
Ola Runeson Rasmussen

Analyzing the Impact of COVID-19 on
the Total Points Scored in NBA
Basketball Matches:

A Comparative Study of Pre and Post-Pandemic Seasons

Bachelor’s thesis in Mathematical Sciences
Supervisor: Jarle Tufto
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





ABSTRACT

In this thesis I will analyze the impact that the Covid-19 pandemic had on
the number of points scored in a NBA basketball match. I will find the model
that best fits the data, and analyze the home court advantage and find out if the
home court advantage changed during the Covid-19-season. I will also analyze the
impact the number of fans present at a match had on the total amount of points
obtained by both the home team and opposing team. As a bonus, I will find the
strengths of each team throughout the years.

I denne oppgaven skal jeg analysere hvilken innvirkning Covid-19-pandemien
hadde på antall poeng scoret i en NBA-basketballkamp. Jeg skal finne den mod-
ellen som passer best til dataene, og analysere hjemmebanefordelen og finne ut
om hjemmebanefordelen endret seg i løpet av Covid-19-sesongen. Jeg vil også
analysere hvilken innvirkning antallet tilstedeværende fans på en kamp hadde på
det totale antallet poeng oppnådd av både hjemmelaget og motstanderlaget. Som
en bonus vil jeg finne styrken til hvert lag gjennom årene.
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CHAPTER

ONE

INTRODUCTION

1.1 Modelling Sports Results

Modelling sport results can have many different use cases. It can be used to
predict future matches, player performance among other things. Coaches and an-
alysts can use data to analyze strengths and weaknesses of players and opponents,
and scouts can use models to find what players could have a potential future in
that sport. The main objective of this thesis is to find a model that fit 8 seasons
worth of data from the National Basketball Association (NBA), starting with the
2014-2015 season, skipping the 2019-2020 season, and ending with the 2022-2023
season. The reason why the 2019-2020 season is skipped is because this season got
cut short because of the covid-19-pandemic. Something similar has been done in
[1], were they modelled the scores in football matches to find the attack strength
and defence strength of teams, but they also found the home-field advantage that
a team has. In this thesis I will also find the home-court advantage but also find
the differences between the 2020-2021 season and the other seasons. Due to covid
restrictions, this season was played without any fans, so it will be interesting to
see if the home-court advantage disappeared or got weaker. Further differences
between what they have done and what I have done in this thesis will be looked
at in Section 4.2.

1



2 CHAPTER 1. INTRODUCTION

1.2 NBA

The NBA, National Basketball Association, is the biggest basketball league in
North-America. A regular season in the NBA, consists of 82 games for each team.
There are 30 teams in the NBA, divided into 2 conferences, the eastern- and
the western conference. Teams in the same conference plays 4 games against each
other and 2 games against teams in the other conference. The 2020 to 2021 season,
reffered to as the Covid season, only consisted of 72 games for each team. Also,
under this season there where no fans allowed because of Covid-19 regulations.

There are 3 different scoring methods, or types, in a normal NBA game. You
have the one-pointers, scoring method one, which are scored from free throws.
Free throws are a form of penalties obtained when the other team commits a foul.
Two-pointers, scoring method two, are obtained from getting the basketball into
the opponents hoop while inside the three point line, while three-pointers, scoring
method three, are obtained from scoring outside the three point line. Also, a team
is awarded 2 free throws when fouled while attempting a two pointer, and 3 free
throws when fouled while attempting a three pointer. But they are only awarded
1 free throw if they scored while being fouled.

1.3 Home Court Advantage

In [2], the author analyzed home court advantages for NCAA basketball statistics.
NCAA, National Collegiate Athletic Association, is the college equivalent of the
NBA. He came to the conclusion that when playing on their home court, a team
received a boost in nearly all statistical categories. In this thesis, I will come to
the same conclusion that teams scored more points while playing on their home
court.
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TWO

THEORY

2.1 Generalized linear Models

All of this theory is collected from [3] if not stated otherwise. In a Generalized
linear Model (GLM), where we have i = 1, 2, . . . , n observations, we want to find
a linear relationship between the covariate vectors, the xi’s, and a transformation
of the expected value, mean µi, of a distribution. That is,

g(µi) = ηi = x⊤
i β. (2.1)

where g(µi), the link function, is the function that transforms this into a linear
relationship, and ηi = x⊤

i β is called the linear predictor. There are many different
link functions for different distributions. One thing these distributions have in
common is that they are a part of the Exponential Family of distributions. The
probability mass function of a multivariate exponential family for the response
variable yi is defined by,

f(yi|θi) = exp

{
yiθi − b(θi)

ϕ
wi + c(yi, ϕ, wi)

}
, (2.2)

where the parameter θi is called the natural or canonical parameter, the parameter
ϕ is the dispersion parameter, and wi, usually a weight, is a known value. For the
function b(θi), it is required that f(yi|θi) can be normalized and that b′(θi) and
b′′(θi) exist. The expected value and variance of this probability mass function is
then defined by,

E[yi] = µi = b′(θi), V ar[yi] = σ2
i = ϕ

b′′(θi)

wi

.
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4 CHAPTER 2. THEORY

2.2 Generalized linear Mixed models

Generalized linear Mixed models (GLMMs) are defined by adding a random effect
γi to the linear predictor ηi = x⊤

i β. The responses yij, where i = 1, . . . ,m,
j = 1, . . . , ni, with ni being the measurements per individual or cluster. When
adding a cluster specific random effect γi to the responses yij, the conditional
mean µij = E[yij|γi] is linked to the linear predictor,

ηij = x⊤
ijβ + u⊤

ijγi, i = 1, . . . ,m, j = 1, . . . , ni, (2.3)

through the link function g(µij) = ηij. Here the random effects γi are indepen-
dent and identically distributed N(0, Q) where Q is the covariance matrix for the
random effects [3] p. 391. To estimate these fixed and random effects, I will
use the "glmmTMB" package in R. Simply said, this package will numerically
approximate the estimated values.

2.3 Poisson process

One distribution that is a part of the exponential family of distributions, is the
Poisson distribution. It is defined by the density,

f(yi|λi) =
λyi
i e

−λi

yi!
, yi = 0, 1, . . . , (2.4)

where yi is the total amount of times an event occurs in an interval, and λi > 0 is
the rate at which the occurrences happen. In this thesis I will model the scores in
a basketball match via a Poisson process. The mean and variance of the Poisson
distribution is the same. That is,

E[yi] = µi = λi, V ar[yi] = λi.

The natural link function to use for the Poisson distribution is the log-link function,
which is given by,

g(λi) = log(λi) = ηi = x⊤
i β. (2.5)

This assures us that the rate λi > 0 for all β ∈ ℜp. The Mixed Poisson model with
the log-link function is called the mixed log-linear Poisson model. It is defined as
seen below where yij|γi ∼ Poisson(λij), where

log(λij) = x⊤
ijβ + u⊤

ijγi. (2.6)
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In this thesis, the random effects I will use is attack strength γA,i,k and defence
strength γD,i,k. The notation,

log(λijk) = ”fixed effects”k + γA,i,k + γD,j,k, (2.7)

will be used where i is the attacking team, j is the defending team, and k is the
scoring type.

A Poisson process is a continous time process, where events happen indepen-
dently of one another with a certain rate (intensity) λ. The probability of n scores
in a match is then,

P
(
(# scores of type k) = n

)
=

λn

n!
e−λ. (2.8)

In [4], the authors comes to the conclusion that the scores in a basketball match
can mostly be seen as a Poisson process, but in close games, the Poisson process
assumption breaks. This will be discussed further in Section 4.8. In this thesis, I
will assume that the scores follow a Poisson process.

2.4 AIC

Akaike Information Criterion (AIC) is an estimator for the quality of our model
given our data. It penalizes complex models by taking the amount of estimated
parameters into account. The formula for AIC is,

AIC = 2k − 2ln(L̂), (2.9)

where k is the number of estimated parameters and L̂ is the maximized value of
the likelihood function of our model. The AIC is an estimator for the Kullback
Leibler distance between the actual and "true" model. The data will generate
an unknown distribution, so the difference between the poisson distribution used
and this unknown distribution is then the Kullback Leiber distance, showing how
different these two distributions are [5]. I will use this criteria to find the best
model for the Covid season and the other seasons.
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2.5 Likelihood Ratio Test (LRT)

Together with the AIC of a model, the likelihood ratio Test is also used to find
significant variables in a model. When testing the hypothesis H0 : β = 0 vs.
H1 : β ̸= 0, we can use the (log-)likelihood ratio statistic,

lr = 2
{
l(β̂)− l(β̃)

}
= −2

{
l(β̃)− l(β̂)

}
, (2.10)

where l(β̃) is the log-likelihood for the restricted model under H0 and l(β̂) is the
log-likelihood of the full model [3] p. 662-663

2.6 AR(1)-process

An AR(1), auto-regressive, process is a stochastic random process. The AR(1)
process {Xt}t∈Z is defined as a causal stationary series satisfying the equation,

Xt = φXt−1 + ϵt, t = 1, 2, . . . , (2.11)

where |φ| < 1 and ϵt is the white noise with zero mean and variance σ2
ϵ . They are

identically and independently distributed [6] p. 15.

2.7 OU-process

A stationary Gaussian Ornstein-Uhlenbeck process, Gaussian continuous-time AR(1)
process, is considered as the continuous-time analogue of the discrete-time AR(1)
process, [6] p.343. It can have irregular timepoints instead of the constant even
time differences in the AR(1) process. The OU-process {Ut}t∈R is defined by the
stochastic differential equation,

dUt = −θUtdt+ σdWt, (2.12)

where θ > 0, σ > 0 are parameters and Ut ∼ N
(
uoe

−θt, σ
2

2θ

{
1 − e−2θt

})
[7]. Wt

is the Wiener process, which is a two-sided Brownian motion [8]. An important
property of 2.12 is that the autocovariancefunction decreases exponentially.
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METHOD

3.1 Collecting Data

All of the data used in this thesis is collected from the official NBA website and
Basketball Reference seen below:

• https://www.nba.com/stats/teams/boxscores-traditional

• https://www.basketball-reference.com/.

3.2 Data management

All the data was changed into the format seen in Table 3.1. Attacking team i is
the team attacking defending team j, y is the number of scores obtained, type is
the scoring type, i.e. when type 3 means three pointer and so on. Home court is
"yes" if attacking team i is playing on their home court. Date shows the number
of days after the first game saved in the data. Win shows what team won the
match. Covid indicate whether we are looking at the Covid season or a normal
season, and Number of fans says how many fans were present.

Attacking
Team i

Defending
Team j

y Type Home
Court

Date Win Covid Number
of Fans

LAL HOU 3 3 yes 1 no no 18997
LAL HOU 25 2 yes 1 no no 18997
LAL HOU 31 1 yes 1 no no 18997
HOU LAL 12 3 no 1 yes no 18997
HOU LAL 19 2 no 1 yes no 18997
HOU LAL 34 1 no 1 yes no 18997

Table 3.1: Six rows of the data frame containing data for one match between the
Los Angeles Lakers and the Houston Rockets

7



8 CHAPTER 3. METHOD

3.3 Model Selection Method

To find the best model, I used the covariates Type, Home, and Covid. Type is the
scoring type, Home is the home advantage, and Covid indicate the covid season.
I made many different combinations of these covariates with different interactions
and compared them using their AIC value. If two models had the same AIC, i
used the Likelihood Ratio Test to find significant terms. These models can be seen
in Table 4.1.



CHAPTER

FOUR

RESULTS AND DISCUSSION

4.1 Model Selection

Models: Change from the best model: ∆AIC from the
best model

Mod1 −βHC xHC,ijk + βHC,k xHC,ijk 0
Mod2 −βHC xHC,ijk 3
Mod3 −βC,k xC,ijk + βC xC,ijk 958
Mod4 −βH,k xH,ijk + βH xH,ijk 14
Mod5 −βC,k xC,ijk − βHC xHC,ijk + βC xC,ijk 961
Mod6 −βH,k xH,ijk−βC,k xC,ijk+βH xH,ijk+βC xC,ijk 972
Mod7 −βH,k xH,ijk − βHC xHC,ijk + βH xH,ijk 16
Mod8 −βH,k xH,ijk − βC,k xC,ijk − βHC xHC,ijk +

βH xH,ijk + βC xC,ijk

974

Table 4.1: Change in AIC from the best model

The best model can be seen in Equation 4.1, but below I will show some neigh-
boring models to the best one that I compared it to in Table 4.1 along with the
difference between the AIC for the best model and these neighboring models. In
model 1, the interaction between the home court advantage and covid is replaced
with a three way interaction between home court advantage, covid and each scor-
ing type. In model 2, the interaction between the home court advantage and covid
is removed. In model 3, the interaction between covid and each scoring type is
replaced with a single covid term. In model 4, the interaction between home court
advantage and each scoring type is replaced with a single home court term. Model
5 is almost the same as model 3 but the interaction between home court and covid
is removed. Model 6 has both the interaction between home court and scoring
type and the interaction between covid and scoring type replaced with just one

9
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term for home court and one term for covid. Model 7 is similar to model 4, but
the interaction between home court and covid is removed. Finally, model 8 is the
same as model 6 but the interaction between home court and covid is removed.

4.2 Best Model

After a great deal of testing, I have found that the best model to use for this data
is,

log(λi,j,k) = βk + βH,k xH,ijk + βC,k xC,ijk + βHC xHC,ijk + γA,i,k + γD,j,k. (4.1)

The scoring type is denoted by index k = 1, 2, 3, the attacking team is denoted by
index i, and the defending team is denoted by index j. xH,ijk, xC,ijk, and xHC,ijk

are dummy, or indicator, variables. They indicate if we have a match where
attacking team i has home court advantage, if we have a match played during the
Covid-season, or if we have a match with home court advantage during the Covid-
season, respectively. Table 4.2 shows the fixed effects of the model in Equation
4.1 together with their standard deviations, and Table 4.3 shows the percent the
expected number of scores changes for each type when the different estimated
values are included. This model is very similar to the one used in [1], but I have
added a covid term and an interaction between home court and covid, and since
there are three ways of scoring in basketball, i have added an interaction between
each scoring types and home court term and the covid term.

The random effects in the model are γA,i,k and γD,j,k. They are independent
and identically distributed, with γA,i,k ∼ N(0, τ 2A,k) and γD,i,k ∼ N(0, τ 2D,k). These
variances can be seen in Table 4.4. We assume that attack strength and defence
strength of team i are independent of one another, i.e. γA,i,k and γD,i,k are in-
dependent for each scoring type, but I will discuss this assumption in Section
4.3. These random effects together with the fixed effects gives the conditional
expected number of scores from scoring type k that attacking team i will score
against defending team j by the equation,

E
[
yi,j,k|γA,i,k, γD,j,k

]
= exp

{
βk+βH,k xH,ijk+βC,k xC,ijk+βHC xHC,ijk+γA,i,k+γD,j,k

}
.

(4.2)
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k β̂k ± SD(β̂k) β̂H,k ± SD(β̂H,k) β̂C,k ± SD(β̂C,k) β̂HC ± SD(β̂HC)
1 2.8412± 0.0118 0.0343± 0.0035 −0.0229±0.0063 −0.0124±0.0060
2 3.3695± 0.0099 0.0166± 0.0027 −0.0226±0.0052 −0.0124±0.0060
3 2.3207± 0.0186 0.0277± 0.0045 +0.2079±0.0072 −0.0124±0.0060

Table 4.2: Fixed Effects ± Standard Deviations

k eβ̂k eβ̂H,k eβ̂C,k eβ̂HC

1 ≈ 17 ≈ 3.49% ≈ −2.26% ≈ −1.23%
2 ≈ 29 ≈ 1.68% ≈ −2.23% ≈ −1.23%
3 ≈ 10 ≈ 2.81% ≈ +23% ≈ −1.23%

Table 4.3: Exponential value of the Fixed Effects

4.3 Correlation between attack and defence strength

Figure 4.1: Correlation between the different attacking and defending strengths
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The correlation between attacking and defending strength for each scoring type
can be seen in Figure 4.1. From this figure we can see that there is a negative
correlation between attacking strength of type 2 and 3 in the cell in row 2, column
3. This entails that teams who are very good at scoring with type 3 are bad
at scoring or unwilling to score with type 2, and vice versa. The only team not
following this norm is the Golden State Warriors, GSW. This makes sense because
they have won 4 of the last 8 seasons excluding the 2019-2020 season, which means
that they have been consistently good during these 8 seasons. There doesn’t seem
to be any correlation between attack and defence strengths, so the assumption
that attack strength and defence strength are independent seem to mostly hold
up looking at the correlation table.

4.4 Strength of each team

The attacking strengths for each team can be seen in Figure 4.2, 4.3, and 4.4,
and the defending strengths can be seen in Figure 4.5, 4.6, and 4.7. Here we
see which teams are the strongest at each scoring type. The expected values of
the strength parameters are zero, so when a team has a strength of 0.10, it is
e0.10 ≈ 11% stronger that the mean strength. This means that they will score 11%

more scores than a team with average strength.

k τ 2A,k τ 2D,k
1 0.0016857 0.0023295
2 0.0020435 0.0007715
3 0.0084381 0.0016362

Table 4.4: Variances of the Random Effects

The variances for the random effects can be seen in Table 4.4. From this table we
can see that the three points attacking strength vary much more than the other
attacking types and all defending types. This makes sense because the three point
shot is the hardest scoring type, so all teams cannot be equally as good with that
type. Also the two-pointers don’t vary as much, which means that all teams score
almost the same amount of two-pointers.
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Figure 4.2: Strength of attacking type 1.
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Figure 4.3: Strength of attacking type 2.
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Figure 4.4: Strength of attacking type 3.
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Figure 4.5: Strength of defending type 1.
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Figure 4.6: Strength of defending type 2.
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Figure 4.7: Strength of defending type 3.
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4.5 Covid-19 impact and home court advantage

From Table 4.3 we can see the influence that the home court had and that Covid
had on every scoring type. In the last column, we can also see that during covid,
the homecourt advantage got 1.23% smaller during covid. There could be many
reasons why the homecourt advantage got smaller, but one explanation of this
could be that there were no fans spectating, and with less fans the home team
didn’t get the same boost that a full arena would give them.

4.6 Number of fans

Another interesting influence on the number of scores could be the number of fans
spectating. The best model for this is,

log(λi,j,k) = βk + βH,k xH,ijk + βFANS,k xFANS,ijk

+ βH.FANS xH.FANS,ijk + γA,i,k + γD,j,k,
(4.3)

which I found using the same method for testing as in Section 4.1. This model is
almost identical to the model in Equation 4.1 but instead of Covid we are using
the number of fans present at a match. xFANS and xH.FANS is then the number of
fans present in a normal match and a normal match at home respectively. When
the number of fans at a match is zero, this model is essentially the same as the
model in Equation 4.1 during covid. Table 4.5 show the influence that a single fan
has and the influence 20.000 fans has on the total amount of scores of each type.
The last column show the influence added when having home court advantage.
This table also show the amount of points during covid, because there were no
fans present. It suggest that when the number of fans increased, the total amount
of one-pointers and two-pointers increased but the total amount of three-pointers
decreased. This is because during covid, the total amount of three-pointers scored
in a match increased, as shown in Table 4.3.

k eβ̂k eβ̂FANS,k eβ̂FANS,k·20000 βH.FANS

1 ≈ 17 ≈ 0.0001% ≈ 2.1% ≈ 0.0001%
2 ≈ 28 ≈ 0.0001% ≈ 2.5% ≈ 0.0001%
3 ≈ 13 ≈ −0.0012% ≈ −20.7% ≈ 0.0001%

Table 4.5: Exponential value of the Fixed Effects using the model with fans
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4.7 Extension of the best model

This thesis has only used the strength of a team according to 8 seasons worth of
data, but because some teams change a lot inbetween and during seasons, a more
interesting approach could be to use the AR(1) process to find the strengths of
each team where they changes during the seasons. This could tell us if some teams
tend to be stronger at the start, middle or end of a season, and how their strengths
have changed throughout the years. But since there are some breaks in a season,
one could maybe use the OU process to find the strengths during a season. The
OU process can account for irregularities of the times where values are recorded,
and can therefore be more useful. This new OU model has the same formula as
the best model in section 4.2, but the random effects are now modelled as a OU
process. Tables 4.6 and 4.7 show the fixed effects and the exponential of the fixed
effects respectively. These tables are pretty similar to tables 4.2 and 4.3, but the
covid term now give a positive impact on one- and two-poiners. This may be
because now the attacking strengths of each team are not constant, but changes
over time, so their strengths during covid could be slightly lower to account for
this. This can be seen in Figures 4.8, 4.9, and 4.10 where the highlighted areas
are the covid season. From Figure 4.10 we can see that the attacking strengths
have increased a lot throughout the years for every team. Figures 4.11, 4.12, 4.13,
and 4.14 show the attacking strengths of the Golden State Warriors and Houston
Rockets for both two-pointers and three-pointers. These two teams had the best
three-points strengths, so it will be interesting to see how they compare throughout
the years. We see that GSW has been very consistent with their strengths except
for their two-pointer strength in the later seasons, but HOU have been very bad
with two-pointers and inconsistent with three-pointers. This is due to them losing
the players who scored three-pointers for them and GSW has kept most of theirs.

k β̂k ± SD(β̂k) β̂H,k ± SD(β̂H,k) β̂C,k ± SD(β̂C,k) β̂HC ± SD(β̂HC)
1 2.8298± 0.0148 0.0339± 0.0035 0.0387± 0.0230 −0.0126±0.0061
2 3.3645± 0.0147 0.0167± 0.0028 0.0158± 0.0224 −0.0126±0.0061
3 2.3134± 0.0150 0.0278± 0.0045 0.0926± 0.0240 −0.0126±0.0061

Table 4.6: Fixed Effects ± Standard Deviations for the OU model

k eβ̂k eβ̂H,k eβ̂C,k eβ̂HC

1 ≈ 17 ≈ 3.45% ≈ 3.95% ≈ −1.25%
2 ≈ 29 ≈ 1.68% ≈ 1.59% ≈ −1.25%
3 ≈ 10 ≈ 2.81% ≈ 9.70% ≈ −1.25%

Table 4.7: Exponential value of the Fixed Effects for the OU model
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Figure 4.8: Strength of attacking type 1 using the OU model where the high-
lighted area is the covid season

Figure 4.9: Strength of attacking type 2 using the OU model where the high-
lighted area is the covid season

Figure 4.10: Strength of attacking type 3 using the OU model where the high-
lighted area is the covid season
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Figure 4.11: GSW Attack strength type 2
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Figure 4.12: GSW Attack strength type 3
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Figure 4.13: HOU Attack strength type 2
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Figure 4.14: HOU Attack strength type 3
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4.8 Future work

The variance of the number of fouls committed in a match is difficult to account
for, because it is random, but in close matches there are an overabundance of fouls
committed in an attempt to catch up to the opponent, which is closer looked at
in [4]. To show that there is overdispersion for this in the data, I will first assume
that the number of fouls committed, X in a match is Poisson distributed with
rate λ, I will also assume that the number of scores, Y , conditional on the number
of fouls is binomially distributed with parameters 2X and p, where we have an
average of 2 attempts per foul. I.e.,

X ∼ Poisson(λ), (4.4)

Y |X = x ∼ Bin(2X, p). (4.5)

For finding the marginal expectation and variance of Y , I will use the law of total
expectation and law of total variance.

E[Y ] = E[E[Y |X]]

= E[2Xp]

= 2λp

(4.6)

V ar[Y ] = E[V ar[Y |X]] + V ar[E[Y |X]]

= E[2Xp(1− p)] + V ar[2Xp]

= 2λp(1− p) + 4p2λ

= E[y](1− p+ 2p)

= E[y](1 + p)

(4.7)

Since (1 + p) is larger than one, this underlying data-generating process would
generate overdispersion in the data.
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FIVE

CONCLUSIONS

In conclusion, the differences between the covid season and the other seasons
analyzed is that the home-court advantage got smaller, but it did not disappear
fully. This could be that because they still played near were they lived, so they
still got a boost. Where that boost could come from could differ from player to
player, but the main boost could come from better sleep or better relaxation before
a match. This is because they were still in their home city. Also the number of
fans at a match had a positive impact on all scoring types except three-pointers
and they had a positive impact on the home-court advantage. The impact an
individual fan had on the home-court advantage was positive in all three scoring
types, but they had a negative impact on the number of three-pointers scored. This
is because during covid, they scored more three-pointers, but they had a positive
impact on the other scoring types. Also, we have seen that the attacking strengths
of scoring type one and two have stayed pretty consistent, but the three-points
attacking strengths of every team have increased a lot.

21
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A - GITHUB REPOSITORY

All code and latex-files used in this document are included in the Github repository
linked below.

Github repository link

• https://github.com/Ola-R-R/Bachelor-Thesis
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