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Preface

I started my journey in cybersecurity in the autumn of 2018 when I applied for a
bachelor’s degree in IT-operations and Information Security at the Norwegian Uni-
versity of Science and Technology in Gjøvik. Although I had no previous experi-
ence with cybersecurity, my interest started to grow during my bachelor’s period.
Ethical hacking, digital forensics, and cyber threat intelligence became the most
interesting fields of profession. The growing interest led me to approach the digital
forensic track at NTNU´s master’s degree in Information Security.

This thesis concludes my master’s degree. It was completed during the spring
semester of 2023. The chosen topic branched off an initial topic proposal regard-
ing the detection of replicated criminal websites, during a project planning course
in autumn 2022. Approaching the task with a machine learning methodology was
not initially the plan, as I had no experience within this field on beforehand. After
assessing existing work and feasible methods, it became clear that using neural
networks was indeed an interesting approach for this type of topic.

The thesis gives a very general and friendly introduction to machine learn-
ing, neural networks, siamese nets, and other related concepts. Especially those
interested in digital forensics and criminality disruption may find the thesis inter-
esting. Although not required, the reader would benefit from being familiar with
concepts of neural networks before reading.

Espen Taftø Vestad
29.05.23

iii





Acknowledgements

Firstly, I would like to thank my supervisor Jan William Johnsen for excellent sup-
port, feedback, and a critical mindset during the semester. He provided great re-
flection and input which have been very valuable for my thesis completion. I would
also like to thank my co-supervisor An Thi Nguyen for sharing valuable feedback
and knowledge about neural networks and PyTorch. The technical achievements
would not have been significant without her.

Furthermore, I would like to thank my classmate Lars for his assistance in
complex debugging problems. He, along with my classmates Eirik and Ludvig,
also provided great company and fun times throughout the semester. Lastly, I
would thank the people maintaining NTNU SkyHigh for providing an efficient
and powerful infrastructure, that made implementation swift and joyful.

v





Abstract

Growing digitization and communication across international borders has allowed
cybercriminals to operate more advantageously than law enforcement on the in-
ternet. Law enforcement suffers from a complex and time-consuming process to
take down criminal website campaigns. In contrast, criminals scale up their op-
erations by replicating instances of fraudulent websites with minor effort. When
replicated, similarities often persist between the original website and the replic-
ated copy. Digital forensic investigations could exploit these persisting similarities
to detect replicated copies and further cause disruption.

Through this thesis, we propose a method that can contribute to the detec-
tion and disruption of criminal website campaigns. By using Siamese Neural Net-
works, we train a distance metric to compute and compare the similarity between
screenshots of fraudulent websites. Previously developed machine learning meth-
ods within the field have mostly relied on text-based features, such as website
source code, sentences, or HTML structure. The proposed method contributes to
existing research by using deep learning to process screenshots as the input me-
dium, without manually determining relevant features upfront. The thesis also
evaluates how the network captures features through pixel attribution techniques.

The final result showcases a siamese neural network applicable for website
similarity detection when trained in a bigger-scale scenario. In digital forensics,
the approach could be utilized in automated solutions to enhance the detection
and disruption of replicated criminal websites.
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Sammendrag

Økende digitalisering og kommunikasjonstilgang på tvers av landegrenser har
tillat cyber-kriminelle å operere med flere fordeler enn myndighetene på internett.
En av myndighetenes hovedutfordringer er den tidkrevende prosessen tilknyt-
tet nedstenging av kriminelle nettsteder. De kriminelle på sin side kan skalere
sine operasjoner ved å kopiere eksisterende svindelnettsteder. Dette med minimal
innsats. Når kriminelle nettsteder dupliseres, vil det ofte være likheter mellom den
nye og den originale kopien. Digital etterforskning kan utnytte disse likhetene for
å detektere gjennoppstående kopier av nettsider, og videre forårsake forstyrrelser
i deres operasjoner.

Gjennom denne oppgaven foreslås metodikk som kan benyttes innen deteks-
jon og forstyrrelse for kriminelle nettsteder i drift. Ved bruk av siamesiske nettverk
trente vi en distanse algoritme for å kalkulere likheter mellom skjermbilder av
svindelnettsteder. Tidligere maskinlæringsmetoder innenfor feltet har i hoved-
sak tatt utgangspunkt i tekstbaserte egenskaper, slik som kildekode, setninger
eller HTML-struktur. Vår metode bidrar til eksisterende forskning ved å prosessere
skjermbilder av nettsider som input til deep learning. Dette uten å manuelt be-
stemme relevante egenskaper på forhånd. Oppgaven utforsker også hvordan nettver-
ket lærer relevante egenskaper gjennom pikselattribusjon.

Gjennomførte eksperimenter resulterte i et siamesisk nettverk i stand til å de-
tektere likheter mellom nettsteder dersom modellen trenes i et større scenario.
Innen digital etterforskning kan modellen eksempelvis benyttes i automatiserte
løsninger for tidligere deteksjon og forstyrring av dupliserte kriminelle nettsteder.
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Chapter 1

Introduction

1.1 Topics covered by the project

The utilization of websites and web applications to host fraudulent campaigns has
become a way for criminal operations to reach their target audiences and for ease
of operation [1]. Being able to host these operations digitally, managing and dis-
tributing criminal activity in size thus becomes more feasible. Law enforcement
and other authorized entities have for a long time practiced website take-downs
to disrupt criminal activity online [2].

As a countermeasure, criminals may utilize techniques for their operations to re-
main persistent, as for instance top-level domain hopping (TLDH) [3]. This tech-
nique implies that the criminals publish near-duplicates of their disrupted websites
under a different top-level domain. These replicated services may have new host-
ing details while retaining their branding and reputation [3]. Moreover, replica-
tion allows criminals to efficiently spawn new services or run multiple campaigns
simultaneously.

high-yield investment programs (HYIPs) and fake escrow-services are some of the
common campaigns where criminals practice website replication [4]. By creating
fake HYIP websites, scammers can lure victims to invest, further "guaranteeing"
high-yield returns within a short time frame. Similarly, fake escrow agencies could
defraud both buyers and sellers of lucrative products by stealing their transaction
deposits.

Digital forensics is the process of identifying, collecting, analyzing, and present-
ing digital evidence in a forensically sound manner [5]. Proper seizure of digital
evidence is necessary for law enforcement in order to issue legal action against
criminal websites [2]. The process of detecting a criminal website’s existence, fol-
lowed up by issuing legal actions, is a time-consuming process [2]. Time is hence
of the essence in order to detect and fully remediate the operations of these crim-
inals.

1
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The scale and velocity at which replicated websites appear makes manual inter-
vention infeasible. Machine learning could aid investigators in the digital forensics
process. Rapid growth of data gathering and transportation ("big data") has also
increased the complexity in machine learning problems [6]. The high processing
speeds and learning ability of neural networks (NNs) [7]may especially be useful
to solve these bigger scale problems. One example is siamese neural networks
(SNNs), which are commonly used to measure similarities in computer vision
tasks. With SNNs, both the website detection and intelligence gathering process
could perhaps increase investigation efficiency and evidence confidence.

Since certain types of fraudulent websites tend to be replicated, similarities between
these often persist. It may be possible to exploit persisting website similarities
to strengthen the detection of similar and duplicated websites. Thus, through
this thesis, we propose a SNN machine learning method to compute similarities
between fraudulent websites.

1.2 Keywords

Siamese neural networks, machine learning, deep learning, website replication,
website takedown, digital forensics.

1.3 Problem Description

Website replication combined with other techniques such as TLDH allows for cy-
bercriminals to maintain their operations more efficiently over longer time periods
[3]. By persisting their campaigns on several top-level domains, a single takedown
inquiry may only disrupt a portion of their operations. Disruption can also be in-
fluenced by the methodology used for hosting criminal websites. Hosting can for
instance be possible through compromise of a legitimate website, through free and
less regulated hosting providers, or hidden services only accessible in anonymity
networks [8]. Community-specific keywords, actions, or restricted paywalls are
also utilized by criminals to maintain anonymity [9], and may further make dis-
ruption harder.

Moore and Clayton examined the effects of taking down phishing websites [8].
Their findings described how takedown is helpful for disrupting criminal opera-
tions, but it will not be possible to achieve complete mitigation due to the process’
time consumption [8]. Despite that great efforts can be made to shut down these
services, cybercriminals may operate more advantageous than law enforcement
in terms of resources required to spawn near-duplicate websites. A law enforce-
ment takedown process involves requesting evidence preservation, obtaining a
warrant, and seizure conducted by the local police [2]. Cross-jurisdictional delays
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in the process increase the time consumption, allowing criminals to scale opera-
tions. Foreign takedown requests may require further action by local authorities,
which may experience shortages in available resources, lack of expertise, and high
costs tied to the investigation [2]. The takedown process from start to finish is thus
more tedious and demanding compared to the effort needed by cybercriminals to
replicate a campaign.

1.4 Justification, Motivation, and Benefits

The fact that cybercriminals operate more advantageously than law enforcement
motives the need for further disruption activities. For earlier detection and faster
response against the spawning of criminal, replicated websites, the utilization of
automated methods can aid in the process. Furthermore, this can contribute to
enhancing the ability to detect TLDH and other persistent techniques at an earlier
stage. This could for instance be achieved by calculating website fingerprints or
measuring similarities between TLDH websites.

As mentioned previously in Section 1.3, the process for law enforcement to in-
quire takedown requests depends on several steps and cross-jurisdictions which
increases complexity. Since criminals profit from replicating content across do-
mains [8], detection of duplicated content could be used against them to disrupt
their operations. Thus, criminals have to put more resources into developing new
websites. By slowing down the criminals, they may operate less advantageous to
law enforcement compared to what they do as of today.

Some website elements can change during website replication, such as color, struc-
ture, images, or fonts. For criminals to achieve the maximum level of up-time in
their operations, however, developing unique websites for each takedown is not
feasible or scaleable. Thus, several website features, for instance, those mentioned
above, will often remain throughout replication [4]. Research within the field of
criminal website replication could benefit several types of entities or corporations.
Corporations could find the research relevant to discover fake competitive web-
site clones, while organizations or law enforcement could be more motivated by
justice, ethics, or human rights [2]. Security researchers and digital forensics in-
vestigators could benefit from the intelligence gathered from detection of these
websites.

1.5 Research Questions

The main focus area of this thesis is motivated by the detection of criminal web-
sites based on similarities in their characteristics. This further emphasizes evaluat-
ing the use of siamese neural networks for this purpose, in addition to interpreting
how features are captured. More specifically, the project aim seeks to answer the
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following research questions through conducted experiments:

• RQ1: How precise are siamese neural networks in identifying similarities
between screenshots of fraudulent websites?
• RQ2: How can the trained model be interpreted to analyze relevant features

learned from fraudulent website screenshots?
• RQ3: What are possible similarity thresholds for determining whether pairs

of websites are dissimilar, similar, or near-duplicates?

RQ1 will explore whether siamese neural networks are appropriate in wesbite
similarity detection. Screenshots of fraudulent websites will be used as the in-
put medium to explore this. RQ2 evolves around interpreting the trained SNN
model to assess its ability of capturing features. Lastly, RQ3 will consider poten-
tial threshold values for determining how the SNN should define similarities.

1.6 Contribution

By exploring the above research questions, the thesis aims to contribute with input
in the field of detection and disruption of fraudulent website campaigns. The use
of SNNs for this purpose has, to our knowledge, not been explored previously.
This thesis will contribute towards determining the usefulness of SNNs for this
purpose. Our contribution could be useful for digital forensics investigators and
security researchers to strengthen the disruption of criminal websites in further
work.

1.7 Thesis Outline

This thesis is divided into several main chapters with appropriate sections. Funda-
mental concepts related to the thesis will be discussed in the background chapter.
This aims to ensure a proper understanding of the underlying concepts used in
the project’s methodology. Previous related research will be briefly discussed to
assess already explored topics in the field. The developed methodology is fur-
ther presented, along with conducted experiments and achieved results. These
are lastly discussed before the thesis is concluded. Suggestions for further work
are also presented.

• Chapter 2 - Background: Covers fundamental topics relevant to the thesis.
Concept explanations are supported by illustrations and external sources.
Covered topics include machine learning theory, neural networks, and con-
volutional neural networks.
• Chapter 3 - Relevant Work: Assesses existing research with respect to this

thesis’ focus area. This includes juridical challenges tied to criminal website
disruption and previously explored machine learning methods.
• Chapter 4 - Methodology: Describes methods used to implement the thesis’

technicalities. This includes a description of data gathering, population, and
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SNN development.
• Chapter 5 - Experiments: Presents achieved results from conducted exper-

iments. Figures and tables will be utilized to support these descriptions.
• Chapter 6 - Discussion, conclusion, and further work: Obtained results

and experiments conducted in Chapter 5 will be further discussed. Through
discussion, this chapter aims to describe results on a higher level along with
their meaning. Research questions will also be addressed in this chapter
with respect to achieved results. Lastly, the thesis is concluded along with
suggestions for further work.





Chapter 2

Background

The following Chapter will address theoretical material for underlying concepts
relevant to the thesis. Initially, concepts within the field of website crawling and
machine learning will be described. Then, the chapter proceeds with describing
the workings of deep learning (DL) and neural networks (NNs). convolutional
neural networks (CNN) will further be introduced. Lastly, the concept of siamese
neural networks (SNN) will be described along with common parameters. The
machine learning framework utilized in the thesis methodology will also be briefly
touched upon.

2.1 Website crawling

Web crawling is an automated process that systematically visits or downloads con-
tents from webpages [10]. These crawlers are also referred to as spiders, and is
often used within web search engines and website archiving technology. In addi-
tion, web crawling can be convenient to automate data gathering from a bigger
set of websites. This data could for instance be website content, images, screen-
shots of web pages etc.

Some crawlers are also designed to simulate human interaction with websites
[11], presenting crawled content as it would appear to human beings rather than
machines. One of the most common examples of this is Selenium 1, which is a web
driver that can automate human-like interactions with websites. Selenium can
be utilized by many programming languages, including Python and JavaScript.
Selenium can also perform other actions on websites, such as modifying local CSS
and Javascript, input assertion, and capturing screenshots. These features will be
relevant for the data collection process as described in Section 4.2.1.

1https://www.selenium.dev/

7

https://www.selenium.dev/
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2.2 Machine Learning

Machine learning is a method that allows a system to automatically make de-
cisions while improving performance through experience [6]. The use of machine
learning is often preferred when you process bigger amounts of data when it is
infeasible to conduct manual decision-making. Outsourcing the task of decision-
making and solving complex problems to the machine can hence improve effi-
ciency with minimal human intervention [12][13].

In practice, machine learning is conducted by utilizing an algorithm to train a
model. Based on how well this model is trained, it will be able to conduct predic-
tions and problem-solving of unknown data [6]. One of the most important goals
of a machine learning algorithm is to achieve as high accuracy as possible while
maintaining feasible computational costs.

As the use of machine learning has progressed dramatically during the past two
decades [6], several areas of and subsets machine learning have been developed
accordingly. Figure 2.1 shows a conceptual distinction between the different areas
in the machine learning field. The more traditional machine learning methods con-
sist of techniques such as decision trees and clustering methods. artificial neural
networks (ANNs) borders between traditional learning and deep learning (DL).
This is because ANNs can be both deep fully-connected networks or have a shallow
architecture. DL refers to NN algorithms having deeper architectures with many
layers in the network [14]. Commonly, CNNs are referred to as deep NNs.

Figure 2.1: An abstraction of layers in the field of machine learning, inspired by
C. Janiesch & P. Zschech [12].

2.2.1 Traditional machine learning

Traditional machine learning models typically rely on simple algorithms that are
easy to interpret and train. The way these algorithms learn from and adapt to
new data is different based on the type of learning. Machine learning models are
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commonly divided into three main types of learning scenarios [15]: Supervised
learning, unsupervised learning and reinforcement learning.

Supervised learning is the most widely used category [6] and refers to the scen-
ario where a model is trained based on a dataset where the data’s features are
known beforehand [15]. This requires more preliminary work, as each entry in a
dataset must be associated with relevant features and classes before training can
start. If the training data is biased or not properly representative of the population,
the model may perform badly towards unseen data [16]. On the other hand, su-
pervised machine learning may perform very well when built upon reliable, high
volumes of training data. Performance and accuracy are also easy to evaluate as
they can be linked to already labeled training data. Common supervised learn-
ing methods include classification and regression [6]. Figure 2.2 illustrates how
classification and regression works in practice. Classification aims to distinguish
and label samples based on their belonging. Regression is utilized for predicting
continuous values.

Figure 2.2: Supervised learning methods. The example to the left illustrates clas-
sification, while the rightmost example illustrates regression.

In unsupervised learning, the model is trained on unlabelled (unknown/unseen)
data [6], with the goal of finding new patterns or structures [17]. Unsupervised
learning has an advantage considering that preliminary knowledge about the
training data (features) is not a requirement. This makes the method suitable to
detect anomalies in unknown data or discovering unknown patterns not possible
to identify through supervised learning [18]. It can be harder to determine an un-
supervised model’s accuracy since data is not labeled before training [15]. Com-
mon unsupervised learning methods include clustering and anomaly detection.
Clustering in order to detect potentially criminal websites has been researched
previously and is further mentioned in Chapter 3. Figure 2.3 visualizes clustering
through an illustrated example.
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Figure 2.3: Illustrative example of clustering.

Machine learning may also utilize reinforcement learning techniques. This method
is often used in circumstances where decision-making within a specific environ-
ment is desired [15]. The goal is to maximize some reward, where the model
learns through trial and error [6]. Thus, the model is dependent on positive feed-
back (rewards) or negative feedback (penalties) as input for learning how to in-
teract with its environment [17]. Figure 2.4 illustrates the overall workings of
reinforcement learning.

Figure 2.4: Illustrative example of re-enforcement learning. The agent (model)
performs some action and receives rewards or penalties as a result.

What mainly characterizes classic machine learning is the use of low complexity
algorithms which makes the model and result easy to interpret [19]. In addition,
classic machine learning models require fewer amounts of data in order to be
trained, compared to complex DL architectures. These factors also make classic
machine learning models cheaper to train in terms of computational consumption.
On the other hand, classic machine learning often rely on high-quality datasets
which can be intimidating to create, while DL are able to automatically learn
features without knowing about these beforehand [18].
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2.2.2 Deep learning

As the concept of machine learning and its use cases have progressed dramatic-
ally during the past two decades [6], so has the amount of data to process by
the machine learning models [19]. The growth of networked mobile and com-
puter systems and visual mediums has increased the production and transport of
data, further introducing the term big data [6]. Bigger amounts of data require
more complex algorithms with more parameters in order to maintain perform-
ance [19] in contrast to conventional machine learning methods. DL models can
be utilized to cope with complex and bigger amounts of data. They are built on a
concept known as neural network (NN). DL models are especially useful in situ-
ations where relevant features are not known beforehand, as neural networks are
able to process features from raw data on their own [19].

2.2.3 Metric Learning

Metric learning is a machine learning technique for learning distance functions
[20]. This is achieved by comparing samples to each other. By measuring the dis-
tance between two computed points (embeddings) using this metric, the result-
ing output represents the semantic similarity between them [21]. In other words,
metric learning can be used to identify the relationship between the samples. A
siamese neural network is a metric learning algorithm, computing the similarity
between two embeddings. The workings of SNNs are further described in Section
2.5.

2.2.4 Overfitting and underfitting

A machine learning algorithm is trained to fit predictions of input data as well as
possible [16]. Sometimes, depending on how it is trained, the model may struggle
to conduct accurate predictions. Two terms are commonly used to evaluate the
model´s fitness: Overfitting and underfitting. Overfitting happens when a model
has learned the underlying patterns of the training data too well. It makes the
model too dependent on the training data [17], causing it to struggle with pre-
dicting unseen data accurately. Underfitting happens when the model has not been
able to generalize well enough to the training data. Training data is thus not rep-
resentative enough to make the model learn, which could lead to higher bias [16].
A model is fit when neither overfitting nor underfitting is significant.

2.3 Neural Networks

Neural Networks (NNs) are a type of machine learning method that is inspired by
the workings of the human brain [7]. The neurons are where the learning takes
place. However, one neuron on its own is not particularly powerful [7]. When
more neurons are fully connected, we have a better ability to learn. Neurons are
thus connected to each other through dendrites and axons. The dendrites work as
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receivers for signals from other neurons, while the axons work to transmit signals
to other neurons. The connections between the neurons (dendrites and axons)
are also referred to as synapses, which is a more commonly used term in machine
learning. Figure 2.5 shows a representation of how neurons are connected in the
human brain. artificial neural networks (ANNs), the machine learning implement-
ation of a NNs, are illustrated in Figure 2.7 and further described in Section 2.3.2.

Figure 2.5: Illustration of how neurons in the human brain are connected.2

In machine learning neurons may also referred to as nodes. These nodes receive
multiple input signals from n amount of dependant variables [7]. The signals are
thus processed in their respective receiver nodes, which output a value sent fur-
ther down the chain. This value will then be passed on as input to other nodes
in the network. The inputs in which the node processes will also have weights.
These weights help the neural network learn [7]. It is accomplished by adjusting
the weights along the way based on how relevant the input is. Each node will
consider the sum of all input weights and apply the activation function, which
will determine the output that is passed further [22]. The results of this function
determine the relevance of the output that is passed on to receiving neurons.

2Original image by OpenClipart-Vectors. License: Copyright-Only Dedication

https://pixabay.com/vectors/brain-neuron-nerves-cell-science-2022398/
https://creativecommons.org/licenses/publicdomain/
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2.3.1 Activation function

The activation functions determine the value to pass further down in the network,
which can also influence if the output should be passed at all [22]. The type of
activation function chosen can greatly affect a neuron’s output. For instance, us-
ing a simple linear activation function given by F(x) = ax will provide an output
that is directly proportional to the input [22]. The main drawback of the linear
activation function is improving from error since the gradient remains constant
through each iteration. It also struggles with complex data patterns, making it
more suitable for simple problems [22].

Another common activation function used in ANNs is the ReLU function, given by
F(x) = max(0, x). ReLU is efficient in terms of low computational complexity, as
only a certain number of neurons is activated at the same time in the network [22].
A neuron will thus be deactivated only when a linear transformation outputs zero.

The sigmoid function is another activation function that allows for smoother output
values. The function, given by F(x) = 1

1+e−x , progresses more gradually compared
to the prior examples, providing output values between 0 and 1 [22]. This makes
it more applicable to probability calculation. Sigmoid is the activation function
used in this thesis’ SNN implementation.

Figure 2.6 illustrates an example for each of the activation functions discussed
above. There also exist other types of activation functions for various purposes,
for instance threshold activation, Binary Step, and Tanh.

Figure 2.6: Some common neural network activation functions: Linear, ReLU,
and Sigmoid.

2.3.2 Hidden layers

Fully-connected ANNs can be layered into three types of layers: The input layer
containing the dependant input variables, the hidden layers, and the output layer.
Several hidden layers are usually present in the network, where the neurons are
connected to each other through weighted vertices [7]. Figure 2.7 shows an ex-
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ample of an ANN with three hidden layers, having four neurons in each layer. The
weighting of an input towards a neuron determines whether the input is relevant
for the neuron in question [22]. The chosen activation function will be applied to
each neuron, which all considers different input values. Together, the neurons in
the hidden layers will provide relevant output to the output layer.

Figure 2.7: A fully-connected ANN with an input layer, 3 hidden layers, and an
output layer.

2.3.3 Backpropagation and cost calculation

When the output value is calculated in the network’s output layer, the model keeps
track of the output value’s relevance. The output value is thus compared to an ab-
solute value, which is the desired outcome [17]. Comparison is conducted through
a loss function, which calculates a loss (cost) value. A low loss represents an ac-
curate value, whereas a high loss is inaccurate. There exist several loss functions,
and which one to choose depends on the application.

When loss is calculated, the network initializes backpropagation of errors [17]. The
goal is to keep the loss as low as possible. Thus, the NN is propagated backward
and the weights between the neurons are updated accordingly. During the next
iteration, the NN will process the next entry of data, but with updated weights
in the network. At the end, a new output and loss value will be calculated and
weights are updated. This process is repeated until the achieved accuracy is as
high as possible.

2.4 Convolutional neural networks

convolutional neural networks (CNNs) are another type of deep learning neural
networks commonly used to train models for image and video recognition. A CNN
model focuses on extracting features from visual input, for instance, edges, colors,
patterns, or textures [23]. Figure 2.8 illustrates a simplified CNN model, consist-
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ing of three types of layers [23]: The Convolution layer, pooling layer, and fully-
connected layer. Moreover, the CNN architecture can be sorted into four phases:

1. Input layer: Represents the input image(s) in pixel value.
2. Convolution: Where the CNN learns features of the input data using feature

maps.
3. Pooling: Downsampling of feature vectors received as input from the con-

volution layer.
4. Fully-connected layers: A fully-connected ANN that can compute probab-

ilities, classifications etc.

Figure 2.8: Illustration of a simplified CNN architecture3, inspired by K. Shea &
R. Nash [23].

2.4.1 Convolution

During convolution, the image is processed through one or more convolutional
layers. Convolution layers produce a 2D activation map by convolving each filter
across the spatial dimensionality of the input [23].

Feature filters are applied to the layer(s), which is used for extracting features from
the input image. The feature filter is a n × n grid of random numbers. A feature
map will be calculated using the input vector and the feature filter. This is done by
calculating the dot product of a block from the input vector and the feature filter
[24]. The result further produces the feature map. This continues until every block
of the feature filter’s size in the input vector has been considered. The process is
further illustrated in Figure 2.9. It is important for the CNN to create smaller
feature maps from the input images to improve the efficiency of the process, as
convolution reduces complexity through output optimization [23]. Feature maps
produced in one layer will be passed on as input to the next layer in the process.

3Bird photo by Karen Arnold, CC0 1.0 Universal

https://creativecommons.org/publicdomain/zero/1.0/
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Figure 2.9: Simple, illustrative example of how a feature map is produced from
an input vector through convolution.

2.4.2 Pooling

To reduce dimensionality of the data, the feature map is down-sampled (pooled)
[23]. Several pooling methods exist, for instance, max pooling or average pooling.
Perhaps the most common type of pooling is max pooling, which looks at a n× n
block of pixels in the inputted feature map and only considers the biggest pixel
value in that block. This value is inputted towards a new, pooled feature map.
Figure 2.10 illustrates an example of how pooling is conducted. With the pooling
technique, the CNN is able to greatly reduce computational complexity while still
preserving the most relevant features in input data [23]. This makes it easier to
pick up variance in the input since the pooled feature map has less noise.

Figure 2.10: Example of how a pooled feature map takes shape from a feature
map input using the max pooling technique.

When the dimensionality of the feature map is reduced, the pooled feature map(s)
is normalized and flattened. Flattening the feature map involves converting the
multi-dimensional map into a single row of values.

2.4.3 Fully-connected layer

The fully-connected layer is structured like an ANN [23], receiving input from the
previously discussed layers. This is where the network conducts its final predic-
tion. As described in Section 2.3.3, the amount or error (cost) in the prediction
will be calculated, followed up by backpropagation which adjusts the weights ac-
cordingly.
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2.5 Siamese Neural Networks

A siamese neural network is a metric learning algorithm that combines the usage
of two or more identical NNs to calculate the similarity between outputs. Although
a SNN could be used to calculate similarities for various mediums, the most com-
mon use case is perhaps similarity measurements between images using two or
more CNNs. These networks share the same weights and parameters [25][26].
A distance value is further calculated using the feature vectors from each CNN.
This is achieved using a distance calculation algorithm (i.e. cosine similarity). A
sigmoid function is commonly applied to retrieve similarity values between 0 and
1. Figure 2.11 shows a general example of a SNN.

Figure 2.11: Illustration of a Siamese Neural Network using two CNNs as sub-
networks. Similarity scores are outputted by calculating cosine similarity and
passing results to the sigmoid function.

Although NNs can solve a variety of complex problems, huge amounts of data
are often necessary in order to maintain representative models. SNNs are often
utilized with methods such as one-shot learning, which allows for learning with
limited amounts of data available [27]. SNNs is also particularly useful when it is
not possible to receive exact classification from unknown data, but assigning the
appropriate classification based on how similar the sample in question is [25][27].

2.5.1 Common loss functions

SNNs are often based on pairwise learning. Thus, SNNs and metric learning al-
gorithms often utilize loss functions for pairwise learning [21] rather than tradi-
tional classification loss functions (i.e. CrossEntropyLoss). Perhaps the most com-
mon loss functions used for SNNs are ContrastiveLoss and TripletLoss. Contrast-
iveLoss is often utilized to learn embeddings that preserve important properties
of the input data [28]. The function can further minimize the distance between
similar outputs while maximizing it for dissimilar outputs. This makes the loss
function suitable for similarity calculation in SNNs rather than classification loss
functions.
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TripletLoss is similar to ContrastiveLoss in the way the notion of similarity between
inputs is calculated. In TripletLoss however, similarity is considered between triplets
of input rather than pairs. This process is further showcased in Figure 2.12. The
triplet consists of the anchor image, the positive image, and the negative image.
The anchor and the positive are different images from the same class, whilst the
negative image is from a separate class. In this case, all three images will be
passed through their respective CNN sub-networks before being passed to the
TripletLoss calculation. The goal of the TripletLoss function is to minimize the dis-
tance between the anchor and the positive while maximizing distance between
the anchor and the negative [29][30].

Figure 2.12: Illustrative example4of how Siamese networks can utilize triplet
loss. The positive and negative are compared to the anchor image.

2.5.2 Training a Siamese network

Training a SNN is commonly performed by selecting pairs or triplets of images,
which are fed as input to their respective CNN sub-networks [26]. Figure 2.12
shows an example of how this is done using triplets. Generated pairs or triplets
can for instance receive a target on whether they are similar or not [31]. If both
images from a pair originate from the same class, their target could for instance
be 1 (similar). Otherwise, they could be labeled as 0 (dissimilar).

Input will be parsed through the sub-networks, outputting one embedding for
each. These embeddings will further be processed for distance or similarity calcu-
lation [25]. Embeddings could for instance be concatenated before being passed
to the loss function, which calculates the loss value. Another common step in the

4Anchor image by Moni Sertel, CC BY NC SA 2.0
4Positive image by S. Taheri, edited by Fir0002, CC BY-SA 2.5, via Wikipedia Commons
4Negative image by Martha de Jong-Lantink, CC BY ND 2.0

https://creativecommons.org/licenses/by-nc-sa/2.0/deed.no
https://creativecommons.org/licenses/by-sa/2.5>
https://creativecommons.org/licenses/by-nd/2.0/deed.no
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process is to pass the output of the distance embedding calculation to a sigmoid
function. As touched upon in Section 2.3.1, passing the output through the sig-
moid function allows for retrieving a similarity score between 0 and 1 [22], which
could be more convenient to work with.

Lastly, back-propagation as discussed in Section 2.3.3, is applied to update the
weights in the model’s sub-networks. As shown in Figure 2.11 previously, weights
and parameters are shared between the sub-networks [25][26]. This training pro-
cess continues until the desired amount of epochs is reached.

2.6 Few-shot and one-shot learning

In scenarios where available training data is limited, it could be difficult to train a
representative model of the problem at hand. Techniques such as few-shot learning
can be utilized to cope with the lacking amount of training data. Humans are able
to learn only from one or a few samples of data [32]. The concept of few-shot/one-
shot learning applies the same principle to machine learning.

2.6.1 Few-shot learning

Few-shot learning is sometimes referred to as N-way-K-shot-classification [20].
N represent the amount of classes, while K represent the amount of samples per
class. A few-shot learning approach could for instance consist of a dataset with
N = 10 (10 classes) and K = 5 (5 samples within each class). For each class, the
algorithm has "5 shots" at conducting the classification. Few-shot learning may
also be referred to as N-shot learning [20], depending on how many samples exist
within each class.

2.6.2 One-shot learning

One-shot learning is similar to few-shot learning, except that each class only has
1 sample (K = 1). Since the algorithm only has "one-shot" at each class, learning
and prediction are more complex compared to few-shot. When several samples
are presented, the algorithm has more baseline for training/prediction.

As the number of choices (classes N) to make increases, the algorithm grows more
complex [33]. Having fewer classes to choose from hence makes decisions easier.
Similarly, the number of samples (K) within each class affects decision-making.
The higher the value of K, the easier it is to identify new samples belonging to
that class. To maintain good model accuracy, N-ways should be as low as possible,
while K-shots should be as high as possible [33].
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2.6.3 Support set and query set

Few-shot and one-shot learning problems are commonly approached using sup-
port sets and query sets [20]. A support set is a reference dataset with N classes
and K samples per class. The query set contains the training and testing images
that will be measured toward samples in the support set. A query image is queried,
and similarity is calculated towards each of the support set classes. The highest
similarity determines which class the image belongs to. Through this approach,
the algorithm is learning how to learn to classify, rather than being told how to
classify [20].

A practical example of where one-shot learning with support sets could be utilized
is biometric authentication. When a user registers in the authentication system for
the first time, the fingerprint is stored as a support set sample. Every time the user
authenticates, the current fingerprint scan (query image) is measured towards the
support set classes in the database. Figure 2.13 shows an illustrative example of
few-shot learning using a support set in animal classification.

Few-shot and one-shot learning with support sets may also be used with SNNs.
The implemented SNN in this thesis has not utilized this approach, however.
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Figure 2.13: A few-shot learning example with 3 classes (N) and 3 samples per
class (K), utilizing a support set5.

2.7 PyTorch and neural network architectures

PyTorch is a machine learning framework for the Python programming language
[34]. Although originally developed by Meta AI, the framework became part of
the Linux Foundation in 20226. The framework is well suited for the develop-
ment of deep NNs, including CNNs. PyTorch may in many ways be similar to other
deep learning (DL) frameworks, as for instance TensorFlow7. What mainly distin-
guishes PyTorch from other frameworks is simpler debugging and more intuitive

5Tiger photography by Moni Sertel. License: CC BY NC SA 2.0
6https://pytorch.org/blog/PyTorchfoundation/
7https://www.tensorflow.org/

https://creativecommons.org/licenses/by-nc-sa/2.0/deed.no
https://pytorch.org/blog/PyTorchfoundation/
https://www.tensorflow.org/
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correspondence to mathematical expressions [34].

In addition to ease of development of NNs, PyTorch can be utilized with several
pre-trained models and weights [35]. This allows users to make use of already
trained models when less data is available. Popular NN architectures are also avail-
able in PyTorch, as for instance InceptionV3, VGG and ResNet.

ResNet is a commonly used deep CNN for image recognition. Several versions of
the architecture exist, for instance, Resnet-18 or ResNet-50. The number describes
how many layers the NN consists of, making ResNet-50 an architecture with 50
layers total [36]. The more layers an architecture has, the higher the computa-
tional performance is needed. However, the more layers the network has, the more
patterns, details, and features it may learn. ResNet architectures are designed to
receive input images with a resolution of 224x224 pixels [36]. PyTorch offers the
possibility to load pre-trained ResNet models. These models are trained on the
ImageNet1k dataset [36], which is trained on 1000 different categories of images
[37]. The pre-trained model’s knowledge can be utilized in order to classify new
types of images. This approach is also referred to as transfer learning.



Chapter 3

Related work

The following chapter will assess and discuss related work within the field of crim-
inal website detection. Existing work, as discussed in this chapter, will provide
supportive information regarding already existing experiments and research.

Detection and disruption process of replicated illegal websites is one of the core
motivations for this thesis. Alice Hutchings et al. [2] highlights some of the chal-
lenges involved in these takedown processes seen from different entities’ perspect-
ives. Upon receiving a takedown inquiry, website registrars could find it challen-
ging to establish the legitimacy of the request. Similarly, law enforcement may
need to seize proper evidence on suspected illegal websites in order to proceed
with a takedown [2]. There are also challenges tied to cross-jurisdictional issues
with website takedowns, for instance, limitations of resources and competence at
foreign law enforcement [2].

Nevertheless, time is of the essence in order to proceed with takedown actions
while also disrupting and deterring further criminal activity. This fact is further
emphasized by Moore and Clayton [8], in which their findings highlight that take-
downs are indeed helpful for disruption. However, it will never be able to fully
cope with the amount of criminal activity due to a takedown’s time consumption.
Utilization of machine learning models could increase earlier detection of crim-
inal websites with less manual work.

Further research conducted by Jake M. Drew and Tyler Moore [4] reveals that
similarities are often persistent within criminal websites. Their paper explores
optimized clustering methods to rank features of relevance in criminal website
detection. More specifically, Drew and Moore focused on high-yield investment
programs (HYIP) and fake escrow services. HYIPs are ponzi schemes created to
give the investor a high yield off an investment, often by exploiting other in-
vestor´s investments [38]. Scammers utilize HYIPs to steal money from unaware
investors. An escrow service involves having a third-party handling the transaction
and transportation between buyer and seller. Escrows are mostly utilized in high-
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value transactions that involve transportation of physical products [4]. Scammers
create fake escrow services to trick sellers and buyers.

It was discovered by Drew & Moore that websites within these two categories re-
spectively often had similar structure or content. Their experiments showed that
website elements such as HTML DOM-tags, sentences, and file names have relev-
ance in the detection of these websites. A combination of features sometimes had
higher relevance. Screenshots of the websites in the experiment were also one of
the features considered. These showed to have low relevance alone but worked
well in combination with other textual features, such as sentences. This shows
that the identification of criminal websites based on website screenshots may be
challenging, without support from other textual features.

Text-based features have also been focused on in other experiments tied to crim-
inal websites. Westlake & Bouchard et. al. [9] explores automated and manual
classification of websites with child exploitation (CE) content. It is discovered that
this type of criminal community utilizes specific keywords within their way of com-
municating. Keywords could be anonymous code words or community-specific
slang. This shows that different types of criminal communities may use different
types of language. Websites may hence have different types of similarities, de-
pending on the website’s theme.

Research conducted by Stanislas Morbieu et al. [39] explores methods for web-
content extraction (WCE). Using WCE, they showcase extraction of a website’s
DOM, text and CSS-properties followed up by clustering of a webpage’s main con-
tent. The article refers to a webpage’s main content as the content giving relevant
information to the end user. This could for instance be the text, image, or video of
interest shown on the website. Semantic website elements are referred to as noisy
content and include advertisements, navbars, sidebars, etc. In terms of detecting
similarities in fraudulent websites, looking at different pieces of content could
provide useful. As seen in Drew and Moore’s paper [4] previously, similarities
seem to persist mostly in a website’s noisy content. Dynamic website content that
is unique per website could thus be worth excluding when identifying similarities.

Based on reviewed literature, the detection of criminal websites has perhaps mostly
considered textual elements. This includes features related to elements such as
HTML semantics, sentences, words, and source code structure. Although website
screenshots have been experimented with previously [4], this has not been seen in
a DL context. To our knowledge, we have neither seen the use of SNNs within the
field of criminal website detection. The fact that similarities are persistent within
criminal websites could be advantageous. With this knowledge in mind, this thesis
will explore how SNNs can be utilized to identify similarities in fraudulent web-
sites, having website screenshots as the input medium.



Chapter 4

Methodology

The following chapter will describe the methods used to prepare and develop the
environment for the experiments. Methods for data collection and dataset pre-
processing will be discussed, followed up by an explanation of how the SNN was
implemented. Validation techniques will also be described. The chapter also aims
to maintain the reproducibility of methods for further work.

4.1 Practical Approach

Based on initial research and existing work, it was identified that less research
exists focusing on features in images within criminal website detection. As previ-
ously described in Chapter 1, similarities tend to persist in some types of fraudu-
lent websites for criminals to save time. It was decided to implement a SNN using
two CNNs as sub-networks. Using DL was interesting in order to allow the net-
work to learn by itself, rather than defining features beforehand. Figure 4.1 shows
how the project was approached on a high level.

Figure 4.1: High-level process model and project approach

In order to further investigate and answer the research questions defined in Sec-
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tion 1.5, some requirement guidelines were defined. These were based on the re-
search questions, relevant background material, and identified existing research.

• Images are used as input medium since previous research vastly explores
text-based features in criminal website detection. To the author’s know-
ledge, less research exists focusing on visual features captured from images
of websites.
• The machine learning algorithm focuses on learning similarities. This is due

to previous research indicating that certain categories of fraudulent websites
tend to be similar due to website replication.
• The dataset should be populated by screenshots of websites within a cat-

egory where similarities often persist.
• Instead of identifying potential relevant features manually, DL will be util-

ized in an attempt to let the model learn relevant features itself. After train-
ing a model with acceptable accuracy, learned features will be interpreted
and analyzed.

As training NNs require more computational resources compared to more tra-
ditional machine learning methods [19], sufficient equipment was required. A
cloud-based Ubuntu 20.04 instance was utilized, using the technical specifica-
tions stated in Table 4.1. The specifications were sufficient enough to ensure fast
training performance. For the SNN implementation, Python was chosen as the
programming language, further utilizing PyTorch as the machine learning frame-
work. PyTorch was chosen due to the author having some previous experience
with the framework. In addition, PyTorch’s documentation contains an example
of a SNN implementation. Python was also utilized for other administrative script-
ing and data collection tasks.

Hardware type Specification
Graphics Processing Unit (GPU) 1/4th of a Tesla v100 10GB
Central Processing Unit (CPU) Intel Xeon Gold 6240 CPU, 2.60GHz
HDD storage 100GB

Table 4.1: Cloud instance specifications.

During data collection, it became clear that similar websites had varying degrees
of similarities. While some websites were duplicated with only minor changes,
others had less obvious similarities. Table 4.2 defines terms to which the report
will hereby refer regarding degrees of website similarity.
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Term Definition
Dissimilar Samples that do not have any indication of being replic-

ated.
Similar Samples are identified to have similar features upon

manual inspection, such as website structure, element
positioning, or theme. It may not be directly obvious that
the websites share features without closer inspection.

Near-duplicates Sample websites that are clearly replicated but with
minor changes to some features, such as logo, colors,
text, etc.

Table 4.2: Definition of similarity terms.

4.2 Data collection and dataset population

This section will describe how relevant data was collected in order to populate the
appropriate dataset for the task. The process is important to document in order
to achieve reproducibility of experiments.

4.2.1 Website screenshot collection

Since fraudulent websites often tend to have similar features or duplicated con-
tent [4], the screenshots in which the SNN is trained on should preferably consist
of websites that share a similar structure or visuals. This could for instance be
website forums sharing the same framework or near-duplicate fraud web pages.

No publicly available dataset containing screenshots of similar websites was. Sev-
eral datasets containing website URLs rather than website screenshots exist. These
can be utilized by a crawler to visit and gather screenshots manually as described
in Section 2.1. Considered dataset for this approach included Malicious and Benign
Webpages Dataset1 and Spam URLs Classification Dataset2. These datasets contain
a bigger volume of website URLs that could be utilized to gather screenshots from.
However, they do not contain just similar websites explicitly.

As stated in Chapter 3, similarities often persist in HYIP and fake escrow websites.
Attempts were hence made to find lists of URLs within these two categories of
fraudulent websites. The following three data sources were identified:

• A HYIP-dataset on Kaggle from 2018 [40], containing 1313 URLs.
• Escrow-fraud.com [41]: A tracker for (suspected) fake escrow sites, being

updated from time to time.

1https://www.data-in-brief.com/article/S2352-3409(20)31198-7/fulltext
2https://www.kaggle.com/datasets/shivamb/spam-url-prediction

https://www.data-in-brief.com/article/S2352-3409(20)31198-7/fulltext
https://www.kaggle.com/datasets/shivamb/spam-url-prediction
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• aa419.org [42]: The Artist Against 419 organization. Aims to spread aware-
ness around Advance Fee Fraud websites.

Initial inspection of a handful of URLs from the lists revealed that similarities and
near-duplicated content were consistent facts. As shown in Figure 4.2, some web
pages were identical apart from having different colors or logos. Other examples
shared the same structure but with minor changes to the element’s positioning.
The data sources above were hence considered relevant for the task at hand.

Figure 4.2: An example of two individual fake escrow campaigns which share
duplicated content. Only minor elements, including language, colors, logos, and
images, have been modified.

Crawling the HYIP-dataset

In order to collect website screenshots from the HYIP-dataset[40], Selenium browser
automation for Python was utilized. The workings of Selenium were previously
described in Chapter 2.1. Appendix A shows the source code for how the URLs in
the HYIP-dataset was crawled. Selenium visits each URL in the dataset to access
its index/front page. A screenshot of the Selenium browser’s viewport is thus cap-
tured.

By default, Selenium captures screenshots at 800x600 pixels, which represents a
4:3 resolution. Initial inspection revealed that many of the websites in the dataset
are not optimized for responsive resolutions. Since most of today’s modern mon-
itors support a 16:9 aspect ratio, the 1280x720 dimension was chosen to avoid
webpage elements being lost due to a lack of responsiveness. 1280x720 were
chosen above the more common resolution of 1920x1080 to keep the images at a
smaller size, as this will affect the training performance of the model.

The crawler gathers two screenshots from each URL in the dataset. Firstly, it will
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visit the website directly and capture a screenshot if it is up and running. Since the
HYIP-dataset was published in August 2018 [40], many of the HYIPs previously
recorded were offline/taken down at the time of writing. The crawler will hence
also lookup the URL at Wayback Machine3, which is an internet archiver capturing
snapshots of active websites [43]. Wayback Machine’s API can be used to view the
website as it was around a certain timestamp. The crawler conducts an API-request
to archive.org/wayback/available?url={url}&timestamp=20180820, where "{url}"
is replaced with the current URL being parsed. The request will return whether
a snapshot is available around the requested timestamp. If so, it will also return
the URL of the archived snapshot from Wayback Machine. This URL will further
be visited by the Selenium crawler to capture the screenshot.

Figure 4.3: A HYIP-scam website visited through Wayback Machine. The grey bar
at the top (marked in red) will be present in Selenium’s view-port, and thus in
the outputted screenshot.

Figure 4.3 shows how it looks when a website snapshot is opened through Way-
back Machine. At the top of the browser’s viewport is a white header containing
snapshot information. When capturing a Selenium screenshot from Wayback Ma-
chine, this header will be a part of all screenshots, making it a continuous element.
This may inaccurately influence similarity computation. Having the header atop
as part of all screenshots may decrease the level of indifference calculated by the
SNN, increasing the risk of false positives. Moreover, this Wayback Machine ele-
ment is neither a part that appears on the original websites.

Selenium has the ability to locally modify a page’s CSS using JavaScript. With this
technique, the crawler sets the display CSS-property of Wayback Machine related
elements to none. We thus remove elements not originally present in the websites
to avoid it affecting similarity calculation.

3https://archive.org/web/

archive.org/wayback/available?url={url}&timestamp=20180820
https://archive.org/web/
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Crawling the escrow-fraud tracker

Collection of website screenshots from the previously identified data source Escrow-
Fraud.comwas completed similarly to how HYIP screenshots were collected. How-
ever, since the URLs, in this case, were found on a website rather than in a dataset,
some additional pre-processing was required. The website’s search page [41] con-
sists of tables that keep track of suspected escrow frauds. To make the crawling
process easier, the tables were curled to obtain their raw HTML-code locally. Using
the Pandas module for Python4 data frames were created out of the HTML tables.
These data frames were further iterated using the same method as for the HYIP
website collection. Both by visiting each website directly and through Wayback
Machine.

Gathering fraud screenshots from aa419.org

aa419.org belongs to an organization named Artist Against 419, which aims to
spread awareness of Nigerian Advance Fee Fraud campaigns [42]. Thematically,
these frauds trick their targets into believing that they will receive a large financial
reward [42]. In return, they ask their victims for fees for the reward to be trans-
ferred. Artist Against 419’s website offers a public JSON-API which can be used to
access their database of fraudulent websites. Using a personal API-key generated
on the website, the 5000 latest URL entries were gathered using curl towards their
API. These URLs were thus crawled for screenshot collection in the same manner
as the HYIP-dataset and escrow-fraud.com tracker.

4.2.2 Dataset population

Crawling the URLs listed in the HYIP-dataset[40], escrow-fraud.com [41] and
aa419.org [42] gathered approximately 3700 screenshots. However, a bigger part
of the screenshots were considered not applicable to the task at hand. This in-
cluded screenshots of websites that were offline, parked, empty, or loaded with
advertisements. Including these types of screenshots in the dataset would intro-
duce less relevant data in the dataset as many of them were identical but without
relevant content.

After sorting out irrelevant website screenshots, the collected data ended up with
approximately 700 images. Table 4.3 shows the final distribution of screenshots
from the three data sources discussed in Section 4.2.1.

These 700 screenshots contained several categories of websites that shared sim-
ilar content, structure, or visual appearance. These were identified by a manual
walkthrough and human eyesight. Whereas some websites were clearly duplic-
ates with minor changes from their original (as seen in Figure 4.2), some needed

4https://pypi.org/project/pandas/

https://pypi.org/project/pandas/


Chapter 4: Methodology 31

Data source Amount of samples
HYIP-dataset from Kaggle 158
Escrow-fraud.com 56
aa419.org 520
Sum 734

Table 4.3: Amount of samples from each data source used in the final populated
dataset.

a closer look in order to be determined as similar. The less obvious similarities
could, for instance, consist of websites sharing the same front-end framework,
but with changed elemental positioning, etc.

Websites were categorized together based on their similarities, and each category
represent a class. For instance, would all samples within class A be similar to each
other, but dissimilar from the samples in class B or C.

Two datasets were created out of the 700 screenshots gathered: The small dataset
and the diverse dataset. The small dataset has fewer samples but contains more
near-duplicate samples. The diverse dataset contains more samples but fewer
near-duplicate samples. This is due to the collected data from Section 4.2.1 end-
ing up with more similar samples rather than near-duplicates in total. Classes
with near-duplicate samples were hence smaller (10-20 samples each) compared
to classes with similar samples.

Two sets were created to avoid dataset imbalance, keeping the number of samples
within each class to approximately the same amount. This could also allow for
evaluating how the SNN performs on near-duplicates versus less obvious similarit-
ies. Table 4.4 shows how samples are distributed within each dataset respectively.

Small dataset
Total samples Total classes Per class Train samples Test samples
198 9 14 - 28 158 40

Diverse dataset
540 9 20 - 108 430 110

Simset
Dissimilar samples Similar samples Near-duplicate samples

64 64 64

Table 4.4: Distribution of samples in the populated datasets respectively.

Both datasets were trained on their respective models since their relevant features
within each set could vary. The classes in the two datasets also vary slightly. Com-
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parison of experiments made on the two datasets will be further showcased in
Chapter 5.

A third dataset, the simset, was also created. The simset was not used during
model training or regular prediction. It was created to answer research ques-
tion 3, which explores which similarity scores define dissimilar, similar, and near-
duplicate pairs. Simset contains three classes: The dissimilar class (0) contains
samples that were collected but not included in the previous datasets. The similar
class (1) contains samples with similar properties, that are not near-duplicates.
The near-duplicate class (2) contains samples of replicated websites with minor
changes. As opposed to the small and diverse datasets, the purpose of the simset
is to evaluate similarity score thresholds that distinguish these three categories of
websites. The distribution of samples within the simset is presented in Table 4.4.
Experiments with the simset are further described in Section 5.4.

Class visualization

Figure 4.4 shows examples of samples from each class within the small dataset.
As described previously, this set contains more near-duplicate samples. Similarly,
Figure 4.5 showcases examples for each class in the diverse dataset. Comparing
Figure 4.4 and Figure 4.5, it can be seen that the classes included in both data-
sets are similar. Apart from the number of samples per class, the major exception
between the dataset is that class 1 in the small set is excluded from the diverse
set. Class 7 in the diverse dataset contains cryptocurrency scam websites, which
were not present in the small dataset. Table 4.5 further describes the differences
thematically between the classes in each dataset. Although many classes overlap,
the diverse dataset contains fewer samples that are near-duplicates.
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Figure 4.4: Sample examples from each class in the small dataset.
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Figure 4.5: Sample examples from the diverse dataset
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Class Small dataset Diverse dataset
1 Fake escrow transportation ser-

vices
Fake cargo and transportation ser-
vices

2 Fake cargo and transportation ser-
vices

Fake real estate services

3 Fake real estate services Fake animal breeders
4 Fake animal breeders high-yield investment program

(HYIP)-scams
5 HYIP-scams Fake investment advise and HYIP-

scams
6 Fake investment advise and HYIP-

scams
Collection of scams within niches
such as industry, food, motors and
animal breeding

7 Collection of scams within niches
such as industry, food, motors and
animal breeding

Fake cryptocurrency investment
programs.

8 Fake investment advise and HYIP-
scams

Fake package tracking and ship-
ping

9 Fake package tracking and ship-
ping

Fake animal breeders and sellers

Table 4.5: Thematic descriptions of dataset classes.

Pre-processing

Pre-processing the populated datasets before training the model maintains train-
ing correctness and efficiency. It also prepares the input data so that it matches
the model’s expected input.

ResNet was chosen as the NN architecture due to its popularity in use with CNNs
and for its support with the PyTorch framework. ResNet architectures require
higher computational resources compared to other lightweight networks such as
MobileNet. Since the resources available had great computational power, the use
of ResNet was feasible. An overview of the workstation’s technical specifications
were presented in Table 4.1.

Since the amount of data at hand was limited, it could be challenging to train
an accurate model. Especially considering the fact that a deep CNN architecture
needs high volumes of data. Therefore, the implementation utilized a pre-trained
version of ResNet-18 (also known as transfer learning) before training on the pop-
ulated datasets. This could aid the model in the process of considering relevant
features when less training data is available.

The screenshots in the dataset populated were properly resized to match the im-
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age input size supported by ResNet. The pre-trained ResNet models were trained
on images with a size of 224x224 pixels. Input images from the dataset were res-
ized to these dimensions in order to match samples that the pre-trained model
was trained on. This is necessary to ensure that the collected training data is con-
sistent to previous input.

During collection screenshots were captured at a resolution of 1280x720 pixels as
described previously in Section 4.2.1. Input data thus have an aspect ratio of 16:9
rather than 1:1 which is the aspect ratio supported by the pre-trained ResNet.
Gathered screenshots were resized to 720x720 pixels, changing the aspect ratio
to 1:1. This implies that the width of the screenshots was shrunken from 1280px
to 720px. Some image details will be lost in the process due to the screenshots
becoming more narrow. However, the most important elements of the websites
are still present since no cropping occurs. The image convolution will eliminate
irrelevant image details in the process regardless. Losing minor detail should not
have a significant impact on resulting training/prediction.

Using Torchvision’s transforms module, tensor transformations were applied to
each screenshot loaded into training and testing sets, further resizing them to a
size of 224x224.

Training and testing datasets were also normalized before being processed by the
SNN. Normalization techniques include calculating the datasets’ mean and stand-
ard deviation, which were further applied to the input tensors as part of the pre-
processing phase. This process assists in maintaining computational performance
and consistency.

Training and testing data distribution

The distribution of training and testing samples within the datasets is done ran-
domly. Using train_test_split() from Scikit-learn5, the datasets are randomly split
into 80% training samples and 20% test samples. Due to the amount of data at
hand being limited, 20% test data was considered the maximum percentage, to
allow for more training pairs. Table 4.4 previously showed the final distribution
of samples between training and testing. Using PyTorch’s DataLoader utility, the
randomly split datasets were loaded into training and testing dataloaders respect-
ively.

Using a randomly populated dataset for each test run would make it harder to
debug which factors that does improve according to changes made in the pro-
gram. In order to monitor model accuracy over time, a fixed seed was set using
train_test_split(). When providing a specific seed, the datasets will be split equally

5https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
train_test_split.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html


Chapter 4: Methodology 37

every time the program is run, making it easier to monitor performance. In ad-
dition, a fixed seed can help to ensure better reproducibility of results for others
who might use the datasets in the future.

4.3 Siamese Network Implementation

The SNN model was implemented using weights from a pre-trained ResNet-18
model. ResNet-18 was considered the most feasible alternative in relation to the
volume of data available. Although the computational resources are available,
deeper CNN architectures such as ResNet-50 or ResNet-101 may be too deep com-
pared to the small amount of data. Having a too complex architecture could make
it hard for the model to generalize well to the training data [14]. Similarly, hav-
ing a too narrow architecture could impact the model’s ability to learn the most
relevant features.

When in action, input data (screenshots) is passed through two identical CNN
sub-networks respectively. Cosine similarity is computed between the outputted
embeddings before being passed to the loss function. Since two sub-networks are
being used, pairs of images need to be loaded. The selection of screenshot pairs
from the dataset works as follows:

1. A class is randomly picked.
2. A random screenshot from the above class is selected.
3. Calculate a random number.
4. If the above number is even, select a second screenshot from the same class

as screenshot 1. Otherwise, select the second screenshot from another ran-
dom class.

5. Choose a target, 1 or 0, depending on whether the two screenshots reside
within the same class.

Using Pytorch’s DataLoader module, batches of screenshot pairs and correspond-
ing targets are loaded into training and testing dataloaders respectively. The full
source code for the SNN implementation is available in the thesis’ BitBucket re-
pository [44].

It should be noted that the implemented SNN is not a model for classifying samples
into classes. It is simply a similarity function computing similarity between two
outputted embeddings. Samples in the dataset were indeed divided into classes
initially. However, the purpose of this classification is to label pairs of images as
either similar or dissimilar, depending on whether they belong to the same cat-
egory. The SNN does not take classes into account beyond this. Model output is
simply a score between 0 and 1 to represent the similarity between randomly se-
lected image pairs. During prediction, websites with similarity scores higher than
0.5 were considered similar (1). Websites with similarity scores below this value
were labeled as dissimilar (0). Experiments with other thresholds than 0.5 are
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described in Section 5.4.

4.3.1 Loss function

As described in Section 2.5.1, ContrastiveLoss and TripletLoss are perhaps some of
the more common loss functions to use in Siamese Networks. TripletLoss may in
many cases be the most preferable one, as it uses an anchor image to measure
between positives and negatives. This could further increase training precision.
However, TripletLoss could also introduce less unique training triplets, due to the
utilization of an anchor. For smaller datasets such as in this project, TripletLoss
may thus be too complex. The decision was made to proceed with the use of
ContrastiveLoss to calculate loss between pairs rather than triplets, due to the
small amount of data available.

4.3.2 Miner function

In order to strengthen the selection of training pairs within each batch of images,
a miner from PyTorch Metric Learning has been utilized. A miner attempts to find
positive and negative pairs within the batches that are particularly difficult [45].
This may benefit the training process by creating more diversity in the pairs that
are chosen, opening for better model generalization. MultiSimilarityMiner and
PairMariginMiner were the two miners attempted, as they both operate on pairs
rather than triplets by default. These miners also allow for adjustment of margin
and epsilon for fine-tuning how hard pairs should be selected.

4.3.3 Overfitting mitigations

Since the datasets are small, the amount of training data and unique training
pairs may introduce overfitting of the model. In an attempt to reduce potential
overfitting, several measures have been taken:

• Data augmentation: Different augmentation techniques as seen in Listing
4.1 are randomly applied to the input images to create more diversity in the
data. This includes image rotation, color jitter, cropping (not affecting input
resolution), contrast, and more. Manually assigned probabilities make sure
that drastic augmentations have less chance to happen, in order to avoid
total manipulation of the input data.
• Unseen test data: The model computes achieved accuracy during each

epoch for both training and testing data. To get the most representative
performance possible, the unknown test performance is compared to the
training performance for each epoch. This allows monitoring for overfitting
and underfitting.
• Architecture choice: In an attempt to prevent overfitting, ResNet-18 was

chosen as the architecture as opposed to i.e. ResNet-50. Having a too com-
plex architecture with too little data could cause overfitting.



Chapter 4: Methodology 39

Code listing 4.1: Data augmentation measures.

from torchvision import transforms

pad = transforms.Pad(padding=(10))
gaussian = transforms.GaussianBlur(kernel_size=(3), sigma=(0.1, 0.7))
cj = transforms.ColorJitter()
elastic = transforms.ElasticTransform(alpha=25.0)
train_transform = transforms.Compose([

transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(p=0.2),
transforms.RandomRotation(degrees=(-5,5)),
transforms.RandomApply([pad], p=0.3),
transforms.RandomPerspective(distortion_scale=0.5, p=0.3),
transforms.RandomCrop(size=195),
transforms.RandomAutocontrast(),
transforms.RandomApply([gaussian, cj], p=0.5),
transforms.RandomEqualize(p=0.4),
transforms.RandomPosterize(bits=2, p=0.3),
transforms.RandomApply([elastic], p=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)

])

4.4 Model validation

As discussed in Section 4.2.2, two datasets were populated based on the data
collected and were further trained on their respective models. Terminology related
to the validation methods is described in Table 4.6 and Table 4.8. The SNN models
were evaluated using the validation methods listed below.

• Overall training & testing accuracy and loss for each dataset/model.
• Total TPs/TNs/FPs/FNs for each model.
• Individual class performance for each model.

Table 4.6 contains a description of validation terminology in the context of SNNs.
To support these descriptions, Table 4.7 showcases practical examples for each
scenario.



40 E. T. Vestad: Website similarity detection with SNNs

Term Description
True Positive (TP) Samples that are both labeled and

predicted as positives (similar).
True Negatives (TN) Samples that are both labeled and

predicted as negatives (dissimilar).
False Positives (FP) Samples that are labeled as negatives

(dissimilar) but predicted as positives
(similar).

False Negatives (FN) Samples that are labeled as positives
(similar) but predicted as negatives
(dissimilar).

Table 4.6: Description of validation terms.

Term example Sample
classes

Sample la-
bel

Sample predic-
tion

Correctness

True Positive (TP) A & A True (1) True (1) True (1)
True Negative
(TN)

A & B False (0) False (0) True (1)

False Positive (FP) A & B False (0) True (1) False (0)
False Negative
(FN)

A & A True (1) False (0) False (0)

Table 4.7: Validation terms usage example in the context of a siamese network

The trained models were initially evaluated using accuracy as the evaluation met-
ric. However, since the datasets contain some imbalance, other evaluation metrics
were considered appropriate:

• Precision: The ratio measured of true correctly predicted instances (TPs),
compared to the total of positive predictions (TPs & FPs) [46]. It is used
when the cost of FPs is high. The trained models compute similarity scores
based on identified similarities. If the number of FPs is too high, it means
that the model struggles with learning the similarities, which is the main
goal of the algorithm. Precision is therefore considered.
• Recall: The sensitivity of the true positive rate [46]. Measures the ratio

of TPs compared to FNs. Useful when the cost of false negatives is high.
This thesis has been focused towards fraudulent website detection. In fraud
detection, minimizing FNs is important to avoid that illegal activity does not
go through undetected. Recall can be a more accurate metric to consider
when FNs are important to detect.
• F1-score: The weighted average between precision and recall [46]. In some

systems, having both of these metrics may be important for the scenario.
However, they may also show very different results. F1 gives a mean value
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between these metrics to give a more accurate metric when both are con-
sidered.

Table 4.8 defines validation formulas and descriptions for the used performance
metrics.

Term Formula Description
Accuracy (TP + TN) / (TP + TN + FP +

FN)
Overall performance, correct
predictions compared to the
number of samples.

Precision TP / (TP + FP) Measures correctness of true
predictions

Recall TP / (TP + FN) The sensitivity of true positives.
F1-score 2 * (precision * recall) / (preci-

sion + recall)
Weighted average of precision
and recall.

Table 4.8: Description of performance terms.

As stated previously, each dataset was evaluated on two scenarios: Validation of
each individual class and validation of overall model performance. It is important
to highlight the fact that individual class validation may have some degree of bias
when used to validate this SNN. The model(s) are created to output a binary value,
either 1 or 0 depending on predicted similarity. Consider the following scenario:
If a pair of images belonging to different classes are indeed predicted as TNs, the
TN counter increments two times. One for each of the classes. On the other hand,
if a pair of images belonging to the same class are indeed predicted as TP, the TP
counter would only be incremented once. This is due to both images in the pair
having the same label. In practice, this is considered an issue since the number
of negatives (TN/FN) for a particular class will be significantly higher than the
number of positives. The individual class validation is only performed to give an
indication of which types of websites have the most persisting similarities. Only
the overall model validation should be used as a measure to validate the SNN’s
performance.

4.5 Feature interpretation

In order to answer the second research question, the features considered by the
SNN were visualized for interpretation. Since NN are able to learn relevant fea-
tures from input data on their own, one of the main goals for the second research
question was to examine the model’s ability to capture futures. This analysis could
provide input regarding relevant features in criminal website detection for further
work.
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The ResNet-18 CNN architecture consists of several layers producing feature maps
for processed input data. This process was further described in Chapter 2. These
layers have different focuses in terms of which features they represent [47]. Lower
layers mainly capture basic features such as edges, corners, and lines. High-level
feature maps capture more complex features such as colors, objects, and patterns
[47].

In order to analyze how the CNN sub-networks in the SNN were interpreting fea-
tures in website screenshots, a feature extractor model was developed. Briefly
described, the Feature Extractor takes the diverse model, trained on the diverse
dataset, as a parameter. A modified model will be produced, considering only the
layer passed to self.features. This allows for feature visualization of specific layers
in the architecture. Listing 4.2 shows how the Feature Extractor class was imple-
mented to extract lower layer features ("layer1").

Code listing 4.2: Feature Extractor class.

import torch.nn as nn
import torch

class FeatureExtractor(nn.Module):
def __init__(self, model):

super(FeatureExtractor, self).__init__()
self.model = model
self.model = getattr(self.model, "cnn")
self.features = getattr(self.model, "layer1")
self.features = nn.Sequential(*self.features)
self.pooling = getattr(self.model, "avgpool")
self.flatten = nn.Flatten()
self.fc = getattr(self.model, "fc")
#self.fc = self.fc[0]

def forward_once(self, x):
output = self.model(x)
output = output.view(output.size(), -1)
return output

def forward(self, x, y):
output1 = self.forward_once(x)
output2 = self.forward_once(y)
output = torch.cat((output1, output2), 1)
return output

Once a Feature Extractor model was created, saliency maps were utilized to visual-
ize considered features. Saliency maps are created through pixel attribution, which
is a method to highlight pixels in the image based on their contribution to the clas-
sification [48]. The resulting saliency maps can further be interpreted to analyze
how well the network identifies objects, patterns edges, etc. Saliency maps were
created by passing image tensor pairs to the modified model and calculating their
gradients. Appendix B shows the complete workings of this process. Resulting
visualization and saliency maps are presented in Chapter 5.
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Experiments

The following chapter will describe the experiments conducted in addition to the
achieved results. Firstly, the chapter will discuss experiments related to RQ1, re-
garding testing and validation of the SNN model. Next, RQ2 will be addressed.
This includes visualizing relevant features learned by the SNN through pixel at-
tribution. Lastly, experiments related to RQ3 will be showcased. This involves
experimenting with similarity score thresholds for grades of similarity, along with
how this affects the outcome. Results and achievements showcased in this chapter
will be further discussed in Chapter 6.

5.1 Hyperparameters

In order to achieve the highest performance possible, experiments related to vari-
ous combinations of hyperparameters were conducted. We considered the follow-
ing parameters as hyperparameters:

• Epochs: The number of iterations for training/testing functions. 1 epoch
iterates all train/test batches of data once.
• Batch size: The size of each individual batch that is passed to the model.

A set of 100 samples with a 16 batch size would for instance produce 6
batches.
• Learning rate (LR): Determines iteration step size and how fast the net-

work should update its weights.
• Gamma: Gamma is multiplied by the LR and influences the learning rate

accordingly.
• Optimizer: Optimizes the NN performance by updating weights, LR, attrib-

utes etc.
• Scheduler: A helper to adjust LR as the number of epochs increases.
• Loss function: Measures the predictions against ground truth to calculate

how well the model performs. The goal is to minimize the loss as best as
possible.
• Miner: A helper function that can be utilized to select hard pairs in training.

43
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This could increase a model’s robustness.
• Similarity threshold: The condition that must be met to decide whether

the outcome is either dissimilar or similar.

Different experiments of the above parameters were tested in order to identify the
best-performing combination. There were several considerations in mind during
this process. By using a pre-trained model it was quickly observed that low learn-
ing rates and gamma values were appropriate. This is because model’s weights are
already set, and we want to utilize these weights in our own experiment. A too
high learning rate caused the models to converge too early at low performance.
This is perhaps due to the pre-trained model being good at representing universal
input, considering it was trained on huge amounts of data. When presented with
a smaller dataset, high learning rates could perhaps destroy the weights from the
pre-trained model.

The optimal number of batch size were determined as 16 and 32. These two para-
meters were similar performance-wise, with slightly better performance for a 32-
sized batch. A batch size of 8 provided less accurate results, and 64 were con-
sidered too high compared to the number of samples available. A high number of
epochs was considered appropriate due to the learning rate being low. This is to
ensure that the model has enough time to update its weights to relevant values
since low learning rate means that the model will approach the minimum loss at
a slower rate.

Two types of optimizers were tested: Adam and Adadelta. The latter is the de-
fault optimizer in Pytorch´s SNN example [31], and was tested initially. Adam
was tested due to its popularity in the deep learning community, and since it also
utilizes the adaptive learning rate from Adadelta [49]. Results gave higher per-
formance using the Adam optimizer. For the scheduler, StepLR and MultiStepLR
were tested. The two methods had little to no difference in performance. StepLR
was thus chosen since it was the default scheduler in PyTorchs´s SNN example
[31].

ContrastiveLoss and PairMariginMiner from PyTorch metric learning [45] were
utilized as the loss and miner function respectively. MultiSimilarityLoss and MultiSim-
ilarityMiner from [45] were also tested. The latter functions also operate with im-
age pairs rather than triplets by default. Performance on the latter options was
slightly decreased compared to the first options, however.

A similarity threshold of 50% (0.5) was chosen as the condition to match. In
practice, this means that two compared pairs must have a computed similarity
score higher than or equal to 0.5 to be considered similar. Comparisons with a
lower similarity score are labeled as dissimilar. RQ3 aims to explore whether other
thresholds are more optimal for labeling pairs. Training and prediction using other
thresholds are presented in Section 5.4.
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Table 5.1 show an overview of the best performing hyperparameters identified
through experimentation. To reproduce the experiments in the future, these hy-
perparameters may provide a starting point when used with a dataset similar to in
this thesis. Ranges of used hyperparameter values are also specified in the table.

Parameter type Parameter value
Loss function ContrastiveLoss

Miner function PairMariginMiner
Optimizer Adam
Scheduler StepLR

Other hyperparameters
Parameter type Lowest value Highest value

Epochs 1 350
Learning rate 0.0001 0.01

Gamma 0.1 0.3
Batch size 8 32

Similarity threshold 50% 70%

Table 5.1: Best performing hyperparameter combinations identified through ex-
periments

5.2 Siamese Network validation

As described in Section 4.4 the model was evaluated using two methods for each
dataset respectively: Overall validation and individual validation per class. The
latter was conducted to get an insight into which types of websites perform best
on the trained models. The results presented here are relevant for answering the
first research question (RQ1), related to how suitable a SNN is in terms of learning
similarities in website screenshots.

5.2.1 Individual class validation

This section will show the validation of each class in the datasets individually. In-
dividual class validation attempts to gain insight into which type of websites have
the most persisting similarities. Studying these insights could help us understand
how the model learns similarities across different types of websites.

Small dataset

The following Section will showcase experiments conducted with the small data-
set. As stated previously in Table 4.4, the small dataset only contains 198 samples
in total. These are divided into 158 train samples and 40 test samples. In this
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section to follow, the model trained on the small dataset will be evaluated. Eval-
uations will be visualized using tables, accuracy graphs/diagrams, and confusion
matrices.

Table 5.2 shows the evaluated performance for each class individually for the
small model. Figure 5.1 further visualized the distribution of accuracy for each
class. The graph showcases for instance how classes 4 and 7 stand out.

Class TPs TNs FPs FNs Accuracy Precision Recall F1-score
1 130 46 155 0 53% 46% 100% 63%
2 61 84 122 47 46% 33% 56% 42%
3 118 80 167 0 54% 41% 100% 59%
4 66 149 89 44 62% 43% 60% 50%
5 118 66 149 0 55% 44% 100% 61%
6 95 71 169 0 50% 36% 100% 53%
7 105 189 45 1 86% 70% 99% 82%
8 70 74 136 33 46% 34% 68% 45%
9 112 51 158 0 51% 41% 100% 59%
Sum 875 810 1190 125 51,9% 43,1% 87% 57,1%

Table 5.2: Validation of each individual class for the small model. The best results
are marked in green.

Figure 5.1: Accuracy measured for each class individually - small dataset.

Analyzing these results shows that there is a higher number of true predictions
(TP/TN) compared to false predictions (FP/FN). True predictions account for
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1685 out of 3000 predictions, which is slightly above 50%. The false predictions
account for the remaining 1315 predictions. However, as discussed in Section 4.4,
the individual class validation does not represent the overall model performance
accurately. This is further showcased in Section 5.2.2. On the other hand, these
insights can make it easier to interpret which classes perform better than others.

Class 7 has one of the better TP and TN rates, indicating that the model is able to
distinguish (dis)similar samples with great confidence for these types of websites.
Only 45 FPs and 1 FN were produced, resulting in high accuracy for this class.
This also results in a high F1-score for the class. As showcased previously in Table
4.5, class 7 is a collection of scam campaigns within different niches.

Class 1 in the small dataset consited of fake escrow transportation websites. The
amount of FPs are high. This indicate that identifying similarities within this class
was difficult, even though the samples were near-duplicates. On the other hand,
it was able to distinguish these websites from other types, considering the low
number of FNs. Among the worst performing classes was class 2, which was fake
cargo and transportation services.

Diverse dataset

The following Section will showcase the experiments conducted on the model
trained diverse dataset. As previously described in Section 4.2.2, the diverse data-
set contains more samples within each class. Thus, this dataset has much more
variance. Samples in this dataset also contain some of the near-duplicate classes
in the small dataset. However, it is mostly weighted by samples that have less obvi-
ous similarities. It is also worth noting that this dataset contains a higher amount
of samples compared to the small dataset. This further influences the sums shown
in the validation.

As seen in Figure 5.2, class 2, 4, and 8 stands out in terms of prediction accur-
acy. Examining Figure 4.5 from Section 4.2.2, class 2, 4, and 8 are actually all
near-duplicate classes. These three classes are also the only near-duplicate classes
in the diverse set. Class 2 contains fake real-estate services, while class 4 are the
HYIP-scams websites. Lastly, class 8 is a collection of fake package tracking and
shipping websites. These results are interesting. Even though the smaller model
has more near-duplicate samples, the diverse model performed better at identify-
ing these.

Table 5.3 shows validation per individual class for the diverse dataset. Class 2 has
the best performance. With a 67% precision and 100% recall, it ends up with a
weighted F1-score of 81%. The amount of TPs is the double of total FPs, and the
TN rate is also very high. No FN predictions were made. This shows that the di-
verse model is able to identify the fake real estate websites with great confidence.



48 E. T. Vestad: Website similarity detection with SNNs

Class 4 performed very similarly to class 2. However, the FP rate is slightly higher
for this class. Class 4 consisted of HYIP websites. Lastly, the fake package tracking
samples in class 8 also showed a high performance in the number of true predic-
tions.

Figure 5.2: Accuracy measured for each class individually - diverse model.

Class TPs TNs FPs FNs Accuracy Precision Recall F1-score
1 321 218 362 7 59% 47% 98% 64%
2 309 434 149 0 83% 67% 100% 81%
3 270 240 375 22 56% 42% 92% 58%
4 308 412 196 0 79% 61% 100% 76%
5 310 270 364 5 61% 46% 98% 63%
6 267 240 350 63 55% 43% 81% 56%
7 279 243 351 2 60% 44% 99% 61%
8 264 427 153 0 82% 63% 100% 78%
9 271 226 390 2 56% 41% 99% 58%
Sum 2599 2710 2690 101 65,6% 50,4% 96,3% 66,1%

Table 5.3: Validation of each individual class for the diverse model. The best
results are marked in green.
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Summary

The above results show that the diverse dataset has the best performance based on
individual class validation. It should be kept in mind that this evaluation method is
not suitable for validating the overall model performance, but rather understand
the performance between the different types of websites included in the exper-
iment. A more accurate validation for the overall model is presented in Section
5.2.2.

For the small dataset, class 7 had the best results. As shown in Figure 5.3, website
screenshots in class 7 contain a wide white header, navigation, hero image, and a
header title. A similar type of logo is always displayed in the top left corner as well.
Colors vary, and the theme for these websites is anything from motors to animals.
The similarities are more dynamic compared to many of the other classes, and the
samples are not obvious near-duplicates. Even though the website header design
persists in samples within this class, the hero image covers about 70% of the page.
The hero image also varies depending on the website’s niche. Class 1 had 50% ac-
curacy, but taking TPs, FPs, and FNs into account, it yielded the second-highest
F1-score. The class contained near-duplicate samples, with only minor changes
between the websites. These observations indicate that the small model struggled
to generalize. Especially towards near-duplicate classes.

Figure 5.3: Classes with highest performance - small dataset.

The diverse model had the highest performance on class 2, 4, and 8, which all con-
tains near-duplicate websites, as shown in Figure 5.4. This shows that the addi-
tional amount of data in the diverse dataset has made the model able to generalize
better. As a result, better generalization may result in increased ability to identify
near-duplicate websites. Further evaluation of the diverse model validation shows



50 E. T. Vestad: Website similarity detection with SNNs

higher TP/TN rates and lower FP rates compared to the small model. These res-
ults support the hypothesis that the diverse model has generalized better to catch
the website similarities. The next Section 5.2.2 will give a better indication of the
two models’ overall performance respectively.

Figure 5.4: Classes with highest performance - diverse dataset.

5.2.2 Overall model validation

The following Section will discuss the overall model performance rather than con-
sidering each class individually. The following validation should hence be inter-
preted with more confidence for evaluating the trained models.

Small dataset

Table 5.4 describes the overall performance of the model trained on the small
dataset. True positives out-weights the number of false positives, resulting in a
precision of 60%. This shows that the model is somewhat precise at identifying
similarities, but still has room for improvement. The model also performs well in
predicting negative samples when website pairs are dissimilar. Due to the model
having a low FN rate compared to TPs, the recall value is high. This leaves an
F1-score of 71%. These results show that the model is capable of not letting fraud-
ulent websites go undetected. At the same time, similarity identification can be
improved.
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TPs TNs FPs FNs Accuracy Precision Recall F1-score
875 405 595 125 64% 60% 88% 71%

Table 5.4: Overall model validation - small model

Figure 5.5 visualizes the model validation in a confusion matrix. For true predic-
tions, more saturated colors are desired. Less saturated colors are desired for false
predictions. TPs are very saturated, while TNs and FPs have moderate saturation.
FNs have no saturation due to their low count.

Figure 5.5: Confusion matrix for the small model.

Figure 5.6a and Figure 5.6b show the evolution of training accuracy and loss for
each epoch. These measurements are conducted on the training portion of the
data. Both accuracy and loss show that sporadic swings in performance take place
between every epoch. This could mean that the model struggles with learning
from samples in the dataset. The samples could be too difficult for the model to
further adapt towards it. The way classes and samples were distributed could be
the reason for this. It can also be seen that training struggles to improve over time.

Figure 5.6c and Figure 5.6d show the model’s prediction accuracy and average test
loss. While training performance shows how training performs over time, predic-
tion accuracy gives a better indication of how the model performs on unseen data.
A high variance of accuracy between each epoch can be seen here as well, and the
performance does not converge. Prediction performance rather decreases over
time. Average test loss also reflects this, which is increasing over time. Showcased
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(a) Training accuracy. (b) Training loss.

(c) Prediction accuracy. (d) Prediction loss.

Figure 5.6: Training and prediction accuracy and loss for the small model. Shown
over 50 epochs.
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prediction performance supports the fact that the dataset may be too difficult for
the model to learn from each epoch.

As described by Goodfellow & Bengio et al. [14], overfitting occurs when the gap
between the training and testing error is high. Comparing training and prediction
accuracy and loss can hence give an indication of the model´s fitness. Training
accuracy is slightly higher compared to prediction accuracy, but has a and has a
non-improving trend. The decreasing prediction trend however signalizes overfit-
ting, as the training is not sufficient enough to generalize to the testing data. The
amount of training used in the small dataset is also limited, affecting the model’s
ability to generalize.

Diverse dataset

Table 5.5 describes the overall performance of the model trained on the diverse
dataset. TPs are close to double the amount of FPs. TN predictions also perform
very well compared to FNs. Even though the model has more total correct predic-
tions, the FPs are still significant. This means that the model still has potential for
improvement in identifying true similar samples.

TPs TNs FPs FNs Accuracy Precision Recall F1-score
2599 1355 1345 101 73% 66% 96% 78%

Table 5.5: Overall model validation - diverse model.

The results show that the diverse model is robust against not slipping fraudu-
lent websites through, considering the high recall score. In a practical scenario,
it would be reliable for fraud detection due to its low number of FNs. However,
precision shows that many dissimilar samples may be falsely predicted as similar.
This would create some noise and additional after-work in a practical scenario,
with such low precision. Collectively, it yields an F1-score of 78%, which shows
that model can be utilized in practice with correct training and fine-tuning.

Figure 5.7 shows the visualized confusion matrix for the values in Table 5.5. For
true predictions, more saturated colors are desired. For false ones, less satur-
ated colors are preferred. Similar to the small model, TPs have a high saturation,
whereas FPs and TNs have moderate saturation. The FN saturation is weak here
as well.
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Figure 5.7: Confusion matrix calculated based on the diverse model’s overall
performance

Figure 5.8a and Figure 5.8b shows the evolution of training accuracy and loss for
each epoch. These values were calculated on the training portion of the dataset.
It can be seen that training accuracy is slowly increasing. This indicates that the
model is learning over time and that improvement may happen through additional
training. Similarly, training loss is decreasing over time.

Figure 5.8c and Figure 5.8d show the evolution of prediction accuracy and loss
for each epoch. These values were calculated on the unseen test data. Predic-
tion accuracy is neither increasing nor decreasing. It stays stable thoroughly. This
indicates that even though training improves, the model has not had enough in-
put to improve further. Moreover, it is a sign of underfitting. Since the model has
not been able to improve enough, the generalization is harder. Allowing for more
training, addition of data, or utilization of a more complex architecture, could
improve performance and eliminate underfitting.

Similar to the small model, each epoch in the diverse dataset also contains major
swings in performance. As stated previously, this is likely due to the model not
being able to handle certain samples in the dataset. Changing the dataset’s content
or sample distribution may improve these observations.
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(a) Training accuracy. (b) Training loss.

(c) Prediction accuracy. (d) Prediction loss.

Figure 5.8: Training and prediction accuracy and loss for the diverse model.
Shown over 50 epochs.

Summary

Comparing the experiments conducted on the small and diverse dataset shows
variation in how they perform. The small model performed more poorly. It has a
high recall score, but the amount of FPs makes it less precise. Analysis of training
and prediction performance showed that the small model is likely overfitting since
training does not improve and prediction accuracy is gradually decreasing.

The diverse model had higher overall performance than the small model. Low
number of FNs makes it a trustworthy appliance for fraud detection scenarios
where FNs have a high cost. Still, the precision has room for improvement. Without
increasing model precision, the model will predict struggle with predicting dissim-
ilar sites as similar. Training and prediction performance showed that the model
may be underfitting. Training improved over time, but prediction stays stable
without improvement. In addition, the average prediction accuracy was higher
than the training accuracy. The addition of more data or utilization of a more
complex architecture could thus improve performance.
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5.3 Pixel attribution analysis

The following section will showcase experiments related to RQ2, which explores
the interpretation of how the model captures relevant features in website screen-
shots. The technicalities of the process are described in Section 4.5. Since the SNN
consists of two CNN sub-networks, considered features will be visualized through
pixel attribution. This process is first applied to the CNN’s low-level features, fol-
lowed up by an inspection of high-level features. Pixel attribution was attempted
for both the small and diverse models. However, only the diverse model created
results of relevance. The small model was not able to visualize features in saliency
maps. This could be due to the low amount of data on which the small model was
trained. Saliency maps were successfully produced for the diverse model, but it is
also reflected here that the amount of data was not sufficient.

5.3.1 Low-level feature extraction

Lower convolutional layers of ResNet-18 attempt to capture low-level features in
images, such as edges, corners, and lines [47]. These features have been visual-
ized using saliency maps as described in Section 4.5. Figure 5.9 shows the original
screenshots and generated low-level saliency maps for three different websites.

Analyzing these saliency maps reveals that the model is able to capture low-level
features such as edges and lines. The first website has a pattern of lines in the hero
background, which are represented in the saliency map as well. For website 2, the
edges of the driving trucks and lines of the road they are driving on are captured
in the saliency map. It is also possible to identify the red navigation bar. The sa-
liency map of website 3, the Bitcoin website, also reflects the ability to separate
edges. Looking at the original website, a radial gradient can be seen surrounding
the symbols at the bottom half of the page. The saliency map shows that the model
is able to identify the edge of this gradient, in addition to considering the stapled
lines between the objects. It can also be seen that the lower half of the website
has more of the model’s attention compared to the upper half, which contains the
text and navigation bar etc.
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Figure 5.9: Low-level features capturing lines, edges, etc.
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Figure 5.10 shows another example of saliency maps created from low-level fea-
tures. Analyzing the first website, it is possible to distinguish the background fill
on the left from the image on the right on the saliency map. The model seems
to struggle with recognizing text, as this is represented with black, empty areas.
In website 2’s saliency map, it is possible to identify the edges of the people in
the image. With a close look, the woman to the right and her handshake are well
represented.

Figure 5.10: Low-level features capturing page structure and human edges within
website images.

5.3.2 High-level feature extraction

The higher levels of ResNet-18 are more focused on capturing dynamic and unique
features within images, such as colors, objects, and patterns [47]. Figure 5.11
shows generated saliency maps for the model’s high-level features. Interpreting
these saliency maps was harder compared to the low-level ones since the features
are more specific and less general. By studying the maps closely, it is possible to
recognize some patterns.

In the saliency map of website 1, it is possible to identify the noses of the cows.
These can be seen with small pink circles. Website 2 captures the eyes of the mon-
key, while saliency map 3 is able to resemble the shape of the chickens. Similarly to
low-level features, high-level features are not capturing website semantics, such
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as navbars, logos, or text. These elements are mostly black areas in the respective
saliency maps.

Figure 5.11: Example saliency maps for high-level features.

5.3.3 Summary and comparison

The above sections have considered the model trained using the diverse dataset on
a pre-trained ResNet-18 architecture. Low-level features and high-level features
were visualized respectively in order to interpret them individually. Analyzing the
above saliency maps, it can be seen that the model is able to capture features
on a low level. High-level features were harder to interpret. Regardless, it can be
seen that the model is better at identifying photographs and illustrative objects
within the websites, rather than website semantics and structure. The pre-trained
version of ResNet-18 was trained on ImageNet-1k, which consists of 1000 classes
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of different photographs. Thus, the use of transfer learning, combined with the
lack of website training data, may have influenced the model to generalize better
to photographs rather than website-specific elements.

5.4 Similarity threshold experiments

As stated in Section 4.1, we defined three website-similarity terms: dissimilar, sim-
ilar, and near-duplicates. However, the trained models only label pairs as either
dissimilar (0) or similar (1). In the following Section, experiments regarding the
model’s ability to distinguish these categories will be showcased. This includes
inspecting the outputted similarity scores for compared pairs during prediction.
Using these similarity scores, the model’s ability to consider dissimilar, similar, or
near-duplicate samples is assessed individually. The section addresses RQ3, re-
garding the definition of similarity thresholds.

The simset, as described in Section 4.2.2, was used to inspect similarity values. As
opposed to the small and diverse datasets, the simset only contains 3 classes of
website screenshots. These represent the dissimilar class, similar class, and near-
duplicate class respectively. Samples in the dissimilar class were unclassified dur-
ing the data population process (Section 4.2.2), and not part of any class that
the models were trained on. This was necessary in order to populate pairs with a
sufficient amount of dissimilarity. Neither of the samples in the three classes was
part of the models training data.

Section 4.3 described how the generation of training and testing pairs were con-
ducted. Samples belonging to the same class received target 1 (similar), while
samples paired from different classes received target 0 (dissimilar). For this ap-
proach, an additional target (2) for near-duplicates was needed. The population of
the prediction dataloader was thus changed to take this into account. The process
was as follows:

1. Select a random class in the simset (1-3).
2. Select a random image within the selected class as image 1.
3. If the near-duplicate class (3) was chosen, randomly select image 2 from

the same class. The target is set to 2.
4. If a similar class (2) is chosen, randomly select image 2 from the same class.

The target is set to 1.
5. If the dissimilar class (1) is chosen, select image 2 either from class 2 or 3.

This produces a pair with dissimilar samples: 1 from the dissimilar class,
and 1 from any other class. The target is set to 0.

It was only necessary to run predictions through the already trained models to
retrieve information about the computed similarity scores. The modified simset
dataloader was passed through both the small and diverse models with 3 epochs
each.
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5.4.1 Similarity computation - small model

Figure 5.12 represents a graph with all pairs compared during the 3 epochs on the
small model. The x-axis is divided into percentiles of 10% each. The y-axis shows
the total count of comparisons residing within the specific percentiles. Graph col-
ors visualize each class respectively.

Most comparisons on the small model ended up with a similarity score between
70%-90%. This was regardless of whether the pairs were dissimilar, similar, or
near-duplicates. It is visible that the near-duplicates have a higher concentration
within this percentile. Dissimilar samples would optimally be concentrated within
the lower percentiles since these are less similar to each other. Instead, dissimilars
have a higher concentration than similars in the 70%-90% range. This indicates
that the small model has not generalized well enough to distinguish (dis)similar
samples. The high volume of dissimilars within this range also reflects the amount
of FP predictions for the small model.

Figure 5.12: Distribution of similarity prediction scores for the small model.

5.4.2 Similarity computation - diverse model

Figure 5.13 shows the graph for all pairs compared in the similarity calcula-
tion for the diverse model. The diverse model has different similarity distribution
compared to the small model. Most of the comparisons between near-duplicate
samples are within the 70%-90% range. On the other hand, similar predictions
are also very well represented within this percentile. Thus, labeling the differ-
ence between near-duplicates and "just similar" samples may be challenging for
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the model. Regardless, the high volume of near-duplicate and similar predictions
within this percentile shows that the model is able to distinguish similarities from
dissimilarities with these percentiles as criteria.

The dissimilar predictions show better results for the diverse model compared to
the small model. Approximately 70 predictions are within the 20%-30% range.
Having comparisons from this class within the lower percentiles shows that the
model is able to distinguish dissimilar websites. A spike in dissimilar comparis-
ons can also be seen in the 70%-90% percentiles, however. This indicates some
challenges in dissimilar distinguishing and is also reflected in the model’s false
predictions evaluated in Section 5.2.2. Based on the graph, a similarity threshold
of at least 70% could be suitable for creating a better distinction between similar
and dissimilar pairs.

Figure 5.13: Distribution of similarity prediction scores for the diverse model

5.4.3 Threshold experimentation

Adjustments to the similarity score thresholds were tested to review how this
affects model performance. As stated in Chapter 4, the model labels a pair as
similar if the computed similarity score is above or equal to 0.5 (50%). Experi-
ments showed that similar/near-duplicate pairs most often have similarity scores
between 70% - 90%. Prediction thresholds were thus adjusted, such that only
pairs having a score equal to or above 70% were labeled as similar.

Tests with this threshold were run on both the small and diverse datasets. This
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also involved re-trained the models with this threshold. Table 5.6 shows perform-
ance for the small model with a 0.7 threshold. Other hyperparameters used were
identical to those described in Section 5.1. Accuracy values from previous results,
with a threshold of 0.5, have also been included for comparison. Both training
and prediction accuracy is slightly improved when the threshold is increased. This
could be due to the number of dissimilar samples being within the 50% - 70% per-
centiles (refer to Figure 5.12). Increasing the similarity threshold excludes these
dissimilar pairs from being labeled as similar, as compared to when the threshold
was at 0.5. It should also be noted that the number of TNs and FNs has increased.
This is due to the threshold making it harder to label positives.

Small dataset
Similarity score >= 0.5 Similarity score >= 0.7

Training accuracy Prediction accuracy Training accuracy Prediction accuracy
67% 64% 70% 66%
TPs TNs FPs FNs
780 639 361 220

Table 5.6: Achieved performance with 0.7 as the similarity threshold - small
model.

Table 5.7 shows achieved performance for the diverse dataset when the threshold
was set to 0.7. It can be seen that the performance is lower than seen previously
using 0.5 as the threshold. As seen for the small dataset, the number of negatives
has increased. This is due to the requirements for being labeled as similar have
increased. Referring to Figure 5.13, the near-duplicates within the 50% - 70%
percentiles are likely contributing to this since these do not meet the threshold
requirement of 0.7. It is possible that experiments with 0.7 as the threshold would
improve over time with more training data available. This may also be the case
with other threshold values (i.e. 0.6). Although overall performance decreased,
validation with 0.7 as the threshold may be more representative since most similar
and near-duplicates pairs resided within the 70%-90% percentiles.

Diverse dataset
Similarity score >= 0.5 Similarity score >= 0.7

Training accuracy Prediction accuracy Training accuracy Prediction accuracy
69% 73% 67% 69%
TPs TNs FPs FNs

2235 1499 1201 465

Table 5.7: Achieved performance with 0.7 as the similarity threshold - diverse
model.





Chapter 6

Discussion, Conclusion and
Further Work

The previous chapters have described how criminals operate more advantageously
than law enforcement with website replication. Existing work within the field of
criminal website disruption was assessed, and research questions were defined
with this in mind. Project methodology along with a description of the under-
lying theory was presented, followed up by experiments to answer the research
questions. The following chapter will discuss the resulting outcome of previously
shown experiments. This includes belonging implications, recommendations, con-
cluding words, and further work.

6.1 Theoretical implications

Research within classification and detection of criminal websites are also previ-
ously explored topics. Existing work in the field was identified and reviewed. We
discovered that most machine learning techniques for criminal website classific-
ation/detection are based upon textual features. These include features such as
a website’s HTML tags, HTML-element occurrences, positioning, and sentences.
Less research focusing on the visual elements of a website existed. Moreover, most
machine learning methods attempted for this purpose previously were, to our
knowledge, traditional clustering and classification methods. The use of NNs for
this purpose was not identified in reviewed literature.

6.1.1 Research question 1

How precise are siamese neural networks in identifying similarities between screen-
shots of fraudulent websites?

Existing research showed that similarities are often persistent in replicated crim-
inal websites. Replication of existing websites with minor tweaks allows actors
to replicate fraud campaigns with efficiency and persistence. We thus purposed a
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method to label compared websites as either similar or dissimilar. Using CNNs as
sub-networks, pairs of websites screenshots and their corresponding label (simil-
ar/dissimilar) are processed. The SNN computes the similarity between the two
outputted embeddings.

The amount of data input data (website screenshots) collected was not significant.
Typically, larger amounts of data are required when training deep NNs. We util-
ized a pre-trained ResNet-18 model with ImageNet-1K V2 weights as a baseline
for further training. The initial thought was that this could strengthen the model
since the amount of collected data was too small to train an accurate model alone.

Conducted experiments show that SNNs has the potential for being utilized within
criminal website detection where similarities are present. This is supported by the
fact that performance increased when more data was added, comparing the small
model to the diverse one. The addition of data augmentation techniques to train-
ing data as seen in Listing 4.1 also increased prediction accuracy by approximately
5%.

Our experiments hence contributed to new research within the field of criminal
website detection. Using screenshots of websites as an input medium for a NN has
shown to work. This reduces the amount of effort needed to manually identify key
features, by letting the network learn from inputted images. With more sophistic-
ated data collection and bigger-scale training, our proposed method may become
more trustworthy in a real-world application. The thesis has also strengthened
knowledge from existing work, showing that persisting website similarities may
indeed be utilized in detection through distance metric methods.

6.1.2 Research Question 2

How can the trained model be interpreted to analyze relevant features learned from
fraudulent website screenshots?

The diverse model was interpreted in order to analyze whether it was able to cap-
ture features of website screenshots. The goal of this process was to assess what
website elements the sub-CNNs were able to identify after training. Moreover, this
insight could give an indication of which website semantics that would be inter-
esting to focus on in further work.

Since we are working with images, interpretation of pixel attribution visualiza-
tion can give information on the network’s ability to capture features. Saliency
maps were generated for arbitrary samples in the test dataset to visualize pixel
attribution. As seen in Section 5.3, it was possible to recognize parts of the web-
site through low-level saliency maps. This shows that the model is able to recog-
nize website elements. A challenge was also uncovered through this analysis. The
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model is seemingly more robust at identifying photographs in websites, rather
than semantic website elements (navbars, positional elements, etc.). This is most
likely due to the use of pre-trained ImageNet-1k weights, as these are trained on
various photographs to solve universal problems. Photographs are dynamic ele-
ments likely to change throughout websites. It was seen during data collection
that logos and image assets also change in near-duplicate websites. This intro-
duces challenges since similarities often persist in semantic website elements as
mentioned above, rather than in photograph assets.

During our work, we have showcased how transfer learning can support training
a model when insufficient amounts of data are available. The model was able to
capture features such as lines, gradients, edges, and patterns using this approach.
On the other hand, results showed how transfer learning may also greatly influ-
ence the types of features considered by the model. Further work can take this into
account when training deep NNs for this purpose. Although pre-trained models
can compensate for the lack of data, they cannot necessarily adapt to the prob-
lem at hand. For the sake of website screenshots as the input medium, training a
model from scratch explicitly on website screenshots may make the model more
clever at capturing website semantics. Then again, this requires more data. Exper-
imentation with different pre-trained models or architectures could also impact
the ability to capture features of relevance.

6.1.3 Research Question 3

What are possible similarity thresholds for determining whether pairs of websites are
dissimilar, similar, or near-duplicates?

Through initial experiments, it was shown that SNN as an algorithm has the po-
tential for being utilized to identify similarities within fraudulent websites. The
proposed method labeled unseen testing pairs of websites into two categories:
Similar (1) or dissimilar (0). As previously discussed, three different grades of
similarity were defined: Dissimilar pairs, similar pairs, or near-duplicate pairs. By
investigating this research question, we wanted to explore whether the trained
models were able to distinguish between not only (dis)similar pairs but also sim-
ilar and near-duplicate pairs. More specifically, the similarity score that the SNN
model computes for pairs within these categories respectively was inspected.

Results showed that most of the near-duplicate samples have a similarity score
of 70% - 80% for the small model. The model struggles however with the fact
that most dissimilar and similar pairs also compute similarity scores within these
percentiles. This is also reflected by the amount of FP predictions and signs of
overfitting. The small model was thus not representative enough to provide an-
swers to this research question.
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Similarity threshold experiments done on the diverse model show more trust-
worthy results, considering that the model generalized better. Most similar and
near-duplicate pairs receive a similarity score within the 70% - 80% percentile.
Our experiments thus show that a threshold of 0.7 can work as the minimum con-
dition for labeling similar or near-duplicate pairs. Distinguishing between similar
and near-duplicate pairs however was challenging, since they mostly relied upon
the same percentile. It should be taken into account that the models were only
trained on outputting two targets: dissimilar (0) or similar (1). If the models were
trained to output the near-duplicate target (2) as well during training, it would
perhaps be able to distinguish these two categories better. Nevertheless, it is clear
that a minimum threshold of 0.7 can be suitable to identify similar and near-
duplicate pairs from dissimilar ones. This theory was also strengthened through
retraining a model using a 0.7 threshold rather than 0.5, as shown in Section 5.4.3.

Our experiments present examples of similarity thresholds that can be utilized
to identify similarities in further work. Although previous work showcased what
types of similarities often persist within criminal websites, it has not been dis-
cussed how much replicated criminal websites differ in variance. At least to our
knowledge. The achieved results show that a similarity score above or equal to
70% should be considered when labeling similar samples in the future.

Similarity scores presented for this research question are not conclusive. They do
however provide a starting point for creating a threshold condition in other ap-
pliances. The grade in which similar websites differ from near-duplicates remains
to be explored in further work.

6.2 Practical recommendations

Website screenshots were collected in order to populate the datasets. The col-
lection used an automated web crawler to visit fraudulent websites and capture
screenshots. For training a more accurate and robust model, it is recommended
to upscale the data collection process. This would also allow the model to gener-
alize better to new data. Data collection can be conducted over longer periods of
time by monitoring online data sources regularly. This approach was for instance
utilized by Drew & Moore [4] and Westlake et. al. [9], who collected data by mon-
itoring data sources over several months.

Manual data gathering and dataset population made the experiments hard to re-
produce. Samples gathered from other sources that vary thematically could pro-
duce other results, even though the implementation is identical. Manual sorting
of dataset classes introduced subjectivity in the way samples were interpreted
and arranged. To strengthen the integrity of the populated datasets, clustering
could be utilized to group samples. This could reduce the grade of subjectivity
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in the process and make population more reproducible. However, when dealing
with supervised learning, manual class distribution may indeed be more suitable
to ensure correctness. Benefiting from more human resources to sort and quality
assure the dataset population is perhaps more feasible if possible.

The technical implementation on the other hand is easy to re-implement. The
SNN was based upon PyTorch’s implementation example [31], and adapted fur-
ther for this task. Some changes were made to how the program loads data, the
training, the validation, and the model structure. The principles are still the same,
however. To support development, other easy-to-use frameworks such as numpy,
SciKit-learn and pandas were utilized. These are well documented packages
easy to integrate with Python machine learning applications. Selenium is also
well documented and straightforward to use for website crawling.

Re-production of the experiments in a bigger scale scenario (i.e. in digital forensics)
could be resource intensive. Although the framework and third-party packages are
free and easy to implement, training the SNN requires sufficient computational re-
sources. Using CNNs and images as the input data is especially computationally
expensive compared to using text as input data. The addition of data and deeper
architectures will also increase training time. Investing in sufficient Graphical Pro-
cessing Units could be economically expensive and introduce high energy costs.
Utilizing transfer learning will reduce the computational cost, however, since the
amount of training needed is reduced. Implementers should keep these expenses
in mind when assessing a project budget.

Our proposed method used a supervised learning approach. Pre-processing is
more demanding in supervised learning since corresponding labels must be de-
termined on beforehand. Implementers may benefit from attempting semi-supervised
learning, where only a portion of the training data is supervised. The rest is
learned through unlabelled data. This can save a lot of resources and time con-
sumption during pre-processing.

Digital forensics investigators could benefit from a SNN by combining it with
other website detection techniques. A practical scenario could be the detection
of newly spawned darknet marketplaces. A separate crawler entity could for in-
stance gather information on new webpages spawned on darknet once every 24
hours. Assuming that darknet markets of interest have persisting website simil-
arities (i.e. sharing front-end framework), the crawler could automatically pipe a
screenshot for comparison to the trained SNN. Depending on similarity thresholds
in place, alerts could be created in a front-end system. This is one example of how
the model can be utilized in practice.
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6.3 General discussion

Website replication techniques to host fraudulent campaigns will continue to chal-
lenge website takedown processes in the future. As described by Moore and Clayton
[8], it will never be possible to fully cope with the amount of digital criminal activ-
ity. Fraudulent website detection through SNNs could hence aid in earlier detec-
tion and disruption of such websites.

Supervised classification algorithms and unsupervised clustering methods have
provided relevant results in previous research. Especially methods considering
text-based website features have produced significant results. Using images as the
input medium for this purpose was, to our knowledge, not as common. Neither
was the utilization of NNs. Considering that similarities often are persistent in
fraudulent websites, SNNs may perhaps be the most optimal candidate for such
tasks, being a metric learning algorithm

Using website screenshots (images) as input rather than text-based features (i.e.
website source code) introduces differences in how the applied algorithm learns.
Using screenshots, all visible elements on the website can be interpreted. This al-
lows training of a machine learning algorithm that interprets classification based
on what it sees directly, without additional information such as metadata. The ma-
chine sees the same elements as the human sees. Likewise, this poses a challenge
in terms of analyzing hidden elements on fraudulent websites. Malicious source
code, website traffic, and URL parameters are not considered in our approach.
What cannot be seen visually and hence cannot be considered. Future work could
benefit from adding functionality for interpreting hidden indicators as well.

Through our conducted experiments, we have shown that SNNs have potential to
detect similarities in fraudulent websites. However, the limited availability of data
did limit performance and ambition. Digital forensics investigators and security
researchers with appropriate resources at hand can utilize accomplished experi-
ments in further work. They may give an indication for future decision criteria,
such as determining when websites are considered similar, and whether transfer
learning is a suitable approach.

6.4 Conclusion

Criminal operations hosting fraudulent websites operate more advantageous than
law-enforcements. Replicating a website, i.e. through TLDH, requires less time
and resources compared to a full website takedown procedure. Disruption of such
operations could hence increase the amount of resources and complexity that the
criminals must put into their work. Therefore, one of the intended goals of this
thesis was to investigate untested methods that could aid in criminal website de-
tection and disruption.
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Existing research showed how similarities are likely to persist within certain
categories of criminal websites [4]. We have shown the usage of SNNs to identify
similarities in screenshots of HYIP, escrow, and fee fraud websites.

The first research question as defined in Chapter 1 was related to how SNN as
an algorithm can be utilized for this purpose. Our results showed that the small
model was most inaccurate and overfit. Validation of the diverse model showed that
the SNN were able to label near-duplicate websites to a great extent. Several near-
duplicate classes had a prediction accuracy of approximately 80%. The model also
was also able to identify less obvious similarities. Overall model validation yielded
a collected F1-accuracy of 78%. This shows that SNNs are able to identify website
similarities and patterns with screenshots as input data. This implies training in a
bigger scale scenario with more data available to prevent underfitting.

The second research question was related to analyzing whether the trained
model was able to capture relevant features in the website screenshots. Saliency
maps were utilized to interpret pixel attribution on a set of test images. Our ana-
lysis showed that the model was capable of capturing low-level features such as
edges, lines, and patterns in website screenshots. More specifically, the model did
better at identifying the photographs used in these websites, rather than persisting
website semantics. Using transfer learning with pre-trained weights has likely in-
fluenced this. Training without pre-trained weights could make the model capture
features more relevant for website semantics.

Lastly, experiments related to the third research question discussed adjust-
ments of similarity thresholds. Initially, the models were trained to distinguish
dissimilar and similar samples, based on whether computed similarity was above
or below 50%. Experiments attempted to investigate how the degree of similarity
distinguishes dissimilar, similar, and near-duplicate websites. Our result showed
that a minimum threshold of 70% can be used to distinguish similar and near-
duplicate pairs from dissimilar ones. However, the model was not able to distin-
guish between similar and near-duplicate websites. The 70% similarity threshold
could be utilized as a starting point in future work.

The findings in this thesis have provided a contribution towards untested
methods to support criminal website disruption or detection. By exploiting per-
sistent similarities in replicated websites, we have shown SNNs ability to identify
these through limited training. SNN may hence be reliable on a bigger scale. In
practice, automated solutions could utilize SNNs to detect re-appearing websites
if generalized properly. Digital forensics could benefit from this by identifying rep-
lication at a faster scale, further causing disruption. We hope that our work has
motivated further research to continue the exploration of SNNs in criminal web-
site detection & disruption.
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6.5 Further work

Based on conducted experiments and achieved results, we have highlighted some
key takeaways that can be improved upon to strengthen future research.

Population of a more balanced and bigger dataset
The populated dataset of fraudulent websites used in this thesis was limited in
size. Collection was conducted within a limited period of time, affecting the total
amount of collected samples. Manual grouping of website screenshots into classes
was also conducted. This introduces subjectivity into the way website (dis)similarities
was interpreted.

It is encouraged to conduct website screenshot collection over a longer period
of time to populate a bigger dataset. This could be performed by monitoring fraud
website trackers, such as aa419.org, over time. If manual dataset population is
conducted, more human resources should be utilized to quality assure classes and
website samples. It is also advised to explore automated methods such as cluster-
ing or k-fold cross validation.

Training a model without using transfer learning
Transfer learning was utilized on a ResNet-18 architecture with pre-trained ImageNet-
1k weights. This was done to accompany for lack of available data. Pixel attri-
bution discovered that the use of pre-trained weights may have generalized the
model more towards identifying photographs within website screenshots, rather
than the website’s structure.

It is advised to attempt training a model without using weights from a pre-
trained model as a baseline. This could allow the model to generalize better
towards website semantics, rather than photographs displayed on websites. To
maintain performance with this approach, a high amount of training data must
be available. Experimenting with other pre-trained models may also produce res-
ults of interest.

Experimenting with other CNN architectures
The ResNet-18 architecture was used for both the small and diverse models. Ex-
periments showed that the small model was overfitting. Changing to a less com-
plex architecture that is not as deep may hence improve performance on smaller
datasets. Results from the diverse model were the opposite, suggesting that this
model underfitting. Apart from adding more data, changing to a more complex
architecture could improve performance.

Additional feature visualization techniques
Features were extracted from the sub-CNNs lower and higher layers respectively
and visualized through saliency maps. It is encouraged to explore other CNN visu-
alization techniques, in order to further interpret relevant features within fraud
website identification. This could for instance be other visualization techniques, as
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for instance, principal component analysis (PCA) or t-Distributed Stochastic Neigh-
bor Embedding (t-SNE).

Combining both website screenshots and website source code as input data
SNNs have been tested with website screenshots as the input data. As stated in
Chapter 3, previous research in criminal website detection has been mostly fo-
cused on text-based features. It is encouraged to take both existing work and the
experiments conducted here in combination. A SNN considering both text-based
features and visual features could have richer knowledge regarding a website’s
relevant properties.

siamese neural network with one-shot learning
SNNs may be developed with one-shot/few-shot when less data is available. In
this thesis however, the amount of data available was concluded as not being suf-
ficient enough. Available data was thus utilized for training in order to get as many
training pairs as possible. When sufficient data are available, it is encouraged to
attempt a one-shot/few-shot approach. This could also be more scalable in a real-
world scenario.

Using TripletLoss as the loss-function
Our developed models use ContrastiveLoss from Pytorch Metric Learning [45] as
the loss function. This function takes image pairs as inputs. TripletLoss has grown
popular with the use of SNNs. It may be able to learn more precisely since it uses
a ’ground truth’ anchor image in addition to the compared pairs. It is encouraged
to explore the use of TripletLoss when not limited to the amount of data available.

Validating the implementation using another dataset.
Our experiments have only been evaluated on provided training data and unseen
test samples. To maintain performance integrity, it is advised to adapt and run the
source code against a dataset where we know the desired accuracy beforehand.
Examples could be running the implementation with the popular Omniglot or CI-
FAR10 datasets. By doing so, it is possible to determine whether experiment bias
is caused by the utilized datasets or the implemented program.

Experimentation of near-duplicates and similarity scores.
Trained models used a similarity score above or equal to 0.5 in order to determine
two samples as similar. 0.7 as the similarity score was also attempted in Section
5.4, considering that most similar and near-duplicate pairs have scores computed
within this range. It is advised to inspect the similarity threshold further. Adding
a target for near-duplicates to the model output, as described in Section 6.1.3, is
also encouraged for further exploring where the threshold between similar and
near-duplicate samples.
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Adding additional overfitting mitigations
When overfit, the model will generalize too well towards the training data, mak-
ing it inaccurate for predicting unknown data. As seen in Section 4.3.3, some
measures were implemented to prevent overfitting. To mitigate the possibility of
overfitting further, techniques such as dropout and regularization could be imple-
mented.
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Appendix A

Data collection scripts

A.1 Website screenshot crawler script

Listing A.1 showcases how data was collected for the thesis. It receives a CSV-file
with URLs as input, which is further converted to a pandas dataframe. A Selen-
ium Chromium driver is configured with appropriate settings. The script will then
iterate through all URLs in the dataframe to request snapshot availability on Way-
back Machine. Based on the response code, the crawler will capture a screenshot
from the archived webpage. Lastly, the URL is visited directly through the Selen-
ium browser to capture the actively running website on the URL. This process was
utilized to capture HYIP-websites, escrow-fraud websites, and fee-fraud websites.

Code listing A.1: The HYIP-dataset URL-crawler.

import requests as r
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from time import sleep
import pandas as pd

# Initialize dataset with URLs to dataframe
df = pd.read_csv(’output.csv’, usecols=[0, 3])

# Initialize chrome driver and appropriate options
chrome_options = Options()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--window-size=1280,720")
browser = webdriver.Chrome(options=chrome_options)

# Loop through and visit each URL in the dataset over Wayback Machine
# and through direct visit if possible
for i in range(len(df)):

print(f"Visiting website {str(i)}")
url = str(df.loc[i, "site"])
# Fetch URL-availability through WBM API
# Date is set to Aug 2018, which is around the time
# the HYIP dataset was published on Kaggle
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full_url = f"https://archive.org/wayback/available?url={url}&timestamp=20180820
"

response = r.get(full_url)
data = response.json()
# Check Whether wayback machine (WBM) archive exists
try:

if data[’archived_snapshots’][’closest’][’status’] == ’200’ and data[’
archived_snapshots’][’closest’][’available’] == True:
print("available")
archived_url = data[’archived_snapshots’][’closest’][’url’]
print(f"found archive {archived_url}")
# Try to visit WBM record with Selenium browser.
try:

browser.get(archived_url)
browser.implicitly_wait(120)
# Remove WBM related elements before capturing screenshot
element = browser.find_element(By.ID, ’wm-ipp-base’)
js_code = "arguments[0].style.display = ’none’"
browser.execute_script(js_code, element)
# Capture screenshot
browser.save_screenshot(f’wayback-images/screenshot{str(i)}.png’)

except Exception as e:
print(e)

except Exception as e:
print(e)

# If the site is online, attempt capture screenshot without WBM,
# This is in case the site has changed over time, allowing for more data
try:

response = r.get(url)
if response.status_code == 200:

try:
browser.get(url)
sleep(20)
browser.save_screenshot(f"online-images/screenshot{str(i)}_2.png")

except Exception as e:
print(e)

except Exception as e:
print(e)

browser.close()



Appendix B

Feature Visualization

B.1 Pixel attribution and saliency maps

Listing B.1 shows the process of creating saliency maps through pixel attribution.
A modified model is initially created, as described in Section 4.5. Input images
are pre-processed and converted to PyTorch tensors. Gradients are computed for
the outputted embeddings, which further generate the saliency maps. Lastly, the
maps are plotted together with the original website screenshot.

Code listing B.1: Code for creating saliency maps.

import matplotlib as plt
import numpy as np
import torch
from torchvision import transforms
from PIL import Image
import torch.nn as nn

new_model = FeatureExtractor(old_model)

def org_img(inp_img, process):
image_path = inp_img
image = Image.open(image_path).convert(’RGB’)
preprocess = transforms.Compose([

transforms.Resize((224, 224)),
transforms.ToTensor()

])
image = preprocess(image)
if process:

mean = [1.2295, 1.2129, 1.1906]
std = [0.5329, 0.5126, 0.5415]
normalize = transforms.Normalize(mean=mean, std=std)
image = normalize(image)

return image

def saliency(img1, img2, label):
path1, path2 = img1, img2
org_img1, org_img2 = org_img(img1, False), org_img(img2, False)
img1, img2 = org_img(img1, True), org_img(img2, True)

img1, img2 = img1.unsqueeze(0), img2.unsqueeze(0)
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if label == 0:
print("True")
target = torch.tensor(0, dtype=torch.int)

else:
print("false")
target = torch.tensor(1, dtype=torch.int)

img1, img2, target = img1.to(device), img2.to(device), target.to(device)
img1.requires_grad_()
img2.requires_grad_()
output = new_model(img1, img2)
loss = output[0, target.tolist()].sum()
new_model.zero_grad()
loss.backward(retain_graph=True)

smap1 = img1.grad.abs().squeeze().cpu().detach().numpy().transpose((1, 2, 0))
smap2 = img2.grad.abs().squeeze().cpu().detach().numpy().transpose((1, 2, 0))

smap1, smap2 = torch.from_numpy(smap1), torch.from_numpy(smap2)
smap1, smap2= F.normalize(smap1, p=2, dim=0), F.normalize(smap2, p=2, dim=0)
gamma = 1.2
smap1, smap2 = torch.pow(smap1, gamma), torch.pow(smap2, gamma)
org_img1, org_img2 = org_img1.permute(1, 2, 0), org_img2.permute(1, 2, 0)

fig1, axes1 = plt.subplots(ncols=2, figsize=(10, 5))
fig2, axes2 = plt.subplots(ncols=2, figsize=(10, 5))
axes1[0].imshow(org_img1)
axes1[0].set_title(path1)
axes1[1].imshow(smap1, cmap=’hot’)
axes1[1].set_title(’smap’)
axes2[0].imshow(org_img2)
axes2[0].set_title(path1)
axes2[1].imshow(smap2, cmap=’hot’)
axes2[1].set_title(’smap’)

plt.show()

for (images_1, images_2, targets, file_info) in test_dataloader:
for y in range(images_1.shape[0]):

current_img_1 = file_info[0][y-1]
current_img_2 = file_info[1][y-1]
saliency(current_img_1, current_img_2, targets[y])



Appendix C

Siamese Network Code

C.1 Main Siamese Network Class

Listing C.1 shows how the siamese network model was initialized in the program.
First, pre-trained Resnet18 weights are initialized. These are further set inside the
SiameseNetwork class, before modifying the fully-connected layer. This layer takes
1000 features as input and outputs a 512-dimensional feature representation.

The forward() function is used to pass input to the model. forward() calls for-
ward_once() twice, one time for each input. When forward_once() receives an in-
put, it passes it to the model and returns the computed embedding. When the two
embeddings are computed, they are returned to the training/testing loop, which
further calculates the similarity.

This Listing only showcases the SNN class definition. The full program implement-
ation is available in the thesis’ BitBucket repository [44].
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Code listing C.1: Definition of the SNN class.

import torchvision
import torch
from torchvision.models import resnet18, ResNet18_Weights
import torch.nn as nn

resnet = resnet18(weights=ResNet18_Weights.DEFAULT)

class SiameseNetwork(nn.Module):
def __init__(self):

super(SiameseNetwork, self).__init__()
self.cnn = resnet
self.fc = getattr(self.cnn, "fc")
self.fc = nn.Linear(1000, 512)

def forward_once(self, x):
output = self.cnn(x)
output = output.view(output.size()[0], -1)
return output

def forward(self, input1, input2):
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
output1 = self.fc(output1)
output2 = self.fc(output2)
return output1, output2
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