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Abstract

Adults who pretend to be children can pose a threat to children by providing their
wrong age on communication platforms to approach children online.

Concerning this topic, studies have been conducted to investigate the human
voice regarding age classification. In this master’s thesis, a training model proto-
type was used to classify voices into three groups: child, adult, and transitional
age group. The inclusion of a transitional age group in the classification helps to
consider the diverse stages of individual voice development.

The classification model prototype was trained using the Samrémur dataset.
Testing was conducted using a sample from the Common Voice dataset and the
"Children speech recording" dataset.

The available information did not include details about the distinction between
their labelled verified and non-verified audio files. Therefore, two versions of the
Samrémur dataset were created for training the model: one with only verified
datasets and another with the complete dataset. The model trained with the veri-
fied dataset achieved an accuracy of 95.23%, while the model trained with the
complete dataset achieved an accuracy of 90.68%. Both showed signs of an over-
fitted model either in their loss curve or in the model testing with the other data-
sets.

Maintaining a high accuracy is crucial for practical applicability. A calculation
demonstrated that classifying three pieces of three-second audio theoretically res-
ults in a 99% accuracy. Therefore, based on the trained model, the speaker’s voice
can be classified as early as seven seconds. This calculation considers the trim-
ming method, where each subsequent trim overlaps one second onto the previous
piece.
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Sammendrang

Voksne som utgir seg for & veere barn kan utgjgre en trussel mot barn ved a oppgi
feil alder pa kommunikasjonsplattformer for & henvende seg til barn pa nettet.

For dette emnet er det utfgrt studier der man undersgker den menneskelige
stemmen angaende aldersklassifisering. I denne masteroppgaven ble en trenings-
modellprototype brukt for & klassifisere stemmer i tre grupper: barn, voksen og
overgangsalder. Inkluderingen av en overgangsaldersgruppe i klassifiseringen
bidrar til & vurdere de ulike stadiene av individuell stemmeutvikling.

Klassifikasjonsmodellprototypen ble trent opp ved hjelp av Samrémur-
datasettet. Testingen ble utfgrt ved & bruke et utvalg fra Common Voice-datasettet
og datasettet "Children Speech Recording".

Den tilgjengelige informasjonen inkluderte ikke detaljer om skillet mellom de-
res merkede verifiserte og ikke-verifiserte lydfiler. Derfor ble det laget to versjoner
av Samrémur-datasettet for opplering av modellen: en med kun verifiserte data-
sett og en annen med hele datasettet. Modellen trent med det verifiserte data-
settet oppnadde en ngyaktighet pa 95,23%, mens modellen trent med det kom-
plette datasettet oppnédde en ngyaktighet pd 90,68%. Begge viste tegn pa en
overmontert modell enten i tapskurven eller i modelltestingen med de andre data-
settene.

A opprettholde en hgy ngyaktighet er avgjorende for praktisk anvendelighet.
En beregning viste at klassifisering av tre stykker med tre sekunders lyd, teoretisk
sett gir en ngyaktighet pa 99%. Derfor, basert pa den trente modellen, kan per-
sonens stemme klassifiseres sé tidlig som i syv sekunder. Denne beregningen tar i
betraktning trimmemetoden, der hver pafglgende trim overlapper ett sekund med
det forrige stykket.
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Chapter 1

Introduction

This chapter gives an overview of the scope of the thesis project, what it involves,
its keywords, the problem description, its purpose and the research questions in
order to achieve the wanted results.

1.1 Topics covered by the project

The thesis’ topic aims to classify the age group of a speaker. Therefore, the in-
volved topics to cover will be voice, voice audio datasets and machine learning
algorithms.

The ability to automatically identify a person’s age group based only on their
speech features has made voice analysis a useful method for age group classific-
ation. Text-independent age group classification is particularly difficult since it is
more applicable to real-world situations yet does not rely on specific text cues or
speech. Consequently, a model for age group classification would have to rely en-
tirely on the voice audio signal features.

To train and evaluate the age group classification models, a reliable and di-
verse voice audio dataset is needed. Existing voice datasets with age labels are
limited in their coverage of different age groups. Especially, the voice datasets of
underaged speakers, as there are more legal and moral considerations to make
than when collecting adult voices. Because of this, a variety of spoken audio col-
lections covering a range of age groups will be scanned for this thesis. In addition,
to guarantee the performance of the classification model and the dataset, require-
ments for the dataset will be defined as well.

Machine learning algorithms are effective tools for age group classification
that are based on voice analysis. Support Vector Machines (SVMs), K-Nearest
Neighbours (KNN) and Neural Networks (NNs) are just a few of the techniques
that have been investigated for audio categorization tasks. This thesis will also
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provide insight into several research studies related to text-independent age or
age group classification. This ought to provide a first idea of what the outcome
might be in the performed classification models in the studies.

This thesis attempts to make a contribution to the field of text-independent
age group classification by exploring the analysis of voice features, utilizing avail-
able voice audio datasets, and using a classification prototype model. The findings
and insights gained from this master’s thesis research will not only advance the
understanding of age-related vocal characteristics but also hold practical implic-
ations in the area of voice-based biometrics.

Furthermore, this thesis seeks to pursue the early stage of age group voice
classification in order to tailor better interventions. Further details to the purpose
of this, will be elaborated in the sections 1.3 and 1.4.

1.2 Keywords

Age group classification, text-independent, voice classification, soft biometrics,
audio corpora, dataset review.

1.3 Problem description

Growing numbers of young children have access to the Internet, which contrib-
utes to an increase in child abuse cases. Particularly, there is a growing concern
over child grooming because children and adults can communicate via publicly
accessible online platforms to share sexually explicit messages and media [1].
Adults who pretend to be children can be a danger to potential child victims, as
they deceive them into thinking they are interacting with someone their own age.
Many researchers are attracted to the automatic approaches to identify grooming
conversations as a result of this situation [2].

1.4 Justification, motivation and benefits

The motivation behind this thesis project origins from the Aiba project by Bours,
where chat messages are analyzed to determine to which extent the message con-
sists of sexually exploiting intentions with a minor or if it results in a user not
being the person he or she claims to be by age [3] [4] [5]. The next step after
chatting would be then voice call, for which the master thesis topic "Early soft
biometric voice recognition" was set. There, we assume that a predator gets to
talk to the victim, which would reveal the voice of the predator as another piece
of information to the chats. This helps to have an additional evaluation factor to
assess the actual identity of the predator, as well as the safety of the conversation

[6].
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Identifying or classifying the age based on the human voice with the help of
machines has been subject to several research projects so far, as being able to
identify those soft biometrics can be helpful in various areas such as forensics
to narrow down the list of suspects, call centres for market research purposes or
voice quality improvement [6].

1.5 Research questions

As mentioned in the motivation section 1.4, the purpose that this thesis eventu-
ally wants is to expose child predators online. The idea is to have a system that
tries to determine the age group child or adult of both parties based on their
voices when they are on a call. If the system detects that the indicated age does
not match the classified age group, it raises an alert to a human moderator, who
could be the parent of the potential victim. The moderator is then advised to listen
to the conversation and decide if the alert is a false alarm or a genuine concern.
If the automatic system would accurately detect a potential predator posing as a
child, they can take immediate action to protect the potential victim. This timely
intervention could help prevent any harm to the child and initiate further invest-
igations into the potential predator.

Concerning this matter, the research question in this thesis research project is
How early can the speaker’s voice be classified as child or adult?

Following additional sub-questions are set to help answer the research ques-
tion:

e What are the requirements for the dataset?

e What are the age ranges for classifying children and adult voices

e What should be the ideal audio length of the voice for age group classifica-
tion training?

The set of sub-questions is related to the accuracy of the classification at one
point in an utterance, to warn the human moderator to take a closer look into
the matter. For that, it will be necessary to implement a prototype to test with the
found voice datasets.

1.6 Contributions

The master thesis project attempts to classify the age group based on the human
voice, which will lead to the following contributions:

e A review of the found voice audio datasets.
e Age group classification prototype based on the datasets from the datasets.






Chapter 2

Related Works

This chapter covers topics relevant to the thesis project as mentioned in the sup-
porting topics from section 1.1. Insight into the state of the art of similar or rel-
evant studies concerning the age and binary biological sex classification of the
human voice will be given here.

To ensure that the biological characteristics of males and females are consist-
ently referred to throughout the thesis, the term sex will be used in accordance
with the definition by the World Health Organisation, as gender refers to the so-
cially constructed and identified characteristics of men and women [7].

2.1 Voice

In this section related topics to the human voice will be covered, which consists
of the voice characteristics, then voice audio signal features, a voice in biometrics
and the challenges in working with voice and voice audio signals. The main focus
will be from the audio computational point of view.

2.1.1 Voice Characteristics

There are multiple characteristics that can be heard and examined in each indi-
vidual’s voice. That is due to the human voice being the combination of numerous
distinct frequencies produced by the vocal cords [8]:

e vocal speech (loudness, tempo, stability — physical components)
o tonality of speech (intonation—psychological components, i.e. emotions)
e content of speech

Further features to be found in the human voice are:

e phonetic features: used in vowel recognition, which are the fundamental
frequency (F0), first four formant frequencies (F1, F2, F3, F4) and the dur-
ation [9] [10]

e pitch: emerging vocal cords vibrations [11]
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The voice’s features can be differentiated into the categories of physiological
and behavioural features. A behavioural feature would be like an accent and a
physiological feature is e.g. voice pitch [12] [13]. The influence of sound vibra-
tions on the hearing organs is measured subjectively as loudness, which relies
on the magnitude and frequency of the vibrations. A subjective indicator of how
quickly certain speech segments are pronounced over time is the pace of speech.
The most significant words are typically uttered more slowly, and pace and con-
tent can be related as each person speaks at their own unique volume and pace
[8].

A person’s vocabulary is influenced by his or her social and mental environ-
ment. When developed in adolescence by the age of about twenty years old, the
characteristics of speech, voice, and intonation, as well as the method of speaking,
persist throughout their life. They are specific and exclusively inherited features.
One can ascertain the distinctive way of an individual’s speaking after scrutinizing
the various speech constituents [8].

Various frequency spectra can be used to describe how different voices differ
in timbre. When describing a complicated sound wave using a spectrogram, the
Fourier transform is the mathematical tool used to analyze the frequency spectrum

[8].

2.1.2 Voice Audio Signal Features

Voice contains a lot of information, which can make it difficult to work with. There-
fore, one of the priorities in working with voices is extracting only the important
parts of information to ensure reliability and efficiency for any system [12].

The features that can be extracted from voice audio signal features are the
following:

amplitude [10]

Mel-frequency Cepstral Coefficients (MFCCs) [10] [14] [15]
Mel-frequency Spectrogram Coefficients (MFSCs) [10]
Gammatone Frequency Cepstral Coefficient (GFCC) [15]
Formants Wavelet Entropy (FWE) [14]

Wavelet Cepstral Coefficient (WCC) [14]

Fundamental Frequency FO [10]

Formants F1 until F4 [16]

Autocorrelation Coefficients (AR) [16]

Partial Correlation Coefficients (PARCOR) [16]

Log Area Ratios (LAR) [16]

Mel Energies [16]

Lyapunov coefficient [16]
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The MFCC, a well-known characteristic utilized widely in most voice or speaker
detection systems, replicates the frequency response of the human ear. The essen-
tial bandwidth frequencies that the human ear detects are taken into account
when designing MFCC filters. Both linearly spaced and logarithmically spaced fil-
ters are used by MFCC [17].

Another feature extraction approach that exclusively makes use of filters with
linear spacing is linear frequency cepstral coefficients (LFCC). For each frequency,
LFCC offers the same information. In comparison to MFCC, LFCC employs a greater
number of filterbanks in the higher frequency band of speech. The f-ratio, also
known as the inter-to-intra class speaker variability ratio, is substantially larger in
LFCC than MFCC [17].

In the last decade, speaker recognition techniques that are based on different
types of factor analysis i.e. joint factor analysis (JFA), i-vectors, linear discriminant
analysis (LDA) and probabilistic linear discriminant analysis (PLDA) produced
improved speaker recognition results [17]. Factor analysis is for reducing a large
number of variables in a dataset, as well as highlighting structural relationships
between the features [18].

The indices for the cycle-to-cycle changes of fundamental frequency and amp-
litude are jitter and shimmer, respectively. The voice quality is described using
these indices. From one cycle to the next, a speaker’s voice has a fluctuating fre-
quency. The assessment of voice stability known as jitter is the cycle-to-cycle vari-
ation in fundamental frequency. It is a measurement of the vocal fold vibration
periodicity reflection [10] [19]. The indicator for voice amplitude disturbance,
however, is shimmer. These characteristics, which identify unique voices, offer
speaker-specific information [10].

Various frequency spectra can be used to describe how different voices differ
in timbre. When describing a complicated sound wave using a spectrogram, the
Fourier transform is the mathematical tool used to analyze the frequency spectrum
[8].

The pitch frequency, or the frequency of the impulses of the vocal source
arising from the vibrations of the vocal cords, is one of the distinguishing charac-
teristics [8]. The pitch analyzes the audio signal’s fundamental frequency across
time. The Overlap length and Window length are used to divide the audio stream
[15]. The frequency of the basic tone is interpreted as the average estimate over a
specific interval in this situation since the frequency of oscillations can be broken
by variations in the amplitude, frequency, phase, and presence of noise. Speech
signals are complex, non-stationary, nonlinear signals with rapidly varying amp-
litude and frequency characteristics. The most common decomposition techniques
used in speech signal processing are the Fourier transform (FT) and wavelet trans-
form (WT), each of which has benefits and drawbacks [8].



8 Marie Somnea Heng: Early Soft Biometric Voice Recognition

The characteristics of the speech signal that correlate to individual voice traits
are typically explained using the frequency spectrum of the signal. One of the
most often employed feature extraction methods is the Mel-Frequency Cepstral
Coefficient (MFCC). MFCC is a filterbank-based methodology created to repro-
duce the audio frequency perception of the human ear and extracts prosodic or
acoustic features [14] [19] [20] [21]. In the scope of speech recognition, MFCC
is often used [15]. Figure 2.1 below shows the process of how the MFCC feature
is extracted from a speech sequence.

Speech Pre-emphasis, Mel scale filter Logarithmic
sequence—p Hamming = bank + compression —‘

windowing and
FFT

DCT
> MFCC

Figure 2.1: Block Diagram for extracting MFCCs feature from input speech seg-
ments [15]

In Figure 2.1 it is shown that the input speech sample is first going through
a Hamming window and Fast Fourier Transforming (FFT) process, where then
after the Mel scale filter bank and logarithmic compression is applied. Lastly, the
Discrete Cosine Transform is done from which the MFCC vector is generated [15].

The MFCC can be further computed into Mel-frequency Spectrogram Coeffi-
cients (MFSCs) to depict the speech’s smoothed spectral envelope. The difference
is that the DCT step is not existing [10].

For obtaining the Gammatone Frequency Cepstral Coefficient (GFCC), the
speech sample is also going through a Hamming window. Next to the gamma
tone filter bank and afterwards logarithmically compressed. The last step is then
applying the discrete cosine transform as depicted in Figure 2.2 [10].

Speech Hamming Gammatone Filter Equal-loudness

sequence—p»  windowing and » bank >
FFT
Logarithmic DCT
compression > GFCC

Figure 2.2: Block Diagram for extracting GFCCs feature from input speech seg-
ments. [15]

Y
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Formants Wavelet Entropy (FWE) has been used in speaker recognition sys-
tems and is obtained by computing the formants and the wavelet entropy of the
input speech that is filtered. It is applicable to partially obtained voice samples and
therefore, often used in forensics. FWE can be applied to vowel-independent as
well as vowel-dependent speech, whereas it has been mentioned that the vowel-
dependent approach is better [14].

Figure 2.3 shows that the first step in obtaining an FWE feature is recording
the speech and filtering. The recording will go through a filter bank to take out
unwanted signals from the speech recording. Next is extracting features which
consists of two parts. One part is for calculating the formants which incorporate
the speaker’s vocal tract’s acoustic resonance. For that, the Power Spectrum Dens-
ity (PSD) is applied. There the first five formants are taken for the calculation as
they are simple to identify for every human voice. Then the second part is the
calculation of the entropies by applying the Wavelet Packets (WP). This part en-
hances the recognition rate by calculating for every seven nodes of the WP the
Shannon entropy [14].

Power
Spectrum

Density

Feature
Coefficients

A,

/

r""
|
1
1
1
'
1
.
[

Input Recording
Speech and
a Filtering

1
1
1
1
(Formants) 1
1
1
1
1
1

Wavelet
Packets

(Entropy) 1
1

Figure 2.3: FWE Block Diagram [14]

Another way to increase speaker recognition accuracy is the application of
Wavelet Cepstral Coefficient (WCC), because of its robustness, which makes it
usable alongside fuzzy logic systems in noisy environments [14].

Zbancioc et al. [16] mentioned that in their previous study [22] they were
able to extract the features FO, formants F1 to F4, AT, PARCOR, LAR, mel energies
and Lyapunov coefficient.

Furthermore, the higher the quality of the voice recordings, the better the
results are after processing or training. For that, getting a clear voice out of the
recording for processing is required. Unwanted background noises like music or
other voices would disturb and lower the quality of the audio. De-noising is a
standard procedure for enhancing the audio’s quality. In case of having multiple
voices in the recording, they will need to be separated [19].

An example of eliminating the noise of clearing one’s throat, coughing, teeth
clicking and saliva noise. Chabot et al. [23] pointed out how to distinguish them
in a spectrogram (see Figure 2.4). As some persons have a tendency to speak at
the end of their cough, the spectrogram of the cough signal exhibits harmonics
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at the very end of the occurrence. Low-frequency signals with intermittent high-
frequency occurrences make up the saliva noise event. More high-frequency ma-
terial is present during throat clearing, and some harmonics can be heard given
how frequently this occurrence is voiced. A distinct impulse with a wide range
of frequencies at a specific time is what is heard when teeth click. It is necessary
to use a feature extraction technology that can appropriately represent each sig-
nal while taking into consideration the significant amplitude and spectral content
variance.

Saliva Noise

Clearing the Throat

N N
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Figure 2.4: Wavelet spectrogram of the audio events "Clearing the Throat",
"Saliva Noise", "Coughing" and "Clicking of the teeth" [23]

Kinkiri and Keates [24] mention the following ideal characteristics for fea-
tures:

e The health (i.e. cold) and age of the speaker should not alter features.
e Features ought to be challenging for others to imitate.
e Noise should not affect the features.

However, in practice, those all can not be covered nor achieved [24].
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2.1.3 Classification Models

As mentioned before in subsection 2.1.2, there are several features that can be ex-
tracted from a recording. With those features, the following models can be applied
for classification in audio processing:

Vector Quantization (VQ) [14] [25]

Hidden Markov Model (HMM) [14] [25]
Gaussian Mixture Model (GMM) [14] [15] [25]
Pitch Detection Algorithm (PDA) [14]

Neural Networks (NN) [14]

Support Vector Machine (SVM) [25]

Dynamic Time Warping (DTW) [25]

K-nearest Neighbour (KNN) [15]

Boujnah et al. [25] categorized almost all the techniques mentioned above
except for one the PDA. VQ, SVM, and DTW fall into the vector-based approaches.
Static approaches are HMM and GMM.

Then a connectionist approach is NN, meaning that it processes elements that
are highly interconnected with each other [14] [25].

The VQ is a comparison algorithm, commonly used for speaker recognition,
as it can form a set of features to represent the speech data. In other literature,
this feature set can also be referred to as a codebook [26] [27]. The advantage
of VQ is that it gives out the same results independent from the time sequence of
the testing features [26]. However, it can cause inaccuracy due to losing temporal
information [14].

The HMM approach provides a statistical depiction of the way a speaker cre-
ates sound, which describes the statistical fluctuations of the characteristics. With
HMM, the temporal data and underlying speech sounds are well-modelled. Its
accuracy is decreased by a number of speakers- and transmission-related factors,
and it does not generalize well. As a result, GMM has the advantage over HMM
when it comes to text-independent speaker recognition [28].

GMM is a static approach for classification [ 25]. However, the number of para-
meters is crucial for a good result, which is why previous work dealt with main-
taining good performance while reducing the number of parameters [29]. Other
previous works would also propose to extend the GMM due to its large size of
parameters that is required, for which e.g. the stranded Gaussian mixture Model
(SGMM) or the Subspace Gaussian Mixture (SGM) have been proposed [29] [30].

The PDA uses waveforms created using the autocorrelation approach, where
autocorrelation is a correlation between two waves. The PDA minimizes the tem-
poral complexity by cutting the number of comparisons in half and estimates the
pitch of an irregular periodic signal [14].
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A neural network (NN) is essentially a mechanism for processing information.
It is made up of processing components that are closely related to one another. By
way of learning, it genuinely helps to tackle pattern recognition issues [14].
There are several approaches for NNs, which are the following:

Feed-Forward Neural Network (FFNN) [14]
Probabilistic Neural Network (PNN) [14]
Convolutional Neural Network (CNN) [31]
Artificial Neural Networks (ANNs) [32]

Every basic structure of a NN has an input layer, hidden layers and an output
layer, where data goes through. How the data is processed in each layer or how
the layers are built, depends on the applied approach of NNs [14].

The FFNN is often built of multi-layer nodes. Its name indicates that the data,
the NN model is fed with, goes only in one-way (henceforward). Due to the multi-
layer nodes, this model takes in multiple data and returns multiple outputs in the
output layer [33].

The PNN differentiates from the FFNN by being an unsupervised FFNN model
with four layers consisting of the input, pattern, summation and output layer [33].

The CNN is built of two convolutional layers, two fully connected layers, two
pooling layers and one softmax layer [31].

The ANN uses the base structure of a NN model but takes the least-squares
method to get the weights. The weights are needed to calculate the activation
function for output [32].

SVM is frequently employed to categorize human voice recognition and falls
under the scope of supervised machine learning. SVM is a non-probabilistic, bin-
ary, linear algorithm. Researchers that have conducted speech recognition ana-
lyses or regression studies, often employ SVM in the classification process [34]
[35][36].

The Radial Basis Function (RBF) is the most widely used SVM kernel for
themes with multi-class classification output because of its high level of accur-
acy. The class of output in this study is the emotion expressed in human speech
[35] [36]. An SVM model is a mapping of the examples as points in space with as
much space between the examples of the various categories as possible. On the
basis of which side of the gap they fall on, new instances are then mapped into
that same space and projected to belong to a category [35]. In a high-dimensional
transformed space, the SVM can be used to divide data sets into the best-suited
hyperplane that is automatically selected. It exhibits separability as a result of
many challenging circumstances [34].
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DTW is a sequence matching algorithm that can be found in studies for speech
recognition and signal compression for example [37] [38] [39]. DTW has been
mentioned to cause a lot of computational costs [39]. DTW belongs to the broad
category of algorithms known as dynamic programming. The length of the speech
sample and the vocabulary size only have linear effects on the time and space com-

plexity [38].

The KNN’s concept is based on the idea that similar observations belong to
similar classes. By computing the distances between the unknown object and every
object in the training set, KNN determines the k neighbours closest to it [40] [41].

2.1.4 Performance Evaluation Models

There are four terms that are essential for the performance evaluation of a model,
which are the True Positive (TP), True Negative (TN), False Negative (FN) and
False Positive (FP) values [42].

The true positive (TP) metric is the number of correctly predicted samples as
positive. True negative (TN) refers to accurately predicted negative samples. The
false negative (FN) metric is the number of samples predicted negatively when
they are actually positive. The false positive (FP) metric then refers to samples
that are predicted as negative but are actually positive [42].

Table 2.1 depicts the description from before.

Actual Label Predicted Label Metrics Definition

Positive Positive True Positive (TP)
Negative Negative True Negative (TN)
Positive Negative False Negative (FN)
Negative Positive False Positive (FP)

Table 2.1: Definition of the terms used to calculate evaluation metrics [42]

The labels assist in computing other factors that are used to evaluate the
model’s performance and robustness. As using only the accuracy value (see equa-
tion 2.1) is not sufficient for measuring the effectiveness and performance of the
model, there are the additional measurement factors recall (see equation 2.2),
precision (see equation 2.3) and F;-score (see equation 2.4) are calculated. The
accuracy result tells the number of correct predictions of both classes [42].

TP+TN

Accuracy = (2.1)
TP+TN+FP+FN
TP
Recall = —— (2.2)
TP+ FN
.. TP
Precision = ———— (2.3)

TP+FP
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2 X Precision X Recall
Fg = __ 2.4)
1 Precision + Recall

2.1.5 Voice Biometrics

By analyzing a person’s spoken utterances, speaker or voice recognition systems
attempt to identify or verify an identity [13] [21]. The area of speaker recognition
is an attractive topic for researchers since it allows applications for voice-based
transaction authentication, access control, law enforcement, forensics and many
other things [43].

For conducting the identification process, one example would be to match
the spoken words with the same phrase that has been stored in text-dependent
speaker recognition algorithms. When identifying words, these systems take word
dynamics into account. Hidden Markov Models (HMM) and dynamic time warp-
ing are the two most popular modeling methods for text-dependent speaker de-
tection (DTW) [21].

For text-independent systems, they do not take feature dynamics into account
and instead treat the feature vector as a collection of symbols. In systems of those
types, the Gaussian Mixture Model (GMM) or Vector Quantization (VQ) are typ-
ically used to model the speakers [21]. The GMM is often used for modeling the
speaker data distribution [44]. To build the speaker model and estimate a set
of unique parameters, GMM needs a lot of training data (mean, variance, and
weights related to each speaker) [21] [44].

Due to the voice’s versatility, there have been several approaches to making
use of it. The areas it has been used in are biometric personality identification,
voice recognition applications, speech or speaker recognition for authentication
purposes or to identify soft biometrics [8] [20] [21] [25]. Soft biometrics give in-
formation about a person, in which one soft biometric trait would not be sufficient
enough to be able to identify one specific person. Those soft biometrics would be
eye color, age, or sex for example [45] [46]. The extractable soft biometrics for
voice are sex, age, and ethnicity for example [47] [48] [19].

For effective processing of voice datasets, the choice of relevant features that
may accurately convey information about a specific speaker’s characteristics is
according to [8] the most crucial component of successful speaker recognition.
The following are the requirements for them that could be also applicable to voice-
related experiments, in general [8]:

e the efficiency of presenting information about the features of a particular
speaker’s speech

ease of measurement

stability over time

practical independence from the acoustic environment

impervious to imitation
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The common way to build a speaker recognition system consists of three steps,
which are pre-processing, feature extraction and speaker modelling [49]. This
process can be also generally applicable to voice recognition systems [14].

Pre-processing is the starting point of an automated speaker recognition (ASR)
model. In order to create an efficient and dynamic ASR system, it is imperative that
this procedure is completed on the speech signal input. The voice signal is cleaned
in this step of the speaker identification system. The signal is then cleaned up by
removing the non-speech parts, which could be silence and non-voice components
[14] [49]. Endpoint identification and pre-emphasis are the next preliminary tasks
to be finished [49].

Feature extraction is used during the training and testing phases of speech
recognition systems. It can be also referred to as front-end pre-processing. It uses
feature vector or numerical descriptor sets to transform digital voice signals. The
key elements of the speaker’s speech are represented in these feature vectors [49].

The last step is speaker modelling, where modelling techniques aim to provide
speaker identification algorithms for speech feature matching of the speaker.
Speaker models are described as techniques that combine increased speaker-
specific information with a compressed volume. State speaker models are created
throughout training or enrollment by repeating the specific traits taken from the
contemporary speaker. For identification or verification tasks in the recognition
state, the speaker model is compared to the current speaker architecture [49].

There is also a standard of voice research at least in the scope of text-
independent speaker recognition, the NIST Speaker Recognition Evaluation Stand-
ard also known as NIST SRE [44].

Due to the unique physiological nature of the speaker’s articulatory apparatus
and the specificity of his speech, the speaker’s voice and, consequently, the speech
signal itself is distinctive [8].

In general, most studies concluded that improvement can be gained in the
prediction of those soft biometrics by using deep learning models. To achieve high
generalization accuracy rates, these deep learning techniques need a significant
amount of training data. However, the collection of extensive biometric datasets as
well as soft biometric characteristics like age, sex, and ethnicity may raise privacy
and security concerns. Semi-supervised learning is one method for solving this
issue. In semi-supervised learning, labeled and unlabeled data are combined to
enhance the classifier’s generalization capabilities [50][51].

As this paper also aims to identify the sex of the speaker, it may be import-
ant to understand the biological setup, development of the human voice and the
characteristics of the owner’s voice in relation to its sex. This should either help
to refine the training and/or classification process or trigger new approaches to
classify it, which then would lead to supporting the age classification as well [52].
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2.1.6 Challenges in Working with Voice and Voice Audio Signals

In the course of the literature review, some papers raised the issue of the many
influences impacting the voice that alter the original voice, which can be put un-
der the term "voice disguises".

There are two kinds of voice disguises, which are technical and natural. Those
two kinds are then each further subdivided into deliberate and non-deliberate
voice disguise [53].

A deliberate technical disguise typically refers to computer software or an elec-
tronic gadget that can change the sound of a speaker. By altering the speaker’s ba-
sic frequency, the voice can be changed. The most popular methods for achieving
this are Pitch Synchronized Over-Lap-Add (PSOLA) or Phase Voder (PV) [53].

In the non-deliberate technological disguise, all distortions and modifications
to the voice signal introduced by the communication channel, such as distortions
from the recording equipment, band restrictions, applied coding technique, and
so on [53].

The unintentional natural voice disguise changes voice parameters brought on
by a shift in the speaker’s emotional state. A person’s voice can change due to a
variety of things, including illness (a cold, a sore throat, etc.), alcohol, drugs, and
ultimately, the speaker’s mental condition, particularly when powerful emotions
are present [53].

The intentional imitation of a natural voice can be used to mask the speaker’s
identity or to imitate another speaker. There is a wide variety of deliberate natural
voice masking techniques. A few selected techniques were displayed in a paper
by Staroniewicz [53]. They can be broken down into four primary categories:
deformation, phonation, phonemic, and prosodic approaches.

Deformation tactics can come across when the vocal tract undergoes force-
ful physical alterations. The usual deformation techniques include: holding the
tongue, pulling the cheeks, pinching the nostrils, or clenching the jaws. The speaker
may also place various objects in or over the mouth [53].

Phonation techniques are all vocalization techniques that entail aberrant glot-
tal activity, such as falsetto, trembling voice or whisper [53].

Phonemic methods contain inappropriate allophone use, which happens when
a speaker imitates another person or uses a dialect or a foreign accent. The chal-
lenges with intonation are addressed through prosodic approaches [53].

Examples of natural prosodic disguise tactics include stress placement, inton-
ation alterations, lengthening or shortening of speech parts, and changing speech
pace [53].

Also possibly relevant to the master thesis topic of classifying the actual age
group of the speaker is considering the challenges from an adversary’s point of
view when an adversary imitates a voice whether it is within a technical or skillful
means for spoofing attack purposes [54]. By employing phoney biometrics for a
real individual, spoofing is accomplished. Fraudsters spoof systems using voice by
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using sophisticated speech synthesis, voice imitation or conversion, and recorded
playback [15].

Further challenges in speaker identification that again could be relevant to
other voice-related experiments are the extraction of informative features, which
is speech signal parametrization and finding and building a standard for the data-
set [8].

The next subsection will narrow down the scope of voice processing into voice
age and age group classification.

2.2 Voice Age Classification

As voice is a continuously changing trait of a human being which makes it pos-
sible to estimate the age of a person based on their voice [8] [19]. One of the few
researchers in this field demonstrated that as children become older, their vocal
characteristics alter, which affects speaker recognition abilities [17]. Additionally,
adults have a more heavy voice than children with their high-pitched voice, in
which there were reports that age estimation could be possible [55].

Due to the quick evolution of the vocal tract anatomy and the rapid develop-
ment of the brain, children and teenagers are the most diverse group of speakers
with the most distinct differences. The vocal tract doubles at least in size over the
first twenty years of life, growing from 8 cm in infants to 18 cm in adults [56].

It is characterized by an extremely steep growth curve that reaches 80% of
adult size in infancy, followed by slower, more gradual growth until adulthood.
Moreover, distinguished by an earlier, steeper growth curve that reaches 25-40%
of adult size, followed by later, consistent growth until puberty [56].

Due to differences in anatomy and motor skills between the sexes, both fun-
damental frequency and formant frequencies progressively decrease during mat-
uration. Although developmental changes are not linear, they are most noticeable
in the early years of life, from infancy to four years of age [56].

The fastest voice change occurs throughout childhood as a result of the larynx,
vocal folds, and supporting structures’ rapid expansion. The mean fundamental
frequency (FO) of females decreases consistently from 225 Hz in ages 20 to 29
to 195 Hz in ages 80 to 90 throughout adulthood. FO decreases for males until
around their 50s. After that, it steadily increases again. A measurement of vo-
cal fold vibration periodicity is called jitter. Some studies found that older women
had greater mean jitter values than younger women. Between young and old men,
there were also noticeable jitter differences [19].
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Identified difficulties in voice recognition, which are background and channel
noise, variable and subpar telephones, and extreme hoarseness, fatigue, or vocal
stress are made worse by changes in children’s voices. For that, there have been
active studies towards the extraction of meaningful information from speech over
the past three decades [17].

In the following section, recent studies were selected to gain an understanding
of how the age classification by voice was performed.

2.2.1 Studies in Voice Age Classification

In a study by Purnapatra et al. [17] they collected voices from 30 subjects over a
span of 2.5 years between 4 and 11 years of age at enrollment.

In order to evaluate the performance of longitudinal speaker recognition in
children over a period of 2.5 years, state-of-the-art features and algorithms were
examined. 20 and 60 coefficients for each of the two feature extraction strategies
were tested on the two distinct feature sets MFCC and LFCC. Table 2.2 shows that
in comparison to other algorithms and features, the MFCC20 and GMM combina-
tion presented the best performance in terms of False Match Rate (FMR) and False
Non-Match Rate (FNMR). The Equal error rate (EER) ranged from 22% at a 6-
month time instance to 42% at a 30-month time instance. Overall, MFCC and LFCC
performed better with 20-dimensional feature vectors than with 60-dimensional
features. Also, nearly every feature-algorithm combination failed to perform with
an EER between 42% and 56% throughout a 30-month period [17].

. EER | EER EER EER EER
Feature | Algorithm 6mo | 12mo | 18mo | 24mo | 30mo
MFCC20 GMM 22 26 30 24 42
MFCC20 ISV 48 46 56 52 54
MFCC20 JFA 34 38 35 40 43
MFCC60 GMM 36 38 40 43 42.5
MFCC60 ISV 36 44 40 46 46
MFCC60 JFA 43 37 44 46 52
LFCC20 GMM 26 34 29 40 48
LFCC20 ISV 48 47 50 59 56
LFCC20 JFA 43 38 45 44 50
LFCC60 GMM 38 35 41 45 51
LFCC60 ISV 48 52 46 52 54
LFCC60 JFA 44.5 36 42 52 47.5

Table 2.2: Speaker verification performance - Equal Error Rate in % [17]
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In a different study by Ilyas et al. [32] multiple machine learning methods
were used, which were Random Forests (RF), SVM, Linear Regression (LR), Poly-
nomial Regression (PR), Ridge Regression (RR) and Artificial Neural Networks
(ANNs). To evaluate their performance, 140 participants aged between 6 and 60
years old were invited for an auditory perception test, resulting in a total of 837
completed tests by the participants to classify the voice dataset by age groups. The
study’s results had an accuracy between 86% and 92% of reasonable classification
and 98.2% of age estimation with a root-mean-square error of 2.6 years.

A recent study on automating the estimation of a child’s age from voice audio
signals was conducted. The acquisition of the voice audio signal data was self-
acquired by hiring 255 Czech native children, legally represented by their guard-
ians and with their consent, consisting of 132 girls and 123 boys from the age of
4 to 15 years old. For the study, the children needed to be at least 4 years old, so
that they were able to do the study protocol. They were also partitioned into six
two-year age subgroups. The study also described the set-up of the voice audio
signal recording and what the recording contained [56].

Each utterance was manually evaluated by an expert in acoustic speech with
more than ten years of expertise in order to establish the reference values. Fol-
lowing the previously used methodology, the manual evaluation includes a global
visual review of the linear prediction coding (LPC). Selected portions with the
highest levels of overall format stability and the three formants F1, F2, and F3 vis-
ibility were included in the manual analysis. The most stable vowel duration seg-
ment of 25-50 ms was used for the estimation, which was done on a steady-state
portion of the signal. For the formant analysis, Praat software (version 6.1.09)
was used. During the manual estimation, the maximum formant values and the
number of formants were changed to produce the most accurate estimate [56].

The Support Vector Regression (SVR) technique produced the best prediction
score with a Root-Mean-Square Error (RMSE) of 1.29 and a Median Absolute Devi-
ation (MAD) of 0.20 years. The Multiple Linear Regression (MLR) model achieved
the highest predictive performance score across distinct vowels and sexes, with an
RMSE of 1.19 and MAD of 0.25 years, followed closely by SVR with the same but
less consistent RMSE of 1.19 and MAD of 0.28, both in the boy sample. SVR,
however, beat MLR in every other situation, including regression based on single
vowel characteristics, females, and mixed sexes [56].

Figure 2.5 displays a confusion matrix for the prediction made using all 20
characteristics and the SVR on the mixed-sex dataset (N = 255). 2600 guesses
produced during 100 training and classification trial runs make up the confusion
matrix. The matrix’s components depict a two-year time window. Findings indic-
ate that with the exception of the youngest group, the majority of forecasts were
accurate with regard to age. The algorithm is biased toward older ages when it
comes to the youngest group [56].
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Figure 2.5: Confusion matrix of the 100 runs of the training and testing trials
using a mixed-sex dataset and all twenty features in SVR [56]



Chapter 3

Dataset

As mentioned in the Related Works chapter 2 there were studies that either ob-
tained the voice databases from open-source database sites or conducted a voice
retrieval with participants.

In this chapter, the acquisition of voice datasets with metadata, as well as the
final decision from where to acquire the data for the experiment in this thesis will
be explained.

As this master thesis project is done at the host university Technical Univer-
sity of Kosice (TUKE) in the scope of an Erasmus+ Traineeship, an NDA has been
signed with the external supervisor at TUKE. This ensures that any obtained cor-
pora through or under the host university TUKE can only be used for this master
thesis project.

3.1 Requirements

After the literature review, the set requirements for the dataset were the audio
file and relevant metadata containing the biological sex and age. Ideally, data of
minors and adults should be of the same corpus. Furthermore, the length of the
audio file should be at least 1 second. Any audio file that is longer than 3 seconds
will be preprocessed to 3 seconds, which will be described in the section 4.2.

For the age classification, age groups were defined, which resulted in aiming to
classify the voice into one of three age groups. Hence group 1 would be voices that
are lower than 16 years old. Then group 2 is for voices between 16 and 19 years
old and is supposed to serve as a grey zone, due to the difficulty in classifying them
as a minor’s or adult’s voice. Lastly, group 3 contains voices that are older than 19
years old. This grouping will help to achieve the aim of the thesis in determining
whether the voice is a minor or an adult.

Regarding the language of the dataset, it was set that it is irrelevant to our
project because the focus is on text-independent sex and age classification. In case
a platform would provide multiple languages to choose such as Mozilla Common
Voice, the choice was primarily English due to its common majoritarian use.

21
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The selected relevant studies from section 2.2.1 showed various discrepancies
in the number of participating speakers, processed audio length, gender ratio, age
distribution, language and training and testing data ratio. In discussion with the
supervisor, specifications of the audio were set based on his expertise.

3.2 Corpora Review

As a starting point, a list of datasets was provided by the supervisor, which was
put together into an Excel file and examined. In appendix A the complete docu-
mentation with the links to the datasets can be found.

This was a time-intensive process since most dataset platforms did not provide
information about whether their dataset also provided metadata which is why the
complete dataset needed to be downloaded. The needed metadata were biological
sex and age. Another challenge in this search process was to find voice datasets of
minors because of limited access and difficulty in obtaining the legal guardian’s
consent.

The involved people in the following described corpora were contacted where
no further information or sample of the dataset could be found. The response
rate was low, but since there are corpora of children and adult voices and broad
corpora of adult voices were provided and found (see following section 3.3), no
further reminders were sent. The received responses were negative in that either
they were not available for research distribution, the quality did turn out to not
be as needed, or the metadata was not available.

3.2.1 LINDAT/CLARIAH-CZ

The LINDAT/CLARIAH-CZ repository provides the corpus "Speech databases of
typical children and children with SLI" (Specific Language Impairment). It also
included utterances of 44 children without language impairment, which consisted
of 15 boys and 29 girls aged between 4 and 12 years old. Those recordings were
conducted between 2003 and 2005 in the Czech language [57].

After downloading the "Healthy.zip" file and checking the audio, it turns out
that the majority of the audio files were less than one second. The LINDAT/
CLARIAH-CZ corpus was not considered for training the model as it did not provide
any metadata. For testing it could be still considerable, as the whole corpus is in
the classification age group 1 of lower than 16 years old. However, as mentioned
before the set minimum needed length is one second, which makes it in this case
not sufficient for testing either.
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3.2.2 TalkBank

On the other hand, The TalkBank was a project of Carnegie Mellon University
that focused on spoken communication. The project is built on a still accessible
database that was created with the assistance of many participants. Over 34 lan-
guages were included in an open data-sharing database created from the corpora
that were gathered throughout the study. The TalkBank researchers’ open-source
and free applications enable automatic analysis and searches using a standard-
ized, XML-compatible representation known as CHAT. Among the various data-
bases termed "banks" there are also Child Language Banks. First insights into those
banks showed that the corpora did not have a standard, in which some corpora
had metadata and some did not or the audio was not necessarily edited. Unedited
audio files in the sense that adults’ voices from supervising the child were mixed
in with the utterance or a whole original 2 hours video file were in there. In ad-
dition, the study was active between 1999 and 2004, which makes it likely to be
outdated in its quality [58].

Due to the unclear overview of the corpora and not standardized quality and
format of the audio files, the corpora in that database will be not suitable for
training and only some of the audio files in that database will be suitable for
testing.

3.2.3 Children speech recording

The Children speech recording corpus has audio recordings of 11 children from
2016, containing 5 females and 6 males with a median age of 4.9 years old. The
content of the recordings is of native and non-native English-speaking children,
where each of them had free speech by retelling a picture book and then repeating
given sentences [59].

The audio files were provided in full length, as well as trimmed by sentences,
which makes it ideal for pre-processing it for testing. For training, it will still not
be suitable as the amount of audio files is too little.

For this case, this corpus was selected for testing the trained model if it can
classify the children’s voices correctly. Further details to this corpus will be dis-
cussed in section 3.3.3 under the selected corpora.

3.2.4 CALL-SLT Database

The CALL-SLT Database is a corpus, which was obtained during an experiment
in 2015 on school classes in German-speaking Switzerland. 49 students between
14 and 16 years old participated in there. The experiment asked students to play
an online CALL game that contained the CALL-SLT, a speech-enabled online CALL
tool for beginner learners of English. Therefore, the recordings consist of students
solving the exercises in the game containing German and English language [60].
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Due to the missing metadata as well as the inconsistent quality of the record-
ings, they will not be suitable for training. For testing those which do not include
the automated voices from the game will usable.

3.2.5 Deeply parent-child vocal interaction dataset

The audio AI company Deeply Inc. captured the conversations between 24 parent-
child pairs (a total of 48 speakers) in 2021. An anechoic chamber, a studio apart-
ment, and a dance studio were used for the recordings, and each had a distinct
level of reverberation. The purpose of this research was to investigate the impact
of the mic’s proximity to the source and device. Each experiment was recorded
using an iPhone X and a Galaxy S7 at three different distances [61].

The Korean corpus provided the relevant metadata in the form of a JSON
file, but the recordings contain the dialogue between the parent and the child,
which would make it a time-intensive pre-processing and hence not suitable for
training. For testing a few parts of the recordings can be taken that only contains
the parent’s or the child’s voice.

3.2.6 CSTR VCTK Corpus

This CSTR VCTK Corpus includes speech data uttered by 110 English speakers
with various accents in 2019. 110 people consisting of 47 males and 63 females
between 18 and 38 years old were given 400 sentences to read out loud. The aim
of this corpus was to use it for HMM-based text-to-speech synthesis systems. This
corpus is also suitable for neural waveform modelling and multi-speaker text-to-
speech synthesis systems based on DNN [62].

The quality of the audio was already pre-processed for general use by remov-
ing silence and trimming it to one sentence. The audio length seems to be between
1 and 3 seconds making it usable for training and testing.

3.2.7 Samromur

The Language and Voice Lab (LVL) of Reykjavik University and Almannarémur, the
Icelandic Center for Language Technology, collaborated to manage the Samrémur
corpus. It has 143,031 (151.8 hours) Icelandic speech recordings, 4,957 of which
have been verified. From 2019 until 2022, the recordings were made. The corpus
is made up of audio files and a metadata file with the prompts that the participants
read. Participants were between 6 and 80+ years [63].

The length of the provided recordings is at least 1 second long, which makes it
the ideal corpus for training, as it has metadata and voices of children and adults
that covers all the three defined age groups from before in the requirements.

Further details about the Samrémur corpus will be discussed in section 3.3.1
under the selected corpora.



Chapter 3: Dataset 25

3.2.8 Boulder Learning—MyST Corpus (v0.4.0)

Boulder Learning Inc. created MyST (My Science Tutor) Children’s Conversational
Speech. It includes around 470 hours of English speech from 1371 students in
grades 3-5 speaking with a virtual science instructor about eight different science
topics. Between 2008 and 2017, there were two stages of data collection. A total
of 227,567 utterances in 10,496 sessions of speech data collection [64].

The corpus is available upon registration at the Linguistic Data Consortium
(LDC) and is free of charge. Therefore, this corpus is ideal for adding it to the
training model when in the experimenting phase. It was unknown if the metadata
is available as it was late by the time the correct site was found for requesting it.

3.2.9 CMU Kids Corpus

The CMU Kids Corpus is a database containing recordings of children reading
aloud given sentences in English. It was initially created to produce a training
set of child-friendly speech for the SPHINX II automatic speech recognizer for
use in the Carnegie Mellon University project LISTEN in 1997. The children were
between 6 and 11 years old. There were 52 female speakers compared to 24 males.
It has also been described by the authors that, despite the fact that there are more
females than boys, they believe that this imbalance should not have much of an
impact due to the similar vocal tract lengths of the two at this age. In total, there
are 5,180 utterances [65].

The corpus is also available on the LDC site upon registration and purchase
which cost between 0$ and 500$. Based on the provided sample, the quality of the
corpus seems to be decent and has a length of 22 seconds, which is ideal as it is
easier to trim than to concat audios for processing. Therefore, for future purchases
this corpus is considerable.

3.2.10 CSLU Kids’ Speech Corpus

The CSLU Kids’ Speech Version 1.1 is a compilation of 1100 kids in Oregon’s Forest
Grove School District between Kindergarten and Grade 10 speaking English spon-
taneously and loudly in 2007. This release includes 1017 files, each of which has
8-10 minutes of speech from each speaker. The original purpose of the corpus was
to research the traits of young children’s speech at various ages as well as to train
and assess recognizers for use in language learning and other interactive tasks in-
volving kids, including training recognizers for deaf kids’ language development
[66].

The corpus is available on LDC as well and the licence cost between 0$ and
1508%. The provided sample indicated a lot of white noise and fidgeting with the
microphone, which results in a noisy recording. There were also a lot of silence
parts and the audio volume was inconsistent. Therefore, this corpus is not con-
sidered for training or testing.
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3.2.11 PF-STAR Children’s Speech Corpus

The PF-STAR British English children’s speech corpus is part of the IST-2001-
37599 "PF-STAR: Preparing for Future Multisensorial Interaction Research" EU
Framework 5 project in 2006. The corpus was gathered by academics from the
Department of Electronic, Electrical, and Computer Engineering at the Univer-
sity of Birmingham in the UK at three locations: a university laboratory and two
elementary schools. This corpus includes 158 children’s scripted English speech
samples, ranging in age from 4 to 14. The recordings are broken down into three
sets: a training set (86 speakers, 703 recorded speech files, 7 hours, 29 minutes,
and 49 seconds, non-speech included), an evaluation set (12 speakers, 97 recor-
ded speech files, 53 minutes, and 57.579 seconds, non-speech included), and a
test set (60 speakers, 510 recorded speech files, 5 hours, 49 minutes, and 47.088
seconds, non-speech included) [67].

Only one paper about the corpus could be found online, in which the author
has been contacted. However, there has been no response.

3.2.12 TBALL

The TBALL (Technology Based Assessment of Language and Literacy) corpus was
created by researchers from the University of Southern California, the University
of California Los Angeles and PPRICE Speech and Language Technology in 2005.
The research aimed to validate the impacts of educational technology by link-
ing automatically derived literacy measures from educational technology to later
reading performance. 256 children between 5 to 8 years old participated and were
from English and/or Spanish native-speaking backgrounds. The given sentences
to read aloud were in English. The result is an almost 30,000 speech recording of
over 40 hours [68].

One of the TBALL corpus authors was contacted for access to the corpus. Due
to the condition of the parent’s consent to the data collection, they are not allowed
to distribute the data.

3.2.13 CASS_CHILD

The CASS_CHILD corpus is created by the Institute of Linguistics, Chinese Academy
of Social Sciences in China from 2009 to 2012. The original purpose of the corpus
was to investigate the difference between the Chinese and Indo-European lan-
guages, for which 23 Mandarin-speaking children’s voices were recorded over a
period of time starting from when they were 1 year old until 4 years of age. 13
boys and 10 girls participated, which gave a result of around 570 hours of the
recording [69].

The contact details of the researchers were not provided in the paper and
online they could not be found either.
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3.2.14 Providence Corpus

The Brown University corpus contains longitudinal audio/video recordings from
2002 to 2005 of six English-speaking, monolingual children’s conversations with
their parents in natural settings. The children ranged in age from 1 to 3 years
old. In order to research early phonological and morphological development, the
study’s goal was to offer a corpus of phonetically transcribed data with connected
auditory files. There were 3 boys and 3 girls among the participants. A total of
364 hours of speech make up the corpus [70].

The provided recordings are unedited, which means that they are at their full
length per session of around 50 minutes. The recordings also contain the research-
ers’ and parents’ voices, as well as background noises. This makes the corpus not
considerable for further processing for the training or testing afterward.

3.2.15 Lyon Corpus

The University of Lyon 2 produced the Lyon Corpus between 2002 and 2005.
The corpus contains longitudinal audio/video recordings of five French-speaking,
monolingual children from the ages of one to three as they engaged in natural
household interactions with their mothers. In order to research early phonolo-
gical and morphological development, the study’s goal was to offer a corpus of
phonetically transcribed data with connected auditory files. There were 2 boys
and 3 girls among the participants. There are 185 hours of speech in the corpus
[71].

The quality of the Lyon Corpus is similar to the before mentioned Providence
Corpus in subsection 3.2.14, which means full-length and noisy sound in the re-
cordings. This makes the corpus not suitable as well for this project.

3.2.16 Demuth Sesotho Corpus

The Demuth Sesotho Corpus was built between 1980 and 1982 in Lesotho in
southern Africa. A longitudinal examination of the linguistic development of four
target children throughout the course of their interactions with family members
is contained in the corpus. A corpus of 98 hours of speech with roughly 13,250
utterances is the end result. Due to the fact that these data were amassed in im-
promptu home and neighborhood settings, many of the recordings contain nu-
merous speakers. These include younger peers (ages 2 to 4), older siblings (ages
5to 7), and adults (adult cousins in their adolescent years, parents, grandparents,
and guests). Thus, data from these speakers, who are all listed at the top of each
file, can be extracted by researchers interested in studying ordinary Sesotho adult
speech. The corpus has roughly 40% of the 4 target children’s utterances, 40% of
adult utterances, and 20% of peer or older sibling utterances [72].

Again, as in the previously mentioned two corpora in subsection 3.2.14 and
3.2.15, this corpus has the same quality, whereas this one has low volume and
low sound quality, making it not suitable for this project either.
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3.2.17 CHIEDE

The site where the CHIEDE corpus was provided did not give much information
about it. Hence, it is only stated that 59 young participants and 7 hours 53 minutes
of recordings make up the CHIEDE corpus of spontaneous child language. Around
a third makes up the child’s language, with adult speech making up the other two-
thirds. The spontaneity of the encounters is CHIEDE’s key characteristic and was
created in 2005. It was lastly updated in 2008 [73].

The corpus can be obtained by purchasing the license. For academic purposes,
this can cost between 100€ and 5000€. A sample was not provided, which made
this corpus not considered for future purchases.

3.2.18 TIDIGITS

The TIDIGITS corpus was created and assembled by Texas Instruments, Inc. in
1982. Its goal was to create and test algorithms for connected digit sequence re-
cognition independent of the speaker. There are 326 speakers, each of whom pro-
nounces 77-digit sequences (111 males, 114 women, 50 boys, and 51 girls). Each
speaker group is divided into a training and test subset [74].

The corpus is available on the LDC site upon purchase between 0$ and 5008%.
A sample was not provided, which made this corpus not completely reviewable.
Based on the description, the TIDIGITS seems to be a promising corpus if purchas-
ing of corpora is considered for future research.

3.2.19 FAU Aibo Emotion Corpus

The FAU Aibo Emotion Corpus is a collection of children’s impromptu, emotion-
ally charged speech recorded while they spoke to Sony’s Aibo the pet robot. The
corpus is made up of 9 hours of German speech from 51 kids between the ages of
10 and 13 as they converse with Sony’s pet robot Aibo. Using syntactic-prosodic
criteria, the children’s audio recordings were manually divided into brief, syn-
tactically significant "chunks" [75].

Upon further search for contact details to ask for the corpus, it turned out that
the researcher who built this corpus for his PhD thesis passed away in 2018.

3.2.20 Swedish NICE Corpus

The Swedish NICE corpus includes spoken exchanges among children between
the ages of 8 and 15 who are acting out fairytale characters in a virtual world.
The data were collected on a number of times throughout the years 2004-2005.
5,580 utterances from user sound files total were included in the corpus of human-
computer communication [76].

Upon corpus request to the authors, there was no response, which did not
make it possible to review the Swedish NICE Corpus any further.
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3.2.21 SingaKids-Mandarin

The Institute for Infocomm Research and the National University of Singapore cre-
ated 2016 the SingaKids-Mandarin corpus, which contains 79,843 utterances and
125 hours of data (75 hours of speech) from 255 Singaporean kids between the
ages of 7 and 12. All of the speakers could speak at least Mandarin and English and
were bilingual or multilingual. This study’s objective was to examine Singaporean
children’s acoustic characteristics [77].

One of the researchers was contacted in regard to the corpus, however, there
was a response, in which no review of the corpus could be done.

3.2.22 CFSC

The children’s Filipino speech corpus (CFSC) was used in this study to provide
offline test data for the evaluation of the RMD system, training data for the gener-
ation of speech models, reference speech features (such as pronunciation models
and word durations) from good readers, and analysis of actual reading errors dis-
covered in children’s Filipino speech. There were two separate recordings made
in 2012. The recording was conducted in two parts. About five hours of continu-
ous read speech from 37 pupils, whose ages ranged from about 7 to 11 years, are
included in the first section of the CFSC. Twenty boys and seventeen girls make
up the group of 37 students. All 37 of the candidates, who attend the University of
the Philippines Integrated School in Quezon City, were chosen by their professors
as the top readers in their courses. A total of 20 students between the ages of 6 and
9 years contributed nearly three hours of continuous read speech for the second
section of the CFSC. There are 9 boys and 11 girls among these students. Students
from Makati City’s Nemesio Yabut Elementary School make up all 20 contestants
[78].

The available age voices would have been of interest for testing and experi-
menting. However, there was no response from the authors regarding the corpus
request, which did not allow any further review of the corpus.

3.2.23 JASMIN Speech Corpus

The JASMIN speech corpus is a collection of Dutch speech from young people,
non-native speakers and seniors living in Flanders and the Netherlands. The voice
recordings consist of texts read aloud and man-machine dialogues from 2008 and
are enriched with various layers of annotation totaling 115 hours of speech. The
JASMIN speech corpus is an addition to the Spoken Dutch Corpus [79].

Upon registering to get access to the corpus, the access was still denied. There-
fore, no further review of the JASMIN Speech corpus was possible.
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3.2.24 Corpus Multilingual Children at Pre-school Age (MEKI)

The Corpus Multilingual Children at Pre-school Age (MEKI) was developed as a
component of a study that went along with the rollout of a program to enhance
language learning. The youngsters in the groups that were observed ranged in age
from eight to twelve. The research was carried out between 2004 and 2006. The
objective was to assess the linguistic growth of children between the ages of 5-7
who had not yet started kindergarten. 85 recordings totalling 3 hours, 8 minutes
long make up the MEKI corpus version that is archived at the IDS [80].

The corpus could not be obtained due to a denial of accessing it after a few
days after registering on the site where the corpus was provided. Hence, no further
review could be done.

3.2.25 ALCEBLA

The site, where the ALCEBLA corpus from 2011 is published, gives little informa-
tion about it. It is mentioned that there are 23 simultaneous bilingual youngsters
who live in Germany and attend the first level of the Spanish supplementary school
and that the audio recordings are in Spanish. 23 speakers (14 female, 9 male), 66
communications, 64 recordings, and 2122 minutes make up the corpus [81].

The corpus could be obtained on the site of the University of Hamburg after
an access request. The corpus did not contain metadata and the audio files are in
their full and unedited recorded length. In the recording, the voices of the young
participant and the supervising person can be heard. The sound quality is very
good, which makes it suitable for testing.

3.2.26 Common Voice

Mozilla’s Common Voice is a voice dataset that is freely accessible to the public and
is powered by volunteer participants from all around the world. The dataset can
be used to train machine learning models for people who want to create speech
applications. At the moment it provides corpora of 108 languages [82].

Upon taking a closer look at the English corpora, there are regular updates
on the new version of the English corpus. Next to the latest full corpus which is
currently 76.39 GB, there is also a corpus segment release of 2.11 GB for version
13.0 for example. Both of them contain metadata in the form of .tsv-files. The
recordings are a mix of read sentences or spontaneous talking as the impression
gives. Nevertheless, the immense size of this corpus makes it a highly suitable
corpus for training just adult voices, since common voice only allows to upload of
voices that are from 19-year-old speakers and upwards.

For this case, this corpus was selected for testing if the trained model predicts
the adult voices correctly. Further details to this corpus will be discussed in section
3.3.2 under the selected corpora.
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3.2.27 aGender

The aGender corpus is an age-annotated database of German telephone voices.
A total of 954 paid volunteers spoke for 47 hours of prompted and free text in a
manner resembling automated voice services. Male and female participants were
equally distributed among the four age cluster groups of children, adolescents,
adults, and seniors while choosing the participants. The text primarily comprises
of short orders, single phrases, and numbers and was written to be typical of
automated voice services. A second database consisted of 659 speakers, 368 of
whom were men and 291 of whom were women, who dialed an automated voice
portal server and freely responded to one of the two questions [83].

Upon corpus access request by e-mail, one of the authors responded and dir-
ected to the Bavarian Archive for Speech Signals where the corpus can be pur-
chased between 455€ and 327€ for scientific purposes. A purchase for this or
future works would be not recommended as the quality was low, as the voices
were recorded through a phone call.

All those reviewed corpora have been documented in an Excel sheet file. That
helped to better judge, which corpora are considerable for training and/or testing.
Table 3.1 gives an overview of the reviewed corpora.

After that further self-search was conducted with the Google search engine.
It was barely possible to find any free voice dataset of minors and adults of the
same corpus for scientific usage. Therefore, no further corpora were found aside
from the before-mentioned corpora.

The final selected corpora for the master thesis project will be discussed in the
next section.
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Corpus Audio + | Age No. of | Year
Metadata | range Participants
Lindat no 4-12 44 2003-
2005
TalkBank no 0.5-18 >100 cor- | 1999-
pora 2004
Children speech recording | no unknown| 11 2016
CALL-SLT Database unknown | 14-16 49 2015
Deeply parent-child vocal | yes 5-39 823 2021
interaction dataset
CSTR  VCTK Corpus | yes 18-38 110 2019
(v0.92)
Samrémur L2 22.09 yes 5-90 2189 2022
Boulder Learning—MyST | no unknown| 1371 2008-
Corpus (v0.4.0) 2011,
2013-
2018
CMU Kids Corpus unknown | 6-11 76 1997
CSLU Kids’ Speech Corpus | unknown | unknown| 1100 2007
PE-STAR Children’s Speech | unknown | 4-14 ca. 159 2006
Corpus
TBALL unknown | 5-8 256 2005
CASS_CHILD unknown | 1-4 23 2009-
2012
Providence Corpus yes 1-3 6 2002-
2005
Lyon Corpus yes 1-3 5 2002-
2005
Demuth Sesotho Corpus no 2-4 550 1980-
1982
CHIEDE unknown | unknown| 59 2005-
2008
TIDIGITS unknown | unknown| 326 1982
FAU Aibo Emotion Corpus | unknown | 10-13 51 2009
Swedish NICE Corpus unknown | 8-15 ca. 75 2004-
2005
SingaKids-Mandarin unknown | 7-12 255 2016
CFSC unknown | 6-11 57 2012
JASMIN Speech Corpus unknown | unknown| unknown 2008
Corpus Multilingual Chil- | unknown | unknown| unknown 2004-
dren (MEKI) 2006
ALCEBLA no unknown | 23 2011
Common Voice yes 18+ unknown 2023
aGender yes 7-80 945 2010

Table 3.1: Listing of reviewed corpora
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3.3 The Selected Corpora

Among the reviewed corpora there were two corpora available for online down-
load. The Samrémur is chosen for training and testing, while the Mozilla Common
Voice dataset is for evaluating the model later on.

3.3.1 Samrémur Corpus

The Samrémur dataset L2 22.09 (available at https://www.openslr.org/130/) is
a corpus consisting of voices from children and adults ranging from 5 to 90 years
old in the Icelandic language of non-native speakers. 2189 people participated in
the collection process between 2019 and 2022.

The corpus consists of 143,031 recordings equivalent to 151.8 hours. After
filtering out only the verified ("is_valid"), given "gender" and age out of those
recordings 3,552 recordings were suitable for the master thesis project consisting
of a total of 213 speakers with a 102 female and 111 male ratio [63]. As there was
no further information given on what exactly verified audios were it was decided
to include the not verified audios as well. Since not every recorded voice provided
information about gender and age, the final complete corpus resulted in 139,640
audio files. For the experiment, there will be one with the verified dataset and the
other with the complete dataset to see how much difference it makes between the
solely verified and complete dataset.

The files are provided in Free Lossless Audio Codec (FLAC) audio file format,
which is around 4 seconds after listening to some randomly selected files.

The provided README.txt file to the corpus mentions that it was executed and
collected by the Language and Voice Lab at Reykjavik University in cooperation
with Almannarémur, the Icelandic Center for Language Technology. Further, it
states that the spoken hour split between female speakers is 101 hours and 28
minutes, while for male speakers 46 hours and 4 minutes are available, which
would explain why some speakers have more utterances than others.

3.3.2 Mozilla Common Voice

The English Common Voice Delta Segment 13.0 was downloaded to use for eval-
uating the training model. Since it is just for evaluation, the latest Common Voice
Segment dataset was taken instead of the complete Common Voice Corpus 13.0.

The partial corpus serves as a sample of the complete corpus version. It con-
tains 30,280 English audio files and metadata files.

The metadata files that are outside the audio file folder are of the complete cor-
pus, which is separated into the different groups dev.tsv, invalidated.tsv, other.tsy,
reported.tsv, test.tsv, train.tsv and validated.tsv. The provided metadata files for
the segmented corpus are invalidated.tsv, other.tsv, reported.tsv and validated.tsv.
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Every metadata contains information about the filename, spoken sentence,
upvotes, downvotes, age, gender, accents, variant, locale and segment.

The upvotes show the number of people who confirmed that the audio matches
the spoken sentence, while the downvotes show the number of people who con-
firm that the audio does not match the sentence.

The segment column can contain a sentence that belongs to a custom dataset
segment.

Randomly selected audio files showed that the files are around 5 seconds long.

3.3.3 Children speech recording

The Children speech recording corpus was downloaded to use for evaluating the
model as well since the Common Voice Delta Segment dataset did only contain
voice audio files that are from speakers above 18 years old.

The metadata was documented in the folder, which was first divided into free
speech or given words and sentences. Then it was divided into files that were cut
into sentences or were left at their full length. After that, each folder was encoded
with the gender and speaker’s background of being a native or non-native English
speaker.

For that, the free speech recordings that were cut by sentences were taken into
consideration, which was a total of 222 audio files.
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Methodology

This chapter describes the approach and process of setting up the age group classi-
fication model, which is structured into the sections preparations, pre-processing,
feature extraction, classification model and lastly performance evaluation, where
the trained models predict the audio files of the Common Voice dataset.

4.1 Preparations

A single virtual machine (VM) with root access at Openstack (SkyHiGh/stackit)
was requested and set up. The request was for an estimated amount of eight CPU
cores, 32 GB of RAM, 512 GB of storage space and a Linux operating system, which
was granted. The 512 GB were formatted and mounted on /mnt/data. The coding
environment was Visual Studio Code by Microsoft. A plug-in tool was installed in
Visual Studio Code so that the VM could be accessed via an SSH connection.

The starting point was searching for available Python projects that were re-
lated to voice age classification or just voice classification.

The aim of this process was to find an article that would not only provide the
code and dataset but also explain the idea and the process behind that.

There were two promising-looking projects. The first one was "Age prediction
of a speaker’s voice" by Notter [84] and the second one was the "Age Estimation
based on Human Voice" project by Arrotta [85] on GitHub.

The first one by Notter gave a helpful explanation and insight into the field of
audio data extraction, data cleaning, and feature extraction, as well as on the ex-
ploratory data analysis on audio datasets and lastly the machine learning models.
The used dataset was the Common Voice from Mozilla. The dataset was down-
loaded from a provided Kaggle repository, a 14 GB snapshot of the over 70GB
original dataset from Mozilla, one of the versions from 2017. The author stated
that in the given example around 9,000 audio files were used.

Unfortunately, it was not possible to replicate this elaborated project, due to
failures in the feature extraction process with the Samrémur metadata CSV file.

35
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Therefore, the other project by Arrotta was approached, which gave more
promising outputs after managing to extract features from the Samrémur metadata
and audio file. For this part section 4.2 will elaborate on the process.

Based on that the latter found code was chosen to use it as the base code of this
master thesis project. Before the code was further modified and adjusted for the
purpose of this thesis, the Samrémur dataset needed some pre-processing, which
will be explained in the following section.

4.2 Pre-processing

In regards to the aim of this thesis, which is the early classification of the age
group, the audio duration for when the age group should be classified is at three
seconds. This duration was taken from the suggested length of the first found
project of Notter (see previous section 4.1). For that reason the Samrémur audio
files, which are longer than three seconds, needed to be trimmed into 3-second
pieces. Those that are less than one second would be ignored. The audio files
that were between one second and three seconds were kept, to prevent losing too
much data.

To ensure a smooth trim of the audio files, after the first 3-second trim, the
next 3-second piece of the audio was trimmed with a one-second shift into the
previous piece. If put together, this would create an overlap of the audio pieces.

For example, trimming an eight-second-long audio will return four pieces con-
sisting of three 3-second pieces and one 2-second piece, which is the leftover of
the audio. If the leftover piece of the audio was less than one second, then it would
be ignored and not saved.

The following figure 4.1 explains visually the trim approach.

L ssec |
3 sec.
| 2 |
2 sec.

Figure 4.1: General representation of trimming the Samrémur audio files that
were over 3 seconds

For editing the audios the pydub Python library [86] was used, which was
only able to manipulate audio files of the type WAV, mp3, ogg, flv and other ffmpeg
supported files, which did not include audio files of type FLAC. Hence, the filtered-
out Samrémur dataset was converted into WAV format with a shell script. At first,
the trimming script was tested out on the 3,552 verified audio files. Among them,
2,524 files were over three seconds and needed to be trimmed, which helped
to increase the dataset by around 116% with 7,673 verified audio files in total
afterwards.
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The whole Samrémur dataset was increased by around 89% totalling 264,080
audio samples from 139,640 audio files.

Further audio processing was not needed as there were no disturbing back-
ground noises or impairing silences that needed to be removed.

The provided Samrémur corpus metadata was a TSV file, which could be
opened in Microsoft Excel for easier filtering. From there, unused columns were
removed for a better overview.

The used columns were the filename, sex and age. The sex was encoded into
0 for males and 1 for females. Then a column with the age group was included,
which was coded in 0, 1 and 2. 0 for age groups from O to 15 years old. 1 for
age groups from 16 to 19 years old and 2 for age groups from 20 years old and
upwards.

From there the audio files could be then filtered out for the feature extraction
process.

4.3 Feature Extraction

For the feature extraction process, the librosa Python package [87] was used. This
package is specifically for music and audio analysis.
Here, the following features were extracted [85] [87]:

e Sex and age group: The speaker’s sex and age group was taken from the
metadata file.

e Spectral centroid: At each frame, the "average" frequency will be calculated,
with frequencies being relatively weighted by their energy.

e Spectral bandwidth: It is similar to the centroid but for calculating other
moments or variance in the audio.

e Spectral rolloff: The frequency f at which nearly all of the energy in the
frame is at frequencies below f will be determined.

e MFCCs: A signal that has a limited number of typically 20 characteristics and
each of which accurately captures the general shape of a spectral envelope.
It simulates the features of the human voice.

After some little adjustments to the original code to make it executable on the
metadata file, it took around six hours to extract the features.

The features were saved into a CSV file containing 26 features, as the MFCC
returned 20 characteristics. Table 4.1 shows what the extracted feature outputs
of the first five audio files look like.

From there on the next step is the implementation of the classification model.
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filename | gender| spectral | spectral| spectral| mfcc1 | ...| mfcc| age

centroid| band- | rolloff 20 group
width

012159- | O 1976.2 | 1590.4 | 3420.6 | -274.9 | ... |-1.8 | 2

0319581-

3.wav

012604- | O 2437.0 | 1383.7 | 3885.4 | -274.9 | ... | 1.0 |2

0337286-

3.wav

012159- | O 1114.4 | 1300.8 | 2072.0 | -270.7 | ... | -1.0 | 2

0319579-

S.wav

012560- | O 2351.1 | 1779.5 | 4369.1 | -405.8 | ... [ 3.2 |1

0336635

.wav

010961- | 1 1498.8 | 1314.4 | 2595.8 | -283.3 | ... [ 2.1 | 2

0289261-

1l.wav

Table 4.1: Snippet of extracted features from the 3,225 Samrémur audio files
(for presentation purposes numbers have been shortened down to one decimal
place and mfcc2-mfccl9 are hidden)

4.4 Classification Model

The used model for classification was the Sequential model from Keras, a Python-
written deep learning API that runs on top of the machine learning framework
TensorFlow [88]. Tensorflow is an open-source machine learning platform. It has
community resources, tools, and libraries.

Tensorflow was created by the Google Brain team, a group of researchers and
engineers within Google’s Machine Intelligence Research division to undertake
machine learning and deep neural network research. The system is broad enough
to work in a number of different additional domains as well. At the moment
Tensorflow is supported on Python and C++ APIs.

The Sequential model has layers that are stacked linearly and are used in deep
learning. The model is basically built with an input layer, hidden layers and an
output layer. The input layer consists of the taken-in raw data. Each hidden layer
gives the output as the input to the next layer. It is also possible to merge layers,
which allows multiple Sequential instances to be blended into a single output. The
output layer returns the final prediction or in this case, classification of the model
and can be used as the initial level in a brand-new sequential model [89].
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The suggested model from Arrotta has an input layer, seven hidden layers
and an output layer followed by compiling the model and doing a checkpoint of
the model by saving it to a HDF5 file. After that, the training part of the model
consisted of setting the epochs and batch size.

An epoch is completing the run through the entire training dataset. The model
makes predictions on the full training dataset during an epoch and modifies its
parameters in accordance with the estimated loss. Increasing the number of epochs
can generally boost a model’s accuracy, but it also raises the possibility of overfit-
ting if the model begins to retain the training data [90].

The batch size is the number of training examples used in a single gradient
descent iteration during the training of a deep learning model. How many train-
ing examples are processed before the model’s parameters are changed depends
on the batch size. While processing the complete training dataset takes more it-
erations, smaller batch sizes can result in faster convergence and higher general-
ization performance. Larger batch sizes can lessen the amount of training dataset
processing iterations needed, but they can also cause slower convergence and
worse generalization performance [90].

Little adjustments in the code were done in the output layer and in the model
compile part.

The units in the output layer were changed to three units instead of eight since
there are three classes to be classified by the model, which are the age groups.

In the model compile part the learning rate was added so that the model could
take its time to find the minimum loss function.

Since the original code worked with the complete Common Voice dataset, it
used 50 epochs and a batch size of 128. This is a high number of datasets to
take per batch. For this case with the verified dataset, the best result was with 30
epochs and a batch size of 16, giving an estimated test accuracy of around 93%.

The dropout layers were kept since they help to prevent the model from over-
fitting during the training process.

With those adjustments figure 4.2 gives a summarised overview of the set-up
Sequential model.
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Model: "sequential_3"

Layer (type)

Output Shape

Param #

batch_normalization_27
chNormalization)

dense_27 (Dense)

batch_normalization_28
chNormalization)

dropout_12 (Dropout)
dense_28 (Dense)

batch_normalization_29
chNormalization)

dense_29 (Dense)

batch_normalization_3@
chNormalization)

dropout_13 (Dropout)
dense_30 (Dense)

batch_normalization_31
chNormalization)

dense_31 (Dense)

batch_normalization_32
chNormalization)

dropout_14 (Dropout)
dense_32 (Dense)

batch_normalization_33
chNormalization)

dense_33 (Dense)

batch_normalization_34
chNormalization)

dropout_15 (Dropout)
dense_34 (Dense)

batch_normalization_35
chNormalization)

dense_35 (Dense)

(Bat

(Bat

(Bat

(Bat

(Bat

(Bat

(Bat

(Bat

(Bat

(None, 24)

(None, 1024)

(None, 1024)

(None, 1824)
(None, 1024)

(None, 1024)

(None, 1©24)

(None, 1024)

(None, 1824)
(None, 1824)

(None, 1024)

(None, 1824)

(None, 1824)

(None, 1024)
(None, 1824)

(None, 1824)

(None, 1024)

(None, 1024)

(None, 1824)
(None, 1024)

(None, 1024)

(None, 3)

96

25600

4096

2]

1049600

4096

1049600

4096

<]

1849600

4096

le496e0

4896

2]

1le49ee0

4896

1049600

4096

2]

1049600

4096

3e75

Total params: 7,488,739

Trainable params: 7,392,

3e7

Non-trainable params: 16,432

None

Figure 4.2: Model summary
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The next step was to find the best split of the dataset for training and test-
ing, which was done by including the stratified k-fold cross-validation [91] in the
code. This helps to split the dataset at specific positions that vary for every fold
by shifting the position. The stratified instead of the classic k-fold cross-validation
was chosen, because it ensures that in addition the dataset is kept in their distri-
bution and proportion in each fold. Figure 4.3 shows how the split dataset works
visually.

The split ratio between training and testing is set at 80% training, 10% testing
and 10% validation of the dataset, which has been seen as a common ratio split
in literature as well in the original code. However, the shuffle variable was set to
True so that the random state could be set to 42. The random state can be any
number, which needs to be the same when run again, as this helps in terms of
the reproducibility of the output. Even if the accuracy and loss results may show
differences after each run, it would only be a small difference. The k was set to 10,
which means the model is trained 10 times each at different dataset positions. The
higher the k-value the more time it takes to run the model, but the more precise
the optimal position of splitting the dataset can be found.

Training Validation

Fold 1 | [N I O I e e
Fod2 (NN -
Fod3 [N -

(Fold 4-9)

Foid 10 - [F55 FN [  w

Figure 4.3: Implemented stratified k-folds cross-validation

Again, the verified Samrémur dataset was first trained and then went through
testing and validation.

Then the complete Samrémus dataset was run through the model.

Both went through the complete stratified 10-fold cross-validation. This needs
to be only run once to find out which fold is the best for each dataset. Taking
the best fold means making the most optimal split in the dataset for training,
validation and testing.

The result is having one model trained twice with different datasets, one the
complete and the other the solely verified Samrémur dataset, which will be used
for the next step in the performance evaluation on different datasets.
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4.5 Performance Evaluation

Finally, for the performance evaluation the partial corpus version from the Com-
mon Voice [82] and the children’s speech recording [59] were taken and tested
on the model with the function predict from tf.keras.Model [92].

The test audio files were also trimmed the same way as the Samrémur dataset
before performing the evaluation. If an audio file was trimmed into multiple parts,
it will have its own prediction for each part. Hence, the majority of the occurring
predicted age group was set as the prediction output for the complete audio file.

The performance evaluation was performed once with the model that was
trained with the verified Samrémur dataset and another once performed with the
complete Samrémur dataset.

This gave two results for comparing the two models, which will be presented
and discussed in the following chapter.



Chapter 5

Results and Discussions

In this chapter, the results from training the model with the different filtered Sam-
romur dataset will be presented and discussed.

5.1 Results

5.1.1 Model Training Results

After running the classification model with the verified Samrémur dataset, the
following table 5.1 gives the specific output values for each fold.

k | Accuracy | Precision| Recall | F1-score
1 |93.75 91.99 91.67 | 91.83
2 |94.01 92.17 92.90 | 92.52
3 | 94.53 94.50 93.05 | 93.71
4 9791 97.57 97.75 | 97.65
5 |95.30 94.70 94.98 | 94.84
6 | 94.26 92.77 91.31 | 92.00
7 | 96.08 96.00 95.37 | 95.66
8 |94.78 94.25 93.07 | 93.57
9 |96.08 95.44 96.08 | 95.75
10 | 95.56 93.61 93.94 | 93.77
u | 95.23 94.30 94.01 | 94.13

Table 5.1: Result of stratified 10-fold cross-validation with the verified Samrémur
dataset (in %)

The following table 5.2 shows the result of the model trained with the com-
plete dataset for each fold.
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k | Accuracy | Precision| Recall | F1-score
1 89.90 83.53 82.22 | 82.84
2 91.01 84.25 82.3 83.22
3 91.73 85.32 84.31 | 84.80
4 90.19 84.75 81.67 | 83.07
5 91.38 84.90 83.28 | 84.05
6 91.03 83.22 83.00 | 83.11
7 89.64 82.73 79.10 | 80.71
8 91.33 85.07 83.51 | 84.26
9 90.39 84.07 82.23 | 83.10
10 | 90.18 84.09 83.59 | 83.81
u | 90.68 84.19 82.52 | 83.30

Table 5.2: Result of stratified 10-fold cross-validation with the complete Sam-

réomur dataset (in %)

To get another point of view on the model’s performance during training, the
following figure 5.1 shows the accuracy curve of the model trained with the veri-
fied dataset. This displays how well the model improves over time. For the loss

curve, the figure 5.2 is shown.

Accuracy Curve Fold 4

0.95

0.90

Accuracy

—— Training Accuracy

Validation Accuracy

o 5 10 15 20 25 30
Epochs

Figure 5.1: Training and validation
accuracy curves of the verified Sam-
réomur dataset (4th fold)

Loss Curve Fold 4

—— Training Loss
— Validation Loss

5 4 ® B 2 » »
Epochs
Figure 5.2: Training and valida-

tion loss curves of the verified Sam-
réomur dataset (4th fold)

For the trained model with the complete dataset, the accuracy curve is shown
in figure 5.3. Its loss curve is displayed in figure 5.4.
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Accuracy Curve Fold 3

086

Accuracy

—— Training Accuracy
076 — Validation Accuracy

o H 10 15 20 25 30
Epochs

Figure 5.3: Training and valida-
tion accuracy curves of the com-
plete Samrémur dataset (3rd fold)

Loss Curve Fold 3

0.60 —— Training Loss
—— Validation Loss

o H 10 15 20 25 30
Epochs

Figure 5.4: Training and validation
loss curves of the complete Sam-
réomur dataset (3rd fold)
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Furthermore, for analyzing the classification performances of the different
trained models, the following figures 5.5 and figure 5.6 show the classification
result with the testing and validation dataset in a confusion matrix.

The encoding for age groups on the x- and y-axes in the following confusion
matrices are:

e 0: under 16 years
e 1: between 16 and 19 years
e 2: above 19 years

Validation Confusion Matrix (normalized, only verified) Fold 4

Testing Confusion Matrix (normalized, only verified) Fold 4
200 175
year:;lg a2 © ©
<16 o a IS 150
years old
150 15
&
1 3 1619 0 59 o 100
2 1619 g o
2 0 59 0 =
S yearsold 100 = 75
E]
=
75 50
>19 | .
50 years oid 5 0 196 2
year;:lg % ¥
25
0
<16 16-19 >19
0 years old years old years old
<16 16-19 >19
years old years old years old Predicted class
Predicted class

Figure 5.6: Validation Confusion
Matrix of the verified Samrémur
dataset

Figure 5.5: Testing Confusion Matrix
of the verified Samrémur dataset

The testing and validation confusion matrices with the complete Samrémur
dataset are shown in the figures 5.7 and 5.8.
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Testing Confusion Matrix (normalized) 6000 Validation Confusion Matrix (normalized)

<16

years oid 135 367 5000 <16

years old 133 393 5000

4000 4000

16-19

141 375 58
years old 3000

1619 | 144 385 45 3000
years old

Trueclass
True class

2000 2000

>19 404 24 1000 >19

years old years old 1000

<16 16-19 >19 <16 16-19 >19

years old years old years old years old years old years old
Predicted class Predicted class
Figure 5.7: Testing Confusion Mat- Figure 5.8: Validation Confusion
rix of the complete Samrémur data- Matrix of the complete Samrémur
set (3rd fold) dataset (3rd fold)

5.1.2 Performance Evaluation Results

After the training with each of the two Samrémur datasets on the model was done,
the next step was to perform an evaluation on the model, which is testing it on
different children and adult voice audio datasets.

For testing the model on classifying children the "Children speech recording"
dataset from subsection 3.3.3 was selected. The age group encoding for all the
voices there was set to 0.

The Delta Segment version of the Common Voice English dataset from sub-
section 3.3.2 was used for testing the model on classifying the adult voices. To
support the analysis process, the age groups were encoded according to the ori-
ginal given age group. The reason for maintaining the original age group is to
allow a further breakdown in the result and to observe the model’s performance
more closely.

The age groups encoding the adult voices were:

1: teens (from 18 until 19 years old)
: twenties

: thirties

: forties

: fifties

6: sixties

e o o 0 o o
u b WwWN

Those two datasets were put together as one testing dataset, which was then
tested first with the model that was trained with the verified Samrémur dataset
and then another time on the model that was trained with the complete Samrémur
dataset.
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The results are two confusion matrices, where the x-axis is the predicted age
groups and the y-axis the true age groups, which are shown in the figures 5.9 and
5.10.

Testing Confusion Matrix (Common Voice + Children data) Testing Confusion Matrix (Common Voice + Children data)

<16 | <16 | 139
years old 1400 years old 1200
1819 1819
yearsold | 1200 years old 180 1000
20-29 | 1000 20-29 | 394
years old 2 years old 800
] k]
2 30-39 - 800 ; 3039 | 419
g yearsold £ years old L 600
c 4049 | 600 2049 | 120
Id
years ol w0 years old L 400
50-59 | 50-59 | 535
years old years old
200 200
60-69 | 60-69 | 21
years old years old
Llo —Lo
<16 1619 >19 <16 1619 >19
years old yearsold years old years old yearsold years old
Predicted class Predicted class
Figure 5.9: Testing Confusion Mat- Figure 5.10: Testing Confusion
rix of the model with a trained veri- Matrix of the model with a trained
fied dataset with Common Voice and complete dataset with Common
Children speech dataset Voice and Children speech dataset

Now that all the results are presented, the next subsection will analyze and
discuss the results.

5.2 Discussions

5.2.1 Model Training Discussion

The various output formats of the result in the previous subsection were needed
to observe the model’s consistency and classification performance.

With the output of the performance metrics of each iteration of the 10-fold
cross-validation, it showed that for the trained model with the verified Samrémur
dataset (see 5.1) the average difference between each iteration and performance
metric was around 2.13%. Only at the third iteration, it did a sudden improvement
in the training, but other than that it maintained a consistent result.

For the complete Samrémur dataset (see 5.2) the average difference was
around 1.34%. At the seventh iteration, the model had a sudden fall in its training
performance but maintained a consistent result throughout the iterations as well
overall.
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When comparing the average results between the two tables, the model trained
with the verified dataset performed better in accuracy by 4.55%. Then in preci-
sion by 10.11% and in the recall by 11.49 %, which resulted in a better F1-score
of 10.83%, showing a more balanced precision and recall as well.

By taking a look at figure 5.1 shows that for the verified dataset the train-
ing model setup was ideal, as the training and testing accuracy are constantly
increasing at a similar percentage, which is identified by the two curves going
up alongside each other. For the loss curve in figure 5.2 of the verified dataset,
the two curves of training and testing loss can be also seen going down together,
which is a positive indication of a well-split dataset and built training model so
far.

For the complete dataset, the accuracy curve in figure 5.3 may show a positive
result at first sight due to the training and testing curves running close to each
other. However, the slow increase by having an almost straight line after around
18 epochs may indicate the first signs of overfitting where the model learns the
data too well and does not generalize it anymore. The loss curve in figure 5.4
indicated signs of an overfitted model for the complete dataset since the testing
loss increases towards the end, which means that the model is less accurate in
its prediction, making the initial suspicion of overfitting based from the accuracy
curve valid.

The assumption is that the verified dataset only makes up 2.9% of the com-
plete dataset, which means that 97.1% of not verified data increased the risk of
lowering the quality of the dataset significantly.

With the explained results so far, the outputted testing (see figure 5.5) and
validation (see figure 5.6) that the trained model with the verified dataset could
classify the age group between 16 and 19 years old correctly (group 1), while
the other two age groups 0 and 2 each had one misclassification. However, that
does not tell that the model can classify age group 1 better than the other two age
groups since the age group ratio in the data sample is not evenly distributed.

The confusion matrix of the complete dataset gave a more chaotic result due
to the high loss rate, which leads to a higher false classification of the age group
than with the verified dataset. As before, this was to be expected due to the already
pointed out indications of an overfitted model.

The testing (see figure 5.7) and the validation (see figure 5.8) confusion mat-
rix shows that the age group in the complete dataset is not evenly distributed
either, where the ages between 16 and 19 years old (age group 1) make up the
minority and therefore more sensitive to the accuracy score in case of misclassi-
fication in age group 1.

In this case, it is important to take into account the age group distribution
of the dataset right from the beginning of the filtering process. Specifically, the
objective is to decrease the size of each age group to match the quantity of the
smallest data sample within any age group.
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By ensuring an even distribution among the three age groups this should have
helped to make the analysis at the end more reliable and comparable.

Although both performed well with an average accuracy of over 90%, it is not
a sufficient result to consider the model in practical applications, as that would
require at least an accuracy of 99%.

However, it can be calculated with the binomial theorem as shown in equation
5.1 to gain a theoretical outlook on how many pieces it needs to classify to reach
an accuracy probability of 99%.

2n+1 on+1
Probability = Z ( " )*pk*(l—p)Z"“_k (5.1)
k=n+1

For that, the assumption was that if there was a voice audio file of 11 seconds
to classify, there will be five audio pieces after trimming it with the same approach
for trimming the trained dataset (see figure).

l l

| 2"d piece |
l |
| 4% piece |

l l

Figure 5.11: Visual presentation of trimming 11-second audio

By starting off with the first calculation of having one out of the five audio
pieces correctly classified (see equation 5.2, the result is a probability of 77.38%.

5
Prob.= (5) xp° =1%0.95> = 0.7738 (5.2)

Since the desired 99% is not reached yet, further calculations were done where
the correctly classified audio piece is increased by one each time. This led to the
result that three audio pieces need to be at least correctly classified to achieve a
probability of 99.88% (see equation 5.3 and 5.4.

Prob.= (Z) %0.95% % (1—0.95)% + (i) %0.95% % (1—0.95) + G) %0.95° (5.3)

Prob.=0,0214+0.2036 + 0.7738 = 0.9774 (5.4)
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5.2.2 Performance Evaluation Discussion

Lastly, was the performance evaluation of the classification model by predicting
222 children’s voices from the "Children speech recording" 3.3.3 and 5,946 adult
voices from the Common Voice dataset 3.3.2.

For a better insight into the classification performance, the age grouping was
kept as in the original metadata of the Common Voice, which allowed to point out
the weaknesses and strengths of the classification model.

The testing confusion matrix of the model with the trained verified Samrémur
dataset in figure 5.9 showed a strong performance in classifying the children’s
voices, where 98.2% of the children’s voices were classified correctly in the chil-
dren age group.

When taking a look at the adult voice classification, the model still struggles
a lot. However, the breakdown of the age groups, showed that the model also has
a high performance in classifying the age group 1 and 6. Classifying group 1 as
group 2 would be the desired classification for this case anyway since the aim is
to differentiate the voice between a child and an adult. The age group 5 would be
the next best age group that the model could classify. For the age groups 2, 3 and
4 the model could only classify the majority of them correctly.

The testing confusion matrix in figure 5.10 finally shows the overfitting issue
of the model that was trained with the complete Samrémur dataset.

There, throughout all the age groups, the model performed much weaker com-
pared to the previous one. At least 28% of the data samples are classified wrong
in each age group, which is rather low for a model with a supposedly average
accuracy of 90.68%.



Chapter 6

Conclusion and Future Works

In this chapter, the master thesis will be concluded including findings in the thesis
that should be considered in the future.

6.1 Conclusion

Due to the versatility of the voice, researchers have found many ways to make
use of it, in which for example based on the human voice the health condition of
a patient or the age of the speaker is classified. In this master thesis project, the
latter one was taken where the set research question was how early the speaker’s
voice could be classified as child or adult. As supporting guidance to answer the
research question, sub-questions were established in section 1.5).

The first sub-question referred to what the requirements for the dataset are
that will be used for training, validating, and testing the classification model.

After conducting a literature and dataset review, the dataset requirements for
this project are the audio file and its relevant metadata. The audio file should be
at least one second long, and each file should contain only the targeted speaker
with no background noise. In the metadata, sex and age are required, as sex is
useful as an additional feature in the model training.

The second sub-question regarding what the age ranges for classifying chil-
dren and adult voices are, was also identified in the dataset requirements set up.

Three age groups were set up, in which the first group consists of under 16-
year-olds, the second group consists of ages between 16 and 19 years old and the
third group for all voices above 19 years old. The reason for having the second
age group is because of the different voice development stages of humans around
the puberty period. Hence, this age group serves as a grey zone in this project,
where manual classification is rather required.
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The last sub-question referred to what the ideal audio length of the voice for
age group classification training should be.

The required length of the voice audio was at least one second, where the au-
dios also need to be trimmed if they exceed over three seconds. It all comes down
to whether the audio contains enough information that is essential to clearly dif-
ferentiate the voice between the age groups. Therefore, the ideal audio file length
should be three seconds for training the age group classification model in this case.

This leads back to the research question of how early the speaker’s voice can
be classified as child or adult.

As regards early classification, maintaining an accuracy that allows practical
applicability is also important. The implemented classification model trained with
the verified Samrémur dataset in this project achieved an accuracy of 95.23% (see
5.1.1). Subsequently, the demonstrated calculation towards the end of section
5.2.1 showed how many pieces need to be classified to reach an accuracy of 99%
theoretically. The outcome was that three pieces of each three seconds would be
needed in theory to reach the desired accuracy. This means that the answer to the
research question is that based on the trained model in this thesis, the speaker’s
voice can be classified at seven seconds at the earliest. The result is seven and not
nine seconds, as the trimming method needs to be considered where every next
trim is done with an overlap of one second onto the previous piece.

6.2 Future Works

Further scope to address in the future would be to test the model for weak-
nesses. That would be for example using fake voices where the speaker pretends
a younger voice or using generated children’s voices.

Of course, achieved accuracy scores in this project are not enough yet to make
it usable in practice, which is why it would be also useful to find other models
or to tweak the model for better results and test it more on its robustness. The
following suggestions for improving the model are:

e Extracting more features
e Train the model with a balanced dataset ratio of age groups
e Train the model by sex: separate training of male and female voices

Finally, it is recommended to create a dedicated collection of audio recordings
for early detection of age groups in online calls. This would help improve the ac-
curacy and reliability of the classification model. Additionally, incorporating sex
classification into the model can enhance its effectiveness, as potential predators
may falsely claim their sex as well. Another suggestion is to verify the unveri-
fied audio samples from the Samrémur corpus to ensure their quality, and then
reevaluate the model’s performance to identify any differences.
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Appendix A

Dataset Review

The following tables are the complete documentation with links to the reviewed
datasets from chapter 3.
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