
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Varun Srivastava

Classification of Fish Species Using
Deep Learning Models

Master’s thesis in Applied Computer Science
Supervisor: Siamak Khatami
Co-supervisor: Ahmad Hassanpour
May 2023

Varun Srivastava

Classification of Fish Species Using
Deep Learning Models

Master’s thesis in Applied Computer Science
Supervisor: Siamak Khatami
Co-supervisor: Ahmad Hassanpour
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Classification of Fish Species Using Deep Learning
Models

Varun Srivastava

May 30, 2023

Abstract

This thesis presents a research project focused on the classification of specific river
and freshwater species using computer vision and deep learning techniques. The
project aims to contribute to the fields of aquaculture and fish farming by provid-
ing accurate species recognition, which plays a crucial role in helping the stake-
holders make informed decisions and boost their business. The project investigates
several research questions related to mitigating challenges posed by limited power
and memory resources on edge computers, highly unbalanced data, and optimiz-
ing model performance. The performance of different deep learning architectures
(ResNet-50, MobileNet V1, MobileNet V2, and MobileNet V3), when trained on
balanced and unbalanced datasets under certain limitations imposed by the edge
computer embedded with coral AI, is also discussed. Furthermore, the research
examines the trade-offs between model accuracy and resource consumption for
various deep learning models when applied to the classification of highly unbal-
anced classes on edge devices. A set of 38 experiments using an unbalanced and a
balanced dataset with architecture setup 1 and architecture setup 2, indicate that
MobileNet V1 performed better than the other models, namely ResNet-50, Mobi-
leNet V2 and MobileNet V3 on this specific classification task. The study considers
scenarios where highly unbalanced data, limited power, and memory resources
are common challenges, providing insights to guide the selection and optimiza-
tion of models in similar contexts. Following that, the obtained results have been
discussed regarding reusability and future works, and conclusions are drawn re-
garding their implications for real-world applications.

iii

Sammendrag

Denne oppgaven presenterer et forskningsprosjekt fokusert på klassifisering av
spesifikke elve- og ferskvannsarter ved bruk av datasyn og dyplæringsteknikker.
Prosjektet har som mål å bidra til akvakultur og fiskeoppdrett ved å gi nøyak-
tig artsgjenkjenning, som spiller en avgjørende rolle i å hjelpe interessentene til å
ta informerte beslutninger og øke virksomheten deres. Prosjektet undersøker flere
forskningsspørsmål knyttet til å redusere utfordringer knyttet til begrensede kraft-
og minneressurser på avanserte datamaskiner, svært ubalanserte data og optim-
alisering av modellytelse. Ytelsen til forskjellige dyplæringsarkitekturer (ResNet-
50, MobileNet V1, MobileNet V2 og MobileNet V3), når de trenes på balanserte
og ubalanserte datasett under visse begrensninger pålagt av kantdatamaskinen
innebygd med coral AI, diskuteres også. Videre undersøker forskningen avveinin-
gene mellom modellnøyaktighet og ressursforbruk for ulike dyplæringsmodeller
når de brukes til klassifisering av svært ubalanserte klasser på edge-enheter. Et
sett med 38 eksperimenter som bruker et ubalansert og et balansert datasett med
arkitekturoppsett 1 og arkitekturoppsett 2, indikerer at MobileNet V1 presterte
bedre enn de andre modellene, nemlig ResNet-50, MobileNet V2 og MobileNet
V3 på denne spesifikke klassifiseringsoppgaven. Studien tar for seg scenarier der
svært ubalanserte data, begrenset kraft og minneressurser er vanlige utfordringer,
og gir innsikt for å veilede valg og optimalisering av modeller i lignende sammen-
henger. Deretter har de oppnådde resultatene blitt diskutert angående gjenbruk-
barhet og fremtidige arbeider, og konklusjoner trekkes angående deres implikas-
joner for applikasjoner i den virkelige verden.

v

Acknowledgements

This thesis is submitted in partial fulfillment of the requirements for the degree
of Master in Applied Computer Science at the Department of Computer Science,
Norwegian University of Science and Technology (NTNU). The project explores
various aspects of the identification of river and freshwater species using computer
vision and deep learning techniques, aiming to contribute to the field of computer
science.

I would like to express my sincere gratitude to my supervisor, Siamak Khatami,
for his invaluable guidance, continuous support, and insightful feedback through-
out the entire process. His expertise and dedication have been instrumental in
shaping the direction of this thesis and enhancing its quality. Additionally, I ex-
tend my appreciation to my co-supervisor, Ahmad Hassanpour, for his valuable
input, guidance, and constructive criticism. His expertise in the field has greatly
enriched my research experience, and I am grateful for his support. I would also
like to express my appreciation to Anuja Vats, for her valuable support and guid-
ance. Furthermore, I would like to acknowledge the contribution of Magnus Rogne
Myklebost and Saber Derouiche from our industry partner, Mohn Technology AS,
for their collaboration and provision of resources. Their involvement has added a
practical perspective to this research, making it more relevant to practical-world
applications.

I am grateful to my study program coordinator Christopher Frantz and the
faculty members of the Department of Computer Science at NTNU for their ex-
pertise and the knowledge they imparted throughout my academic journey. Their
dedication to teaching and research has played a significant role in shaping my
understanding of computer science principles and methodologies.

Finally, I would like to express my heartfelt appreciation to my family and
friends for their unwavering support, encouragement, and understanding during
the completion of this thesis. Their love and belief in me have been a constant
source of motivation, and I am forever grateful for their presence in my life.

I sincerely hope that this thesis contributes to the existing body of knowledge
in the field of computer science and serves as a foundation for future research
endeavors.

vii

Abbreviations

List of all abbreviations in alphabetical order:

• AUC Area Under the Curve
• AI Artificial Intelligence
• CNN Convolutional Neural Network
• DBN Deep Belief Network
• DPM Deformable Parts Model
• IoT Internet of Things
• LSTM Long Short-Term Memory
• MVS Machine Vision Systems
• MHK Marine and Hydrokinetic
• mAP mean Average Precision
• NAS Network Architecture Search
• NMS Non-Maximum Suppression
• ROC Receiver Operating Characteristic
• RAS Recirculating Aquaculture System
• RNN Recurrent Neural Network
• SVM Support Vector Machine
• TF TensorFlow

ix

Declaration

The images of the fish used in this project were captured using a top-view perspect-
ive while the fish were being transferred through a channel from one location to
another. It is important to emphasize that none of the fish were harmed or subjec-
ted to any form of harm or distress for the sole purpose of this experiment. The
welfare of the fish was upheld throughout the data collection process, ensuring
their well-being and minimizing any potential impact on their natural behavior or
environment.

In accordance with the request from our industry partner, Mohn Technology
AS, the data utilized for this project is subject to a non-disclosure agreement,
which prohibits its public release for a duration of five years.

The GitHub repository with the code can be found in Appendix 6.1 and access
can be granted upon request.

xi

Contents

Abstract . iii
Sammendrag . v
Acknowledgements . vii
Abbreviations . ix
Declaration . xi
Contents . xiii
Figures . xv
Tables . xix
1 Introduction . 1

1.1 Project Description . 3
1.2 Research Questions . 4

2 Literature Review . 7
3 Method . 21

3.1 Data Collection . 21
3.2 Data Pre-processing . 23
3.3 Data Augmentation . 27
3.4 Pre-trained Model Architectures . 30

3.4.1 Pre-trained Model Descriptions 31
3.5 Model initialization . 34
3.6 Architecture setup . 34

3.6.1 Architecture Setup 1 . 35
3.6.2 Architecture Setup 2 . 35

3.7 Model Compilation . 37
3.8 Training Process . 38
3.9 Evaluation Metrics . 39
3.10 System Setup . 40

4 Results . 41
4.1 Results with Unbalanced Dataset . 41
4.2 Results with Balanced Data . 56
4.3 Additional Experiments . 86
4.4 Further Evaluation of MobileNet V1 . 95

5 Discussion . 101
5.1 Comprehensive Analysis . 101
5.2 Addressing the Research Questions . 108

xiii

xiv Varun Srivastava: Classification of Fish Species Using Deep Learning Models

6 Conclusion . 113
6.1 Future work . 114

Bibliography . 117
A - Github repository . 125
B - Additional Results . 128
C - Sample Images . 134

Figures

3.1 Sample images from dataset . 22
3.2 Sample images with detection boxes 23
3.3 Sample images of immature trout . 24
3.4 Sample images of mature trout . 25
3.5 Color variations in mature trout . 25
3.6 Sample images from mature class generated using augmentation . . 29
3.7 ResNet-50 architecture . 31
3.8 MobileNet V1 architecture . 32
3.9 MobileNet V2 architecture . 32
3.10 MobileNet V3 architecture . 33
3.11 Architecture setup 1 overview . 35
3.12 Architecture setup 2 overview . 36

4.1 ResNet-50 loss curves for unbalanced data 45
4.2 ResNet-50 accuracy curves for unbalanced data 46
4.3 ResNet-50 confusion matrix for unbalanced data 46
4.4 ResNet-50 AUC score for unbalanced data 47
4.5 MobileNet V1 loss curves for unbalanced data 48
4.6 MobileNet V1 accuracy curves for unbalanced data 48
4.7 MobileNet V1 confusion matrix for unbalanced data 49
4.8 MobileNet V1 AUC score for unbalanced data 50
4.9 MobileNet V2 loss curves for unbalanced data 51
4.10 MobileNet V2 accuracy curves for unbalanced data 51
4.11 MobileNet V2 confusion matrix for unbalanced data 52
4.12 MobileNet V2 AUC score for unbalanced data 53
4.13 MobileNet V3 loss curves for unbalanced data 53
4.14 MobileNet V3 accuracy curves for unbalanced data 54
4.15 MobileNet V3 confusion matrix for unbalanced data 55
4.16 MobileNet V3 AUC score for unbalanced 55
4.17 ResNet-50 loss curves for balanced data without augmentation . . . 60
4.18 ResNet-50 accuracy curves for balanced data without augmentation 61
4.19 ResNet-50 confusion matrix for balanced data without augmentation 61
4.20 ResNet-50 AUC score for balanced data without augmentation . . . 62
4.21 MobileNet V1 loss curves for balanced data without augmentation . 63

xv

xvi Varun Srivastava: Classification of Fish Species Using Deep Learning Models

4.22 MobileNet V1 accuracy curves for balanced data without augment-
ation . 63

4.23 MobileNet V1 confusion matrix for balanced data without augment-
ation . 64

4.24 MobileNet V1 AUC score . 64
4.25 MobileNet V2 loss curves for balanced data without augmentation . 66
4.26 MobileNet V2 accuracy curves for balanced data without augment-

ation . 66
4.27 MobileNet V2 confusion matrix for balanced data without augment-

ation . 67
4.28 MobileNet V2 AUC score for balanced data without augmentation . 68
4.29 MobileNet V3 loss curves for balanced data without augmentation . 68
4.30 MobileNet V3 accuracy curves for balanced data without augment-

ation . 69
4.31 MobileNet V3 confusion matrix for balanced data without augment-

ation . 70
4.32 MobileNet V3 AUC score for balanced data without augmentation . 70
4.33 ResNet-50 loss curves for balanced data with augmentation 75
4.34 ResNet-50 accuracy curves for balanced data with augmentation . . 76
4.35 ResNet-50 confusion matrix for balanced data with augmentation . 77
4.36 ResNet-50 Area under the Curve . 77
4.37 MobileNet V1 loss curves for balanced data with augmentation . . . 78
4.38 MobileNet V1 accuracy curves for balanced data with augmentation 79
4.39 MobileNet V1 confusion matrix for balanced data with augmentation 80
4.40 MobileNet V1 AUC score . 80
4.41 MobileNet V2 loss curves for balanced data with augmentation . . . 81
4.42 MobileNet V2 accuracy curves for balanced data with augmentation 82
4.43 MobileNet V2 confusion matrix for balanced data with augmentation 83
4.44 MobileNet V2 AUC score for balanced data with augmentation . . . 83
4.45 MobileNet V3 loss curves for balanced data with augmentation . . . 84
4.46 MobileNet V3 accuracy curves for balanced data with augmentation 85
4.47 MobileNet V3 confusion matrix for balanced data with augmentation 85
4.48 MobileNet V3 AUC score . 86
4.49 ResNet-50 loss and accuracy curves for additional experiments . . . 90
4.50 ResNet-50 Confusion Matrix and AUC score for additional experi-

ments . 90
4.51 MobileNet V1 loss and accuracy curves for additional experiments . 91
4.52 MobileNet V1 Confusion Matrix and AUC score for additional ex-

periments . 92
4.53 MobileNet V2 loss and accuracy curves for additional experiments . 93
4.54 MobileNet V2 confusion matrix and AUC score for additional ex-

periments . 93
4.55 MobileNet V3 loss and accuracy for additional experiments 94

Figures xvii

4.56 MobileNet V3 confusion matrix and AUC score for additional ex-
periments . 95

4.57 MobileNet V1 loss and accuracy curves for further evaluation 96
4.58 MobileNet V1 Confusion Matrix and AUC score for further evaluation 97
4.59 MobileNet V1 loss and accuracy curve for the additional experiment

using new dataset . 98
4.60 MobileNet V1 confusion matrix and AUC score for additional ex-

periment using new dataset . 99

5.1 Loss comparison of setup 1 and setup 2 on the unbalanced dataset
without augmentation . 104

5.2 Comparison of overall accuracy % . 108

B.1 ResNet-50 performance with further fine-tuning 129
B.2 MobileNet V1 performance with further fine-tuning 129
B.3 MobileNet V2 performance with further fine-tuning 129
B.4 MobileNet V3 performance with further fine-tuning 130
C.1 Sample images with size 224x224 pixels 134

Tables

3.1 Data distribution . 22
3.2 Data distribution before and after augmentation 29
3.3 Image classification models compatible with TF v2.0 30

4.1 Data distribution of unbalanced dataset 41
4.2 Model configurations for unbalanced dataset 42
4.3 Evaluation metrics for unbalanced dataset 44
4.4 Balanced dataset without augmentation 56
4.5 Model configuration for balanced dataset without augmentation . . 57
4.6 Evaluation metrics for balanced dataset without augmentation . . . 59
4.7 Balanced dataset with data augmentation 71
4.8 Model configuration for the balanced dataset with augmentation . . 72
4.9 Evaluation metrics for balanced dataset with augmentation 74
4.10 Dataset for additional experiments . 87
4.11 Model configuration for additional experiments 88
4.12 Evaluation metrics for additional experiments 89
4.13 MobileNet V1 further evaluation . 96
4.14 Dataset for MobileNet V1 additional experiments 97
4.15 MobileNet V1 further evaluation using new dataset 98

5.1 Performance of models on unbalanced and balanced datasets 105

B.1 Results for models with unfreezing 10 layers 128
B.2 Results for models with unfreezing 20 layers 131

xix

Chapter 1

Introduction

The fishing industry represents a significant sector in the global economy, gener-
ating substantial revenue and employment opportunities. According to the latest
statistics from the World Bank, the annual global fish production reached an estim-
ated 216 million metric tons in 2021 [1]. The estimated value of global production
is valued at USD 406 billion where USD 265 billion is contributed by aquaculture.
[2]. These figures underscore the economic importance of the fishing industry and
highlight the need for innovative solutions to enhance its efficiency and sustain-
ability.

Aquaculture is the practice of cultivating aquatic organisms, including fish,
shellfish, and seaweed, in controlled environments such as ponds, tanks, or ocean
enclosures. It involves a range of activities such as breeding, hatching, feeding,
and harvesting aquatic organisms for commercial purposes. Fish farming is a type
of aquaculture that specifically involves the breeding and raising of fish in tanks
or enclosures for commercial purposes. Fish farming can be done in freshwater
or saltwater environments and can involve a variety of species such as salmon,
tilapia, catfish, and trout. The practice of aquaculture has become increasingly
important in recent years due to the growing demand for seafood and the need
to reduce pressure on wild fish populations [3].

Fish farming, or aquaculture, is significant for several reasons. Firstly, it provid-
es a sustainable source of seafood that can help to reduce pressure on wild fish
populations. Secondly, it can contribute to food security and rural livelihoods in
many parts of the world. Finally, it has the potential to generate significant eco-
nomic benefits through the production and sale of fish and other aquatic products.
According to a report by the Food and Agriculture Organization (FAO), global
aquaculture production was worth approximately USD 250 billion in 2018. Fresh-
water fish accounted for around 60% of the total, with the popular species being
trout, carp, salmon, and a few others [4]. The value of freshwater fish production
varies widely depending on the region and species involved. Trout is an important
species in the aquaculture industry due to its popularity as a food fish and its high
market value. Trout farming is particularly important in regions with cold water
resources, such as North America, Europe, and parts of Asia. In addition to being

1

2 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

a valuable food source, trout farming can also provide economic benefits through
the sale of live fish for stocking recreational fisheries [3].

Within the realm of trout, the rainbow trout (Oncorhynchus mykiss) stands
out as one of the most favored species. Rainbow trout is the leading freshwater-
farmed species in Europe, and almost all rainbow trout on the EU market come
from aquaculture. In 2018, 156,000 tonnes of rainbow trout were produced in the
EU, with more than two-thirds of the production grown in tanks and raceways [5].
Recirculating Aquaculture System (RAS) facilities have increased in recent years,
mainly in Denmark. About 10% of rainbow trout is produced in RAS [5]. Rainbow
trout is known for its vibrant colors and excellent taste, making it a preferred
choice for both commercial and recreational fishing. However, in fish farming,
it is essential to separate mature rainbow trout from the rest of the population.
Mature rainbow trouts are typically larger and more valuable, commanding higher
prices in the market. Efficiently identifying and separating mature rainbow trout
from immature rainbow trout is crucial for optimizing fish farming operations and
maximizing profitability.

The process of separating fish is typically done using nets or other equipment
that allows farmers to capture and move fish from one location to another. In some
cases, fish may be sorted by size or species using manual methods such as hand
sorting or visual inspection. However, the specific methods used for separating
fish can vary depending on the type of fish being farmed and the specific needs
of the farmer [3]. Manual separation requires skilled labor, is time-consuming,
and often leads to errors and inconsistencies. Moreover, the manual process be-
comes increasingly challenging as fish farms scale up their operations. To address
these challenges, the integration of technology and automation has become a fo-
cal point in the fish farming industry. Artificial intelligence (AI) has emerged as a
transformative tool for species identification and separation.

Underwater cameras have become an increasingly popular tool for monitor-
ing fish abundance and conducting stock assessments. These cameras can capture
high-resolution images and videos of fish in their natural habitats, providing valu-
able data for researchers and fisheries managers. Researchers have developed spe-
cialized camera systems that are optimized for underwater use. These systems of-
ten include features such as high-quality lenses, adjustable lighting, and advanced
image stabilization technology to ensure that clear, high-resolution images can be
captured even in challenging conditions. Some underwater camera systems are
equipped with AI capabilities by working in conjunction with edge computing
devices such as Coral by Google, which can further enhance their capabilities by
enabling real-time analysis and decision-making at the edge of the network [6].

AI has been quite successful in several applications of object classification and
detection such as automobile air-conditioning leakage detection, classify the type
of vehicles, etc. [7]. Therefore AI can also help in identifying fish species by using
deep learning algorithms to analyze visual and acoustic data from cameras and
imaging sonar. The basic process involves training a deep neural network model
on a large dataset of labeled fish images. The model learns to recognize patterns

Chapter 1: Introduction 3

in the data that correspond to different fish species, allowing it to classify new
images or acoustic signals based on the patterns it has learned. Once the model
has been trained, it can be used to automatically detect and classify fish species
in new images or acoustic signals, providing valuable information for fisheries
management and conservation efforts. It is important to note that this process
requires a large amount of labeled training data and careful validation to ensure
accurate results [8].

However, capturing underwater images to create a comprehensive dataset for
training AI models presents its own unique set of obstacles. The aquatic environ-
ment, with its varying water conditions, lighting constraints, and unpredictable
fish behavior, makes image capture challenging. Overcoming these challenges, a
high-quality dataset to train AI models can be used to classify fish species, which
is crucial for fish farming and aquaculture. This will help the associated stake-
holders to make informed decisions and boost their business, as well as promote
a sustainable fish ecosystem.

1.1 Project Description

The initiative of this project is centered around the classification of species in the
context of freshwater and river ecosystems. Specifically, the focus is on the rain-
bow trout specie and the aim is to distinguish between mature and immature fish
within this population. The primary objective is to provide valuable support to
industrial applications such as aquaculture and fish farming. In these industries,
precise species identification plays a crucial role in ensuring optimal management
and production processes. Accurately identifying rainbow trout and differentiat-
ing between mature and immature specimens, enables better decision-making and
more effective implementation of business strategies.

The business partner for this project, Mohn Technology AS, has placed camera
systems in key areas throughout a variety of freshwater environments to advance
this objective. These camera systems include coral AI edge computers, which let
them run AI models right there on the hardware. With the aid of this cutting-
edge equipment, pictures, and videos of freshwater and river species is recorded
in their native habitats, which serves as the basis for our project dataset. The edge
computer’s currently deployed AI module distinguishes between fish and non-fish
objects with an overall accuracy of over 90% (reported through internal tests by
the partner company). By utilizing this feature, a labeled dataset was prepared
with the assistance of subject-matter experts who helped in going over photos
and videos and labeling the images.

A dataset made up of two distinct categories—immature rainbow trout and
mature rainbow trout was assembled and processed. Given the striking similarities
in appearance between these two categories of rainbow trout, this was a difficult
task. Using the dataset, the aim is to research whether it is possible to classify
immature and mature rainbow trout and then compare the performance of various
deep learning models which are compatible with the edge computer and analyze

4 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

the results in the classification of mature and immature rainbow trout from a
naturally unbalanced dataset.

In conclusion, this thesis project aims to harness the potential of computer
vision and deep learning to accurately classify the mature and immature trout
belonging to the rainbow trout specie, contributing to sustainable practices in
industries such as aquaculture and fish farming. The following are the potential
research questions that guide this investigation.

1.2 Research Questions

Continuous investigation and exploration of various aspects that contribute to im-
proving model performance and understanding their behavior remain essential in
the evolving field of deep learning. This section, which presents a set of research
questions that specifically address critical elements related to the classification
task within this project, aims to illuminate novel insights and explore uncharted
territories in the context of model selection, data pre-processing, and training pro-
cedures.

The main objective of this research is to explore the feasibility of utilizing
deep learning models to classify two distinct categories of rainbow trout: mature
and immature trout. This task poses challenges due to their visually similar ap-
pearance. By delving into this research, additional research questions naturally
emerge, further enriching our investigation; some of them are listed as follows:

1. Are there any specific data pre-processing techniques that can be employed
to mitigate the challenges posed by limited power and memory resources
and unbalanced data on an edge computer, and how do these techniques
impact the performance of the models?

2. What is the impact of imbalanced class distribution in the dataset on the
performance of models, and how does the limited availability of data affect
their performance? Additionally, what potential solutions exist to address
these challenges and enhance the model’s output in such scenarios?

3. Can the performance of the models be further enhanced by employing spe-
cific data pre-processing techniques or model modifications that address the
challenges associated with limited memory resources and naturally unbal-
anced data?

4. Which of the deep learning models compatible with the edge computer hav-
ing limited resources, demonstrates the most effective performance in clas-
sifying unbalanced data?

5. What are the trade-offs between overall accuracy and resource consumption
for the different deep learning models when applied to the classification of
unbalanced classes?

6. What are the implications of the findings from explored models for real-
world applications where highly unbalanced data, limited power, and memory

Chapter 1: Introduction 5

resources are common challenges, and how can these findings guide the se-
lection and optimization of models for similar scenarios?

After clearly defining the objective and extent of the project, this thesis delves
into a comprehensive exploration of the subject matter. The subsequent chapters
encompass a thorough literature review, an in-depth examination of the method-
ology employed, an analysis of the results obtained from multiple experiments,
thoughtful discussions that address the research questions, and ultimately, a con-
clusive summary.

Chapter 2

Literature Review

To determine the existence and abundance of different fish species, researchers
have utilized a range of approaches for a long time. Some of the strategies used
to study fish include traditional methods typically involving manual techniques
such as direct observation, netting, or trapping. These methods required human
involvement, and data collection was often limited to specific locations and time
periods. They were also invasive and could potentially disrupt fish behavior and
habitats [9]. In contrast, contemporary methods of fish data capturing have be-
nefited from advancements in technology. These methods often utilize automated
or remote sensing techniques, such as underwater cameras, acoustic telemetry,
and hydroacoustic systems. These technologies allow for non-invasive, continu-
ous, and widespread data collection. For example, underwater cameras can be
deployed for extended periods to capture fish behavior and abundance, while
acoustic telemetry can track fish movements using tags and receivers [9].

Optical videos offer a simple and easily understandable way to gather com-
prehensive information due to the natural human trait of visual perception. Thus,
It has been successful to automate similar monitoring applications, such as video
surveillance, utilizing computer vision and machine learning. However, there are
problems remaining in the field. As an example, in underwater scenarios, there
are sudden changes in light, uneven spectrum propagation, low contrast, floating
plants as clutter, and changes in visibility brought on by turbidity. Studying coral
reef fish species has received a lot of attention recently, especially with the help
of open-access databases like Fish4Knowledge [10]. This research largely focuses
on the identification of coral reef species using deep learning and machine learn-
ing to analyze underwater video. With the use of these cutting-edge technologies,
researchers have been able to identify and categorize the various fish species that
are found in coral reef ecosystems. These studies have improved the knowledge
about complex marine habitats by using artificial intelligence to uncover new in-
formation about the behavior, distribution, and abundance of coral reef fish. [11].

The concept of deep learning utilizing neural networks has a long history, dat-
ing back to 1998 when researchers LeCun et al. [12] introduced this groundbreak-
ing idea. A notable advancement in the field of fish detection and classification was

7

8 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

the introduction of LeNet5, a classifier composed of five layers, which was built
upon the innovative concept of emphConvolutional Neural Networks (CNN) by re-
searchers Cui et. al. [13]. In the paper, classifiers are employed to identify and dis-
tinguish various fish species based on visual characteristics extracted from images
or video data. Deep learning networks, such as CNNs, are designed with multiple
layers that progressively learn complex features from input data, enabling them
to capture intricate patterns and relationships. This development in deep learning
has been witnessed in recent years, mainly due to the significant advancements
in computing power and the explosion of big data. The foundation of deep learn-
ing lies in the abundance of big data collected from various fields of study. The
implementation of deep learning, as highlighted in the paper, specifically in the
context of fish detection, showcases the effectiveness of CNNs in automatically
learning discriminative features and improving the accuracy of fish species iden-
tification. The application of deep learning techniques, enabled by the availability
of large datasets and enhanced processing power, has demonstrated substantial
performance improvements in various sectors, including robotics systems [13].

To expedite response times and optimize bandwidth usage, edge computing
utilizes a distributed computing paradigm that relocates computation and data
storage in close proximity to the point of demand. This decentralized approach, as
explored by Periola et. al. [14], enables real-time and low-latency data processing
in underwater applications by performing data processing and storage at the net-
work edge or within the devices themselves. In the underwater environment, edge
computing finds particular significance due to its capability to efficiently transfer
and analyze vast amounts of data with minimal latency. It can be applied to pro-
cess data from underwater sensors and devices used for oceanographic research
and marine life monitoring, facilitating tasks such as image recognition and clas-
sification. Moreover, edge computing enables real-time monitoring and control of
underwater vehicles and equipment, leveraging data from underwater cameras
to identify and categorize marine life based on their visual characteristics. This
capability is invaluable for studying species distribution, abundance, and ecosys-
tem changes over time, highlighting image classification as a key application of
machine learning in underwater settings. [14].

Building upon the advancements in edge computing, researchers have success-
fully contributed to several important fields by applying deep learning, computer
vision, and fish detection techniques. By harnessing the power of these cutting-
edge technologies, new possibilities have emerged in underwater research and
exploration. Notably, the integration of deep learning and computer vision has re-
volutionized the analysis of underwater data collected from sensors and devices,
enabling a deeper understanding of oceanographic phenomena. The following is
a list of applications that have benefited from this technology:

• Live fish identification: Fish identification is a crucial step in the devel-
opment of intelligent breeding management tools or systems since precise
and automated live fish identification can provide information for managing
future output. Machine vision has the advantage of providing inexpensive,

Chapter 2: Literature Review 9

long-term, nondestructive observation [15]. In order to detect live fish, deep
learning is typically employed to determine whether a particular object is
a fish. In a time when enormous amounts of visual data can be quickly ob-
tained, deep learning has become a helpful machine vision solution [16].
Deep learning has a fundamental flaw in that it requires a large amount of
annotated training data, and gathering and annotating a large number of
images takes a lot of time and effort.
• Species identification: There are approximately 33000 different species of

fish [17]. Species categorization in aquaculture is beneficial for yield fore-
cast, production management, and ecosystem monitoring, according to Al-
caraz et al [18]. Usually, various fish species may be distinguished from one
another by their visual qualities, such as size, shape, and color. However, due
to differences in light intensity, fish movement, and similarity in forms and
patterns across several species, effective fish species categorization is chal-
lenging. Deep learning algorithms are able to recognize the specific visual
characteristics of animals that are resilient to changes in their environment
[19].
• Analysis of behavior: Since fish are sensitive to environmental changes,

they respond to them by changing their behavior in a variety of ways [20].
Additionally, behavior serves as a helpful benchmark indicator for fish wel-
fare and harvesting [21]. By monitoring pertinent behavior, especially un-
usual behaviors, in a non-destructive way, one can gain an early warning of
fish status [22]. The fish activity must be continuously observed in order to
understand their status and make decisions about when to catch and feed
them [23].
• Size estimation: Fish physical characteristics, including length, breadth,

weight, and area may be assessed more precisely when machine vision and
deep learning are combined. The bulk of reported uses are either semi-
supervised or supervised [24]. For example, the Mask R-CNN architecture
was used to calculate the sizes of saithe, blue whiting, redfish, Atlantic mack-
erel, velvet belly lanternshark, Norway pout, Atlantic herring, and European
hake. Another indirect method for determining fish size involves using a
deep learning model to first determine the fish’s head and tail, and then
extrapolate the length of the fish from that data. While adding to the work-
load, this approach is suited for more intricate images [25].
• Feeding decision-making: The productivity and breeding expenses of in-

tensive aquaculture are directly impacted by the quantity of fish supplied
[26]. Fish growth will be affected by insufficient food, whereas excessive
feeding will reduce productivity. Overfeeding also reduces feed conversion
efficiency and contaminates the environment with leftover bait. Therefore,
enhancing the feeding process can result in substantial economic gains [27].
• Water quality prediction: Dissolved oxygen and other indices of water

quality are best predicted over time. With the right care, deep learning mod-
els like Long Short-Term Memory (LSTM), Deep Belief Networks (DBN), and

10 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

others may effectively mine time sequence data and deliver results that are
satisfactory. How to use deep learning models to avoid or lessen the neg-
ative effects of uncertainty factors on prediction outcomes will therefore
be a crucial area for improvement in jobs requiring the prediction of water
quality [28].

In the field of marine research, the utilization of underwater camera systems
equipped with edge computing capabilities allows researchers to capture real-time
images of marine life and gather valuable data. This process entails employing
underwater cameras or other sensors to record images of diverse marine species
within their natural environments. Subsequently, the collected images are annot-
ated with relevant species information. Once the dataset is prepared and labeled,
researchers employ it to train a neural network model. This involves providing
the model with a set of training images along with their corresponding labels and
adjusting the model’s parameters to facilitate the recognition of species-specific
patterns and features. Finally, the trained neural network model can be used for
on-the-fly image classification, enabling efficient and automated species identific-
ation [14].

Fish4Knowledge is a program that receives funding from the European Union
Seventh Framework [29]. This initiative utilizes ten underwater cameras to cap-
ture live video feeds, serving as a testbed for exploring techniques applicable to
multiple video stream acquisition, storage, analysis, and querying. As a result, the
wealth of information gathered through this project is compiled into a compre-
hensive public database spanning two years. This database includes video sum-
maries showcasing the various fish species observed, accompanied by relevant
characteristics. To enhance accessibility and usability, the Fish4Knowledge project
focuses on developing professional web-based interfaces. These interfaces provide
marine researchers with unparalleled access to both current and archived films,
as well as previously extracted data. By utilizing these interfaces, researchers can
delve into the vast collection of videos and associated information to facilitate
their studies and investigations [29]. Some of the projects which have used this
dataset to develop their solutions are:

• In the conducted study by Choi [30], the main objective was to address the
challenge of fish identification in underwater videos using deep CNNs. The
unique complexity of underwater video images necessitated the inclusion of
pre-processing and post-processing steps. To tackle these challenges, Choi
combined a foreground detection approach with selective search techniques
to detect potential fish regions within the videos accurately. By effectively
identifying these candidate windows, subsequent classification and identi-
fication steps could be carried out more efficiently.
During the training phase, a CNN model was employed to classify various
fish species. However, due to the limited availability of labeled underwa-
ter video data specifically for fish classification, the CNN model was trained
using data from other generic object classification tasks. This scarcity of

Chapter 2: Literature Review 11

labeled data led to the adoption of transfer learning, which involves lever-
aging pre-trained models or learned representations from a source domain
and adapting them to a target domain with limited labeled data.
The utilization of transfer learning facilitated efficient knowledge transfer,
reducing the reliance on extensive labeled data in the target domain and
expediting the learning process [31]. This approach allowed the network
to leverage existing knowledge and generalize it to the task of fish species
identification, enhancing the overall performance of the model.
The final identification results were obtained by combining the outputs from
the CNN classification findings with further enhancements. This
post-processing step aimed to refine and improve the accuracy of the clas-
sification results, ensuring reliable and precise identification of fish species
within the underwater videos. Overall, Choi’s research highlighted the in-
tricacies of fish identification in underwater video compared to standard
picture classification tasks. The integration of foreground detection, select-
ive search, and deep CNNs demonstrated the complexity and importance of
addressing pre-processing and post-processing stages to achieve robust fish
species identification in the challenging underwater environment.
• Li et al. [32] sought to leverage the exceptional detection accuracy of Fast

R-CNN to develop an efficient and accurate fish detection and recognition
system for underwater images. Fast R-CNN is a framework for object recog-
nition tasks and the architecture enables accurate localization and classific-
ation of objects in images, making it suitable for tasks like fish detection and
recognition in underwater images [33].
The primary objective of research by Li et. al. was to contribute to the de-
velopment of automated fish identification systems that could assist mar-
ine researchers in estimating fish numbers, and abundance, and gaining
a deeper understanding of marine geography and biology. By utilizing the
Fast R-CNN framework, Li et al. aimed to achieve both high detection ac-
curacy and efficient processing speeds, addressing the need for real-time or
near-real-time analysis of underwater images. The Fast R-CNN architecture
combines a region proposal network with a CNN for object detection and
recognition, enabling accurate localization and classification of fish species
within the images.
To evaluate the performance of their system, Li et al. conducted extensive
experiments. The results demonstrated that their proposed detection sys-
tem exhibited promising performance, with a higher mean average precision
(mAP) of 81.4% as compared to other existing methods, such as Deformable
Parts Models (DPM) with mAP of 70.2%. Additionally, the system showed
the potential to achieve faster processing speeds than the conventional R-
CNN approach. This research contributes to the ongoing efforts to develop
advanced automated tools that aid in the monitoring and conservation of
aquatic environments.
• Zhang et al. [34] addressed the pressing need for an automated segment-

12 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

ation technique to generate baseline annotations of fish areas, facilitating
the estimation of fish abundance in underwater environments. To tackle this
challenge, they proposed an unsupervised underwater fish detection meth-
odology that leveraged the power of deep learning technology. A key focus
of their work was to develop a method that eliminated the requirement for
manual annotation and allowed for real-time online learning. To achieve
these objectives, Zhang et al. first optimized the algorithm for speed. They
then devised a multi-step approach that incorporated motion flow segment-
ation and selective search to create candidate regions for fish detection.
By utilizing motion flow segmentation, they aimed to distinguish moving
objects, such as fish, from the background, improving the accuracy of sub-
sequent detection steps.
The selective search was employed to generate region proposals, which re-
duced the likelihood of incorrect labeling during the training phase. These
region proposals were combined with the results of motion segmentation
and fed into a CNN for detection. This fusion of region proposals and mo-
tion segmentation yielded superior performance compared to using the sep-
arate components independently. To refine the detection results, Zhang et
al. implemented a modified non-maximum suppression (NMS) algorithm.
This technique effectively reduced the number of overlapping windows, en-
hancing the localization precision of detected fish instances. The modified
NMS algorithm optimized the suppression process to ensure that complete
fish objects were accurately identified while minimizing the presence of re-
dundant or overlapping windows. By developing this unsupervised under-
water fish detection method, Zhang et al. offered a valuable solution for
automatically segmenting fish areas without relying on manual annotation.
Their approach, which incorporated motion flow segmentation, selective
search, and CNN-based detection with modified NMS, demonstrated im-
proved performance and efficiency. This research contributes to the devel-
opment of advanced techniques for fish identification and abundance estim-
ation in underwater environments.
• In their work, Rathi et al. [35] employed CNNs as a central component

of their proposed technique, which aimed to enhance the efficiency and
effectiveness of fish species classification, particularly when dealing with
large datasets. By leveraging CNNs, their approach facilitated streamlined
and robust operations for fish classification tasks. The process began with
the pre-processing of underwater images, which involved several techniques
such as Gaussian Blurring, Morphological Operations, Otsu’s Thresholding,
and Pyramid Mean Shifting. These pre-processing steps aimed to enhance
the quality and clarity of the images, reducing noise and enhancing relevant
features necessary for accurate classification.
Following the pre-processing stage, the pre-processed images were fed into
a CNN model for classification. The CNN architecture enabled the extraction
of intricate features and patterns from the images, facilitating the identific-

Chapter 2: Literature Review 13

ation and classification of different fish species. By leveraging the power of
deep learning and CNNs, Rathi et al. achieved remarkable accuracy in their
approach. According to their experimental findings, the suggested technique
achieved an impressive accuracy rate of 96.29% in classifying fish species.
This accuracy surpassed the performance of other existing methods com-
monly employed for this purpose. The superiority of their proposed ap-
proach highlighted the efficacy and potential of utilizing CNNs in under-
water fish classification tasks.
By demonstrating the effectiveness and accuracy of their technique, Rathi
et al. contributed to advancing the field of underwater fish species clas-
sification. Their approach, which incorporated CNNs and a series of pre-
processing steps, showcased the capability of deep learning algorithms to
handle large datasets and achieve superior classification results.
• In their study, Mandal et al. [36] highlighted the significant advantages

of utilizing remote underwater video feeds for autonomous assessment of
fish and species abundance. They emphasized that this approach offers sub-
stantial potential in terms of time and cost savings compared to traditional
methods. To harness the full potential of this technology, the researchers em-
ployed an end-to-end deep learning technique to analyze the video streams
and extract the necessary information for evaluation. Mandal et al. conduc-
ted a series of tests using various deep-learning models and performed a
comprehensive analysis of their performance. The objective was to assess
the effectiveness of these models in accurately identifying and quantifying
a diverse range of marine species from the video feeds.
The results were highly encouraging. The researchers achieved an impress-
ive mAP of 82.4% across a substantial number of marine species. This mAP
value indicated the overall accuracy and reliability of the deep learning
models in successfully detecting and classifying different species present
in the underwater videos. The findings of this study demonstrate the poten-
tial of employing end-to-end deep learning techniques for autonomous fish
and species abundance assessment using remote underwater video feeds.
By leveraging the capabilities of deep learning models, Mandal et al. show-
cased the feasibility of extracting valuable information from video streams
and achieving high levels of accuracy in species identification and abund-
ance estimation. This research contributes to advancing the field of under-
water monitoring and conservation by providing an efficient and effective
approach to assessing marine biodiversity.
• Marini et al. [24] introduced a novel and efficient video-automated ap-

proach to accurately track and estimate fluctuations in fish abundance under
challenging real-world conditions, without the need to differentiate between
various fish species. To achieve this, they developed a unique ’generic su-
pervised machine learning’ framework for fish recognition in images based
on their content. This framework was extensively tested across a range of
lighting scenarios, and variations in water turbidity, and even accounted

14 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

for biofouling-induced changes on the camera housing. To ensure the ro-
bustness and generalization performance of their image classifier, Marini et
al. employed a K-fold Cross-Validation framework. This approach enabled
them to select the most relevant image attributes for fish recognition and
develop an automated image classifier that could effectively handle varying
environmental conditions.
The proposed video-automated approach allowed for continuous monitor-
ing of fish abundance, providing valuable insights into population dynamics
and fluctuations. By utilizing the supervised machine learning framework,
Marini et al. effectively addressed the challenges associated with fish recog-
nition in diverse underwater environments. This approach not only elimin-
ated the need for species differentiation but also demonstrated its effective-
ness in accommodating variations in lighting, water turbidity, and biofoul-
ing. The research conducted by Marini et al. offered a robust and versatile
solution for accurately tracking fish abundance in real-world conditions.
The use of a generic supervised machine learning framework and the K-fold
Cross-Validation technique ensured accurate and reliable fish recognition
and counting, regardless of environmental variations. This study contrib-
utes to the development of automated approaches for underwater image
analysis and provides a valuable tool for ecological research and fisheries
management.

According to Xu and Matzner’s study on underwater fish detection for wa-
ter power applications [11], previous research in underwater fish optical analysis
primarily focused on classifying coral fish in well-lit shallow seas or deep waters
where fish populations were abundant and easily observable. However, there is a
notable gap in the literature when it comes to detecting fish in more challenging
underwater environments, particularly in the vicinity of marine and hydrokinetic
(MHK) energy projects or river hydropower projects. These areas often present
difficult conditions, such as high turbidity, fast water currents, and murky waters,
where fish tend to have less distinct colors and are barely perceptible. Address-
ing this research gap is crucial due to the increasing interest in MHK and river
hydropower projects, where assessing the potential impact on fish populations is
vital. Xu and Matzner emphasize the need for accurate fish detection methods
that can overcome the challenges of low visibility and dull-colored fish. By devel-
oping techniques based on deep learning algorithms, they aim to detect fish in
underwater environments with improved accuracy and efficiency.

On the other hand, Nair et al. [37] shed light on the challenges associated
with underwater fish species recognition. They highlight the difficulty of collect-
ing representative samples for underwater photos, as it involves dealing with poor
image quality and uncontrolled environmental factors. Furthermore, existing fea-
ture extraction methods often require continuous human supervision, which can
be time-consuming and labor-intensive. Manual examination of fish images and
videos by marine biologists is a common practice to extract essential information,
further adding to the overall effort required. To address these challenges, Nair et

Chapter 2: Literature Review 15

al. propose the development of automated methods for fish species recognition,
reducing the reliance on manual intervention. Their research aims to explore in-
novative approaches and algorithms to streamline the process of fish analysis in
underwater imagery.

The importance of underwater image datasets in the field of image processing
is emphasized by Raveendran et al. [38]. The available datasets such as Fish-
4Knowledge [10], TURBID [39] and the more recent ones MOUSS, AFSC, MBARI,
NWFC, and RUIE [40], serve as invaluable resources for advancing image pro-
cessing methods in underwater environments. They enable researchers to develop
and evaluate novel algorithms, improving fish detection, species recognition, and
other related tasks. With access to comprehensive underwater image datasets, re-
searchers can devise more sophisticated techniques that minimize the need for
human oversight, resulting in more efficient analysis of underwater imagery.

Another new technology known as Machine Vision Systems (MVS) has become
an indispensable tool in aquaculture monitoring, offering numerous advantages
such as non-intrusiveness, objectivity, and repeatability. Machine vision systems
refer to computer-based system that utilizes image processing and analysis tech-
niques to automatically interpret and understand visual information. Specifically,
in the context of aquaculture and fish-related applications, a machine vision sys-
tem is designed to analyze images or video footage captured in aquacultural set-
tings, such as fish farms or underwater environments. However, traditional image
processing techniques often struggle to yield satisfactory results in complex un-
derwater environments. The intricate nature of underwater conditions, such as
variations in lighting, water turbidity, and biofouling, presents challenges for ac-
curate data processing using conventional methods.

To overcome these challenges, deep learning algorithms have gained signific-
ant attention in the field of underwater image processing. The remarkable feature
extraction capabilities of deep learning algorithms make them highly suitable for
handling the complexities of underwater imagery. By automatically learning and
identifying relevant features from vast amounts of training data, deep learning al-
gorithms can effectively analyze and interpret underwater images. The fusion of
deep learning algorithms with machine vision techniques is crucial for advancing
the automated monitoring of aquaculture systems. This integration enables the
development of robust and efficient systems capable of performing tasks such as
fish classification, detection, counting, behavior identification, and biomass estim-
ation. The application of deep learning in these areas demonstrates the interdis-
ciplinary nature of its impact on aquacultural machine vision systems [41]. In the
context of aquaculture, the acquisition and processing of image data can be time-
consuming. To address this, motion detection algorithms are utilized to extract
relevant frames from video footage. However, manual processing is still required
to analyze the extracted frames. To streamline this process and automate data
extraction from images, machine vision techniques based on object recognition
have proven instrumental. By accurately separating the subject of interest from
the background, these techniques enable the application of computationally effi-

16 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

cient approaches such as optical flow analysis and segmentation based on pixel
characteristics. This automated data extraction not only improves efficiency but
also enhances the accuracy of aquacultural data analysis [42].

With the use of the Internet of Things (IoT), big data, cloud computing, ar-
tificial intelligence, and other cutting-edge information technologies, a new sci-
entific field called Smart Fish Farming seeks to increase resource efficiency and
promote the expansion of a sustainably managed aquaculture industry. Addition-
ally, real-time data collection, quantitative decision-making, intelligent control,
precise investment, and individualized service have all contributed to the form-
ation of a new fisheries production mode. Data and information are the corner-
stones of smart fish farming. The aggregation and sophisticated analyses of all or
some of the data will lead to the ability to make decisions with a scientific basis.
Smart fish farming generates a substantial volume of data, posing challenges due
to its diverse sources, formats, and complexity. The data originates from various
sources, including human inputs, environmental factors, tools, fish, and the breed-
ing process. Furthermore, it exists in different formats, encompassing text, images,
and audio. The complexity of the data further stems from variations in species,
cultural eras, and styles. The aforementioned high-dimensional, nonlinear, and
massive data present a very challenging problem [28].

CNNs and Recurrent Neural Networks (RNNs) are widely recognized as popu-
lar deep learning models that are extensively used in edge computing. Edge com-
puting involves deploying a network of interconnected computing nodes in close
proximity to end devices. This approach proves to be highly advantageous in ful-
filling the demanding computational needs and low-latency requirements of deep
learning tasks on edge devices. Moreover, edge computing offers numerous addi-
tional benefits, including enhanced privacy, improved bandwidth efficiency, and
increased scalability. By leveraging CNNs and RNNs in edge computing, signific-
ant advancements have been made in processing data directly on edge devices.
CNNs are particularly effective for image and video analysis tasks, as they excel in
extracting meaningful features from visual data. RNNs, on the other hand, excel
in sequential data processing, making them ideal for applications involving speech
recognition, natural language processing, and time-series analysis.[43].

In order to effectively identify and categorize various fish species, it is ne-
cessary to automatically extract characteristics from data. This is where machine
learning and deep learning play a significant and important role in the categoriza-
tion of fish. This is crucial in aquaculture, where the capacity to recognize fish spe-
cies fast and precisely can boost productivity, cut costs, and guarantee the quality
of the finished product. Other applications in aquaculture, including as behavior
analysis, feeding choices, size or biomass estimation, and water quality predic-
tion, can also be done using machine learning/deep learning in addition to fish
classification [44]. Aquaculture professionals may improve results by using these
tools to better understand their operations and make data-driven decisions [44].
Large datasets of fish photos can be used to train machine learning algorithms
to automatically identify various species based on their distinctive characteristics,

Chapter 2: Literature Review 17

such as color patterns, body shapes, and fin structures. Machine learning and deep
learning can assist fish farms in optimizing their feeding tactics by estimating the
ideal amount of feed needed for each fish depending on their size and weight,
in addition to increasing the accuracy of fish classification. As a result, waste can
be reduced and aquaculture operations can operate more effectively overall [45].
Researchers can create models that can precisely classify various species based on
their physical traits by analyzing fish photos with machine learning algorithms.
This can make it simpler for farmers to monitor the expansion and growth of
their fish populations and to spot any potential health concerns or environmental
issues that might be harming them [46]. Deep learning techniques such as CNNs
have been used to classify different species of fish based on images captured by
underwater cameras and the following are some work related to deep learning
and smart fish farming that finds fish classification is one of the most popular
fields of application [44]:

• Fish species recognition using deep learning techniques by Sarker et. al.
[47] used a CNN to classify six different species of fish based on images
captured by an underwater camera system. The study was conducted in
Bangladesh and used a dataset of 1,200 images of six different fish species
commonly found in the region. The authors trained a CNN using the dataset
and achieved an accuracy rate of over 90% for all six species.
• Fish classification using a deep convolutional neural network with transfer

learning by Kwon et. al. [48] is another study that used a combination of
CNNs and Support Vector Machines (SVMs) to classify four different species
of fish based on images captured by an underwater camera system. The
study was conducted in South Korea and used a dataset of 1,000 images
of four different fish species commonly found in the region. The authors
trained a CNN using transfer learning and then used an SVM to classify the
images based on the features extracted by the CNN. The combined approach
achieved an accuracy rate of over 95%.
• Fish detection and species classification in underwater environments us-

ing deep learning with temporal information by Jalal et. al. [49] is a study
where the authors used a dataset of underwater fish images captured by an
underwater camera system. The authors used a deep learning model that
combined a CNN with an LSTM to capture temporal information. The au-
thors achieved an accuracy rate of 96.7% for fish detection and 92.3% for
fish species classification using their proposed method.
• A novel deep learning approach for fish species recognition based on con-

volutional neural network and softmax regression by Sun et. al. [50] also
used a dataset of fish images captured by an underwater camera system
and the authors used a CNN model combined with softmax regression. The
authors achieved an accuracy rate of 96% for fish species recognition using
their proposed method and also noted the challenges in underwater fish
recognition including variations in lighting conditions and water quality.
• Image-based monitoring of jellyfish using deep learning architecture by Kim

18 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

et. al. [51] used a dataset of jellyfish images captured by an underwater
camera system and the authors used a CNN model combined with trans-
fer learning. The authors achieved an accuracy rate of 95.5% for jellyfish
detection using their proposed method and noted that challenges in jelly-
fish recognition include variations in jellyfish appearance due to changes in
lighting conditions and water quality.
• Fish species recognition using deep learning techniques by Hossain et al.
[52] used a dataset of 10,000 images of 10 different fish species, which were
captured using underwater cameras in natural environments. They used a
CNN model which consisted of several layers, including convolutional lay-
ers, pooling layers, and fully connected layers. The authors also used data
augmentation techniques to increase the size of their dataset and improve
the performance of their model and achieved an accuracy rate of 98% for
fish species recognition. They also noted various challenges such as some
fish species were more difficult to classify than others due to variations in
their physical characteristics such as color and shape and limitations associ-
ated with using underwater cameras to capture images of fish, such as poor
lighting conditions or low image quality in some cases.
• Fish biomass estimation using machine learning techniques by Singh et al.
[53] collected a dataset of 1,200 images by capturing images of fish in
aquaculture ponds using underwater cameras. They used a machine learn-
ing algorithm called Random Forest to estimate the biomass of fish in aquacul-
ture ponds and achieved an accuracy rate of 95%. The authors noted that
there were some challenges associated with this task, such as variations in
lighting conditions and image quality, which can affect the accuracy of the
biomass estimates.
• Fish recognition using convolutional neural networks by Al-Ali et al. [54]

used a deep learning approach to recognize and classify fish species based
on images captured using underwater cameras. The authors used a CNN
model to classify the fish images and also used data augmentation tech-
niques to increase the size of their dataset and improve the performance of
their model. They achieved an accuracy rate of 92% by using a dataset of
1,000 images of 10 different fish species. Variations in lighting conditions
and image quality were a challenge noted which can affect the accuracy of
fish recognition models.

The studies mentioned above have focused on underwater images captured
by camera systems and have achieved notable success in achieving high accur-
acy rates for species recognition. However, there are still significant problems
and limitations that need to be addressed. One common challenge in fish spe-
cies recognition is the variations in lighting conditions and water quality, which
can affect the appearance of fish and hinder accurate identification. Additionally,
the physical characteristics of different fish species, such as color and shape, pose
challenges in classification, as some species may be more difficult to distinguish
than others. Another important aspect is the amount of data collected and the

Chapter 2: Literature Review 19

size of the labeled dataset. Having a large, labeled dataset is important to have
a stable and reliable machine-learning model that will identify fish species accur-
ately. However, acquiring and labeling a large dataset can be time-consuming and
resource-intensive. Furthermore, the existing studies have mainly focused on spe-
cific regions or a limited number of fish species, which may not cover the diverse
range of freshwater and river species found globally.

Rainbow trout holds significant importance in the field of aquaculture due
to its economic value, high demand, and adaptability to various environmental
conditions. As one of the most widely cultivated freshwater fish species, rainbow
trout plays a crucial role in global aquaculture production. Rainbow trout is also
the main freshwater species farmed at the European Union level, both in terms
of volume and value [5]. Rainbow trout dominates global trout production, con-
tributing to approximately 97%-98% of the total production each year between
2010 and 2019. In 2019 alone, the production of rainbow trout reached 916,365
tonnes. In comparison, other trout species such as sea trout accounted for only
0.3% of the production, equivalent to 3,252 tonnes, while brook trout constituted
0.2% with 1,702 tonnes. [55].

Given the prominence of rainbow trout in aquaculture, this project focuses on
the specific challenge of classifying mature trout from immature trout using deep
learning techniques. This distinction is crucial for the effective management and
monitoring of fish stocks, as it enables farmers to determine the optimal harvesting
time and ensures the sustainable growth of trout populations. However, accurately
differentiating mature trout from immature trout based on visual observations
alone can be challenging, particularly as they share many physical similarities.

By leveraging the power of deep learning algorithms, the aim is to investigate
the performance of the deep learning models in classifying mature trout based
on subtle differences in morphology, coloration, and other visual cues. This ap-
proach will involve training the model using a comprehensive dataset comprising
images of both mature and immature trout, annotated with appropriate labels -
mature for mature trout and trout for immature trout. Through this research, the
aim is to contribute to the advancement of aquaculture practices by providing fish
farmers and industry stakeholders with an automated and reliable tool for trout
classification. By harnessing the potential of deep learning and computer vision,
the project also seeks to streamline the process of identifying mature trout, fa-
cilitating more efficient management strategies, optimized harvesting operations,
and sustainable growth in rainbow trout aquaculture.

Chapter 3

Method

In this chapter, a detailed account has been presented of the research design, data
collection, analysis, and the steps taken to ensure the validity and reliability of the
study. The aim of this chapter is to provide the readers with a clear understand-
ing of the research methodology and the rationale behind the chosen approach
with respect to the deep learning models chosen and related work. The following
sections will detail the process of classifying fish species using deep learning, in-
cluding the data collection and pre-processing, model architecture, training, and
evaluation, and the steps taken to ensure the accuracy and robustness of the res-
ults.

3.1 Data Collection

As discussed earlier, the thesis aims at the classification of fish species which are
found in freshwater like rivers and lakes. Collecting data for species that are in
a river is generally a very difficult task considering the water flow, depth of the
stream, and other natural conditions such as the growth of algae, weeds, lighting
conditions, etc. The industrial partner developed an autonomous camera system
that can be positioned underwater in Norway’s rivers and fjords specifically for this
use. In order to reduce the stress on the users, the system combines a combina-
tion of effective and powerful machine vision algorithms. The hardware is able to
withstand adverse situations and lengthy service intervals because it is durable,
light, and compact. The camera system has an embedded local computer with an
AI-specific accelerator which has the capacity to process over 1 million images
per day. The AI accelerator by Coral features on-device capabilities that enable
the development of productive, discreet, quick, and offline products. Thus, the
fish detection system that is installed locally on the system allows the accelerator
to record videos when there is a fish detection by the algorithm. These videos are
further processed into frames which results in images of the fish. No specific spe-
cies is targeted during the detection of the fish by the algorithm. Therefore a large
number of fish images is collected at the central repository.

21

22 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

These images are further identified and approved by the specialists in this
field and labeled correctly as fish or no-fish by the business partner. Since there is
a large data available for fish, it is possible to further label the fish according to the
specie they belong to using labelbox. Labelbox (https://www.labelbox.com/) is
a platform where teams can collaboratively label data for machine learning applic-
ations for collaborative data labeling. It offers a web-based interface for labeling
text, polygonal segmentation masks, object bounding boxes, pictures, videos, and
other sorts of data. Once the data is labeled, it can be used as a dataset for vari-
ous machine-learning applications such as object detection, object classification,
etc. For the purpose of this project, the species that was identified was rainbow
trout. Within the rainbow trout specie, there are two categories of interest for
fish farmers and aquaculture which are immature trout and mature trout. Mature
trout are simply adult trout that have reached sexual maturity and are capable of
reproducing. The table 3.1 shows the distribution of data that was provided for
the project.

Trout Category Count Distribution

immature trout 25270 ≈84%

mature trout 4696 ≈15%

damaged 58 ≈<1%

Table 3.1: Data distribution

(a) Dataset image 1 (b) Dataset image 2

Figure 3.1: Sample images from dataset

Since the aim of this project was to assess the feasibility of classifying mature
and immature trout, considering the number of images in the ’damaged’ category
very low, only the immature trout and mature trout categories were chosen to
proceed with. The total labeled images that were available for the project were
29966 images. The data is not balanced, which has to be considered when work-
ing with any deep-learning model for classification. It is important to note that

https://www.labelbox.com/

Chapter 3: Method 23

all the images are taken in the same environment with respect to light and back-
ground conditions. These images can contain multiple or single fish belonging to
the mature or immature trout category. A couple of sample images that are from
the labeled dataset are presented in Fig. 3.1.

The sections further will explain in detail how this data has been processed
and prepared to be used in training models for the classification of immature trout
and mature trout.

3.2 Data Pre-processing

The data that was available for two labeled categories immature trout (labeled
as trout) and mature trout (which is labeled as mature) are images with single
or multiple fish in the frame. Fig. 3.2 presents a sample of what the fish images
with detection frames look like. 1

Figure 3.2: Sample images with detection boxes

The data which was available at labelbox, was downloaded using API support.
Using the project id, which is related to the dataset, all the images that are labeled
were downloaded. Each image also has the associated annotation files in Pascal
VOC format. These files contain some relevant information about the related im-
ages such as bounding box coordinates for the detection and the associated class
label. In this case, the labels in the discussion are trout and mature. Since the

1Throughout this thesis, the terms trout and mature are also used as a shorthand for immature
trout and mature trout respectively for brevity and ease of reference.

24 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

aim is to look forward to a classification algorithm, it is important to have the
data sorted based on the class so that it can be prepared for training, validation,
and test sets. To prepare the dataset, a Python script was written to loop through
the Pascal VOC file which has the respective filename for the image, loop through
the labels in each image and create a cutout of each detection using the bounding
box values. Each detection is then saved to the respective directories which are
labeled trout and mature. In the end, a dataset including 25270 images of trout
and 4696 images of the mature category has been achieved. With a digital cutout
of the target class from the detection images, a more precise image of the class that
is required to train the algorithm was obtained. In this way, the extra ’noise’ in the
original images such as the background and the empty spots can be ignored, and
a more concrete dataset that has only the images, relevant to the class, is acquired.

A sample of images from the trout class is presented in Fig. 3.3.

Figure 3.3: Sample images of immature trout

A sample of images from the mature class is presented in Fig. 3.4.

Chapter 3: Method 25

Figure 3.4: Sample images of mature trout

The two categories of fish have quite a lot of similarities in their size and
dimensions, as can also be seen in the images. The mature category has a slight
red tinge on the body. This may or may not be a very significant differentiating
factor, and the lighting condition in the images can also affect how easy or difficult
it is manually to classify an image as mature or not.

A few samples of images from the mature category, which has quite a lot of
variation in the color shade as compared to the trout category are presented in
figure 3.5

(a) Lighter shade (b) Darker shade

Figure 3.5: Color variations in mature trout

Since the two categories of fish in the discussion are not very different from
each other, some types of image pre-processing techniques such as gray scaling
of images (which will convert the images to grayscale), Gaussian blurring (which
is used to blur the image and reduce noise) and histogram equalization are not

26 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

applied to the dataset because these techniques can alter the color balance of the
image [56].

TensorFlow (TF) is a powerful open-source machine learning framework that
provides a wide range of libraries and tools. It enables efficient development and
deployment of deep learning models, offering extensive support for tasks like data
manipulation, neural network design, and model optimization [57]. The project
utilizes TensorFlow 2, which is one of the latest versions of the framework known
for its simplicity, flexibility, and improved performance.

When the data is loaded as a dataset in the code, it also undergoes several pre-
processing. The tf.keras.preprocessing.image_dataset_from_directory function creates
a tf.data.Dataset object from image files stored in a directory. This function per-
forms several pre-processing steps on the images, including:

• Resizing the images to the specified image_size which is (224,224) and is the
required input image size for the compatible models which is available at
the website (https://coral.ai/models/image-classification/) [58].
• Batching the images into batches of the specified batch_size

• Shuffling the batches of images randomly
• The seed parameter in the function sets the random seed for shuffling the

batches of images.

Once the data is loaded into the memory, it is also scaled from the range of [0,
255] to [0, 1]. This is done so that the input data is normalized to a small range
of values, typically [0, 1] [59].

These pre-processing steps are performed to prepare the data for training a
model. In this light, resizing the images ensures that they all have the same di-
mensions, which is necessary for feeding them into a neural network. Besides,
converting the images to floating-point tensors and scaling their pixel values to
the range [0, 1] is also highly recommended for compatibility with neural net-
work models [59]. In addition, batching the images into smaller groups allows
the model to process them more efficiently during training [60]. The last but not
the least, shuffling the batches randomly helps to ensure that the model sees a
diverse set of images during each epoch of training and that all weight updating
is done sporadically [61]. In the end, applying a lambda function using the map

method, the resulting tf.data.Dataset object contains the scaled images and their
corresponding integer labels (0 for mature and 1 for trout), which can be used for
training the model.

The next step in the pre-processing is preparing the dataset for the training of
the model. For the classification task, a train, validation and test set is required.
The training dataset will be used to train the model while the validation dataset is
used to assess the performance and generalization of the model and make relev-
ant changes for improvement if required. The test dataset will be used to evaluate
the final performance and generalization of the model. All three datasets are in-
dependent of each other to avoid any bias. The splitting of the data into training,
validation, and test sets is done using the tf.data.Dataset API in TensorFlow. The

https://coral.ai/models/image-classification/

Chapter 3: Method 27

length of the entire dataset data is used to compute the number of samples to
allocate to each set. Given that, the dataset is split into 70%, 20%, and 10% of
the samples as the training set, validation set, and test set, respectively. The take

method is used to extract the first train_size number of samples from the dataset
data, which becomes the training set. Then, the skip method is used to skip over
the training samples, and then the take method is used again to extract the next
val_size number of samples from the remaining data, which becomes the valida-
tion set. Finally, the skip and take methods are used again to extract the remaining
test_size number of samples, which becomes the test set.

3.3 Data Augmentation

As discussed in the section above, there is a high imbalance in the number of
images for trout and mature labels. The images for the trout category are almost
6 times more than the images for the mature category. There should be a balance
in the dataset so that the model is not biased toward the majority class and poorly
toward the minority class. The performance of the model will be affected and
which is why it is important to have data augmentation because this has been one
of the proven ways to improve the accuracy of models dealing with classification
tasks [62].

For the project, two methods were used to balance the data set. One of the
ways was to balance the majority class with the minority class where the trout
class, which has 25570 images, was selected, and using a Python script, randomly
5000 files were selected and moved to a new directory. The results from this dis-
tribution of data will be discussed in the further sections. The other method was
to balance the minority class with the majority class by applying data augment-
ation on the 4696 images that are available in the mature class, increasing the
data for this class to 6 times and coming closer to the count for the trout class.
To artificially increase the amount of training data available by generating modi-
fied versions of the original data, the Keras ImageDataGenerator class was used. The
different parameters defined to generate the images are [63]:

• rotation_range: Specifies the range (in degrees) for random rotations of the
image. For example, if rotation_range=10, the image can be rotated ran-
domly between -10 and 10 degrees.
• width_shift_range: Specifies the range (as a fraction of the total width) for

horizontal shifts of the image.
• height_shift_range: Specifies the range (as a fraction of the total height) for

vertical shifts of the image.
• shear_range: Specifies the range (in degrees) for random shearing transform-

ations of the image.
• zoom_range: Specifies the range for random zooms of the image.
• horizontal_flip: Specifies whether to randomly flip images horizontally.
• vertical_flip: Specifies whether to randomly flip images vertically.

28 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

• fill_mode: Specifies how to fill in any new pixels created during the trans-
formation. The ’nearest’ mode is used, which means that the nearest pixel
will be used to fill in the new pixel values.

The ImageDataGenerator object is created with these parameters, and the code
uses the flow method [63] of the ImageDataGenerator object to generate batches of
augmented data. The different parameters used here are:

• img: This is the input image that will be augmented. It is a 3-dimensional
NumPy array representing the image. NumPy is a fundamental library in
Python that enables efficient numerical computations and offers extensive
support for working with multi-dimensional arrays, such as a 3-dimensional
NumPy array commonly used to represent images [64].
• batch_size: This parameter specifies the number of images to be generated

in each batch.
• save_prefix: This parameter specifies a prefix to use when saving the gener-

ated images. The actual file names will be the prefix followed by an index
number and the specified file format.
• save_format: This parameter specifies the file format to use when saving the

generated images, which in this case is ’jpg’.
• save_to_dir: This parameter specifies the directory in which to save the gen-

erated images. If None (the default), the images will not be saved to disk
and will only be generated in memory, but for the project, the path has been
specified to a directory so that the images can be saved on disk.

Using a Python script, each image was passed through the flow method to
generate five augmented images from one single image. This way, the data was
increased artificially for the mature category. Fig. 3.6 presents a sample group of
images where additional five pictures are generated by the augmentation method
by using one image. The images belong to the mature class (which is the minority
class) as per the data distribution.

Chapter 3: Method 29

(a) Original image (b) Augmented image (1) (c) Augmented image (2)

(d) Augmented image (3) (e) Augmented image (4) (f) Augmented image (5)

Figure 3.6: Sample images from mature class generated using augmentation

The distribution of data between the two classes before and after augmenta-
tion is presented in Table 3.2.

Label Label count
before

Label count
after

Distribution
before

Distribution
after

trout 25270 25270 ≈84% ≈50%

mature 4696 25612 ≈16% ≈50%

total 29966 50882 100% 100%

Table 3.2: Data distribution before and after augmentation

30 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

3.4 Pre-trained Model Architectures

The industry partner which has collaborated with this project, expressed a prefer-
ence to work with TensorFlow 2.0 [65], therefore the chosen pre-trained models
were the ones that are compatible with TensorFlow 2.0. A list of the models that
are compatible with Coral Edge TPU at the time of writing this project is presented
in Table 3.3.

Model Name Dataset Input Size Top-1 Accuracy

MobileNet V1 ImageNet 224x224x3 69.5%

MobileNet V2 ImageNet 224x224x3 73.2%

MobileNet V3 ImageNet 224x224x3 77.5%

ResNet-50 ImageNet 224x224x3 73.6%

Table 3.3: Image classification models compatible with TF v2.0

All the models mentioned in Table 3.3 are trained on the ImageNet dataset.
ImageNet is a large-scale visual database that contains millions of labeled images
representing a wide variety of object categories. It is widely used in computer vis-
ion research to develop and evaluate models for tasks such as image classification,
object detection, and image segmentation [66]. The Top-1 accuracy represents the
percentage of correctly predicted labels for the most probable class. For the Im-
ageNet dataset, Top-1 accuracy is highest for MobileNet V3 (77.5%) and least for
MobileNet V1 (69.5%).

The dataset that is being used for the project is new and has never been tested
before for any image classification tasks. Therefore, there is no existing baseline
model that can be used for comparison with the results obtained from this project.
ResNet was the winning model of the ImageNet (ILSVRC) 2015 competition and
is a popular model for image classification [67]. the architecture of each model
that has been used for the experiments will be discussed in detail. ResNet-50 is
a CNN architecture, while MobileNet v1, MobileNet v2, and MobileNet v3 are
variants of MobileNets, which are also CNN architectures but specifically designed
for efficient mobile and embedded applications.

CNN is a type of deep learning algorithm that is widely used in image and video
recognition tasks. CNNs are designed to recognize patterns in images by using a
series of convolutional layers that extract features from the input image. These
features are then passed through fully connected layers to classify the image into
different categories. CNN architecture is useful for feature recognition because
it can automatically learn and extract relevant features from images without the
need for manual feature engineering. This makes CNNs highly effective in recog-
nizing complex patterns and structures in images, such as edges, corners, shapes,
and textures [68]. An example is the ResNet model, which was developed by re-

Chapter 3: Method 31

searchers at Microsoft Research Asia. The ResNet model uses residual connections
to allow for deeper network architectures while avoiding the vanishing gradient
problem that can occur with deep neural networks [68].

3.4.1 Pre-trained Model Descriptions

To understand each of the pre-trained models better that will be used for the clas-
sification task, the following sections present a short introduction to the architec-
ture of the pre-trained ResNet-50, MobileNet V1, MobileNet V2 and MobileNet
V3.

ResNet-50

ResNet is a deep residual learning framework for image recognition. It is a neural
network architecture that allows for the creation of much deeper networks than
previously possible, while still maintaining high accuracy and ease of optimiz-
ation. The ResNet framework reformulates layers as learning residual functions
with reference to the layer inputs, instead of learning unreferenced functions. This
approach makes it easier to train very deep neural networks and has been shown
to be effective in various image recognition tasks as mentioned in the paper by He
et al. [69]. The ResNet architecture has achieved state-of-the-art results on several
benchmark datasets, including ImageNet, CIFAR-10, and COCO [69]. A 50-layer
net with a 3-layer bottleneck block, resulting in a 50-layer ResNet, was introduced
in the previous research [69]. They show that the 50-layer ResNet is more accur-
ate than the 34-layer one by a considerable margin and does not suffer from the
degradation problem where the accuracy of the network starts to degrade as the
depth of the network increases. The basic architecture diagram of ResNet-50 is
presented in Fig. 3.7.

Figure 3.7: ResNet-50 architecture

MobileNet V1

MobileNet v1 is a class of efficient models for mobile and embedded vision ap-
plications. It is based on a streamlined architecture that uses depth-wise separ-
able convolutions to build lightweight deep neural networks [70]. MobileNet v1
introduces two simple global hyper-parameters that efficiently trade off between
latency and accuracy, allowing the model builder to choose the right-sized model

32 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

for the application based on the constraints of the problem. Extensive experiments
have shown strong performance compared to other popular models on ImageNet
classification and a variety of different applications and use cases. MobileNet v1
is much more lightweight than ResNet (which is discussed previously) and also
a couple of other deep learning models like VGG16, and GoogleNet while still
achieving comparable accuracy on ImageNet classification [70]. The basic archi-
tecture diagram of MobileNet V1 is presented in Fig. 3.8.

Figure 3.8: MobileNet V1 architecture

MobileNet V2

MobileNetV2 is a mobile architecture that was introduced in a paper by Google
researchers in 2018 [71]. One of the key features of MobileNetV2 is its use of in-
verted residuals and linear bottlenecks. These techniques allow for more efficient
use of computation and memory resources while maintaining high accuracy. In-
verted residuals involve using a bottleneck layer with fewer filters followed by a
layer with more filters, which reduces computation while maintaining accuracy.
Linear bottlenecks involve using linear activations instead of non-linear activa-
tions in the bottleneck layers, which reduces memory usage. Another advantage
of MobileNetV2 is its efficiency in terms of model size and computation. The au-
thors compare MobileNetV2 to other popular mobile architectures, such as Res-
Net and MobileNetV1, and show that it outperforms them on most benchmarks
while using fewer parameters and less computation. This makes it an attractive
option for applications where computational resources are limited, such as mobile
devices or embedded systems [71]. Overall, the results suggest that MobileNetV2
is a strong performer in comparison to other architectures for image classification
tasks due to its use of inverted residuals and linear bottlenecks, as well as its ef-
ficiency in terms of model size and computation. The basic architecture diagram
of MobileNet V2 is presented in Fig. 3.9.

Figure 3.9: MobileNet V2 architecture

Chapter 3: Method 33

MobileNet V3

MobileNetV3 is the next generation of MobileNets, which are designed to work
efficiently on mobile phone CPUs. It is a neural network model that is specifically
optimized for image classification tasks. Compared to previous versions, such as
MobileNetV1 and V2, MobileNetV3 offers significant improvements in accuracy
and efficiency [72]. One of the key features of MobileNetV3 is its combination of
hardware-aware NAS and the NetAdapt algorithm. This allows the model to be
optimized for mobile phone CPUs, resulting in faster inference times and lower
power consumption. In terms of accuracy, MobileNetV3 outperforms both ResNet
and previous versions of MobileNets. This is due to its novel architecture design,
which includes a combination of squeeze-and-excitation blocks, hard-swish activ-
ation functions, and other improvements. Overall, the advantages of MobileNetV3
include its high accuracy, efficiency on mobile phone CPUs, and ability to perform
well on a variety of image classification tasks. Its novel architecture design sets
it apart from other models and makes it a promising option for on-device com-
puter vision applications [72]. The basic architecture diagram of MobileNet V3 is
presented in Fig. 3.10.

Figure 3.10: MobileNet V3 architecture

In conclusion, ResNet-50, MobileNet V1, MobileNet V2, and MobileNet V3 are
pre-trained models that have significantly contributed to image recognition and
classification. ResNet-50 stands out for its ability to train deep networks with
high accuracy, addressing the degradation problem. MobileNet V1 offers a stream-
lined architecture for mobile and embedded applications, achieving a good trade-
off between latency and accuracy. MobileNet V2 improves computational and
memory efficiency through inverted residuals and linear bottlenecks, outperform-
ing other mobile architectures. MobileNet V3, optimized for mobile CPUs, com-
bines hardware-aware network architecture search and novel features for im-
proved accuracy and efficiency. Overall, these models provide a range of strengths,
from deep network training to lightweight and efficient architectures, advancing
on-device computer vision applications.

34 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

3.5 Model initialization

For the classification task on the dataset, the ResNet50 [73], MobileNet [74], Mo-
bileNetV2 [75], MobileNetV3Large [76] objects were used from the tf.keras.applications

module. There are various arguments that can be used with the object of the mod-
els initialized. The following have been used when loading the ResNet-50, Mobi-
leNet, MobileNetV2 and MobileNetV3 objects:

• weights=’imagenet’: This specifies the weight initialization to be used for the
model. In this case, the pre-trained weights from the ImageNet dataset are
used, which is a large database of labeled images that are commonly used
to pre-train deep learning models.
• include_top=False: This specifies whether or not to include the fully connec-

ted layer at the top of the network. By setting this to False, the final layer of
the pre-trained model is removed, which is typically used for image classi-
fication, and allows for customization of the output layer.
• input_shape=(224, 224, 3): This specifies the expected shape of the input data

to the model. In this case, it is set to (224, 224, 3), which is a common input
size for image classification tasks. The first two values represent the height
and width of the input image, respectively, and the third value represents the
number of color channels (3 for RGB images). The sample representation
of images in 224x224 dimensions is presented in Appendix 6.1.

The base_model variable then contains the object of the model initialized,
which is then to be used for further customization and training. Afterwards, by
iterating over all the layers in the base_model object, the trainable attribute is
set to False for each layer. The purpose of setting the trainable attribute to False
is to freeze the weights of the pre-trained model during the training process. By
freezing the weights, the layers are prevented from being updated during the
training process and allows to use the pre-trained features extracted by the model
as a fixed feature extractor for this project’s classification task. The base of the
model is used to extract features from input images, and then new layers are
added on top of the base to classify the images into one of two classes, trout or
mature.

3.6 Architecture setup

There can be several combinations of layers that can be added at the end of each
pre-trained model to experiment with the performance of the model. For this pro-
ject, two different architecture setups were explored with each of the models dis-
cussed in the previous section. 2

2Throughout this thesis, the terms setup 1 and setup 2 are used as a shorthand for Architecture
setup 1 and Architecture Setup 2 respectively for brevity and ease of reference.

Chapter 3: Method 35

3.6.1 Architecture Setup 1

In this setup, the following new layers were added to the pre-trained model object
to create a new model that is specifically tailored to this image classification task:

• Pre-trained model output: The output of the pre-trained model is taken
as the input for the new layers. Specifically, x is set to the output of the last
layer of the model.
• GlobalAveragePooling2D(): A global average pooling layer is added to the

model. Global average pooling is a technique commonly used in computer
vision tasks that involves computing the average value for each feature map
in the output of the model [77]. The result is a single value for each feature
map, which can then be fed into the next layer.
• Dense: A dense layer with 512 units and a ReLU activation function is ad-

ded to the model. The ReLU activation function is a non-linear function that
outputs the input value if it is positive, or zero otherwise [78]. The dense
layer is a fully connected layer where each unit in the layer is connected
to every unit in the previous layer. The ReLU activation function helps in-
troduce non-linearity to the model. ReLU is a preferred choice for many
neural network applications due to its ability to promote sparsity and its
faster training speed. [79].
• Predictions: A final dense layer is added to the model with two units (cor-

responding to the two classes in our classification task) and a sigmoid activ-
ation function. The sigmoid activation function outputs a probability value
between 0 and 1 for each class, representing the likelihood that the input
image belongs to that class and it is commonly used in the output layer of
binary classification problems [80].

An overview of this setup when used with pre-trained models is presented in
Fig. 3.11.

Figure 3.11: Architecture setup 1 overview

3.6.2 Architecture Setup 2

In addition to the layers described in setup 1 (3.6.1), some new layers were added
to the classification model. The idea was to combine various techniques to achieve
good performance and prevent overfitting. In addition, these new layers were
expected to strike a balance between model complexity and regularization and
make it suitable for the classification task.

36 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

• Pre-trained model output: The output of the pre-trained model is added
as the input for the new layers. Specifically, x is set to the output of the last
layer of the model.
• GlobalAveragePooling2D: A global average pooling layer is added to the

model. Global average pooling is a technique commonly used in computer
vision tasks that involves computing the average value for each feature map
in the output of the model [77]. The result is a single value for each feature
map, which can then be fed into the next layer.
• Dense with L2 Regularization: A Dense layer with 512 units and ReLU

activation is added next. This layer introduces non-linearity to the model
and enables it to learn complex patterns in the data. The inclusion of reg-
ularization using L2 regularization (with a regularization strength of 0.01)
is used to prevent overfitting by encouraging the model to generalize well
to unseen data. L2 regularization adds a penalty term to the loss function
that encourages smaller weights in the model by adding the sum of squared
weights multiplied by a regularization parameter [81].
• BatchNormalization: Batch Normalization is applied to the output of the

previous layer. It is used to normalize the activations by standardizing them
and stabilize the learning process by reducing the internal covariate shift.
Batch Normalization can speed up training and improve the model’s ability
to generalize [82].
• Dropout: Dropout is used as a regularization technique to prevent overfit-

ting. It randomly sets a fraction of input units to 0 during training, which
helps to reduce the reliance of the model on specific features. A dropout rate
of 0.5 means that 50% of the input units will be randomly dropped during
training.
• Predictions: A final dense layer is added to the model with two units (cor-

responding to the two classes in the classification task) and a sigmoid activ-
ation function. The sigmoid activation function outputs a probability value
between 0 and 1 for each class, representing the likelihood that the input
image belongs to that class and it is commonly used in the output layer of
binary classification problems [80].

An overview of this setup when used with the pre-trained models is presented
in Fig. 3.12.

Figure 3.12: Architecture setup 2 overview

Finally, at the end of each setup, a model object was created by defining a new

Chapter 3: Method 37

tf.keras.Model object, which takes base_model.input (the input tensor to the base
of the initialized model) as its input, and predictions (the output tensor from the
classification layers you added on top of the base) as its output. This is essentially
combining the pre-trained initialized model with the new classification layers that
were added, resulting in a new model that takes an input image, processes it
through the pre-trained model layers to extract features, and then uses the new
classification layers to predict as to which class the image belongs to. With this,
an end-to-end model was created that can be used for training on the new data-
set. The weights of the pre-trained initialized model layers are frozen, so only
the weights of the new classification layers will be updated during training. This
allows to leverage the pre-trained model as a powerful feature extractor while
fine-tuning the classification layers to work well on our specific dataset.

3.7 Model Compilation

Once all the layers are added and the model is prepared, the next step is to compile
the model. This step is necessary before training the model. The model.compile()

[83] configures the model for training. Specifically, it sets the optimization al-
gorithm, the loss function, and the evaluation metric(s) to be used during training.
The following arguments have been used for the model:

• Adam: The optimization algorithm that will be used to update the weights
of the model during training is added here. In this case, the ’Adam’ optimizer
is used, which is a recommended optimization algorithm by the literature for
classification purposes in deep learning [84]. The suggested default value
of learning_rate is 0.001 [85], and additionally, a learning_rate of 0.00001
and 0.000001 was also experimented with.
• Sparse Categorical Crossentropy: Next, the loss parameter which specifies

the loss function that will be used to calculate the difference between the
predicted output and the true output is added. In this case, SparseCategorical-
Crossentropy() is used as the loss function.
• metrics=["accuracy"]: The metrics parameter specifies the metric(s) that

will be used to evaluate the performance of the model during training. In
this case, ’accuracy’ is used as the evaluation metric. In addition to the ac-
curacy, there is a set of other metrics such as precision, recall, F1 score, and
confusion matrix to evaluate the model after training which is discussed in
Section 3.9.

Once the model is compiled, the training can be started on the dataset using
model.fit() [86]. During training, the model will use the optimizer, loss function,
and evaluation metric(s) that were specified in the model.compile() step to update
the weights and improve its performance.

38 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

3.8 Training Process

After several pre-processing steps, defining custom classification layers and com-
pilation, the next step is where the model is trained with the data defined. Tensor-
Board [87], which is a tool to visualize and understand the behavior of machine
learning models, was used. Several TensorBoard callbacks were used [88] to mon-
itor the training progress, log the details and visualize the model performance,
which is listed as follows:

• TensorBoard: This callback is used to visualize training and validation met-
rics during training. It is initialized with a logdir parameter which specifies
the directory where TensorBoard logs will be written. The histogram_freq

parameter, which is set to 1, specifies how often to compute histograms of
layer activations and gradients, and the write_graph parameter, which is set
to True, determines whether to write the graph definition to the logs.
• ModelCheckpoint: This callback is used to save the model weights at certain

intervals during training. It is initialized with a filepath parameter, which
specifies where to save the checkpoint files, and a save_weights_only para-
meter, set to True, specifies whether to save only the model weights or the
entire model. In this case, only the weights are saved. The save_freq para-
meter, set to epoch, specifies how often to save the weights, and the period

parameter set as 1, specifies the number of epochs between saves.
• TimeHistory: This is a custom-defined callback that is used to record the train-

ing time for each epoch. This is specifically helpful in calculating the time
taken for the entire model to train.

Once the callbacks are defined, the next step is where the model actually
starts to train. The pre-existing layers which were frozen in the beginning, will
not be trained and only the new layers that have been added either using setup 1
(3.6.1) or setup 2 (3.6.2). Following is a detailed summary of the training setup
of the model: The tensorflow.keras.model.fit [89] method is called to train the
deep learning model. In most cases of this project, the number of training epochs,
num_epochs is set to 150 which is the number of times the model will iterate over the
entire training dataset during training. A variable history of type History is used
as an object that is returned by the model.fit() function after the training process
is completed. The history object contains information about the training history,
such as the loss and metrics values recorded during each epoch. The different
parameters passed to the model.fit() function are as follows:

• train_data: This is the training dataset, which contains input images and
corresponding class values, which in this case is class label 0 for the mature
category and class label 1 for the trout category.
• validation_data: This is the validation dataset, which is used to evaluate the

model’s performance during training. It contains input images and corres-
ponding class values that are not used for training but helps to monitor the
model’s progress and detect overfitting.

Chapter 3: Method 39

• epochs: This parameter specifies the number of epochs for which the model
should be trained. In most training cases for the project, it is set to 150, as
discussed earlier.
• callbacks: This parameter specifies which callbacks should be included in the

training for visualization and monitoring. The three TensorBoard callbacks
defined above are passed as a list to this parameter.
• shuffle: This parameter which is set to True, determines whether the train-

ing data should be shuffled at the beginning of each epoch. It is used to
prevent the model from learning the order or patterns within the dataset
and improve the generalization.

3.9 Evaluation Metrics

After the models have completed their training, evaluation plays a crucial role in
assessing the performance and effectiveness of the trained model. Evaluation gen-
erally involves testing the model on a separate dataset that was not used during
training to provide an unbiased measure of its capabilities. For this purpose, there
was a test_data separated at the beginning, which is 10% of the original dataset
available. There are several evaluation criteria that are commonly used to ana-
lyze the model’s performance, such as accuracy, precision, etc. For this project,
the following evaluation metrics have been calculated:

• Accuracy: Accuracy is the most basic evaluation metric, representing the
percentage of correctly classified images out of the total number of im-
ages. While it provides a general measure of overall performance, it can
be misleading if the dataset is imbalanced [90]. Thus, a combination of
other metrics which can support accuracy shortcomings is necessary. The
tf.keras.metrics.Accuracy function [91] has been used to evaluate this.
• Precision and Recall: Precision and recall are commonly used for binary

classification tasks. Precision measures the proportion of correctly classi-
fied positive instances out of all instances predicted as positive. Recall, also
known as sensitivity or true positive rate, measures the proportion of cor-
rectly classified positive instances out of all actual positive instances [90].
The tf.keras.metrics.Precision function [92] and tf.keras.metrics.Recall func-
tion [93] has been used to evaluate this.
• F1 Score: The F1 score which is also a metric used to evaluate the per-

formance of a classification model, combines precision and recall into a
single value, providing a balanced measure of a model’s overall accuracy.
The F1 score is the harmonic mean of precision and recall, calculated as
F1 score = 2 ∗ (precision ∗ recal l)/(precision + recal l). The overall F1
score represents the average performance of the model across all classes. It
provides a general measure of the model’s effectiveness in terms of precision
and recall, considering all classes collectively.
• Confusion Matrix: A confusion matrix provides a detailed breakdown of

40 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

the model’s predictions for each class. It shows the true positive, true negat-
ive, false positive, and false negative counts, enabling a deeper analysis of
the model’s performance [94]. The sklearn.metrics.confusion_matrix function
[95] has been used for the evaluation.
• Receiver Operating Characteristic (ROC) Curve: The ROC curve is a graph-

ical representation of the true positive rate (sensitivity) against the false pos-
itive rate (1 - specificity) at various classification thresholds. The area under
the ROC curve (AUC score) is often used as a summary metric, with higher
values indicating better performance [96]. The sklearn.metrics.roc_curve and
sklearn.metrics.auc have been used for this evaluation [97] [98].

3.10 System Setup

The system setup involves a GPU-enabled system provided by NTNU Gjøvik, which
consists of two GPUs. The first GPU, GPU 0, is an NVIDIA GeForce with 8192 MiB
of memory, and the second GPU, GPU 1, also has an NVIDIA GeForce with the
same memory capacity.

To facilitate the project, a conda environment was created with specific soft-
ware versions. The environment includes multiple packages among which the
most prominent ones are the following:

• Python v3.8.16
• Pip v23.0.1
• Cuda v11.6
• TensorFlow-GPU v2.5.0
• Pandas v2.0
• NumPy v1.20.3
• Keras v2.12.0
• Matplotlib v3.7.1

The setup enabled efficient utilization of the GPUs for accelerated computa-
tions. It was expected that the GPUs’ computational power will significantly en-
hance the speed and performance of the related tasks. Additionally, the included
software versions of various libraries such as TensorFlow, pandas, numpy, Keras,
and matplotlib serve as necessary tools to perform the desired tasks effectively.

Chapter 4

Results

4.1 Results with Unbalanced Dataset

In this section, the results are published for the experiments with the deep learning
models using all the data available was used. These are all original images without
any data augmentation. A total of 29966 images belonging to both classes were
used in this setup. The data distribution is presented in Table 4.1.

Label Class Images Distribution

Mature 0 4696 ≈16%

Trout 1 25270 ≈84%

Table 4.1: Data distribution of unbalanced dataset

Tables 4.2 and 4.3 provide detailed results for the two different model ar-
chitecture setup 1 (3.6.1) and setup 2 (3.6.2), each associated with a specific
variation. These results offer comprehensive insights into the performance and
characteristics of each model within the two different model architecture setups.
Analyzing these tables will help in understanding the impact of different archi-
tectural choices and parameter configurations on the models’ performance and
training duration.

41

42 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

Model Architecture Setup 1 (3.6.1)

Model
Metrics

ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Batch Size 32 64 64 64

Total Data 937 468 468 468

Train Size 655 (70%) 328 (70%) 328 (70%) 328 (70%)

Validation
Size

187 (20%) 93 (20%) 93 (20%) 93 (20%)

Test Size 95 (10%) 47 (10%) 47 (10%) 47 (10%)

Total Params 24,637,826 3,754,690 2,914,882 4,883,330

Trainable
Params

1,050,114 525,826 656,898 656,898

Learning Rate 0.001 0.001 0.001 0.001

Epochs 300 150 150 150

Training Time
(mins)

301 86 87 88

Model Architecture Setup 2 (3.6.2)

Model
Metrics

ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Batch Size 64 64 64 64

Total Data 468 468 468 468

Train Size 328 (70%) 328 (70%) 328 (70%) 328 (70%)

Validation
Size

93 (20%) 93 (20%) 93 (20%) 93 (20%)

Test Size 47 (10%) 47 (10%) 47 (10%) 47 (10%)

Total Params 24,639,874 3,756,738 2,916,930 4,885,378

Trainable
Params

1,051,138 526,850 657,922 657,922

Learning Rate 0.00001 0.00001 0.00001 0.00001

Epochs 150 150 150 150

Training Time
(mins)

133 87 91 90

Table 4.2: Model configurations for unbalanced dataset

Chapter 4: Results 43

In setup 1, the choice of batch sizes varied between the models. ResNet-50
was experimented to use a smaller batch size of 32, while MobileNet V1, V2, and
V3 used a batch size of 64. In setup 2, all models utilized a batch size of 64.
Therefore dataset sizes differed in setup 1, where ResNet-50 had a larger training
dataset of 655 batches, while MobileNet V1, V2, and V3 used a training dataset of
328 batches. In setup 2, the dataset sizes were the same for all models, with 328
batches in the training dataset and 93 batches in the validation and test datasets.
It is observed that the ratio of the split between the dataset remained constant
throughout both the setups and followed a 70%-20%-10% split for train, valida-
tion and test datasets respectively.

Regarding the total and trainable parameters, ResNet-50 had the highest val-
ues in both setups 1 and 2. It had a total of 24,637,826 parameters and 1,050,114
trainable parameters in Type 1, and 24,639,874 total parameters and 1,051,138
trainable parameters in Type 2. MobileNet V3, MobileNet V1, and MobileNet V2
followed ResNet-50 in terms of parameter counts. The higher number of total and
trainable parameters in ResNet-50 compared to the other models in both setups
suggests a more complex and potentially deeper architecture in ResNet-50.

The learning rate and epochs settings differed between setups 1 and 2. In setup
1, all models were trained with a learning rate of 0.001 for 150 epochs, except for
ResNet-50, which was trained for 300 epochs for experimental purposes. On the
other hand, in setup 2, all models were trained with a learning rate of 0.00001
for 150 epochs. The variation in learning rate and epochs settings between setup
1 and setup 2 implies that different training strategies were employed to optimize
the models’ performance in each setup.

Training times varied depending on the model and the setup. In setup 1,
ResNet-50 had the longest training time of 301 minutes, while MobileNet V1,
V2, and V3 took 86-88 minutes most likely due to the larger number of batches
to process and that it was trained longer than other models. In setup 2, the train-
ing times ranged from 87 to 133 minutes, with MobileNet V1 having the shortest
training time. The longer training time required for ResNet-50 in setup 1 and setup
2 may suggest that it is a more computationally intensive model compared to the
MobileNet variants.

Having discussed the setup of each model for both setups, it is essential to
delve into the performance and results attained by the various models. This ana-
lysis will shed light on their overall performance and by examining key evaluation
metrics, valuable insights can be gained into how well these models performed in
the given context. Table 4.3 presents the evaluation metrics for each model.

44 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

Evaluation Metrics

Metrics ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Model Architecture Setup 1 (3.6.1)

Accuracy 86.6% 83.8% 85.0% 84.9%

Precision 91.8% 90.1% 91.1% 85.5%

Recall 92.4% 90.2% 91.8% 99.1%

F1 Score 0.91 0.90 0.91 0.91

Model Architecture Setup 2 (3.6.2)

Accuracy 87.0% 84.9% 84.9% 84.8%

Precision 92.4% 90.9% 90.8% 84.8%

Recall 92.3% 91.3% 91.6% 100%

F1 Score 0.92 0.90 0.90 0.91

Table 4.3: Evaluation metrics for unbalanced dataset

In setup 1, the results indicate strong overall performance across the models,
as evidenced by the high accuracy scores ranging from 83.8% to 86.6%. The con-
sistently high precision scores suggest that the models exhibit a good ability to
correctly identify positive instances. The variation in recall scores suggests that
MobileNet V3 shows particularly high sensitivity in capturing positive instances.
The consistently high F1 scores reflect a balance between precision and recall, in-
dicating the models’ effectiveness in achieving accurate and comprehensive pre-
dictions.

Moving to setup 2, the competitive performance across the models is evident
from the accuracy scores ranging from 84.8% to 87.0%. The precision scores, al-
though varying, generally indicate a decent ability to correctly identify positive
instances. Notably, the recall scores show that MobileNet V3 has a higher cap-
ability in capturing positive instances compared to MobileNet V2. The F1 scores,
ranging from 0.90 to 0.92, further emphasize the models’ ability to achieve a fa-
vorable balance between precision and recall.

These evaluation results suggest that both setups exhibit strong performance
overall, with some variations in specific metrics among the models. Understanding
these nuances helps assess the models’ suitability for different requirements and
aids in making informed decisions for future applications. In order to understand
the performance of each model better, the results for ResNet-50, MobileNet V1,
MobileNet V2 and MobileNet V3 are presented.

Chapter 4: Results 45

4.1.1 ResNet-50

The results for ResNet-50 on the unbalanced dataset with setup 1 and setup 2 are
presented in this section. The loss and accuracy curves are presented to have an
overview of the model while it was training followed by a confusion matrix and
AUC score for the ROC curve by evaluation of test data.

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.1: ResNet-50 loss curves for unbalanced data

The loss curves for ResNet-50 are presented in Fig. 4.1. The spikes in the val-
idation loss in setup 1 indicate that the model’s performance on unseen data (val-
idation set) may not be improving consistently, and this can also mean that the
model may be overfitting to the training data by not capturing the underlying
patterns in the data effectively. It might be overly sensitive to variations or noise
in the validation set, leading to inconsistent performance. As for setup 2, it can
be observed that the loss starts at a relatively high value of 8 and decreases to
less than 1, indicating that the model quickly learns and adjusts its predictions
during the initial training epochs, and the decreasing trend of the loss curve sug-
gests that the model continues to improve its performance over time. The overall
smoothness of the loss curve implies that the model’s performance is relatively
stable during training.

46 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

(a) Accuracy curve setup 1 (b) Accuracy curve setup 2

Figure 4.2: ResNet-50 accuracy curves for unbalanced data

(a) Confusion matrix setup 1 (b) Confusion matrix setup 2

Figure 4.3: ResNet-50 confusion matrix for unbalanced data

The accuracy curves for ResNet-50 are presented in Fig. 4.2. The overall trend
of the accuracy curve shows a gradual increase from around 0.84 to 0.86 over the
course of 300 epochs. This suggests that the model is learning and making more
accurate predictions over time. The presence of spikes in the accuracy curve indic-
ates that there are instances where the model’s performance experiences sudden
drops or increases. The spikes and fluctuations in the accuracy curve may indicate
that the model is encountering difficulties in converging to a stable and optimal
solution. The significant drop at the 150th epoch suggests a potential setback
or instability in the learning process. In the case of setup 2, the accuracy graph
demonstrates notable progress, starting from a lower scale of 0.55 and reaching a
range above 0.85. This suggests that the model is learning and making substantial

Chapter 4: Results 47

improvements in its predictions as the training progresses. Despite the spikes in
the validation curve, the fact that they remain within the range of 0.80 to 0.85
suggests a relatively consistent level of accuracy during validation. This indicates
that the model is able to maintain a reasonable level of performance, although
with some fluctuations.

The confusion matrix for ResNet-50 is depicted in Fig. 4.3. By examining the
provided confusion matrices for setup 1 and setup 2, the percentages of correct
and incorrect classifications for each class can be assessed.
In setup 1: Class 0 (mature): Correct classification is 53.95% and the incorrect
classification is 46.05% Class 1 (trout): Correct classification is 92.29% and the
incorrect classification is 7.71%
In setup 2: Class 0 (mature): Correct classification is 59.55% and the incorrect
classification is 40.45% Class 1 (trout): Correct classification is 92.53% and the
incorrect classification is 7.47%

These percentages provide insights into the accuracy of classification for each
class within the respective setups.

(a) Setup 1 (b) Setup 2

Figure 4.4: ResNet-50 AUC score for unbalanced data

The ROC curve’s AUC score (Area Under the Curve) is displayed in Fig. 4.4.
The AUC score, ranging from 0 to 1, serves as a measure of the classifier’s per-
formance. A score of 0.5 suggests a random classifier, while a score of 1 indicates
a flawless classifier. Examining the given scores, for setup 1, the AUC score is 0.88
and for setup 2, the AUC score is 0.89. These AUC scores highlight the models’ per-
formance in distinguishing between classes. The higher the AUC score, the better
the classifier’s ability to correctly rank and differentiate the classes.

48 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

4.1.2 MobileNet V1

In this part, the results of MobileNet V1 are presented with setup 1 and setup 2
for unbalanced dataset. The loss and accuracy curves present an overview of the
model performance while training. The confusion matrix and AUC score present
an overview of the effectiveness of the classifier on test data.

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.5: MobileNet V1 loss curves for unbalanced data

(a) Accuracy curve setup 1 (b) Accuracy curve setup 2

Figure 4.6: MobileNet V1 accuracy curves for unbalanced data

The loss curves for MobileNet V1 are presented in Fig. 4.5. In setup 1, Mobile-
Net V1 shows promising results in terms of train loss reduction, indicating success-
ful learning from the training data. However, the increasing validation loss sug-
gests a lack of generalization and potential overfitting. The validation loss curve

Chapter 4: Results 49

starts at 0.3, but instead of decreasing or stabilizing, it goes up to over 0.8. This
suggests that the model’s performance on the validation data is not as good as on
the training data.
In the case of setup 2, both the train and validation loss curves exhibit a smooth
descent without significant spikes or fluctuations. The validation loss curve starts
at around 7 and follows a similar pattern as the train loss curve. It gradually
decreases and converges around 1. This smoothness suggests that the model is
consistently learning and generalizing well without encountering major obstacles
or fluctuations in performance.

The accuracy curves for MobileNet V1 are presented in Fig. 4.6. For setup 1,
The validation accuracy starts just below 0.9 and experiences some fluctuations
with spikes during the training. It eventually settles around 0.86. While the accur-
acy is relatively high, the presence of spikes suggests that the model’s performance
on the validation data is less stable compared to the training accuracy. It indicates
that the model might be overfitting to some extent and not generalizing optimally
to unseen data. It demonstrates a higher train accuracy and some fluctuations in
the validation accuracy, indicating potential overfitting.
In the case of setup 2, the validation accuracy starts around 0.7 and gradually
increases to a range of 0.85-0.90. It remains relatively stable within this range,
indicating that the model’s performance on the validation data is consistent. The
consistent improvement and relatively high accuracy suggest that the model is
generalizing well to unseen data. It shows a consistently improving train accur-
acy and a stable validation accuracy within a relatively high range.

(a) Confusion matrix setup 1 (b) Confusion matrix setup 2

Figure 4.7: MobileNet V1 confusion matrix for unbalanced data

The confusion matrix for MobileNet V1 is presented in Fig. 4.7. Based on the
provided confusion matrices for setup 1 and setup 2, the correct and incorrect
classification percentages for each class can be analyzed.
For setup 1: Class 0 (mature): The correct classification is 49.0% and the incorrect

50 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

classification is 51.0% Class 1 (trout): The correct classification is 90.4% and the
incorrect classification is 9.6%
For setup 2: Class 0 (mature): The correct classification is 48.8% and the incorrect
classification is 51.2% Class 1 (trout): Correct classification is 91.4% and the
incorrect classification is 8.6%

(a) Setup 1 (b) Setup 2

Figure 4.8: MobileNet V1 AUC score for unbalanced data

The AUC score for the ROC curve for MobileNet V1 is presented in Fig. 4.6. The
AUC score for setup 1 is 0.90 and for setup 2 is 0.89. Based on the provided scores,
MobileNet V1 exhibits a strong discriminatory power in distinguishing between
different classes, particularly in setup 1 where it achieves a higher AUC score of
0.90.

4.1.3 MobileNet V2

The results for MobileNet V2 for setup 1 and setup 2 using unbalanced dataset are
presented here. This includes model performance details such as loss and accur-
acy curves along with performance evaluation using a confusion matrix and AUC
score.

Chapter 4: Results 51

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.9: MobileNet V2 loss curves for unbalanced data

(a) Accuracy curves setup 1 (b) Accuracy curves setup 2

Figure 4.10: MobileNet V2 accuracy curves for unbalanced data

Figure 4.9 illustrates the loss curves for MobileNet V2. Analyzing these curves
provides valuable insights into the model’s learning and generalization abilities.
For MobileNet V2, the train loss curve showcases a notable reduction, indicating
that the model successfully learns from the training data. However, the increasing
validation loss curve suggests a lack of generalization and potential overfitting.
Despite starting just over 0.2, the validation loss does not decrease or stabilize,
reaching a value of approximately 1.0. This indicates that the model’s perform-
ance on the validation data is not as strong as on the training data.
In the case of setup 2, both the train and validation loss curves demonstrate
a smooth descent without significant spikes or fluctuations. The validation loss
curve initiates at around 8 and follows a similar pattern to the train loss curve.

52 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

Gradually, it decreases and converges around 1. This smoothness suggests that
the model consistently learns and generalizes well without encountering major
obstacles or fluctuations in performance. The smoothness of the loss curves in
setup 2 implies that the model maintains stable learning and effective generaliz-
ation, indicating its potential for reliable predictions.

The accuracy curves for MobileNet V2 are presented in Fig. 4.10. For setup 1,
The validation accuracy starts around 0.88 and experiences some spikes during
the training. It eventually settles between the ranges 0.84 and 0.86. The pres-
ence of spikes suggests that the model’s performance on the validation data is
less stable compared to the training accuracy. It indicates that the model might be
overfitting to an extent and is not able to generalize new data.
For setup 2, the validation accuracy starts below 0.7 and gradually increases to a
range of 0.85-0.90. It remains relatively stable within this range, indicating that
the model’s performance on the validation data is consistent. The consistent im-
provement and relatively high accuracy suggest that the model is generalizing
well to unseen data. It shows a consistently improving train accuracy and a stable
validation accuracy within a relatively high range.

(a) Setup 1 (b) Setup 2

Figure 4.11: MobileNet V2 confusion matrix for unbalanced data

The confusion matrix for MobileNet V2 is presented in Fig. 4.11. Based on the
provided confusion matrices for setup 1 and setup 2, the correct and incorrect
classification percentages for each class can be analyzed.
For setup 1: Class 0 (mature): The correct classification is 50.11% and the incor-
rect classification is 49.89% Class 1 (trout): The correct classification is 91.34%
and the incorrect classification is 8.66%
For setup 2: Class 0 (mature):The correct classification is 46.81% and the incor-
rect classification is 53.19% Class 1 (trout): The correct classification is 91.47%
and the incorrect classification is 8.53%

Chapter 4: Results 53

(a) Setup 1 (b) Setup 2

Figure 4.12: MobileNet V2 AUC score for unbalanced data

The AUC score represents the overall performance of a classification model,
considering both sensitivity and specificity. Based on the provided scores, the AUC
score for setup 1 is 0.90 and for setup 2 is 0.89 which states that the model has a
high chance of classifying correctly.

4.1.4 MobileNet V3

This section presents the results for MobileNet V3 for setup 1 and setup 2 when us-
ing the unbalanced dataset. Loss and Accuracy curves for both setups are presen-
ted which helps to understand the model performance while training and then for
the evaluation, the confusion matrix, and AUC score are presented.

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.13: MobileNet V3 loss curves for unbalanced data

54 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

The loss curves for MobileNet V3 are presented in Fig.4.13. MobileNet V3
shows quite a lot of fluctuation and spikes as it starts from around 0.46 and settles
in the range of 0.38 and 0.34. This also suggests a lack of generalization to unseen
data and potential overfitting. This suggests that the model’s performance on the
validation data is not as good as on the training data. The training loss also has
fluctuations and short spikes while it reduces gradually which can suggest that
the learning rate is quite high and the model is not learning efficiently. It can
also suggest that the chosen model architecture may not be suitable for the given
dataset.
In the case of setup 2, both the train and validation loss curves exhibit a smoother
descent as compared to setup 1, although the validation loss still has significant
spikes and fluctuations. The training loss has a smooth descent down from a little
over 7 units to a range between 0 and 1. The validation loss curve starts at above
7 and follows a similar pattern as the train loss curve but has some significant
spikes. It does not converge in the run of 150 epochs but the loss curve suggests
that the model is consistently learning and can generalize better than setup 1.

(a) Accuracy curve setup 1 (b) Accuracy curve setup 2

Figure 4.14: MobileNet V3 accuracy curves for unbalanced data

The accuracy curves for MobileNet V3 are presented in Fig. 4.14. For setup
1, The validation accuracy starts around 0.84 and experiences heavy fluctuations
and spikes during the training. It is highly inconsistent and suggests that the model
is not able to generalize the new data. The train loss is also not a smooth curve
and has quite a lot of fluctuations and spikes. This also suggests that the model is
not able to learn efficiently and probably has a high learning rate.
For setup 2, the validation accuracy and the training accuracy remains relatively
stable within the range of 0.80 and 0.85, much closer to 0.85. This indicates that
the model’s performance on the validation data is consistent. The consistent im-
provement and stable curve suggest that the model is generalizing well to unseen
data.

Chapter 4: Results 55

(a) Confusion matrix setup 1 (b) Confusion matrix setup 2

Figure 4.15: MobileNet V3 confusion matrix for unbalanced data

The confusion matrix for MobileNet V3 is presented in Fig. 4.15. Based on
the provided confusion matrices for setup 1 and setup 2, the correct and wrong
classification percentages for each class can be analyzed.
For setup 1: Class 0 (mature): The correct classification is 5.49% and the incorrect
classification is 94.51% Class 1 (trout):The correct classification is 99.02% and
the incorrect classification is 0.98%
For setup 2: Class 0 (mature): The correct classification is 0.22% and the incorrect
classification is 99.78% Class 1 (trout): The correct classification is 100% and the
incorrect classification is 0%.

(a) Setup 1 (b) Setup 2

Figure 4.16: MobileNet V3 AUC score for unbalanced

The AUC score for MobileNet V3 is presented in Fig. 4.16. Based on the provided
scores, the AUC score for setup 1 is 0.83 and for setup 2 is 0.86. This states that

56 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

the models possess a relatively high classification performance of a classification
model, considering both sensitivity and specificity.

4.2 Results with Balanced Data

In this section, the results are presented when each of the deep learning models
is trained using an almost balanced dataset. This has been achieved in two cases:
one where the amount of data from the majority class (trout) has been cut down
to almost match with the data with the minority class (mature) and the other case
where the data in the minority class (mature) has been augmented or artificially
increased to almost match the amount of data for the majority class (trout). After
having two datasets, one without any augmentation and the other with augment-
ation, the results of the experiments are presented.

4.2.1 Without Data Augmentation

The first attempt to almost balance the data was without applying any augmenta-
tion and reducing the amount of data for the majority class (trout). Using a Python
script, a random generator has been used to select 5000 images from the trout
class, and along with the original 4696 images from the mature class, a dataset of
total 9696 images was created. The data distribution is presented in Table 4.4.

Label Class Images Distribution

Mature 0 4696 ≈49%

Trout 1 5000 ≈51%

Table 4.4: Balanced dataset without augmentation

Tables 4.5 and 4.6 provide detailed results for the two different setups (3.6.1
and 3.6.2). These results offer valuable insights to the performance and charac-
teristics of each model. With this data, we will be able to analyze the impact of
different hyperparameters on the models’ performance and training, as well as
understand if there is any impact by having a balanced dataset.

Chapter 4: Results 57

Model Architecture Setup 1 (3.6.1)

Model
Metrics

ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3 Large

Batch Size 64 64 64 64

Total Data 152 152 152 152

Train Size 106 (70%) 106 (70%) 106 (70%) 106 (70%)

Validation
Size

30 (20%) 30 (20%) 30 (20%) 30 (20%)

Test Size 16 (10%) 16 (10%) 16 (10%) 16 (10%)

Total Params 24,637,826 3,754,690 2,914,882 4,883,330

Trainable
Params

1,050,114 525,826 656,898 656,898

Learning Rate 0.001 0.001 0.001 0.001

Epochs 150 150 150 150

Training Time
(mins)

48 28 32 32

Model Architecture Setup 2 (3.6.2)

Model
Metrics

ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Batch Size 64 64 64 64

Total Data 152 152 152 152

Train Size 106 (70%) 106 (70%) 106 (70%) 106 (70%)

Validation
Size

30 (20%) 30 (20%) 30 (20%) 30 (20%)

Test Size 16 (10%) 16 (10%) 16 (10%) 16 (10%)

Total Params 24,639,874 3,756,738 2,916,930 4,885,378

Trainable
Params

1,051,138 526,850 657,922 657,922

Learning Rate 0.00001 0.00001 0.00001 0.00001

Epochs 150 150 150 150

Training Time
(mins)

50 28 32 32

Table 4.5: Model configuration for balanced dataset without augmentation

58 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

In both setup 1 and setup 2, several factors were examined and compared
across the models. Regarding the batch size, all models employed a consistent
value of 64, ensuring uniformity in the training process for both setups. For dataset
sizes, the training, validation, and test sizes remained constant across all models
in both setup 1 and setup 2. The dataset consisted of 106 batches for training,
30 batches for validation, and 16 batches for testing. This standardized dataset
allocation facilitates fair comparisons between the models.

Analyzing the total and trainable parameters, a notable disparity was observed
across the models. In setup 1, ResNet-50 exhibited the highest number of para-
meters, with a total of 24,637,826 and 1,050,114 trainable parameters. On the
other hand, MobileNet V2 had the lowest number of parameters, with 2,914,882
total parameters and 525,826 trainable parameters. Similarly, in setup 2, ResNet-
50 had the highest number of parameters (24,639,874), while MobileNet V2 had
the lowest (2,916,930). These variations in parameter count suggest differences
in model complexity and capacity to capture intricate patterns and features.

In terms of learning rate and epochs, setup 1 employed a fixed learning rate
of 0.001 throughout all models for 150 epochs. Conversely, in setup 2, all models
were trained using a learning rate of 0.00001 for the same duration of 150 epochs.
This learning rate and epoch configuration allow for consistent training conditions
within each setup.

Examining the training time, setup 1 demonstrated that ResNet-50 had the
longest training duration, taking 48 minutes. In contrast, MobileNet V1, V2, and
V3 had shorter training times ranging from 28 to 32 minutes. In setup 2, the train-
ing times ranged from 28 to 50 minutes, with MobileNet V1 exhibiting the shortest
training time. These differences in training time can be attributed to variations in
model architecture and complexity.

After comprehensively exploring the configurations of each model in both
setup 1 and setup 2, it becomes crucial to delve into their performance and the
results they achieved. By closely examining key evaluation metrics, insights into
the overall effectiveness of these models can be better understood in the given
context. Table 4.6 provides a comprehensive overview of the evaluation metrics
for each model.

Chapter 4: Results 59

Evaluation Metrics

Metrics ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Model Architecture Setup 1 (3.6.1)

Accuracy 76.2% 82.5% 82.6% 71.5%

Precision 72.8% 85.7% 86.5% 68.8%

Recall 87.8% 80.3% 79.6% 84.5%

F1 Score 0.79 0.82 0.82 0.75

Model Architecture Setup 2 (3.6.2)

Accuracy 72.9% 85.9% 83.7% 53.8%

Precision 69.1% 87.4% 85.4% 53.4%

Recall 88.9% 85.9% 83.3% 99.4%

F1 Score 0.77 0.86 0.84 0.69

Table 4.6: Evaluation metrics for balanced dataset without augmentation

In model setup 1, the evaluation metrics reveal that the models exhibit a de-
cent overall performance. The accuracy scores range from 71.5% for MobileNet
V3 to 82.6% for MobileNet V2, indicating that the models are able to make cor-
rect predictions with a moderate level of accuracy. However, the precision scores
range from 68.8% for MobileNet V3 to 86.5% for MobileNet V2, suggesting that
there is room for improvement in correctly identifying positive instances. On the
other hand, the recall scores range from 79.6% for MobileNet V2 to 87.8% for
ResNet-50, indicating that the models have a good ability to capture positive in-
stances. The F1 scores, which reflect the balance between precision and recall,
are generally high, ranging from 0.75 to 0.82, indicating a reasonable trade-off
between these two metrics.

The models in setup 2 exhibit a wider variation in performance. The accuracy
scores range from 53.8% for MobileNet V3 to 85.9% for MobileNet V1, indicating
a significant difference in their ability to make correct predictions. The precision
scores also vary, ranging from 53.4% for MobileNet V3 to 87.4% for MobileNet V1,
suggesting that the models have different levels of accuracy in identifying positive
instances. The recall scores, on the other hand, range from 83.3% for MobileNet
V2 to 99.4% for MobileNet V3, indicating that the models are generally effective
in capturing positive instances. The F1 scores in setup 2 range from 0.69 to 0.86,
suggesting that the models exhibit varying levels of balance between precision
and recall. Overall, the evaluation metrics highlight the variation in performance
across the models in setup 2, emphasizing the need to carefully consider their
strengths and weaknesses in differentiating positive instances.

60 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

To further understand the performance of each model under the specific con-
ditions, the results for ResNet-50, MobileNet V1, MobileNet V2 and MobileNet V3
are presented.

ResNet-50

This section presents the results for ResNet-50 using both setup 1 and setup 2 for
an almost balanced dataset without augmentation. The loss and accuracy curves
highlight the training process of the model while the confusion matrix and the
AUC score will shed light on the evaluation of the model when exposed to the test
dataset.

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.17: ResNet-50 loss curves for balanced data without augmentation

The loss curves for ResNet-50, as shown in Fig. 4.17, provide valuable insights
into the model’s performance. In setup 1, the spikes observed in the validation loss
curve indicate that the model’s ability to generalize to unseen data, represented
by the validation set, may not be consistent. This suggests that the model may be
overfitting to the training data, failing to effectively capture the underlying pat-
terns present in the data. The validation loss curve starts at approximately 0.7 and
fluctuates irregularly, descending slightly below 0.75. These fluctuations could be
attributed to the model’s sensitivity to variations or noise within the validation
set, resulting in inconsistent performance. In contrast, for setup 2, the loss curve
begins at a higher value of around 9 and consistently decreases to less than 1.
This indicates that the model quickly learns and adjusts its predictions during the
initial training epochs. The decreasing trend of the loss curve suggests that the
model continues to improve its performance over time. Although minor spikes
can be observed in the validation curve, the overall smoothness of the loss curve
implies that the model’s performance remains relatively stable during training.
This indicates that the model is able to generalize well to unseen data and make

Chapter 4: Results 61

consistent predictions.

(a) Accuracy curve setup 1 (b) Accuracy curve setup 2

Figure 4.18: ResNet-50 accuracy curves for balanced data without augmentation

(a) Confusion matrix setup 1 (b) Confusion matrix setup 2

Figure 4.19: ResNet-50 confusion matrix for balanced data without augmenta-
tion

The accuracy curves for ResNet-50, as depicted in Fig. 4.18, provide insights
into the model’s performance across different setups. In setup 1, the accuracy
curve exhibits a gradual increase from approximately 0.55 to just below 0.80 over
the 150 epochs. However, the curve shows numerous irregularities, characterized
by sharp spikes in the validation curve. Similarly, the training curve displays fluc-
tuations, indicating that the model struggles to effectively learn new features.
The model’s performance experiences sudden drops and increases, suggesting
difficulties in converging to a stable and optimal solution. In setup 2, where a

62 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

reduced learning rate was employed, the training curve exhibits less fluctuation
and appears smoother. It steadily increases from around 0.55 to approximately
0.80, indicating a positive learning trend. However, the validation curve remains
irregular, indicating that the model struggles to generalize to unseen data. The
validation curve starts around 0.50 and ascends irregularly to approximately 0.70
after the 150 epochs. This indicates that the model fails to maintain a satisfact-
ory level of performance on the validation data. These observations emphasize
the need for further analysis and potential adjustments to enhance the model’s
performance and generalization capabilities.

The confusion matrix for ResNet-50 is presented in Fig. 4.19. Based on the
provided confusion matrices for setup 1 and setup 2, the correct and incorrect
classification percentages for each class can be analyzed.
For setup 1: Class 0 (mature): The correct classification is 66.67% and the incor-
rect classification is 33.33% Class 1 (trout): The correct classification is 87.13%
and the incorrect classification is 12.87%
For setup 2: Class 0 (mature): The correct classification is 52.99% and the incor-
rect classification is 47.01% Class 1 (trout): The correct classification is 89.39%
and the incorrect classification is 10.61%

(a) Setup 1 (b) Setup 2

Figure 4.20: ResNet-50 AUC score for balanced data without augmentation

The AUC score for the ROC curve is presented in Fig. 4.20. Based on the
provided scores, the AUC score for setup 1 is 0.86 and for setup 2 is 0.87. This sug-
gests that the model has relatively high effectiveness and will have a high chance
to correctly classify the images.

MobileNet V1

This section presents the results when MobileNet V1 was used for the classification
task using setups 1 and 2 for an almost balanced dataset without augmentation.

Chapter 4: Results 63

The model’s performance while training is presented through the loss and accur-
acy curves and the evaluation of the model is presented using the confusion matrix
and AUC score.

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.21: MobileNet V1 loss curves for balanced data without augmentation

(a) Accuracy curve setup 1 (b) Accuracy curve setup 2

Figure 4.22: MobileNet V1 accuracy curves for balanced data without augment-
ation

The loss curves for MobileNet V1, as shown in Fig. 4.21, provide valuable in-
sights into the model’s performance in different setups. In setup 1, the training
curve exhibits a gradual decrease with some minor spikes, indicating successful
learning from the training data. However, the validation curve starts at a higher
value and shows frequent spikes, failing to converge. This suggests that the model
may be overfitting to the training data and lacking appropriate regularization tech-

64 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

niques. The spikes in the validation curve further emphasize the need to address
overfitting issues and improve the model’s generalization capabilities. In contrast,
setup 2 demonstrates a different behavior. The loss curve begins at a relatively
high value, typically ranging between 8 and 9, and consistently decreases over
time. This indicates that the model quickly adapts and adjusts its predictions dur-
ing the initial training epochs, resulting in improved performance. The decreasing
trend of the loss curve signifies ongoing improvement, suggesting that the model
continues to learn and generalize well. This observation indicates that the model
performs better in terms of generalization to unseen data and exhibits greater
stability throughout the training process.

(a) Confusion matrix setup 1 (b) Confusion matrix setup 2

Figure 4.23: MobileNet V1 confusion matrix for balanced data without augment-
ation

(a) Setup 1 (b) Setup 2

Figure 4.24: MobileNet V1 AUC score

Chapter 4: Results 65

The accuracy curves for MobileNet V1, as depicted in Fig. 4.22, offer valu-
able insights into the model’s performance across different setups. In setup 1,
the train accuracy curve demonstrates a consistent upward trend, gradually in-
creasing from approximately 0.8 to a range between 0.95 and 0.975 over the
course of 150 epochs. However, the validation accuracy curve exhibits irregular-
ities with spikes observed throughout. These spikes indicate that the model is not
effectively learning new features, leading to inconsistent performance. The sud-
den drops and increases in the validation accuracy curve further suggest that the
model faces challenges in converging toward a stable and optimal solution. This
inconsistency highlights the need for further improvements in the model’s ability
to generalize and learn new patterns effectively in setup 1. Conversely, in setup 2,
characterized by a reduced learning rate, both the training and validation curves
display reduced fluctuations and smoother progress. The training curve steadily
increases from around 0.60 to a range between 0.85 and 0.95, indicating progress-
ive learning and improved performance over time. The validation curve suggests
that the model’s performance remains stable and consistent when evaluated on
unseen data. This observation signifies the model’s ability to generalize well and
maintain a reasonable level of accuracy in setup 2.

The confusion matrix for MobileNet V1 is presented in Fig. 4.23. Based on
the provided confusion matrices for setup 1 and setup 2, the correct and wrong
classification percentages for each class can be analyzed.
For setup 1: Class 0 (mature): The correct classification is 87.74% and the incor-
rect classification is 12.26% Class 1 (trout): The correct classification is 79.5%
and the incorrect classification is 20.5%
For setup 2: Class 0 (mature): The correct classification is 88.38% and the incor-
rect classification is 11.62% Class 1 (trout): The correct classification is 84.4%
and the incorrect classification is 15.6%

The AUC score for the ROC curve is presented in Fig. 4.24. Based on the
provided scores, the AUC score for setup 1 is 0.90 and for setup 2 is 0.90. This
indicates a reasonably high value for the model in classifying the two different
classes.

MobileNet V2

This section presents the results of MobileNet V2 with setup 1 and setup 2 when
using the almost balanced dataset without augmentation. To understand the model’s
training, the loss and accuracy curves are presented and to evaluate the perform-
ance of the model, the confusion matrix and AUC score is presented.

66 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.25: MobileNet V2 loss curves for balanced data without augmentation

(a) Accuracy curve setup 1 (b) Accuracy curve setup 2

Figure 4.26: MobileNet V2 accuracy curves for balanced data without augment-
ation

The loss curves for MobileNet V2 are presented in Fig. 4.25. For setup 1, the
train loss curve exhibits a gradual decrease from approximately 0.5 to below 0.1,
with minor spikes along the way. However, the validation loss curve starts at a
higher value, shows frequent spikes, and fails to converge. These observations
suggest that the model may be overfitting, as it struggles to generalize to unseen
data. The spikes in the validation loss curve further indicate a lack of appropri-
ate regularization techniques, leading to inconsistent performance and potentially
limited generalization capabilities. As for setup 2, the loss curve begins at a re-
latively high value between 8 and 9 but consistently decreases over time. This
downward trend signifies that the model rapidly learns and adjusts its predic-

Chapter 4: Results 67

tions during the initial training epochs. The continued decrease in the loss curve
indicates ongoing improvement in the model’s performance. These observations
suggest that the model exhibits better generalization abilities to unseen data and
demonstrates greater stability in setup 2.

The accuracy curves for MobileNet V2 are presented in Fig. 4.26. In setup 1,
the train accuracy curve shows a steady and consistent upward trend. Starting at
approximately 0.8, it progressively climbs to a range of 0.95 to 0.975 over the
course of 150 epochs. However, the validation accuracy curve exhibits irregular
spikes throughout its progression. These spikes indicate that the model struggles
to effectively learn new features, leading to inconsistent performance. On the
other hand, in setup 2, a reduced learning rate promotes smoother and more
consistent progress in both the training and validation curves. The training curve
demonstrates a gradual increase, starting from around 0.55 and steadily reaching
a range between 0.85 and 0.95. Notably, the validation curve suggests that the
model achieves stability and consistently performs well on unseen data. This im-
plies that the model in setup 2 exhibits improved generalization capabilities and
maintains a higher level of performance.

(a) Confusion matrix setup 1 (b) Confusion matrix setup 2

Figure 4.27: MobileNet V2 confusion matrix for balanced data without augment-
ation

The confusion matrix for MobileNet V2 is presented in Fig. 4.27. Based on the
provided confusion matrices for setup 1 and setup 2, the correct and incorrect
classification percentages for each class can be analyzed.
For setup 1: Class 0 (mature): The correct classification is 87.74% and the incor-
rect classification is 12.26% Class 1 (trout): The correct classification is 79.1%
and the incorrect classification is 20.9%
For setup 2: Class 0 (mature): The correct classification is 85.8% and the incor-
rect classification is 14.2% Class 1 (trout): The correct classification is 82.9% and
the incorrect classification is 17.1%

68 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

(a) AUC score setup 1 (b) AUC score setup 2

Figure 4.28: MobileNet V2 AUC score for balanced data without augmentation

The AUC score for MobileNet V2 is presented in the Fig. 4.28. Assessing the
provided scores, we observe that the AUC score for setup 1 is 0.90 and for setup
2 is 0.87 which states that in both setups, the model has high effectiveness and
precision in classifying the data.

MobileNet V3

In this section, the results of MobileNet V3 with setup 1 and setup 2 are presented
when using an almost balanced dataset without any kind of data augmentation.
In order to assess the performance while training, the loss and accuracy curves are
presented and the confusion matrix and AUC score are presented as the evaluation
metrics.

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.29: MobileNet V3 loss curves for balanced data without augmentation

Chapter 4: Results 69

The loss curves for MobileNet V3 are presented in Fig. 4.29. For setup 1, the
train loss curve exhibits a gradual reduction, starting from approximately 0.75
and converging to a range between 0.55 and 0.6. However, the validation loss
curve starts around 0.65 and displays numerous fluctuating spikes throughout its
progression. The lack of convergence and generalization in the validation curve
indicates that the model struggles to fit well into unseen data. These spikes fur-
ther suggest that the model may not have sufficient regularization techniques in
place to ensure consistent performance. In this setup, the model’s performance is
suboptimal, as it fails to effectively capture the underlying patterns in the valida-
tion data. As for setup 2, the loss curve starts at a relatively higher value, ranging
between 7 and 8, but consistently decreases over the training epochs. This de-
creasing trend indicates that the model rapidly learns and adjusts its predictions
during the initial stages of training. The model continues to improve its perform-
ance over time, as evidenced by the decreasing loss values. However, it is worth
noting that the validation loss curve still exhibits fluctuations towards the end of
the training process, suggesting that the model struggles to fit well to unseen data
in this setup as well.

(a) Accuracy curve setup 1 (b) Accuracy curve setup 2

Figure 4.30: MobileNet V3 accuracy curves for balanced data without augment-
ation

The accuracy curves for MobileNet V3 are presented in Fig. 4.30. In setup 1,
the train accuracy curve displays fluctuations, starting from approximately 0.55
and gradually reaching a range between 0.70 and 0.75 over 150 epochs. How-
ever, the validation accuracy curve exhibits highly irregular spikes throughout its
progression. These irregularities indicate that the model struggles to effectively
learn new features, resulting in sudden drops and increases in performance. This
suggests difficulties in converging to a stable and optimal solution. The incon-
sistent behavior of the validation accuracy curve further emphasizes the model’s
challenge in achieving consistent performance. On the other hand, in setup 2,

70 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

despite the reduced learning rate, the validation accuracy curve begins at around
0.5 and faces significant fluctuations ranging between 0.5 and 0.8. On the other
hand, the training curve shows a gradual increase, starting from approximately
0.55 and reaching a range between 0.75 and 0.8. However, the validation curve’s
instability suggests that the model’s performance lacks consistency and struggles
to maintain a reasonable level of accuracy across unseen data.

(a) Confusion matrix setup 1 (b) Confusion matrix setup 2

Figure 4.31: MobileNet V3 confusion matrix for balanced data without augment-
ation

(a) AUC score setup 1 (b) AUC score setup 2

Figure 4.32: MobileNet V3 AUC score for balanced data without augmentation

The confusion matrix for MobileNet V3 is presented in Fig. 4.31. Based on the
provided confusion matrices for setup 1 and setup 2, the correct and incorrect
classification percentages for each class can be analyzed.

Chapter 4: Results 71

For setup 1: Class 0 (mature): The correct classification is 61.5% and the incorrect
classification is 38.5% Class 1 (trout): The correct classification is 84.1% and the
incorrect classification is 15.9%
For setup 2: Class 0 (mature): The correct classification is 2.36% and the incorrect
classification is 97.64% Class 1 (trout): The correct classification is 99.6% and
the incorrect classification is 0.4%

The AUC score for MobileNet V3 is presented in Fig. 4.32. Assessing the provided
scores, it is observed that the AUC score for setup 1 is 0.81 and for setup 2 is 0.84.
This indicates a decent effectiveness and precision of the model in the classifica-
tion of the data.

4.2.2 With Augmentation

After having stated results for each model trained on a balanced dataset without
data augmentation, the next setup is where the dataset is almost balanced across
the two classes by increasing the images on the mature class (which is the minority
class) by using data augmentation 3.3. Over 20,000 images were generated using
augmentation and including the original images, a dataset was prepared. A total
of 50882 images were used in this setup. The data distribution is presented in
Table 4.7.

Label Class Images Distribution

Mature 0 25612 ≈50%

Trout 1 25270 ≈50%

Table 4.7: Balanced dataset with data augmentation

Tables 4.8 and 4.9 provides detailed results for the two different model setups,
setup 1 (3.6.1) and setup 2 (3.6.2). These results offer valuable insights into the
performance and characteristics of each model. The data helps to analyze the
impact of different hyperparameters on the models’ performance and training as
well as understand if there is any impact on the overall accuracy by having an
increased dataset.

72 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

Model Architecture Setup 1 (3.6.1)

Model
Metrics

ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Batch Size 64 64 64 64

Total Data 796 796 796 796

Train Size 557 (70%) 557 (70%) 557 (70%) 557 (70%)

Validation
Size

159 (20%) 159 (20%) 159 (20%) 159 (20%)

Test Size 80 (10%) 80 (10%) 80 (10%) 80 (10%)

Total Params 24,637,826 3,754,690 2,914,882 4,883,330

Trainable
Params

1,050,114 525,826 656,898 656,898

Learning Rate 0.001 0.001 0.001 0.001

Epochs 150 150 150 500

Training Time
(mins)

247 158 145 584

Model Architecture Setup 2 (3.6.2)

Model
Metrics

ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Batch Size 64 64 64 64

Total Data 796 796 796 796

Train Size 557 (70%) 557 (70%) 557 (70%) 557 (70%)

Validation
Size

159 (20%) 159 (20%) 159 (20%) 159 (20%)

Test Size 80 (10%) 80 (10%) 80 (10%) 80 (10%)

Total Params 24,639,874 3,756,738 2,916,930 4,883,330

Trainable
Params

1,051,138 526,850 657,922 656,898

Learning Rate 0.00001 0.00001 0.00001 0.0001

Epochs 150 150 150 1000

Training Time
(mins)

240 162 144 870

Table 4.8: Model configuration for the balanced dataset with augmentation

Chapter 4: Results 73

The experimental setup for the models in both setup 1 and setup 2 involved
several key factors. Firstly, all models were trained using a batch size of 64, en-
suring consistency in the training process across the setups. Regarding dataset
sizes, the train, validation, and test sizes remained constant for all models in both
setups. Specifically, the train set consisted of 557 batches, the validation set had
159 batches and the test set contained 80 batches. This ensured a standard distri-
bution of data for evaluation and testing purposes.

In terms of the model parameters, there were variations between the different
models. For setup 1, the total number of parameters ranged from 2,914,882 for
MobileNet V2 to 24,637,826 for ResNet-50. Similarly, the number of trainable
parameters varied, with MobileNet V1 having the lowest at 525,826 and ResNet-
50 having the highest at 1,050,114. In setup 2, the total parameters followed a
similar pattern, with MobileNet V2 having the lowest and ResNet-50 having the
highest while in the case of trainable parameters, MobileNet V1 had the lowest
and ResNet-50 having the highest.

The learning rate and number of epochs also differed for each model. In setup
1, the learning rate was set at 0.001 for 150 epochs, except for MobileNet V3,
which was trained for 500 epochs as an experimental variation. In setup 2, all
models except MobileNet V3 were trained with a learning rate of 0.00001 for 150
epochs, while MobileNet V3 was trained for 1000 epochs with a learning rate of
0.0001 as a part of experimental variation.

The training times varied across the models and setups. In setup 1, MobileNet
V3 had the longest training time at 584 minutes due to the extended number of
epochs, while ResNet-50 took longer to train compared to MobileNet V1 and V2.
In setup 2, the training time for MobileNet V3 was 870 minutes due to the longer
duration of training. ResNet-50, MobileNet V1, and MobileNet V2 had training
times ranging from 144 to 240 minutes, with MobileNet V2 having the shortest
training time.

These factors such as batch size, dataset sizes, model parameters, learning
rate, number of epochs and training time were considered and adjusted accord-
ingly to ensure consistency in the experimental setup and gain valuable insights
from the models’ performance during evaluation.

74 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

Evaluation Metrics

Metrics ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Model Architecture Setup 1 (3.6.1)

Accuracy 84.5% 90.5% 89.4% 75.5%

Precision 85.1% 91.7% 90.1% 68.2%

Recall 82.9% 88.6% 88.1% 93.6%

F1 Score 0.83 0.89 0.89 0.79

Model Architecture Setup 2 (3.6.2)

Accuracy 80.5% 90.9% 90.6% 79.6%

Precision 73.3% 90.5% 89.9% 79.3%

Recall 94.3% 91.0% 90.9% 78.7%

F1 Score 0.82 0.90 0.89 0.78

Table 4.9: Evaluation metrics for balanced dataset with augmentation

In setup 1, the performance of the models can be evaluated based on different
metrics. The accuracy ranges from 75.5% for MobileNet V3 to 90.5% for Mobile-
Net V1, indicating a decent level of performance across the models. This suggests
that the models are able to make correct predictions to a reasonable extent. Pre-
cision scores, which measure the ability to correctly identify positive instances,
range from 68.2% for MobileNet V3 to 91.7% for MobileNet V1, showing prom-
ising results in terms of correctly identifying positive instances. The recall scores,
which indicate the model’s ability to capture positive instances effectively, range
from 82.9% for ResNet-50 to 93.6% for MobileNet V3, implying good sensitivity
in detecting positive instances. The F1 scores, which provide a balance between
precision and recall, range from 0.79 to 0.89, suggesting a reasonable trade-off
between these two metrics.

In the case of setup 2, the performance across the models exhibits variations.
The accuracy ranges from 79.6% for MobileNet V3 to 90.9% for MobileNet V1, in-
dicating a significant difference in performance among the models. This suggests
that some models are more accurate in their predictions than others. Precision
scores range from 79.3% for MobileNet V3 to 90.5% for MobileNet V1, indicating
varying degrees of correct positive identification. This implies that some models
have a higher precision in correctly identifying positive instances than others. Re-
call scores range from 78.7% for MobileNet V3 to 94.3% for ResNet-50, indicating
different abilities to capture positive instances effectively. This suggests that cer-
tain models perform better in correctly capturing positive instances. The F1 scores,
ranging from 0.78 to 0.90, reflect a varying balance between precision and recall,

Chapter 4: Results 75

indicating that different models achieve different trade-offs between these two
metrics.

To understand the performance of each model under the specified setup, the
results of ResNet-50, MobileNet V1, MobileNet V2 and MobileNet V3 are presen-
ted in the following sections.

ResNet-50

This section presents the results of ResNet-50 using setup 1 and setup 2 for an
almost balanced dataset using data augmentation. The loss and accuracy curves
provide an overview during the training process while the confusion matrix and
AUC score serve as an insight into the model’s evaluation performance.

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.33: ResNet-50 loss curves for balanced data with augmentation

The loss curves for ResNet-50 are presented in Fig. 4.33. In setup 1, the pres-
ence of spikes in the validation loss curve indicates that the model’s performance
on unseen data, specifically the validation set, is not consistently improving. This
suggests a potential issue of overfitting, where the model struggles to generalize
well and becomes overly sensitive to variations or noise in the validation set. The
validation loss curve exhibits an initial value of approximately 0.65 and shows a
descending trend with irregular spikes, ultimately reaching just below 0.4. As for
setup 2, the loss curve begins at a relatively high value of around 8 but stead-
ily decreases over time, dropping below 1. This pattern suggests that the model
quickly learns and adjusts its predictions during the initial training epochs. The
decreasing trend of the loss curve indicates that the model continues to improve
its performance as training progresses. Although small spikes can still be observed
on the validation curve, the overall smoothness of the loss curve implies that the
model’s performance remains relatively stable throughout the training process.

It can be inferred that in setup 1, the model may be overfitting, leading to

76 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

sub-optimal generalization and inconsistent performance on unseen data. Con-
versely, in setup 2, the model demonstrates improved learning capabilities, with a
more stable and steadily decreasing loss curve, indicating better performance and
adaptability. These findings highlight the importance of monitoring loss curves to
assess the model’s ability to generalize and optimize its predictions effectively.

(a) Accuracy curve setup 1 (b) Accuracy curve setup 2

Figure 4.34: ResNet-50 accuracy curves for balanced data with augmentation

The accuracy curves for ResNet-50 are presented in Fig. 4.34. In setup 1, the
train accuracy curve shows a fluctuating upward trend, starting around 0.55 and
gradually reaching a range of 0.80 to 0.85 over the course of 150 epochs. How-
ever, the validation accuracy curve displays a highly irregular pattern throughout,
indicating that the model faces challenges in effectively learning new features.
As a result, the model’s performance exhibits sudden drops and increases, in-
dicating difficulty in converging to a stable and optimal solution. On the other
hand, in setup 2, even with a reduced learning rate, the validation curve begins
at approximately 0.5 and experiences heavy fluctuations, spanning a wide range
between 0.5 and 0.85. The training curve, on the other hand, exhibits a gradual
increase from around 0.55 to a range between 0.8 and 0.85. While the training
curve suggests improvements in performance, the instability observed in the val-
idation curve implies that the model’s accuracy varies significantly and fails to
maintain consistency.

It can be inferred that in setup 1, the model encounters difficulties in ef-
fectively learning new features, as indicated by the irregular validation accuracy
curve. This inconsistency in performance hinders the model from converging to
a stable and optimal solution. In setup 2, despite the reduced learning rate, the
model’s performance remains unstable, as evidenced by the fluctuating validation
curve. This lack of consistency suggests that the model struggles to maintain a
reliable level of accuracy.

Chapter 4: Results 77

(a) Confusion matrix setup 1 (b) Confusion matrix setup 2

Figure 4.35: ResNet-50 confusion matrix for balanced data with augmentation

The confusion matrix for ResNet-50 is presented in Fig. 4.35. Based on the
provided confusion matrices for setup 1 and setup 2, the correct and incorrect
classification percentages for each class can be analyzed.
For setup 1: Class 0 (mature): The correct classification is 85.7% and the incorrect
classification is 14.3%. Class 1 (trout): The correct classification is 83% and the
incorrect classification is 17%.
For setup 2: Class 0 (mature): The correct classification is 67.5% and the incorrect
classification is 32.5%. Class 1 (trout): The correct classification is 94.1% and the
incorrect classification is 5.9%.

(a) Setup 1 (b) Setup 2

Figure 4.36: ResNet-50 Area under the Curve

The AUC score for ResNet-50 is presented in Fig. 4.36 Assessing the provided
scores, it is observed that for setup 1 the AUC score is 0.92 and for setup 2, the

78 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

AUC score is 0.92. This indicates a high value of effective classification of the data.

MobileNet V1

In this section, the results of MobileNet V1 are presented using a balanced dataset
with augmentation and with setup 1 and setup 2. The loss and accuracy curves
provide information on the model performance while training and the confusion
matrix and AUC score provide information on the evaluation of the model.

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.37: MobileNet V1 loss curves for balanced data with augmentation

The loss curves for MobileNet V1 are presented in Fig. 4.37. In setup 1, The
validation loss curve exhibits irregular fluctuations, starting in the range between
0.1 and 0.2, but constantly increasing and reaching up to 0.7. These spikes indic-
ate that the model’s performance on unseen data is not consistently improving,
which suggests a potential issue of overfitting. Overfitting occurs when the model
becomes overly sensitive to variations or noise in the validation set, failing to ef-
fectively capture the underlying patterns in the data. As for setup 2, the loss curve
initially starts at a relatively high value of around 7. However, it consistently de-
creases over time and eventually stabilizes below 1. This decreasing trend signifies
that the model quickly learns and adjusts its predictions during the initial train-
ing epochs. The overall smoothness of the loss curve indicates a relatively stable
performance during training, suggesting that the model’s performance continues
to improve.

It can be inferred that in setup 1, the model faces challenges in generaliz-
ing to unseen data, as indicated by the increasing and fluctuating validation loss
curve. This behavior suggests that the model may be overfitting, emphasizing the
need for appropriate regularization techniques to improve its performance. In con-
trast, in setup 2, the model demonstrates a more favorable trend, with consistent
improvement and stability in its loss curve, indicating better generalization and

Chapter 4: Results 79

overall performance.

(a) Accuracy curve setup 1 (b) Accuracy curve setup 2

Figure 4.38: MobileNet V1 accuracy curves for balanced data with augmentation

The accuracy curves for MobileNet V1 are presented in Fig. 4.38. In setup 1,
The train accuracy curve demonstrates a relatively steady upward trend, starting
at around 0.90 and reaching a range of approximately 0.98 over the course of
150 epochs. However, the validation accuracy curve exhibits irregular patterns
throughout, indicating that the model struggles to efficiently learn new features.
This lack of consistency in the validation curve results in sudden drops and in-
creases in the model’s performance, suggesting challenges in converging to a
stable and optimal solution. The case of setup 2, which incorporates a reduced
learning rate, demonstrates a more favorable performance. The validation curve
remains relatively stable, fluctuating within the range of 0.90 to 0.95. This indic-
ates that the model is effectively fitting to the unseen data and has the potential
to provide more reliable results.

The presence of sudden drops and increases in setup 1 suggests that the model
struggles to maintain a consistent and optimal performance. This highlights the
need for further improvements, such as implementing regularization techniques
or adjusting the model architecture, to enhance its capacity to learn new features
effectively. On the other hand, in setup 2, the reduced learning rate contributes
to a more stable validation curve, indicating improved generalization capabilities.
This suggests that the model can better adapt to unseen data, potentially leading
to more reliable and consistent predictions.

80 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

(a) Confusion matrix setup 1 (b) Confusion matrix setup 2

Figure 4.39: MobileNet V1 confusion matrix for balanced data with augmenta-
tion

The confusion matrix for MobileNet V1 is presented in Fig. 4.39. Based on the
provided confusion matrices for setup 1 and setup 2, the correct and incorrect
classification percentages for each class can be analyzed.
For setup 1: Class 0 (mature): The correct classification is 92.2% and the incorrect
classification is 7.8% Class 1 (trout): The correct classification is 88.8% and the
incorrect classification is 11.2%
For setup 2: Class 0 (mature): The correct classification is 95.5% and the incorrect
classification is 4.5% Class 1 (trout): The correct classification is 90.9% and the
incorrect classification is 9.1%

(a) Setup 1 (b) Setup 2

Figure 4.40: MobileNet V1 AUC score

The AUC score for MobileNet V1 is presented in Fig. 4.40. Assessing the provided

Chapter 4: Results 81

scores, it is observed that the AUC score for setup 1 is 0.98 and for setup 2, the AUC
score is 0.98. It can be inferred that the models have demonstrated strong per-
formance in terms of their ability to correctly classify instances and assign higher
probabilities to positive instances compared to negative ones. This suggests that
the models have learned meaningful patterns and features from the data, leading
to accurate predictions.

MobileNet V2

In this section, the results for MobileNet V2 are presented with setup 1 and setup
2 when using the augmented balanced dataset. The loss and accuracy curves will
be helpful to analyze the performance of the model while training while for eval-
uation purposes, the confusion matrix and AUC score will be helpful for under-
standing.

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.41: MobileNet V2 loss curves for balanced data with augmentation

The loss curves for MobileNet V2 are presented in Fig. 4.41. In setup 1, the
validation loss curve exhibits irregular spikes, indicating that the model’s perform-
ance on unseen data is not improving consistently. The initial value of the valid-
ation loss is in the range of 0.1 to 0.2, but it progressively increases and reaches
up to 0.7 during the training process, accompanied by fluctuations. This behavior
suggests a potential issue of overfitting, where the model struggles to capture the
underlying patterns in the data and becomes overly sensitive to noise or variations
present in the validation set. As for setup 2, the loss curve for MobileNet V2 starts
with a relatively high value of approximately 7, but it consistently decreases over
time and eventually stabilizes at a value below 1. This decreasing trend indicates
that the model quickly learns and adjusts its predictions during the initial training
epochs. The continued improvement of the loss curve suggests that the model’s
performance is progressively getting better. Moreover, the overall smoothness of

82 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

the loss curve indicates that the model’s performance remains relatively stable
throughout the training process.

It can be inferred that in setup 1, the MobileNet V2 model may be struggling
to generalize well to unseen data, as indicated by the increasing and fluctuating
validation loss. In setup 2, the model demonstrates better performance with con-
sistent improvement and stability, suggesting its ability to learn effectively and
generalize well to new data.

(a) Accuracy curve setup 1 (b) Accuracy curve setup 2

Figure 4.42: MobileNet V2 accuracy curves for balanced data with augmentation

The accuracy curves for MobileNet V2 are presented in Fig. 4.42. In setup 1,
the train accuracy curve exhibits a relatively smooth upward trend, starting at
around 0.90 and gradually increasing to a range of approximately 0.98 over the
course of 150 epochs. However, the validation accuracy curve displays some ir-
regular patterns, indicating that the model encounters challenges in effectively
learning new features. As a result, the model’s performance shows sudden fluctu-
ations, indicating difficulties in converging to a stable and optimal solution. The
validation accuracy remains within the range of 0.92 to 0.90, suggesting a relat-
ively consistent but slightly lower performance compared to the training accuracy.
In the case of setup 2, with a reduced learning rate, the validation accuracy curve
consistently stays above the range of 0.90 and demonstrates greater stability with
fewer fluctuations. Additionally, the gap between the train and validation accuracy
curves appears to be smaller and more consistent. This indicates that the model is
able to effectively generalize to unseen data and is likely to provide more reliable
results. These findings highlight the importance of fine-tuning the learning rate
to enhance the model’s performance and its ability to generalize effectively.

Chapter 4: Results 83

(a) Confusion matrix setup 1 (b) Confusion matrix setup 2

Figure 4.43: MobileNet V2 confusion matrix for balanced data with augmenta-
tion

The confusion matrix for MobileNet V2 is presented in Fig. 4.43. Based on the
provided confusion matrices for setup 1 and setup 2, the accuracy for each class
can be analyzed. For setup 1: Class 0 (mature): The correct classification is 90.4%
and the incorrect classification is 9.6% Class 1 (trout): The correct classification
is 87.8% and the incorrect classification is 12.2%
For setup 2: Class 0 (mature): The correct classification is 90.0% and the incorrect
classification is 10% Class 1 (trout): The correct classification is 90.9% and the
incorrect classification is 9.1%

(a) AUC score setup 1 (b) AUC score setup 2

Figure 4.44: MobileNet V2 AUC score for balanced data with augmentation

The AUC score for MobileNet V2 is presented in Fig. 4.44. Assessing the provided
scores, it can be observed that the AUC score for setup 1 is 0.97 and for setup 2,

84 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

the AUC score is 0.97. The similarity in AUC scores suggests that the models in
both setups were effective in distinguishing between the positive and negative
instances in the dataset, providing reliable predictions.

MobileNet V3

In this section, the results of MobileNet V3 using a balanced dataset with aug-
mentation and setup 1 and setup 2 are presented. The loss and accuracy curves
indicate the performance of the model while training. The confusion matrix and
the AUC score are used to understand the evaluation of the model.

(a) Loss curve setup 1 (b) Loss curve setup 2

Figure 4.45: MobileNet V3 loss curves for balanced data with augmentation

The loss curves for MobileNet V3 are presented in Fig. 4.45. In setup 1, the
presence of spikes in the validation loss curve indicates that the model struggles
to improve its performance on unseen data. From the start, the validation loss
hovers between 0.65 and 0.7, with fluctuating spikes throughout the 500-epoch
training period. These observations suggest that the model may have encountered
difficulties in effectively capturing the underlying patterns in the data, potentially
due to a high learning rate. Consequently, the model becomes overly sensitive to
variations and noise present in the validation set. As for setup 2, the validation
loss curve begins at a higher value of approximately 1.5 and steadily decreases to
less than 1, reaching around 0.5 during the 1000-epoch training process. Despite
the presence of some spikes, the overall decreasing and relatively stable trend of
the loss curve indicates that the model is learning to adjust its predictions during
the initial training epochs. This suggests that the model is capable of gradually
improving its performance over time. In summary, the loss curves for MobileNet
V3 highlight the differences in performance between setup 1 and setup 2.

Chapter 4: Results 85

(a) Accuracy curve setup 1 (b) Accuracy curve setup 2

Figure 4.46: MobileNet V3 accuracy curves for balanced data with augmentation

(a) Confusion matrix setup 1 (b) Confusion matrix setup 2

Figure 4.47: MobileNet V3 confusion matrix for balanced data with augmenta-
tion

The accuracy curves for MobileNet V3 are presented in Fig. 4.46. In setup 1,
the train accuracy curve shows a relatively stable upward trend, starting around
0.90 and reaching a range of approximately 0.75 to 0.8 over 500 epochs. However,
the validation accuracy curve exhibits a highly irregular pattern with numerous
low and high spikes. This erratic behavior indicates that the model struggles to
effectively learn new features, resulting in inconsistent performance. The sudden
drops and increases in the validation accuracy further suggest that the model faces
challenges in converging to a stable and optimal solution. In the case of setup 2,
even with a reduced learning rate, the validation accuracy curve continues to ex-
hibit instability and fails to generalize well to the data. It fluctuates between the

86 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

range of 0.5 and 0.75, indicating that the model’s performance is not satisfactory
for the given classification task with the current set of hyperparameters. There-
fore, it can be inferred that the accuracy curves for MobileNet V3 highlight the
limitations of the model in both setup 1 and setup 2.

The confusion matrix for MobileNet V3 is presented in Fig. 4.47. Based on the
provided confusion matrices for setup 1 and setup 2, the accuracy for each class
can be analyzed. For setup 1: Class 0 (mature): The correct classification is 58.0%
and the incorrect classification is 42.0% Class 1 (trout): The correct classification
is 93.7% and the incorrect classification is 6.3%
For setup 2: Class 0 (mature): The correct classification is 80.1% and the incorrect
classification is 19.9% Class 1 (trout): The correct classification is 78.7% and the
incorrect classification is 21.3%

(a) Setup 1 (b) Setup 2

Figure 4.48: MobileNet V3 AUC score

The AUC score for MobileNet V3 is presented in Fig. 4.48. Assessing the provided
scores, it is observed that for setup 1, the AUC score is 0.89 and for setup 2, the
AUC score is 0.98. This difference in AUC scores suggests that setup 2 may have
a more effective model configuration or hyperparameter settings, resulting in im-
proved performance compared to setup 1. The higher AUC score in setup 2 implies
a better ability of the model to correctly classify instances, potentially leading to
more reliable and accurate predictions.

4.3 Additional Experiments

In this section, an analysis of some additional results obtained through a specific
model fine-tuning approach is presented. Specifically, the effects of unfreezing a
subset of layers, adding additional layers, and compiling the resulting model was
explored. By incorporating this technique, the aim was to investigate the impact

Chapter 4: Results 87

of further fine-tuning on the performance and capabilities of the models. The ap-
proach focuses on unfreezing a subset of 10 layers within the pre-trained models
and adding the additional setup of layers as discussed in section 3.6.2. By un-
freezing these layers, the weights of these layers are also included in the training
process. It was expected that this approach of fine-tuning will allow the model to
learn more task-specific features and adapt to the intricacies of the target domain.
It is worth noting that the choice of 10 layers as the number to unfreeze can be
further refined and optimized based on empirical analysis and experimentation.
Different tasks, datasets, and model architectures may require varying numbers
of layers to be unfrozen for optimal performance. Therefore, the choice of 10 lay-
ers serves as a starting point, and it can be adjusted and fine-tuned based on the
specific requirements and characteristics of each individual scenario. 1

The data that has been used for this setup is balanced with augmentation on
the minority class (mature class). A total of 50882 images were involved in this
setup. The distribution is presented in Table 4.10.

Label Class Images Distribution

Mature 0 25612 ≈50%

Trout 1 25270 ≈50%

Table 4.10: Dataset for additional experiments

The following tables 4.11 and 4.12 provide detailed results for the setup. These
results offer valuable insights into the performance and characteristics of each
model. This data is useful to analyze the impact of different hyper-parameters on
the models’ performance and training as well as understand if there is any impact
by having a balanced dataset.

1The results from unfreezing 10 layers using the models with setup 1 (3.6.1) is available in
Appendix 6.1. Also, the results from unfreezing 20 layers and using the models with setup 1 (3.6.1)
is available in Appendix 6.1. This data can be used to further analyze the performance based on
this approach of fine-tuning the models for future works.

88 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

Model Architecture Setup 2 (3.6.2)

Model
Metrics

ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Batch Size 64 64 64 64

Total Data 796 796 796 796

Train Size 557 (70%) 557 (70%) 557 (70%) 557 (70%)

Validation
Size

159 (20%) 159 (20%) 159 (20%) 159 (20%)

Test Size 80 (10%) 80 (10%) 80 (10%) 80 (10%)

Total Params 24,639,874 3,756,738 2,916,930 4,885,922

Trainable
Params

5,516,802 2,115,074 1,390,402 1,889,922

Learning Rate 0.000001 0.00001 0.00001 0.00001

Epochs 150 150 150 150

Training Time
(mins)

274 138 167 133

Table 4.11: Model configuration for additional experiments

In the conducted experiment, several factors were considered for the models.
Firstly, all models were trained with a batch size of 64. The dataset sizes were
consistent across the models, with 557 batches in the training set, 159 batches in
the validation set, and 80 batches in the test set.

The total number of parameters differed among the models, with ResNet-50
having the highest number of parameters at 24,639,874, while MobileNet V2 had
the lowest with 2,916,930 parameters. Similarly, the number of trainable para-
meters varied, with ResNet-50 having the highest at 5,516,802 and MobileNet V2
having the lowest at 1,390,402.

Regarding the learning rate and epochs, all models except ResNet-50 were
trained using a learning rate of 0.00001. However, ResNet-50 was trained with a
lower learning rate of 0.000001 and for 150 epochs, which was an experimental
decision.

Finally, the training time for the models ranged from 133 minutes to 274
minutes. ResNet-50 required the longest training time, while MobileNet V3 had
the shortest. These considerations are essential in understanding the experimental
setup and interpreting the subsequent results.

Chapter 4: Results 89

Evaluation Metrics

Metrics ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Accuracy 87.5% 90.6% 90.2% 84.5%

Precision 84.9% 89.2% 88.5% 79.5%

Recall 90.5% 91.9% 91.7% 92.0%

F1 Score 0.87 0.90 0.89 0.85

Table 4.12: Evaluation metrics for additional experiments

The evaluation of the models’ performance yielded the following results. The
accuracy of the models ranged from 84.5% for MobileNet V3 to 90.6% for Mobile-
Net V1, indicating a strong overall performance across the models. These accuracy
scores signify the proportion of correctly classified instances in relation to the total
number of instances.

Precision scores, which measure the accuracy of positive predictions, varied
from 79.5% for MobileNet V3 to 89.2% for MobileNet V1. These scores indicate
the models’ ability to correctly identify positive instances while minimizing false
positives.

The recall scores, which measure the ability to capture positive instances,
ranged from 90.5% for ResNet-50 to 90% for MobileNet V3. Higher recall scores
indicate a higher sensitivity in identifying positive instances and a lower rate of
false negatives.

The F1 scores, which represent the harmonic mean of precision and recall,
ranged from 0.85 for MobileNet V3 to 0.90 for MobileNet V1. These scores provide
a measure of the balance between precision and recall, with higher F1 scores
indicating a better balance between these two metrics.

Overall, the evaluation metrics suggest that the models achieved good per-
formance in terms of accuracy, precision, recall, and F1 score. MobileNet V1 ap-
pears to have consistently demonstrated strong performance across all metrics.

In order to understand the performance of each model better, the following
sections present the results from ResNet-50, MobileNet V1, MobileNet V2, and
MobileNet V3.

4.3.1 ResNet-50

In this section, the results from ResNet-50 are presented when additional 10 layers
of the model are added to the training using a balanced dataset with setup 2.
The loss and accuracy curve along with the confusion matrix and AUC score are
presented.

90 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

(a) Loss curve (b) Accuracy curve

Figure 4.49: ResNet-50 loss and accuracy curves for additional experiments

(a) Confusion matrix (b) AUC score

Figure 4.50: ResNet-50 Confusion Matrix and AUC score for additional experi-
ments

The loss and accuracy curves for ResNet-50 after further fine-tuning are presen-
ted in Fig. 4.49. The loss curve exhibits an initial high value of approximately 8,
but gradually decreases over time, reaching a range between 1 and 2. This con-
sistent descent indicates that the model is effectively adapting to new features
without overfitting to unseen data. The smoothness of the loss curve suggests that
the model’s performance remains stable throughout the training process. The val-
idation accuracy curve demonstrates an upward trend, starting from around 0.7
and steadily progressing to a range between 0.85 and 0.90. This indicates that the
model is successfully learning and generalizing to unseen data by capturing new
features. Despite the presence of minor spikes, the accuracy range remains relat-

Chapter 4: Results 91

ively consistent during the 150 epochs. These findings indicate that the fine-tuned
ResNet-50 model is capable of capturing and leveraging new features, leading to
enhanced performance in classification tasks.

The confusion matrix for ResNet-50 after further fine-tuning is presented in
Fig. 4.50. Based on the provided confusion matrices, the correct and incorrect
classification percentages for each class can be analyzed.
Class 0 (mature): The correct classification is 84.4% and the incorrect classifica-
tion is 15.6% Class 1 (trout): The correct classification is 90.6% and the incorrect
classification is 9.4%
The AUC score, which measures the performance of a classifier, and the AUC score
for ResNet-50 after further fine-tuning is 0.95 which is a high value for the curve
suggesting that the model is highly effective in separating the two classes.

4.3.2 MobileNet V1

In this section, results for MobileNet V1 are presented when additional 10 layers
are used in the training process while using setup 2 and a balanced dataset with
augmentation. To understand the training process, the loss and accuracy curves
are presented. To understand the evaluation, the confusion matrix, and AUC score
are presented.

(a) Loss curve (b) Accuracy curve

Figure 4.51: MobileNet V1 loss and accuracy curves for additional experiments

The loss and accuracy curves for MobileNet V1 after further fine-tuning are
presented in the Fig. 4.51. The loss curve initially exhibits a relatively high value
of around 7 but gradually decreases to a range between 0 and 1. This consistent
descent indicates that the model is effectively adapting to new features without
overfitting to the unseen data. The overall smoothness of the loss curve suggests
that the model’s performance remains relatively stable during the training pro-
cess. Regarding the validation accuracy curve, it can be observed that it starts at

92 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

a value around 0.9 and steadily increases to a range between 0.9 and 0.92. This
indicates that the model is successfully learning new features and can generalize
well to unseen data. Despite the presence of minor spikes, the accuracy range re-
mains relatively consistent throughout the 150 epochs. These findings imply that
the fine-tuned MobileNet V1 model can successfully leverage new information,
leading to enhanced performance in classification tasks.

(a) Confusion matrix (b) AUC score

Figure 4.52: MobileNet V1 Confusion Matrix and AUC score for additional ex-
periments

The confusion matrix and AUC score for MobileNet V1 after further fine-tuning
are presented in Fig. 4.50. Based on the provided confusion matrices, the accur-
acy for each class can be analyzed. Class 0 (mature): The correct classification is
89.2% and the incorrect classification is 10.8% Class 1 (trout): The correct clas-
sification is 91.9% and the incorrect classification is 8.1%
The AUC score MobileNet V1 after further fine-tuning is 0.98 which is a high value
for the curve suggesting that the model has been able to classify the data with high
efficiency and precision.

4.3.3 MobileNet V2

In this section, the results for MobileNet V2 are presented which will be useful to
analyze the performance of the model better. The loss and accuracy curves share
information about the training process and the evaluation metrics such as the
confusion matrix and AUC score share information on the overall accuracy of the
model.

Chapter 4: Results 93

(a) Loss curve (b) Accuracy curve

Figure 4.53: MobileNet V2 loss and accuracy curves for additional experiments

(a) Confusion matrix (b) AUC score

Figure 4.54: MobileNet V2 confusion matrix and AUC score for additional exper-
iments

The loss and accuracy curves for MobileNet V2 after further fine-tuning are
presented in Fig. 4.53. The initial loss value of the curve is relatively high, around
7, but gradually decreases within the range of 0 to 1. This consistent descent
indicates that the model is effectively adapting to new features while avoiding
overfitting the unseen data. The overall smoothness of the loss curve suggests
that the model’s performance remains relatively stable during the training pro-
cess. Regarding the validation accuracy curve, it can be observed that it starts at
approximately 0.82 and steadily increases to a range between 0.90 and 0.92. This
suggests that the model is successfully learning new features and demonstrates
the ability to generalize well to unseen data. Although minor spikes are present,

94 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

the accuracy range remains consistent over the course of 150 epochs. The overall
stability of the loss and accuracy curves throughout the training process further
supports the model’s robustness. These findings suggest that MobileNet V2, after
fine-tuning, can be a valuable choice for tasks requiring feature adaptation and
generalization in classification scenarios.

The confusion matrix for MobileNet V2 after further fine-tuning is presented in
Fig. 4.54. Based on the provided confusion matrix, the accuracy of the model for
each class can be analyzed. Class 0 (mature): The correct classification is 88.2%
and the incorrect classification is 11.8% Class 1 (trout): The correct classification
is 91.8% and the incorrect classification is 8.2%
The AUC score for MobileNet V2 after further fine-tuning is 0.97 which suggests
that the model has high efficiency in the classification task.

4.3.4 MobileNet V3

In this section, the results for MobileNet V3 are presented when additional 10
layers are included in the training on the balanced dataset with setup 2. The loss
and accuracy curves are useful in understanding the training process. The confu-
sion matrix and the AUC score are useful in understanding the performance of the
model.

(a) Loss curve (b) Accuracy curve

Figure 4.55: MobileNet V3 loss and accuracy for additional experiments

The loss and accuracy curves for MobileNet V3 after further fine-tuning are
presented in the Fig. 4.55. Initially, the loss curve starts at a relatively high value
of around 10 and gradually descends within the range of 0 to 2. This consist-
ent descent indicates that the model is effectively adapting to new features while
avoiding overfitting the unseen data. The overall smoothness of the loss curve
suggests that the model’s performance remains relatively stable during the train-
ing process. Examining the validation accuracy curve, it can be observed that it

Chapter 4: Results 95

starts at approximately 0.50 and gradually increases to a range between 0.75 and
0.85. However, fluctuations can be observed as the training progresses, indicating
sudden losses and gains in the model’s efficiency. This suggests that the model is
encountering challenges in generalizing to unseen data, which may be attributed
to the usage of a higher learning rate during training. Adjusting the learning rate
or employing other optimization techniques could potentially enhance the model’s
generalization performance. Overall, further investigation and fine-tuning are re-
commended to improve the model’s ability to generalize unseen data effectively.

(a) Confusion matrix (b) AUC score

Figure 4.56: MobileNet V3 confusion matrix and AUC score for additional exper-
iments

The confusion matrix and AUC score for MobileNet V3 after further fine-tuning
are presented in Fig. 4.56. Based on the provided confusion matrices, the accur-
acy of the model for each class can be analyzed. Class 0 (mature): The correct
classification is 76.9% and the incorrect classification is 23.1% Class 1 (trout):
The correct classification is 91.9% and the incorrect classification is 8.1%
The AUC score for MobileNet V2 after further fine-tuning is 0.94 suggesting that
the model has a relatively high efficiency and precision in the classification of the
two classes.

4.4 Further Evaluation of MobileNet V1

As per results in table 4.9, it is observed that MobileNet V1 has one of the best met-
rics in comparison to other models when it is combined with setup 2 (3.6.2) and
using the balanced dataset with augmentation described in table 4.7. To evaluate
the stability of the model further, the model was run with the same configura-
tion as mentioned in table 4.8 except for the number of epochs. For this setup,
epochs = 1000 was used which resulted in a training time of 799 minutes. The res-
ults are presented in Table 4.13.

96 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

MobileNet V1 Evaluation Metrics for 1000 epochs

Accuracy Precision Recall F1 Score

90.67% 90.4% 90.48% 0.90

Table 4.13: MobileNet V1 further evaluation

(a) Loss curve (b) Accuracy curve

Figure 4.57: MobileNet V1 loss and accuracy curves for further evaluation

The loss and accuracy curves for MobileNet V1 after further training it to 1000
epochs are presented in Fig. 4.57. Initially, the loss curve starts at a relatively high
value of around 7 and gradually descends within the range of 0 to 1. This consist-
ent descent indicates that the model is effectively learning and adapting to new
features without overfitting the unseen data. The overall smoothness of the loss
curve suggests that the model is performance remains relatively stable throughout
the training process. Examining the validation accuracy curve, it can be observed
that it starts at approximately 0.90 and gradually increases to a range between
0.90 and 0.95. While some minor fluctuations are observed as the training pro-
gresses, the overall stability of the curve indicates that the model is able to gener-
alize well to unseen data. This suggests that the model is consistently performing
at a high level and can be relied upon to provide reliable and consistent results.

These findings indicate that the model’s performance can be further improved
with extended training. However, it is important to monitor for any signs of over-
fitting, as the validation accuracy curve may plateau or decline after a certain
point. Overall, the results obtained from the extended training of MobileNet V1
are promising and encourage further exploration and optimization.

Chapter 4: Results 97

(a) Confusion matrix (b) AUC score

Figure 4.58: MobileNet V1 Confusion Matrix and AUC score for further evalu-
ation

The confusion matrix and AUC score for MobileNet V1 after further training
it to 1000 epochs are presented in Fig. 4.58. Based on the provided confusion
matrices, the accuracy for each class can be evaluated. Class 0 (mature): The cor-
rect classification is 90.9% and the incorrect classification is 9.1% Class 1 (trout):
The correct classification is 90.4% and the incorrect classification is 9.6%
The AUC score for MobileNet V2 after further fine-tuning is 0.96 which is quite a
high value that suggests that the model is highly precise and efficient in the given
classification task.

Another evaluation was performed on MobileNet V1 where a different kind of
setup was used. In this setup, only the train and validation images were processed
through the augmentation method to balance the minority class (mature) with the
majority class (trout). The test dataset consisted of only original images which did
not go through augmentation. The purpose of this setup was to simulate a real-
world scenario where the data is naturally unbalanced. The original dataset which
was available and is presented in Table 4.1, had ≈16% of mature class images.
To replicate this scenario, a test dataset was prepared which had ≈15% of the
mature class images. Table 4.14 presents the data distribution for this setup.

Train Dataset Validation Data-
set

Test Dataset

Mature (Class 0) 17695 5632 460

Trout (Class 1) 17695 5013 2548

Total Images 35390 10645 3008

Table 4.14: Dataset for MobileNet V1 additional experiments

98 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

This model was compiled with setup 2 (3.6.2) with a learning rate of 0.00001.
It took around 76 minutes for the training to complete and the results are presen-
ted in Table 4.15.

Results

Accuracy Precision Recall F1 Score

84.5% 91.5% 89.9% 0.90

Table 4.15: MobileNet V1 further evaluation using new dataset

To facilitate understanding the training process of the model in this setup, the
loss is accuracy curves are presented in Fig. 4.59. To analyze the classification
accuracy of the model overall and for each class, the confusion matrix and the
AUC score are presented in Fig. 4.60.

(a) Loss curve (b) Accuracy curve

Figure 4.59: MobileNet V1 loss and accuracy curve for the additional experiment
using new dataset

The loss curve starts from a value of around 7 points and descends smoothly
to a range between 0 and 1. The stability and smoothness of the curve suggest
that the model was able to quickly adapt to new data and generalize. This also
suggests that the model is not struggling while training on the dataset. The valid-
ation accuracy curve which starts between the range 0.85 and 0.90, suggests that
the model is able to learn from the features of the data and is not struggling to
generalize as well. The validation accuracy can be seen stabilizing without a lot
of fluctuations suggesting that the model is able to hold stability and can provide
reliable results.

Chapter 4: Results 99

(a) Confusion matrix (b) AUC score

Figure 4.60: MobileNet V1 confusion matrix and AUC score for additional exper-
iment using new dataset

As for the confusion matrix, it is observed that the correct classification for
Class 0 (mature) is 54.1% and the correct classification for Class 1 (trout) is
89.9%. This suggests that the model has better accuracy in classifying the trout
class and further adjustments can be performed on the model to improve the ac-
curacy of the mature class. The high value of the AUC score which is 0.90 suggests
that the model has high overall precision and effectiveness in classifying the given
dataset under the given configurations setup.

In this chapter, the results from many different experiment setups for different
models have been presented and analyzed. In the next chapter, a deeper analysis
will be conducted to understand the potential reasons behind the observed vari-
ations in performance and explore potential strategies for improving the models.
The impact of factors such as hyperparameter selection, model architecture, and
training techniques will be thoroughly examined to gain insights into their influ-
ence on the results. Furthermore, the implications of these findings in real-world
applications will be discussed, and suggestions for future research will be put for-
ward with the aim of enhancing the performance and efficiency of deep learning
models.

Chapter 5

Discussion

This chapter provides an in-depth analysis of the experimental findings and their
implications in evaluating various models and setups which was presented in the
previous chapter. The performance of the models will be examined using differ-
ent evaluation metrics, including accuracy, precision, recall, F1 score, confusion
matrix, and AUC score. The relationships between these metrics will be explored
to identify any alignment or divergence. Possible reasons for the observed vari-
ations in performance will be discussed, along with an investigation of the factors
that may have influenced the models’ predictive capabilities. Strategies for further
improvement will be explored, and the implications of the findings in real-world
applications will be examined. The insights derived from this discussion will serve
as valuable guidance for future research, aimed at enhancing the performance and
efficiency of the models considered in this study.

5.1 Comprehensive Analysis

Unbalanced Dataset

In general, the accuracy values align with the performance observed in the
confusion matrix. For instance, MobileNet V3 with setup 2 achieves the highest
accuracy among the models, and the confusion matrix reveals that it has a per-
fect correct percentage (100%) for Class 1 (trout). This indicates a strong ability
to correctly classify trout instances. However, the confusion matrix also reveals
a very low correct percentage (0.22%) for Class 0 (mature), suggesting a poor
performance in identifying mature instances.

Comparing setup 1 and setup 2, it can be observed that setup 2 consistently
outperforms setup 1 in terms of correct percentages for both classes across all
models. This aligns with the higher accuracy values seen in setup 2.

However, it’s worth noting that the confusion matrix provides more detailed
insights into the performance of each class. For example, although setup 2 gener-
ally performs better overall, MobileNet V2 with setup 1 achieves a higher correct

101

102 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

percentage (approximately 59.55%) for Class 0 (mature) compared to all other
models.

The Precision-Recall analysis and F1 scores provide complementary informa-
tion about the models’ performance in terms of precision, recall, and their balance.
ResNet-50 consistently shows higher precision values, while MobileNet V3 excels
in recall and achieves high F1 scores. The choice between setup 1 and setup 2 de-
pends on the specific metric of interest and the desired trade-off between precision
and recall.

Balanced Dataset Without Augmentation

MobileNet V1 achieves the highest overall accuracy in setup 2 (85.9%) and the
second-best accuracy in setup 1 (82.5%), with very close performance to the best
performer, MobileNet V2 in setup 1. This suggests that MobileNet V1 has better
overall performance in correctly predicting the class labels. This aligns with the
observations from the confusion matrix, where MobileNet V1 consistently demon-
strates higher correct percentages for both classes, particularly in setup 2. There-
fore, the accuracy data coincides with the trends observed in the confusion matrix,
reinforcing the reliability of the accuracy metric as an indicator of the models’ per-
formance.

Furthermore, when comparing precision, recall, and F1 scores, it is observed
that different models excel in different metrics and setups. MobileNet V2 achieves
the highest precision score in setup 1, while MobileNet V1 achieves the highest
precision score in setup 2. This suggests that both MobileNet V1 and V2 exhibit
good precision in their respective setups. In terms of recall, ResNet-50 performs
best in setup 1, whereas MobileNet V3 excels in setup 2, achieving a recall score of
99.4%. This indicates that ResNet-50 is more effective in avoiding false positives
in setup 1, while MobileNet V3 demonstrates superior performance in setup 2.
MobileNet V1 consistently achieves the highest F1 scores in both setups, indicating
a good balance between precision and recall and strong overall performance.

Considering the AUC scores, MobileNet V1 consistently outperforms the other
models, demonstrating higher AUC scores of 0.90 in both setups. This indicates
that MobileNet V1 has a better ability to discriminate between the positive and
negative classes compared to the other models. ResNet-50 also performs well but
has slightly lower AUC scores, while MobileNet V3 lags behind, suggesting weaker
discrimination power.

In summary, the analysis of precision, recall, F1 scores, and the AUC score
provides additional insights into the models’ performance. MobileNet V1 consist-
ently stands out with its strong overall performance, exhibiting high accuracy,
precision, F1 scores, and AUC scores. The observations from the confusion matrix
further support the performance trends observed in the evaluation metrics. The
choice of the best model and setup depends on the specific metric of interest and
the trade-off between precision and recall.

Chapter 5: Discussion 103

Balanced Dataset With Augmentation

Regarding accuracy, MobileNet V1 consistently outperforms the other mod-
els in both setup 1 and setup 2, achieving accuracy scores of 90.5% and 90.9%,
respectively. This indicates that MobileNet V1 has a higher overall correct classific-
ation rate compared to the other models. In line with the performance observed in
the accuracy metric, the analysis of the confusion matrix also reveals that Mobile-
Net V1 consistently outperforms the other models in terms of correct classification
rates and relatively low wrong classification rates. This further reinforces Mobile-
Net V1’s strong ability to accurately classify the samples.

Examining precision, MobileNet V1 maintains its superiority, consistently achiev-
ing the highest precision scores among the models. With precision scores of 91.7%
in setup 1 and 90.5% in setup 2, MobileNet V1 demonstrates a low rate of false
positives, making it reliable in predicting positive samples accurately.When it comes
to recall, MobileNet V3 stands out in setup 1, achieving a recall score of 93.6%.
This suggests that MobileNet V3 has a higher ability to correctly identify positive
samples compared to the other models in this specific setup. Analyzing the F1
scores, MobileNet V1 once again proves its strength, consistently achieving the
highest F1 scores among the models. With F1 scores of 0.89 in both setup 1 and
setup 2, MobileNet V1 demonstrates a good balance between precision and recall,
indicating its robust performance in classification tasks.

Considering the AUC scores, both MobileNet V1 and MobileNet V2 perform
well, achieving scores of 0.98 and 0.97, respectively. These high scores indicate
their strong performance in distinguishing between positive and negative samples.
The choice between the two models may depend on additional factors such as
computational efficiency or specific requirements of the application.

Overall, the evaluation of accuracy, precision, recall, F1 scores, confusion mat-
rix, and AUC scores consistently highlights MobileNet V1 as the top-performing
model. It demonstrates superior accuracy, precision, and F1 scores, while also
achieving high correct classification rates and low wrong classification rates in
the confusion matrix analysis. These findings indicate that MobileNet V1 is a reli-
able and effective model for the given classification task.

Model Architecture Setup 1 (3.6.1) vs Model Architecture Setup 2 (3.6.2)

Based on the provided information and results, it is evident that setup 2, which
includes additional components such as L2 regularization, Batch Normalization,
and Dropout, performs better compared to setup 1. The loss curves associated
with setup 2 demonstrate greater stability and smoothness throughout the train-
ing process, which indicates improved convergence and generalization capabilit-
ies. In contrast, the loss curves of setup 1 appear more irregular and oscillating,
suggesting potential challenges in convergence and a higher risk of overfitting.
The inclusion of L2 regularization in setup 2 helps prevent overfitting by adding a
penalty term to the loss function. This regularization technique promotes smaller

104 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

weights, thereby reducing the model’s reliance on specific features and enhancing
its ability to generalize to unseen data. Additionally, the presence of BatchNormal-
ization in setup 2 contributes to a more stable learning process by normalizing
activations between layers. Furthermore, the incorporation of a Dropout layer in
setup 2 plays a role in enhancing the model’s performance. By randomly deac-
tivating a fraction of neurons during training, Dropout encourages the model to
learn robust and independent representations. The smoother and more stable loss
curves observed in setup 2 can be attributed to the combined effects of L2 regu-
larization, BatchNormalization, and Dropout. These components work in synergy
to regularize the model, stabilize the learning process, and improve generaliza-
tion. As a result, setup 2, with its additional components, demonstrates better
performance compared to setup 1, highlighting the significance of incorporating
these techniques to enhance model convergence and overall effectiveness. The Fig.
5.1 presents the difference between loss curves for all four models when trained
on the balanced dataset without augmentation and it is observed that the prob-
lem of overfitting is reduced and the loss curves seem to converge as the training
progresses.

(a) Setup 1

(b) Setup 2

ResNet-50 MobileNet V1 MobileNet V2 MobileNet V3

Figure 5.1: Loss comparison of setup 1 and setup 2 on the unbalanced dataset
without augmentation

Chapter 5: Discussion 105

Unbalanced vs Balanced Data and Effect of Data Augmentation

Model Dataset Class 0 (ma-
ture)

Class 1
(trout)

Overall Ac-
curacy

F1 Score

ResNet-50
Unbalanced 59.55% 92.53% 87% 0.92

Balanced
(no augment-
ation)

52.99% 89.39% 72.9% 0.77

Balanced
(augmenta-
tion)

67.5% 94.1% 80.5% 0.82

MobileNet V1
Unbalanced 48.8% 91.4% 84.9% 0.90

Balanced (no
augmenta-
tion)

88.38% 84.4% 85.9% 0.86

Balanced
(augmenta-
tion)

95.5% 90.9% 90.9% 0.90

MobileNet V2
Unbalanced 46.81% 91.47% 84.9% 0.90

Balanced (no
augmenta-
tion)

85.8% 82.9% 83.7% 0.84

Balanced
(augmenta-
tion)

90.0% 90.9% 90.6% 0.89

MobileNet V3
Unbalanced 0.22% 100% 84.8% 0.91

Balanced (no
augmenta-
tion)

2.36% 99.6% 53.8% 0.69

Balanced
(augmenta-
tion)

80.1% 78.7% 79.6% 0.78

Table 5.1: Performance of models on unbalanced and balanced datasets

As the discussion continues further with results for setup 2, Table 5.1 provides
the important metrics that will provide the basis for discussion between having
an unbalanced dataset or a balanced dataset. The results clearly demonstrate the
importance of a balanced dataset for achieving better model performance. In all
models evaluated (ResNet-50, MobileNet V1, MobileNet V2, and MobileNet V3),
the performance on the balanced datasets, both with and without augmentation,
outperformed the results obtained from the unbalanced data. This observation is
evident in the higher accuracy percentages and F1 scores for the balanced data-
sets.

Furthermore, when comparing the balanced datasets, the results show that
using data augmentation techniques to increase the data size further enhances

106 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

model performance. The balanced datasets with augmented data consistently yiel-
ded higher accuracy percentages and F1 scores compared to the balanced datasets
without augmentation. This suggests that increasing the dataset size through aug-
mentation allows the models to learn more robust features and generalize better,
leading to improved performance in both classes.

These findings suggest that a balanced dataset is crucial for better model per-
formance, and augmenting the data can further enhance the model’s ability to ac-
curately classify both classes. Therefore, it is recommended to balance the dataset
and leverage data augmentation techniques to achieve optimal results in similar
classification tasks.

MobileNet V1 as the potential best model for this classification task

Based on the overall comparison of the models and the additional metrics
provided, it can be inferred that MobileNet V1 emerges as the best model for this
particular classification task. Among the evaluated models, MobileNet V1 demon-
strates superior performance across various aspects. Firstly, in terms of accuracy,
MobileNet V1 consistently achieves high correct percentages for both classes, out-
performing ResNet-50 and MobileNet V2 in the balanced datasets with data aug-
mentation. Its overall accuracy of 90.9% is the highest among the models, indic-
ating its ability to effectively classify the target classes.

Furthermore, MobileNet V1 exhibits a favorable F1 score of 0.90, indicating a
good balance between precision and recall. This reflects its capability to accurately
capture both classes in the classification task. The F1 score of MobileNet V1 is
higher compared to the other models, including ResNet-50 and MobileNet V2.

Additionally, MobileNet V1 proves to be a lightweight model, requiring signi-
ficantly fewer trainable parameters (526,850) compared to ResNet-50 (1,051,138),
MobileNet V2 (657,922), and MobileNet V3 (656,898). This reduced number of
parameters indicates that MobileNet V1 is more computationally efficient and con-
sumes less memory, allowing for faster inference times.

Moreover, considering the training time for 150 epochs on the balanced data-
set with augmentation, MobileNet V1 stands out as an efficient model, taking only
162 minutes. Although MobileNet V2 requires a slightly shorter training time of
144 minutes, MobileNet V1’s training time is still comparable and relatively close.
In comparison, ResNet-50 requires a longer training time of 240 minutes. This
demonstrates that MobileNet V1 achieves high accuracy within a reasonable train-
ing time, making it an effective choice for this classification task.

Therefore, based on the available data and metrics, MobileNet V1 emerges as
the preferred model for this classification task. Its lightweight architecture, faster
training time, higher accuracy (90.9%), and favorable F1 score make it a strong
choice. Utilizing MobileNet V1 can provide efficient and accurate classification
results for similar tasks while optimizing computational resources.

Chapter 5: Discussion 107

Further evaluation of MobileNet V1

MobileNet V1 was further trained for 1000 epochs in order to thoroughly eval-
uate its stability and potential for improvement over an extended training period,
the results presented in the section 4.4. Firstly, the overall accuracy of 90.67%
indicates that the model consistently performs well in correctly classifying both
classes. This accuracy demonstrates the model’s ability to generalize to unseen
data, suggesting that it has learned robust features and is capable of making con-
sistent predictions.

Precision, recall, and F1 score, all hovering around 90%, further reinforce the
model’s effectiveness in achieving a balance between correctly identifying positive
samples and avoiding false positives. Analyzing the individual class correctness,
we find that both Class 0 and Class 1 have high correct percentages of 90.9% and
90.4%, respectively. This balanced performance on both classes indicates that the
model can accurately classify mature and trout instances without favoring one
class over the other.

The stability in the loss curve and accuracy curve suggests that the model has
the ability to generalize to unseen data and consistently make accurate predictions
while being consistent in its performance during training. Moreover, considering
the case where only the training and validation data were augmented and the test
data was kept unbalanced to simulate a practical implementation, MobileNet V1
achieved an overall accuracy of 84.5% along with a stable and descending loss
curve.

Based on these results, it can be observed that the MobileNet V1 model, when
trained for longer epochs, demonstrates stability in its performance and exhibits
the potential for further investigation and improvement. Further research and
experimentation can be conducted to explore additional optimization techniques
and fine-tuning strategies to enhance the model’s performance even further.

Additional Experiments by further fine-tuning of models

The additional experiments which involved fine-tuning the models ResNet-
50, MobileNet V1, MobileNet V2 and MobileNet V3 by unfreezing 10 layers and
training them, have been presented in section 4.3. Based on the evaluation met-
rics in table 4.12, it is evident that MobileNet V1 consistently outperforms the
other models. It achieved the highest accuracy, precision, and F1 score among all
models, indicating its superior performance in correctly classifying samples and
achieving a balance between precision and recall. MobileNet V1 demonstrated an
overall accuracy of 90.6%, precision of 89.2%, recall of 91.9%, and an F1 score
of 0.90. These results highlight the effectiveness of MobileNet V1 in accurately
classifying the given dataset.

Additionally, when examining the loss curves for all models, it can be observed
that they exhibit stability and smoothness throughout the training process. The
loss curve starts at a relatively high value between 8-10 and gradually descends,

108 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

reaching a range between 0 and 2. The consistent descent of the curve indicates
that the models are effectively learning to adapt to new features and are not over-
fitting to the unseen data. The overall smoothness of the loss curve implies that the
models’ performance remains relatively stable during training, further supporting
their ability to generalize well to unseen data.

These results suggest that fine-tuning the models by unfreezing a portion of
the layers can lead to improved performance. The combination of a balanced data-
set with augmentation, coupled with fine-tuning, has proven to be a successful
strategy for achieving higher performance. MobileNet V1, with its lightweight ar-
chitecture, exhibited superior performance in terms of accuracy, precision, recall,
and F1 score. Further exploration and refinement of the fine-tuning process may
lead to even better results, reinforcing the potential of MobileNet V1 for this clas-
sification task.

(a) setup 1 (b) setup 2

Figure 5.2: Comparison of overall accuracy %

5.2 Addressing the Research Questions

Are there any specific data pre-processing techniques that can be employed
to mitigate the challenges posed by limited power and memory resources
and unbalanced data on an edge computer, and how do these techniques im-
pact the performance of the models ?

The use of data augmentation techniques, such as image rotation, flipping,
and scaling, can be employed to increase the diversity and quantity of the avail-
able data for training. By artificially expanding the dataset, these techniques can
help mitigate the challenges posed by limited data in the context of highly un-
balanced classes. Furthermore, the adoption of lightweight models, such as Mo-
bileNet V1, can address the constraints of limited power and memory resources
on an edge computer. MobileNet V1 achieved high accuracy and competitive per-
formance while consuming fewer computational resources compared to ResNet-
50. This suggests that model selection plays a crucial role in mitigating resource

Chapter 5: Discussion 109

constraints.
Therefore employing data augmentation techniques, utilizing lightweight mod-

els, and exploring fine-tuning approaches are effective strategies to mitigate the
challenges posed by limited power and memory resources and highly unbalanced
data on an edge computer. These techniques can positively impact the perform-
ance of the models by improving accuracy and reducing computational require-
ments, enabling more efficient and reliable classification in resource-constrained
settings.

What is the impact of imbalanced class distribution in the dataset on the
performance of models, and how does the limited availability of data affect
their performance? Additionally, what potential solutions exist to address
these challenges and enhance the model’s output in such scenarios?

The performance of the models significantly differs when trained on a data-
set with highly unbalanced classes. The results indicate that the models exhibit
varying degrees of accuracy, precision, recall, and F1 score across the different im-
balance scenarios. When trained on the unbalanced dataset, the models generally
struggled to accurately classify the minority class. This can be attributed to the
limited amount of available data for the minority class, leading to a lack of expos-
ure and learning opportunities for the models. Consequently, the models tended
to favor the majority class, resulting in lower performance metrics for the minor-
ity class. However, when the dataset was balanced, either without augmentation
or by augmenting the available data, the models showed improved performance.
The impact of the limited amount of available data was evident in the performance
of the models. With a scarcity of data, the models faced challenges in accurately
learning the underlying patterns and characteristics of the classes. Therefore, ad-
dressing the issue of limited data availability is crucial for improving the models’
performance, as a larger and more diverse dataset can provide richer learning
experiences and yield more accurate and robust classification results.

Can the performance of the models be further enhanced by employing spe-
cific data pre-processing techniques or model modifications that address the
challenges associated with limited memory resources and naturally unbal-
anced data?

Applying data augmentation techniques can help generate synthetic samples
and expand the dataset, potentially improving the model’s ability to generalize
and perform better on unseen data. Leveraging pre-trained models and fine-tuning
them on the limited data available can help accelerate the training process and
potentially improve the performance of the models. Additional modifications such
as L2 regularization in the dense layer, a batch normalization layer for improved
training stability, and a dropout layer for regularization, aim to address overfitting,
improve model generalization, and potentially enhance performance. By employ-

110 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

ing these specific data preprocessing techniques and model modifications, there
is a potential to further enhance the performance of the models in the given con-
text. However, it is important to carefully evaluate and validate these techniques
to ensure they are compatible with the limited power and memory resources of
the edge computer.

Which of the deep learning models compatible with the edge computer hav-
ing limited resources, demonstrates the most effective performance in clas-
sifying unbalanced data?

MobileNet V1 achieves the highest accuracy among the models, followed closely
by MobileNet V2. These models exhibit better capability in accurately classifying
highly unbalanced data, indicating their effectiveness in this classification task.
The limited power and memory resources on an edge computer make MobileNet
V1 and MobileNet V2 favorable choices as they strike a balance between accur-
acy and resource consumption. Therefore, based on the performance analysis and
considering the limited power and memory resources on an edge computer, Mo-
bileNet V1 and MobileNet V2 emerge as the most effective models in classifying
highly unbalanced data. These models demonstrate competitive accuracy while
being efficient in terms of resource utilization, making them suitable candidates
for classification tasks under the constraints of the task.

What are the trade-offs between overall accuracy and resource consumption
for the different deep learning models when applied to the classification of
unbalanced classes?

Models trained on balanced datasets or with data augmentation techniques
tend to have improved accuracy as they have better exposure to both classes and
can learn their distinguishing features more effectively. In the context of edge com-
puting, where resources are limited, models with lower resource requirements can
be advantageous. Lightweight models, such as MobileNet V1 and MobileNet V2,
tend to consume less power and memory compared to heavier models like ResNet-
50. Therefore, the trade-offs between model accuracy and resource consumption
on an edge computer when dealing with highly unbalanced classes are evident.
Models that achieve high accuracy may require more computational resources,
potentially straining the limited power and memory available on edge devices.
On the other hand, models with lower resource requirements may sacrifice some
accuracy. Finding the right balance between accuracy and resource consumption is
crucial to ensure efficient and effective classification on edge devices with limited
resources.

What are the implications of the findings from these models for real-world
applications where highly unbalanced data, limited power, and memory re-
sources are common challenges, and how can these findings guide the selec-

Chapter 5: Discussion 111

tion and optimization of models for similar scenarios?

The performance comparison between ResNet-50, MobileNet V1, V2, and V3
provides insights into the models’ effectiveness in handling highly unbalanced
data on resource-constrained edge devices. Based on the results, MobileNet V1
consistently demonstrated competitive performance, making it a favorable choice
for similar scenarios. The evaluation of training time and the number of train-
able parameters offers insights into the computational requirements of the mod-
els. MobileNet V1, with its relatively shorter training time and lower number of
parameters compared to ResNet-50, MobileNet V2, and MobileNet V3 showcases
its suitability for limited power and memory resources. The experiments with
balanced datasets and data augmentation highlight the benefits of addressing
the issue of class imbalance. The models trained on balanced datasets generally
showed improved performance, emphasizing the importance of data-balancing
techniques in enhancing classification results. Additionally, model modifications
like compression and transfer learning can be explored to optimize models for
resource-constrained edge devices. By leveraging the insights gained from these
experiments, practitioners can make informed decisions to address the challenges
and improve the effectiveness and efficiency of their models in similar scenarios.
Further research and experimentation can build upon these findings to explore
additional techniques and optimizations tailored to specific application require-
ments

Chapter 6

Conclusion

This project aimed to classify the immature and mature trout while addressing the
challenges of classifying highly unbalanced data with limited power and memory
resources on an edge computer, specifically focusing on fish species classification.
The research explored various aspects, including data preprocessing techniques,
data augmentation, and the evaluation of different deep learning models. The
initial problem of working with highly unbalanced data was addressed by care-
fully selecting and implementing a combination of data preprocessing techniques.
These techniques helped to balance the dataset and mitigate the impact of class
imbalance on model performance. Additionally, data augmentation was employed
to increase the size and diversity of the dataset, enhancing the generalization cap-
abilities of the models.

Multiple experiments were conducted using different deep learning models,
including ResNet-50, MobileNet V1, V2, and V3, on a) an unbalanced dataset, b) a
balanced dataset without augmentation, and c) a balanced dataset with augment-
ation. Evaluation metrics such as accuracy, precision, recall, and F1 score were
utilized to assess the performance of the models. The results demonstrated that
MobileNet V1 consistently outperformed the other models across various metrics,
exhibiting higher accuracy, precision, and F1 score. Further analysis revealed the
trade-offs between model accuracy and resource consumption, indicating that Mo-
bileNet V1 achieved superior performance in most cases while consuming fewer
resources (time and memory) compared to other models. This finding highlights
the expediency and robustness of MobileNet V1 for edge devices with limited
computational capabilities.

The project also investigated the stability of MobileNet V1 by training it for a
longer duration of 1000 epochs. The results showed that the accuracy of the mod-
els remained consistently high throughout training, demonstrating their ability to
generalize well to unseen data and maintain stable performance. Furthermore,
the implications of the findings from this project extend to real-world applica-
tions where highly unbalanced data, limited power, and memory resources are
common challenges. The research highlights the importance of appropriate data
preprocessing techniques, such as balancing the dataset and augmenting the data,

113

114 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

to improve model performance. The selection of an efficient deep learning model
like MobileNet V1 can significantly enhance accuracy while minimizing resource
consumption.

In conclusion, this project provides insights into the classification of highly
unbalanced data for edge devices with limited resources. It demonstrates the ef-
fectiveness of data preprocessing techniques, the benefits of data augmentation,
and the superior performance of MobileNet V1 in fish species classification tasks.
The findings offer valuable and reproducible guidance for similar scenarios and
contribute to the development of practical solutions for real-time monitoring and
analysis of aquatic ecosystems, environmental conservation, and decision-making
processes.

6.1 Future work

In light of the findings and insights gained from the present study, several potential
avenues for future research and improvement emerge. These opportunities aim to
further enhance the performance and applicability of the models in the context of
the given classification task. Future work can focus on various aspects, including
data augmentation techniques, model optimization strategies, and the exploration
of alternative deep learning architectures. By delving into these future directions,
researchers can further advance the performance, robustness, and interpretability
of the models for similar classification tasks, opening doors to a wide range of
practical applications.

• Model Optimization: While the models evaluated in this study have shown
promising results, further optimization efforts can be undertaken to improve
their performance. This can involve exploring different network architec-
tures, fine-tuning hyperparameters, and implementing model compression
techniques specifically tailored for edge devices by taking the limited com-
putational powers into account.
• Hybrid Approaches: Investigating the effectiveness of hybrid approaches

that combine multiple models or ensemble techniques can be a worthwhile
avenue for future research. By leveraging the strengths of different mod-
els, it may be possible to achieve even higher accuracy and robustness in
classifying highly unbalanced data on edge devices.
• Real-time Species Classification: Compiling the trained model for edge

device to extend the capabilities of the deployed edge device to not only
detect the presence of fish but also accurately classify them into different
species. This can provide valuable insights into the practical implications
and challenges associated with deploying deep learning models for classi-
fying naturally unbalanced data in different conditions.
• Further enhancements: Evaluating the robustness and generalization of

the deployed model in real-world scenarios with varying lighting conditions,
water conditions, and fish appearances. This includes testing the perform-

Chapter 6: Conclusion 115

ance of the models across different locations, seasons, and fish species to
ensure their reliability and applicability in diverse environments.

By exploring these aspects related to real-time testing and real-time fish de-
tection and species classification on edge devices, researchers can contribute to
the development of effective and practical solutions for monitoring and under-
standing aquatic ecosystems, supporting environmental conservation efforts, and
enabling real-time decision-making in various applications such as fisheries man-
agement or aquatic research.

Bibliography

[1] W. Bank. ‘Oceans, fisheries and coastal economies.’ (2021), [Online]. Avail-
able: https://data.worldbank.org/indicator.

[2] Global fisheries and aquaculture at a glance — fao.org, https://www.fao.
org/3/cc0461en/online/sofia/2022/world-fisheries-aquaculture.
html, [Accessed 21-May-2023].

[3] R. L. Naylor, R. W. Hardy, A. H. Buschmann, S. R. Bush, L. Cao, D. H.
Klinger, D. C. Little, J. Lubchenco, S. E. Shumway and M. Troell, ‘A 20-
year retrospective review of global aquaculture,’ Nature, vol. 591, no. 7851,
pp. 551–563, Mar. 2021. DOI: 10.1038/s41586-021-03308-6. [Online].
Available: https://doi.org/10.1038/s41586-021-03308-6.

[4] Food and Agriculture Organization, The state of world fisheries and aquacul-
ture 2018 (SOFIA). Rome, Italy: Food & Agriculture Organization of the
United Nations (FAO), Aug. 2018.

[5] E. C. D. G. for Maritime Affairs, Fisheries. and EUMOFA., Freshwater aquacul-
ture in the EU. Publications Office, 2021. DOI: 10.2771/594002. [Online].
Available: https://data.europa.eu/doi/10.2771/594002.

[6] R. M. Connolly, D. V. Fairclough, E. L. Jinks, E. M. Ditria, G. Jackson, S.
Lopez-Marcano, A. D. Olds and K. I. Jinks, ‘Improved accuracy for auto-
mated counting of a fish in baited underwater videos for stock assessment,’
Frontiers in Marine Science, vol. 8, p. 658 135, 2021.

[7] S. Shakya et al., ‘Analysis of artificial intelligence based image classification
techniques,’ Journal of Innovative Image Processing (JIIP), vol. 2, no. 01,
pp. 44–54, 2020.

[8] V. Kandimalla, M. Richard, F. Smith, J. Quirion, L. Torgo and C. Whidden,
‘Automated detection, classification and counting of fish in fish passages
with deep learning,’ Frontiers in Marine Science, p. 2049, 2022.

[9] C. Spampinato, Y.-H. Chen-Burger, G. Nadarajan and R. B. Fisher, ‘Detect-
ing, tracking and counting fish in low quality unconstrained underwater
videos.,’ VISAPP (2), vol. 2008, no. 514-519, p. 1, 2008.

117

https://data.worldbank.org/indicator
https://www.fao.org/3/cc0461en/online/sofia/2022/world-fisheries-aquaculture.html
https://www.fao.org/3/cc0461en/online/sofia/2022/world-fisheries-aquaculture.html
https://www.fao.org/3/cc0461en/online/sofia/2022/world-fisheries-aquaculture.html
https://doi.org/10.1038/s41586-021-03308-6
https://doi.org/10.1038/s41586-021-03308-6
https://doi.org/10.2771/594002
https://data.europa.eu/doi/10.2771/594002

118 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

[10] B. J. Boom, M. Pollefeys, L. Van Gool, P. L. Goethals, H. De Meyer, S. Ver-
stockt and R. E. T. Vanstreels, ‘Fish4knowledge: Collecting and analyzing
massive coral reef fish video data using object recognition techniques,’
in Proceedings of the ACM international conference on Multimedia, 2012,
pp. 1409–1412.

[11] W. Xu and S. Matzner, ‘Underwater fish detection using deep learning for
water power applications,’ in 2018 International conference on computa-
tional science and computational intelligence (CSCI), IEEE, 2018, pp. 313–
318.

[12] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, ‘Gradient-based learning ap-
plied to document recognition,’ Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[13] S. Cui, Y. Zhou, Y. Wang and L. Zhai, ‘Fish detection using deep learning,’
Applied Computational Intelligence and Soft Computing, vol. 2020, 2020.

[14] A. Periola, A. Alonge and K. Ogudo, ‘Edge computing for big data processing
in underwater applications,’ Wireless Networks, vol. 28, no. 5, pp. 2255–
2271, 2022.

[15] C. Zhou, C. Sun, K. Lin, D. Xu, Q. Guo, L. Chen and X. Yang, ‘Handling
water reflections for computer vision in aquaculture,’ Transactions of the
ASABE, vol. 61, no. 2, pp. 469–479, 2018.

[16] A. Salman, A. Jalal, F. Shafait, A. Mian, M. Shortis, J. Seager and E. Har-
vey, ‘Fish species classification in unconstrained underwater environments
based on deep learning,’ Limnology and Oceanography: Methods, vol. 14,
no. 9, pp. 570–585, 2016.

[17] T. Oosting, B. Star, J. H. Barrett, M. Wellenreuther, P. A. Ritchie and N. J.
Rawlence, ‘Unlocking the potential of ancient fish dna in the genomic era,’
Evolutionary applications, vol. 12, no. 8, pp. 1513–1522, 2019.

[18] C. Alcaraz, Z. Gholami, H. R. Esmaeili and E. Garcıa-Berthou, ‘Herbivory
and seasonal changes in diet of a highly endemic cyprinodontid fish (apha-
nius farsicus),’ Environmental Biology of Fishes, vol. 98, no. 6, pp. 1541–
1554, 2015.

[19] A. A. dos Santos and W. N. Gonçalves, ‘Improving pantanal fish species
recognition through taxonomic ranks in convolutional neural networks,’
Ecological Informatics, vol. 53, p. 100 977, 2019.

[20] S. Mahesh, A. Manickavasagan, D. Jayas, J. Paliwal and N. White, ‘Feasibil-
ity of near-infrared hyperspectral imaging to differentiate canadian wheat
classes,’ Biosystems Engineering, vol. 101, no. 1, pp. 50–57, 2008.

[21] B. Zion, ‘The use of computer vision technologies in aquaculture–a review,’
Computers and electronics in agriculture, vol. 88, pp. 125–132, 2012.

Bibliography 119

[22] C. Rillahan, M. D. Chambers, W. H. Howell and W. H. Watson III, ‘The beha-
vior of cod (gadus morhua) in an offshore aquaculture net pen,’ Aquacul-
ture, vol. 310, no. 3-4, pp. 361–368, 2011.

[23] V. M. Papadakis, I. E. Papadakis, F. Lamprianidou, A. Glaropoulos and M.
Kentouri, ‘A computer-vision system and methodology for the analysis of
fish behavior,’ Aquacultural engineering, vol. 46, pp. 53–59, 2012.

[24] S. Marini, E. Fanelli, V. Sbragaglia, E. Azzurro, J. Del Rio Fernandez and
J. Aguzzi, ‘Tracking fish abundance by underwater image recognition,’ Sci-
entific reports, vol. 8, no. 1, pp. 1–12, 2018.

[25] C.-H. Tseng, C.-L. Hsieh and Y.-F. Kuo, ‘Automatic measurement of the body
length of harvested fish using convolutional neural networks,’ Biosystems
Engineering, vol. 189, pp. 36–47, 2020.

[26] L. Chen, X. Yang, C. Sun, Y. Wang, D. Xu and C. Zhou, ‘Feed intake pre-
diction model for group fish using the mea-bp neural network in intensive
aquaculture,’ Information Processing in Agriculture, vol. 7, no. 2, pp. 261–
271, 2020.

[27] C. Zhou, D. Xu, K. Lin, C. Sun and X. Yang, ‘Intelligent feeding control
methods in aquaculture with an emphasis on fish: A review,’ Reviews in
Aquaculture, vol. 10, no. 4, pp. 975–993, 2018.

[28] X. Yang, S. Zhang, J. Liu, Q. Gao, S. Dong and C. Zhou, ‘Deep learning for
smart fish farming: Applications, opportunities and challenges,’ Reviews in
Aquaculture, vol. 13, no. 1, pp. 66–90, 2021.

[29] R. B. Fisher, Y.-H. Chen-Burger, D. Giordano, L. Hardman, F.-P. Lin et al.,
Fish4Knowledge: collecting and analyzing massive coral reef fish video data.
Springer, 2016, vol. 104.

[30] S. Choi, ‘Fish identification in underwater video with deep convolutional
neural network: Snumedinfo at lifeclef fish task 2015.,’ in CLEF (Working
Notes), 2015.

[31] S. Jain, H. Salman, A. Khaddaj, E. Wong, S. M. Park and A. Madry, ‘A data-
based perspective on transfer learning,’ Journal Name, vol. X, no. X, pp. X–
X, 2023.

[32] X. Li, M. Shang, H. Qin and L. Chen, ‘Fast accurate fish detection and recog-
nition of underwater images with fast r-cnn,’ in OCEANS 2015-MTS/IEEE
Washington, IEEE, 2015, pp. 1–5.

[33] R. Girshick, ‘Fast r-cnn,’ in Proceedings of the IEEE international conference
on computer vision, 2015, pp. 1440–1448.

[34] D. Zhang, G. Kopanas, C. Desai, S. Chai and M. Piacentino, ‘Unsupervised
underwater fish detection fusing flow and objectiveness,’ in 2016 IEEE Win-
ter Applications of Computer Vision Workshops (WACVW), IEEE, 2016, pp. 1–
7.

120 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

[35] D. Rathi, S. Jain and S. Indu, ‘Underwater fish species classification using
convolutional neural network and deep learning,’ in 2017 Ninth interna-
tional conference on advances in pattern recognition (ICAPR), Ieee, 2017,
pp. 1–6.

[36] R. Mandal, R. M. Connolly, T. A. Schlacher and B. Stantic, ‘Assessing fish
abundance from underwater video using deep neural networks,’ in 2018
International Joint Conference on Neural Networks (IJCNN), IEEE, 2018,
pp. 1–6.

[37] S. S. Nair, S. NM, F. A. Mon and K. Suthendran, ‘Under water fish species re-
cognition,’ International Journal of Pure and Applied Mathematics, vol. 118,
no. 7, pp. 357–361, 2018.

[38] S. Raveendran, M. D. Patil and G. K. Birajdar, ‘Underwater image enhance-
ment: A comprehensive review, recent trends, challenges and applications,’
Artificial Intelligence Review, vol. 54, no. 7, pp. 5413–5467, 2021.

[39] M. F. Duarte, T. Cunha, P. Deusdado, J. M. Almeida and J. P. Barroso, ‘Tur-
bid: Toward ubiquitous underwater robotic vision through image dataset,’
Journal of Field Robotics, vol. 33, no. 3, pp. 397–417, 2016.

[40] J. Yang, X. Zhang, J. Liang, Y. Wang and X. Liu, ‘Underwater image en-
hancement using an adaptive multi-scale decomposition method based on
retinex theory for improving object detection performance in turbid water
environments,’ Sensors, vol. 19, no. 22, p. 4915,

[41] D. Li and L. Du, ‘Recent advances of deep learning algorithms for aquacul-
tural machine vision systems with emphasis on fish,’ Artificial Intelligence
Review, vol. 55, no. 5, pp. 4077–4116, 2022.

[42] G. G. Monkman, K. Hyder, M. J. Kaiser and F. P. Vidal, ‘Using machine vision
to estimate fish length from images using regional convolutional neural
networks,’ Methods in Ecology and Evolution, vol. 10, no. 12, pp. 2045–
2056, 2019.

[43] J. Chen and X. Ran, ‘Deep learning with edge computing: A review,’ Pro-
ceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019. DOI: 10.1109/
JPROC.2019.2921977.

[44] X. Yang, Z. Song, Y. Liu and C. Zhou, ‘Deep learning for smart fish farming:
Applications, opportunities and challenges,’ Preprint, 2020.

[45] K. M. Knausgård, A. Wiklund, T. K. Sørdalen, K. T. Halvorsen, A. R. Kleiven,
L. Jiao and M. Goodwin, ‘Temperate fish detection and classification: A
deep learning based approach,’ Applied Intelligence, vol. 51, no. 4, pp. 1685–
1697, 2021.

[46] S. Zhao, S. Zhang, J. Liu, H. Wang, J. Zhu, D. Li and R. Zhao, ‘Application
of machine learning in intelligent fish aquaculture: A review,’ Aquaculture,
vol. 531, p. 735 963, 2021.

https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/JPROC.2019.2921977

Bibliography 121

[47] M. A. R. Sarker, M. A. Hossain and M. A. R. Sarkar, ‘Fish species recog-
nition using deep learning techniques,’ in Proceedings of the International
Conference on Computer Science and Engineering, 2018, pp. 1–6.

[48] S. Kwon, J.-H. Kim and J.-H. Lee, ‘Fish classification using deep convolu-
tional neural network with transfer learning,’ Journal of Marine Science and
Engineering, vol. 7, no. 6, p. 186, 2019.

[49] A. Jalal, A. Salman, A. Mian, M. Shortis and F. Shafait, ‘Fish detection and
species classification in underwater environments using deep learning with
temporal information,’ Ecological Informatics, vol. 57, p. 101 088, 2020.

[50] Y. Sun, X. Wang and Y. Tang, ‘A novel deep learning approach for fish spe-
cies recognition based on convolutional neural network and softmax re-
gression,’ Journal of Ocean University of China, vol. 17, no. 5, pp. 1079–
1084, 2018.

[51] H. Kim, J. Koo, D. Kim, S. Jung, J.-U. Shin, S. Lee and H. Myung, ‘Image-
based monitoring of jellyfish using deep learning architecture,’ IEEE sensors
journal, vol. 16, no. 8, pp. 2215–2216, 2016.

[52] M. S. Hossain, M. A. Rahman, M. A. Islam and M. A. Hossain, ‘Underwa-
ter fish species recognition using deep learning techniques,’ in 2019 Inter-
national Conference on Robotics, Electrical and Signal Processing Techniques
(ICREST), 2019, pp. 1–6. DOI: 10.1109/ICREST.2019.8711657.

[53] S. Singh, R. Singh, A. Singh and V. Singh, ‘Fish biomass estimation us-
ing machine learning techniques,’ Reviews in Aquaculture, vol. 11, no. 3,
pp. 725–739, 2019.

[54] A.-R. Al-Ali, R. Al-Sayyed and S. Al-Maadeed, ‘Fish recognition using con-
volutional neural network,’ in 2018 International Conference on Computer
and Applications (ICCA), IEEE, 2018, pp. 1–5.

[55] E. C. D. G. for Maritime Affairs, Fisheries. and EUMOFA., Portion trout in the
EU: price structure in the supply chain focus on Germany, Italy and Poland.
Publications Office, 2021. DOI: 10.2771/98441. [Online]. Available: https:
//data.europa.eu/doi/10.2771/98441.

[56] M. Sonka, V. Hlavac and R. Boyle, ‘Image pre-processing,’ in Image Pro-
cessing, Analysis and Machine Vision, Springer US, 1993, pp. 56–111. DOI:
10.1007/978-1-4899-3216-7_4. [Online]. Available: https://doi.org/
10.1007/978-1-4899-3216-7_4.

[57] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal

https://doi.org/10.1109/ICREST.2019.8711657
https://doi.org/10.2771/98441
https://data.europa.eu/doi/10.2771/98441
https://data.europa.eu/doi/10.2771/98441
https://doi.org/10.1007/978-1-4899-3216-7_4
https://doi.org/10.1007/978-1-4899-3216-7_4
https://doi.org/10.1007/978-1-4899-3216-7_4

122 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vié-
gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu
and Xiaoqiang Zheng, TensorFlow: Large-scale machine learning on hetero-
geneous systems, Software available from tensorflow.org, 2015. [Online].
Available: https://www.tensorflow.org/.

[58] Models - Image classification | Coral — coral.ai, https://coral.ai/models/
image-classification/, [Accessed 02-May-2023].

[59] S. Madeleine, Normalization, zero centering and standardization of ct im-
ages — imaios.com, https://www.imaios.com/en/resources/blog/ct-
images- normalization- zero- centering- and- standardization, [Ac-
cessed 24-May-2023].

[60] B. K. P, WHEN and WHY are batches used in machine learning ? — me-
dium.com, https://medium.com/analytics-vidhya/when-and-why-are-
batches-used-in-machine-learning-acda4eb00763, [Accessed 24-May-
2023].

[61] Tf.keras.utils.image_dataset_from_directory | TensorFlow v2.12.0, https :
//www.tensorflow.org/api_docs/python/tf/keras/utils/image_
dataset_from_directory, [Accessed 24-May-2023].

[62] L. Perez and J. Wang, ‘The effectiveness of data augmentation in image
classification using deep learning,’ arXiv preprint arXiv:1712.04621, 2017.

[63] Tf.keras.preprocessing.image.ImageDataGenerator, https://www.tensorfl-
ow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGe-
nerator, [Accessed 24-May-2023].

[64] NumPy — numpy.org, https://numpy.org/, [Accessed 24-May-2023].

[65] Effective Tensorflow 2 | TensorFlow Core, https://www.tensorflow.org/
guide/effective_tf2, [Accessed 04-May-2023].

[66] ImageNet — image-net.org, https://www.image-net.org/, [Accessed 26-
May-2023].

[67] M. Coşkun, Ö. YILDIRIM, U. Ayşegül and Y. Demir, ‘An overview of popular
deep learning methods,’ European Journal of Technique (EJT), vol. 7, no. 2,
pp. 165–176, 2017.

[68] J. C. Ovalle, C. Vilas and L. T. Antelo, ‘On the use of deep learning for
fish species recognition and quantification on board fishing vessels,’ Marine
Policy, vol. 139, p. 105 015, 2022.

[69] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recog-
nition,’ in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[70] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto and H. Adam, ‘Mobilenets: Efficient convolutional neural
networks for mobile vision applications,’ arXiv preprint arXiv:1704.04861,
2017.

https://www.tensorflow.org/
https://coral.ai/models/image-classification/
https://coral.ai/models/image-classification/
https://www.imaios.com/en/resources/blog/ct-images-normalization-zero-centering-and-standardization
https://www.imaios.com/en/resources/blog/ct-images-normalization-zero-centering-and-standardization
https://medium.com/analytics-vidhya/when-and-why-are-batches-used-in-machine-learning-acda4eb00763
https://medium.com/analytics-vidhya/when-and-why-are-batches-used-in-machine-learning-acda4eb00763
https://www.tensorflow.org/api_docs/python/tf/keras/utils/image_dataset_from_directory
https://www.tensorflow.org/api_docs/python/tf/keras/utils/image_dataset_from_directory
https://www.tensorflow.org/api_docs/python/tf/keras/utils/image_dataset_from_directory
https://www.tensorfl- ow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGe- nerator
https://www.tensorfl- ow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGe- nerator
https://www.tensorfl- ow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGe- nerator
https://numpy.org/
https://www.tensorflow.org/guide/effective_tf2
https://www.tensorflow.org/guide/effective_tf2
https://www.image-net.org/

Bibliography 123

[71] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen, ‘Mobilen-
etv2: Inverted residuals and linear bottlenecks,’ in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–
4520.

[72] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y.
Zhu, R. Pang, V. Vasudevan, Q. V. Le and H. Adam, ‘Searching for mobilen-
etv3,’ arXiv preprint arXiv:1905.02244, 2019.

[73] Tf.keras.applications.resnet50.ResNet50 | TensorFlow v2.12.0, https://www.
tensorflow.org/api_docs/python/tf/keras/applications/resnet50/
ResNet50, [Accessed 04-May-2023].

[74] Module: Tf.keras.applications.mobilenet | TensorFlow v2.12.0, https://www.
tensorflow.org/api_docs/python/tf/keras/applications/mobilenet,
[Accessed 06-May-2023].

[75] Module: Tf.keras.applications.mobilenet_v2 | TensorFlow v2.12.0, https :
//www.tensorflow.org/api_docs/python/tf/keras/applications/
mobilenet_v2, [Accessed 06-May-2023].

[76] Tf.keras.applications.MobileNetV3Large | TensorFlow v2.12.0, https://www.
tensorflow.org/api_docs/python/tf/keras/applications/MobileNe-
tV3Large, [Accessed 06-May-2023].

[77] M. Lin, Q. Chen and S. Yan, ‘Network in network,’ arXiv preprint arXiv:
1312.4400, 2013.

[78] A. F. Agarap, ‘Deep learning using rectified linear units (relu),’ arXiv pre-
print arXiv:1803.08375, 2018.

[79] R. Parhi and R. D. Nowak, ‘The role of neural network activation functions,’
IEEE Signal Processing Letters, vol. 27, pp. 1779–1783, 2020.

[80] S. Sharma, S. Sharma and A. Athaiya, ‘Activation functions in neural net-
works,’ Towards Data Sci, vol. 6, no. 12, pp. 310–316, 2017.

[81] C. Cortes, M. Mohri and A. Rostamizadeh, ‘L2 regularization for learning
kernels,’ arXiv preprint arXiv:1205.2653, 2012.

[82] S. Ioffe and C. Szegedy, ‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’ in International conference on
machine learning, pmlr, 2015, pp. 448–456.

[83] tf.keras.Model | TensorFlow v2.12.0, https://www.tensorflow.org/api_
docs/python/tf/keras/Model#compile, [Accessed 04-May-2023], 2023.

[84] D. P. Kingma and J. Ba, ‘Adam: A method for stochastic optimization,’ arXiv
preprint arXiv:1412.6980, 2014.

[85] Tf.keras.optimizers.Adam | TensorFlow v2.12.0, https://www.tensorflow.
org/api_docs/python/tf/keras/optimizers/Adam, [Accessed 06-May-
2023].

https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50
https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet
https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet
https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2
https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2
https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2
https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNe- tV3Large
https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNe- tV3Large
https://www.tensorflow.org/api_docs/python/tf/keras/applications/MobileNe- tV3Large
https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam

124 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

[86] tf.keras.Model, https://www.tensorflow.org/api_docs/python/tf/
keras/Model#fit, [Accessed 04-May-2023], 2023.

[87] TensorBoard | TensorFlow, https://www.tensorflow.org/tensorboard,
[Accessed 06-May-2023].

[88] Tf.keras.callbacks.TensorBoard, https://www.tensorflow.org/api_docs/
python/tf/keras/callbacks/TensorBoard, [Accessed 06-May-2023].

[89] tf.keras.Model | TensorFlow v2.12.0, https://www.tensorflow.org/api_
docs/python/tf/keras/Model#fit, [Accessed 06-May-2023], 2023.

[90] J. Ni, J. Li and J. McAuley, ‘Justifying recommendations using distantly-
labeled reviews and fine-grained aspects,’ pp. 188–197, 2019.

[91] Tf.keras.metrics.Accuracy | TensorFlow v2.12.0, https://www.tensorflow.
org/api_docs/python/tf/keras/metrics/Accuracy, [Accessed 07-May-
2023].

[92] Tf.keras.metrics.Precision | TensorFlow v2.12.0, https://www.tensorflow.
org/api_docs/python/tf/keras/metrics/Precision, [Accessed 07-
May-2023].

[93] Tf.keras.metrics.Recall | TensorFlow v2.12.0, https://www.tensorflow.
org/api_docs/python/tf/keras/metrics/Recall, [Accessed 07-May-
2023].

[94] Y. Liu, Z. Wang and J. Li, ‘Comparing deep learning models with relative
confusion matrix,’ Proc. ACM Mach. Learn. Res., vol. 8, no. 1, pp. 1–29,
2021, ISSN: 2376-3639. DOI: 10.1145/3411764.3445673. [Online]. Avail-
able: https://doi.org/10.1145/3411764.3445673.

[95] Sklearn.metrics.confusion_matrix, https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.confusion_matrix.html, [Ac-
cessed 07-May-2023].

[96] A. P. Bradley, ‘The use of the area under the roc curve in the evaluation of
machine learning algorithms,’ Pattern recognition, vol. 30, no. 7, pp. 1145–
1159, 1997.

[97] Sklearn.metrics.auc, https://scikit-learn.org/stable/modules/genera-
ted/sklearn.metrics.auc.html, [Accessed 11-May-2023].

[98] Sklearn.metrics.roc_curve, https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.roc_curve.html, [Accessed 11-May-2023].

https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/TensorBoard
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/TensorBoard
https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Accuracy
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Accuracy
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Precision
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Precision
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Recall
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Recall
https://doi.org/10.1145/3411764.3445673
https://doi.org/10.1145/3411764.3445673
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/genera- ted/sklearn.metrics.auc.html
https://scikit-learn.org/stable/modules/genera- ted/sklearn.metrics.auc.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html

A - Github repository

All code used in this document is included in the Github repository linked below.
Access can be granted upon request.

Github repository link

• https://github.com/1904varun/master_thesis

125

https://github.com/1904varun/master_thesis

127

128 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

B - Additional Results

B1 - Unfreezing 10 layers

Model Combination Type 1 (3.6.1)

Model
Metrics

ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Total Images 50882 50882 50882 50882

Trout Images 25270 25270 25270 25270

Mature
Images

25612 25612 25612 25612

Batch Size 64 64 64 64

Train Size 557 557 557 557

Validation
Size

159 159 159 159

Test Size 80 80 80 80

Total Params 24,637,826 3,754,690 2,914,882 4,883,330

Trainable
Params

5,515,778 2,114,050 1,389,378 1,888,898

Learning Rate 0.001 0.001 0.001 0.001

Epochs 150 150 150 150

Training Time
(mins)

263 155 146 126

Accuracy 66.8% 91.6% 90.6% 84.8%

Precision 67.1% 91.0% 90.8% 85.5%

Recall 62.7% 91.8% 89.9% 83.1%

F1 Score 0.64 0.91 0.89 0.84

Table B.1: Results for models with unfreezing 10 layers

B - Additional Results 129

The loss curves, accuracy curves and confusion matrix for each of the model when
fine-tuned with unfreezing 10 layers are presented in the Fig. B.1, Fig. B.2, Fig
B.3.

(a) Loss curve (b) Accuracy curve (c) Confusion matrix

Figure B.1: ResNet-50 performance with further fine-tuning

(a) Loss curve (b) Accuracy curve (c) Confusion matrix

Figure B.2: MobileNet V1 performance with further fine-tuning

(a) Loss curve (b) Accuracy curve (c) Confusion matrix

Figure B.3: MobileNet V2 performance with further fine-tuning

130 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

(a) Loss curve (b) Accuracy curve (c) Confusion matrix

Figure B.4: MobileNet V3 performance with further fine-tuning

B - Additional Results 131

B2 - Unfreezing 20 layers

Model Combination Type 1 (3.6.1)

Model
Metrics

ResNet-50 MobileNet
V1

MobileNet
V2

MobileNet
V3

Total Images 50882 50882 50882 50882

Trout Images 25270 25270 25270 25270

Mature
Images

25612 25612 25612 25612

Batch Size 64 64 64 64

Train Size 557 557 557 557

Validation
Size

159 159 159 159

Test Size 80 80 80 80

Total Params 24,637,826 3,754,690 2,914,882 4,883,330

Trainable
Params

9,981,442 2,388,482 1,862,978 2,427,778

Learning Rate 0.001 0.001 0.001 0.001

Epochs 150 150 150 150

Training Time
(mins)

288 156 168 172

Accuracy 63.9% 91.0% 91.1% 85.7%

Precision 93.9% 88.9% 90.0% 85.2%

Recall 27.9% 93.2% 92.0% 85.9%

F1 Score 0.42 0.90 0.90 0.85

Table B.2: Results for models with unfreezing 20 layers

133

134 Varun Srivastava: Classification of Fish Species Using Deep Learning Models

C - Sample Images

C1 - Images with dimensions 224x224 pixels which is input
size for pre-trained models

(a) Sample from trout class

(b) Sample from mature class

Figure C.1: Sample images with size 224x224 pixels

	Abstract
	Sammendrag
	Acknowledgements
	Abbreviations
	Declaration
	Contents
	Figures
	Tables
	Introduction
	Project Description
	Research Questions

	Literature Review
	Method
	Data Collection
	Data Pre-processing
	Data Augmentation
	Pre-trained Model Architectures
	Model initialization
	Architecture setup
	Model Compilation
	Training Process
	Evaluation Metrics
	System Setup

	Results
	Results with Unbalanced Dataset
	Results with Balanced Data
	Additional Experiments
	Further Evaluation of MobileNet V1

	Discussion
	Comprehensive Analysis
	Addressing the Research Questions

	Conclusion
	Future work

	Bibliography
	A - Github repository
	B - Additional Results
	C - Sample Images

