solution for the purpose of classifying multiple fish at the same
time from images in a live-feed. The confusion matrix of the
MLP, as seen in Figure 11, is about the same as earlier from
figure 8. The only difference is that it classifies one less healthy
fish as loser fish.

D. Combine Results using Voting-based Ensemble

There are no large differences between the results of the 5
algorithms, but since different algorithms are best in different
areas, it could be worth to assess if the combination of their
results would lead to an improved classification. By using hard
voting and all the 5 algorithms to classify, the weights for the
voting are based on the total performance of the algorithms.
The MLP pipeline performed the best and is given a weight of



TABLE I: Accuracy, precision, and recall for the five classi-
fiers.

Method Accuracy Precision Recall Average F1 score

Perceptron 94.7 97.1 91.9 94.6 94.4
Adaline 94.7 97.1 91.9 94.6 94.4

SVC 94.7 100 89.2 94.6 94.3
KNN 94.7 100 89.2 94.6 94.3
MLP 96.0 97.2 94.6 96.0 95.9

Fig. 11: Confusion matrix of the MLP model when using PCA
with 50 features.

3 and the rest a weight of 1. For this voting ensemble all the
results have increased, to an accuracy of 97.3%, a precision
of 100% and a recall of 94.6%, and is now only classifying 2
images wrongly.

Fig. 12: Confusion matrix using voting-based ensemble.

The soft voting has no weights and uses probability from the
SVC, KNN and MLP pipelines for classifying. The perceptron
and adaline pipelines could not be used for soft voting since
they are not able to give a probability score. The results are
exactly the same as for the hard voting, making the model
perform as well using hard voting as soft voting.

E. Comparison of Methods

An overview over the classification results using different
methods can be seen in Table II. Here the different methods

can be compared. All the methods have resulted in high accu-
racy, precision and recall, even though some of the methods
have higher impact on the results than others. The results
seem to have increased for each method, whereas the model
also has become fairer and faster. The implementation of a
CNN feature extraction seems to have improved the results
the most, but using balanced datasets using different pipelines
and dimensionality reduction (PCA), and exploring voting-
based ensemble have seemingly also been important changes
for improving the overall effectiveness performance.

TABLE II: Results for the classification problem according to
different evaluated solutions.

Method Accuracy (%) Precision (%) Recall (%)

Original images 68.9 45.0 29.0
CNN feature extraction 94.3 90.3 90.3

Balanced dataset 94.7 94.7 94.7
MLP pipeline with PCA 96.0 97.2 94.6

Hard voting ensemble 97.3 100 94.6
Soft voting ensemble 97.3 100 94.6

F. Count Number of Loser Fish

In order to use the model to count number of loser fish
in a sea cage, the model has to be able to take in a set of
images, and classify each of the instances found as healthy
or loser fish. By using the classification model implemented
above, the counting function will be able to take in any image
of a fish instance, perform a CNN feature extraction of the
image and classify the fish as either healthy or loser with a
high level of certainty.

By summing the amount of images classified as loser fish,
the predicted number of loser fish could be counted. This
method for counting loser fish is much more effective than
counting them manually, which could lead to more loser
fish being discovered, such that the welfare of fish could be
improved.

The classification algorithm classified 354 of the 1094
cropped images as loser fish. By performing a spot check
of the classified images, a lot of them seems to be correctly
classified, such as the ones in Figure 13, which were classified
as healthy, and the ones in Figure 14, classified as loser.

(a) A healthy fish. (b) A healthy fish.

(c) A healthy fish. (d) A healthy fish.

Fig. 13: Images correctly classified as healthy fish.



(a) A loser fish. (b) A loser fish.

(c) A loser fish. (d) A loser fish.

Fig. 14: Images correctly classified as loser fish.

There are however some images that are hard to classify,
such as the ones in Figure 15, showing only the tail or head of
the fish. These are all classified as healthy fish, which might
be correct, but this is hard to know. These images could have
been removed manually from the collection before classifying
the fish or could have been removed by setting the threshold
for creating images of the bounding boxes to a higher certainty
percentage.

(a) A fish tail classified as a
healthy fish.

(b) Half a fish classified as healthy
fish.

(c) A fish tail classified as a
healthy fish.

(d) A fish head classified as a
healthy fish.

Fig. 15: Images of part of fish classified as a healthy fish.

V. CONCLUSION

This study has investigated the possibility to use machine
learning to automatically detect and count loser fish in sea
cages. By discovering the amount of loser fish, the fish welfare
factors can be established and improved. By using images
collected from cameras installed in sea cages, single fish
can be recognised from the images. Each of the discovered
fish can then be classified as either healthy or loser fish,

with an accuracy of 97.3 %, based on the best classification
model identified in this study. The classification model was
discovered to be most effective when the features from the
images are extracted using CNN, the dataset is balanced,
the dimensions are reduced, and when using voting-based
ensemble for combining the classification results of different
classifiers. This counting of classified fish is then a lot more
accurate and effective then manual counting, and could be a
sensible tool for improving the welfare in sea cages.

Even though the fish detection and classification systems
have led to promising results, some possible improvements
can be carried out in future work. One improvement could
be to use a larger dataset, for counting a larger number of
fish from sea cages, and most importantly for training the
fish classification model more accurately. A larger dataset can
be achieved if more images are taken of fish in sea cages,
use an AI image generator to create synthetic images of
fish, create 3D fish models or perform dataset augmentation,
such as rotating, flipping, zooming or translating operations.
Another improvement that could be possible with a larger
dataset is to create other fish detection models. With those
large collections, detection algorithms could be trained to
recognise only salmon fish, instead of all fish types, and to only
create bounding boxes around large sections of fish, instead of
fish tails or heads. Such detections of fish tail or head, which
are not possible to be classified correctly could also have been
removed from the dataset manually, but this would have been
a very laborious and time consuming task. The use of semi
automatic annotation tools could be explored.

One last improvement could be to install the fish detection
and classification solution in a sea cage to test and evaluate
the performance of the solution in a real world scenario. In
order to classify the fish more correctly, fish behaviour could
have been assessed as well, since loser fish swim differently
from healthy fish. For detecting fish behaviour, videos from
sea cages would have to be analysed and implemented in a
classification model. If videos are used, the system needs to
keep track of which fish are already classified, so that the same
loser fish is not counted multiple times.
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B Confusion Matrices of Classifiers
The confusion matrix of perceptron can be seen in Figure B.1, of Adaline in Figure
B.2, of SVC in Figure B.3 and of KNN in Figure B.4.

Figure B.1: Confusion matrix results for the perceptron classifier.

Figure B.2: Confusion matrix results for the adaline classifier.
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Figure B.3: Confusion matrix results for the SVC classifier.

Figure B.4: Confusion matrix results for the KNN classifier.
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