
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Claire Trinquet

Pepper as an assistant in the library:
Identifying books
using machine learning

Master’s thesis in Applied Computer Science
Supervisor: Deepti Mishra
June 2023

Claire Trinquet

Pepper as an assistant in the library:
Identifying books
using machine learning

Master’s thesis in Applied Computer Science
Supervisor: Deepti Mishra
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Acknowledgement

I would like to express my deepest gratitude to my supervisor, Deepti Mishra for
her guidance and support throughout the entire process of writing this master
thesis. Her feedback and patience have been an invaluable help for this research,
and I am very thankful for all I have learned from her.

I would also like to thank my family and my friends during these two years. I
am profoundly grateful for your support and encouragement which have been a
constant source of strength and motivation during these two years.

Claire Trinquet

iii

Abstract

With the development of new technologies in the last decades, robots are more
present than ever in our daily lives. Social robots are an example of this. They
are humanoid robots, designed for social interactions with humans and other ro-
bots. Another example of this is robots being used in libraries, to help locate books
and automate processes. However, these library robots don’t have social interac-
tions with people the way social robots do, and social robots themselves lack the
sensors that enable other robots to detect and identify books. In order to explore
the possibility of using a social robot in the library, this master thesis focuses on
developing a way for a social robot, Pepper, to detect books in its environment. The
objective is to combine Pepper’s camera with Computer Vision techniques such as
object detection and OCR in order to enable the robot to read the titles of books
in front of it. Several models and parameters were compared in the experiment,
and the findings show that EasyOCR is the most accurate model for this task. Al-
though the results of the OCR do not fit perfectly the text written on the books,
the error rate is low enough for it to be recognizable. This study presents a new
way for Pepper to learn from its environment, and can serve as a basis for future
work related to Pepper being used in the library.

v

Sammendrag

Roboter er mer til stedet enn på noe tidligere tidspunkt gitt den hyppige teknolo-
giske utviklingen de siste tiårene. Sosiale roboter er et eksempel på dette. De er hu-
manoide roboter, designet for sosial interaksjon med mennesker og andre roboter.
Andre roboter, som bibliotekroboter, er designet for automatiserte prosesser og
bokidentifisering. Biblioteksrobotene er derimot ikke designet for sosiale interak-
sjoner på likt vis som sosiale roboter. Denne masteroppgaven ser på muligheten
for å bruke sosiale roboter, som mangler sensoren som muliggjør identifisering av
bøker, i biblioteker. For å utforske muligheten for å bruke en sosial robot i bibli-
oteket, fokuserer denne masteroppgaven på å utvikle en måte for en sosial robot,
Pepper, å oppdage bøker i sitt miljø. Målet er å kombinere Peppers kamera med
Computer Vision-teknikker som objektdeteksjon og OCR. Dette for å gjøre det mu-
lig for roboten å lese titlene på bøkene foran seg. Flere modeller og parametere
ble sammenlignet i forsøket, og funnene viser at EasyOCR er den mest nøyak-
tige modellen. Selv om resultatene av OCR ikke passer perfekt til teksten som er
skrevet på bøkene, er feilraten lav nok til at den er gjenkjennelig. Denne studien
presenterer en ny måte for Pepper å lære av omgivelsene sine, og kan tjene som
grunnlag for fremtidig arbeid knyttet til at Pepper brukes i biblioteket.

vii

Contents

Acknowledgement . iii
Abstract . v
Sammendrag . vii
Contents . ix
Figures . xi
Tables . xiii
Code Listings . xv
1 Introduction . 1

1.1 Keywords . 2
1.2 Problem statement . 2
1.3 Research Questions . 2
1.4 Contributions . 3
1.5 Outline of Chapters . 3

2 Related Works . 5
2.1 Robotics and social robotics . 5
2.2 Robots in libraries . 6
2.3 Object Detection and Optical Character Recognition 7

2.3.1 Object detection in real time . 7
2.3.2 OCR or Optical Character Recognition 9
2.3.3 OCR accuracy . 10

3 Methodology . 11
3.1 The Pepper Robot . 11
3.2 Design of the scenario . 12
3.3 Experiments . 13

3.3.1 Procedure . 14
3.3.2 Parameters . 15
3.3.3 Data collection . 17

4 Implementation . 21
4.1 Experiments . 21

4.1.1 TakePictures . 21
4.1.2 CropPictures . 23
4.1.3 UseOCR . 25
4.1.4 Accuracy . 28

4.2 Scenario . 29

ix

xClaire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

5 Results . 33
5.1 Object detection . 33
5.2 OCR . 35

5.2.1 Parameters of the experiment 36
5.2.2 OCR results across books . 42

6 Discussion . 45
6.1 Integration of machine learning with Pepper 45
6.2 Object detection and OCR . 46
6.3 Scenario . 46
6.4 Limitations . 48
6.5 Implications . 48

7 Conclusion and Future Work . 49
Bibliography . 51

Figures

2.1 An example of industrial robots and humanoid robots 5
2.2 Results of object detection on a photo of a desk 8

3.1 The Pepper robot . 12
3.2 The process to identify a book in the application with the Pepper

robot . 13
3.3 Example of the process explained previously: Taking a photo with

Pepper and running the object detector model 14
3.4 The previous photo from figure 3.3, cropped to only show the book

at the top of the pile . 14
3.5 The books used for the experiments . 15
3.6 A photo taken by the Pepper robot with its top camera and resolu-

tion of 4 . 16
3.7 Photos of the same pile of book, taken with resolution 3 (left) and

resolution 6 (right) . 17

5.1 The number of detection results . 33
5.2 The number of OCR results . 35
5.3 The average CER, separated according to OCR model 36
5.4 The average CER, separated according to resolution 37
5.5 The average CER, separated according to distance 38
5.6 The average CER, separated according to distance and resolution . 39
5.7 The average CER, separated according to OCR model and distance 40
5.8 The average CER, separated according to OCR model and resolution 40
5.9 The average CER, separated according to OCR model, distance and

resolution . 42
5.10 The average CER, separated according to book 43

xi

Tables

3.1 The four categories of detection results 19
3.2 The books and the associated expected result for each 20

5.1 The detection results . 34
5.2 The detection results, separated according to resolution 34
5.3 The detection results, separated according to resolution and distance 35
5.4 The OCR results, separated according to OCR model 36
5.5 The OCR results, separated according to resolution 37
5.6 The OCR results, separated according to distance between the robot

and the books . 38
5.7 The OCR results, separated according to distance and resolution . . 38
5.8 The OCR results, separated according to OCR model and distance . 39
5.9 The OCR results, separated according to OCR model and resolution 40
5.10 The OCR results, separated according to OCR model, distance and

resolution . 41
5.11 The OCR results, separated according to book 43

6.1 The CER results from example 1 . 47

xiii

Code Listings

4.1 Connection to Pepper . 21
4.2 Taking a picture with Pepper . 22
4.3 Transferring the files to the computer 23
4.4 The main part of the CropPictures file 23
4.5 The detect function . 24
4.6 The cropPicture function . 24
4.7 The main loop of UseOCR.py . 25
4.8 The pytess function . 25
4.9 The easyOCR function . 26
4.10 The get_distance, distinguish_rows and sorting functions 26
4.11 The kerasOCR function . 28
4.12 The Accuracy file . 28
4.13 Use of a subprocess in scenarioMain.py for the object detection . . . 30
4.14 The detector.py file . 30
4.15 Counting books in scenarioMain.py . 31
4.16 Displaying text on Pepper’s tablet . 31

xv

Chapter 1

Introduction

Technology is becoming more and more present in our modern society. Digital
devices are used everywhere, from big industrial robots in factories to smart-
phones and laptops in our daily lives. The field of robotics is an integral part of
this progression of technology in our lives, as more types of robots are developed.

An example of this is social robots [1]. Social robots are robots made specific-
ally with human interaction in mind. They have humanoid characteristics and are
able to interact with their environment and mimic social interactions. They can
provide service and companionship in many different situations, for example in
education as assistants to teachers. They can also be companions for the elderly,
giving them a social connection while also having the same functionalities as di-
gital devices which enable them to give reminders, contact family or caregivers
and so on. Social robots can also be receptionists, helping to automate some tedi-
ous tasks.

Another area influenced by the expansion of the the robotics field is libraries.
More and more studies are exploring ways to integrate robots in libraries. Many
tasks performed by librarians can be automated and given to robots. These lib-
rary robot are able to navigate the library they are in and identify books, usually
through specific markers put on the books, like radio frequency tags. They can
then manipulate these books, retrieving them for patrons, sorting them to be in
the correct order or simply registering their position. However, contrary to social
robots, these robots helping in libraries are usually not interacting much with lib-
rary patrons. This study focuses on filling this gap by having a social robot perform
the tasks given to robots in library.

The integration of a social robot as assistant in the library would be beneficial
by bringing in the advantages of the social robots, automation and interaction,
in the environment and tasks of the library. However, a social robot faces issues
that other robots might not, namely it is not made to instantly recognize books.
While other robots may have specific sensors, the social robot used in this study,
Pepper, lacks them, relying instead on microphones and cameras to perceive its
environment. Thus, this research focuses on developing a program that enables
Pepper to identify books in front of it.

1

2Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

This study aims to apply machine learning solutions for computer vision prob-
lems to the specific situation of this social robot identifying books in the library.

1.1 Keywords

Social robotics; Computer vision; Object detection; OCR

1.2 Problem statement

The main goal of this master thesis is to evaluate the possibility to use a social
robot, Pepper, as an assistant in the library. The main scenario would be to have
Pepper talk to people and when they are looking for a specific book, they would
give its title to Pepper and it would look for it in the library.

Pepper is well capable of social interaction with humans, being equipped with
modules to talk, recognize faces and even emotions. However, it is lacking the
sensors that enable most robots currently used in libraries to recognize books.
The robots developed for libraries are made for this environment and specifically
to detect, identify and sometimes even move books. As will be seen later in the
Background chapter, most of them use RFID technology to find and identify books,
and have gripper arms mounted on a mobile platform that allow them to take the
books and move them in the library. The sensor that is most suited to the task
of detecting the objects around the robot is the camera. However, Pepper doesn’t
have specific modules that would allow it to detect specific objects, or to read text
on an image.

This immediately poses the problem which is at the center of this study:
How can Pepper detect and identify books in its proximity? Or how can it be made
to detect and identify books?

The main emphasis of this study will be put on developing the robot’s percep-
tion of books in order to identify them.

In order to analyse the environment of the robot, some computer vision tech-
niques will be required. Computer vision is a field of Artificial Intelligence that
focuses on the problem of deriving meaningful information from images. In this
case, two specific subtasks will be needed: object detection, which centers on de-
tecting objects in images or video, and Optical Character Recognition (OCR) which
focuses on extracting text from images.

This study will focus on these two subtasks applied to Pepper’s camera for the
goal of identifying books.

1.3 Research Questions

The combination of object detection and OCR has been explored in previous stud-
ies, but this study focuses more specifically on the social robot Pepper, and on
book titles as a target. This goal is to explore the use of object detection and OCR

Chapter 1: Introduction 3

on Pepper’s camera to read the title of books in front of Pepper. This objective is
relayed by the following research questions:

• How can we integrate machine learning with Pepper to enable it to read book
titles using its camera?
• Which machine learning algorithms and models related to object detection and

OCR can be used and are most efficient for this goal considering different para-
meters?
• To what extent can this integration of machine learning with Pepper be suc-

cessfully used in the library?

1.4 Contributions

This research study is an important first step in using Pepper in the library. Having
a way to read the titles of books and thus to identify them opens many opportun-
ities for uses of Pepper in the library.

The introduction of social robots in libraries serves several interests for the lib-
rary itself. The automation of repetitive and time-consuming tasks is an important
goal to improve the efficiency of library management. This eases the work of lib-
rarians while improving the quality of service to patrons. Using a social robot for
this task is also crucial for said quality of service, because social robots are de-
signed for human interaction.

More generally, this study contributes to the field of social robotics by trying
to integrate a social robot in a new context. It focuses on the robot’s perception
of its environment and tries to expand it to books. The use of Computer Vision
combined with Pepper’s camera enables it to interact with its environment in other
ways, which can be useful in many different contexts outside the library as well.
This allows the robot to recognize and learn from its environment.

1.5 Outline of Chapters

In order to give some context to this research, as well as some introduction to
the fields of social robotics and computer vision, chapter 2 presents some related
works which give some background to this study. Chapter 3 presents the robot
used for this study, Pepper, and introduces the scenario that will be implemented,
along with the methodology followed by the experiments, with the procedure and
choices made. Chapter 4 explains the implementation of both the experiment and
the scenario in python, with details on technical solutions employed. Chapter 5
gives an analysis of the results of the experiment in terms of both object detection
and OCR, while chapter 6 reflects on those results and discusses their applica-
tions to the scenario, their implications and their limitations. Finally, chapter 7
concludes on the findings of this study and examines some ideas for potential
future work related to this topic.

Chapter 2

Related Works

This chapter will present some related work in the field of Robotics and Machine
Learning.

2.1 Robotics and social robotics

The field of robotics is constantly evolving and has seen in the last decades strong
technological advancements. Different kinds of robots have emerged, suited to
different fields and different tasks. Industrial robots have been used in manu-
facturing for decades, increasing precision and speed, and replacing humans to
perform tasks which would be highly repetitive or dangerous. Robots are now also
coming into other areas in our lives, as humanoid and social robots become more
common.

(a) An industrial robot, palletizing sacks of flour in a
Moulins Bourgeois factory in Verdelot, France
Source: Kuka, Kuka.com

(b) QTrobot, a humanoid robot tasked to teach
kids with autism
Source: LuxAI, luxai.com

Figure 2.1: An example of industrial robots and humanoid robots

Social robotics is a domain of robotics that has become bigger and more at-
tractive recently. There are different ways to define social robots but they tend

5

https://www.kuka.com/en-se/industries/solutions-database/2021/11/moulins-bourgeois
https://luxai.com/

6Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

to be defined as autonomous robots which can have complex social interactions
with their environments, including other robots and humans [2]. They incorpor-
ate human characteristics and abilities in order to mimic social interactions. These
social interactions can be expressed through face recognition, physical touch, dia-
log, emotion recognition... Social robots are deployed for different uses, being
used as companions and educational tools [1]. They are used in elderly care and
in hospitals, to interact with patients and assist them [3]. They are also present
in education, where they can help at different levels and in different fields [4, 5].
Aldebaran introduced their Pepper robot, a social robot, and explored in a blog
post the ways that it could help as a receptionist, being able to greet employees
and visitors, and automating some tasks such as check-in for visitors, or providing
information about arranged meeting for visitors [6].

2.2 Robots in libraries

Following the expansion of robots in more and more fields for different situations
and tasks, they have also started being used in libraries. Many tasks that librarians
perform can be automated, and the use of robots can make life easier for librarians.
Different types of robots have been employed and a number of technologies have
been developed and used in order to facilitate the navigation of the libraries, and
the detection of books by the robots. In most cases, robots are used to help people
find books, but they are sometimes also tasked with checking that every book is
on the shelf where it should be and with sorting the books that are not in the right
place.

A popular solution to the problem of robots navigating autonomously in the
libraries, has been to give said robots internal maps which they use to find their
way. The robot presented in [7] uses a predefined map and Dijkstra’s algorithm
in order to find the shortest path to its goal. Similarly the robot from [8] has
an internal map of the library and uses it to find the shortest path, but it also
dynamically updates the map as it moves in order to avoid potential obstacles.
The robot in [9] is used in a library where shelves have RFID tags and books have
barcodes. It has an internal map made of a tree where the nodes are the RFID tags
of the shelves, and the books are mapped to their corresponding shelves. When it
needs to go somewhere in the library, the robot plans its route using the tree and
it scans the RFID tags as it navigates the library in order to find its path, and then
scans the barcodes to identify the books.

When it comes to the book detection, RFID (Radio Frequency Identification)
tags are one of the most used methods [7, 10, 11]. The books have RFID tags
which, when triggered by an RFID reader, transmit digital data. The robots are
equipped with the RFID reader and receive the digital data, which they match
against their book database. This allows them to detect and identify books. Sim-
ilarly, some robots scan barcodes or QR codes added on the spine of the books
to identify books [8, 9, 12]. This robot [13] uses a model of invisible bookmarks
made with special ink to identify books.

Chapter 2: Related Works 7

Another study [14] uses a self-made dataset to train a segmentation model
which detects each book in an image. It matches each detected instance against a
database of images of the book spines in order to recognize precisely which book
it is. The robot presented in [15] uses a database with for each book a picture of
its spine. When the robot is looking for a specific book, it compares the pictures
it takes of the shelf full of books with its database and thus finds the book it is
looking for. While this method seems efficient, the time necessary to create the
database by taking and processing pictures of all the books in the library makes it
very time-consuming.

This study [16] would put a note taped on the spine of the books, with an
identification code for each book. The robot would read the note (using OCR or
other Machine Learning algorithms), and look for the identification code in its
database to identify the book. Another study [17] uses a similar approach, where
the robot extracts the book labels using image segmentation and OCR.

Something to note is that most robots used in libraries are not humanoid or
social robots, they are much closer to industrial robots. The robots as mentioned
previously tend to not have much interaction with either librarians or patrons,
and thus they don’t need to be humanoid robots, which would be more suited
for contact with people. Most of them are simply comprised of a mobile part, to
navigate the library, and sensors, to be aware of their surroundings and detect
books, with some of them also having a gripper to take the books.

While it is true that the robots used in library are not, for the most part, made
to have interactions with people like social robots, they are designed for the lib-
raries and for detecting, recognizing and interacting with books. However, social
robots like Pepper are missing the RFID sensors that many library robots have and
which enable them to recognize books. Therefore, it will be necessary to imple-
ment another way for them to identify books.

2.3 Object Detection and Optical Character Recognition

This subsection will introduce some Machine Learning algorithms and their im-
plementation, which will be useful in the context of a social robot recognizing its
environment: Object Detection and Optical Character Recognition. Object Detec-
tion will allow the Pepper robot to identify the objects it sees with its camera, more
specifically to identify books, and Optical Character Recognition will be used to
extract the text on the spine of the previously identified books, corresponding to
the titles of said books.

2.3.1 Object detection in real time

Object detection is a computer vision problem, where the goal is to locate instances
of objects in images or videos, as seen in figure 2.2. It is a popular topic in the field
of Machine Learning and Deep Learning, and there are many existing algorithms
and models that tackle this problem. The additional constraint of real-time object

8Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

detection makes the problem more specific: the algorithms need to process images
fast enough while still maintaining high accuracy. Real-time object detection is
often used on real-time video sequences, and thus requires an extremely short
inference time.

Figure 2.2: Results of object detection on a photo of a desk

There are two big categories of object detection algorithms: one-stage al-
gorithms without proposals, and two-stage algorithms with a proposal phase. The
first category, one-stage algorithms, processes the image only once to make pre-
dictions on the location and label of objects in the image. The second category,
with two stages, first uses a network to predict the location of objects on the im-
ages (the proposals), and then in the second stage refines these proposals and
assign labels to them (the names of the object detected). Both types of algorithms
have their advantages and disadvantages, two-stage algorithms tend to be more
accurate while one-stage algorithms tend to be faster and able to detect in real
time, but that is not always strictly the case [18].

Faster R-CNN [12] is an example of two-stage algorithm. As such, it first pro-
cesses the image through a RPN (Region Proposal Network) which finds proposals
(locations where objects might be), and then the image is passed through a detec-
tion network which classifies the objects detected. Proposed in 2015, it offered a
new RPN which shared features with the detector, allowing the calculations to be
faster while maintaining state-of-the-art accuracy when it came out. There have
since been improvements on it. For example, in 2017, Mask R-CNN [19]which

Chapter 2: Related Works 9

extends Faster R-CNN to make it easier to generalize to other tasks.
The Yolo detector [20] is currently the state-of-the-art when it comes to real-

time object detection. It is a one-stage detector, which uses a single neural net-
work to process an input image and output the detected objects with their label,
bounding box and confidence level. There have been several versions of the Yolo
detector since its first iteration, each improving on the previous version. The last
version to date is Yolov7 [21].

2.3.2 OCR or Optical Character Recognition

OCR stands for Optical Character Recognition. It is an algorithm which is able to
’read’ text from an image [22, 23]. There are two main use cases for OCR: the di-
gitization of paper documents, in which a paper document is scanned as an image
file or a pdf and OCR is used to get the text from the document, and the analysis
of a scene image which contains text in the environment it depicts. The second
case tends to be much more difficult than the first, as complex backgrounds, low
resolution and variations in fonts and layouts of text in real-life scenes make the
text harder to read than in clean scanned documents [24].

There are many implementations of OCR algorithms, here are some OCR lib-
raries in python:

Pytesseract [25] is a python wrapper for Google’s Tesseract-OCR Engine.
Tesseract was first developed at HP in the 1980s and made open source in 2005,
after which Google further developed it. Having been developed for a few decades,
it has a different structure than more recent OCR software. It first finds blocks of
text, which are then broken down into lines, words and characters. Recognition
then proceeds, and each recognized word is fed to an adaptative classifier, which
makes it easier to recognize words further down the page. Thus Tesseract gets
better at recognizing words as it reads the page, but because the adaptive clas-
sifier might have learned something ’too late’ (towards the bottom of the page),
Tesseract goes through the page once again to try to recognize more words [26].
Tesseract is today a very popular OCR, and performs especially well on scanned
documents, though it tends to have a harder time for scene images [27].

EasyOCR [28] is a python OCR module that recognizes more than 80 lan-
guages. EasyOCR works in two steps: first it uses the CRAFT (Character-Region
Awareness For Text detection) algorithm to detect the text in the image, and then
recognition is done with a CRNN (Convoluted Recurrent Neural Network) made
of 3 main components: feature extraction, sequence labeling and decoding. It is
quite easy to install and use compared to other OCR libraries and it is implemen-
ted using the PyTorch library, meaning that having a CUDA-enabled GPU (so that
it can run some of the workload usually only on the CPU) can make the compu-
tations much faster.

keras-OCR [29] is a python library which provides OCR models and an end-
to-end training pipeline capable of training new OCR models. It is based on the
CRAFT method for text detection and a Keras implementation of CRNN (Convo-

10Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

lutional Recurrent Neural Network) for text recognition.
PaddleOCR [30] is an open-source tool built by Baidu Research for OCR. It

supports many languages and non-latin scripts. It uses a series of OCR models
called PP-OCR. They are ultra-lightweight algorithms using two stages: first text
a detection model followed by a CRNN for text recognition. They are very fast
models, and tend to perform well on documents, but not so much in scene images
[31].

Calamari OCR [32, 33] is a python OCR tool that was developed to be used on
historical documents. It uses techniques such as voting and pretraining to avoid
the effort of manually annotating all the training data with the actual results.
Calamari performs well, with a low character error rate and fast computation on
scanned documents [33].

2.3.3 OCR accuracy

The question of how to measure OCR accuracy has been explored in a 2021 survey
[34] which presents different metrics used. The current state-of-the-art comes
from the work of Stephen V. Rice [35] who presented algorithms that measure
the performance of OCR algorithms. He defines two main measures, character
accuracy and word accuracy.

Character accuracy uses the Levenshtein distance [36]. If you have a string A
of length n which is the correct string, and a string B which is the string gener-
ated by the OCR, then E is the minimum number of edits (insertions, deletions
and substitutions of characters) necessary to go from B to A. Then the character
accuracy is n−E

n .
Word accuracy is similarly defined. From a correct list A of n words and an

OCR-generated list B, E is this time the minimum number of insertions and sub-
stitutions of words needed to go from B to A. Rice does not count deletions of
words in this case. Then the word accuracy is defined as n−E

n .
The character accuracy can actually be negative, if the two strings have no

characters in common and the OCR string has more characters than the correct
string. In place of character and word accuracy, the metrics more commonly used
are CER (Character Error Rate) and WER (Word Error Rate), defined as E

n [34].
The lower the values of the CER and WER, the higher the accuracy, with an error
rate of 0 signifying that the correct and OCR strings are identical. And in the
previous case of two strings having no characters in common with the OCR string
being longer than the correct string, instead of having a negative accuracy, the
error rate is simply higher than 1, or than 100%.

Chapter 3

Methodology

This chapter will present the robot used for the study, the design of the application,
and the experiments performed.

3.1 The Pepper Robot

Pepper is a social robot that was developed by SoftBank Robotics [37], which
is shown in figure 3.1. Pepper is a 1.2-m-tall wheeled humanoid robot. It has
sensors that allow it to perceive its surroundings, including two RGB cameras on
the forehead and in the mouth with a resolution of 640×480 pixels at 30 frames
per second, and a 3-D sensor behind the eyes with a resolution of 320×240 pixels
at 20 frames per second. It has a total of 17 joints which allow it to move in
different ways and mimic a humanoid behaviour. It also has a tablet on its chest
that can be used to display images, videos or even websites.

Pepper is able to move and express itself through speaking and body language.
It can interact with people using voice and emotion recognition, and many more
aspects were designed to make it seem more sociable: its head following the per-
son to look at them while talking to them, expressive body language through
moving its arms (hands and fingers included) and its body in a natural way... Pep-
per can be programmed to bow to greet customers, to dance when asked to or to
giggle when someone touches its head for example.

Pepper’s navigation is performed with the use of three wheels (left, right and
back) at its bottom. They allow Pepper to move around its environment. Pepper
also has two degrees of freedom in its neck which lets it turn its head around, and
several joints in the arm and hands (shoulders, elbows, wrists and hands). Pepper
is programmed for basic navigation and to avoid obstacles when moving around.

Naoqi

Naoqi is the name of the operating system that runs in the Pepper robot and con-
trols it. The Naoqi framework can be used to program Pepper, as well as other
robots created by SoftBank robotics like Nao.

11

12Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

Figure 3.1: The Pepper robot

Naoqi had many modules that are used for different aspects of Pepper. ALDia-
log gives the ability to make Pepper talk to a human following a set of rules, and
ALPhotoCapture allows the programmer to take pictures with the robot’s cameras
and save them. All these modules are available in Python and make it possible to
create complex programs for Pepper.

3.2 Design of the scenario

The goal of this study is to determine explore the use of a social robot, in this case
Pepper, in the library. The robot would be able to navigate the library to detect
and identify books.

In order to implement this, Pepper would take pictures of its environment.
On each of these pictures, an object detection algorithm would be run to detect
books. For each book detected on the picture, a copy of the picture would created
and cropped to show only the book detected. And finally on this cropped picture,
an OCR algorithm would be run in order to read the title of the book. The process
is described in figure 3.2.

As an example, figure 3.3 shows a photo of books taken by Pepper. Then the
object detection model is used to detect books, which gives the result on the right
of figure 3.3. Then each book would be identified them by reading the title on

Chapter 3: Methodology 13

Figure 3.2: The process to identify a book in the application with the Pepper
robot

their spine. An example can be made using the book at the top of the pile in figure
3.3. Figure 3.4 shows the photo cropped to just the book on top of the file, based
on the coordinates of the book as detected by the object detection model. Once
the photo is cropped, an OCR model can read the title from the cropped picture:
"Handbook of Algorithms for Wireless Networking and Mobile Computing", which
is how the robot can identify the book by its title.

One of the key elements of this process is the OCR model. Thus, the exper-
imental phase of this study will compare some OCR models that can be used in
this scenario, in order to find the most accurate one.

3.3 Experiments

This section will present the experiments, the tools chosen and preliminary de-
cisions made for this study.

14Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

(a) A photo of books taken by Pepper (b) The same photo after using the object detection model

Figure 3.3: Example of the process explained previously: Taking a photo with
Pepper and running the object detector model

Figure 3.4: The previous photo from figure 3.3, cropped to only show the book
at the top of the pile

3.3.1 Procedure

As a a first approach to this problem, the scenario explored was simplified.

• The books were put in a pile in front of Pepper. They were put on a box so
that they would be at the right height for Pepper to see them without having
to turn its head.
• They were positioned on their side so that their titles on the spine would

be the right way up to avoid having to figure out which way the text was
written and having to rotate the image based on that.
• The books were chosen to be thick and have their title written in big text.
• All books are also in English to avoid confusion with letters from other al-

phabets.

The procedure of the experiments followed the process detailed in figure 3.2.
Pictures were taken of the books in front of Pepper. They were then analysed with
the object detection model to detect books, and for each book, a cropped image

Chapter 3: Methodology 15

was created and run through an OCR model to extract the text of the book title.
All the results were put in an excel sheet and compared to the actual title of the
book to determine the parameters which made the detection and text extraction
most accurate.

3.3.2 Parameters

In the experiments, different parameters were compared to determine the most
accurate way to read the title of the books.

Books

All the books used in the experiments were borrowed from the library of NTNU
in Gjøvik. They were chosen because they fit the conditions mentioned in section
3.3.1. All books are thicker than 2cm and have text whose height is between 0.7
and 1.1cm. There are 6 books in total with different colors and sizes.

The books are shown in figure 3.5. Their number is an identifier which made
the recording of results easier.

(a) Book n°0 (b) Book n°1

(c) Book n°2 (d) Book n°3

(e) Book n°4 (f) Book n°5

Figure 3.5: The books used for the experiments

Distance

A parameter that can influence the identification of the books is the distance
between the robot and the books. If the books are too close to the robot, they
might not fit in the photo taken and the camera might not be able to focus on the
books, or on the other hand if they are too far away, they might not be detected by
the object detection model, or the text might not be readable for the OCR model.

The distance was measured as the horizontal distance between the the books
and the tablet on the chest of Pepper. Preliminary tests have shown that a distance
between 45cm and 70cm was best. At less than 45cm, the books did not fit in the
photo, and the detection rates got worse at more than 70cm.

16Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

Thus the experiments took photos of the books when they were at a distance
of 45cm, 50cm, 60cm and 70cm of the robot.

Resolution

The camera at the top of Pepper’s head can take photos in different resolutions,
numbered with an ID value in the documentation of the robot (link here). While
the resolution 4 (Image of 2560x1920px) seems like the best one in the docu-
mentation, it turned to not be usable at all, as the photos take with this resolution
were completely black (as seen in figure 3.6).

Figure 3.6: A photo taken by the Pepper robot with its top camera and resolution
of 4

The second best resolution according to the documentation is the resolution 3
(Image of 1280x960px). Further experimentation with Pepper revealed a resolu-
tion of 6 (Image of 1920x1080px) not present in the current 2.8 documentation,
but in a previous 2.0 version (link).

The resolution 6 is higher than resolution 3, but it also narrows the image,
making it harder to fit all the books in, as can be seen in figure 3.7. Thus, in the
experiments, photos were taken of resolution 3 and 6 in order to compare the
accuracy with both.

Iteration

For each distance and resolution, 6 pictures were taken with all of the books in
each picture.

In a few cases, the object detection model did not manage to detect all of
the books, or detected two books as one. Having more than one picture made it
possible to have results for the OCR part even if the detection failed sometimes.
This can be equated to Pepper taking another picture in the original scenario if
something went wrong.

The books were moved to a different order for each iteration and the results
were then averaged to see the global accuracy.

http://doc.aldebaran.com/2-8/family/pepper_technical/video_2D_pep.html
http://doc.aldebaran.com/2-0/family/juliette_technical/video_juliette.html

Chapter 3: Methodology 17

(a) A photo of books taken with Pepper’s
camera at resolution 3 (1280x960px)

(b) A photo of books taken with Pepper’s
camera at resolution 6 (1920x1080px)

Figure 3.7: Photos of the same pile of book, taken with resolution 3 (left) and
resolution 6 (right)

Object detection library

In the case of our application, it is necessary to have a fast object detection al-
gorithm. As such, since it is required to have real time detection, a 1-stage al-
gorithm was chosen with YOLO.

The object detection was performed with cvlib [38], a simple open source
computer vision library for python. It has a function to detect common objects in
scenes, including books. The function uses the YOLOv4 model [39], proposed in
2020 as a faster and more accurate improvement on the YOLO detector.

OCR libraries

An important decision was the choice of which python OCR libraries to compare
in the experiments. The amount of time available for this work limited the number
of OCR libraries that could be implemented and used in the experiments.

Pytesseract was chosen for several reasons. Tesseract is a popular and com-
monly used OCR, and due to having first been developed in the 1990s, it functions
differently from current OCR models.

EasyOCR and keras-ocr were chosen to compare two similar models, both
using the same CRAFT model for text detection and a CRNN for text recognition.

PaddleOCR and Calamari OCR were not implemented. They were both repor-
ted to perform well on scanned documents but poorly on scene images, which is
what is required here.

More libraries could and should be tested in further works on this topic.

3.3.3 Data collection

The object detection and OCR models were run on the pictures and the results
were put in an excel document.

18Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

The excel document has four sheets for the results: the first one is a table with
the description of the books used for the experiments, then both object detection
and OCR results have one sheet for the data and one sheet for data analysis with
tables and graphs.

Object detection results

When taking the photos and for the object detection, there were two variables to
take into account: the resolution (two values, 3 or 6) and the distance between the
robot and the books (four values, 45cm, 50cm, 60cm or 70cm). This is a total of 8
configurations. There are 6 photos taken of each configuration (for 6 iterations),
which makes a total of 48 pictures.

All 6 books are on each picture, and the results must detail whether each of
the 6 books was detected or not. Therefore, in the detection sheet, there are six
rows for each picture, one for each book. On each row are the image file name,
the corresponding variables: resolution, distance, iteration and book ID, and one
column for the results.

The results are related to the output of the object detection model, each output
having been saved to a json file. The object detection model outputs an array of
bounding boxes, labels and confidence levels, which are then used to determine
where the books are, and to crop the pictures.

In order to analyse the output of the object detection, the question that was
asked was:
For each of the 48 pictures, and for each of the 6 books in each picture, was the
book properly detected?

In this case, "properly detected" doesn’t mean that the bounding box perfectly
fits the book, this isn’t the case most of the time because the bounding boxes are
not rectangles and the books are not perfect rectangles on the image. "Properly
detected" means that book is in the bounding box and the only writing in the
bounding box is on that book.

In order to analyse this information, the results were put into one of four
categories in the "results" column of the object detection sheet: Detected, Detected
with another book, Detected partially with another book and Not detected. The
four categories are defined with examples in table 3.1.

OCR results

After the object detection, for each book detected by the object detection model,
a cropped image was created with the coordinates of the bounding box.

For the OCR results, the cropped images which were categorised as "Detected
partially with another book" or "Detected with another book" were excluded.

In the OCR results sheet, each of these cropped images gets three rows, one for
each OCR model. The rows still have the image file name and the variables: res-
olution, distance, iteration, book ID and OCR model, but instead of the detection
result column, there are three columns: one for the result predicted by the OCR,

Chapter 3: Methodology 19

Category Definition Example

Detected
The book is in the bounding box and
the only writing in the bounding box

is on that book.

Detected with
another book

Two whole books are in the same
bounding box, and none of the other

bounding boxes contain these two
books

Detected partially
with another book

The bounding box also contains a
little bit of another book, enough
that some but not all of the text is

visible.

Not detected
The book is not in any of the

bounding boxes labeled as a book by
the model.

Table 3.1: The four categories of detection results

one for the actual result that is expected, and the last column for the accuracy,
obtained by comparing the predicted and actual results.

In this case, the expected result corresponds to the text that is written on the
spine of the book and that is horizontal when the book is on its side. Table 3.2
shows the detail of this for each book.

As detailed earlier in the Background chapter, the two main metrics for OCR
are the CER (Character Error Rate) and the WER (Word Error Rate). In the case
of this study, the CER is a relevant metric, but the WER not so much. WER was
established with in mind the application of OCR to longer documents and for
information retrieval purposes. This does not fit this study, as the strings used are
quite short and with very few words compared to the entire documents that WER
was designed for. Thus for this study, the "accuracy" measure that will be used will
be the CER.

The fastwer library in python implements the WER and CER, and was used
to evaluate the accuracy of the OCR models used. The library gives the results as
percentages: if the OCR results needs 1 edit to be equal to the correct string of
length 20, then the fastwer library will give a result of 5, instead of 0.05.

When analysing the results, two characteristics will be evaluated: Accuracy
and Consistency. For given parameters, accuracy will be evaluated through the
average of the CER values, and consistency will be evaluated through the standard
deviation of the CER values.

https://pypi.org/project/fastwer/

20Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

Book ID Photo Expected result for the book

0
Solutions and other problems Allie

Brosh

1
Resource, Mobility, and Security

Management in Wireless Networks
and Mobile Communications

2 EVOLVED PACKET SYSTEM (EPS)

3
Handbook of Algorithms for Wireless
Networking and Mobile Computing

4
FIXED BROADBAND WIRELESS

SYSTEM DESIGN

5
Convergence Technologies for 3G
Networks | IP, UMTS, EGPRS and

ATM

Table 3.2: The books and the associated expected result for each

Chapter 4

Implementation

This chapter will detail the structure of the code files used in this study, starting
with the code for the experiment and finishing with the code for the scenario.

The code files are also available at this repository.

4.1 Experiments

The experiment was designed to determine which parameters gave the best res-
ults.

The code for the experiments was separated into four files:

• TakePictures, which takes pictures with the Pepper robot and transfers them
to the computer;
• CropPictures, which uses the object detection model on all the pictures to

find books, and for each book found, creates a cropped picture with just that
book
• UseOCR, which for each cropped picture, runs the OCR models on it and

saves the strings to txt file
• and Accuracy, which takes from the excel files with the results takes the OCR

result and the ground truth to calculate the CER.

The python files have to be run one after the other.

4.1.1 TakePictures

The code of TakePictures is separated into a main function and a if __name__ ==
’__main__’: statement.

The if statement contains an argument parser which allows us to get the robot
IP address and Naoqi port number in order to establish the connection to the
Pepper robot.

Code listing 4.1: Connection to Pepper

if __name__ == ’__main__’:
parser = argparse.ArgumentParser()

21

https://github.com/Claire-78/Master-Thesis

22Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

parser.add_argument("--ip", type=str, default="192.168.137.233",
help="Robot␣IP␣address.␣On␣robot␣or␣Local␣Naoqi:␣use␣\

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣’127.0.0.1’.")
parser.add_argument("--port", type=int, default=9559,

help="Naoqi␣port␣number")

args = parser.parse_args()

Initialize qi framework.
connection_url = "tcp://" + args.ip + ":" + str(args.port)
app = qi.Application(["Detector",

"--qi-url=" + connection_url])

Connection
try:

app.start()
main(app)

except RuntimeError:
print ("Can’t␣connect␣to␣Naoqi␣at␣ip␣\"" + args.ip + "\"␣on␣port␣" +

str(args.port) + ".\n")

sys.exit(1)

After that, the main function is called with the application as an argument.
The connection to the ALPhotoCapture module is established, in order to be able
to take the pictures from Pepper. After that, the parameters for the photoCap-
ture.takePicture function must be set using the photoCapture.setCameraID func-
tion to choose the camera to be used (here the camera n°0, at the top of Pepper’s
head), the setResolution function to choose the resolution and the setPictureFormat
function to set the picture format to jpg.

As mentioned, there are 48 pictures to take, with 4 different distances, 2 res-
olutions and 6 iterations. The different distances and iterations require manual
manipulation of the books, so the code can only take 2 pictures at once, the pic-
tures of resolutions 3 and 6 with the same values of distance and iteration. Thus
the code had to be run 24 times to change the distance and iteration parameters
in between.

The takePicture function needs the folder path where to save the photo and
the name of the photo file. In order to make things clearer, each picture has in its
file name the parameters of distance, iteration and resolution.

Code listing 4.2: Taking a picture with Pepper

PepperPath = "/home/nao/recordings/cameras/library/"
pictureFormat = "png"
distance = 45
iteration = 5
resolutions = [3,6]

photoCapture.setCameraID(0)
photoCapture.setPictureFormat(pictureFormat)

for resolution in resolutions:
photoCapture.setResolution(resolution)
pictureName = "image_" + str(resolution) + "_" + str(distance) + "_" + str(

iteration)

Chapter 4: Implementation 23

photoCapture.takePicture(PepperPath, pictureName)

Once the pictures have been taken, they need to be transfered to the com-
puter files where they will be further analysed with the object detection and OCR
models. In order to do this, a paramiko connection is used.

The connection is established with the use of the same ip address and port
as previously, and from this, the code can transfer the files from the robot to the
computer using the sftp.get function.

Code listing 4.3: Transferring the files to the computer

ComputerPath = "C:\\PepperRecordings\\Part␣1\\"
t = paramiko.Transport(args.ip, args.port)
t.connect(username="nao", password="edutech123")
sftp = paramiko.SFTPClient.from_transport(t)
files = sftp.listdir(PepperPath)
print("Files␣on␣Pepper␣in␣folder" + PepperPath + ":␣")
print(files)

for resolution in resolutions:
pictureName = "image_" + str(resolution) + "_" + str(distance) + "_" + str(

iteration)
f = pictureName + "." + pictureFormat
print(’Transfering␣’ + f + ’...’)
sftp.get(os.path.join(PepperPath, f),os.path.join(ComputerPath, f))
print("File␣transfered.")
sftp.remove(PepperPath+f) # This deletes the file from Pepper once

it has been transfered to the computer.

4.1.2 CropPictures

The CropPicture file takes the folder in which the pictures taken have been saved
and for each picture in that folder, uses the object detection model to find the
books and create a cropped picture of each of the detected book.

In order to do that, a subfolder Cropped is created to save the cropped images.
After that, the code goes through the images and calls the function cropPicture on
each.

Code listing 4.4: The main part of the CropPictures file

##
Creating folder for cropped pictures
ImagesPath = "C:\\PepperRecordings\\Part␣2\\"
croppedFiles = os.path.join(ImagesPath, "Cropped")
os.mkdir(croppedFiles)

##
List all files and use detector to crop books
for entry in os.listdir(ImagesPath):

fullPath = os.path.join(ImagesPath, entry)
if os.path.isfile(fullPath):

print(entry)
cropPicture(ImagesPath, entry)

print("Detection␣finished,␣pictures␣cropped")

24Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

The cropPicture function first calls the detect function, which uses the opencv
library to detect the objects in the image and returns the bounding box, label and
level of confidence for each object found in the image.

Code listing 4.5: The detect function

def detect(fileName):
im = cv2.imread(fileName)
bbox, label, conf = cv.detect_common_objects(im)

return(bbox, label, conf)

After that, the cropPicture function saves the data returned by the detect func-
tion in a json file. This was mainly done for debugging purposes, so that that data
could be accessed after having run the code.

Then, the code goes through the data in order to find the objects detected as
books and get their bounding boxes. As it gets those bounding boxes, the Image
module of the PIL (Python Imaging Library) is used to create a cropped picture
and save in the Cropped subfolder.

Code listing 4.6: The cropPicture function

def cropPicture(ImagesPath, entry):
Collect data from the detector
ImagePath = os.path.join(ImagesPath, entry)
data = detect(ImagePath)

Save data to a json file
json_obj = json.dumps(data)
jsonFile = open(ImagePath[:-4] + ’.json’,’w’)
json.dump(json_obj, jsonFile)
jsonFile.close()
print("␣␣␣␣␣Detection␣finished")

Crop picture for each book found
numberOfBooks = 0
for i in range(len(data[1])):

if (data[1][i] == "book"):
numberOfBooks = numberOfBooks +1
Getting the coordinates
x0 = float(data[0][i][0])
y0 = float(data[0][i][1])
x1 = float(data[0][i][2])
y1 = float(data[0][i][3])
print(" - Bounding box: (" + str(x0) + ", " + str(y0) + ") ,

(" + str(x1) + ", " +str(y1) + ")")

Cropping image
im = Image.open(ImagePath)
im = im.crop((x0, y0, x1, y1))
cropName = os.path.join(ImagesPath + "Cropped\\" + entry[:-4] + "Crop"

+ str(i) + ".png")
print(" Name of the cropped file: " + cropName)
im = im.save(cropName)

print("␣␣␣␣␣" + str(numberOfBooks) + "␣books␣detected")
print("␣␣␣␣␣Cropping␣finished")

Chapter 4: Implementation 25

4.1.3 UseOCR

The UseOCR code defines 6 functions to use the OCR libraries. After that, the main
part of the code is a loop that goes through all the cropped images and calls the
pytess, easyOCR and kerasOCR functions defined higher.

Code listing 4.7: The main loop of UseOCR.py

##
For each cropped file, use all 3 OCR algorithms and store data in txt files.
List all files and use OCR on all
for entry in os.listdir(croppedFiles):

fullPath = os.path.join(croppedFiles, entry)
if os.path.isfile(fullPath):

print(fullPath)
pytess(fullPath)
print("␣␣␣␣␣Pytesseract␣OCR␣done")
easyOCR(fullPath)
print("␣␣␣␣␣EasyOCR␣done")
kerasOCR(fullPath)

pytess is the first function called. It uses the pytesseract library and applies
it to the image. The pytesseract library and the Tesseract OCR Engine had to be
installed and the UseOCR.py file started with the imports among which import
pytesseract, and the line
pytesseract.pytesseract.tesseract_cmd= r’C:\Program Files (x86)\Tesseract-OCR\tesseract’
which enables the use of the installed Tesseract OCR Engine.

The pytess function calls the image_to_string function of the pytesseract library
to extract the text from the image. The text extracted is then saved to a text file
in the same folder as the image.

Code listing 4.8: The pytess function

def pytess(fileName):
#Use OCR algorithm
data = pytesseract.image_to_string(fileName, lang=’eng’)
print("Text recognized: ")
print(data)

#Save data to a txt file
print(’␣␣␣␣␣Name␣of␣txt␣file:␣’ + fileName[:-4] + ’Pytess.txt’)
with open(fileName+’.txt’, ’w’) as f:

f.write(data)

The easyOCR function works similarly to the pytess function. The library has
been imported with import easyocr and a reader has been initialised at the begin-
ning of the code with the line
reader = easyocr.Reader([’en’]).

The easyOCR function then extracts the data from the image, which is saved
to a text file again.

However, the easyocr reader doesn’t return simply the string of the text read,
but an array of tuples containing the bounding box, string and confidence level of
each word detected. The array is structured as such:

26Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

[(bounding box of word 1, string of word 1, level of confidence of word 1),
(bounding box of word 2, string of word 2, level of confidence of word 2),...].

Only the strings need to be extracted. Fortunately, the words detected are in
the same order as what humans can read on the image, so the code can simply go
through the array and take the strings.

Code listing 4.9: The easyOCR function

def easyOCR(fileName):
#Use OCR algorithm
data = reader.readtext(fileName)
print("Text recognized: ")
print(data)

#Save data to a txt file (only recognized text)
print(’␣␣␣␣␣Name␣of␣txt␣file:␣’ + fileName[:-4] + ’EasyOCR.txt’)
with open(fileName+’EasyOCR.txt’, ’w’) as f:

for i in range (len(data)):
f.write(data[i][1])

kerasOCR works simlarly to the easyOCR function. The keras_ocr is imported
at the beginning oofthe code with import keras_ocr, and the keras ocr pipeline is
initialised with the line
pipeline = keras_ocr.pipeline.Pipeline(). The kerasOCR function can then use the
pipeline to read the image and extract the text with the pipeline.recognize func-
tion. However, this time, the data is extracted is again different from before, it is
structured as an array:
[[(string of word 1, bounding box of word 1), (string of word 2, bounding box of
word 2),...]].

And this time the words are not in the same order as humans can read them on
the image, which is why the functions get_distance, distinguish_rows and sorting
are needed to sort the words in the right order.

An online post (link here) provided these three functions and an explana-
tion on how they work. First, the get_distance function calculates, for each of the
bounding boxes, its distance to the origin. Then distinguish_rows splits the words
detected into sublists, each representing a different row of text. The function goes
through the words detected and uses a threshold to separates the words based on
their vertical distance to the origin. If the current word’s vertical distance minus
the previous word’s vertical distance is higher than the threshold, then the word
is in a different row. And finally sorting will call the previous two fucntions, and
take the sublists and return a list of the words ordered in their reading order. This
method worked well most of the time on the images used in the experiment, but
might return some strange results if the text in the image is tilted. It is then more
difficult to distinguish between rows using this method.

Code listing 4.10: The get_distance, distinguish_rows and sorting functions

def get_distance(predictions):
"""
Function returns dictionary with (key,value):

https://shegocodes.medium.com/extract-text-from-image-left-to-right-and-top-to-bottom-with-keras-ocr-b56f098a6efe

Chapter 4: Implementation 27

* text : detected text in image
* center_x : center of bounding box (x)
* center_y : center of bounding box (y)
* distance_from_origin : hypotenuse
* distance_y : distance between y and origin (0,0)

"""

Point of origin
x0, y0 = 0, 0 # Generate dictionary
detections = []
for group in predictions:

Get center point of bounding box
top_left_x, top_left_y = group[1][0]
bottom_right_x, bottom_right_y = group[1][1]
center_x = (top_left_x + bottom_right_x) / 2
center_y = (top_left_y + bottom_right_y) / 2 # Use the Pythagorean

Theorem to solve for distance from origin
distance_from_origin = math.dist([x0,y0], [center_x, center_y]) #

Calculate difference between y and origin to get unique rows
distance_y = center_y - y0 # Append all results
detections.append({

’text’:group[0],
’center_x’:center_x,
’center_y’:center_y,
’distance_from_origin’:distance_from_origin,
’distance_y’:distance_y

})
return detections

def distinguish_rows(lst, thresh=15):
"""Function to help distinguish unique rows"""
sublists = []
for i in range(0, len(lst)-1):

if lst[i+1][’distance_y’] - lst[i][’distance_y’] <= thresh:
if lst[i] not in sublists:

sublists.append(lst[i])
sublists.append(lst[i+1])

else:
yield sublists
sublists = [lst[i+1]]

yield sublists

def sorting(predictions, thresh=15, order=’yes’):
"""
Function returns predictions in human readable order
from left to right & top to bottom
"""
predictions2 = get_distance(predictions)
predictions2 = list(distinguish_rows(predictions2, thresh)) # Remove all

empty rows
predictions2 = list(filter(lambda x:x!=[], predictions2)) # Order text

detections in human readable format
ordered_preds = []
ylst = [’yes’, ’y’]
for pr in predictions2:

if order in ylst:
row = sorted(pr, key=lambda x:x[’distance_from_origin’])
for each in row:

ordered_preds.append(each[’text’])

28Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

The kerasOCR function calls the sorting function after having ran the keras
OCR pipeline, to sort the words in the normal reading order. After that, the text
detected is saved to a text file.

Code listing 4.11: The kerasOCR function

def kerasOCR(fileName):
image = keras_ocr.tools.read(fileName)
data = pipeline.recognize([image])
print("Text recognized: ")
print(data)
text = sorting(data[0])
print(text)

#Save data to a txt file (only recognized text)
print(’␣␣␣␣␣Name␣of␣txt␣file:␣’ + fileName[:-4] + ’KerasOCR.txt’)
with open(fileName+’KerasOCR.txt’, ’w’) as f:

for item in text:

4.1.4 Accuracy

The Accuracy file makes the assumption that the excel file has been filled with
the OCR results and the corresponding ground truth. It takes the OCR results and
their associated ground truth from the excel file, computes the Character Error
Rate and puts it in the right cell in the excel file.

The openpyxl library is used to open the excel. A little manipulation is neces-
sary, because the cells that contain the ground truth are written using a formula.
Opening the excel normally means that only the formulas can be accessed, not the
values. So it is necessary to open the excel file with the argument data_only=True.
But if if the excel file is saves after being opened with that argument, it erases all
formulas in the sheets and only saves the values.

In the end, in order to avoid this, the excel file is opened twice, once as read-
ingDataframe with the data_only=True argument and once as writingDataframe
without it. The readingDataframe is used to access the values of the cells, while
writingDataframe is used to enter the values of the CER and only that variable is
saved to the excel file.

The code loops through all the lines with results, from line 2 to line 850. For
each line, it gets the OCR result and the ground truth, updates them to an empty
string if the cell was empty and puts both of them to lowercase-only strings,.
Then, it uses the fastwer library and its score_sent function with the argument
char_level=True to compute the CER which is saved to the corresponding cell.

Code listing 4.12: The Accuracy file

import fastwer
import openpyxl

ExcelName = "Results.xlsx"

Chapter 4: Implementation 29

Loading the results
readingDataframe = openpyxl.load_workbook(ExcelName, data_only=True)
readingSheet = readingDataframe.worksheets[3] #The OCR results are on the

fourth sheet

writingDataframe = openpyxl.load_workbook(ExcelName)
writingSheet = writingDataframe.worksheets[3]

for i in range(2,851):
ocrText = readingSheet.cell(row = i, column = 8).value
groundTruth = readingSheet.cell(row = i, column = 9).value

if (ocrText == None):
ocrText = ""

if (groundTruth == None):
groundTruth = ""

ocrText = ocrText.lower()
groundTruth = groundTruth.lower()

cre = fastwer.score_sent(ocrText, groundTruth, char_level=True)
writingSheet.cell(row=i, column=10).value = cre

writingDataframe.save(ExcelName)
writingDataframe.close()

4.2 Scenario

The code for the scenario is structured into 3 files: scenarioMain.py, detector.py
and OCR.py. scenarioMain.py is the main file and will call the other two as it runs.

scenarioMain.py is structured similarly as TakePictures.py, with a main function
and a if __name__== ’__main__’: statement. The main function however is much
longer than in TakePictures.py and separated into seven parts:

• Taking the picture from Pepper, which follows the same principle as in the
experiment, except this time the resolution has been optimized with the
result from the experiment
• Transferring the picture from Pepper to the computer with a paramiko con-

nection,
• Using the object detection model on the image to detect the books, which

uses the detector.py file
• Counting the number of books found and having Pepper say it out loud
• A loop going through each book found to create a cropped image
• Use the OCR model to read the text on the books on the cropeed images
• And Pepper’s reaction: displaying on its tablet the title of the books read by

OCR.

The scenario mainly reuses the code from the experiments with some neces-
sary changes.

One difficulty came from the python version to use. The libraries needed for
the object detection and OCR are only available in python3, while the programs

30Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

for Pepper need to be run in python2.7.
To work around this issue, subprocesses had to be used. The subprocess makes

it possible to spawn new processes. In the case of the object detection, a command
string is create with python3, detector.py and the name of the image file to run the
object detection model on. The subprocess is then started with the subprocess.call
function.

Code listing 4.13: Use of a subprocess in scenarioMain.py for the object detection

Object detection
imagePath = os.path.join(ComputerPath, f)
detection_command = [’python3’,"detector.py", "--file" , imagePath]
print("Python command: "+ detection_command)
startTime = time.time()
process = subprocess.call(detection_command)
elapsedTime = time.time() - startTime
print("Detection␣finished␣in␣%.2f␣seconds" % elapsedTime)

The detector.py file contains if __name__ == ’__main__’: statement which ex-
tracts with an argument parser the name and path of the picture to run the object
detection model on, the same detect function as in the experiment, and a main
function.

The main function calls the detect function and then stores the data found in
a json file so that it will be available from the scenarioMain.py code.

Code listing 4.14: The detector.py file

import cv2
import cvlib as cv
import argparse
import json

def detect(fileName):
im = cv2.imread(fileName)
bbox, label, conf = cv.detect_common_objects(im)

return(bbox, label, conf)

def main(fileName):
#Collect data from the detector
data = detect(fileName)

#Save data to a json file
json_obj = json.dumps(data)
jsonFile = open(fileName + ’.json’,’w’)
json.dump(json_obj, jsonFile)
jsonFile.close()

if __name__ == ’__main__’:
parser = argparse.ArgumentParser()
parser.add_argument("--file", type=str, help="Name␣of␣the␣picture␣to␣use␣the␣

detector␣on")

args = parser.parse_args()

print("args: ", args)

Chapter 4: Implementation 31

main(args.file)

Back in scenarioMain.py, the detection data is retrieved from the json file, and
a quick loop allows us to extract the books found and their coordinates. Pepper
can then react by talking and announcing the number of books found.

Code listing 4.15: Counting books in scenarioMain.py
Counting books found
f = open(imagePath + ’.json’,)
print("JSON␣File␣Name:␣" + imagePath[:-4] + ’.json’)
data = json.load(f)
data = json.loads(data)
booksFound = 0
booksCoordinates = []

for i in range(len(data[1])):
if (data[1][i] =="book"):

booksFound += 1
booksCoordinates.append(data[0][i])

print("%s␣books␣found" % booksFound)
tts.say("I␣have␣found␣" + str(booksFound) + "␣books")

After this step, the code is again similar to the experiment. A loop goes through
the books found and creates cropped images for each. The command is created in
this loop, by adding to it the names of the cropped images files. A subprocess is
called to execute the OCR.py file and run the OCR model on the cropped images.
Said file is very similar in structure to detector.py. It was modified to take a list
of the names of the files to use, the detect function was replaced by the function
from the experiment corresponding to the chosen OCR, and the result is saved to
a text file instead of a json file.

After the OCR has been run, the text recognized is retrieved from the text
file and displayed on Pepper’s tablet through the tabletService.showWebview and
tabletService.hideWebview functions.

Code listing 4.16: Displaying text on Pepper’s tablet

if __name__ == ’__main__’:
parser = argparse.ArgumentParser()
parser.add_argument("--ip", type=str, default="192.168.137.175",

help="Robot␣IP␣address.␣On␣robot␣or␣Local␣Naoqi:␣use␣\

Chapter 5

Results

This chapter will present and analyse the results of the experiment, starting with
the object detection and finishing with the OCR. All results are available at this
repository in the folder 0 - Experiment\1 - Results. This includes the image and text
files, as well as the excel document used to analyse them.

5.1 Object detection

The detection results consist whether each of the 6 books was detected in each of
the 48 pictures, as shown in figure 5.1. Therefore, each picture needs 6 rows in
the excel sheet, which gives us a total of 288 lines of detection results.

Figure 5.1: The number of detection results

As explained in the Methodology chapter, the detection results are separated
into four categories:

• Detected: The book is in the bounding box and the only writing in the
bounding box is on that book.

33

https://github.com/Claire-78/Master-Thesis
https://github.com/Claire-78/Master-Thesis

34Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

• Detected with another book: Two whole books are in the same bounding
box, and none of the other bounding boxes contain these two books
• Detected partially with another book: The bounding box also contains a

little bit of another book, enough that some but not all of the text is visible.
• Not detected:The book is not in any of the bounding boxes labeled as a book

by the model.

Overall, most books were detected, with only a few instances where they were
not. Table 5.1 details the exact numbers and percentages of each of the four cat-
egories over all the results.

Category Number of occurrences Percentage

Detected 272 94.4%
Detected partially with another book 8 2.8%

Detected with another book 6 2.1%
Not detected 2 0.7%

Table 5.1: The detection results

There are two parameters that can be adjusted for better results: the distance
between the robot and the books and the resolution of the picture.

Table 5.2 shows the detection results separated by resolution.

Category Resolution 3 Resolution 6

Detected 130 (90%) 142 (99%)
Detected partially with another book 6 (4%) 2 (1%)

Detected with another book 6 (4%) 0 (0%)
Not detected 2 (1%) 0 (0%)

Table 5.2: The detection results, separated according to resolution

It then appears that the majority of the detection failures happen with resolu-
tion 3, with 6 of the "Detected partially with another book", all 6 of the "Detected
with another book" and both of the "Not detected".

To be even more precise, table 5.3 shows the detection results separated by
both resolution and distance.

On this last table, one can see that most of the detection failures (9 out of the
total 16) happen with resolution 3 and distance 70cm. The other configurations
give much better detection performances. Resolution 6 with distances 45cm and
70cm have no detection failures, and the other two configuration with distances
50cm and 60cm, only have one "Detected partially with another book". For resol-
ution 3, the least amount of detection failures come for a distance of 50cm, with
only one "Not detected". Resolution 3 with distances 45cm and 60cm both have
two "Detected partially with another book".

Chapter 5: Results 35

Category
Resolution 3 Resolution 6

Distance Distance
45cm 50cm 60cm 70cm 45cm 50cm 60cm 70cm

Detected 34 35 34 27 36 35 35 36
Detected partially
with another book

2 0 2 2 0 1 1 0

Detected with an-
other book

0 0 0 6 0 0 0 0

Not detected 0 1 0 1 0 0 0 0

Table 5.3: The detection results, separated according to resolution and distance

5.2 OCR

As explained in the Methodology chapter, the OCR results are evaluated after
excluding the failed detection results of "Detected partially with another book"
or "Detected with another book". As shown in figure 5.2, this leaves us with 272
cropped pictures, and 3 OCR results for each cropped picture, so 816 OCR results
in total.

Figure 5.2: The number of OCR results

36Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

5.2.1 Parameters of the experiment

There are three parameters that can be adjusted for better results: the distance
between the robot and the books, the resolution of the picture, and the OCR model
used.

The first parameter to look at is the OCR model. Table 5.4 and figure 5.3 show
the average CER and the Standard Deviation of the CER, separated by OCR model.

Figure 5.3: The average CER, separated according to OCR model

OCR model Average CER Standard deviation

pytesseract 54.1 37.3
EasyOCR 19.6 16.0
KerasOCR 24.1 21.6

Table 5.4: The OCR results, separated according to OCR model

The table shows EasyOCR as the most accurate model, as it has the lowest av-
erage CER, and the most consistent as it has the lowest standard deviation of CER.
KerasOCR is slightly higher in both of those values by about 5, while pytesseract
performs much worse, its values being over twice those of EasyOCR.

Pytesseract’s high average and standard deviation are further confirmed by
looking at the upper values of CER associated. It has 57 occurrences (out of 272
results) of a CER equal to or higher than 100, 40 of which are the result of the
OCR returning a blank string when trying to read an image and thus getting a
CER of 100. A CER higher than 100 is an indication that the OCR results is really
bad, as it means that it would be easier to type all the characters of the actual title
than to edit the OCR result.

Chapter 5: Results 37

It should be noted that the consistency is not very good in these results. The
values of the standard deviation is very high and close to the averages. It demon-
strates that the CER is not very consistent for any of the OCR models (or as will
be seen, for any of the parameters), and has a wide range of values. While this
consistency could be improved in further works, it is still possible to compare the
current values to find the least inconsistent of the parameter.

The parameters of distance and resolution can also be compared in the same
way. Figure 5.4 shows the average CER for both resolutions including all OCR
models, and table 5.5 details the values of the average CER and the standard
deviation of the CER.

Resolution Average CER Standard deviation

3 33.4 31.6
6 31.9 29.7

Table 5.5: The OCR results, separated according to resolution

Figure 5.4: The average CER, separated according to resolution

This time, there is not a big difference in the accuracy and consistency of both
resolutions. The resolution 6 seems to be slightly better, but only by a difference
of less than 2 for both average and standard deviation. Once again and even more
than previously, the standard deviation are quite high and their values are very
close to the values of the average.

The accuracy and consistency by distance are presented in figure 5.5 and table
5.6.

The accuracy values vary a bit more this time. The optimal distance for accur-
acy is 50cm, with an average CER of 29.7. The standard deviation on the other

38Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

Distance Average CER Standard deviation

45cm 33.5 29.5
50cm 29.7 31.7
60cm 32.2 29.8
70cm 35.3 31.4

Table 5.6: The OCR results, separated according to distance between the robot
and the books

Figure 5.5: The average CER, separated according to distance

hand varies less than 2. The lowest value is 45cm with a standard deviation of
29.5, and the highest is 50cm with a standard deviation of 31.7.

To get more perspective, the parameters can be compared in the same table.
Table 5.7 and figure 5.6 show the average CER and the standard deviation of the
CER for each combination of values of resolution and distance.

Distance Resolution Average CER Standard deviation

45cm
3 34.5 31.4
6 32.5 27.8

50cm
3 26.0 33.9
6 33.4 29.1

60cm
3 33.4 28.1
6 31.2 31.5

70cm
3 41.6 31.4
6 30.5 30.7

Table 5.7: The OCR results, separated according to distance and resolution

The table shows a clear optimal accuracy for a resolution of 3 and a distance of
50cm, with an average CER of 26.0. It is the only distance for which a resolution of

Chapter 5: Results 39

Figure 5.6: The average CER, separated according to distance and resolution

3 is better than a resolution of 6. In terms of consistency however, it is the worst,
with a standard deviation of 33.9. The lowest standard deviation values are 27.8
for a resolution of 6 and distance of 45cm, but these values also correspond to an
average CER of 34.5, 8.5 higher than the lowest value.

Table 5.7 and figure 5.8 show the average and standard deviation of the CER
by distance and OCR model.

Distance OCR model Average CER Standard deviation

45cm
pytesseract 55.9 35.6
EasyOCR 22.3 18.0
kerasOCR 22.2 16.9

50cm
pytesseract 55.5 40.6
EasyOCR 15.7 12.2
kerasOCR 17.9 15.4

60cm
pytesseract 50.4 36.5
EasyOCR 19.8 15.2
kerasOCR 26.5 24.6

70cm
pytesseract 54.4 36.94
EasyOCR 20.9 17.8
kerasOCR 30.5 26.5

Table 5.8: The OCR results, separated according to OCR model and distance

Once again, the difference between accuracy of the three OCR models is stark.
Pytesseract gets a much higher CER average than the other two, and while EasyOCR
and kerasOCR have almost the same average at 45cm, the difference between
them gets bigger with distance with EasyOCR being more accurate. The optimal
parameters for accuracy in this table is for EasyOCR with a distance of 50cm. It
also has the lowest standard deviation.

Table 5.8 and figure 5.9 show the average and standard deviation of the CER

40Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

Figure 5.7: The average CER, separated according to OCR model and distance

by resolution and OCR model.

Figure 5.8: The average CER, separated according to OCR model and resolution

Distance OCR model Average CER Standard deviation

3
pytesseract 53.1 40.2
EasyOCR 21.1 14.0
kerasOCR 26.0 24.4

6
pytesseract 54.9 34.6
EasyOCR 18.3 17.7
kerasOCR 22.5 18.6

Table 5.9: The OCR results, separated according to OCR model and resolution

The order of the OCR models remains obvious, with EasyOCR performing
the best, followed by kerasOCR and pytesseract which is quite worse than the
other two. This is true for both accuracy and consistency. The best accuracy is

Chapter 5: Results 41

with EasyOCR and the resolution of 6, with an average CER of 18.3, followed by
EasyOCR and the resolution of 3, with an average of 21.1. On the other hand, the
optimal consistency corresponds to EasyOCR and the resolution of 3, for a stand-
ard deviation of 14.0, followed by EasyOCR and a resolution of 6 with a standard
deviation of 17.7.

So far, the results have shown that the best OCR model is EasyOCR, and that
for the distance, 45cm gets the highest consistency, but 50m gets the highest ac-
curacy. The resolution doesn’t have very clear results, while the resolution of 6
seemed the best in the original table 5.5, both resolutions traded the highest ac-
curacy and consistency in the tables 5.7 and 5.8. In order to decide a final set
of optimal parameters, table 5.10 and figure 5.9 show the average and standard
deviation of the CER by distance, resolution and OCR model.

Resolution Distance OCR model Average CER Standard deviation

3

45cm
pytesseract 59.8 38.7
EasyOCR 20.1 10.6
kerasOCR 23.4 20.1

50cm
pytesseract 50.1 47.6
EasyOCR 13.4 9.2
kerasOCR 14.6 16.6

60cm
pytesseract 48.1 34.4
EasyOCR 22.9 13.9
kerasOCR 29.2 26.1

70cm
pytesseract 55.0 39.5
EasyOCR 29.9 17.4
kerasOCR 39.8 28.9

6

45cm
pytesseract 52.2 32.5
EasyOCR 24.3 23.0
kerasOCR 21.0 13.5

50cm
pytesseract 60.9 32.0
EasyOCR 18.0 14.3
kerasOCR 21.3 13.6

60cm
pytesseract 52.6 38.8
EasyOCR 16.9 16.0
kerasOCR 24.0 23.1

70cm
pytesseract 54.0 35.5
EasyOCR 14.1 15.0
kerasOCR 23.5 22.4

Table 5.10: The OCR results, separated according to OCR model, distance and
resolution

From these numbers, the best set of parameters is to use EasyOCR, with a
distance of 50cm and a resolution of 3. This achieves both the highest accuracy,
with an average of 13.4, and the highest consistency with a standard deviation of

42Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

Figure 5.9: The average CER, separated according to OCR model, distance and
resolution

9.2. These parameters should be used by Pepper in the scenario, to get the best
OCR results

5.2.2 OCR results across books

While the books are not parameters that can be changed to improve the perform-
ance, it is still interesting to look at how well the OCR worked across the books.

Notably, the first three books (identified as 0, 1 and 2) have darker text (blue
or black) on a light background (white for 1 and 2, and light blue for 0). Book
n°3 is also the only one who doesn’t have any kind of pattern in the background
of the text, being purely blue. The text on each book also has different sizes:

• For book n°0, the text is 0.9cm high, except ’and others’ which is 0.4cm high.
• For books n°1 and 2, the text is 0.7cm high.
• For book n°3 and 4, the text is 0.9cm high.
• For book n°5, the text is 1.1cm high, except for the last part "IP, UMTS,

EGPRS and ATM" which is 0.5cm high.

Table 5.11 and figure 5.10 show the average and standard deviation of the
CER by book.

The accuracy and consistency vary widely across the books. The book with the
best accuracy is book n°3, with an average CER of 18.5. It is only the second most
consistent, with a standard deviation of 22.9, behind book n°5 with a standard
deviation of 21.5. However, book n°5 has a much higher average CER at 35.4, so
it is safe to say that the best recognized title is that of book n°3.

It is possible to look at how both the colors of the text and its background,
and the size of the text affect the OCR accuracy and consistency. In this case, they

Chapter 5: Results 43

Book number Average CER Standard deviation

0 37.8 30.2
1 32.5 33.6
2 43.0 37.8
3 18.5 22.9
4 28.6 28.9
5 35.4 21.5

Table 5.11: The OCR results, separated according to book

Figure 5.10: The average CER, separated according to book

don’t seem to have a very strong impact.
Looking at colors, the light books (0,1,2) have a higher average and standard

deviation than the dark books (3,4,5), but this grouping doesn’t really make sense.
Book n°5, despite being in the second group, has a higher average than book n°1
from the first book, and book n°4’s standard deviation is closer to that of the first
group than of books n°3 and 5.

As for the size of the text, the books could be grouped into 3 categories: Books
with small text (1,2), Books with big text (3,4) and Books with big text and very
small text (0,5). However, this separation again doesn’t fit the values of the table.
Books n°0 and 5 have similar averages, but very different standard deviations.
Books n°1 and 2 have a difference of over 10 in average and over 4 in standard
deviation, and books n°3 and 4 have the same difference between themselves.

While the books show substantially different results in both accuracy and con-
sistency, it is difficult to link this to the colors of the books or the size of the texts
with these results.

Chapter 6

Discussion

As robots enter more of our daily lives, it becomes natural to imagine new uses for
them. This study works on expanding the presence and uses of social robots, by
integrating them into the library. It has explored a way for the social robot Pepper
to identify books in its environment by reading their title on the spine. To this end,
object detection and OCR were employed, and different parameters were studied
and compared to optimize the accuracy and consistency of both the detection and
identification of books.

The purpose of this research was to answer these research questions:

• How can we integrate machine learning with Pepper to enable it to read book
titles using its camera?
• Which machine learning algorithms and models related to object detection and

OCR can be used and are most efficient for this goal considering different para-
meters?
• To what extent can this integration of machine learning with Pepper be suc-

cessfully used in the library?

6.1 Integration of machine learning with Pepper

The machine learning was integrated with Pepper through several python librar-
ies. The main problems of this integration were actually related to Pepper itself.
As mentioned previously, Pepper works with python 2.7, while the libraries are in
python3. This incompatibility forced the use of subprocesses, which considerably
slows down the execution of the scenario.

The other problem is that Pepper’s internal computer only has a CPU and can-
not run the libraries itself, at least not fast enough to be considered a solution.
Therefore, the pictures had to be transferred to the computer, analysed by the ob-
ject detection and OCR models, and only then did the results make their way back
to Pepper to be displayed. This problem is related to Pepper and cannot be solved,
but there are ways to work around it. Two different studies [40, 41] propose two
object recognition pipelines for Pepper. The first one uses a Jetson TK1, an em-

45

46Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

bedded computing board from Nvidia, attached to Pepper by a custom-designed
backpack, to run a version of the Yolo algorithm. The second one uses a differ-
ent object recognition pipeline and runs it on a Jetson TX1, a more recent and
faster successor to the Jetson TK1. Both of these options allow Pepper to be more
autonomous, and as a future work on this topic, the integration of a similar solu-
tion for this scenario could be useful as well.

For more details, the implementation was fully described in chapter 4.

6.2 Object detection and OCR

In the experiment, different parameters were analysed and compared to find the
optimal configuration that would most consistently and accurately be able to read
the text on the spine of the books. The results showed that EasyOCR was the model
that was best suited to this task, and with a resolution of 3 for the pictures, which
should be taken when Pepper is 50cm away from the books. While the detection
results with these parameters were not perfect, they still achieved a 97% rate of
recognition of the books, and the parameters allow for the highest accuracy and
consistency in the OCR results. These optimal parameters from the experiment
give an answer to the second research question: object detection with Yolov5 and
OCR with EasyOCR, paired with the right distance to the books and the right
resolution for the picture, are the most efficient models to read the book titles.

Other studies have compared different OCR models, but usually not for the
purpose of reading book titles. A very common application is reading license plates
on cars. A study [42] uses Yolov5 to detect the plate, and compares EasyOCR
and Tesseract OCR. Another study [43] uses another framework to detect the
plates, but also compares EasyOCR ad Tesseract OCR. A third study [44] compare
two procedures: using OCR models to read license plates on cars directly from
images with cars, or from the same images previously cropped to just the car using
the YOLOv3 model. This last study also compares four different OCR models:
EasyOCR, Keras-OCR, CNN, WPOD-Net. All three studies find that EasyOCR is
the most accurate model of all models compared. This validates the results of this
study, and seem to corroborate the idea that EasyOCR is the most accurate model
on scene images, such as pictures of cars or books.

6.3 Scenario

The optimal parameters found in the results of the experiment were used in the
scenario. The repository that contains the code also has some examples of the
scenario being run with Pepper in the folder 1 - Scenario, with, for each, the im-
age taken by Pepper, its cropped versions, the json file with the results from the
object detection, the text files with the results of the OCR and a video1 of Pepper
performing the scenario.

1The videos need to be downloaded to be viewed.

https://github.com/Claire-78/Master-Thesis

Chapter 6: Discussion 47

In order to answer the third research question, the scenario shows how much
Pepper can read on the books in the actual situation. Looking at example 1 (which
you can find here), Pepper executed the scenario and found the six books. Here is
the text displayed by Pepper on its tablet:

Book 0:FIXED BROADBANDWIRELESS SYSTEM DESIGN
Book 1:Handbook ol Algorithms for WirelessFNetworking and Mobile Computing
Book 2:Convergence TechnologiesJufor 36 NetworksIp Umts EGpRS and ATM
Book 3:La1nResource, Mobility; and Security ManagementWireless Networks and

Mobile Communications
Book 4:SOLUTIONSondrPROBLEMSAllie BIOSh
Book 5:EVOLVED PACKET SYSTEM(EPS)
While the OCR results are not the exact titles of the books, they are close

enough to them that humans can identify each book, and for Pepper, the CER of
each results compared to the expected result for the corresponding books (shown
in table 6.1) are also quite low, although they vary for each book.

OCR string Expected result CER

FIXED BROADBANDWIRELESS
SYSTEM DESIGN

FIXED BROADBAND WIRELESS
SYSTEM DESIGN

2.6

Handbook ol Algorithms for
WirelessFNetworking and Mobile

Computing

Handbook of Algorithms for Wireless
Networking and Mobile Computing

3.0

Convergence TechnologiesJufor 36
NetworksIp Umts EGpRS and ATM

Convergence Technologies for 3G
Networks | IP, UMTS, EGPRS and

ATM
12.1

La1nResource, Mobility; and Security
ManagementWireless Networks and

Mobile Communications

Resource, Mobility, and Security
Management in Wireless Networks

and Mobile Communications
10.0

SOLUTIONSondrPROBLEMSAllie
BIOSh

Solutions and other problems Allie
Brosh

25.0

EVOLVED PACKET SYSTEM(EPS) EVOLVED PACKET SYSTEM (EPS) 3.7

Table 6.1: The CER results from example 1

To answer the third research question, this study has managed to integrate
machine learning with Pepper so that Pepper can read, although not perfectly, the
titles on the spine of books in front of it. The integration was good enough to
successfully execute the scenario.

The idea of using object detection and OCR to contribute to a robot’s under-
standing of its environment is not new. A study [45] used object detection and
OCR to recognize elevator buttons for service robots, while another [46] employs
them to recognize medicine bottles and guide a robotic arm to grab them. How-
ever, to the best of our knowledge, it is the first time that it has been used with
this specific social robot, or for the purpose of identifying books.

https://github.com/Claire-78/Master-Thesis/tree/master/1%20-%20Scenario/1%20-%20Example%201

48Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

6.4 Limitations

This research has some limitations which should be taken into account, mainly
concerning the project’s scope. The choices made limit the generalization of the
results of this study.

The books used for the experiment were chosen to simplify the scenario, they
are all very thick with big text, but this work has not explored the performance of
the OCR on smaller book with smaller text. The books were also limited to english
text, so it is not known if other languages and alphabets, namely Norwegian,
would get the same results.

The choices made when it came to Machine Learning also limits the scope
of this work. One object detection model and three OCR models were used, but
other models might yield good, even better results. It would be possible to train
new models on custom dataset to try to reach better accuracy and consistency in
both object detection and OCR. It could also be helpful to employ pre-processing
techniques on the pictures taken by the robot to increase results in both tasks. The
luminosity in the image, for example, can play a role in the detection and recogni-
tion of both objects and text, but can be modified and corrected in pre-processing,
for example through a binarization of the image (the process of turning a coloured
image into a black and white image).

6.5 Implications

Despite the mentioned limitations, this research is an important first step in the use
of Pepper in the library. It has demonstrated a way to make Pepper read books’
titles using machine learning. This work can be used as a base to develop new
applications and scenarios of Pepper in the library.

It has enabled Pepper to perceive more precisely its environment and learn
from it. Outside of the idea of using Pepper in the library, this is an important
result that can be employed in a variety of different uses, as it widens the scope of
Pepper’s perception. It can help Pepper develop new abilities and complexify the
scenarios in which Pepper can be employed. This brings up new opportunities for
working with Pepper in different situations.

Chapter 7

Conclusion and Future Work

This main goal of this work was to explore the possibility of using object detection
and OCR to allow Pepper to read book titles. The experiment compares several
parameters and OCR models, and found the optimal combination of parameters
which allows Pepper to read the text on the books in front of it.

Although the text read by Pepper doesn’t correspond exactly to what is written
on the books, the results are close enough that both humans and machine can
recognize them. This work does face some limitations, but it presents a prototype
that achieves its goal.

This research provides a novel contribution to the field of social robotics, by
expanding Pepper’s perception of its environment though the use of computer
vision algorithms. It is a base upon which can be built many more applications
and scenarios for Pepper.

There are several aspects of this work that could be further developed in future
works on this topic. The scenario could be made more complex. The books used
could be of a wider diversity: thinner books that might be harder to read, or books
in other languages for example. They could also be positioned as books are in the
library, which might require some pre-processing for the OCR to have the text
the right way up. In this study, the books are also already at the right height for
Pepper’s camera, so solutions could be explored for bookshelves that go from the
floor to higher than Pepper. Other machine learning models could be used to try to
improve the results of this work. For example, it would be possible to train custom
models to perform the object detection and OCR.

Further work could explore the navigation of the library by Pepper. In this
work, Pepper was positioned so that it would be in front of the books, but future
works could include Pepper putting itself in front of the books, at the right distance
and angle.

The use of subprocesses slowed down the flow of the scenario, as the object
detection and OCR itself were much faster than the opening of the new subpro-
cesses that use them. These subprocesses were necessary in this study to work
around the problem of Pepper needing an older version of Python than the lib-
raries used. This topic could be explored to improve the speed at which Pepper is

49

50Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

able to read what is in front of it.
This research has managed to complete its goal to use machine learning to en-

able Pepper to read book titles, and has opened up many opportunities for further
work on this topic.

Bibliography

[1] G. L. Anna Henschel and E. S. Cross, ‘What makes a robot social? a review
of social robots from science fiction to a home or hospital near you,’ Current
Robotics Reports, vol. 2, no. 1, pp. 9–19, Mar. 2021. DOI: 10.1007/s43154-
020-00035-0.

[2] M. Sarrica, S. Brondi and L. Fortunati, ‘How many facets does a “social
robot” have? a review of scientific and popular definitions online,’ Inform-
ation Technology & People, vol. 33, Apr. 2019. DOI: 10.1108/ITP-04-2018-
0203.

[3] Z. Su, W. Sheng, G. Yang, A. Bishop and B. Carlson, ‘Adaptation of a ro-
botic dialog system for medication reminder in elderly care,’ Smart Health,
vol. 26, 2022.

[4] L. Elloumi, M. Bossema, S. M. De Droog, M. H. J. Smakman, S. V. Ginkel,
M. E. U. Ligthart, K. Hoogland, K. V. Hindriks and S. B. Allouch, ‘Exploring
requirements and opportunities for social robots in primary mathematics
education,’ in RO-MAN 2022 - 31st IEEE International Conference on Ro-
bot and Human Interactive Communication: Social, Asocial, and Antisocial
Robots, 2022, pp. 316–322.

[5] M. Donnermann, P. Schaper and B. Lugrin, ‘Investigating adaptive robot
tutoring in a long-term interaction in higher education,’ in RO-MAN 2022
- 31st IEEE International Conference on Robot and Human Interactive Com-
munication: Social, Asocial, and Antisocial Robots, 2022, pp. 171–178.

[6] J. Musa, How can humanoid robots modernize your reception? Nov. 2020.
[Online]. Available: https://www.aldebaran.com/en/blog/news-trends/
how-can-humanoid-robots-modernize-your-reception.

[7] R. Mehta and A. Sahu, ‘Autonomous robot for inventory management in
libraries,’ in 2020 IEEE International Students’ Conference on Electrical, Elec-
tronics and Computer Science, SCEECS 2020, 2020.

[8] X. Yu, Z. Fan, H. Wan, Y. He, J. Du, N. Li, Z. Yuan and G. Xiao, ‘Position-
ing, navigation, and book accessing/returning in an autonomous library
robot using integrated binocular vision and qr code identification systems,’
Sensors, vol. 19, p. 783, Feb. 2019. DOI: 10.3390/s19040783.

51

https://doi.org/10.1007/s43154-020-00035-0
https://doi.org/10.1007/s43154-020-00035-0
https://doi.org/10.1108/ITP-04-2018-0203
https://doi.org/10.1108/ITP-04-2018-0203
https://www.aldebaran.com/en/blog/news-trends/how-can-humanoid-robots-modernize-your-reception
https://www.aldebaran.com/en/blog/news-trends/how-can-humanoid-robots-modernize-your-reception
https://doi.org/10.3390/s19040783

52Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

[9] S. Krishnan, V. Singh, P. Shah, A. Yadav, G. Panampilly, S. Saha and H.
Shukla, ‘Development of an rfid-based semi-autonomous robotic library
management system,’ Oct. 2020, pp. 26–31. DOI: 10.1109/ICACR51161.
2020.9265493.

[10] J. Liu, F. Zhu, Y. Wang, X. Wang, Q. Pan and L. Chen, ‘Rf-scanner: Shelf
scanning with robot-assisted rfid systems,’ in Proceedings - IEEE INFOCOM,
2017.

[11] L. Shangguan and K. Jamieson, ‘The design and implementation of a mobile
rfid tag sorting robot,’ in Proceedings of the 14th Annual International Con-
ference on Mobile Systems, Applications, and Services, ser. MobiSys ’16, New
York, NY, USA: Association for Computing Machinery, 2016, pp. 31–42,
ISBN: 9781450342698. DOI: 10.1145/2906388.2906417. [Online]. Avail-
able: https://doi.org/10.1145/2906388.2906417.

[12] M. Jampour, A. KarimiSardar and H. Estakhroyeh, ‘An autonomous vision-
based shelf-reader robot using faster r-cnn,’ Industrial Robot, vol. ahead-of-
print, Feb. 2021. DOI: 10.1108/IR-10-2020-0225.

[13] X. Chaoying, ‘Research on classification and identification of library based
on artificial intelligence,’ Journal of Intelligent & Fuzzy Systems, vol. 40,
pp. 1–13, Dec. 2020. DOI: 10.3233/JIFS-189524.

[14] S. Zhou, T. Sun, X. Xia, N. Zhang, B. Huang, G. Xian and X. Chai, ‘Library on-
shelf book segmentation and recognition based on deep visual features,’ In-
formation Processing & Management, vol. 59, no. 6, p. 103 101, 2022, ISSN:
0306-4573. DOI: https://doi.org/10.1016/j.ipm.2022.103101. [On-
line]. Available: https://www.sciencedirect.com/science/article/
pii/S0306457322002023.

[15] N. Nam, N. Nam and N. Truong Thinh, ‘Using sift and sliding window to
detect and invent literature for library robot,’ International Journal of Mech-
anical Engineering and Robotics Research, pp. 386–391, Jan. 2021. DOI: 10.
18178/ijmerr.10.7.386-391.

[16] H. Pham, A. Giordano, L. Miller, J. Giannitti, M. Mena and A. DiNardi,
‘A ubiquitous approach for automated library book location management,’
Sep. 2018, pp. 78–82, ISBN: 978-1-4503-6540-6. DOI: 10.1145/3277104.
3277115.

[17] M. Prats, E. Martínez, P. J. Sanz and A. P. Del Pobil, ‘The uji librarian robot,’
Intelligent Service Robotics, vol. 1, no. 4, pp. 321–335, 2008.

[18] P. Azevedo. ‘Medium.’ (2022), [Online]. Available: https://medium.com/
@pedroazevedo6/object-detection-state-of-the-art-2022-ad750e0f6003.

[19] K. He, G. Gkioxari, P. Dollár and R. Girshick, ‘Mask r-cnn,’ in 2017 IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 2980–2988.
DOI: 10.1109/ICCV.2017.322.

https://doi.org/10.1109/ICACR51161.2020.9265493
https://doi.org/10.1109/ICACR51161.2020.9265493
https://doi.org/10.1145/2906388.2906417
https://doi.org/10.1145/2906388.2906417
https://doi.org/10.1108/IR-10-2020-0225
https://doi.org/10.3233/JIFS-189524
https://doi.org/https://doi.org/10.1016/j.ipm.2022.103101
https://www.sciencedirect.com/science/article/pii/S0306457322002023
https://www.sciencedirect.com/science/article/pii/S0306457322002023
https://doi.org/10.18178/ijmerr.10.7.386-391
https://doi.org/10.18178/ijmerr.10.7.386-391
https://doi.org/10.1145/3277104.3277115
https://doi.org/10.1145/3277104.3277115
https://medium.com/@pedroazevedo6/object-detection-state-of-the-art-2022-ad750e0f6003
https://medium.com/@pedroazevedo6/object-detection-state-of-the-art-2022-ad750e0f6003
https://doi.org/10.1109/ICCV.2017.322

Bibliography 53

[20] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, ‘You only look once:
Unified, real-time object detection,’ in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. DOI: 10.1109/
CVPR.2016.91.

[21] C.-Y. Wang, A. Bochkovskiy and H.-Y. M. Liao, Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors, 2022. arXiv:
2207.02696 [cs.CV].

[22] D. Berchmans and S. S. Kumar, ‘Optical character recognition: An overview
and an insight,’ in 2014 International Conference on Control, Instrument-
ation, Communication and Computational Technologies (ICCICCT), 2014,
pp. 1361–1365. DOI: 10.1109/ICCICCT.2014.6993174.

[23] R. Avyodri, S. Lukas and H. Tjahyadi, ‘Optical character recognition (ocr)
for text recognition and its post-processing method: A literature review,’ in
2022 1st International Conference on Technology Innovation and Its Applica-
tions (ICTIIA), 2022, pp. 1–6. DOI: 10.1109/ICTIIA54654.2022.9935961.

[24] Q. Ye and D. Doermann, ‘Text detection and recognition in imagery: A sur-
vey,’ IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37,
no. 7, pp. 1480–1500, 2015. DOI: 10.1109/TPAMI.2014.2366765.

[25] Pypi, 2014. [Online]. Available: https://pypi.org/project/pytesseract/.

[26] R. Smith, ‘An overview of the tesseract ocr engine,’ in Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2,
2007, pp. 629–633. DOI: 10.1109/ICDAR.2007.4376991.

[27] A. Parker, Optical character recognition: Then and now, May 2022. [On-
line]. Available: https://wandb.ai/andrea0/optical-char/reports/
Optical-Character-Recognition-Then-and-Now--VmlldzoyMDY0Mzc0.

[28] Jaided ai. [Online]. Available: https://www.jaided.ai/easyocr/documentation/.

[29] Keras-ocr. [Online]. Available: https://keras-ocr.readthedocs.io/en/
latest/.

[30] Paddleocr. [Online]. Available: https://github.com/PaddlePaddle/PaddleOCR.

[31] Optical character recognition using paddleocr, Jun. 2022. [Online]. Avail-
able: https://learnopencv.com/optical- character- recognition-
using-paddleocr/#PaddleOCR-models-comparison.

[32] Calamari ocr. [Online]. Available: https://calamari-ocr.readthedocs.
io/en/latest/.

[33] C. Wick, C. Reul and F. Puppe, ‘Calamari - A High-Performance Tensorflow-
based Deep Learning Package for Optical Character Recognition,’ Digital
Humanities Quarterly, vol. 14, no. 1, 2020.

https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/2207.02696
https://doi.org/10.1109/ICCICCT.2014.6993174
https://doi.org/10.1109/ICTIIA54654.2022.9935961
https://doi.org/10.1109/TPAMI.2014.2366765
https://pypi.org/project/pytesseract/
https://doi.org/10.1109/ICDAR.2007.4376991
https://wandb.ai/andrea0/optical-char/reports/Optical-Character-Recognition-Then-and-Now--VmlldzoyMDY0Mzc0
https://wandb.ai/andrea0/optical-char/reports/Optical-Character-Recognition-Then-and-Now--VmlldzoyMDY0Mzc0
https://www.jaided.ai/easyocr/documentation/
https://keras-ocr.readthedocs.io/en/latest/
https://keras-ocr.readthedocs.io/en/latest/
https://github.com/PaddlePaddle/PaddleOCR
https://learnopencv.com/optical-character-recognition-using-paddleocr/#PaddleOCR-models-comparison
https://learnopencv.com/optical-character-recognition-using-paddleocr/#PaddleOCR-models-comparison
https://calamari-ocr.readthedocs.io/en/latest/
https://calamari-ocr.readthedocs.io/en/latest/

54Claire Trinquet: Pepper as an assistant in the library: Identifying books using machine learning

[34] C. Neudecker, K. Baierer, M. Gerber, C. Clausner, A. Antonacopoulos and S.
Pletschacher, ‘A survey of ocr evaluation tools and metrics,’ in The 6th Inter-
national Workshop on Historical Document Imaging and Processing, ser. HIP
’21, Lausanne, Switzerland: Association for Computing Machinery, 2021,
pp. 13–18, ISBN: 9781450386906. DOI: 10.1145/3476887.3476888. [On-
line]. Available: https://doi.org/10.1145/3476887.3476888.

[35] T. A. Nartker and S. V. Rice, ‘Measuring the accuracy of page-reading sys-
tems,’ 1996.

[36] V. I. Levenshtein, ‘Binary codes capable of correcting deletions, insertions
and reversals.,’ Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, Feb.
1966, Doklady Akademii Nauk SSSR, V163 No4 845-848 1965.

[37] A. K. Pandey and R. Gelin, ‘A mass-produced sociable humanoid robot: Pep-
per: The first machine of its kind,’ IEEE Robotics and Automation Magazine,
vol. 25, no. 3, pp. 40–48, 2018.

[38] A. Ponnusamy, Cvlib - high level computer vision library for python, https:
//github.com/arunponnusamy/cvlib, 2018.

[39] A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, Yolov4: Optimal speed and
accuracy of object detection, 2020. arXiv: 2004.10934 [cs.CV].

[40] E. Reyes, C. Gómez, E. Norambuena and J. Ruiz-del-Solar, ‘Near real-time
object recognition for pepper based on deep neural networks running on
a backpack,’ in RoboCup 2018: Robot World Cup XXII, D. Holz, K. Genter,
M. Saad and O. von Stryk, Eds., Cham: Springer International Publishing,
2019, pp. 287–298, ISBN: 978-3-030-27544-0.

[41] J. A. Castro-Vargas, A. Garcia-Garcia, S. Oprea, S. Orts-Escolano and J.
Garcia-Rodriguez, ‘Detecting and manipulating objects with a social robot:
An ambient assisted living approach,’ in ROBOT 2017: Third Iberian Robot-
ics Conference, A. Ollero, A. Sanfeliu, L. Montano, N. Lau and C. Cardeira,
Eds., Cham: Springer International Publishing, 2018, pp. 613–624, ISBN:
978-3-319-70833-1.

[42] D. Vedhaviyassh, R. Sudhan, G. Saranya, M. Safa and D. Arun, ‘Comparat-
ive analysis of easyocr and tesseractocr for automatic license plate recog-
nition using deep learning algorithm,’ in 2022 6th International Conference
on Electronics, Communication and Aerospace Technology, 2022, pp. 966–
971. DOI: 10.1109/ICECA55336.2022.10009215.

[43] N. Awalgaonkar, P. Bartakke and R. Chaugule, ‘Automatic license plate re-
cognition system using ssd,’ in 2021 International Symposium of Asian Con-
trol Association on Intelligent Robotics and Industrial Automation (IRIA),
2021, pp. 394–399. DOI: 10.1109/IRIA53009.2021.9588707.

https://doi.org/10.1145/3476887.3476888
https://doi.org/10.1145/3476887.3476888
https://github.com/arunponnusamy/cvlib
https://github.com/arunponnusamy/cvlib
https://arxiv.org/abs/2004.10934
https://doi.org/10.1109/ICECA55336.2022.10009215
https://doi.org/10.1109/IRIA53009.2021.9588707

Bibliography 55

[44] A. Bhardwaj, K. S. Srivastava, A. Kar and S. Gupta, ‘A novel approach to
recognize optical characters of number plate using object detection,’ in Fu-
turistic Trends in Networks and Computing Technologies, P. K. Singh, S. T.
Wierzchoń, J. K. Chhabra and S. Tanwar, Eds., Springer Nature Singapore,
2022, pp. 851–863, ISBN: 978-981-19-5037-7.

[45] X. Tang, C. Wang, J. Su and C. Taylor, ‘An elevator button recognition
method combining yolov5 and ocr,’ Computers, Materials and Continua,
vol. 75, no. 1, pp. 117–131, 2023. DOI: 10.32604/cmc.2023.033327.

[46] Z. Liu, K. Ding, Q. Xu, Y. Song, X. Yuan and Y. Li, ‘Scene images and text
information-based object location of robot grasping,’ IET Cyber-systems and
Robotics, vol. 4, no. 2, pp. 116–130, 2022. DOI: 10.1049/csy2.12049.

https://doi.org/10.32604/cmc.2023.033327
https://doi.org/10.1049/csy2.12049

	Acknowledgement
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Keywords
	Problem statement
	Research Questions
	Contributions
	Outline of Chapters

	Related Works
	Robotics and social robotics
	Robots in libraries
	Object Detection and Optical Character Recognition
	Object detection in real time
	OCR or Optical Character Recognition
	OCR accuracy

	Methodology
	The Pepper Robot
	Design of the scenario
	Experiments
	Procedure
	Parameters
	Data collection

	Implementation
	Experiments
	TakePictures
	CropPictures
	UseOCR
	Accuracy

	Scenario

	Results
	Object detection
	OCR
	Parameters of the experiment
	OCR results across books

	Discussion
	Integration of machine learning with Pepper
	Object detection and OCR
	Scenario
	Limitations
	Implications

	Conclusion and Future Work
	Bibliography

