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ABSTRACT

This study is an exploration, via time-dependent density functional theory, of
collective excitations in FeSn, a layered antiferromagnetic metal with a kagome
structure. At present, interest in FeSn is spurred by novel properties promised by
the predicted flat and linearly dispersive electronic bands of ideal kagome lattices.

This work focuses on plasmons, which are quanta of longitudinal charge density
oscillations, in bulk and monolayer FeSn. Having been initially conceived as an
exploration of the possibility of plasmon-magnon coupling, this thesis also includes
a description of magnons, the quanta of spin-waves, in the bulk and monolayer
forms of the material. While magnons have been discussed in existing literature
on FeSn, plasmon behaviour in the material has yet to be described. The mono-
layer form of FeSn has not been explored in published papers, although efforts to
synthesise FeSn thin films are ongoing.

From analysis of the dielectric function and loss function of FeSn for different
wave vectors along the path ΓM of the first Brillouin zone, plasmons in bulk FeSn
are found to be long-lived at the Brillouin zone boundary and the bulk plasmon dis-
persion is quadratic for larger wave vectors. In contrast, monolayer plasmons are
short-lived and heavily influenced by the continuum of single-particle excitations
that cause Landau damping and eventual plasmon decay. From the calculations,
several points of departure from the expected plasmon dispersion curve for three-
dimensional and two-dimensional systems have been observed for the bulk and
monolayer, respectively. Most prominent is the gapped and nearly flat dispersion
of monolayer plasmons. In relation to magnons, the dispersion for bulk FeSn along
ΓM is found to agree with published reports, while calculations for the monolayer
magnon dispersion produced unexpected features.

In bringing out deviations from analytical predictions, the findings open up
avenues for further investigation into the collective excitations of FeSn. The results
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also highlight the value of examining real materials using ab-initio computational
techniques that can, in principle, provide a more realistic description of material
properties.



PREFACE

This thesis marks the culmination of my two years as a master’s student in physics.
It is my first exposure to TDDFT and the study of plasmons and magnons. To
produce it, I needed to learn not only TDDFT, linear response theory and collec-
tive excitations, but also the more practical matters of using Elk, navigating HPC
environments, practising patience, and keeping faith. I started my master’s in the
middle of the pandemic, away from everyone I know. Getting to this point was
not at all easy, but my gut feel is it is worth it.

Without the guidance and encouragement of my supervisor Alireza Qaiumzadeh,
this work would not have been possible. For his generosity, I will always be grate-
ful.

I am also thankful to Dr. Peter Elliott and Dr. Sangeeta Sharma for their valuable
advice on performing computations in Elk.

Computational resources were provided by Sigma2 - the National Infrastructure
for High Performance Computing and Data Storage in Norway through Project
NN10006K.

I dedicate this to the memory of my parents, gone recently and too soon.
To them, I owe everything.

For Loise, for things too important to name, always.

Ad majorem Dei gloriam.

iii



CONTENTS

Abstract i

Preface iii

Contents v

List of Figures v

Abbreviations viii

1 Introduction 1
1.1 FeSn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Introduction to Plasmons . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Introduction to Magnons . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Time-dependent density functional theory 13
2.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Hohenberg-Kohn Theorem . . . . . . . . . . . . . . . . . . . 15
2.1.2 Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . 17

2.2 Time-dependent density functional theory . . . . . . . . . . . . . . 19
2.2.1 Time-dependent Kohn-Sham scheme . . . . . . . . . . . . . 20

3 Linear response theory 23
3.1 General concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Linear response in TDDFT . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Response function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Plasmons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Magnons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Computational details 31
4.1 Bulk and monolayer cells . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



CONTENTS v

4.2 Computational parameters . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Plasmon calculations . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Magnon calculations . . . . . . . . . . . . . . . . . . . . . . 34

5 Plasmons in bulk and monolayer FeSn 35
5.1 Dielectric function . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Bulk FeSn plasmons . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Monolayer FeSn plasmons . . . . . . . . . . . . . . . . . . . . . . . 43

6 Magnons in bulk and monolayer FeSn 49
6.1 Bulk FeSn magnons . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Monolayer FeSn magnons . . . . . . . . . . . . . . . . . . . . . . . 51

7 Concluding remarks and outlook 55

References 59

Appendices: 77

A Convergence tests 78



LIST OF FIGURES

1.1.1 (a) The kagome pattern formed by the Fe atoms of FeSn. (b)
The alternating Fe3Sn and Sn layers of FeSn. (c) The predicted
electronic band structure of a two-dimensional kagome lattice. . . 4

1.2.1 Illustration of the longitudinal oscillations of the conduction elec-
trons in a metal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Plasmon dispersion in different dimensions and the electron-hole
continuum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 The energy loss peaks appear in multiples of the plasmon energy
∆E = ℏωp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Surface plasmon (surface plasmon polariton) dispersion . . . . . . 8

1.2.5 Surface plasmon dispersion for a thin film. . . . . . . . . . . . . . 9

1.3.1 Spin-waves arising from the small-angle precession of the spins of
a one-dimensional spin chain. . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Magnons decay into single-particle spin-flip excitations when they
enter the Stoner continuum. . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 The bulk and monolayer slab structures of FeSn. . . . . . . . . . . 32

4.1.2 Calculated electronic band structure for paramagnetic bulk (top
left), paramagnetic monolayer (top right), AFM bulk (bottom
left), and AFM monolayer (bottom right) FeSn. . . . . . . . . . . 33

5.1.1 The real and imaginary components of the dielectric function at
q = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.2 The real and imaginary components of the dielectric function at
q =M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.3 The path between q points Γ and M in the first Brillouin zone of
a hexagonal crystal is indicated by the connecting line. . . . . . . 38

vi



LIST OF FIGURES vii

5.2.1 Electronic band structure of bulk FeSn (left) and density of states
(right) projected on an Fe and an Sn atom of a kagome layer of
bulk FeSn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 The loss function of bulk FeSn for various q along ΓM . . . . . . 39
5.2.3 Correspondence between the main peak of the loss function and

the zero-crossing of the real part of the dielectric function . . . . . 40
5.2.4 The imaginary parts of the dielectric function of bulk FeSn for

various q along ΓM . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.5 Colour map of Im(ε(q, ω)) for bulk FeSn. . . . . . . . . . . . . . . 42
5.2.6 Plasmon dispersion relation for bulk FeSn. . . . . . . . . . . . . . 43
5.3.1 Electronic band structure of monolayer FeSn (left) and density of

states (right) projected on an Fe and an Sn atom of a kagome
layer of monolayer FeSn. . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 The loss function of monolayer FeSn for various q along ΓM . . . 45
5.3.3 The loss function (top row) and the real part (bottom row) of the

dielectric function for q = Γ and q = 0.12 Å−1. . . . . . . . . . . . 45
5.3.4 The real and imaginary parts of the dielectric function for different

values of q along ΓM . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.5 Colour map of Im(ε(q, ω)) for bulk FeSn. . . . . . . . . . . . . . . 47
5.3.6 Plasmon dispersion relation for monolayer FeSn. . . . . . . . . . . 48

6.1.1 The imaginary part of the transverse spin-spin response function
Im(χ+−(q, ω)) of bulk FeSn for various q, which appear here as
fractions of the path ΓM in the first Brillouin zone. . . . . . . . . 49

6.1.2 Colour map of Im(χ+−(q, ω)) for bulk FeSn. . . . . . . . . . . . . 50
6.2.1 Peaks of Im(χ+−(q, ω)) for monolayer FeSn for different values of

q along the path ΓM in the first Brillouin zone. . . . . . . . . . . 51
6.2.2 Colour map of Im(χ+−(q, ω)) for monolayer FeSn. . . . . . . . . . 52

A.0.1 The loss function for various values of the parameter rgkmax. . . . 78
A.0.2 The loss function for various values of the parameter gmaxvr. . . . 79
A.0.3 The loss function for various values of the parameter emaxrf. . . . 79
A.0.4 The loss function for various values of the parameter gmaxrf for

a k-point mesh of 12× 12× 6. . . . . . . . . . . . . . . . . . . . . 80
A.0.5 The loss function for various values of the parameter gmaxrf for

a k-point mesh of 16× 16× 8. . . . . . . . . . . . . . . . . . . . . 80



ABBREVIATIONS

• 2D, 3D two-dimensional, three-dimensional

• AFM Antiferromagnetic

• ALDA Adiabatic local density approximation

• DFT Density functional theory

• DOS Density of states

• EEL Electron energy loss

• EELS Electron energy loss spectra

• KS Kohn-Sham

• LAPW Linearised augmented plane wave

• LDA Local density approximation

• NTNU Norwegian University of Science and Technology

• RPA Random-phase approximation

• TDDFT Time-dependent density functional theory

• TDKS Time-dependent Kohn-Sham

viii





CHAPTER

ONE

INTRODUCTION

Collective excitations [1–4] are phenomena associated with the collective motion
of the particles of a system. The motion of the particles is wave-like and can be
described by oscillators [5–8]. Plasmons and magnons are types of collective exci-
tations. Analogous to phonons, which are the quanta of vibrations of the crystal
lattice [9, 10] and perhaps the most well-known type of collective excitation, plas-
mons are the quanta of longitudinal charge density oscillations, while magnons are
the quanta of spin-waves in a material.

In generating plasmons and magnons, it is the electrons of a material that are
involved. In the case of the former, the excitation is due to the motion of electrons
themselves, while in the case of the latter, the excitation comes from the preces-
sion of the spin angular momentum of electrons. Thus, the study of plasmons
and magnons provides a window into the electronic and magnetic properties of
solids. Moreover, because plasmons and magnons are collective excitations, which
are possible only because of interactions amongst particles, their study elucidates
the many-body nature of materials.

This work started out as an exploration, via time-dependent density functional
theory (TDDFT), of the possibility of plasmon-magnon coupling in FeSn, partic-
ularly its monolayer form. Compared to phonon-plasmon and phonon-magnon in-
teractions, little attention has been paid to plasmon-magnon [11–13] interaction in
research. This, fundamentally, is due to that fact that in bulk (three-dimensional)
materials, there usually exists a mismatch in the energy (or frequency) regimes
where magnons (up to hundreds of meV) and plasmons (up to tens of eV) occur
[14, 15]. Two-dimensional materials (with one-atom or up to several-atoms thick-
ness), however, are predicted to sustain a gapless plasmon dispersion, presenting
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2 CHAPTER 1. INTRODUCTION

the possibility of a compatible energy range for plasmon-magnon hybridisation
[14, 15].

However, in light of obtained results as well as limitations set by time and
particularities of the software used, the focus of the work shifted to mainly the
exploratory description and analysis of plasmons in bulk and monolayer FeSn.
Nonetheless, the results obtained from the magnon calculations for the bulk and
monolayer structures are presented and discussed here as well.

The choice of material for study in this thesis is motivated by recent attention
paid to the antiferromagnetic kagome material FeSn. Characteristics of FeSn that
have sparked research curiosity are discussed later in this chapter. At present,
efforts to fabricate FeSn thin films [16–18] are ongoing, encouraged by the pos-
sibilities presented by the interesting properties of kagome lattices as well as by
spintronic technologies based on antiferromagnets [19, 20], including terahertz
memory and logic processing [21]. A research group under QuSpin at NTNU is
actively working on growing FeSn via molecular beam epitaxy on semiconducting
substrates.

As of this writing, the body of published work on FeSn is small but growing.
The existing literature consists mostly of studies focusing on the material’s elec-
tronic band structure [22–28] and there are papers that discuss magnons in bulk
FeSn [29–32]. There have been no studies on monolayer FeSn, however. Plasmons,
in particular, have not been discussed in published literature on any FeSn struc-
ture.

In this thesis, TDDFT is used to computationally obtain the dispersion re-
lations of plasmons and magnons in FeSn. Dispersion relations show how the
frequency (ω) or energy (ℏω) of an excitation varies with the excitation’s wave
vector (q). This work considers the bulk and monolayer structures of FeSn. The
monolayer is modelled by a slab structure consisting of two kagome Fe3Sn layers.
The bulk and monolayer structures are described in a later chapter on computa-
tional details.

The emphasis in this work is on plasmons, which provide another way of look-
ing at the electronic structure and properties of a material. Plasmons are closely
linked to how a material interacts with electromagnetic fields. For instance, in met-
als, the plasmon frequency is the threshold for electromagnetic field penetration
into the material [9, 10, 33]. Below the plasma frequency, the material is impene-
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trable to light, reflecting it entirely. In addition, studying plasmons via TDDFT
presents an opportunity to look into the dielectric function, a key quantity in un-
derstanding a material’s optical properties. Considering the growing interest in
FeSn, which will continue once thin films and atomically thin structures are syn-
thesised, the study of the electronic excitations of this material becomes relevant.

The discussion in this work flows as follows: Chapter 1 (current chapter) intro-
duces the study and gives a brief description of FeSn as well as a short introduc-
tion to plasmons and magnons (next sections); Chapter 2 describes the theoretical
framework of TDDFT; Chapter 3 is a discussion of linear response theory and how
it can be used to study plasmons and magnons in TDDFT; Chapter 4 is dedicated
to the description of the bulk and slab models of FeSn used in this work; Chap-
ters 5 and 6 present and discuss the results obtained from the calculations; and
Chapter 7 contains conlcuding remarks and recommendations for further study.

1.1 FeSn

Recent interest in FeSn, a layered antiferromagnetic metal, springs from the ma-
terial’s kagome structure. A kagome pattern is a mesh of triangles with shared
vertices within a two-dimensional hexagonal lattice, as seen in Figure 1.1.1 (a).
The distinct star shapes of the lattice call to mind the patterns of Japanese kagome
basket weaving, hence the name.

In FeSn, the Fe atoms form the characteristic triangles of the kagome lattice.
FeSn consists of alternating magnetic kagome Fe3Sn layers and honeycomb Sn
layers (Figure 1.1.1 (b)). The oppositely oriented magnetisation of neighbouring
kagome layers makes the material antiferromagnetic. The spins lie within the
planes of the kagome layers. [34–36].

Kagome materials are predicted to exhibit properties that make them an in-
teresting platform for investigating exotic physical phenomena. The theoretically
predicted electronic band structure (shown in Figure 1.1.1(c)) of a two-dimensional
kagome lattice features both linearly dispersive bands, which are associated with
massless fermions and topologically protected states [22, 24, 37–39], as well as
non-dispersive flat bands, which indicate localised electrons and strong electron
correlation [26, 40–44].

Unlike other bulk kagome materials such as Co3Sn2S2 or Fn3Sn2, for which
experimental observations have failed to register both the linear and flat bands,
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bulk FeSn has been observed to retain these band structure features associated
with the ideal two-dimensional kagome lattice [22].

Figure 1.1.1: (a) The kagome pattern formed by the Fe atoms (red spheres)
of FeSn. The white spheres are Sn atoms situated in the Fe3Sn layer. (b) The
alternating Fe3Sn and Sn layers of FeSn. The Fe3Sn layers are magnetic. (c) The
predicted electronic band structure of a two-dimensional kagome lattice. The flat
band and the linearly dispersive bands crossing at K are shown. The figures are
from [34] and [22].

As mentioned earlier, most studies on FeSn have focused on the electronic band
structure characteristics. Flat bands have been experimentally observed via angle-
resolved photo-emission spectroscopy [22, 25, 29] in bulk FeSn and in the interface
of an FeSn-semiconductor heterostructure via planar tunneling spectroscopy [23].
In studies discussing spin-waves in bulk FeSn, spin-waves have been observed in
inelastic neutron scattering experiments to extend to 120 meV and to be damp-
ened at higher energies due to interactions with Stoner excitations [29, 31]. At
the M point, magnon energy is around 80 meV to 90 meV from neutron scatter-
ing measurements and calculations from linear spin-wave theory [29, 30, 34]. A
more recent study based on neutron scattering measurements found indications of
magnetoelastic coupling as well as spin-phonon coupling in bulk FeSn [32].

1.2 Introduction to Plasmons

In a metal, the phenomenon of longitudinal charge density oscillations, collective
modes that were first systematically studied by Bohm and Pines [45–47], can be
pictured by considering the sea of conduction electrons. These conduction elec-
trons, which constitute an electron gas and, hence, a plasma, freely move over a
positively charged background of ion cores made up of the nuclei and core electrons.
When this electron gas is displaced relative to the positive background, charge sep-
aration generates an electric field, triggering a restoring force and bringing about
the oscillation of the electron sea [6, 48, 49].
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The macroscopic dynamics of electrons in response to an external potential is
described by the dielectric function ε(ω), which in the classical Drude model takes
the form [33]

ε(ω) = 1−
ω2
p

ω(ω + i/τ)
, (1.1)

which, for ωτ >> 1, reduces to

ε(ω) = 1−
ω2
p

ω2
. (1.2)

In the above expressions, ω denotes frequency, i is the imaginary unit for which
i2 = −1, τ is the relaxation time that is the average time between electron colli-
sions, and ωp is the plasma frequency [33]

ωp =

√
4πne2

m
, (1.3)

where n and m stand for the electron density and effective electron mass, respec-
tively.

At the plasma frequency, the dielectric function is zero (ε(ωp) = 0), which is
characteristic of collective longitudinal oscillation modes [6, 33] whose quanta are
called plasmons. These collective longitudinal modes are free modes of oscillation
with natural frequency ωp, and they persist in the electron gas in the absence of
an external driving force [6]. The longitudinal oscillations, whose quanta are also
called bulk plasmons or volume plasmons, are illustrated in Figure 1.2.1.

Figure 1.2.1: Illustration of the longitudinal oscillations of the conduction elec-
trons in a metal. The blue arrow points to the propagation direction of the longi-
tudinal wave. Figure taken from [50].

The general form of the dielectric function is also a function of the wave vector
q, reflecting non-locality: ε(q, ω) [6, 33, 51]. From analytical considerations of the
homogenous electron gas, the plasmon dispersion relation that this q-dependent
dielectric function yields is dependent on dimensionality. For three-dimensional
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(bulk) systems, ω(q) is almost dispersionless near q = 0 and becomes quadratic
farther away [6, 48, 52]. In contrast, for two-dimensional systems, ω(q) ≈ √

q in
the small wave-vector limit [52, 53]. These dispersions are illustrated in Figure
1.2.2.

The longitudinal character of plasmon modes can be discerned by consider-
ing the wave equation, which is derived from Maxwell’s equations and describes
traveling waves [33]:

q2E− q(q · E) = ε(q, ω)
ω2

c2
E, (1.4)

where the c is the speed of light. When the wave vector of the propagating wave
q is parallel to the electric field E, the equation becomes

ε(q, ω)
ω2

c2
E = 0, (1.5)

which implies that

ε(q, ω) = 0. (1.6)

Figure 1.2.2: Plasmon dispersion in different dimensions (green for three dimen-
sions, purple for two dimensions) and the electron-hole continuum (blue shaded
region).
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Figure 1.2.3: The energy loss peaks obtained in [54] appear in multiples of the
plasmon energy ∆E = ℏωp. Figure taken from [54].

Being longitudinal, plasmon modes do not couple to electromagnetic fields [6,
49, 50]. Thus, they cannot be excited by light. Plasmons, however, can be gen-
erated by bombarding the electron gas with electrons from an external source.
The incoming electrons lose energy as they generate longitudinal charge density
oscillations [6]. An early experimental observation [54] of plasmons in metals oc-
curred when a beam of electrons was directed onto a sheet of Al, and the energy
loss peaks in the resulting spectrum were found to correspond to multiples of ℏωp

(ℏ being the reduced Planck’s constant), which is the plasmon energy. Such pro-
cedure forms the basis of electron energy loss spectroscopy (EELS) [55–58], the
standard experimental technique for studying plasmons.

Spectra from EELS are given by the loss function [6, 59]

−Im(ε−1(q, ω)) =
Im(ε(q, ω))

[Re(ε(q, ω))]2 + [Im(ε(q, ω))]2
. (1.7)

Plasmon peaks in EEL spectra appear when the real part of the dielectric
function (Re(ε)) is zero and the imaginary part of the dielectric function (Im(ε))
is small [60–63]. Regions with Im(ε) ̸= 0 belong to the electron-hole continuum,
which is dominated by excitations that occur when electrons transition to a higher
energy state [51, 52]. This continuum, illustrated in Figure 1.2.2 is a region of plas-
mon decay known as Landau damping. It shall be discussed further, along with
the results of the study.
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Much of the literature in plasmonics concerns another type of collective exci-
tations called surface plasmons [64, 65], which are different from the plasmons in
three- or two-dimensional systems described above. Surface plasmons are oscilla-
tion modes confined to the interface between a metal and a dielectric (which may
be vacuum) [6, 49, 50]. These oscillations consist of longitudinal and transverse
components of electric and magnetic fields and thus can couple to light [6, 49,
66]. In contrast, the three- and two-dimensional plasmons are purely longitudinal
oscillation modes. Indeed, surface plasmons almost exclusively exist as surface
plasmon polaritons [66], a hybrid mode where charge oscillations couple to elec-
tromagnetic fields. They are thus, basically, electromagnetic waves modified by
the charge density in which they propagate [66].

Like plasmons in two-dimensional systems, the dispersion curve for surface
plasmons go to zero as q → 0. However, with increasing q, the surface plasmon
dispersion (with vacuum for the dielectric) asymptotically approaches the charac-
teristic value ωp/

√
2, with ωp denoting the bulk plasmon frequency of the material

[49, 50]. The surface plasmon dispersion for a metal is shown in Figure 1.2.4,
where the surface plasmon frequency is given by [6]

ωs =
ωp√
εd + 1

, (1.8)

with εd denoting the dielectric constant of the other material that forms the in-
terface. For vacuum, εd = 1. In contrast to longitudinal plasmons, which require
ε(ω) = 0, surface plasmons are marked by the condition ε(ω) < 0 [50, 66].

Figure 1.2.4: The surface plasmon (surface plasmon polariton) dispersion is
depicted as a solid curve. The dashed line represents the light line. Figure taken
from [6].

Such dispersion behaviour persists in thin metallic films for which the surface
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plasmon dispersion takes the form [67]:

ω =
ωp√
2

√
1± e−qd, (1.9)

where d denotes the thickness of the thin film. For atomically thin materials
(qd << 1), a dispersion that goes with √

q is obtained [67]. The surface plasmon
dispersion for thin films is shown in Figure 1.2.5.

Figure 1.2.5: Surface plasmon dispersion for a thin film. The dashed line is
ωp/

√
2.

1.3 Introduction to Magnons

To visualise magnons, one can imagine a one-dimensional lattice of spins, each of
which is coupled to its neighbours via the exchange interaction, with energy given
by [9, 68]

E = −2J
N∑
p=1

Sp · Sp+1, (1.10)

where the dot product describes the coupling between neighbouring spins (Sp

and Sp+1) and the sign of the exchange parameter J indicates how the spins are
ordered. In the expression above, J > 0 signifies ferromagnetic ordering, as neigh-
bouring spins align parallel to each other to minimise the interaction energy E.
On the other hand, antiferromagnetic ordering is implied by J < 0, with each spin
aligning antiparallel to its neighbours to achieve minimum energy [68].

In general, the exchange interaction is described by the Heisenberg Hamilto-
nian, which can accommodate beyond nearest-neighbour interaction [68]:
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Ĥ = −
∑
ij

Jij Ŝi · Ŝj, (1.11)

where Ŝi refers to the spin operator for lattice site i and the exchange parameter
Jij is no longer the same for all terms.

The low-energy excited state of the ordered magnetic system is obtained when
the spins precess at a small angle about their original direction [9, 33, 68]. The
motion of these precessing spins trace out a spin-wave that propagates through
the chain [69]. This is illustrated in Figure 1.3.1.

The quanta of the spin-waves are called magnons. Instead of a high-energy
excited state created by flipping a single spin, that single spin flip is, so to speak,
distributed, via a small canting of the spins, throughout the chain [70]. The one-
dimensional spin chain model can be generalised to magnetically ordered lattices
of larger dimensions.

Semi-classically, spin-waves are derived from the expression for the exchange in-
teraction by considering the torque on the spin moment and the resulting equation
of motion for the spins [9, 68, 70]. Meanwhile, a quantum mechanical approach
employs the use of spin ladder operators, which are then expressed as creation
and annihilation operators [6, 70]. Spin-waves in antiferromagnets are modelled
by considering two lattices with opposite magnetisation [6, 70].

Figure 1.3.1: Spin-waves arising from the small-angle precession of the spins of
a one-dimensional spin chain. Figure taken from [71].

Theoretically, ideal ferromagnetic systems are predicted to have a quadratic
dispersion relation in the limit of small wave vectors, while ideal antiferromagnets
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are predicted to have a linear dispersion relation in the small-q limit [9, 33, 70].

Magnon dispersions can be obtained more generally via spin-wave theory by
adding more terms to the model Hamiltonian:

Ĥ = −
∑
ij

Jij Ŝi · Ŝj −K
∑
i

(Ŝz
i )

2 −
∑
ij

Dij · (Ŝi × Ŝj). (1.12)

In the above, the second term is the uniaxial anisotropy term, which accounts
for the possibility of magnetic moments preferring to align in a certain direction
(in this case, the z-direction, with Sz

i being the z-component of the spin operator
for lattice site i.) [68]. If the anisotropy parameter K > 0, the maximal ordering
of spins (along z) is favoured and fluctuations are energetically costly. On the
other hand, if K < 0, energy lowering is achieved by reducing the component Ŝz

i ,
implying the destabilisation of spin order. The third term is the Dzyaloshinkii-
Moriya interaction (DMI) term, which applies only to systems with strong spin-
orbit coupling and that lack inversion symmetry [68, 70]. To reduce energy, the
DMI interaction forces the spins to be at right angles with respect to each other
while staying in the plane perpendicular to the DMI vector Dij. If the two spins
are initially perfectly aligned in a system with strong DMI, the effect of the DMI
vector is to introduce a small cant to the spins [68, 70].

Like plasmons, magnons experience Landau damping when they interact with
spin-flip single-particle excitations, which metallic magnets support along with
spin-waves [69, 72]. These excitations, which involve electrons flipping their spins
as they transition to excited states, are called Stoner excitations. These excitations
form the Stoner continuum, visualised in Figure 1.3.2, in the (q, ω) plane.

Figure 1.3.2: Magnons decay into single-particle spin-flip excitations when they
enter the Stoner continuum. The figure (modified) is taken from [73].

The myriad possibilities for the technological application of magnons, includ-
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ing information transmission and processing, have launched an entire field called
magnonics, a subfield of spintronics focusing on the manipulation and utilisation
of magnons [70, 74].

A common method to experimentally observe magnons is inelastic neutron
scattering (INS) [75, 76]. An unpolarised beam of neutrons, which have magnetic
moments that can interact with the magnetic moments of the material being
probed, is directed onto a sample of the material. The change in momentum
obtained from neutrons that scatter in the process gives information about the
spin excitations. Spin-wave excitations are encoded in the differential scattering
cross-section [77]

d2σ

dΩdϵf
∝ ℏ

π

kf
ki
S(Q, ω) (1.13)

for solid angle Ω and scattered neutron energy ϵf . The symbol σ stands for the
cross section of the target and the initial and final momenta of the neutrons are
signified by ki and kf , respectively. The quantity S(Q, ω) (for which Q = kf − ki)
is proportional to the spin-spin response function χ, a quantity which is obtainable
via linear response theory and TDDFT, and which shall be discussed later.
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TWO

TIME-DEPENDENT DENSITY FUNCTIONAL
THEORY

Time-dependent density functional theory (TDDFT) is the extension of ground-
state density functional theory (DFT) to the time domain [78]. TDDFT allows
the description of the dynamical response of a system to perturbation, such as
external magnetic or electric fields, and thus makes possible the simulation of
spectroscopic data and the study of excited-state properties [59, 79].

Like DFT, which applies only to the determination of ground-state observables,
TDDFT replaces the many-body wave function with the electron density as the
central quantity in calculations. The many-body wave function, as it is a function
of the spatial coordinates of all the electrons and nuclei constituting a system,
rapidly becomes too complex to compute as the number of particles increases.
The electron density (given in (2.4)), in contrast, is always a function of only
three spatial coordinates, no matter the system size. The sheer reduction in the
number of variables gives DFT (and TDDFT) an advantage over wave-function-
based methods in terms of computational efficiency [80, 81]. This has resulted in
the explosion of the popularity of DFT [82], as implemented in various computer
codes [83, 84], within the fields of physics, chemistry, chemical engineering, and
materials science [85–89].

2.1 Density functional theory

DFT is a means of taming the complexity of the many-body problem found at
the core of the first-principles study of atoms, molecules, and solids. In studying
materials, a first-principles or ab-initio approach uses only as basis the principles
of quantum mechanics and the atomic composition of the system, without recourse

13
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to empirical parameters [90]. In general, materials are described by the many-body
Hamiltonian (in atomic units) [91]

Ĥ =−
N∑
i

∇2
i

2me

−
M∑
I

∇2
i

2MI

+
1

2

NN∑
i ̸=j

1

|ri − rj|

+
1

2

MM∑
I ̸=J

ZIZJ

|RI −RJ |
−

MN∑
I,i

ZI

|RI − ri|
,

(2.1)

which is composed of terms for the kinetic energy of the electrons, kinetic energy of
the nuclei, electron-electron interaction, nucleus-nucleus interaction, and electron-
nucleus interaction, respectively. In (2.1), me and MI respectively refer to electron
mass and the Ith nuclear mass, ZI indicates atomic number, while ri and Ri

refer to the ith electron coordinate and nuclear coordinate, respectively. In the
summations in the above equation, N is the total number of electrons and M (not
to be confused with nuclear mass MI) is the total number of nuclei in the system.
The wave function Ψ that is the solution to the Schrödinger equation

ĤΨ(r1, . . . , rN ,R1, . . .RM) = EΨ(r1, r2, . . . , rN ,R1, . . .RM) (2.2)

thus depends on the N electronic coordinates ri and the M nuclear coordinates
RI of the many-body system.

A first-step simplification is achieved via the Born-Oppenheimer approxima-
tion [92, 93]. Since nuclei are much more massive than electrons, atomic nuclei
are assumed to be frozen in place. This renders the nuclei in the Hamiltonian
as constants and allows for the separation of nuclear and electron dynamics in
calculations, making it possible to focus mainly on electrons within DFT.

Consequently, the many-body Hamiltonian reduces to the kinetic energy term
for electrons, the electron-electron interaction term, and the term for the external
potential, which includes the potential created by the nuclei, now seen as external
to the electron system [91]:

Ĥ = −
N∑
i

∇2
i

2me

+
1

2

NN∑
i ̸=j

1

|ri − rj|
+

N∑
i

v(ri), (2.3)

Even with the nuclear coordinates taken out, however, the wave function is
still dependent on 3N spatial variables, with N being the number of electrons in
the system. The problem remains formidable to solve, growing in complexity with
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the number of electrons.

2.1.1 Hohenberg-Kohn Theorem

The ground-state electron density, the probability of finding any electron in an
N -electron system with any spin σ at position r, is given by [78, 91]

n(r) = N
∑

σ,σ2,...,σN

∫
d3r2d

3r3 · · · d3rN |Ψ(r, r2, . . . , rN , σ, . . . , σN)|2. (2.4)

In 1964, Pierre Hohenberg and Walter Kohn [94] devised a theorem that justi-
fies the use of this ground-state electron density in place of the many-body electron
wave function in determining physical observables. The Hohenberg-Kohn theorem
establishes a one-to-one correspondence between n(r) and the external potential
v(r), the term in the Hamiltonian (2.3) that specifies the system. The theo-
rem proves that two potentials v(r) and v′(r) cannot generate the same ground-
state electron density n(r) if the potentials differ by more than some constant c:
v′(r) ̸= v(r) + c.

The proof by contradiction proceeds as follows [95]:

Let n(r) be the ground-state density arising from external potential v1(r) as-
sociated with the ground-state wave function Φ1 with ground-state energy E1:

E1 = ⟨Φ1| Ĥ1 |Φ1⟩ =
∫

d3r v1(r)n(r) + ⟨Φ1| T̂ + Ŵ |Φ1⟩ , (2.5)

where T̂ and Ŵ are the kinetic and potential terms of the Hamiltonian, respec-
tively. At the same time, let a different external potential v2(r) ̸= v1(r) + c

generate the same density n(r)(= n1(r) = n2(r)) and be associated with a differ-
ent ground-state Φ2 ̸= Φ1 with ground-state energy E2:

E2 = ⟨Φ2| Ĥ2 |Φ2⟩ =
∫

d3r v2(r)n(r) + ⟨Φ2| T̂ + Ŵ |Φ2⟩ . (2.6)

Following the Rayleigh-Ritz minimisation principle,

E1 < ⟨Φ2|H1 |Φ2⟩ =
∫

d3r v1(r)n(r) + ⟨Φ2| T̂ + Ŵ |Φ2⟩

= E2 +

∫
d3r (v1(r)− v2(r))n(r)

(2.7)
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and

E2 < ⟨Φ1|H2 |Φ1⟩ =
∫

d3r v2(r)n(r) + ⟨Φ1| T̂ + Ŵ |Φ1⟩

= E1 +

∫
d3r (v2(r)− v1(r))n(r)

(2.8)

Adding (2.7) and (2.8) yields the contradiction

E1 + E2 < E2 + E1, (2.9)

invalidating the original assumption that the different potentials v(r) and v′(r)

generate the same n(r).

This one-to-one mapping renders the external potential a unique functional of
the ground-state electron density (v(r) = v[n](r)), which means the Hamiltonian
and the wave function of the interacting system are themselves unique functionals
of the ground-state electron density (Ĥ = Ĥ[n](r); Ψ = Ψ[n](r)). In consequence,
physical observables, directly or indirectly, become functionals of the ground-state
electron density as well [78].

In addition, the Hohenberg-Kohn theorem states that the true ground-state
density of the system is the electron density that minimises the total energy func-
tional [95]

Ev[n] = ⟨Ψ[n]| (T̂ + V̂ + Ŵ ) |Ψ[n]⟩ , (2.10)

where V̂ is the external potential term of the Hamiltonian (2.3). The ground-state
electron density can thus be obtained via a variational approach.

However, minimisation of the total energy functional is not simple. The total
energy functional can be rewritten as [95]

Ev[n] = F [n] +

∫
d3r n(r)v(r), (2.11)

showing that it is constituted by a universal part F [n], which is determined by the
kinetic (T̂ ) and interaction (Ŵ ) terms of the Hamiltonian and is applicable to any
system with the same number of electrons and with the same electron-electron
interaction regardless of atomic composition. At the same time, it contains a part
that is determined by the external potential v(r). The external potential is made
up of the potential generated by the nuclei of the atoms of the system as well as
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potentials from any applied fields. Thus, in contrast to F [n], the contribution to
the total energy of the external potential is specific to the system. The problem
is that while the external potential (and thus the external potential energy term)
is known, the exact form of the universal functional is unknown [95].

2.1.2 Kohn-Sham Equations

Despite the enormous simplification achieved through the Hohenberg-Kohn the-
orem, the difficulties presented by the electron-electron interaction and the fact
that the kinetic energy term is not readily expressible in terms of the electron
density [78, 95] dimmed the prospect of the practical implementation of DFT.

Walter Kohn and Lu Jeu Sham [96] worked around these difficulties by in-
troducing, in a paper published in 1965, an auxiliary non-interacting system of
electrons described by [78](

−∇2

2
+ vs(r)

)
φj(r) = εjφj(r), (2.12)

where φj(r) are single-particle Kohn-Sham (KS) orbitals from which the ground-
state density can be obtained by summing occupied states:

n(r) =
occ∑
j

|φj(r)|2, (2.13)

The crucial concept is that the interacting system being investigated and its
auxiliary non-interacting system (the Kohn-Sham system) give the same ground-
state electronic density (nKS(r) = n(r)).

The effective potential for the non-interacting system is the Kohn-Sham po-
tential [78, 97]

vs(r) = v(r) +

∫
d3r′

n(r′)

|r− r′|
+ vxc(r), (2.14)

whose first, second, and third terms are the external potential, the Hartree po-
tential, and the exchange-correlation potential, respectively. Following from the
Hohenberg-Kohn theorem, the ground-state electronic density n(r) of the inter-
acting system can be uniquely mapped to an effective potential vs(r), which is the
Kohn-Sham potential.

In the Kohn-Sham approach, the total energy functional is rewritten as [78,
95, 97]
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Ev[n] = Ts[n] + Eext[n] + EH [n] + Exc[n], (2.15)

so that the universal functional takes the form [95]

F [n] = Ts[n] + EH [n] + Exc[n]. (2.16)

In (2.15) and (2.16), Eext[n] is the external potential energy, while Ts[n] is the
non-interacting kinetic energy obtained from the Kohn-Sham orbitals

Ts[n] = −
N∑
j=1

∫
d3r φ∗

j(r)

(
−∇2

2

)
φj(r) (2.17)

and the Hartree energy EH [n] is given by

EH [n] =
1

2

∫
dr

∫
d3r′

n(r)n(r′)

|r− r′|
. (2.18)

The exchange-correlation functional Exc[n] contains all the corrections account-
ing for the difference between the electron-electron interaction energy and the
Hartree energy and the difference between the interacting kinetic energy and the
kinetic energy of the non-interacting system. Exc[n] is defined by the exchange-
correlation potential vxc(r) [78, 95, 97]:

vxc(r) =
δExc[n]

δn(r)
. (2.19)

Thus, vxc(r) is crucial to the accurate and realistic description of materials in
DFT. It takes the burden of describing all interaction effects [95, 98] to ensure
that the interacting system and its auxiliary non-interacting Kohn-Sham system
have the same ground-state electron density (nKS(r) = n(r)).

Equations (2.12), (2.13), and (2.14) constitute the Kohn-Sham equations, which
are solved self-consistently.

The Kohn-Sham approach facilitates the practical implementation of DFT by
shoving all complexities of the interacting system into the exchange-correlation
term. One obtains the electron density of the interactive system of interest by
obtaining the electron density of an auxiliary non-interactive system that is much
easier to solve. Given an exact vxc(r), the ground-state electron density of the
non-interacting system exactly matches that of the interacting many-body sys-
tem. In practice, however, the exchange-correlation potential vxc(r) can only be
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approximated [98–101].

2.2 Time-dependent density functional theory

In TDDFT, the electron density becomes a function of time as well (n = n(r, t))
and it replaces the many-body time-dependent wave function that is a solution to
the time-dependent Shrödinger equation

i
∂

∂t
Ψ(r1, . . . rN , t) = Ĥ(t)Ψ(r1, . . . rN , t) (2.20)

as the main quantity of interest.

TDDFT, however, is not a straightforward extension of ground-state DFT.
TDDFT does not have a variational principle and initial states, and memory ef-
fects have to be taken into account, making the concept and implementation more
complicated [78]. TDDFT has its own theorems that justify the use of the time-
dependent electron density in place of the time-dependent wave function and the
use a non-interacting system to obtain the electronic density of the interacting
system. The proof and other details of these theorems (presented below) can be
found in [78, 102, 103]. The following discussion is also based on these cited works.

The counterpart of the Hohenberg-Kohn theorem in TDDFT, the Runge-Gross
theorem [104] establishes a one-to-one correspondence between the time-dependent
external potential v(r, t) and the time-dependent electron density n(r, t). The crux
of the theorem is that time-dependent electron densities n(r, t) and n′(r, t), which
evolve from the same initial state (Ψ(r, t0) = Ψ′(r, t0)), will be different from
each other starting at t > t0 if the potentials v(r, t) and v′(r, t) that generate
them are different by more than a purely time-dependent function c(t) (v′(r, t) ̸=
v(r, t) + c(t)). The potentials must also be Taylor-expandable around the initial
time t = t0:

v(r, t) =
∞∑
k=0

1

k!
vk(r)(t− t0)

k. (2.21)

According to the van Leeuwen theorem [105], for a system with interaction
w(|r − r′|), potential v(r, t) and initial state Ψ(r, t0), there exists a second sys-
tem with interaction w′(|r − r′|) and unique potential v′(r, t) (v′(r, t) ̸= v(r, t) +

c(t)) that produces the same time-dependent electron density as the first system
(n′(r, t) = n(r, t)). Such is the case as long as the initial state of the second system
Ψ′(r, t0) is chosen so that it generates the first system’s electronic density and its
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time derivative at t0.

If the second system referred to in the van Leeuwen theorem is non-interacting
(w′ = 0), the van Leeuwen theorem ensures that there is a unique potential vs(r, t)
such that the non-interacting system yields the electron density n(r, t) of the
interacting system, with the assumption that the non-interacting and interacting
systems have the same initial density and time-derivative of the initial density.
This allows the use of the time-dependent Kohn-Sham scheme in TDDFT.

2.2.1 Time-dependent Kohn-Sham scheme

Given the Runge-Gross and van Leeuwen theorems, it is possible to set up a
time-dependent Kohn-Sham (TDKS) system of non-interacting electrons under
the influence of the TDKS potential [78]

vs[n,Ψ0,Φ0](r, t), (2.22)

which is a functional of the time-dependent density, the initial state of the inter-
acting system Ψ0, and the initial Kohn-Sham state Φ0. This effective potential
governs the dynamics of the system for t > t0 through the equation [78, 103][

−∇2

2
+ vs[n](r, t)

]
φj(r, t) = i

∂

∂t
φj(r, t) (2.23)

with initial condition

φj(r, t0) = φ0
j(r), (2.24)

where φ0
j(r) are solutions to the KS equations of ground-state DFT. The time-

dependent KS orbitals can then be used to construct the time-dependent density

n(r, t) =
N∑
j=1

|φj(r, t)|2. (2.25)

The TDKS potential (2.22) is given by [78, 103]

vs[n](r, t) = v(r, t) +

∫
d3r′

n(r′, t)

|r− r′|
+ vxc[n,Ψ0,Φ0](r, t), (2.26)

where the first, second, and third terms on the right-hand side are the time-
dependent external potential, the time-dependent Hartree potential, and the time-
dependent xc potential, respectively. As in the ground-state case, vxc(r, t) is un-
known in its exact form and must therefore be approximated [78, 103].
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A commonly used approximation is the adiabatic approximation, where one
simply takes the xc potential of ground-state DFT (vxc[n](r)) and use it in the
TDKS equation (2.23) but with the time-dependent density n(r, t) plugged in
instead of the ground-state density n(r) [78, 103]:

vAxc(r, t) = vxc[n](r)

∣∣∣∣
n(r)→n(r,t)

. (2.27)

In TDDFT, the adiabatic local density approximation (ALDA) [102], where
the local density approximation (LDA) functional [106] of ground-state DFT is
used in (2.27), is the one that is most widely implemented. The LDA itself is a
homogeneous electron gas approximation of vxc(r). In the LDA, at every point r,
the known exchange-correlation potenial of the homogenous electron gas at that
point is used [78, 103]:

vLDA
xc (r) =

dehxc(n)

dn

∣∣∣∣
n=n(r)

, (2.28)

where ehxc(n) is the exchange-correlation energy density of the homogeneous elec-
tron gas.
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CHAPTER

THREE

LINEAR RESPONSE THEORY

In spectroscopy experiments, materials are probed by applying fields whose strength
is enough to generate a response but not strong enough to interfere with the prop-
erty one wants to measure. Collective excitations can be described as responses
to a weak perturbation [52, 107]. As such, they usually fall within the ambit of
linear response theory.

3.1 General concepts

This section follows the discussion found in [52, 78]. When a perturbing field
F (t) couples to an observable B̂ of a system, the Hamiltonian of the system under
perturbation can be written as

Ĥ(t) = Ĥ0 + F (t)B̂, (3.1)

where Ĥ0 is the Hamiltonian of the system before perturbation and F (t) is taken to
vanish for times before some initial time. Under the influence of the perturbation,
the ground-state expectation value of another observable Â of the system

⟨Â⟩0 = ⟨Ψ0| Â |Ψ0⟩ , (3.2)

with |Ψ0⟩ as the ground state of Ĥ0 with energy E0, becomes time-dependent:

⟨Â⟩(t) = ⟨Ψ(t)| Â |Ψ(t)⟩ . (3.3)

When the perturbation is weak, the response of the system (δ⟨Â⟩(t)) is linear:

23
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δ⟨Â⟩(t) = ⟨Â⟩(t)− ⟨Â⟩0

=

∫ ∞

0

dt′ χAB(t− t′)F (t′),
(3.4)

and characterised by the linear response function χAB(t − t′) given by the Kubo
formula

χAB(t− t′) ≡ − i

ℏ
Θ(t− t′)

〈[
Â(t− t′), B̂

]〉
0
. (3.5)

The step function Θ(t − t′) ensures that the expression is non-zero only when
t > t′ and encapsulates causality, meaning the response at time t is an effect of
the perturbation that coupled to the system at an earlier time t′.

The poles of the response function give the excitation energies of the system.
This can be easily seen in the Lehmann representation of the response function:

χ(r, r′, ω) = lim
η→0+

1

ℏ
∑
n

[
⟨Ψ0| n̂(r) |Ψn⟩ ⟨Ψn| n̂(r′) |Ψ0⟩

ω + Ωn + iη

−⟨Ψ0| n̂(r′) |Ψn⟩ ⟨Ψn| n̂(r) |Ψ0⟩
ω − Ωn + iη

]
,

(3.6)

which defines the response function in terms of the system ground state |Ψ0⟩. In
(3.6), n̂(r) is the density operator, the states of the system are denoted by |Ψn⟩,
and Ωn are excitation frequencies that define the excitation energies En − E0,
where E0 is ground- or equilibrium-state energy.

3.2 Linear response in TDDFT

Here, the presentation of the basic concepts of linear response theory follows the
discussions in [102, 108, 109]. If a system, which ground-state DFT can describe,
is placed under the influence of a time-dependent external potential that is a sum
of non-pertubed (v0(r)) and perturbative parts

v(r, t) = v0(r) + v1(r, t)Θ(t− t0) (3.7)

and the perturbation v1(r, t) is small, the linear response of the density of the
system can be expressed as
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n1(r, t) =

∫ ∞

0

dt′
∫

d3r′ χ(r, t, r′, t′)v1(r
′, t′). (3.8)

In this case, χ(r, t, r′, t′) is the density-density response function given by the Kubo
formula

χ(r, t, r′, t′) = − i

ℏ
Θ(t− t′) ⟨[n̂(r, t), n̂(r′, t′)]⟩0 . (3.9)

It describes the response of the density at position r at time t to the perturba-
tion that coupled to the density at another point r′ at an earlier time t′. From
the Taylor expansion of the density response, one finds that the density-density
function also corresponds to the expression

χ(r, t, r′, t′) =
δn[v](r, t)

δv(r′, t′)

∣∣∣∣
v0(r)

(3.10)

evaluated at the initial potential v0(r).

The fundamental theorems of TDDFT ensure that the density response of
the fully interacting system is the same as that of the non-interacting system in
the Kohn-Sham approach. The linear response of the density is expressed in the
Kohn-Sham scheme as

n1(r, t) =

∫ ∞

0

dt′
∫

d3r′ χs(r, t, r
′, t′)v1s(r

′, t′), (3.11)

where the non-interacting Kohn-Sham linear density-density response function has
the form

χs(r, t, r
′, t) =

δn[vs](r, t)

δvs(r′, t′)

∣∣∣∣
vs[n](r)

, (3.12)

with vs(r, t) denoting the effective Kohn-Sham potential discussed in the previous
chapter. The potential acting on this system of non-interacting electrons is the
linearised Kohn-Sham potential

v1s[n](r, t) = v1(r, t) +

∫
d3r′

n1(r
′, t)

|r− r′|
+ v1xc(r, t), (3.13)

where the first, second, and third terms are the linearised external potential, the
linearised Hartree potential, and the linearised xc potential, respectively. The
linearised xc potential is given by

v1xc(r, t) =

∫ ∞

0

dt′
∫

d3r′
δvxc[n](r, t)

δn(r′, t′)

∣∣∣∣
n(r)

n1(r
′, t′), (3.14)
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evaluated at the ground-state density n(r). The expression in (3.14) defines the
exchange-correlation kernel fxc:

fxc(r, t, r
′, t′) =

δvxc[n](r, t)

δn(r′, t′)

∣∣∣∣
n(r)

. (3.15)

The relation between the interacting and non-interacting Kohn-Sham density-
density response functions are given by a Dyson-like equation:

χ(r, t, r′, t) = χs(r, t, r
′, t′)

∫
dt1

∫
d3r1

∫
dt2

∫
d3r2 χs(r, t, r1, t1)

·
[
δ(t1 − t2)

|r1 − r2|
+ fxc(r1, t1, r2, t2)

]
χ(r2, t2, r

′, t′).

(3.16)

3.3 Response function

In linear response TDDFT, plasmons are described as the response of the charge
density of the system to an external scalar potential (δn/δvext), while magnons
are described as the response of the magnetisation density of the system to an
external magnetic field (δm/δBext) [110].

The magnetisation density is defined as the difference between the spin-up and
spin-down polarised densities [69]:

m(r, t) = n↑(r, t)− n↓(r, t), (3.17)

where the axis of quantisation is taken to be the z-axis and the spin-polarised
density is obtained from the spin-polarised Kohn-Sham orbitals [102]:

nσ(r, t) =
∑
σ=↑,↓

∑
j=1

|φjσ(r, t)|2. (3.18)

The system Hamiltonian takes the form [111]

Ĥ = Ĥ0 +
∑
µ

∫
d3r ρ̂µ(r)V µ

ext(r, t), (3.19)

where ρ̂µ is the four-component density operator that gives the four-component
density ρ(r) = [n(r),m(r)] composed of the electron density and the magnetisa-
tion density. The magnetisation density is constituted by Cartesian components
mx(r),my(r),mz(r) and the perturbing field is composed of the scalar external
potential and the external magnetic field [110, 111]:
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Vext(r, t) = [vext(r, t),Bext(r, t)]. (3.20)

The response of the four-component density can then be expressed as [111, 112]

δρµ(r, t) =
∑
ν

∫
dt′

∫
d3r χµν(r, r′, t− t′)V ν

ext(r
′, t′), (3.21)

characterised by the response function [110, 112]

χµν(r, r′, t, t′) =
δρµ(r, t)

δV ν
ext(r

′, t′)
, (3.22)

which is also given by the Kubo formula [111]

χµν(r, r′, t, t′) = − i

ℏ
Θ(t− t′) ⟨[ρ̂µ(r, t), ρ̂ν(r′, t′)]⟩0 . (3.23)

The response function is a tensor. χ00 corresponds to charge-charge response
(δn/δvext), χ01,02,03 describe the charge-spin response (δn/δBext), χ10,20,30 give the
spin-charge response (δm/δvext), and χ11−13,21−23,31−33 characterise the spin-spin
response (δm/δBext) [110].

In the Kohn-Sham scheme of TDDFT, the response function of the interacting
system is related to the Kohn-Sham response function χµν

s (r, r′, ω) by a Dyson-like
equation [110]

χµν(r, r′, ω) =χµν
s (r, r′, ω) +

∫
d3r′′

∫
d3r′′′χµδ

s (r, r′′, ω)

[f δγ
H (r′′, r′′′) + f δγ

xc (r
′′, r′′′, ω)]χγν(r′′′, r′, ω),

(3.24)

with the Hartree kernel given by fµν
H (r, r′) = δµ0δν0(1/|r− r′|) and fµν

xc (r, r
′, ω) is

the Fourier transform of the xc kernel [110]

fµν
xc (r, r

′, t, t′) =
δV µ

xc(r, t)

δρν(r′, t′)
, (3.25)

where V µ
xc is composed of the scalar xc potential vxc(r, t) and the xc magnetic field

Bxc(r, t). The non-interacting Kohn-Sham response function, in the Lehmann
representation, is given by [110, 113]

χµν
s (r, r′, ω) = lim

η→0+

∑
κ,ξ

σµσν(fκ − fξ)
ϕ∗
κ(r)ϕξ(r)ϕκ(r

′)ϕ∗
ξ(r

′)

ℏω + (εκ − εξ) + iℏη
, (3.26)

where ϕ(r) are Kohn-Sham spinors indexed by κ and ξ, each of which is a combined
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band and state index. In (3.26), fκ and fξ are Kohn-Sham occupation numbers
and σµ = [1, σx,y,z] can denote the identity matrix 1 or the Pauli matrices σx,y,z.

When working with periodic systems, the Fourier transform of the response
function is often used [110]:

χµν
GG′(q, ω) =

∫
d3r

∫
d3r′ e−i(q+G)·rχµν(r, r′, ω)ei(q+G′)·r′ , (3.27)

with q as the wave vector of the perturbation and G,G′ denoting reciprocal lattice
vectors.

3.3.1 Plasmons

The charge-charge component of the response function in (3.27) is used to obtain
the plasmon energies. It defines the microscopic dielectric function for a periodic
system [59, 78, 110]:

ε−1
G,G′(q, ω) = δG,G′ + v(q)χ00

G,G′(q, ω), (3.28)

with v(q) being the Coulomb potential in wave-vector space. The microscopic
dielectric function is then used to obtain the macroscopic response function [59,
78, 107]

εM(qω) =
1

ε−1
G,G′(q, ω)

∣∣
G=G′=0

, (3.29)

which corresponds to experimental measurements. The loss function that gives
the EEL spectra is given by [59, 114]

−Im
[
ε−1
M (q, ω)

]
. (3.30)

A peak in the spectra for which Re(εM) = 0 and Im(εM) is small indicates a plas-
mon [61]. Im(εM) characterises damping and absorption of electromagnetic waves
[114].

For the rest of this section, the superscript is omitted in χ00, with the un-
derstanding that χ refers to the charge-charge part of the response function. In
general, the interacting response function takes the form

χ(q, ω) =
χ0(q, ω)

1− [v(q) + fxc(q, ω)]χ0(q, ω)
, (3.31)

where fxc(q, ω) is the response kernel, v(q) is the Coulomb interaction, and χ0(q, ω)
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is the Lindhard function. The Lindhard function is the density-density response
function of the non-interacting electron gas system [51, 52].

The conditions for identifying a plasmon — Re(εM) = 0 and a small value
of Im(εM) — can be appreciated by considering the expressions for the dielectric
function and the response function in the random-phase approximation (RPA). In
the RPA, for which fxc = 0 [52], the dielectric response function is expressed as
[51, 52]

εRPA(q, ω) = 1− v(q)χ0(a, ω) (3.32)

and the interacting response function is given by [51, 52]

χ(q, ω) =
χ0(q, ω)

1− v(q)χ0(q, ω)
. (3.33)

From the fluctuation-dissipation theorem [52, 78], which states that the fluc-
tuation of the density is directly proportional of the dissipation described by the
imaginary part of the response function, the density fluctuation spectrum of an
interacting electron gas is given by [52]

Im(χ(q, ω)) =
Im(χ0(q, ω))

[1− v(q)Re(χ0(q, ω))]2 + [Im(χ0(q, ω))]2
. (3.34)

This expression gives the shape of a Lorentzian distribution. The numerator and
the second term in the denominator both correspond to Im(εRPA), while the first
term of the denominator corresponds to Re(εRPA). The expression gives a well-
defined peak when Im(εRPA) ≈ 0 and Re(εRPA) = 0.

In addition, the numerator, which is the imaginary part of the Lindhard
response function, describes the dissipation of the non-interacting electron gas,
whose excitations are single-particle rather than collective [51, 52]. Thus, the val-
ues in the (q, ω) plane for which Im(χ0(q, ω)) is non-zero defines the electron-hole
continuum of single-particle excitations. One then sees that within regions where
Im(εRPA) is considerable, collective excitations experience Landau damping and
decay into electron-hole pairs. The shape of the theory-predicted electron-hole
continuum [51, 52] is illustrated in Figure 1.2.2 in the Introduction.

3.3.2 Magnons

The transverse spin-spin response function χ+−(q, ω) [52, 113, 115] describes the
response of the magnetisation density to an external magnetic field oriented per-
pendicular to the direction of spin polarisation of the ground-state system [111,
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115]:

δm+(r, t) =

∫
dt′

∫
dr′ χ+−(r, r′, t− t′)B+(r

′, t′). (3.35)

In the above equation, the transverse magnetisation density is given by m+ =

mx(r)+ imy(r) and the transverse magnetic field is given by B+ = Bx(r)+ iBy(r).
mx(r),my(r) and Bx(r), By(r) are the x and y components of the magnetisation
density and the applied magnetic field, respectively.

In the collinear case, the spin-spin part of the response function in (3.22)
becomes block diagonal, decoupling the transverse spin-spin response from the
longitudinal spin-spin response χzz and the charge-charge response χ00 [73, 111].
The transverse components of the spin-spin response function are then given by
[52, 110]:

χ+− = χS+S−
= 2χxx + 2iχxy

χ−+ = χS−S+

= 2χxx − 2iχxy,
(3.36)

In the indices above, S± refer to spin ladder operators defined as Ŝ± = Ŝx ± iŜy,
with Ŝx and Ŝy being spin components in the x and y directions, respectively.

In inelastic neutron scattering experiments, information about magnons are
obtained from the neutron scattering cross section (1.13), which is proportional
to the imaginary part of the transverse response function [77, 112, 115]. Thus,
in linear-response TDDFT computations, magnon energies are obtained from the
peaks of Im(χ+−(q, ω)) [110, 112, 115].
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All ground-state and TDDFT calculations were done using the all-electron full-
potential linearised augmented plane-wave (FP-LAPW) code Elk [116]. To ap-
proximate the exchange-correlation energy, the local density approximation (LDA)
was used for the ground-state calculations, while the TDDFT calculations made
use of the adiabatic local density approximation (ALDA).

4.1 Bulk and monolayer cells

Two structures, bulk and monolayer, are considered in this work. To capture the
material’s antiferromagnetic character, the bulk structure (image on the left in
Figure 4.1.1) is modelled using a cell that is double the unit cell of FeSn along
the c-direction. The slab model for the monolayer (image on the right in Figure
4.1.1), on the other hand, consists of two Fe3Sn layers and three Sn layers to
preserve symmetry and the material’s antiferromagnetic character. Note that in
both cells illustrated in Figure 4.1.1, the top layer is merely a periodic repetition
of the bottom layer. Both structures were based on experimental lattice constants
[117]. For both, the in-plane lattice parameters used were a = b = 5.297 Å. In the
bulk, the out-of-plane lattice parameter used was c = 8.96 Å, which is double the
experimental value of c = 4.48 Å of the FeSn unit cell. In the slab structure, a
20-Å vacuum layer was added to ensure the separation of periodic slabs. In both
cases, atomic positions were relaxed prior to TDDFT calculations.

The spins of the Fe atoms of FeSn are in-plane, pointing along the a-axis of the
crystal ([100] direction) [34, 118]. The material is ferromagnetic in each kagome
plane, but neighbouring kagome planes are antiferromagnetic. The calculated
magnetic moment of Fe was 1.85 µB for the bulk and and 1.96 µB for the slab.

31
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For both structures, the obtained net magnetic moment was zero. In Elk, as is
standard in many DFT codes, collinear calculations can only be performed if spins
point along the Cartesian z-direction which, by convention, is the c−axis. Since
collinearity is assumed in the computation of the transverse magnetic response
function (χ+−) in Elk, the bulk and slab FeSn structures were rotated so that their
spins pointed along the z-direction for magnon calculations. Spin-orbit coupling
is not considered in this thesis.

Figure 4.1.1: The bulk (left) and monolayer slab (right) structures of FeSn.
Brown and grey spheres represent Fe and Sn, respectively. The orientation of
spins are also shown. Note that in each cell, the top layer is merely a periodic
repetition of the bottom layer.

The calculated electronic band structures of paramagnetic bulk and monolayer
FeSn as well as their antiferromagnetic (AFM) counterparts are shown in Figure
4.1.2. The electronic band structure obtained for bulk AFM FeSn is in agreement
with results from previous DFT studies [30, 34]. DFT-obtained band structures
for the paramagnetic case (bulk and monolayer) as well as for the AFM monolayer
have not been reported previously.
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Figure 4.1.2: Calculated electronic band structure for paramagnetic bulk (top
left), paramagnetic monolayer (top right), AFM bulk (bottom left), and AFM
monolayer (bottom right) FeSn.

4.2 Computational parameters

Convergence tests were performed to obtain the optimal values for relevant param-
eters used in the ground-state and TDDFT calculations in Elk. These parameters
are discussed below. The results obtained from calculations for plasmons and
magnons performed in Elk using these parameters are presented and discussed in
the next two chapters.

4.2.1 Plasmon calculations

The plasmon calculations for the bulk and slab structures used the same values ex-
cept for the size of the k-point mesh. The energy cut-off (parameter emaxrf) used
to limit the summation over states in the calculation of the Kohn-Sham response
function (see (3.26)) was 2 Hartree. This represents an energy window above and
below the Fermi energy εF : |εξ − εF | < 2 Hartree. The maximum length of G
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vectors used in the calculation of the response function (see (3.27) and (3.29))
as a matrix in G,G′ was 1.8 Bohr−1. This value, set by the parameter gmaxrf,
is converged for the bulk. For the slab, however, it was a value settled for, as
calculations beyond it would not complete due to computational expense. For the
expansion of the interstitial density and potential, a G vector maximum length
(parameter gmaxvr) of 11.0 Bohr−1 was used, while the value of RMT×max(|G+k|)
(parameter rgkmax) used in the expansion of plane waves in the LAPW basis was
set to 7.0. RMT refers to the radius of the muffin tins, which are the spherical
regions used in the LAPW method [119]. The Brillouin zone was sampled using k-
point meshes of size 16×16×8 and 16×16×1 for the bulk and slab, respectively.

4.2.2 Magnon calculations

For magnon calculations, the response functions were calculated using a converged
energy cut-off parameter of 1.5 Hartree and 0.6 Hartree for the bulk and slab,
respectively. The matrix expansion of the response functions used a G vector
maximum length of 1.1 Bohr−1 for the bulk and 1.6 Bohr−1 for the slab. These
values for the maximum G vector, set via parameter gmaxrf, are not converged,
as calculations with higher values would not complete due to a large demand on
computational resources. For both structures, a maximum G vector length of
12.0 Bohr−1 was used for the expansion of the interstitial density and potential,
while the value of RMT × max(|G + k|) was set to 8.5 and 8.0 for the bulk and
slab, respectively. The k-point mesh used in the sampling of the Brillouin zone
was 12× 12× 6 for the bulk and 12× 12× 1 for the slab. As mentioned in the
discussion of the structures, the bulk and monolayer cells had to be rotated to
obtain the transverse spin-spin response function within Elk.
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PLASMONS IN BULK AND MONOLAYER FeSn

5.1 Dielectric function

This chapter begins with a brief description of the dielectric function ε(q, ω) of
FeSn. The dielectric function, which in general is a function of wave vector q and
frequency ω, describes the response of a material to external electric fields and
electromagnetic waves [33]. As such, it is a key quantity used to characterise a
material’s electronic and optical properties.

As defined in terms of the electric displacement field D = εE, it determines
the polarisation of charges in a material that is subjected to an external electric
field E. In addition, it is related to electrical conductivity σ(ω) via the relation
[33]

ε(ω) = 1− i4πσ(ω)/ω. (5.1)

With regard to optical response, the complex dielectric function ε = Re(ε(ω))+
iIm(ε(ω)) is related to experimentally accessible properties. Its relation to the in-
dex of refraction n(ω) and extinction coefficient κ(ω), optical quantities obtainable
from reflectivity measurements, is given by the complex refractive index [33]

N(ω) =
√
ε(ω) = n(ω) + iκ(ω). (5.2)

The real and imaginary parts of the dielectric function can be obtained once n(ω)

and κ(ω) have been determined since Re(ε(ω)) = n2(ω) − κ2(ω) and Im(ε(ω)) =

2n(ω)κ(ω) [33]. Moreover, since the absorption coefficient, the rate of the decay
of light waves in a material, is given by α(ω) = ωIm(ε)/n(ω)c, where c is the
speed of light, the absorption spectrum of a material is also obtainable from the

35
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dielectric function [33].

Figure 5.1.1: The real and imaginary components of the dielectric function for
bulk (top row) and monolayer (bottom row) FeSn at q = 0. The labels refer to
indices ij.

In general, the dielectric function is a 3× 3 tensorε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (5.3)

that reflects anisotropy in real materials. εij describes the response of the mate-
rial along the i-axis to an external field applied along the j-axis. The on-diagonal
elements are the longitudinal components of the dielectric tensor. They charac-
terise responses that are oriented along the same axis as the applied field. The
off-diagonal components, on the other hand, pertain to responses that arise along
an axis that is different from the orientation of the applied external field. The
components of the dielectric tensor, in general, are functions of both frequency ω

and wave vector q.

In Elk, the indices i, j = 1, 2, 3 in εij refer to the a, b, or c crystal axes, respec-
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tively. Figure 5.1.1 presents the real and imaginary components of the dielectric
tensor of bulk and monolayer FeSn for q = 0, which is the Γ point of the first
Brillouin zone. As illustrated in Figure 5.1.3, the Γ point is the centre while the
M point is a boundary of the first Brillouin zone of a hexagonal crystal.

Figure 5.1.2: The real and imaginary components of the dielectric function for
bulk (top row) and monolayer (bottom row) FeSn at q = M. The labels refer to
indices ij.

In both bulk and monolayer structures for q = 0, the calculated dielectric
tensor is diagonal, where ε11 = ε22, and ε33 has a different value:ε11 0 0

0 ε11 0

0 0 ε33

 . (5.4)

The components ε11 and ε22 pertain to response parallel to the kagome plane of
FeSn. Thus, ε11 = ε22 reflects the in-plane isotropy of the hexagonal crystal struc-
ture.

Figure 5.1.2 shows the behaviour of the dielectric function of bulk and mono-
layer FeSn away from q = 0, in particular at the M point of the first Brillioun
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zone. In both cases, non-zero off-diagonal components occur and ε11 is no longer
equal to ε22. The presence of non-zero off-diagonal components indicate coupling
between different directions in the response of the material to applied fields. Com-
pared to Γ, which is the centre of the Brillouin zone, the Brillouin zone edge is
no longer isotropic in-plane. Furthermore, at the M point, the dielectric tensor of
the monolayer looks very different from the bulk. All off-diagonal components in
the monolayer case are non-zero and the tensor is no longer symmetric.

Figure 5.1.3: The path between q points Γ and M in the first Brillouin zone
of a hexagonal crystal is indicated by the connecting line. Other high-symmetry
points are also shown.

Often, the wavelengths of electromagnetic radiation used as experimental probes
are longer than the material’s lattice constant. Thus, optical properties are usu-
ally deduced from the dielectric function in the q → 0 limit, so that ε = ε(ω) and
the dielectric function for q = 0 is the relevant quantity.

In the discussion that follows regarding the plasmons of bulk and monolayer
FeSn, ε(q, ω) refers to the longitudinal component ε11, as it was the dielectric
tensor component that was used to obtain the plasmon dispersions.

5.2 Bulk FeSn plasmons

Being metallic, bulk FeSn supports plasmons that come from the longitudinal os-
cillations of the conduction electrons occupying bands crossing the Fermi energy.
The electronic band structure of paramagnetic bulk FeSn is shown in Figure 5.2.1.

The calculated loss function −Im(ε−1(q, ω)) for paramagnetic bulk FeSn ob-
tained for several values of momentum transfer q along the path from Γ (q = 0) to
M (q = 0.19 Å−1) in the first Brillouin zone of the material is shown in Figure 5.2.2.

The main peak of each loss function corresponds to Re(ε(q, ω)) = 0 (see Figure
5.2.3), where the real part of the dielectric function crosses zero from negative to
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positive values, and to small Im(ε(q, ω)). Thus, the main peaks are associated
with plasmons. The conditions for identifying plasmons in the loss spectra can be
gleaned from (1.7) and from (3.34).

Figure 5.2.1: Electronic band structure of bulk FeSn (left) and density of states
(DOS) (right) projected on the s, p, and d states of an Fe and an Sn atom of a
kagome layer of bulk FeSn. The Fermi energy is set to zero.

Figure 5.2.2: The loss function of bulk FeSn for various q along ΓM in the first
Brillouin zone. Γ is q = 0 and M is q = 0.19 Å−1. Black dots mark the plasmon
peaks.

In general, for bulk FeSn, the plasmon peak of the loss function advances to
higher energies for larger q, the length of the wave vector along ΓM . At the same
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time, for increasing q, the plasmon peak broadens and loses intensity. This indi-
cates the influence of the electron-hole continuum.

The electron-hole continuum is a region of the energy–wave vector plane that
is dominated by single-particle excitations (see Figure 1.2.2). In this region, elec-
trons transition to unoccupied bands upon excitation, leaving behind positively
charged holes. This process is also known as interband transition. In the ho-
mogenous electron gas model [52] of electron-density excitations, away from q =
0, plasmon energies move closer to the electron-hole continuum and thus collective
excitations increasingly experience what is known as Landau damping. When plas-
mons interact with the electron-hole continuum, they decay as they impart their
energy to the generation of electron-hole pairs. Thus, well within the electron-hole
continuum, plasmons no longer exist.

Figure 5.2.3: Correspondence between the main peak of the loss function (top
row) and the zero-crossing of the real part of the dielectric function (bottom row),
shown for three values of q(= Γ, 0.10 Å−1, M) in bulk FeSn. Top and bottom rows
share the same horizontal axis.

The imaginary part of the dielectric function, which gives the absorption spec-
tra of a material, is associated with interband transitions and is therefore related to
plasmon damping [33, 51]. Plasmons experience damping when Im(ε(q, ω)) ̸= 0.
As can be seen in Figure 5.2.4, as q increases, Im((ε(q, ω)) also increases around
the frequency where Re(ε(q, ω)) = 0 occurs. This is in correspondence with the
broadening of the plasmon peak of the loss function for increasing q. The location
of the peaks of Im((ε(q, ω)) indicate that bulk FeSn absorbs light in the visible to
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ultraviolet part of the electromagnetic spectrum.

Figure 5.2.4: The real (top) and imaginary parts (bottom) of the dielectric
function of bulk FeSn for various q along ΓM in the first Brillouin zone.

Since high values of Im((ε(q, ω)) occur within the electron-hole continuum,
the shape of the electron-hole continuum itself can be gleaned from the dielectric
function. The colour map of Im((ε(q, ω)) in Figure 5.2.5 shows high intensity near
the Γ point, where the peaks of Im((ε(q, ω)) for various wave vectors along ΓM

are highest. It also shows that single-particle excitation energies increase away
from q = 0, as can be expected from predictions based on the homogenous elec-
tron gas model. However, in contrast to this model, the electron-hole continuum
is finite even at q = 0, suggesting that interband transitions exert some influence
on plasmons in bulk FeSn even for very short wave vectors.

The relation between energy and wave vector is presented in the dispersion plot
for plasmons of bulk FeSn in Figure 5.2.6. At the Γ point, the plasmon energy
is ∼ 16.5 eV, which is within the ultraviolet frequency regime that is usual for
metals [49]. Bulk FeSn plasmons are almost dispersionless from q = 0.07 Å−1 to
q = 0.12Å−1. In this region, the plasmon energy is almost constant, with a value
that is close to the energy at q = Γ. Given that the slope of the dispersion relation
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describes plasmon group velocity (v = dω/dq), the almost-flat slope suggests that
electron density oscillations exist as standing waves within this wave vector region.
Beyond this region, the plasmon energy slowly rises quadratically (see Figure 5.2.6)
as q moves towards the M point, as is expected for a bulk material for larger wave
vectors. The positive slope of the dispersion suggests the forward propagation
(v > 0) of plasmons for wave vectors nearer the edge of the Brillouin zone.

Figure 5.2.5: Colour map of Im(ε(q, ω)) for bulk FeSn. Bright yellow and dark
violet indicate the highest and lowest values of Im(ε(q, ω)), respectively. The
plasmon dispersion for bulk FeSn is superimposed as white dots.

A notable contrast to predictions based on the homogenous electron gas for
bulk systems is the behaviour of the dispersion relation near q = 0. Between q = 0

and about q = 0.05 Å−1, the plasmon energy rises before falling back to a value
close to the energy obtained for q = 0. This suggests that plasmons propagate
forward (v > 0) until around q = 0.02 Å−1 then propagate backward (v < 0) until
the dispersion curve flattens out halfway between Γ and M. From Figure 5.2.2, it
can be see that an abrupt broadening of the loss function for q = 0.02 Å−1 pulls
the peak to a higher energy relative to the peaks for neighbouring q. Random-
phase approximation (RPA) calculations, which were performed to check for the
presence of this rise in the plasmon dispersion using a different method, contain
the same dispersion behaviour. The plasmon energies from RPA are slightly higher
than the LDA values, with the largest difference of only 0.18 eV at the M point.
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Figure 5.2.6: Plasmon dispersion relation for bulk FeSn. Black/red dots are for
the paramagnetic/AFM case. The dashed line is the quadratic fit for values away
from q = 0, for the paramagnetic case.

The plasmon dispersion for bulk FeSn is superimposed over the colour map
of Im(ε(q, ω)) (see Figure 5.2.6). Throughout the Brillouin zone region ΓM , the
plasmon dispersion steers clear of the electron-hole continuum. Plasmons of bulk
FeSn continue to exist outside of the electron-hole continuum at the M point and
hence are not significantly damped at this Brillouin zone boundary. This accords
with the loss function still having a distinct main peak at q = M (0.19 Å−1).

The plasmon dispersion of bulk FeSn in the antiferromagnetic (AFM) state was
also obtained. The AFM dispersion plot, shown as red dots in Figure 5.2.6, follows
the shape obtained for the paramagnetic case. The calculated plasmon energies
for the paramagnetic and AFM cases are comparable, the largest difference being
0.08 eV near the Brillouin zone edge. This suggests that the behaviour of plasmons
in FeSn is not significantly altered when the material is in the AFM state. In the
following discussion of plasmons in monolayer FeSn, only the paramagnetic case
is considered.

5.3 Monolayer FeSn plasmons

The electronic band structure of paramagnetic monolayer FeSn is shown in Figure
5.3.1. Like in the bulk case, plasmons in monolayer FeSn come from conduction
bands crossing the Fermi energy. As will be discussed later in this section, these
longitudinal oscillations are affected by electron transitions between bands.
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In contrast to the bulk case, the calculated loss function for different values of
q along ΓM (Figure 5.3.2) has a more complex shape, which drastically changes
along with the wave vector length q. Unlike in bulk FeSn, where the highest point
in the loss function corresponds to Re(ε(q, ω)) = 0, in the monolayer case the zero-
crossing of the real part of the dielectric function matches a shoulder that occurs
prior to the highest point. This is clearly seen in the loss function calculated for
Γ (see Figure 5.3.3).

Figure 5.3.1: Electronic band structure of mnolayer FeSn (left) and density of
states (DOS) (right) projected on the s, p, and d states of an Fe and an Sn atom
of a kagome layer of monolayer FeSn. The Fermi energy is set to zero.

As in the case for the bulk, the loss function for Γ in the monolayer is the
tallest and most well-defined among the calculated curves. Compared to the bulk,
however, the monolayer loss function for Γ is much shorter and broader. As q

increases, the loss function for monolayer FeSn quickly loses its shape and is sub-
stantially broadened and flattened towards the Brillouin zone edge. The shoulder
that corresponds to Re(ε(q, ω)) = 0 is already hardly discernible for q = 0.12 Å−1,
as can be seen in Figure 5.3.3. This points to significant damping of plasmons away
from q = 0. Indeed, from q = 0.17 Å−1, Re(ε(q, ω)) no longer crosses zero and
is positive throughout the energy range considered. This can be seen in Figure
5.3.4, which also shows that the dip in the curve that develops as Re(ε(q, ω))
changes signs, becomes shallower as q increases. This behaviour in the real part
of the the dielectric function is accompanied by an increase in Im(ε(q, ω)) at the
energy where Re(ε(q, ω)) = 0 occurs (see Figure 5.3.4), pointing to the increasing
influence of interband transitions on the plasmons.
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Figure 5.3.2: The loss function of monolayer FeSn for various q along ΓM in
the first Brillouin zone.

Figure 5.3.3: The loss function (top row) and the real part (bottom row) of
the dielectric function for q = Γ and q = 0.12 Å−1. The zero-crossing of Re(ε)
corresponds to a shoulder that occurs before the main peak.
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Figure 5.3.4: The real (top) and imaginary (bottom) parts of the dielectric
function (bottom) for different values of q along ΓM .

Thus, in monolayer FeSn, plasmons are considerably damped as q increases.
From q = 0.17 Å−1, plasmons in monolayer FeSn no longer exist. This sug-
gests that near the Brillouin zone edge, excitations occur within the electron-hole
continuum [61, 62] and plasmons decay into single-particle interband transitions.
Compared to the bulk case, therefore, plasmons of monolayer FeSn are short-lived.

The colour map of Im(ε(q, ω)) for monolayer FeSn is presented in Figure 5.3.5.
The faint colouring reflects the lower intensity of Im(ε(q, ω)) for the monolayer
and corresponds to the uniformity of the values of Im(ε(q, ω)) for wave vectors
nearer the Brillouin zone boundary. As in the bulk case, the shape formed by
Im(ε(q, ω)) ̸= 0 indicates that the electron-hole continuum is finite at q = 0 for
the monolayer.

In Figure 5.3.5, the superimposed monolayer FeSn plasmon dispersion can be
seen to lie closer to the electron-hole continuum. This reflects the observation that
even for small q, Im(ε(q, ω)) for the monolayer is appreciable near Re(ε(q, ω)) = 0

(see Figure 5.3.4), pointing to a more pronounced influence of the electron-hole
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continuum compared to bulk FeSn. Such influence results in the broadened and
more complex loss function shape. Beyond q = 0.14 Å−1, Re(ε(q, ω)) becomes
positive throughout, suggesting that the plasmon dispersion enters the electron-
hole continuum. Thus, for larger q values along ΓM , plasmons in monolayer FeSn
no longer exist.

Figure 5.3.5: Colour map of Im(ε(q, ω)) for monolayer FeSn. Bright yellow and
dark violet indicate the highest and lowest values of Im(ε(q, ω)), respectively. The
plasmon dispersion for monolayer FeSn is superimposed as white dots.

The plasmon dispersion for monolayer FeSn, obtained from Re(ε(q, ω)) = 0

and shown in Figure 5.3.6, starts at q = 0 at a lower energy (∼ 9.6 eV) compared
to the bulk case. This is expected from the reduced thickness and hence lower
electron density of the monolayer structure. As for bulk FeSn, the monolayer plas-
mon dispersion shows a considerable change in plasmon energy between q = 0 and
q = 0.05 Å−1. However, in the monolayer case, the plasmon dispersion first dips
before rising back.

In contrast to the homogenous electron gas model for longitudinal charge den-
sity oscillations in two-dimensional systems, whose dispersion is characterised by
a √

q curve [52], the plasmon dispersion for monolayer FeSn is finite at q = 0. In
addition, the dispersion is almost flat between q = 0.07 Å−1 and q = 0.12 Å−1, in
the middle of the path ΓM . Also contrary to the electron gas model for plasmons
in two-dimensional systems, the FeSn monolayer dispersion plot curves downward
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towards the edge of the Brillouin zone. This gives a negative slope, suggesting the
backward propagation of plasmons (v < 0) near the M point.

Plasmon dispersions that contrast with homogenous electron gas predictions of
a √

q curve have also been found from ab-initio calculations for certain materials
that possess a quasi-2D structure (2D materials that are more than one-atom-
thick). Flatness and negative slope in their plasmon dispersions have been asso-
ciated with local field effects [120, 121]. Local field effects are microscopic-scale
variations in the electric field in the material, that are especially relevant in the
presence of inhomogeneity [102, 107].

Figure 5.3.6: Plasmon dispersion relation for monolayer FeSn. The dashed line
is a guide to the eye.

In Elk, the calculation of the macroscopic dielectric function (discussed in the
chapter on TDDFT) is calculated using a matrix in reciprocal lattice vectors G

and G′. This matrix, whose size is determined by the parameter gmaxrf, accounts
for local field effects. One would expect that because of the truncation along the
c−axis, local field effects would be more pronounced in monolayer FeSn compared
to the bulk structure. However, as noted in the chapter on computational details,
the gmaxrf value used for the plasmon calculations for the FeSn monolayer is not
a converged value due to computational expense. Thus, further investigation of
local field effects and how convergence in terms of the G and G′ vectors might
affect the monolayer plasmon dispersion, including the gap at q = 0, would be
useful in understanding plasmon behaviour in monolayer FeSn.



CHAPTER

SIX

MAGNONS IN BULK AND MONOLAYER FeSn

6.1 Bulk FeSn magnons

Figure 6.1.1: The imaginary part of the transverse spin-spin response function
Im(χ+−(q, ω)) of bulk FeSn for various q, which appear here as fractions of the
path ΓM in the first Brillouin zone.

Figure 6.1.1 shows the imaginary part of the transverse spin-spin response function
Im(χ+−(q, ω)) calculated for various wave vectors q along the path connecting the
Γ and M points of the first Brillouin zone of bulk FeSn. The magnon excitation
energies are the energies where the peaks of Im(χ+−(q, ω)) occur. To satisfy the
Goldstone theorem [122], which stipulates the vanishing of magnons at q = 0
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[5, 68], the finite magnon excitation energy obtained for q = Γ — the so-called
Goldstone error [111, 123] — was subtracted from all calculated spectra. This
process shifted the peak of Im(χ+−(q, ω)) to ℏω = 0. The magnon dispersion
for bulk FeSn, superimposed as black dots in Figure 6.1.2 was obtained using the
absolute values of the energies at which the shifted peaks occur. Many TDDFT
codes, including Elk, are known to introduce the Goldstone error as an artefact of
numerical computation [111, 115].

The calculated Im(χ+−(q, ω)) starts out near q = 0 with a well-defined peak.
From around the middle of the path ΓM , however, the peak broadens and begins
to disintegrate, until it is no longer well-defined at the M point. This behaviour
is indicative of Landau damping for magnons, which stems from the influence
of the Stoner continuum [124]. At certain wave-vectors, magnetic excitations
are dominated by single-particle spin-flip processes, in which electrons transition
from a spin-polarised band to a band with opposite spin polarisation. Inside this
region, called the Stoner continuum, magnons decay into such single-particle spin-
flip transitions. These single-particle spin excitation are especially pronounced in
magnetic metals, where itinerant conduction electrons interact via the exchange
interaction and form the Stoner continuum [69, 124].

Figure 6.1.2: Colour map of Im(χ+−(q, ω)) for bulk FeSn. Bright yellow and
dark violet indicate the highest and lowest values of Im(χ+−(q, ω)), respectively.
The magnon dispersion for bulk FeSn is superimposed as black dots. The hori-
zontal axis shows fractions of the ΓM distance.
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The magnon dispersion for bulk FeSn is linear near q = 0, as is expected for an
antiferromagnetic metal from theoretical predictions based on the Heisenberg ex-
change model [69, 70]. The magnon energy steadily rises with increasing q values
starting from Γ. This positive slope of the dispersion points to the forward propa-
gation of magnons (v = dω/dq > 0) for the majority of wave vectors along the ΓM
path. Near the M point, the dispersion plateaus at ∼ 80 eV, which suggests that
at the Brillouin zone boundary, the spin-wave group velocity approaches zero, re-
sulting in a standing wave. The obtained magnon dispersion is in agreement with
previous studies on bulk FeSn [29–31].

In the colour map of Im(χ+−(q, ω)) for bulk FeSn, the superimposed magnon
dispersion follows the shape formed by the peaks of Im(χ+−(q, ω)). While the
peaks are most intense near the Γ point, the intensity quickly fades and becomes
significantly smudged out about halfway between Γ and M. This reflects the disin-
tegration of the magnon peak, as shown in Figure 6.1.1, which can be attributed
to the influence of the Stoner continuum.

6.2 Monolayer FeSn magnons

Figure 6.2.1: Peaks of Im(χ+−(q, ω)) for monolayer FeSn for different values of
q along the path ΓM in the first Brillouin zone. Black dots indicate the highest
point in each curve.
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In contrast to the bulk case where Im(χ+−(q, ω)) begins as a simple curve for q =
Γ, all Im(χ+−(q, ω)) curves obtained for the monolayer structure are jagged, show-
ing multiple high points, as can be seen in Figure 6.2.1. Though Im(χ+−(q, ω))

intensifies with increasing q, the curve broadens and the distinctness of the peak
at q = Γ is lost. In consequence, the region of high intensity in the colour map of
Im(χ+−(q, ω)) in Figure 6.2.2 for the monolayer case is very broad compared to
the bulk case and it stretches all the way to the Brillouin zone boundary.

The resulting plasmon dispersion, obtained from the highest points of Im(χ+−(q, ω))

and which is superimposed on the colour map in Figure 6.2.2, is vaguely linear,
with a small slope in the middle of the path ΓM . The dispersion is almost con-
stant nearer to the M point. The highest magnon excitation energy obtained for
the structure is ∼ 2 eV, higher than what is usually obtained for AFM magnons,
which can go up to a few terahertz [125].

Figure 6.2.2: Colour map of Im(χ+−(q, ω)) for monolayer FeSn. Bright yellow
and dark violet indicate the highest and lowest values, respectively. The magnon
dispersion for monolayer FeSn is superimposed as black dots. The horizontal axis
shows fractions of the ΓM distance.

It should be noted that in the calculations for the magnon dispersion, the slab
structure had to be rotated in order for Elk to recognise the magnetic configuration
as collinear and thereby generate the transverse spin-spin response function. While
this does not seem to have a noticeable effect on the bulk structure, it might have
introduced computational artefacts that are more evident in the case of the slab



CHAPTER 6. MAGNONS IN BULK AND MONOLAYER FeSn 53

model. The parameter gmaxrf is also not converged for the magnon calculations.
While it does not seem to have greatly affected the bulk magnon calculations
(given the agreement with results from previous studies), it might have generated
a more significant effect on the monolayer. The results obtained for the magnon
dispersion of the FeSn monolayer thus needs to be validated and the possible effect
of the rotation of the slab as well as of gmaxrf convergence investigated.



54 CHAPTER 6. MAGNONS IN BULK AND MONOLAYER FeSn



CHAPTER

SEVEN

CONCLUDING REMARKS AND OUTLOOK

To study plasmons in FeSn, the loss function as well as the real and imaginary
parts of the dielectric function ε(q, ω) were obtained via TDDFT for different
wave vectors q along the path ΓM of the material’s first Brillouin zone. TDDFT
calculations for magnons were performed as well, and the magnon dispersion for
bulk and monolayer FeSn were obtained from the peaks of the imaginary part of
the transverse spin-spin response function χ+−(q, ω).

For bulk FeSn, the plasmon energy obtained at the Γ point q = 0 is within the
range expected for a metal and the plasmon dispersion rises quadratically nearer
to the Brillouin zone boundary. Throughout the path ΓM , the plasmon dispersion
lies away from the electron-hole continuum, so that bulk plasmons continue to be
long-lived at the edge of the first Brillouin zone at the M point. Many of these
results conform to theoretical expectations for a metallic bulk material.

Compared to the bulk case, the plasmon energies obtained along ΓM of mono-
layer FeSn are lower. In addition, the plasmons are short-lived, pointing to a more
pronounced interaction with the electron-hole continuum. Near the edge of the
first Brillouin zone, plasmons in the FeSn monolayer no longer exist.

Several of the results obtained, however, goes against the predicted behaviour
for plasmons based on analytical theories that use the homogenous electron gas as
model. These deviations are particularly evident in the monolayer case. Contrary
to the prediction of √q behavior, the obtained monolayer plasmon dispersion is
gapped. The middle of the dispersion curve is also nearly flat and the slope be-
comes negative nearer to the Brillouin zone boundary. Moreover, between q = Γ

and the nearly dispersionless portion of the curve, there is a conspicuous dip in
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energy. This has a counterpart in the bulk plasmon dispersion, where the energy
rises before it falls back to a value that is close to that found for q = 0.

When it comes to magnons, the results for bulk FeSn are once again more
straightforward than the results for the monolayer. For bulk FeSn, the magnon
dispersion starting from Γ rises linearly until it flattens out near the Brillouin
zone edge at the M point. This behaviour and the energies obtained are compa-
rable to those found in previous studies on FeSn. The dispersion also follows the
theoretically expected linear curve for antiferromagnets. In contrast, the energies
obtained for monolayer FeSn, which go up to ∼ 2 eV, are higher than expected
for an antiferromagnetic material. The calculated Im(χ+−(q, ω)) curves are quite
jagged, making the peaks harder to discern. As stated in the previous chapter,
the magnon calculation results for monolayer FeSn may suffer from some compu-
tational artefact introduced by the rotation of the slab model and difficulties in
parameter convergence. The results, particularly for the monolayer, thus need to
be validated. One could use other TDDFT codes that employ techniques that
may offer more computational efficiency (for instance [77]).

Returning to plasmons, it is recommended that the results obtained in this
thesis be reproduced and validated, in particular to investigate the origins of the
deviations from analytical predictions and thereby gain better insight into the
plasmon behaviours described here. The gapped monolayer dispersion, local field
effects, and factors that result in the rise/dip in plasmon energy merit further
study. The monolayer case is particularly interesting, given also the recent atten-
tion being paid to plasmon behaviours in real materials [121, 126]. It might be
helpful and instructive to use other methods, such as the GW method [121], or
other TDDFT codes.

That being said, the presence of plasmon dispersion characteristics that de-
viate from theoretical expectations highlights the relevance of paying attention
to possible differences between analytical models and real materials. In stud-
ies of plasmon-magnon coupling in 2D materials for instance, the theoretical √q

behaviour is usually assumed. However, as noted in the chapter on plasmons,
published studies have pointed out the marked differences between this theoreti-
cal behaviour and the plasmon dispersion obtained for specific real 2D materials.
The existence of such deviations also points to the value of ab-initio methods,
which in principle provide a more realistic description of materials.

It would be intriguing to revisit the results in this work when efforts to fab-
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ricate FeSn thin films and atomically-thin FeSn come to fruition, as results from
experimental observations can then be compared to the TDDFT results presented
here. Further computational studies can, in that case, be based on questions such
experimental findings may raise.

An avenue for further study would be the investigation of the effects of spin-
orbit coupling on the plasmon and magnon dispersions of FeSn. Spin-orbit cou-
pling was not considered in the present work because of the huge computational
overhead that it presented. In magnon dispersions, spin-orbit coupling is known
to introduce a gap at q = 0. Since spin-orbit coupling changes the electronic band
structure, it would be interesting to look into how it affects plasmons in FeSn as
well.

Another path of future inquiry would be to study the effect of external magnetic
fields on the collective excitations. In this work, the focus is on the paramagnetic
case. Sufficiently strong external magnetic fields can change the magnetic proper-
ties of FeSn and affect excitations in the material.

Future work can also be done on the effects of an applied external electric field
or of defects such as vacancies and impurities (doping) on the plasmons of bulk
and monolayer FeSn. These factors can affect the electronic band structure, in-
cluding the Fermi level, and may thus influence plasmon energies and the plasmon
dispersion shape. It would be interesting to see if these factors could affect the
plasmon energy for q → 0 and perhaps make plasmon-magnon coupling possible,
particularly in the monolayer case.
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APPENDIX

A

CONVERGENCE TESTS

To illustrate the convergence tests performed, the curves obtained for different
parameters of the loss function for bulk FeSn are shown. The convergence tests
for the loss function of monolayer FeSn as well as for the transverse magnetic
response function of bulk and monolayer FeSn proceed in a similar manner: a
parameter is varied while keeping all other parameters the same; the converged
value is then chosen as the value to use in calculations, and one proceeds to test
for convergence with respect to another parameter.

Figure A.0.1: The loss function for various values of the parameter rgkmax.
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Figure A.0.2: The loss function for various values of the parameter gmaxvr.

Figure A.0.3: The loss function for various values of the parameter emaxrf.
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Figure A.0.4: The loss function for various values of the parameter gmaxrf for
a k-point mesh of 12× 12× 6.

Figure A.0.5: The loss function for various values of the parameter gmaxrf for
a k-point mesh of 16× 16× 8.
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