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Abstract

Deep generative methods have proven successful in producing synthetic populations with a

significant number of attributes on individual data records. Synthetic populations can enrich, i.e.,

simulations in public health policy games with data close to real life. In addition, feature-rich syn-

thetic populations support public governance by increasing data granularity to boost analysis on

subgroups and in smaller locations. Finally, synthetic populations can mimic results from inter-

ventions to evaluate policies in games and real life. Given sufficient epidemiological strength,

synthetic populations can support exploring real-life public health policy.

The main contribution of this project is to adapt state-of-the-art population generation by deep

generative methods to the area of public health. If individual original data are available, deep gen-

erative methods provide robust and granular high-featured populations to, i.e. explore inequalities

in health. However, the lack of explainability of outputs from neural networks adds to the exist-

ing lack of standards; measuring how well, i.e. the statistical patterns in original individual data

reproduce in a high-featured synthetic population, is complicated.

This project proposes a quasi-experimental framework for assessing the quality of the syn-

thetic populations, as the quality of synthetic populations has to be assessed in their particular

and intended use context. This project aims to provide synthetic populations applicable to pol-

icy games teaching university-level students public health-related policy analysis and planning,

particularly emphasising inequalities in health. Hence, this project evaluates the synthetic popu-

lations by examining differences and similarities from the original data and analyses differences

in performance on a quasi-experiment using heterogeneous treatment effects from observational

data. Comparing prediction outputs from the causal forest model is proposed as a viable external

validation method for synthetic populations intended for use in analysis with health outcomes.
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1 Introduction

Synthetic populations are datasets mimicking natural persons’ data records that preserve an actual

population’s aggregated statistics. Synthetic populations have a wide range of use, including feed-

ing attributes to agents in simulations. The first techniques for generating synthetic populations

dated back to just before World War II and were used in analysing telecommunication. After the

war, it gained broader usage as it, i.e. was a less expensive tool than collecting real-life data for

governmental analysis [41, 21]. Current techniques for generating populations with few attributes

are found within small area estimation and microsimulations [41] and agent-based modelling [22],

which are re-weighting and synthetic reconstruction. While re-weighting requires individual original

data and aggregated statistics, the synthetic reconstructions can create artificial data records from

aggregated statistics only [41]. Microsimulation uses synthetic data records to create cross-tables

for answering what-if questions often relevant to policy making [41], like how an intervention in a

region will affect inequalities in health.

The techniques for synthetic population generation, like re-weighting and synthetic reconstruction,

currently dominate the workflow for microsimulations, that is, first generate an initial population,

then fit the population to aggregated statistics for a geographic area of interest, and third, allocate

individuals into networks of interest, like households [6]. Unfortunately, these techniques only create

high-quality synthetic data with a few attributes. More attributes create empty cells in the contin-

gency tables that fit records to aggregated statistics. The empty cell problem is the ”curse of dimen-

sionality”, as stated by Richard Ernest Bellmann in 1957 [41]. A recent development within transport

research using agent-based simulation is to increase the number of attributes using dimensional-

reducing deep generative methods to accomplish the first step in the microsimulation workflow [17].

The ”curse of dimensionality” deals with these data dimension reductions.

Variational autoencoders described by Kingma and Welling in 2014 [23] and generative adversarial

networks suggested by Goodfellow [18], and made operative by Arjovsky et al. in 2017 [1], outperform

current techniques when reproducing populations with a significant number of attributes [6] [17].

The new methods are called deep generative because their core is computational neural networks.

Deep learning is currently a bouquet of black-box methods, often lacking clear interpretability and

explainability [8], but proven excellent to create replicas of data like images, audio, texts and tabular

data. The replication area is less sensitive to the consequences of black-box threats than models

of predictions. However, replications embody some of the black-box elements that threaten the

trustworthiness of predictions [8, 29]. For example, the replicas are mainly evaluated by humans or

benchmarked against area-specific labelled datasets, which provide low transfer value between ar-

eas. The threat of, i.e. misrepresenting groups beyond any randomness could impact the analytical

value of a synthetic population, as a tool for policy planning, by deep generative methods proposed

1



in this project.

High-attribute synthetic populations created by deep generative methods are, to the writer’s knowl-

edge, yet to be used within the domain of microsimulation in public health. Such populations have

yet to be evaluated regarding usefulness in policy analysis and planning within public health or ed-

ucation to improve skills in these fields. A recent review on microsimulation in public health [36]

identifies 24 studies where the populations used were generated by either re-weighting or synthetic

reconstruction. No reported studies in this review used deep generative methods. A general crite-

rion for evaluating microsimulations with health outcomes is benchmarking them against known

outcomes (if they exist), a principle that can be transferred to evaluating synthetic populations for

policy analysis and planning in public health. Figure 1 illustrates the cross-over in relevant domains

of this project.

The initial motivation for exploring high-attribute synthetic populations within public health is linked

to the writer’s work as an associate professor in social science and public health and the challenges

of teaching university-level students to deal with the complexities of policy analysis and planning in

combating inequalities in health. One way of enhancing skills in the area is to play with interventions

and assess their impact on a particular population over time. Therefore, the context for generating

synthetic populations in this project is set to a simple policy game [26] in the making for analysis and

planning within public health with particular emphasis on reducing inequalities in health [20]. The

choice of context serves two purposes for evaluating high-attributed synthetic populations. First,

the synthetic populations can support authentic gameplay, which provides learning without heavy

support from teachers and access to populations replacing sensitive individual data, for example,

for health outcome analysis. Second, synthetic populations assisting gameplay close enough to

stage real-life scenarios with epidemiological rigour are, by definition, regarded as authentic. High

attributed synthetic populations embedded in a game world with policy challenges of inequality

in health additionally allow for a spillover of experiences relevant to epidemiological simulations

without promising a thorough evaluation covering rigorous epidemiological demands. As a simpler

proxy for the epidemiological evaluation of a synthetic population, the heterogeneous treatment

effects calculated by causal forest [2, 16] is proposed.

This project reproduces the deep generative methods of creating synthetic populations from trans-

port research [6] [17] on EU-SILC living condition data from Finland and Norway. The EU-SILC data

includes reported self-perceived health, used as the health outcome in evaluating the populations.

Furthermore, as neural networks are known to be notoriously insensitive to underlying statistical

properties [24], a self-supervised contrastive clustering algorithm based on the maximum coding

rate reduction [49] is applied to the original and synthetic data for comparison of cluster patterns.

In addition to this project’s primary task of generating and evaluating synthetic populations for ed-

2



Figure 1: Areas cross-overs in the contextual em-

bedding of synthetic populations in a policy game

on public health

ucational public health purposes, experiences with the deep generative models and heterogeneous

treatment effects are shortly discussed in light of their applicability as potential components in a

policy game.

1.1 Research Questions

This project responds to the identified gaps and the opportunities for applications in the area of

public health by answering the following research questions:

Q1: How can state-of-the-art deep generative methods contribute to creating high-attribute synthetic

populations from original individual data for use in policy games on public health?

Q2: To what extent can deep generative techniques be exploited to artificially increase the granular-

ity of high-attributed synthetic population data to investigate small groups and locations to support

analysis and planning in public health, emphasising reducing health inequalities for educational pur-

poses in a policy game?

Q3: How can the high-attributed synthetic populations be evaluated according to their applicability

in a policy game on public health?

Q3a: How can the high-attributed synthetic populations be evaluated to meet the educational re-

quirements in a policy game on public health?

3



Q3b: How can the high-attributed synthetic populations be evaluated to meet the epidemiological

requirements in an exploratory real-life-oriented policy game on public health?

1.2 Keywords

• synthetic populations

• deep generative methods

• policy game

• public health

• epidemiological simulation

• causal forest

1.3 Audience

The audience for this work is diverse. Game developers interested in public health-related themes

or using synthetic populations to embody agents in settings that require some form of outcome

evaluation will benefit from the code and experiences shared in the project. Educators within the

public health and epidemiology field can seek inspiration from ideas related to using synthetic pop-

ulations in general outcome analysis and policy planning or to inspire to initiate new serious games

using synthetic populations. Epidemiologists can be inspired to sharpen the evaluation and develop

methods for even better synthetic populations fitted for real-life health outcome analysis. People

working with governmental planning in public health or public data access can use the tentative

evaluations relevant to health outcomes analysis based on synthetic populations created by deep

generative methods.

1.4 Structure

The following text starts with an overview of related work with particular emphasis on the deep

generative methods and validity, as the main focus in this work is the generation and evaluation of

synthetic populations. Next follows a brief overview of the areas in which this work is embedded.

That is, policy games and public health, with particular emphasis on social determinants for health

that are central to combat inequalities in health. The next chapter covers the methods, including

the initial literature review on recent contributions to synthetic population generation. This litera-

ture review is extended based on ’snowballing’ (i.e., augmentation with additional works found in

documents identified as part of the systematic search) to gain a broader perspective and return

to contributions before the selected time frame. Besides a general description of methods, this
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chapter also briefly introduces how synthetic populations for use in public health policy analysis

and planning can be validated in the context of quasi-experiments. This is followed by chapters de-

scribing and analysing the results of the experiments, an associated discussion and a conclusion.

Finally, as the audience of this work is diverse, and some readers need insight into the operational

details, comprehensive documentation of code and visuals for all single variables in the different

versions of synthetic populations are provided in the appendix.

2 Related Work

The proposed deep generative methods for population synthesis [6] and generative adversarial net-

works [17] belong to self-supervised learning within machine learning. A known weakness of self-

supervised neural networks is that they, by default, do not necessarily respect the statistical patterns

of the original data [24]. Self-supervised contrastive learning to identify clusters and, therefore, hid-

den statistical patterns in data are suggested to add an explanation to the black-box outcomes from

neural networks [24] [49] like the synthetic populations in this project. Self-supervised clustering is

run on original and synthetic populations. However, the implications of different or almost similar

patterns still need clarification.

The synthetic populations created in this project are contextually framed in public health and, in

particular, embedded in an educational policy game in the making, focusing on policy analysis and

planning to reduce inequalities in health. Public health and epidemiology are closely related but only

partially overlap. The evaluation of synthetic populations by quasi-experiment on heterogeneous

treatment effects belongs partly to epidemiology and partly to tree-based machine learning.

The following related work is briefly described, and a short introduction to policy games and public

health is provided. Lastly, the synthetic populations need to be evaluated in some specific context

related to their proposed use area. Therefore, a setup of a quasi-experimental design to evaluate

synthetic populations is suggested.

2.1 Deep Generative Methods for Population Synthesis

2.1.1 History of Synthetic Population Generation

A synthetic population is a collection of members with statistical properties similar to members

from the natural population, ”...and possibly such that, at a later stage, the synthetic population can

be aligned with attributes that represent future targets.” The latter is framed by Muller and Ivt (2011)

in the context of agent-based simulations. In this project, this definition is adopted with the follow-

ing twist ”...and possibly such that, during various experimental or quasi-experimental analyses on

5



health outcomes, the synthetic population reveal similar patterns of results.”

Before entering the arena of population generation in the area of microsimulations, the reader should

note that population generation, as such, is not the central focus of microsimulations. Instead,

the initiation and subsequent change in member attributes are in focus when some external event

occurs, like introducing a new public health intervention such as offering youths from low-income

families free equipment and access to public leisure and sports activities. The populations should fit

the ”what would happen if...” scenarios because such questions are relevant to policy analysis. The

populations should be ready for cross-tabulation to generate data that could occur if the simulation

was a real-life event. This approach differs from this project’s aim at evaluating the population as

such but also overlaps, as this project also engages in the generated population’s ability to respond

similarly to original data in the given quasi-experimental settings.

Two frequently used methods for population synthesis for microsimulation and public health, in

particular, are variants of iterative proportional fitting and combinatorial optimisation [36]. Both

methods belong to the synthetic reconstruction branch, while iterative proportional fitting also can fit

in with the re-weighting branch. Moreover, they can use individual survey data and extend a synthetic

population to a geographic region with information on its aggregated demographic statistics [36].

Various microsimulations with health outcomes like diet, body weight, smoking, gambling, mental

and dental health, diabetes and mortality (ref Smith) use these two methods.

This project is not concerned with merging survey data with aggregated statistical patterns for a

particular geographical region nor creating a population based on aggregated statistics only. In-

stead, the interest is in the increasing number of available individual socio-economic and health-

related observational data and how these data can translate into synthetic populations for use,

i.e. policy analysis and planning and, in this project’s case, an educational policy game on public

health. Nevertheless, much knowledge gained in microsimulation regarding evaluating synthetic

populations is valuable for synthetic populations generated by deep generative methods pipelined

to quasi-experiments to obtain health outputs. However, this project aligns with the deep genera-

tive methods used for making synthetic populations for agent-based modelling in transport research

based on complete original individual data.

2.1.2 Variational Autoencoder and Generative Adversarial Networks

This study uses a generative adversarial network first suggested by Ian Goodfellow in 2013 [18] and

later improved by Arjovsky in 2017 [1], and the variational autoencoder presented by Kingma and

Welling in 2014 [23]. These methods are self-supervised because they learn from attempts to cre-

ate a replica of its input. The generative adversarial network learns from a competition between

two neural networks, a generator creating replicas and a critic evaluating those replicas and de-
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ciding if they are fake. The variational autoencoder learns by calculating probabilities on a latent

representation of data. First, data is pushed through a neural network encoder to produce the latent

representation. Then an operation is done on the latent representation to calculate probabilities be-

fore the output from the encoder transfers through a new neural network, often a mirrored version

of the encoder, called the decoder. The output from the decoder is the replica. The input to both

models is random samples in the dimension of the latent representation taken from a Gaussian

distribution. These networks are explored within transport research, and the models from these

studies [6, 17] are only slightly modified for use with strictly one-hot-encoded categorised variables

on living condition data from EU-SILC for Finland and Norway in this project. An essential difference

between the transport research articles and this project is that the synthetic populations must fit

into different quasi-experiments. The public health experiments look for health outcomes over time,

while the transport research looks for travel forms and paths in a spatiotemporal space. In a public

health policy setting, the synthetic population must therefore lend itself to matching experiments

with individual health outcomes and not a sum of collective agents’ actions of choosing a partic-

ular geographical path from place A to place B at a particular time, as in the transport research.

Hence, the evaluation of the synthetic populations differs. This project makes particular efforts to

check if the synthetic populations can replicate actual data results from the quasi-experiment of

heterogeneous treatment effects.

2.2 Policy Games

A policy game [26] is a game or simulation that explores a complex field like public health [38] with

many actors interacting across many areas of society, with its core player activities being policy anal-

ysis and planning with or without collaborative challenges. In this project, the synthetic populations

are contextually embedded in the frame of a policy game on public health, where these populations

are the basis for the analysis and planning of interventions to reduce inequality in health. The analy-

sis part is wrapped in a quasi-experimental frame in which the synthetic populations are input. The

policy planning part is related to the quasi-experiment outputs, which pinpoint from analysis which

subgroups would benefit from which interventions.

Policy games can be serious games [44] in the sense of serving a purpose outside the gameplay

itself, like an educational goal. Igor Mayer defines simulation games as ”expert (m)ent(i)al, rule-

based, interactive environments, where players learn by taking actions and by experiencing their

effects through feedback mechanisms that are deliberately built into and around the game. Gaming

is based on the assumption that the individual and societal learning that emerges in the game can

be transferred to the world outside the game” [26].

A review paper looking for studies on games using simulations published between 2001 and 2020
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found 52 articles demonstrating 14 different areas, including public health [39]. Unfortunately, the

two articles with games on public health were not referenced, and neither were retrieved by the at-

tempt to search. Urban planning was the most frequent field. Agent-based modelling has been used

to simulate the development of inequalities [4] and access to resources relevant to public health, like

access to food, [45], and food security [42]. These contributions show how interventions, through

simulations, technically can be played out in a policy game by using synthetic population data to

embody agents as non-player characters to simulate scenarios related to the chosen intervention.

Simulations have been used extensively in epidemiology and to inform health policies, as shown in

a recent review by Jalali et al. [21].

Several policy games aim to get stakeholders together to fight or negotiate for their interests to

solve a higher common goal, often a wicked problem like reducing inequalities in health [38]. In

this project, the focus is not on collaboration but on how high-attribute synthetic populations can

contribute to policy exploration and, more specifically, how synthetic populations can be evaluated

to meet requirements held by such explorations. Figure 2 suggests a simple policy game setup.

The synthetic population is the point of departure, as it provides the player, as a policy maker or

stakeholder, with information on the inhabitants of a region. The quest is to develop or identify

interventions that can be implemented in this region to reduce the current inequality in health. The

interventions can be simulated, either passively, that is, by providing a new set of population data

given a particular intervention, or dynamically by running modelled simulations on the population

data to explore outcomes on health for different groups of inhabitants. The gameplay is used as

a context for diving into producing and evaluating high-attributed synthetic populations for public

health purposes and is not a part of this project.

A policy game can explore the consequences of changes in such structural features for different

groups of citizens. WHO defines public health as ”...an organised effort by society, primarily through

its public institutions, to improve, promote, protect and restore the population’s health through col-

lective action. It includes services such as health situation analysis, health surveillance, health pro-

motion, prevention, infectious disease control, environmental protection and sanitation, disaster

and health emergency preparedness and response, and occupational health, among others.” [28].

Policy related to public health (health in all policies) is defined ”...a policy or reform designed to

secure healthier communities, by integrating public health actions with primary care and by pursu-

ing healthy public policies across sectors.” [28]. Health policy is defined as ”... set of decisions or

commitments to pursue courses of action aimed at achieving defined goals for improving health,

stating or inferring the values that underpin these decisions...” [28] . To summarise and reformulate,

the definitions of public health policy used in this project are the laws, regulations, plans, decisions

and actions implemented within society to promote wellness and ensure that specific health goals
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Figure 2: Simplified simulation using synthetic population

techniques in a policy game to reduce inequalities in health

are met.

Simulations by, for example, simply manipulating individuals’ data records [37] or playing out com-

plex agent-based strategies [35] are significant areas for the use of low-featured or non-demographic

synthetic populations within public health. In this project, synthetic populations are high-featured

and so-called demographic. Demographic means populations should mimic population distribu-

tions found in real life to be relevant to public health policy analysis and planning. Synthetic popu-

lations with sufficient epidemiological quality can transform an educational policy game into a tool

for governmental officials and planners to design realistic scenarios.

2.3 Public Health

The World Health Organisation states: ”Public health is an organised effort by society, primar-

ily through its public institutions, to improve, promote, protect and restore the population’s health

through collective action.” In the case of inequality in health, the concept of determinants of health

has been well established [11, 10].

Thirty years ago, Margareth Whitehead and Gøran Dahlgren [11, 10] sketched out the ”Rainbow

model” on determinants of health in figure 4. In a recent review [12], they elaborate on the future

use of their model. In contrast to determinants of health, epidemiology looks for the absence of dis-

ease. The rainbow model highlights areas where health is created and encourages cross-sectional

policy work. Public health and healthcare systems cannot deal with upholding health and, mainly,
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Figure 3: Social and Economic Gradient in Health

equality in health. Promoting equality in health requires broad actions across every governmental

sector. The rainbow model sketches these areas, mainly outside the healthcare domain. Accord-

ing to Whitehead and Dahlgren [12], their model describes well but fails to deal with inequalities in

health. To mitigate this, they suggest complementing social determinants of health with, i.e. the

Diderichsen Framework, which allows for explaining pathways and mechanisms [13] [33]. Diderich-

sen’s framework has four main tools operating on the determinants of health. The first is differential

power and resources. The second is differential exposure, the third is differential vulnerability, and

the fourth is differential consequences of being sick [12].

In this project, the generated population should idealistically allow simulations with any health sta-

tus as outcomes [5, 25]. Determinants for health and the mechanisms and pathways changing

those determinants are the primary independent variables in the individual data records of the pop-

ulation. Municipalities dealing with inequality in health (fig. 3) addressed by ”Folkehelseloven” [20]

is the thematic focus for the policy game. In this project, health outcome is self-perceived health, a

measure available in EU-SILC for Finland and Norway [15]. This health outcome is framed with other

variables describing individuals’ social and economic status in EU-SILC data on living conditions,

data that finally provides person records data to the synthetic populations.

2.4 Quasi-Experiments

The term quasi-experiment was first termed by Stouffer and later by Campbell [9, p. 6] to define

experiments that have treatments, outcome measures and experimental units but lack the random

assignment of randomised controlled trials just like the heterogeneous treatment effect based on

observational data, like EU-SILC that is used in this work.
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Figure 4: Whitehead and Dahlgren’s Social Deter-

minants for Health

The evaluation of synthetic populations for use in policy analysis and planning in public health

should comply with specific equivalence standards if they replace original data in the analysis. In

this project, a data-driven pipeline for a quasi-experiment [9], implying a study not complying with

the strict standards of a randomised controlled trial which usually is the case for field studies, is set

up to evaluate the synthetic populations.

The quasi-experiment uses the observational EU-SILC data and the variable self-perceived health

as the outcome variable. Observational data can be used for calculating heterogeneous treatment

effects [2] by selecting some variables as intervention variables. Such methods are used as pilot

studies before an actual trial or as a self-contained tool for analysing trends in larger groups. The

setup is advantageous in identifying diverse outcomes among subgroups following an intervention

[2]. Such design, therefore, particularly fits this project which seeks opportunities for synthetic popu-

lation analysis relevant to inequalities in health. First, the method is a good candidate for evaluating

the analytical equivalence when health outputs from actual or imagined experiments are at stake.

Second, the heterogeneous treatment analysis is an excellent tool for identifying interventions that

fall differently between vulnerable and non-vulnerable groups. A side effect is that the heteroge-

neous treatment effect method can be used directly as a mechanic in a policy game to decide an

agent’s future response to an intervention, given its attributes from the synthetic population.

2.5 What and Why

This project creates high-attribute synthetic populations from data on living conditions from the EU-

SILC data for Finland and Norway. Methods to compare the general statistical patterns in replica

with the original are gathered from the microsimulation and small-area-estimation, making a low-

attribute synthetic population. Self-supervised clustering describes possible differences between

the original and synthetic populations. However, this work is a preliminary suggestion only. Lastly,
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the quality of the synthetic populations is suggested and assessed by the replica’s ability to repro-

duce similar outcomes from heterogeneous treatment analysis.

Educational Relevance Theoretically, the policy game’s educational stance on experimenting and

evaluating policies is rooted in experience, problem and case-based learning [32] and scaffolding

[40] [46]. However, while epidemiological relevance requires the synthetic populations to be close

to reality, a policy game’s educational value [27] can sometimes do without the same level of align-

ment with reality to gain sufficient academic authenticity. In education, an utterly fake toy problem

can probe learning. In this project, the envisioned illustrative policy game aims to increase students’

understanding of complex social and structural phenomena and skills for developing interventions

to improve health and reduce health inequalities in a population. While developing such skills, sta-

tistical literacy is necessary. The latter can be accomplished with any synthetic population without

substantial similarities with the original data, as data can be taken for base truth without losing

anything in the following step of learning the computational skills of analysis. As sketched out, a

policy game should also support an understanding of interventions to reduce inequalities in health.

Therefore, synthetic populations must preserve some critical epidemiological properties to emulate

the realistic effects of explored interventions.

3 Material and Methods

Having established the background and motivational use case of the generation of synthetic popu-

lations, the following discusses the origin and nature of the data on which the exploration of tech-

niques performed as part of this research is based.

3.1 Original Data

Data on welfare and social attributes are freely available as synthetic individual data records from

most EU countries like Finland [15] that is used in this project. The Norwegian EU-SILC data was

downloaded from SIKT [34] after being granted access for use in this project. The Finnish EU-SILC,

a synthetic dataset, and the Norwegian EU-SILC, an original dataset, are treated as original data in

this project. Therefore, no interpretations of selection and weighting of people or questions related

to, i.e. operationalisation of variables are discussed. Instead, the data are taken for their face values

when input to the workflow of generating synthetic populations and later when analysing quasi-

experiment outcomes.

The Finnish data are for 2013 with 19291 examples, and the Norwegian data are from 2017-2020 and

merged into one dataset with 24720 examples. Both datasets imputed missing values on variables
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Figure 5: Analysis pathway starting with data cleaning and transforming variables to one-hot-

encoded or binary features. The prepared dataset is made into synthetic populations by two deep

generative methods, variational autoencoder and Wasserstein generative adversarial network. The

original and synthetic data are clustering using a variational autoencoder as an augmentor for

contrastive self-supervised clustering using the neural manifold clustering and embedding setup.

Clustering patterns on features and particularly the outcome variable ”self-perceived health” are

used to enhance the similarity in results from Causal Forest, which measures the heterogeneous

treatment effect from observational data.

if the number of missing was less than half for the Finnish data and less than 40 per cent for the

Norwegian data. Suppose these data were to be used in an actual analysis rather than as here only

as a substitute. In that case, this level of imputing missing variables could be challenging to some

interpretations of results. However, these considerations are ignored, as running any epidemiologi-

cally interpretable analysis is irrelevant. In this project, the imputed EU-SILC data is taken for truth;

it is assumed they are already prepared to fit epidemiological analysis. In this way, the EU-SILC data

from Finland and Norway are considered the accurate epidemiologically relevant baseline. The next

step is to compare these originals with the synthetic populations’ abilities to, i.e. produce similar

results from the same quasi-experiments.

Notice also that the weighting information for each example is not used as an asset in the generation

of populations for the same reasons as sketched above. It does not matter if the data are ”real” and

prepared for epidemiological analysis, as the assumption is that the data at hand is prepared. The

point is not to predict, i.e. health outcomes, but to measure the reproduction quality of the synthetic

population from some base ”truth”.

Self-reported health, variable PH010 with five categories from 1 to 5, where 1 is excellent health, is

used as the outcome variable in quasi-experiment analyses for both datasets. Self-reported health

is tightly connected to physical and psychological health and illnesses. Therefore, it is used within

public health and epidemiology as a reasonably good indicator of health at the population level. The
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datasets do not contain the same variables, even though some overlap exists. This is because the

Finnish dataset was quickly available for download and was used as input to the initial explorations

of the deep generative methods. Only later, when the Norwegian dataset was available, making the

two sets identical became challenging because the synthetic EU-SILC had a different setup and ways

to present the variables and different variable names. No code-book translation to the synthetic EU-

SILC was available through the Norwegian Statistical Bureau or SIKT. However, it is not particularly

important to this project that the datasets match all variables. They represent an actual population

when the variables’ values are taken to represent the population, and both have the same output

variable, self-perceived health, which is essential for the quasi-experiment evaluation.

3.1.1 Cross-Sectional Data - EU-SILC Finland 2013

The EU-SILC data [15] is cross-sectional on income, poverty, social exclusion and living conditions

and can be used to generate and evaluate cross-sectional population generation. Data was ob-

tained from Euro-Stats Website in October 2022 with coded variable names. All variables used in

the population data from Finland are translated to binary or one-hot-encoded categorical variables

(see variable list below 1). In addition, all variables, including numerical ones, are transformed to

categorical one-hot-encoded, resulting in 230 binaries from 38 variables.

Variables with only two options in the data, like gender, are transformed into a one-column binary.

For example, numerical float data has variables for income and benefits. These are summed up

and turned into two binary variables, ”hasIncome” and ”hasBenefits”. One is assigned if the total

sum is positive. The category year of birth is a numerical integer turned into a five-category ordinal

variable ”Age”. The division of age starts from the youngest person in the data, 17 in 2013, the year

of the observation, and picks groups spanning 13 years up to the last age group of 82 or older. All

categorical variables are treated as nominal, and all non-binaries are, therefore, one-hot-encoded.

Some categorical variables are ordinal and could have been made as scale variables with no problem

running this in the generative models. Experiments on the advantages or drawbacks of using scaled

versus one-hot-encoding on ordinal variables are not part of this work and are left to future research.

The one-hot-encoding strategy will work on any variable. This strategy is selected because social

variables needed to understand inequalities in health often are ordinal.
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# Description EU-SILC Finland Original Type Values Name

1 Household size numerical (int) 5 householdSize
2 Year of birth numerical (int) 5 Age
3 Gender binary 2 isFemale
4 Marital status categorical 5 PB190
5 Education level categorical 5 PE040
6 Economic status categorical 11 PL031
7 Work categorical 4 PL040
8 Self-perceived health categorical (scale) 5 PH010
9 Long term health problem binary 2 hasIllness
10 Activity reduction categorical 3 PH030
11 Access to healthcare categorical 3 PH040
12 Access to dental care categorical 3 PH060
13 Buy new cloths categorical 3 PD020
14 Two pair shoes categorical 3 PD030
15 Get together friends categorical 3 PD050
16 Leisure categorical 3 PD060
17 Spend money personal categorical 3 PD070
18 Internet at home categorical 3 PD080
19 Life satisfaction categorical (scale) 10 PW010
20 Meaning of life categorical (scale) 10 PW020
21 Economic satisfaction categorical (scale) 10 PW030
22 Accommodation satisfaction categorical (scale) 10 PW040
23 Nervous categorical (scale) 5 PW050
24 Feeling down categorical (scale) 5 PW060
25 Calm categorical (scale) 5 PW070
26 Depressed categorical (scale) 5 PW080
27 Being happy categorical (scale) 5 PW090
28 Satisfied with time use categorical (scale) 10 PW120
29 Trust political system categorical (scale) 10 PW130
30 Trust in legal system categorical (scale) 10 PW140
31 Trust in police categorical (scale) 10 PW150
32 Satisfied personal relationships categorical (scale) 10 PW160
33 Someone to discuss personal issues binary 2 hasFriend
34 Help from others binary 2 getHelp
35 Trust in others binary 2 PW190
36 Satisfied green areas categorical (scale) 10 PW200
37 Satisfied living area categorical (scale) 10 PW210
38 Physical security categorical (scale) 4 PW220
39 Income numerical (float) 2 hasIncome
40 Benefit numerical (float) 2 hasBenefits

Table 1: Variables from EU-SILC Finland
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3.1.2 Cross-Sectional Data - Norwegian Income and Living Conditions 2017-2020

The Norwegian official welfare data are similar to synthetic EU-SILC [15] for Finland, having some

of the variables but is not entirely the same as for Finland 2013. The dataset has partly general EU

codes and partly Norwegian variable names. In addition, some variables overlap with the Finnish

data. Therefore, the two datasets cannot be directly compared in the following quasi-experiments.

All variables with two options are translated to a one-columns binary variable. All other categori-

cal variables are one-hot-encoded. Numerical variables like age are turned into ordinal categorical

variables and next to one-hot-encoded. The economic variables extracted from the original EU-SILC

Norway are at the household level and transferred into a binary ”hasIncome” and ”hasBenefits”, giv-

ing one if the sum is positive and zero otherwise. In addition, the general EU-SILC poverty indicators

are included, such i.e. affording health and dentistry, new clothes and shoes, leisure, spending time

with friends, and using own money.

Socio-demographic variables are gender ”isFemale”, ”Age”, marital status (PB190), level of educa-

tion (PE040), ”hasKids”, ”livesAlone”, ”householdSize”, region of residence, and number of inhabi-

tants in place of residence.

In concert, the selected social and economic variables comprise some of the determinants of health

that are important for investigating inequalities in health.
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# Description EU-SILC Norway Original Type Values Name

1 Household size numerical (int) 9 householdSize
2 Year of birth numerical (int) 5 Age
3 Gender binary 2 isFemale
4 Marital status categorical 5 PB190
5 Education level categorical 6 PE040
6 Economic status categorical 11 work
7 Economy categorical 6 economy
8 Self-perceived health categorical (scale) 5 PH010
9 Long term health problem binary 2 hasIllness
10 Activity reduction categorical 3 PH030
11 Access to healthcare categorical 3 PH040
12 Access to dental care categorical 3 PH060
13 Buy new cloths categorical 3 PD020
14 Two pairs of shoes categorical 3 PD030
15 Get together friends categorical 3 PD050
16 Leisure categorical 3 PD060
17 Spend money personal categorical 3 PD070
18 Internet at home categorical 3 PD070
19 Life satisfaction categorical (scale) 10 PW010
20 Meaning of life categorical (scale) 10 PW020
21 Feeling happy categorical (scale) 10 AffectA
22 Worried categorical (scale) 10 AffectB
23 Feeling sad categorical (scale) 8 AffectC
24 Afford housing binary 2 canPayHousing
25 Afford unexpected expense binary 2 hasCapasity
26 Over mean income binary 2 overMedianIncome
27 Income numerical (float) 2 hasIncome
28 Capital income numerical (float) 2 hasCapitalIncome
29 Benefit numerical (float) 2 hasBenefits
30 Lives alone binary 2 livesAlone
31 Lives in a city binary 2 livesCity
32 House type categorical 4 houseType
33 Has a PC categorical 3 PC
34 Has a Internet categorical 3 Internet
35 Has a car categorical 3 Car
36 Inhabitants in place of living categorical 4 sizePlace
37 Region in country categorical 6 region

Table 2: Variables from EU-SILC Norway
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3.2 Literature Review on Synthetic Populations

A systematic critical literature review [47] to investigate the field of synthetic population generation

within the (social) simulation area is done. Oria and Google Scholar were used on September 19

2022, using the terms ”synthetic population”, ”generation”, and ”methods”. In addition, peer-reviewed

papers published from 2018-2022 were selected. The selection criteria are described in figure 6.

Fifteen articles were selected for reading, resulting in ten being rejected. The five remaining and

included studies are listed in table 3.

Chapuis et al. [22] review articles published in the Journal of Artificial Societies and Social Simula-

tion on methods of creating synthetic populations in social simulations. They divide the traditional

heuristic techniques reviewed into two main approaches, combinatorial optimisation and synthetic

reconstruction.

Yameogo et al. use synthetic reconstruction on French survey and census data to test different tra-

ditional heuristic methods to create a two-level synthetic population on households and individuals

[48]. Hierarchical iterative proportional fitting and relative entropy minimisations are the currently

best methods to combine individual and household-level populations. This study uses all three

stages of traditional synthetic population generation; a) prepare a starting population of individual

data records from survey data, b) fit individual data to aggregated statistics using census data, and

c) spatial allocation of individuals and households. Similarly, Roszka et al. [31] create a population

using Polish census (EU-SILC data) and survey data to investigate inequalities in income spatially.

Finally, this article discusses the general validation of generated populations of relevance for this

project.

The following two studies using deep generative methods in population synthesis mainly explore

the first stage of preparing individuals’ data records, leaving the last two more or less unexplored.

Borysov et al. created a population with variational autoencoding [6]. Their model matched the

performance of the traditional iterative proportional fitting on data with limited attributes. However,

with significantly more features, their model did better. Farooq et al. used generative adversarial

networks to create a population based on Danish travel data [3]. They compared their generative

model to variational autoencoders [6] and showed further improvements. These articles are related

to transport research. Nevertheless, these techniques apply to any generation of individual data

records. Neither of the presented studies aims at reproducing longitudinal population data.

This study takes advantage of previous discussions on methods and metrics of internal validation

of synthetic populations. While the transport research on deep generative techniques only focuses

on the first of the three stages of population synthesis, this study will include challenges in the

second and third stages focusing on up-scaling data to fit the general population profile of an actual
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Figure 6: Literature Search Article Selection
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municipality.

The first literature search and selected articles led to a term similar to synthetic populations: small

area estimation methods used to generate individual data records. A new search in Oria on February

1 2023, using keywords:” small area estimation”,” data”, ”generation”, and” methods” for the years

2018 until now that is peer-reviewed returned eight articles.

In addition to the systematic critical review, two unsystematic narratives [19] searches in Oria were

done as part of so-called snowballing by, i.e. nesting in references in included articles. Titles and

abstracts were scanned for relevance. The first search on September 22 2022, with the words gen-

erative adversarial networks ”synthetic population” method, did not give any new hits. The second

search on policy games in public health, October 7, 2022, using the terms ”policy game” public

health, gave 26 unique peer-reviewed articles. About half were irrelevant by title. The most relevant

articles are described in the section ”Related work”.
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Incl. Selected Articles by Title Year/Author

Yes How to generate micro-agents? A deep generative modelling ap-

proach to population synthesis

2019/Borysov [6]

Yes Spatial microsimulation of personal income in Poland at the level

of subregions

2019/Roszka [31]

Yes Generating a two-layered synthetic population for French munic-

ipalities: Results and evaluation of four synthetic reconstruction

methods

2021/Yameogo [48]

Yes Generation of synthetic populations in social simulations: a review

of methods and practices

2022/Chapuis [22]

Yes Composite Travel Generative Adversarial Networks for Tabular and

Sequential Population Synthesis

2022/Farooq [3]

Table 3: Selected Articles

3.3 Deep Generative Methods

The deep generative methods are built up by neural networks in an architecture for self-supervised

learning. Neural networks are function approximators that exploit the backpropagation of errors

through complex networks or neurons in layers to learn by updating weights and biases on each

neuron. The errors are measured with various loss functions, which have to be differentiable to track

small changes in error. The two methods used in this project operate differently. First, the variational

autoencoder directly tries replicating its input by assigning probability measures on the latent layer

between an encoder and a decoder network. On the other hand, the generative adversarial network is

a competition between a generator network that takes a randomly generated latent vector to output

a replica that a separate critic network evaluates as fake or real. The generator gradually learns to

replicate the input data by adjusting its weights and biases to a random Gaussian noise input. The

critic also learns to better distinguish fake from real. These adversarial networks have to balance

the competition between the two neural networks. Balance and stability were obtained by applying

the Wasserstein loss and gradient penalty.

In this project, four versions of each variational autoencoder (VAE) and Wasserstein generative ad-

versarial network with gradient penalty (WGAN), only differing in the size of the latent dimension, are
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set up to produce synthetic populations. No other settings but the latent dimension vary between

the different VAE or WGAN models. The choice of architecture is based on the experiences from the

transporting research articles [6, 17] and initial runs to find one setup that fitted. No efforts are made

to fine-tune or optimise the models, as this is premature at this stage of experimentation, where the

general fitness of such methods is investigated. Unless such fitness is finally proven, there is no

need for fine-tuning.

3.3.1 Variational Autoencoder Architecture

The variational autoencoder has a mirrored two-linear-layers configuration with 50 and 100 neurons

in the decoder and 100 and 50 in the encoder. Experiments from transport research showed that

more layers or nodes in the networks perform worse on the basic metrics of standardised root-

squared mean error, Pearsons and R-squared. During the initial runs, this architecture performed

well and was kept during the project. In addition, the beta-variational autoencoder configuration is

used. To tweak training performance, it applies a constant beta to the Kullback-Leibler divergence

loss. The kernel trick configuration, which applies the statistical metrics to the latent representa-

tion, uses Kullback-Leibler divergence (KL) loss which measures the similarity between probabili-

ties. To measure construction loss, the difference between input and replica, the RMSprop as loss

functions. KL measures the similarity between feature probabilities in the original and replica, while

RMSProp measures the overall reconstruction loss. Code is found here A.1. An excellent mathemat-

ical explanation of variational autoencoders is found here [14]. The setup differs from the one used

in transport research [6] only by applying sigmoid activation on all single outputs instead of using

softmax. These are nevertheless completely equivalents as softmax is a clustered implementation

of sigmoid activation.

The following settings are used for the variational autoencoder:

• beta: 0.5

• learning rate: 0.0001

• batch size: 115/156

• latent dimensions: 15, 30, 50, 100

• linear layers with batch normalisation

• activation: leaky relu 0.2

• output layer: sigmoid on each feature

• number of training epochs: chosen at approximate convergence for each dataset
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Figure 7: Architecture of the applied variational autoencoder used for

Finland and Norway EU-SILC data.

3.3.2 Wasserstein Generative Adversarial Network Architecture

After testing the setups from the transport research article [17], the Wasserstein generative adver-

sarial network with gradient penalty was finally chosen as the basic architecture. Code is found

here B.1. The gradient penalty stabilises learning and ensures convergence better than the weight

clipping in the referred article. Arjovsky [1] that managed to stabilise generative adversarial net-

works with Wasserstein loss, encouraged using gradient penalty to weight clipping, as his team

experienced training that either generated poor sample or failed to converge with Wasserstein loss

and weight clipping. Otherwise, the general architecture from the article [17] is used. The following

general settings were applied:

• linear layers in generator: 150 and 100

• linear layers in critic: 100 and 150

• activation: leaky relu 0.2

• output layer generator: sigmoid for each feature

• output layer critic: one node linear layer with no activation

• learning rate: 0.0001

• batch size: 115/156

• critic iterations: 5

• optimiser Adam: beta (0.5, 0.9)

• lambda for gradient penalty: 10.0

• latent dimensions: 15, 30, 50, 100
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Figure 8: Architecture of the applied WGAN-GP used for Finland and

Norway EU-SILC data.

• epochs training: adjusted to convergence for each dataset

3.3.3 Neural Manifold Clustering Embedding

Neural Manifold Clustering and Embedding (NMCE) [24] is a contrastive self-supervised method

based on maximal coding rate reduction [49] combined with a similarity separator that adds aug-

mented examples close to the original. In this project, the VAE model assists contrastive learning

by augmenting records using the latent space from the original to a replica from the VAE decoder.

Replica and original are the inputs to train the NMCE. Code is found here C.1. This combination of

originals and replicas in learning is the operative constraints function in NMCE [24]. This cluster-

ing technique is preliminarily tested to compare the original and synthetic populations according to

patterns.

3.4 Reliability and Validity

The literature on reliability and validation in experimental social sciences is concerned with out-

comes and interpretation of overall results from the experiment [9], which is different from com-

paring a sufficient similarity between original and synthetic data. On the other hand, researchers

in small-area estimation and population synthesis within agent-based simulations have dealt with

the evaluation of low-attribute populations for decades but still need to reach a consensus on best

practices [31, 22, 41, 30]. According to any definition of a synthetic population that encompasses

similar statistical properties with inhabitants in a specific geolocation, it is evident that the statisti-

cal patterns in the geolocation must match those in the synthetic population. Good quality implies

similarities in single variables and multi-correlations across all variables for low-attribute popula-

tions. This project uses the root mean squared error, standardised root mean squared error, Pear-
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son’s correlation coefficient, and R-squared to compare similarity. However, it is only feasible to

assess similarity across every single variable and all binary correlations, as testing for all possible

multi-correlations is intractable with over 150 attributes.

How, then, do a thorough evaluation of synthetic populations with high numbers of attributes? By

acknowledging the embeddedness of synthetic populations in this project to public health and pol-

icy analysis and planning, Cook and Campbell’s suggestions for validating quasi-experiments can

bring light to some of the challenges. The assumption is that the synthetic populations proposed in

this work should answer what-if questions about health outcomes resulting from an intervention. By

exploring health outputs from different potential interventions, policy planning for reducing inequal-

ity in health can take place. The synthetic population, then, needs to function as an equivalent to the

original data in such analysis. From these assumptions, the validation of the synthetic populations

can proceed from the general similarity measures sketched above.

Cook and Campbell [9] suggest four categories of validity deriving from the concepts of internal

and external validity suggested by Campbell and Stanley in the early 1960-ies. Cook and Campbell

define validity as ”...the best available approximation to the truth or falsity of propositions, including

propositions about a cause.” [9, p. 37]. Cook and Campbell apply a critical-realist approach to cause

founded in, among others, the theories of John Steward Mills’s inductive approach and Carl Popper’s

falsification [9].

3.4.1 Statistical Validity

Statistical conclusion validity is the first category with significant concerns regarding falsely con-

cluding with strong covariance when it does not exist (type I errors) and incorrectly stating no dif-

ference when it is a factual difference (type II errors). In addition, statistical power and magnitude

of change with appropriate confidence intervals are also at stake in this category. The metrics sug-

gested for evaluating synthetic populations above belong to this category, as they analyse variance

and errors in variance. These measures are partly robust to violations of normality, implying that vari-

ables with slightly off-pist distribution from Gaussian, nevertheless, can be handled well. However,

any uncorrelated errors caused by the generation techniques will make these metrics error-prone

[9, p. 42]. Two conditions of threats to statistical conclusion validity at stake for synthetic popula-

tions are the reliability of measures and the random heterogeneity of respondents. Variables that

reproduce low scores on metrics like root mean squared error, Pearson’s and R-squared, by defi-

nition, have low reliability compared to the original data and cannot necessarily be trusted when

used in an experiment. This unreliability adds to any reliability issues in the original data, a question

that is irrelevant to this project but highly relevant in an epidemiological interpretation of results.

The second condition concerning random heterogeneity of respondents is crucial as some gener-
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ative methods push variable values to the mean and produce fewer examples with extreme values

than are represented in the original data. When this happens, the statistical conclusion validation is

threatened, which is particularly challenging in this project, where the synthetic population is used

to analyse vulnerable groups perhaps identified by some extreme values. The synthetic population

will be biased towards the mean population, with less power to identify subgroups of interest.

A short comment on reliability is that when assessing the techniques of producing the synthetic

populations, these techniques are fully reproducible and hence reliable, given the use of the same

code, tools and random seeds. The lack of reliability above concerns the need for more equivalence

between the original variable values and the synthetic population. Therefore, reliable and valid terms

are multifaceted, as synthetic populations are evaluated on multiple levels.

The following metrics are reported for evaluating a synthetic population [22, 48]:

• TAE (total absolute error) and RAE (relative absolute error) measuring similarity in marginals

distributions

• AAPD (absolute average percentage difference)

• SRMSE (standard root mean squared error) or other squared or root squared measures for

error to evaluate the goodness of fit between original and synthetic marginals

• Pearson’s correlation coefficient measures the strength of the relationship between the origi-

nal and synthetic data point, with one being a perfect match and zero indicating no correlation.

• R-squared is the coefficient for determination representing the variation in the data, that is,

how well the data fit the regression line with one indicating a perfect match, and zero that the

proposed model does not explain anything.

• Z-scores and standard deviation

• Proportion of good predictions (PGP) measuring the proportion of misclassified entities

• KL (Kullback-Leibler divergence) measuring similarities between two probabilities

• Cramer’s V, Pearson’s correlation coefficient, and R Squared (R2) measuring strength in de-

pendencies

• Bland-Altman to visually and statistically (by mean and confidence intervals) compare two

instruments of measurements of the same variables

• Comparing correlation between pairs or multiples of variables
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3.4.2 Internal Validity

Internal validity relates to the causal models and the conclusions drawn from results [9]. The critical

takeaway for synthetic populations is the threat to internal validity caused by a shift in the scales

of the metrics, called instrumentation. If we assume the original data set the scale, any truncations

of that scale by, i.e. fewer examples in the extreme high or low categories, is such a threat. In this

project, all numerical, ordinal or nominal categorical variables are one-hot-encoded, avoiding scaling

challenges. However, as mentioned in the section on statistical validity above, such truncations are

challenging and need to be handled.

3.4.3 Construct Validity

Construct validity is about operationalising parts in the problem to be investigated by an experiment

[9]. There are no relevant threats under this heading. However, then Cook and Campbell propose

to create so-called nomological nets showing predicted patterns of relationships that would permit

having the chosen construct guiding an experiment. The outputs from the heterogeneous treatment

effect by Causal Random Forest DML on original data can function as such nomological net, being

the reference for outputs using synthetic data.

3.4.4 External Validity

External validity is a question of the generalisability of results to other areas or across groups [9].

For example, suppose the produced synthetic populations were used in a particular geographical re-

gion to guide interventions to deal with inequalities in health; given the original data as ground truth,

the synthetic populations needed to possess similarities of heterogeneity guaranteed by the original

data’s proper random sampling. As mentioned above, if the deep generative method pushes exam-

ples to the mean or otherwise hampers the reconstruction of extreme values, this also threatens

external validity. Deliberate heterogeneity sampling can mitigate this threat [9].

3.5 Causal Forest as Quasi-Experimental Evaluation Tool

The machine learning tool causal forests offer a data-driven approach to identify and measure het-

erogeneous treatment effects from observational data as described by Athey and Wager [2] and

have been recently successfully applied to re-analyse well-conducted randomised control trials that

resulted in negative findings (refs), to reveal subgroups with opposite outcomes that nulled out the

effect for each other in the original trial. Causal Forest allows any type of forest, including classifi-

cation and regression forest, for provably valid statistical inference and is based on an asymptotic

Gaussian and centred sampling distribution. The conceptual and mathematical details are available
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in this article by Athey and Wager [2].

The Causal Forest, described by Athey and Wager [2], generates regression trees by using some data

to set the parameters and assign other data to the tree’s leaves. This division of data usage is called

”honesty” and makes the model robust and less biased [7], and safeguards valid point estimates

and confidence intervals. Unfortunately, the division trick wastes half of the data. Nevertheless,

the method has proven highly effective and precise [2]. Moreover, while a random forest technique

only assigns samples, a causal forest calculates the leaves samples’ mean treatment effect and

confidence intervals. Causal forest methods can therefore be helpful in any microsimulation with

a quasi-experimental design, as they, by computing valid point estimates and confidence intervals,

partly solve the problem of uncertainty estimation [36] [43].

A significant challenge for governance in public health is to target interventions to decrease inequal-

ities in health [20]. Causal forests can help inform customised interventions to reach these goals.

Furthermore, because Causal Forest identifies and evaluates complex statistical properties in the

data, it can also be a tool for externally validating synthetic populations.

Based on the quasi-experiment design in this project, the evaluation is done by running original and

synthetic data through a Causal Forest model trained on original data only to predict health out-

comes as self-perceived health (PH010). Five different interventions (treatments) are selected. The

first and second are two measures of education (PE040). The third is meeting with friends, a social

metric (PD050). The fourth is leisure activities (PD060), and the fifth is the degree of nervousness

as a psychological factor (PW050). These experiments are illustrative but represent the statistical

dependencies without carving out natural and causal relations. The metrics used for evaluating

outputs from the Causal Forest method are the CATE (conditional average treatment effect). The

results are visualised as a graph tree with three or four layers and Shap variable importance plots.

3.6 Policy Game on Public Health as Context

The following figures 9, 10, 11, 12 show a preliminary setup of a dashboard public health policy game

in the making to demonstrate usage of synthetic population data in policy analysis and planning with

suggestions for how to simulate policy scenarios. The public health arena, dealing with inequalities

in health, is the broad context for evaluating synthetic populations. Embedding this broader context

into a policy game is framing the context for the following evaluation of synthetic populations.

A short walk-through of the policy game in the making shows that a main dashboard in figure 9 dis-

plays the content of the synthetic population. Next, the public health profile in figure 10 shows scores

on various selected variables for a particular region compared to the mean for all regions or a single,

i.e. best-practice region. Next, the policy dashboard in figure 11 offers the player an exploration of
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Figure 9: Policy Game Main Dashboard Figure 10: Public Health Profile

Figure 11: Policy Dashboard Figure 12: Result Board

different interventions to assess their potential impact on vulnerable groups and eventually offers

choices for implementation. Finally, the result board in figure 12 shows the results of an intervention

by, i.e. drawing data from a simulated new synthetic population.

These sketches suggest some general aspects of using synthetic populations in a policy game. The

main point of suggesting a policy game model as a contextual embedding for synthetic populations

is that the setup, to some degree, mimics the surveillance and work needed by governmental bodies

to deal with inequalities in health, and next, because it is a simplified representation of a complex

field of operation that can aid learning. The learning potential is motivated in its own right. Evaluating

the synthetic populations against epidemiological standards serve two purposes. First, it is used

to assess authenticity, and second, it opens a transition to an ambition to raise the standards of

synthetic populations to fit real-life epidemiological analysis.

3.7 Tools

PyTorch 2.0 is the tool to set up and run deep generative models for population synthesis and clus-

tering techniques. While Tensorflow and Keras can also be used, these tools turned out less flexible

and transparent than PyTorch, especially when saving and reusing customised models with sub-

models like the variational autoencoder and generative adversarial network. Pandas version 1.5.3

are used for original preprocessing data in a CSV format (EU-SILC Finland) or SPSS format (EU-SILC
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Norway). The EU-SILC data was imputed using sklearn.impute.IterativeImputer from Scikit-Learn

version 1.1.3. EconML and its model CausalForestDML version 0.13.1 are used out of the box on the

observational data to generate heterogeneous treatment effects. All code is mainly run in Jupyter-

Notbook version 6.5.4 on either a MacBookPro (without GPU) or Linux (Ubuntu 22.04 LTS) (with

GPU). Visuals are created using the Seaborn package version 0.12.2, mainly based on Matplotlib-

Pyplot version 3.7.1. Customised code is written to calculate, i.e. SRMSE, while Pearson’s correlation

coefficient and R-square are calculated from Numpy version 1.23.5 and Statsmodel version 0.13.5.

3.8 Experimental Design

The design to answer the research questions is built up by first generating four different versions of

each of the two generative models with latent representation dimensions of 15, 30, 50 and 100. Next,

these eight models are run on the original EU-SILC datasets for Finland and Norway, respectively,

resulting in sixteen synthetic populations.

These populations are assessed according to root mean squared error, Pearson’s correlation coef-

ficient, and R-squared for all single one-hot-encoded attributes and all binary combinations of those

attributes. These results represent the first line of answering RQ1 and RQ3b and cover issues related

to statistical validity, the creation of possible uncorrelated errors, and the level of reliability for each

variable. These results also contribute to answering the threats to internal validity linked to the level

of truncation giving ceiling and basement effects.

Next, these synthetic populations are compared with original data in Bland-Atman analysis, where

the original data are a baseline measurement to which the synthetic populations are compared. The

variables falling outside the confidence intervals and the confidence intervals themselves contribute

to answering RQ1 and RQ3b by informing the reliability discussion under statistical validity. This

metric cannot identify the causes of unreliable reproductions of variables. However, it does show

that if variables fall out of the confidence intervals, there is a chance for uncorrelated errors, as there

are 95 per cent likelihood that these variables have a pattern that does not, by random, fit with the

original data.

Two other approaches are made to look for hidden differences between the original and the syn-

thetic populations to determine how fit they are for health outcome analysis, which is the corner-

stone of policy analysis (RQ1) and epidemiological compatibility (RQ3). These are contingency ma-

trices between the health outcome variable self-perceived health (PH010) and other variables known

to impact health inequalities, like education (PE040). Next, confusion matrices are produced to look

for a more detailed spreading of individuals between the original and synthetic data. For simplicity,

only the VAE-50/100 and WGAN-50/100 from the Norwegian data are used for this analysis. It is

expected, in principle, to be similar to using other models or the Finnish data. Results from accu-
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racy, precision and recall in the visual contingency and confusion matrices contribute to answers

RQ1 and RQ3, particularly by enlightening the internal validity question of truncation and the external

validity question of underrepresenting outlier examples. These matrices can also function as the

so-called nomological nets described under construct validity.

RQ2 is approached by looking at the reproduction of regions in the Norwegian dataset and running

a direct numerical upscaling by the generative models while measuring changes in accuracy, preci-

sion, recall and the balance between precision and recall, F1. In addition, cluster patterns from the

neural manifold and embedding [24] are compared across the regions in original and synthetic pop-

ulations. However, as neural manifold clustering and embedding is a novel technique derived from

imaging, not yet used on tabular data, it is only preliminarily suggestive as a measure of similarity

for synthetic populations.

RQ3a can be transformed into a question of authenticity that can directly be answered by RQ3b.

However, other options relevant to educational purposes are more than just the synthetic population

meeting the strict requirements under RQ3b. These questions will be dealt with in the discussion.

RQ3b is approached by looking to which degree the synthetic populations output similar results

to the original data in running quasi-experiments using Causal Forest DML. The output from this

analysis is trees pinpointing red or green colours when a treatment has a negative or positive effect

on the current fraction of examples in the leaf nodes. Additional outputs are Shap diagrams from the

causal forest, showing a ranked list of the variables having the most significant impact of treatment

on the outcome variable self-perceived health. The similarity in ranking and direction between the

original data and the synthetic indicates that some basic correlations, causal or not, are reproduced.

4 Results

4.1 Synthetic Populations by Deep Generative Methods

Synthetic populations are produced by the variational autoencoder [6] and generative adversarial

network with Wasserstein [17], using different sizes of 15, 30, 50 and 100 for the latent representation

of EU-SILC for Finland (230 one-hot-encoded features) and Norway (156 one-hot-encoded features).

The univariate differences between one-hot-encoded variables in the original and synthetic popula-

tions are visually presented with metrics for standardised root mean squared error, Pearson’s corre-

lation coefficient, and R-squared for EU-SILC Finland and Norway. These metrics show differences

between the marginals, the mean of a variable representing the variable’s probability of appearing

over the complete set of features, between marginals in original versus synthetic populations. A

lower standardised root mean squared error implies less linear distance between the original vari-
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able and the one produced by the deep generative method. A complete match is indicated when

Pearson’s correlation coefficient and R-square equal one.

The similarity in the binary correlations between all variables within each dataset is visualised using

root mean squared error, as the input marginals are normalised by multiplying their marginals over

the complete set with each other. Next, the two Pearson’s and R-square correlation measures are

shown in the figures 16.

Similarity measured by the standardised root mean squared, Pearson’s correlation coefficient, and R-

squared improved gradually with increased size for the latent space from 15 to 100 for both deep gen-

erative models. The Wasserstein generative adversarial network generates populations and single

variables more similar to the original than the variational autoencoder for both datasets as shown

in univariate correlation 13 14, bivariate correlations 15 16, Bland-Altman 20 and single variables E

F.

The Bland-Altman plots, suggested as metrics for synthetic populations validation by Yamego [48],

visualise the original and synthetic data as two different methods to measure features, with the

original data as the baseline. These plots show a scatter plot for features with confidence inter-

vals capturing variables being random within the borders and variables differing more outside. For

example, results from the Bland-Altman show that the VAE population have more variable outside

the confidence intervals than the WGAN population and that increased latent dimension narrows

confidence intervals for all models, as shown in Figure 20.

A test where the original data and the synthetic populations are split up into clusters generated by

training the neural manifold clustering and embedding algorithm on original data shows that only

the largest cluster maintains the same results on standardised mean squared error, Pearsons and

R-squared. All other clusters with more than 200 examples showed worse similarity measured by

this method than their original counterpart on the Norwegian dataset 4.

The reproduction quality of each variable, as shown in E, gets better with a higher latent dimension.

However, some variables still reproduce worse and do not keep within the confidence limits in the

Bland-Altman plot. This threatens the statistical and internal validity 3.4. A variable that contains

to be poorly reproduced is ”work” (SRMSE 0.413 in VAE-50 and 0.339 in VAE-100) in the EU-SILC

Norway and PB190, marital status (SRMSE 0.204 in VAE-50 and 0.339 in VAE-100). The results are

better for similar WGAN models, but ”work” still has the most significant error compared to other

variables. The WGAN models handle marital status better. ”work”, and marital status (PB190) are

nominal, with work having eleven categories and marital status 5. Of the other variables with five or

more categories, these are the only nominal ones except for region, type of housing and economy.

Similar patterns are found in the Finnish dataset where PL031 represent ”work”, and PB190 is like in
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(a) VAE-15 (b) VAE-30 (c) VAE-50 (d) VAE-100

(e) WGAN-15 (f) WGAN-30 (g) WGAN-50 (h) WGAN-100

Figure 13: Match between single variables in original and synthetic data from variational autoen-

coder and WGAN. Comparison is made on 230 one-hot-encoded and binary categorical variables

from EU-SILC Finland.

the Norwegian dataset. Regions are not a variable in the prepared Finnish dataset.

All models’ architecture is presented in the method chapter 3, and the code is available in the Ap-

pendix A.1 B.1 C.1. Each generative model was run to convergence. A sample of learning curves

from training the Wasserstein generative adversarial network on the EU-SILC Norway is available in

Appendix 39. Each variable in all combinations of models and datasets is visualised in plots with

original besides synthetic split on gender (”isFemale”), with standardised root mean squared error,

Pearsons and R-squared for EU-SILC Finland and Norway in the Appendix E. The split on gender al-

lows for a visual inspection of the bivariate correlations with ”isFemale” while showing the univariate

correlations between original and synthetic data.

4.2 Scaling of Synthetic Populations

A non-scaled synthetic population is a replicas population similar to the original data’s number of ex-

amples. All previous tests are run on such populations. In this section, the scaling of synthetic popu-

lations is investigated. The most straightforward approach is to reproduce more replicas. However,

as noted above in the results of general deep generative synthesis, some drawbacks of truncating

and non-random variables identified in the contingency and confusion matricesD and the Bland-

Altman plots 20 need to be considered. An alternative to the simple upscaling above is to train
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(a) VAE-15 (b) VAE-30 (c) VAE-50 (d) VAE-100

(e) WGAN-15 (f) WGAN-30 (g) WGAN-50 (h) WGAN-100

Figure 14: Match between single variables in original and synthetic data from variational autoen-

coder and WGAN. Comparison is made on 156 one-hot-encoded and binary categorical variables

from EU-SILC Norway.

(a) VAE-bivariate-15 (b) VAE-bivariate-30 (c) VAE-bivariate-50 (d) VAE-bivariate-100

(e) WGAN-bivariate-15 (f) WGAN-bivariate-30 (g) WGAN-bivariate-50 (h) WGAN-bivariate-100

Figure 15: Match between all pairs of variables in original and synthetic data from the deep gen-

erative method. Comparison is made on all pairs of 156 one-hot-encoded and binary categorical

variables from EU-SILC Finland.
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(a) VAE-bivariate-15 (b) VAE-bivariate-30 (c) VAE-bivariate-50 (d) VAE-bivariate-100

(e) WGAN-bivariate-15 (f) WGAN-bivariate-30 (g) WGAN-bivariate-50 (h) WGAN-bivariate-100

Figure 16: Match between all pairs of variables in original and synthetic data from the deep gen-

erative method. Comparison is made on all pairs of 156 one-hot-encoded and binary categorical

variables from EU-SILC Norway.

(a) VAE-15 (b) VAE-30 (c) VAE-50 (d) VAE-100 (e) Original

(f) WGAN-15 (g) WGAN-30 (h) WGAN-50 (i) WGAN-100 (j) Original

Figure 17: Box plots of variables except for binary from original EU-SILC Finland and all generative

models. The one-hot-encoded feature is transformed back to its original variable categories for

displaying. The original data are plotted at the end of each line for visual readability. The upper and

lower lines in each plot are the confidence intervals for each variable. The coloured boxes divide at

the median; the top is the 75 percentile, while the bottom is the 25 percentile.
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(a) VAE-15 (b) VAE-30 (c) VAE-50 (d) VAE-100 (e) Original

(f) WGAN-15 (g) WGAN-30 (h) WGAN-50 (i) WGAN-100 (j) Original

Figure 18: Box plots of variables except binary from original EU-SILC Norway and all generative

models. The one-hot-encoded feature is transformed back to its original variable categories for

displaying. The original data are plotted at the end of each line for visual readability. The upper and

lower lines in each plot are the confidence intervals for each variable. The coloured boxes divide at

the median; the top is the 75 percentile, while the bottom is the 25 percentile.

models to produce, i.e. regional populations. In the Norwegian dataset, the smallest Region Three

has 1632 (6.7 per cent) examples. This Region is the worse of all regarding RSME, Pearson’s and

R-squared and is also reproduced with fewer examples. The best variational autoencoder model

outputs only 974 (4 per cent) examples for Region Three. The assigned examples are visualised for

all VAE and WGAN models in contingency tables here 21.

Note that when doing simple upscaling, the least affected is Region Three. Upscaling by dividing

the six regions could solve the generally lousy reconstruction. Two approaches were tried. The

first was to train an autoencoder on Region Three only and later replace the examples matching

Region Three with the newly generated ones. This attempt was quickly abandoned because, even

though Region Three got a better match, the total population could have done better. The second

alternative was training all regions separately on variational autoencoder with latent dimension 100

and then merging them into one population. The match for each Region was almost as good as

training one model on the total population with SRMSE at 0.106 (against 0.093) and Pearsons at

0.998 (against 0.998), and R-squared at 0.97 (against 0.997). The bivariate correlations also give

similar results, but in this case, the RMSE is 0.012 against 0.007, the Pearsons 0.997 against 1.0, and

the R-squared 0.994 against 1.0, indicating that the merged model is slightly worse at reproducing

binary correlations. Results, including the Bland-Altman plot, are shown in figure 22. The ordinary
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Figure 19: Bland-Altman for populations generated by WGAN and VAE. Each figure compares against

the original data for 230 one-hot-encoded features from EU-SILC Finland. The dotted lines are upper

and lower confidence intervals at 95 per cent.

37



Figure 20: Bland-Altman for populations generated by WGAN and VAE. Each figure compares

against the original data for 156 one-hot-encoded features from EU-SILC Norway. The dotted lines

are upper and lower confidence intervals at 95 per cent.
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Figure 21: Confusion matrices for all VAE and WGAN models for regions in the EU-SILC Norway

dataset. The comparison is made by sorting the original and synthetic datasets of similar size on

Region and then plotting the hits in original versus synthetic datasets.

Figure 22: Univariate and bivariate plot with Bland-Altman for regions produced separately with VAE-

100 architecture and next merged to a complete population on the EU-SILC Norway.

VAE-100 trained on the entire population is shown in figure 14d 16, and its Bland-Altman plot is shown

in figure 20.

A test on the VAE-50 and WGAN-100 showed that the precision is guaranteed. There is no change in

standardised root mean squared error, Pearson’s correlation coefficient, or R-squared when measur-

ing upscaled populations’ means against the original data. However, the recall gets steadily worse,

accompanied by a steady rise of F1 when upscaling, indicating that those attributes that are worse

represented in the unscaled version do not unexpectedly get even more badly represented. These

are the exact effects of misclassification shown in the contingency and confusion matrices D that

are magnified when upscaling.

A test on the relationship between the output variable self-perceived health (PH010) and educa-
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tion (PE040) in the original data in figure C and the same relationship from synthetic data figures C

shows the tendency to underrepresent combinations that are more sparsely represented in favour

of overrepresenting those better-populated alternatives. Furthermore, these examples have no scal-

ing, which means the synthetic population is generated with the same number of examples as the

original data.

Clusters VAE-50 WGAN-100 c-VAE-50 c-VAE-50-aug

0 0.112/0.997/0.996 0.033/1.000/1.000 0.118/0.996/0.995 0.104/0.997/0.996

1 0.246/0.986/0.981 0.153/0.995/0.993 0.164/0.996/0.994 0.151/0.996/0.994

2 0.355/0.975/0.965 0.210/0.991/0.988 0.170/0.996/0.995 0.167/0.995/0.993

3 0.324/0.977/0.968 0.215/0.99/0.986 0.265/0.990/0.984 0.226/0.992/0.988

4 0.299/0.980/0.972 0.188/0.992/0.989 0.204/0.994/0.991 0.203/0.993/0.990

5 0.324/0.979/0.970 0.216/0.991/0.987 0.179/0.995/0.993 0.214/0.992/0.989

6 0.221/0.990/0.986 0.215/0.991/0.987 0.202/0.994/0.991 0.225/0.992/0.988

7 0.326/0.976/0.967 0.257/0.985/0.980 0.236/0.992/0.987 0.218/0.992/0.988

8 0.432/0.960/0.0945 0.233/0.989/0.984 0.199/0.995/0.992 0.173/0.995/0.993

Table 4: Performance (SRMSE/Pearsons/R2) of variational autoencoders (VAE) and Wasserstein

generative adversarial networks (WGAN) with different latent dimensions on the eight highest

ranked clusters from neural manifold clustering and embedding (NMCE) on Norwegian EU-SILC data

with 156 one-hot-encoded variables. The measures compare synthetic clusters with the respective

original data clusters.

4.3 Quasi-Experiment with Causal Forest

Quasi-experiments using EU-SILC observational data from Norway are run on four toy interventions.

The interventions are chosen from available variables in the EU-SILC, using self-perceived health

as an outcome. The first experiment is to see which groups will improve or take harm regarding

self-perceived health (PH010) by getting a higher education using variable PE040 as treatment in

a heterogeneous treatment analysis. The second experiment is to improve the capacity to meet

friends (”social”). The third is to improve the capacity for leisure activities (”leisure”), and lastly,

to reduce the level of anxiety (”affect”). The results are presented as a three and four-level tree,
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splitting into the essential attributes, leading to subgroups that benefit or do not from the particular

intervention (treatment). No effort is made to make sure that all the covariates, that is, all variables

not being the outcome or treatment variables, actually are epidemiologically relevant. Nor are the

experiments meant to be anything other than an illustration of how synthetic populations can be

evaluated, but a setting for use in policy analysis in a game.

A qualitative assessment of the three levelled charts is done. Four-levelled charts are produced,

but it is already at the third level. The synthetic populations fail to reproduce the output from the

original data completely. For the interested reader, both three-level and four-level charts run on

all synthetic populations from VAE-15 to VAE-100 and from WGAN-15 to WGAN-100, including the

merged regions data run, are provided in the appendix 6. The interventions with education were

run in three different modes, each with a different split on the level of education (the selected split

at below four was marked zero, else one). As these were reasonably similar, only education B is

presented here. All treatments were transferred to a binary of, i.e. higher education or not, decided

on the selected split. Self-perceived health was also made binary, with those reporting one or two

on the five-category scale having ”good health” marked with a one for the outcome variable. All

below score zero on the outcome variable. The split values for leisure (PD060) were one if below

two and else zero, indicating a one for people affording leisure activities. The split value for social

encounters was set similarly to leisure (PD050). The effect (AffectB) limit was set to four. Any below

limit gets zero if an equal or higher one is set.

The charts are checked for reproducing the correct variables at each level. First level: The VAE-

15 and WGAN-15 fail for all but the leisure intervention. The VAE-30 and WGAN-30 fail to correct

the first split for all but the affect intervention. All models fail to get the first split for the social

intervention correctly. However, all but VAE-15 and WGAN-15 get one of the original data second split

variables as their first split. The experiment with the worse result is social gathering intervention;

the best is on affect. For the effect experiment, all models except VAE-15 and WGAN-15 get the first

two layers correctly while missing only one variable at the third layer. In the effect experiment, the

original data highlights one strongly affirmative (green box) and one strongly negative (red box).

When reproducing these boxes, the VAE-100 and WGAN-100 come close—the original data results

in 9621 in the green box and 225 in the red. VAE-100 and WGAN-100 both produce 9561 and 160,

respectively. WGAN-50 is the closest to getting the red box correctly, with 214 examples. However,

WGAN-50 overestimates the green box by over 400 more examples than the original. Even if the

split on variables is not the same, similar patterns can lead to an approximately similar result if the

variables split upon are either close to each other like neighbouring categories in the same variable

or the variables are involved in splits in the layer above or below the original. In the case of both

epidemiological rigour and authenticity in a policy game, some equivalent but different patterns can
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Figure 23: Original-Edu-A Figure 24: WGAN-50-Edu-A Figure 25: VAE-50-Edu-A

Figure 26: Variable importance in ranked order for original, WGAN-50 and VAE-50 populations from

EU-SILC Norway on treatment Education A from Causal Forest. The outcome is self-perceived health

(PH010).

occur without severe threats to validity.

Synthetic populations generated by WGAN score better on the general similarities measures like

SRMSE, Pearsons and R-square than similar latent layer-sized VAE. However, the difference is hard

to spot and not noticeable when inspecting the outcomes from heterogeneous treatment effects in

the charts, where VAE-100 and WGAN-100 produce comparable results. Therefore, a second way

of inspecting the results from heterogeneous treatment effects from Causal Forest DML is to look

at the Shap plots showing the ranked order of covariate variables (those not outcome or treatment

variables) and if their effect is to reduce or increase the score on the outcome variable. Results from

these plots are placed in Appendix 6.

Comparing ranked variables of importance shows that the VAE population, more often than their

counterpart WGAN models fail to rank the first variables correctly. Also, on this metric, the WGAN

population is closer to the original. The WGAN has a reasonably good reproduction rate if comparing

a rank equal to or one position from original data. Results from treatment Education A are shown

in figure 26 and from Education B in figure 30.

42



Figure 27: Original-Edu-B Figure 28: WGAN-50-Edu-B Figure 29: VAE-50-Edu-B

Figure 30: Variable importance in ranked order for original, WGAN-50 and VAE-50 populations from

EU-SILC Norway on treatment Education B from Causal Forest. The outcome is self-perceived health

(PH010).

Figure 31: Original-Edu A Figure 32: WGAN-Edu A Figure 33: VAE-Edu A

Figure 34: Heterogeneous treatment effect charts from original, WGAN-50 and VAE-50 populations

from EU-SILC Norway on treatment Education A from Causal Forest. Each box in the diagram refers

to a split in the tree. The honest approach indicates that one batch of data is used to design the

splits while another batch is placed in the category. The red boxes indicate the group with a low CATE

score that implies the negative effect of treatment (intervention), and the green boxes indicate the

group with a high CATE score with a good response to treatment. The treatment (intervention) is

education (PE040) split in a binary with less than three on variable PE040 as zero and above as one.

The outcome is self-perceived health (PH010).
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Figure 35: Original-Edu-B Figure 36: WGAN-Edu-B Figure 37: VAE-Edu B

Figure 38: Heterogeneous treatment effect charts from original, WGAN-50 and VAE-50 populations

from EU-SILC Norway on treatment Education B from Causal Forest. Each box in the diagram refers

to a split in the tree. The honest approach indicates that one batch of data is used to design the

splits while another batch is placed in the category. The red boxes indicate the group with a low CATE

score that implies the negative effect of treatment (intervention), and the green boxes indicate the

group with a high CATE score with a good response to treatment. The treatment (intervention) is

education (PE040) split in a binary with less than four on variable PE040 as zero and above as one.

The outcome is self-perceived health (PH010).

5 Discussion

Some issues of relevance to high-attribute synthetic populations are omitted in this project for var-

ious reasons. Deep generative methods for creating populations were born out of challenges of

sparse covariance matrices and the problem of scaling the computations when the number of at-

tributes rises. The low dimensional latent representation in the deep generative method was be-

lieved to solve the so-called zero-cell problems. In this project, zero-cells are not discussed, being

sampling zeros (individual records that could exist in a natural population but is absent) or struc-

tural zeros (being contradictory individual records that never could represent any person in a natural

population) [17]. Neither are confidentiality issues addressed. These are all relevant to the applica-

bility of synthetic populations derived from deep generative methods. The zero-cell problems have

recently been described well by, i.e. Garrido [17]. Within the data access in this project, any further

investigation in this direction would fail. The confidentiality challenges are a complicated field with

its tradition of trades, and it would be unfair to make any claims regarding confidentiality within this

project’s scope. A third field that needs to be investigated is the perfection of machine learning

models against the task of generating synthetic populations. The primary concern in this project is

to look at how already applied deep generative methods can translate into public health, particularly

public health education, through policy games. Therefore, no optimisation or search for alternative

loss functions and their like was included in this project because such approaches are premature

until the contextual understanding of what a synthetic population should be in policy analysis and

planning in public health is clarified.
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5.1 High-Attribute Population Synthesis

High attribute synthetic populations have a wide variety of current and future usage beyond the con-

text of public health policy analysis and planning, be it in a game or a real-life application for exploring

health outcomes from interventions. In this project, the focus has been on deep generative meth-

ods for creating synthetic populations. Deep generative techniques disrupt the evaluation regimes

of synthetic populations in areas like microsimulation and agent-based modelling that can only han-

dle some attributes. Standardised root means square errors or similar error metrics, and Pearson’s

correlation coefficient help understand how well a synthetic population adapts to the original data.

R-squared measures to what extent the entire synthetic population and its single variables explain

the original data. As pointed out, the fields generating synthetic populations for various purposes do

not agree on methods or metrics to evaluate populations. This question is not getting more manage-

able when the number of attributes in a population increases. The experiments with self-supervised

clustering using neural manifold clustering and embedding show different patterns in the original

and replica populations. However, the technique must be more mature to expand from imaging to

tabular data. However, if it does learn specific non-linear statistical patterns in the population, it can

be a future tool for evaluating and better explaining synthetic populations. The Bland-Altman plots

are excellent for a more informative evaluation of the synthetic populations than just RSMSE, Pear-

sons and R-squared. These plots show that all investigated deep generative models fail to keep all

variables inside their confidence intervals, suggesting non-random variance that could impact anal-

ysis based on data from these populations. Like more traditional evaluation methods, the confusion

and contingency matrices can help visualise differences and similarities between the original and

synthetic populations. These methods can only be applied to one or two variables but help assess

critical variables like the outcome variable self-perceived health in this project. Finding all poorly

adapted correlations is like searching for the needle in the haystack. Given the identification of the

underrepresentation of people with attributes poorly represented in the original, it is a great need to

establish better methods for evaluating high-attribute synthetic populations. Synthetic populations

meant for use in analysing interventions related to inequalities in health are in particular need of a

method to explain better the disproportionate distribution of small (vulnerable) groups.

5.2 Scaling of Synthetic Populations

To power a policy game on public health, various methods to upscale population data to mimic the

inhabitants of, i.e. a municipality would be of great interest. Adapting survey and census data to a

geographical region is within the domain of microsimulation. Nevertheless, they are concerned with

low-attribute data and use methods that do not scale to high attributes. Scaling by increasing the

number of generated examples enhanced the identified misrepresentations, making this upscaling
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prone to losing the original population’s heterogeneity. Scaling by first training models to produce

regions on the EU-SILC for Norway only helped by keeping the regions more clearly defined. It solved

the problem of underrepresenting Region Three but resulted in a total population with less similarity

to the original than obtained by generating the population in one go from the original data. The shift

in scales and truncation of variables, giving basement and ceiling effects, still destroy the options

for keeping heterogeneity with any of these scaling methods. The challenges linked to these effects

must be solved to get better representative populations. In a game setting, it is possible to apply

more dirty tricks to achieve a population that, for educational purposes, would deal with inequality in

health. However, the authenticity, understood as epidemiological strength, is lost without genuinely

solving the challenges of, i.e. truncation and heterogeneity.

5.3 Causal Forest and Heterogeneous Treatment Effects

Comparing outcomes from heterogeneous treatment effects by Causal Forest DML between origi-

nal and synthetic populations serve two purposes. First, a good match indicates a high authenticity

to the educational goal. Second, a good match is required, but there are other requirements to reach

a reasonable level of epidemiological standards.

The VAE-50, VAE-10 and WGAN-50 and WGAN-100 score well in a qualitative comparison between

the charts of conditional average treatment effect from a Causal Forest DML model trained on orig-

inal data. WGAN models do better than VAE models measured by the ranking in Shap plots. These

evaluations are qualitative, as no original to one synthetic data record is available. The goal of the

evaluation has been to look for the best matches by picking the correct variables for split and cor-

rectly getting the correct labelling as red or green boxes in the chart. VAE and WGAN with 50 or 100

in latent representation dimension did well, but no model matched perfectly. The matching is good

news for the educational use of the synthetic population by the deep generative method. Causal For-

est DML showcases a policy intervention on, i.e. inequality in health, by allowing for analysis based

on observational data to predict which groups would favour or not (improve self-reported health)

from a particular intervention. However, the reduced heterogeneity discussed above still needs to

improve to secure educational goals of policy analysis and planning for inequality in health.

In order to reach an epidemiological standard, synthetic population generation techniques must deal

with all the challenges mentioned above. In addition, the explainability must improve to understand

the differences between the original data and the replica inherent to a specific generative method.

Of course, creating a synthetic population that copies all statistical structures of the original while

keeping heterogeneity is perhaps impossible. However, future evaluations of synthetic populations

should be embedded in their use context. Applying Causal Forest DML has been one way to em-

bed the use context of policy analysis and planning to reduce inequalities in health and provide a
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framework for evaluation in the same go. While the initial plan for the project was to create syn-

thetic data from the Norwegian HUNT data bank and re-run previous epidemiological analyses to

evaluate epidemiological similarity, the opportunity to explore Causal Forest DML as a substitute

has been highly fruitful. Reproducing epidemiological studies with synthetic data is powerful, how-

ever, limited in scope to the context of the re-run study. Causal Forest DML, on the other hand, is

a data-driven tool that both lends itself to epidemiology and not. In this project, the ”and not” im-

plies that no matter the original data’s epidemiological quality, synthetic populations generated with

these original data can be benchmarked against a tool like Causal Forest. The choice of covariates

(all other variables than the outcome and treatment variables) is highly relevant in epidemiology but

only matters if the purpose is to compare an original dataset with a synthetic.

5.4 Synthetic Populations for Policy Games

According to epidemiological strength, educational authenticity to a synthetic population for use in

a policy game has been discussed. A policy game may or may not be educational. The suggested

deep generative model produces populations based on actual data that can bring realism to a game.

Some entertaining games, like the Fishing series from the Norwegian company Misc Games, apply

governmental economic and environmental policies behind the scenes in their gameplay. Synthetic

populations have the potential to give life to non-player characters in a game. EU-SILC data for most

EU countries that are freely available are de-anonymised with extremely small outliers removed.

These data can be used as is in a game, with no generation of a synthetic counterpart. However,

interesting individual data can be available in the future when methods can guarantee confidentiality.

For this to happen, the questions of heterogeneity and its like and anonymisation must be addressed

in research.

Agent-based modelling has been used in games. Agent-based modelling has synthetic populations

at its core to feed its agents with attributes. The lessons learned in this project can be helpful to

these communities if the need for high-attributed agents arises.

6 Conclusion

Deep generative methods can produce good high-attribute synthetic populations from individual

records with health, social and welfare data like EU-SILC. The scores on standardised root mean

squared error, Pearson’s correlation coefficient and R-squares are good. An excellent tool for vi-

sualising the quality of a high-attribute synthetic population is the Blant Altman, suggested by re-

searchers in microsimulation and agent-based modelling like [48] but only sometimes used.

Synthetic populations meant for analysis, simulations or games in public health requiring health out-
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puts require an excellent reconstruction of the heterogeneity in the original data. Unfortunately, the

variational autoencoder and Wasserstein adversarial network with gradient penalty produce some

variables with low reliability due to non-random errors in variance, as shown in the Bland Altman

plots. Furthermore, truncating data and shifts in scale metrics compared to original data threaten

the applicability of these populations within public health and are mainly related to policy analysis

and planning dealing with inequalities in health. The result is that heterogeneity in the original data

is partly lost, and examples from small groups in the original data get underrepresented in the syn-

thetic populations. Scaling of the populations by increasing the number of generated examples or

training on regions data to be merged increases the discrimination following from the deep gener-

ative methods’ lack of reproducing the heterogeneity in the original data.

In a policy game on public health for combatting inequalities in health, the lack of heterogeneity

can be mitigated by the creative use of deep generative methods to do deliberate heterogeneity

sampling. However, then, the epidemiological quality of the data needs to be recovered. In order to

provide sufficiently heterogeneous high-attribute synthetic populations from actual individual data,

the deep generative methods should be better explained, and the problems of truncating in such

ways as leading to the underrepresentation of small (vulnerable) groups should be solved. Until

then, the evaluation of synthetic populations for public health policy analysis and planning in or

outside a game should be broadened to cover the potential impact on health outcomes and the

discriminating effects of using the data. Such evaluation can guide countermeasures while waiting

for the research communities to bring better high-attribute synthetic populations.
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Appendix

A Glossary

• AAPD Adjusted Average Predicted Difference is a frequency metric for how many variables fall

in or out of a bounded area (usually the confidence interval around original variables) around

the truth value (original data).

• Latent dimension Latent dimension or latent representation is a more condensed form of the

data, with a shape less than the original. Any layer in a neural network smaller than the original

can represent a compressed input form. The size of this compressed input representation is

called the latent dimension.

• Pearson’s correlation coefficient is a measure of the match between two variables.

• Policy ”A set of ideas or a plan of what to do in particular situations that have been agreed to

officially by a group of people, a business organisation, a government, or a political party.” (Bri-

tannica): ”An officially accepted set of rules or ideas about what should be done”. (Cambridge

Dictionary)

• Public Health ”Public health is an organised effort by society, primarily through its public in-

stitutions, to improve, promote, protect and restore the population’s health through collective

action.” (WHO)

• Public health policy is defined as the laws, regulations, plans, decisions and actions imple-

mented within society in order to promote wellness and ensure that specific health goals are

met. (Derived from WHO and used as definition in this project 2.2)

• R-squared measures how much the model explains a feature. In this case, how much of the

synthetic population attributes explain the original data attributes?

• RAE Relatively Absolute Error is the TAE divided by the number of attributes. These measures

depend on the variables’ scales. Useful for comparing the differences in marginals between

models.

• Reliability 1) the quality of being trusted or believed because of working or behaving well. 2)

how well a machine, equipment, or system works. 3) how accurate or able to be trusted some-

one or something is considered to be. (Cambridge Dictionary)

• SRMSE Standard Root Mean Squared Error.

• Sampling zeros Original data misses examples that are present in the entire population. The

so-called sampling zeros problem is partly solved if the synthetic population captures some
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of these examples. Refered to in Garrido et al. [17].

• Standard deviation Gaussian standard deviation.

• Structural zeros Original data never has examples absent in the entire population. Synthetic

population by deep generative methods may contain impossible examples in the entire popu-

lation. Refered to in Garrido et al. [17].

• TAE Total Absolute Error is the absolute difference between original (true) and synthetic fea-

tures (predicted). This measure varies according to the variables scale and number of exam-

ples, and hence not useful for other than measuring differences between models, i.e., VAE and

WGAN.

• Validity 1) the quality of being based on truth or reason or being accepted. 2) the state of being

acceptable or reasonable. (Cambridge Dictionary)

• Z-scores are the Gaussian normalising of a variable setting mean to 0. It is calculated by

subtracting the mean from the value and dividing it by the standard deviation for a variable.

TAE = abs(predicted - true)

RAE = 1/n-variables * TAE

AAPD = 1/n-variables * abs(counts inside - counts outside)

Standard deviation = sqrt(1/N \Sigma (true - predicted) ** 2)

Pearson's correlation coefficient = cov(true, predict) /

(standard deviation(true) * standard deviation (predicted))

Z-score = (value - mean(all values)) / standard deviation

B Code

A Variational Autoencoders

A variational autoencoder [23] is an autoencoder with an intermediate probabilistic component be-

tween the encoder and decoder. While a simple autoencoder has two, often mirrored, neural net-

works directly connected, the variational autoencoder has an intermediate component that learns

Gaussian parameters before passing its output to the decoder. When run through the decoder, these

parameters are applied to a randomly sampled vector that will produce an output replica similar to

the original input to the encoder. The intermediate component executes the kernel trick performed

by passing z mean, which is the latent representation as a dense layer, and z log var is an additional

dense layer, both receiving the same input (see code below). The loss function is a combination of

the Kullback-Leibler divergence KL(qϕ(z|x), p(z) = −ΣJ
j=1(1+ log(σ2)−µ2−σ2 at the intermediate
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component and binary cross entropy Hp(q) = − 1
NΣN

i=1yi ∗ log(p(yi))+(1−yi)∗ log(1−p(yi)) for the

final output from the decoder. The Kullback-Leibler divergence forces the latent variable to maintain

a Gaussian distribution, while the binary cross entropy captures the reconstruction loss between the

original and replica.

The kernel trick in variational autoencoders creates a probability prediction for each cell in the latent

layer instead of the more straightforward 0 or 1 representation in a regular autoencoder. This makes

the variational autoencoders perform significantly better than autoencoders in reproducing their

inputs.

A.1 Code for VAE

The code for the variational autoencoder used in this project. After training, the encoder and de-

coder can be used separately to feed replicas of an original data record to train the Neural Manifold

Clustering and Embedding algorithm.

import torch

from torch import nn

class VAE(nn.Module):

def __init__(self,

feature_dimension,

latent_dimension):

super(VAE, self).__init__()

self.encoder = nn.Sequential(

nn.Linear(feature_dimension, 100),

self._block(100, 150),

nn.Linear(150, latent_dimension)

)

self.z_mean = nn.Linear(latent_dimension, latent_dimension)

self.z_log_var = nn.Linear(latent_dimension, latent_dimension)

self.decoder = nn.Sequential(

nn.Linear(latent_dimension, 150),

self._block(150, 100),

nn.Linear(100, feature_dimension),

nn.Sigmoid()

)
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def _block(self, input_d, n_nodes):

return nn.Sequential(

nn.Linear(in_features=input_d, out_features=n_nodes),

nn.BatchNorm1d(n_nodes),

nn.LeakyReLU(0.2))

def encode(self, x):

x = self.encoder(x)

mu = self.z_mean(x)

log_var = self.z_log_var(x)

return mu, log_var

def get_latent(self, x):

latent = self.encoder(x)

return latent

def decode(self, z):

return self.decoder(z)

def forward(self, x):

mu, log_var = self.encode(x)

epsilon = torch.randn_like(log_var)

z_parametrised = epsilon * (torch.exp(log_var / 2)) + mu

x = self.decode(z_parametrised)

return [x, mu, log_var]

The code for training in a notebook:

import numpy as np

import pandas as pd

import torch

import torch.nn as nnfrom torch.utils.data import DataLoader

import torch.optim as optim

# Custom class to clean and reshape data and create and

# reshape synthetic data from the model output.

from src.data_cleaning import DataClean as dc
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torch.manual_seed(42)

number_epochs = 80

learning_rate = 1e-4

optimiser = optim.RMSprop(model_vae.parameters(), lr=learning_rate)

loss_fn = nn.BCELoss(reduction="sum")

batch_size = 128

latent_dimension = 50

feature_dimension = df.shape[1]

beta_vae = 0.5

data = dc(data_file, prepared, config_file)

df = data.get_data() # all one-hots

def kl_loss(mu, log_var):

loss = - 0.5 * torch.sum(1 + log_var -

torch.exp(log_var) -

mu ** 2)

return loss

model_vae = VAE(df.shape[1], latent_dimension)

model_vae.train()

torch_data = torch.tensor(df.values, dtype=torch.float32)

loader = DataLoader(torch_data, batch_size=batch_size, shuffle=True)

for epoch in range(number_epochs):

for batch_idx, (real) in enumerate(loader):

replica, z_mean, z_sigma = model_vae(real)

reconstruction_loss = loss_fn(replica, real)

kl = beta_vae * (kl_loss(z_mean, z_sigma) / real.shape[1])

loss = reconstruction_loss + kl

optimiser.zero_grad()

loss.backward()

optimiser.step()

if batch_idx % 50 == 0 and batch_idx > 0:

print(f"Epoch [{epoch} / {number_epochs}] \ "

f"KL Loss: {kl:4f}, Rep Loss: {reconstruction_loss:.4f}")
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# When the model is trained:

df_rc = data.get_data_recategorised()

torch_s = model_vae.decoder(torch.randn(df.shape[0], latent_dimension)

# Synthetic data as a pandas data frame (all one-hots)

df_synthetic = data.get_synthetic(torch_s.detach().numpy(), columns=df_rc.columns)

B Generative Adversarial Networks

B.1 Code for WGAN-GP

Code for the Wasserstein generative adversarial network with gradient penalty used in the project.

"""

WGAN-GP

Generative adversarial networks for synthetic population generation

using Wasserstein and gradient penalty to stabilise.

"""

import torch

import torch.nn as nn

class Critic(nn.Module):

def __init__(self, feature_dimension, output_dim=1):

super(Critic, self).__init__()

self.feature_dimension = feature_dimension

self.critic = nn.Sequential(

self._block(self.feature_dimension, 100),

self._block(100, 150),

nn.Linear(in_features=150, out_features=output_dim),

)

def _block(self, input_d, n_nodes):

return nn.Sequential(

nn.Linear(in_features=input_d, out_features=n_nodes),

# do not use batch-norm in critic

nn.InstanceNorm1d(n_nodes),

nn.LeakyReLU(0.2))
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def forward(self, x):

return self.critic(x)

class Generator(nn.Module):

def __init__(self, feature_dimension, latent_dimension):

super(Generator, self).__init__()

self.latent_dimension = latent_dimension

self.feature_dimension = feature_dimension

self.generator = nn.Sequential(self._block(self.latent_dimension, 150),

self._block(150, 100),

nn.Linear(100, self.feature_dimension),

nn.Sigmoid())

def forward(self, x):

return self.generator(x)

def _block(self, input_d, n_nodes):

return nn.Sequential(

nn.Linear(in_features=input_d, out_features=n_nodes),

# nn.LayerNorm(n_nodes),

nn.BatchNorm1d(n_nodes),

nn.LeakyReLU(0.2))

def initialise_weights(model):

for m in model.modules():

if isinstance(m, nn.Linear):

nn.init.normal_(m.weight.data, 0.0, 0.02)

def gradient_penalty(model, real, fake):

batch_size = real.shape[0]

feature_dimension = real.shape[1]

# One epsilon per example
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epsilon = torch.rand(batch_size, 1).repeat(1, feature_dimension)

interpolated = (real * epsilon + fake * (1 - epsilon))

mixed_score = model(interpolated)

gradient = torch.autograd.grad(inputs=interpolated,

outputs=mixed_score,

grad_outputs=torch.ones_like(mixed_score),

create_graph=True,

retain_graph=True)[0]

gradient = gradient.view(gradient.shape[0], -1) # flatten

gradient_norm = torch.linalg.vector_norm(gradient, ord=2, dim=1)

gp = torch.mean((gradient_norm - 1) ** 2)

return gp

Code for training the model in a notebook.

import numpy as np

import pandas as pd

import torch

from torch.utils.data import DataLoader

import src.data_cleaning import DataClean as dc

torch.manual_seed(42)

number_epochs = 250

learning_rate = 1e-4

batch_size = 128

latent_dimension = 50

feature_dimension = df.shape[1]

critic_iterations = 5

lambda_gp = 10.0

beta_1 = 0.5

beta_2 = 0.9

critic = Critic(feature_dimension, output_dim=1)

generator = Generator(feature_dimension, latent_dimension)

initialise_weights(critic)

initialise_weights(generator)

opt_critic = optim.Adam(critic.parameters(), lr=learning_rate, betas=(beta_1, beta_2))
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opt_generator = optim.Adam(generator.parameters(), lr=learning_rate, betas=(beta_1, beta_2))

generator.train()

critic.train()

data = dc(data_file, prepared, config_file) # Custom data handling class

df = data.get_data()

torch_data = torch.tensor(df.values, dtype=torch.float32)

loader = DataLoader(torch_data, batch_size=batch_size, shuffle=True)

for epoch in range(number_epochs):

for batch_idx, (real) in enumerate(loader):

# Train critic (max log(critic(real)) + (1 - log(critic(z)))

for _ in range(critic_iterations):

noise = torch.randn((real.shape[0], latent_dimension))

fake = generator(noise)

critic_real = critic(real)

critic_fake = critic(fake)

gp = gradient_penalty(critic, real, fake)

# Set minus in front of optimising equation --> to maximise

loss_critic = - (torch.mean(critic_real) - torch.mean(critic_fake))

loss_critic += lambda_gp * gp

critic.zero_grad()

loss_critic.backward()

opt_critic.step()

# Train generator (min log(1 - critic(gen(z))) max log(critic(gen(z)))

# min --> - E[critic(generator(fake))]

fake = generator(noise)

logits_fake = critic(fake)

loss_generator = - torch.mean(logits_fake)

generator.zero_grad()

loss_generator.backward()

opt_generator.step()

if epoch % 10 == 0:

collect_loss.append((loss_critic, loss_generator, gp))

if batch_idx % 50 == 0 and batch_idx > 0:

print(f"Epoch [{epoch} / {number_epochs}] \ "
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f"Loss C: {loss_critic:4f}, Loss G: {loss_generator:.4f}, GP: {gp}")

C Neural Manifold Clustering and Embedding

Manifold learning is to map data points to a low-dimensional representation that preserves the man-

ifold structure in the data [24]. The idea of manifold clustering and embedding is that if data points

come from a union of low-dimensional manifolds, it is possible to segment the data points based on

their corresponding manifolds to obtain a low-dimensional embedding for each manifold [24]. Prin-

cipal component analysis can extract manifolds of linear subspaces, one of the most basic forms of

unsupervised learning (Jolliffe 1986 in [24]). More challenging clustering problems concern unions

of non-linear low-dimensional manifolds. Neural manifold clustering and embedding (NMCE) are

proposed as a solution for neural networks to solve these clustering problems [24]. The technique

combines data record augmentation and the algorithm called maximal coding rate reduction (Yu et

al. 2020 in [24]). Unsupervised learning of categories of objects in images performed better than

the current state-of-the-art methods for subspace clustering [24].

Next, the question is if this method of unsupervised learning of categories can properly categorise

individual data records relevant to public health.

C.1 Code for NMCE

Code used to run the Neural Manifold Clustering and Embedding are used out of the box as de-

scribed in the original article [24]. The model is run with PyTorch in a notebook like this:

n_steps = 2000

print_every = 300

bs = 1929

# One chunk is original data the other has synthetic data

# Can perhaps mix more synthetic

n_chunks = 2 # One for original and one for synthetic

amb_dim = 230 # Input dimension = number of variables

lat_dim = 150 # Neurons at each layer

z_dim = 100 # Latent layer

n_clusters = 20 # Number of extracted classes

lambda_ = 40 # Do not influence much

# Set up the NMCE model (code in source reference)

net = MLP_net(amb_dim, lat_dim, z_dim, n_clusters)

optimiser = optim.Adam(net.parameters(), lr=0.001, betas=(0.9,0.99), weight_decay=0.00001)
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# Using NMCE's original softmax function

G_Softmax = Gumble_Softmax(0.2, straight_through=False)

# Using NMCE's implementation of MCR

criterion = MaximalCodingRateReduction(eps=0.01, gamma=1.0)

# Using NMCE's implementation of similarity

criterion_z = Z_loss()

begin = time.time()

for i in range(n_steps):

# Use DataLoader to create batches

loader = iter(DataLoader(dataset=x_data, batch_size=bs, shuffle=True))

# Run one batch and update grads

for j in range(len(loader)):

x = next(loader)

# Create augmented data from vae-model

aug_latent = encoder(x.numpy())

xn = decoder(aug_latent)

xn = torch.tensor(np.array(xn), dtype=torch.float32)

xt = torch.cat((xn, x), dim=0).float()

z, logits = net(xt)

loss_z, z_sim = criterion_z(z)

z_sim = z_sim.mean()

prob = G_Softmax(logits)

z, prob = chunk_avg(z, n_chunks=n_chunks,

normalize=True), chunk_avg(prob, n_chunks=n_chunks)

loss, loss_list= criterion(z,prob,num_classes=n_clusters)

loss += lambda_ * loss_z

optimizer.zero_grad()

loss.backward()

optimizer.step()

if i % print_every == 0:

print('{} steps done, loss c {}, loss d {}, z sim {}'.format(i+1,loss_list[0],

loss_list[1],z_sim.item()))

duration = time.time() - begin

print(duration)
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(a) G-15 (b) C-15 (c) GP-15 (d) G-30 (e) C-30 (f) GP-30

(g) G-50 (h) C-50 (i) GP-50 (j) G-100 (k) Critic-100 (l) GP-100

Figure 39: Metrics for WGAN models used on EU-SILC Norway. G-loss is the training loss from the

generator. C-loss is the training loss from the critic and GP-loss is the loss from gradient penalty.

The last number is the size of the latent dimension for the model. Similar shaped loss curves are

measured for EU-SILC Finland. The choice of models number of training iterations are taken from

where the loss on generator and critic converge (flattens out).

C Deep Generative Models Convergence Plots
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Figure 40: Confusion and contingency matrices for VAE-50 and WGAN-100. VAE-50 is chosen as the

worst of the best models, and WGAN-100 as the best for comparison. Correlations between PH010

and PE040 are within a single population calculated by chi-square. For single variables PH010 and

PE040, respectively, the synthetic populations are compared to the original data. Original data cor-

rect classification is represented by rows at the y-axis.

D Confusion and Contingency Matrices
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(a) Original (b) VAE-15

(c) VAE-30 (d) VAE-50

(e) VAE-100 (f) WGAN-15

(g) WGAN-30 (h) WGAN-50

(i) WGAN-100 (j) Merged

Figure 41: Decision charts in four levels from Causal Forets DML run on intervention ”education B”

on data from EU-SILC Norway, showing all deep generative models and the synthetic population

resulting from generating regions by VAE-100 separately and then merge them into a population.
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(a) Original (b) VAE-15

(c) VAE-30 (d) VAE-50

(e) VAE-100 (f) WGAN-15

(g) WGAN-30 (h) WGAN-50

(i) WGAN-100 (j) Merged

Figure 42: Decision charts in four levels from Causal Forets DML run on intervention ”social” on data

from EU-SILC Norway, showing all deep generative models and the synthetic population resulting

from generating regions by VAE-100 separately and then merge them into a population.
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(a) Original (b) VAE-15

(c) VAE-30 (d) VAE-50

(e) VAE-100 (f) WGAN-15

(g) WGAN-30 (h) WGAN-50

(i) WGAN-100 (j) Merged

Figure 43: Decision charts in four levels from Causal Forets DML run on intervention ”leisure” on data

from EU-SILC Norway, showing all deep generative models and the synthetic population resulting

from generating regions by VAE-100 separately and then merge them into a population.
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(a) Original (b) VAE-15

(c) VAE-30 (d) VAE-50

(e) VAE-100 (f) WGAN-15

(g) WGAN-30 (h) WGAN-50

(i) WGAN-100 (j) Merged

Figure 44: Decision charts in four levels from Causal Forets DML run on intervention ”affect” on data

from EU-SILC Norway, showing all deep generative models and the synthetic population resulting

from generating regions by VAE-100 separately and then merge them into a population.
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E Single Variables EU-SILC Finland 2013
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(a) Age (b) PH010 (c) PH030

(d) PH040 (e) PH060 (f) getHelp

(g) PB190 (h) hasBenefits (i) hasFriend

(j) hasIllness (k) hasIncome (l) householdSize

(m) PE040 (n) PL031 (o) PL040

(p) PD020 (q) PD050 (r) PD060

Figure 45: VAE-15 marginals from EU-SILC Finland illustrated with second variable gender. Green

bars are from original and red bars from synthetic data. Differences on gender is visualised, and

show the relationship between two variables. Metrics shown in figure is for difference between

original and synthetic main variable.
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(a) PD080 (b) PW010 (c) PW020

(d) PW030 (e) PW040 (f) PW050

(g) PW060 (h) PW070 (i) PW080

(j) PW090 (k) PW120 (l) PW130

(m) PW140 (n) PW150 (o) PW160

(p) PW190 (q) PW200 (r) PW220

Figure 46: VAE-15 marginals from EU-SILC Finland illustrated with second variable gender. Green

bars are from original and red bars from synthetic data. Differences on gender is visualised, and

show the relationship between two variables. Metrics shown in figure is for difference between

original and synthetic main variable.
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(a) Age (b) PH010 (c) PH030

(d) PH040 (e) PH060 (f) getHelp

(g) PB190 (h) hasBenefits (i) hasIllness

(j) hasFriend (k) hasIncome (l) householdSize

(m) PE040 (n) PL031 (o) PL040

(p) PD020 (q) PD050 (r) PD060

Figure 47: VAE-30 marginals from EU-SILC Finland illustrated with second variable gender. Green

bars are from original and red bars from synthetic data. Differences on gender is visualised, and

show the relationship between two variables. Metrics shown in figure is for difference between

original and synthetic main variable.
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(d) PW030 (e) PW040 (f) PW050

(g) PW060 (h) PW070 (i) PW080
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(m) PW140 (n) PW150 (o) PW160

(p) PW190 (q) PW200 (r) PW220

Figure 48: VAE-30 marginals from EU-SILC Finland illustrated with second variable gender. Green

bars are from original and red bars from synthetic data. Differences on gender is visualised, and

show the relationship between two variables. Metrics shown in figure is for difference between

original and synthetic main variable.

74



(a) Age (b) PH010 (c) PH030
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(m) PE040 (n) PL031 (o) PL040

(p) PD020 (q) PD050 (r) PD060

Figure 49: VAE-50 marginals from EU-SILC Finland illustrated with second variable gender. Green

bars are from original and red bars from synthetic data. Differences on gender is visualised, and

show the relationship between two variables. Metrics shown in figure is for difference between

original and synthetic main variable.
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(g) PW060 (h) PW070 (i) PW080

(j) PW090 (k) PW120 (l) PW130
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(p) PW190 (q) PW200 (r) PW220

Figure 50: VAE-50 marginals from EU-SILC Finland illustrated with second variable gender. Green

bars are from original and red bars from synthetic data. Differences on gender is visualised, and

show the relationship between two variables. Metrics shown in figure is for difference between

original and synthetic main variable.
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(a) Age (b) PH010 (c) PH030
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(p) PD020 (q) PD050 (r) PD060

Figure 51: VAE-100 marginals from EU-SILC Finland illustrated with second variable gender. Green

bars are from original and red bars from synthetic data. Differences on gender is visualised, and

show the relationship between two variables. Metrics shown in figure is for difference between

original and synthetic main variable.
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(a) PD080 (b) PW010 (c) PW020

(d) PW030 (e) PW040 (f) PW050
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(m) PW140 (n) PW150 (o) PW160

(p) PW190 (q) PW200 (r) PW220

Figure 52: VAE-100 marginals from EU-SILC Finland illustrated with second variable gender. Green

bars are from original and red bars from synthetic data. Differences on gender is visualised, and

show the relationship between two variables. Metrics shown in figure is for difference between

original and synthetic main variable.
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(a) Age (b) PH010 (c) PH030

(d) PH040 (e) PH060 (f) getHelp

(g) PB190 (h) hasBenefits (i) hasFriend

(j) hasIllness (k) hasIncome (l) householdSize

(m) PE040 (n) PL031 (o) PL040

(p) PD020 (q) PD050 (r) PD060

Figure 53: WGAN-15 marginals for all single variables from EU-SILC Finland visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) PD080 (b) PW010 (c) PW020

(d) PW030 (e) PW040 (f) PW050

(g) PW060 (h) PW070 (i) PW080
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(m) PW140 (n) PW150 (o) PW160

(p) PW190 (q) PW200 (r) PW220

Figure 54: WGAN-15 marginals for all single variables from EU-SILC Finland visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) Age (b) PH010 (c) PH030

(d) PH040 (e) PH060 (f) getHelp

(g) PB190 (h) hasBenefits (i) hasFriend

(j) hasIllness (k) hasIncome (l) householdSize

(m) PE040 (n) PL031 (o) PL040

(p) PD020 (q) PD050 (r) PD060

Figure 55: WGAN-30 marginals for all single variables from EU-SILC Finland visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(g) PW060 (h) PW070 (i) PW080
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(p) PW190 (q) PW200 (r) PW220

Figure 56: WGAN-30 marginals for all single variables from EU-SILC Finland visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.

82
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Figure 57: WGAN-50 marginals for all single variables from EU-SILC Finland visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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Figure 58: WGAN-50 marginals for all single variables from EU-SILC Finland visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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Figure 59: WGAN-100 marginals for all single variables from EU-SILC Finland visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(d) PW030 (e) PW040 (f) PW050

(g) PW060 (h) PW070 (i) PW080

(j) PW090 (k) PW120 (l) PW130

(m) PW140 (n) PW150 (o) PW160

(p) PW190 (q) PW200 (r) PW220

Figure 60: WGAN-100 marginals for all single variables from EU-SILC Finland visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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F Single Variables EU-SILC Norway 2017-2020
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(a) Age (b) PH010 (c) PH030

(d) PH040 (e) PH060 (f) canPayHousing

(g) PB190 (h) hasBenefits (i) hasCapasity

(j) hasIncome (k) householdSize (l) PE040

(m) hasCaptialIncome (n) PD020 (o) PD030

(p) PD050 (q) PD060

Figure 61: VAE-15 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) economy (b) hasKids (c) PW010

(d) PW020 (e) houseType (f) livesAlone

(g) livesCity (h) overMedianIncome (i) region

(j) sizePlace (k) work (l) Internet

(m) Car (n) PC (o) AffectA

(p) AffectB (q) AffectC

Figure 62: VAE-15 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) Age (b) PH010 (c) PH030

(d) PH040 (e) PH060 (f) canPayHousing

(g) PB190 (h) hasBenefits (i) hasCapasity

(j) hasIncome (k) householdSize (l) PE040

(m) hasCaptialIncome (n) PD020 (o) PD030

(p) PD050 (q) PD060

Figure 63: VAE-30 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(p) AffectB (q) AffectC

Figure 64: VAE-30 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) Age (b) PH010 (c) PH030
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(p) PD050 (q) PD060

Figure 65: VAE-50 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) economy (b) hasKids (c) PW010

(d) PW020 (e) houseType (f) livesAlone

(g) livesCity (h) overMedianIncome (i) region
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(p) AffectB (q) AffectC

Figure 66: VAE-50 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) Age (b) PH010 (c) PH030

(d) PH040 (e) PH060 (f) canPayHousing

(g) PB190 (h) hasBenefits (i) hasCapasity
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(m) hasCaptialIncome (n) PD020 (o) PD030

(p) PD050 (q) PD060

Figure 67: VAE-100 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) economy (b) hasKids (c) PW010

(d) PW020 (e) houseType (f) livesAlone
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(p) AffectB (q) AffectC

Figure 68: VAE-100 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) Age (b) PH010 (c) PH030

(d) PH040 (e) PH060 (f) canPayHousing

(g) PB190 (h) hasBenefits (i) hasCapasity

(j) hasIncome (k) householdSize (l) PE040

(m) hasCaptialIncome (n) PD020 (o) PD030

(p) PD050 (q) PD060

Figure 69: WGAN-15 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) economy (b) hasKids (c) PW010

(d) PW020 (e) houseType (f) livesAlone

(g) livesCity (h) overMedianIncome (i) region

(j) sizePlace (k) work (l) Internet

(m) Car (n) PC (o) AffectA

(p) AffectB (q) AffectC

Figure 70: WGAN-15 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) Age (b) PH010 (c) PH030
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(m) hasCaptialIncome (n) PD020 (o) PD030

(p) PD050 (q) PD060

Figure 71: WGAN-30 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.

98



(a) economy (b) hasKids (c) PW010

(d) PW020 (e) houseType (f) livesAlone
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(m) Car (n) PC (o) AffectA

(p) AffectB (q) AffectC

Figure 72: WGAN-30 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) Age (b) PH010 (c) PH030

(d) PH040 (e) PH060 (f) canPayHousing
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(p) PD050 (q) PD060

Figure 73: WGAN-50 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(d) PW020 (e) houseType (f) livesAlone
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Figure 74: WGAN-50 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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(a) Age (b) PH010 (c) PH030
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Figure 75: WGAN-100 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.
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Figure 76: WGAN-100 marginals for all single variables from EU-SILC Norway visualised with second

variable gender. Green bars are from original and red bars from synthetic data. Differences on

gender is visualised, and show the relationship between two variables. Metrics shown in figure is

for difference between original and synthetic main variable.

103



(a) Original (b) VAE-15

(c) VAE-30 (d) VAE-50

(e) VAE-100 (f) WGAN-15

(g) WGAN-30 (h) WGAN-50

(i) WGAN-100 (j) Merged

Figure 77: Decision charts from Causal Forets DML run on intervention ”education B” on data from

EU-SILC Norway, showing all deep generative models and the synthetic population resulting from

generating regions by VAE-100 separately and then merge them into a population.
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(a) Original (b) VAE-15

(c) VAE-30 (d) VAE-50

(e) VAE-100 (f) WGAN-15

(g) WGAN-30 (h) WGAN-50

(i) WGAN-100 (j) Merged

Figure 78: Decision charts from Causal Forets DML run on intervention ”social” on data from EU-SILC

Norway, showing all deep generative models and the synthetic population resulting from generating

regions by VAE-100 separately and then merge them into a population.
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(a) Original (b) VAE-15

(c) VAE-30 (d) VAE-50

(e) VAE-100 (f) WGAN-15

(g) WGAN-30 (h) WGAN-50

(i) WGAN-100 (j) Merged

Figure 79: Decision charts from Causal Forets DML run on intervention ”leisure” data from EU-SILC

Norway, showing all deep generative models and the synthetic population resulting from generating

regions by VAE-100 separately and then merge them into a population.
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(a) Original (b) VAE-15

(c) VAE-30 (d) VAE-50

(e) VAE-100 (f) WGAN-15

(g) WGAN-30 (h) WGAN-50

(i) WGAN-100 (j) Merged

Figure 80: Decision charts from Causal Forets DML run on intervention ”affect” on data from EU-SILC

Norway, showing all deep generative models and the synthetic population resulting from generating

regions by VAE-100 separately and then merge them into a population.
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