
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Magnus Walmsnæss Refsnes

Exploring Trojanized Closed-Source
Software Supply Chain Attacks
Through Differential Malware
Analysis

Master’s thesis in MIS4900
Supervisor: Dr. Geir Olav Dyrkolbotn
Co-supervisor: Dr. Felix Leder
June 2023

Magnus Walmsnæss Refsnes

Exploring Trojanized Closed-Source
Software Supply Chain Attacks
Through Differential Malware Analysis

Master’s thesis in MIS4900
Supervisor: Dr. Geir Olav Dyrkolbotn
Co-supervisor: Dr. Felix Leder
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Exploring Trojanized Closed-Source Software
Supply Chain Attacks

Magnus Walmsnæss Refsnes

June 1, 2023

Abstract

In the last few years, there has been an increase in the amount of software supply
chain attacks. The SolarWinds attack in 2020 was an insidious attack conducted
by an Advanced Persistent Threat that managed to remain undetected within the
Solarwinds networks for over a year, and while they backdoored their way through
several victimised customers. This master’s thesis sought to determine if basic
analysis methods such as PE file analysis and embedded string analysis together
with dynamic sandboxing leveraged through differential analysis of the benign
and trojanized sample pairs would reveal indicators of compromise. The analysis
of 10 sample pairs of trojanized and legitimate software was conducted and led to
the findings that these static methods were well suited to finding both malicious
indicators and indications of obfuscation, while the sandboxing techniques were
less able.

iii

Sammendrag

I de siste årene så har det vært en økning av angrep gjennom kompromittert
forsyninskjede for programvare. SolarWinds angrepet i 2020 var et ondsinnet
angrep som ble gjennomført av en avansert trussel aktør som hadde hold seg unna
deteksjon i SolarWinds sitt nettverk i over et år mens dem tilegnet seg tilgang
til kundenettverk. Denne masteroppgaven ønsket å avgjøre om grunnleggende
statiske analysemetoder som PE fil analyse og string analyse sammen med dynamisk
sandboksing sammen med differensial analyse kunne brukes til å detektere slike
angrep. Analysen har blitt gjennomført på 10 par med trojaniserte og legitime filer,
og ledet til funn at statiske metoder var vel fungerende til å oppdage ondsinnede
indikatorer og indikatorer for obfuskering, mens sandboksing fungerte ikke like
bra.

v

Peface

This thesis was written spring of 2023 at the Norwegian Institute of Technology in
Gjøvik. It was written in collaboration with CrossPoint Labs.

I would first like to thank my supervisors, Dr Geir Olav Dyrkolbotn at the CCIS
and Dr Felix Leder from Crosspoint Labs. Their guidance and input have provided
valuable insight into the project and thesis.

Furthermore, I thank my friends and family for their support these last years—lastly,
my gratitude to Anne Kine for all her help and support, especially the last few
months.

vii

Contents

Abstract . iii
Sammendrag . v
Peface . vii
Contents . ix
Figures . xi
Tables . xiii
Code Listings . xv
Acronyms . xvii
1 Introduction . 1

1.1 Topics Covered by the Project . 1
1.2 Key Words . 1
1.3 Problem Description . 1
1.4 Justification, Motivation, and Benefits 2
1.5 Research Questions . 3
1.6 Scope & Contributions . 3
1.7 Ethical and Legal Considerations . 3
1.8 Thesis Outline . 4

2 Background . 5
2.1 Theory . 5

2.1.1 Closed Source Software Supply Chain Attack 5
2.1.2 Malware . 7
2.1.3 Portable Executable . 8
2.1.4 Sandboxing . 10
2.1.5 Obfuscation . 12
2.1.6 Evasion . 14

2.2 The Cuckoo Sandbox . 15
2.2.1 Cuckoo Basics . 15
2.2.2 The Cuckoo Architecture . 16
2.2.3 Components . 17
2.2.4 Routing & Tools . 19

2.3 Other Technologies . 20
2.3.1 Online Sandboxes . 20
2.3.2 Tools . 21

2.4 State of the Art . 22

ix

x M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

2.4.1 Closed-Source Detection . 23
2.4.2 Open-Source Detection . 23
2.4.3 Industry relevant detection . 24

3 Methodology . 27
3.1 Dataset . 27
3.2 Experimental Setup . 29
3.3 Experiments & Analysis . 32

3.3.1 Static Differential Analysis . 33
3.3.2 Dynamic Differential behaviour Analysis 36

4 Results . 37
4.1 Analysis of Trojanized Software . 37

4.1.1 NotPetya . 37
4.1.2 Solorigate . 39
4.1.3 Dragonfly Campaign . 42
4.1.4 DoFoil . 47
4.1.5 Floxif . 49
4.1.6 Darkside . 50
4.1.7 3CX Supply Chain Attack . 53

4.2 Summarised Results and Research Questions 55
4.2.1 Research Questions . 60

5 Discussion, Conclusion, and Future Work 63
5.1 Discussion . 63

5.1.1 Conclusion and Future Work . 64
5.1.2 Future Work . 65

Bibliography . 67
A Additional Material . 75

A.1 Screenshots . 75
A.2 Code . 78

A.2.1 VirtualBox Shellscript . 78
A.2.2 VirtualBox Registry File . 79
A.2.3 Script using Floss and stringsifter 80

A.3 Analysis . 84
A.3.1 Swiss Ranger Tables . 84
A.3.2 eCatcher Tables . 84
A.3.3 eGrabit Tables . 84
A.3.4 MediaGet Tables . 84
A.3.5 SmartPSS Tables . 84
A.3.6 3CX Desktop App tables . 84

Figures

2.1 Portable Executable File Structure . 10
2.2 Virtual Machine Example . 11
2.3 Sandbox . 12
2.4 Unpackaged and Packaged Example . 13
2.5 The Cuckoo Sandbox Architecture . 17

3.1 Pafish before and after hardening . 33

4.1 Unzipped Swiss Ranger . 42
4.2 Swiss Ranger Behaviour . 44
4.3 Unzipped Swiss Ranger . 48
4.4 Unzipped SmartPSS . 51
4.5 SmartPSS Renamed Binary . 51
4.6 Summarised General file and Section IoC 56
4.7 Summarised Strings IoC . 57
4.8 Summarised Imports and Manifest IoC 58
4.9 Dynamic Analysis Summarised . 59
4.10 Obfuscation and Evasion Total . 61

A.1 Initial Guest Setup . 76
A.2 Final Guest Setup . 77

xi

Tables

2.1 Cuckoo Network Routing Options from [34] 19

3.1 Benign Samples . 28
3.2 Trojanized Samples . 28
3.3 Hardware and Software components of the Host Computer 29
3.4 Guest VM Ubuntu Linux: Cuckoo Host 30
3.5 Nested Virtualised Windows: Cuckoo Guest Ver1 31

4.1 MEDoc File Differences . 38
4.2 MEDoc Strings Differences . 39
4.3 Solarwinds File Differences . 40
4.4 Solarwinds Strings Differences . 41
4.5 Swiss Ranger Library Differences . 43
4.6 Swiss Ranger String Differences . 43
4.7 Talk2M eCatcher String Differences . 46
4.8 MediaGet String Differences . 49
4.9 MediaGet Dynamic Differences . 49
4.10 CCleaner File Differences . 50
4.11 SmartPssLibrary Differences . 52
4.12 SmartPss Dynamic Differences . 52
4.13 d3dcompiler_47.dll File Differences . 54
4.14 3CX Differences . 54

A.1 Swiss Ranger File Differences . 85
A.2 Swiss Ranger Dynamic Differences . 86
A.3 Talk2M eCatcher File Differences . 87
A.4 Talk2M eCatcher Library Differences 88
A.5 Talk2M eCatcher Dynamic Differences 89
A.6 eGrabit File Differences . 90
A.7 eGrabit Library Differences . 91
A.8 eGrabit String Differences . 91
A.9 eGrabit Dynamic Differences . 92
A.10 MediaGet File Differences . 93
A.11 MediaGet Library Differences . 94

xiii

xiv M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

A.12 SmartPss File Differences . 95
A.13 ffmpeg.dll File Differences . 96

Code Listings

A.1 VirtualBox Shell Script for editing VM. Based on the script from [61] 78
A.2 Registry file from [62] . 79
A.3 Python/Jupyter script using Floss & Stringsifter 80

xv

Acronyms

APT Advanced Persistent Threat. 1, 2

C2 Command and Control Traffic. 14

DGA Domain Generation Algorithm. 14

DLL Dynamic Linked Library. 8, 9, 18

ENISA The European Union Agency for Cybersecurity. 2, 6

EXE Windows Executable. 8

NIST National Institute of Standards and Technology. 6

OEP Original Entry Point. 13

OS Operating System. 11, 15, 20

Pafish Paranoid Fish. 21

PE Portable Executable. 3, 5, 8, 10, 22

TA Threat Actor. 2

VM Virtual Machine. 11, 17, 18, 20, 29, 32, 33, 36

VPN Virtual Private Network. 16

WMI Windows Management Interface. 15

xvii

Chapter 1

Introduction

1.1 Topics Covered by the Project

Towards the end of 2020, it was uncovered that Solarwinds, a US-based software
company with a massive customer list including the Norwegian Sovereign Wealth
Fund[1], 425 of the US Fortune 500[2], and the Pentagon, had been hacked [3].
Moreover, the attacker, an Advanced Persistent Threat (APT)[3], had compromised
their software build process and turned their proprietary closed-source software
into a backdoor to the networks of Solarwinds’ customers[3]. These attackers
remained unnoticed for more than a year [4] until, eventually, the security company
FireEye discovered that they themselves had been compromised, tracked it down
to a Solarwinds server [5], tore it apart, and reported it to SolarWinds [6].

These types of attacks are named closed-source software supply chain attacks,
and they differ from regular cyber-attacks in that an otherwise trusted software
component has, somewhere along the delivery process, been turned into a type of
malware [7]. This master thesis concerns the analysis of software that has been
compromised in such a fashion by comparing its forensic artefacts to a benign
version. This process is called a differential analysis, and for this thesis, the focus
has been on testing if basic static analysis and sandboxing methods can be used to
uncover a potential software supply chain attack.

1.2 Key Words

Supply Chain Security, Supply Chain Attack, Malware Detection, Malware Analysis,
Closed-Source, Differential Analysis, Basic Analysis, Sandboxing

1.3 Problem Description

Traditionally the IT world considered something as trusted once it has passed
existing checks such as authentication or having a valid signature from a trusted
supplier[8]. Digital signatures were considered to mark that the software was

1

2 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

legitimate, and one could update or install it when it passed the checks. However,
therein lies the problem with a supply chain attack, as it seeks to exploit customers’
inherent trust in the services their suppliers deliver [8]. Defending against an
attacker exploiting this trust through compromised software is difficult, as modern
software systems are large, complex, and use third-party dependencies[8]. Fur-
thermore, organisations often have several software components and suppliers in
their systems.

When SolarWinds was compromised, and their software was used to conduct
attacks worldwide, there were three times in which a security company discovered
and tracked down the suspicious activity to an Orion server [5]. The first two
times, the issue was dropped, while the last time, the security company FireEye,
having been compromised themselves, decompiled the server code and found it to
be malicious [5]. FireEye is a professional security company with many security
engineers and analysts on its payroll compared to regular companies. However,
the attackers behind the supply chain attack compromised their networks and
stole their penetration testing tools [9]. A question then arises, if an attacker can
compromise a mature security organisation using these methods, how are we
supposed to detect these attacks?

It is not unreasonable to conclude that most companies that are not security
companies (and most likely not even these) do not have several dedicated expert
reverse engineering malware analysts on hand, readily able to decompile every
single update and installation before it is deployed to any system. So what happens
when a trusted third-party supplier is compromised, and that business-critical
software suite has become a backdoor for cyber criminals and nation-state actors
into the company systems?

1.4 Justification, Motivation, and Benefits

It is important to look for possible methods of detecting a supply chain attack
before the Threat Actor (TA) is able to exfiltrate any data, deploy ransomware, or
cause any other damage. In European Union Agency for Cybersecurity [10], ENISA
reports that state-backed TA and cyber criminals alike are increasingly focusing
on Supply Chain Compromises. An example is that in 2021 supply chain attacks
accounted for 17% of intrusions, up from just 1% in 2020 [10].

As this attack vector grows, it becomes more and more relevant to research
techniques and methods that might be leveraged by non-expert personnel in order
to detect these types of indicators of maliciousness in new versions of legitimate and
signed software. Furthermore, basic analysis methods and sandboxing are possible
to automate and scale up compared to manual analysis using a disassembler.
However, the TA behind supply chain attacks is often APT groups [7] [11], capable
of conducting evasive and highly skilled attacks.

It would be impossible for a master’s thesis to solve the issue of detecting closed-
source software supply chain attacks on its own. However, by looking specifically
at the differences between the benign and trojanized versions, it aims to provide

Chapter 1: Introduction 3

parts of a solution to a larger problem and contribute to a better understanding of
the problem.

1.5 Research Questions

This research questions defined for this thesis are as follows:

RQ1. What are the current state-of-the-art methods for detecting a trojanized
version of closed-source software?

RQ2. What indications of compromise can one detect in closed-source software
supply chain attacks by comparing a previous benign file to a trojanized version?

RQ3. To what extent can basic static and dynamic differential analysis techniques
be used in detecting malicious behaviour and static changes in trojanized software
compared to the legitimate version?

RQ4. To what extent is looking for obfuscation and evasion techniques reliable
in detecting trojanized closed-source software?

1.6 Scope & Contributions

This thesis aims to identify suspicious and malicious differences between comprom-
ised closed-source software and legitimate benign versions. The scope is analysing
artefacts that can be extracted using automated tools rather than needing an expert-
reverse engineer or proprietary high-cost software. This thesis aims to contribute
towards future solutions to detecting software supply chain attacks by providing
groundwork within a subject with very little written academic research. More
specifically, it focuses on analysing the differences between the trojanized sample
and the legitimate one in the Portable Executable (PE) file format, embedded
strings, and runtime behavioural changes from sandbox runs. It then presents
these findings so that they can be used for future development of solutions within
the domain.

1.7 Ethical and Legal Considerations

The thesis’s work has been analysing proprietary software trojanized alongside
benign samples. Reverse engineering using a disassembler and presenting those
findings could have some judicial issues, as it touches upon copyright law. However,
the purpose and intent of this thesis have not been to disassemble the software
nor to reveal any trade secrets. The functionality of the software revealed in this

4 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

thesis is that which is available without disassembly. Furthermore, these samples
were all uploaded to online software or malware repositories before the thesis.

1.8 Thesis Outline

This thesis is divided into five chapters. It starts with the introduction, then follows
Chapter 2, which concerns the relevant theory, information about technologies, and
a literary review of the state-of-the-art methods of detecting closed-source software
supply chain attacks. Next comes Chapter 3, which details the dataset, experiment
setup, and analysis method. Afterwards comes Chapter 4; this chapter contains
the differential analysis of the different trojanized software, and the results are
summarised at the end. Lastly, Chapter 5 this discusses the results, limitations and
methods while containing the conclusion and future work.

Chapter 2

Background

This chapter seeks to present the required background reading for the thesis. First,
it presents the theoretical foundations for the concepts within the paper, then the
required overview of the technologies used. Lastly, it presents the state-of-the-art
works within open-source and closed-source detection of software supply chain
compromise.

2.1 Theory

This section presents the definitions used by the thesis for closed-source software
supply chain attacks and malware. It then describes malware analysis and the
general terms used for the types of malware analysis conducted before presenting
a clear view of the PE file format. Furthermore, it describes the components of
sandboxing and virtualisation. Lastly, it seeks to provide a grasp on obfuscation
and evasion techniques.

2.1.1 Closed Source Software Supply Chain Attack

This section provides detail on what a closed-source software supply chain attack is.
It does so by first defining the difference between open-source and closed-source,
defining a supply chain, and defining a supply chain attack. Lastly, it closes by
combining these three definitions.

Open and Closed Source Software

Open-Source Software is software readily available for the public to use, interact
with, and inspect [12]. Such software development is often decentralised and
collaborative [12]. In theory, this transparency could mean that any open-source
project can have its code and dependencies inspected for malicious additions before
the software is deployed to an environment.

On the other hand, Closed-Source software, or proprietary software, is software
where the source code is closed to the public and not readily available outside of

5

6 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

the organisation or company owning it [13][14]. This means that the software
users do not have direct access to the source code of the software they are using,
short of using other software to attempt to decompile it.

Supply Chain

This thesis uses the definition of The European Union Agency for Cybersecurity
(ENISA) when defining what a supply chain is. ENISA defines a supply chain as
an "ecosystem of processes, people, organisations, and distributors involved in the
creation and delivery of a final solution or product."[7]. Furthermore, in their report
ENISA THREAT LANDSCAPE FOR SUPPLY CHAIN ATTACKS [7], they define the
four main elements of a supply chain, those being:

• Supplier: This is the entity that supplies a product or a service to another
entity.
• Supplier Assets: These are the valuable elements used by the supplier to

produce the product or service.
• Customer: This is the entity that consumes the product or service produced

by the supplier.
• Customer Asset: These are the valuable elements owned by the target.

Lastly, ENISA defines an entity as an individual, group of individuals, or organ-
isation. Assets are defined as people, software, documents, finances, hardware, or
others[7].

Supply Chain Attack

A supply chain attack builds on understanding the definition of a supply chain and
its four main elements introduced in the section above. ENISA defines a supply
chain attack as a combination of at least two attacks, the first being an attack on a
supplier that is then leveraged to attack a target to gain access to its assets[7].

National Institute of Standards and Technology (NIST) defines a cybersecurity
compromise in the supply chain as a cybersecurity incident within the supply chain
"whereby the confidentiality, integrity, or availability of a system or the information
the system processes, stores, or transmits is jeopardised. A supply chain incident
can occur anywhere during the life cycle of the system, product or service." in their
publication NIST SP 800-161r1 [15]

From this, we can draw that a supply chain attack is one where a malicious actor
can attack their target by utilising access gained from successfully compromising
or attacking a product or service delivered by a supplier

Closed-Source Software Supply Chain Attack

From the definitions above, we can draw the following conclusion, a closed-source
software supply chain attack is where a malicious actor compromises a software
provider’s infrastructure, commercial software, or software deployment, which is

Chapter 2: Background 7

then used to leverage an attack against a target further down the supply chain,
e.g. the software provider’s customers.

This thesis uses the terminology Trojanized Software when discussing and
referencing legitimate software that has been weaponised by a malicious actor
somewhere in the software process.

2.1.2 Malware

Once the previously legitimate and benign software has been trojanized, it can be
considered malware. This thesis uses the definition of malware from Sikorski and
Honig [16], their definition is as follows: "Any software that does something that
causes detriment to the user, computer, or network" [16].

When discussing and analysing malware, it is relevant to discuss its capabilities,
which most often means categorising it into different types of categories. The most
relevant categories of malware for this thesis are the following:

• A Backdoor is malicious software or code that allows a malicious actor access
to the machine it is installed on [16].
• A Downloader is a malicious software that has the single purpose of down-

loading other malicious code [16].
• A trojan is a piece of malware that disguises itself as wanted and desirable

software [17], though with the ability to act maliciously on the system.
• A worm is a malware that can copy itself and infect additional machines on

the network [16].
• Ransomware is malicious software or code that encrypts files on a target

machine removing a person or organisation’s ability to access their data until
a ransom is paid [17].
• Wiper malware is malicious code or software built to delete data and ensure

it cannot be recovered [18].
• Coin miner malware is malicious software or code intended to run complex

calculations in order to collect cryptocurrency [19].

Malware Analysis

Malware analysis is the act of examining malware with the intention of learning
how it works, what it does, how it might be detected, how it could have been
prevented, and how it could be eliminated [20] [16].

At the most basic level, Malware Analysis can be divided into static and dynamic
analysis. Static analysis is the method of examining the malware without running
it and is an initial analysis method that allows one to gain preliminary information
on the malware’s functionality [20]. The more advanced version of static analysis
is essentially to reverse-engineer the malware using a disassembler, which allows
one to look at the program instructions to discover what it does [16].

Dynamic analysis, or behavioural analysis, is essentially to execute the malware
in an isolated system and observe its behaviour and effect on the system. This can

8 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

be furthermore complicated by utilising a debugger, which allows one to examine
the behaviour more closely by looking at the internal state of the malware as it
runs [16].

Lastly, differential analysis can be described as the process of using baseline
information about the state of a system and comparing it to the system state
after an event has occurred [21]. The essential part of the differential analysis is
having the system’s baseline or known good configuration [21]. Translating this
for this thesis is to establish a known good baseline which is the static artefacts and
behaviour of the legitimate benign software, and to compare this to the artefacts
and behaviour of the trojanized software.

2.1.3 Portable Executable

This thesis focuses on malware analysis of Windows-based trojanized software, and
due to this, it is important to have a clear view and description of the file format
used by Windows executable files. This format is named Portable Executable (PE)
and is used by Windows Executable (EXE), Object Code, and Dynamic Linked
Library (DLL)s [16]. A PE file is essentially a sequence of structures and sub-
components with information that the operating system needs to load it into
memory [20]. This section contains relevant information and descriptions of the
PE format as to this thesis. However, for a full in-depth description of the format,
one should visit Microsoft specification on the format in [22] which is the source
for the information in this section.

The first part of a Portable Executable (PE) file is the DOS header which is
there for backward compatibility with MS-DOS. It contains a DOS stub and a
signature that identifies the file as a PE file, with the signature being "PE\0\0" or
"PE" [22]. The following section is the COFF File Header (from now on called File
Header), which contains information about the Portable Executable (PE) file, such
as which CPU architecture the executable is intended for, the number of sections,
a UNIX timestamp for when it was created, size of the optional header, and flags
that indicate the attributes of the file (system file, executable, and so on) [22].
Following the file header is the Optional Header. The optional header is generally
not present in object files but is required for image files (Dynamic Linked Library
(DLL) or .Windows Executable (EXE)) [22], and it consists of three parts:

• Standard Fields:

◦ The standard fields contain the integer that identifies if the image is a
32-, 64-bit, or ROM image. Furthermore, it contains information related
to the size of the code or the sum of all code sections if multiple. Size
of the initialised and the uninitialised data sections (or sum if there are
multiple sections). Entry point address and address that is relative to
the image base of the beginning-of-code section [22].

• Windows-Specific Fields:

◦ It contains information needed by the linker and loader in Windows,

Chapter 2: Background 9

such as the preferred address to load into memory, major and minor
operating system requirements, required subsystem, and more [22].

• Data Directory Table:

◦ The data directory table is a structure with two members, the first one
being a pointer to the relative address of a data directory and the second
being the size of the data directory [22]. A data directory, on the other
hand, is a piece of data in the PE file. This data can, for example, be
the export table which contains a list of exported functions that could
be used by other programs [22].

− During static malware analysis looking at the imported libraries and
functions used is useful to guess what the malware is attempting to
do, while with trojanized binaries, additions of previously unseen
functions could indicate maliciousness, while a lack of functions
could indicate packing or obfuscation. Meanwhile, looking at the
changes in exports in a Dynamic Linked Library (DLL) file could
reveal changes in capabilities, indicating trojanization.

Immediately following the optional headers is the section table, where each
row of the table is, in function, a section header. A section header contains the
name of the section (no longer than 8 characters), the VirtualSize or the size of the
section when loaded into memory, the VirtualAddress, which is the first byte of the
section relative to the image base when the section is loaded into memory [22],
the SizeOfRawData which is the size of the initialised data on disk, and flags that
describe the characteristics of the section (Executable, writeable, and so on) [22].

Lastly, following the section table comes the sections themselves. These contain
very useful information when looking at it from a malware analysis perspective [16]
as they contain the data of the executable file. The book M. Sikorski and A. Honig,
Practical malware analysis : The hands-on guide to dissecting malicious software, eng,
San Francisco, 2012 contains a list of the most common and interesting sections
(from a malware analyst perspective) in a PE file:

• .text section is the executable code of the program and should usually be
the only section that includes code [16].
• .rdata section typically has the export and import information but can also

store read-only data used by the program. This can also be replaced by .idata
and .edata sections which respectively would contain the import function
information and the export function information [16].
• .data section should contain the data which is accessible anywhere in the

program, also called the global data [16].
• .rsrc section the resources used by the program such as icons, images, strings

and menus. Strings can be stored elsewhere, but they are often stored here
due to multi-language support [16].
• .reloc section has information for the relocation of library files.

However, there are several other sections (and section names) also as listed

10 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

by Microsoft in [22], some of those being .bss for uninitialised data, tls or Thread
Local Storage that provides storage for executing threads of the program, or .debug
that contains debug information. Sections become relevant in differential malware
analysis in that changes such as an increase in entropy, changes in RawSize/Virtu-
alSize ratio, changes in naming schemes, or packer indicators could all be signs of
trojanization. A graphical illustration of the Portable Executable (PE) file format
can be found in figure 2.1.

A graphical illustration of the PE file format can be found in figure 2.1.

Figure 2.1: Portable Executable File Structure

2.1.4 Sandboxing

Sandboxing is a dynamic analysis technique to detect malicious or suspicious
software behaviour. This is accomplished by using an isolated virtual environment
to run untrusted programs, reducing or removing the risk of malicious software

Chapter 2: Background 11

infecting the "real" system [16]. One such environment is a virtual machine, which
is effectively a simulated computer (called the guest) within a computer (the host).
A virtual machine uses software (called a hypervisor [23]) instead of hardware to
run programs and applications [16], and there are several types of virtualisation
software 1. This VM can then function similarly to other computer systems with
an Operating System (OS) running on the hypervisor’s software and applications
installed and running on the OS. An illustration of this relationship can be seen in
figure 2.2, which shows two guest virtual machines being run by the hypervisor
software on a single physical host machine.

Figure 2.2: An example of a virtual machine running running through a hypervisor
on a host system

A benefit of using Virtual Machine (VM) software is the ability to create snap-
shots which are essentially recordings of a system state at a certain point in
time[24]. This can be used to recover the VM to a point before any malware is
installed or executed. Furthermore, for differential malware analysis, it allows one
to establish a baseline of the system and compare the baseline to the execution of
the legitimate and malicious sample, which can allow us to observe behavioural
differences between the two samples.

An example of a sandbox that uses a VM environment would be running the
sandbox software on a host computer that runs a hypervisor software running
an isolated VM connected to the sandboxing software through a closed virtual
network. The sandbox software can transfer the malware sample to the VM using
a sandbox agent running on the guest VM. This malware sample can then be
launched on the guest system while the sandbox software observes and records
its behaviour. The generated behavioural data can then be transferred back to the

1Some of the options for virtual machines: https://www.virtualbox.org/, https://
www.vmware.com/products/workstation-player.html, and https://www.linux-kvm.org/page/
Main_Page

https://www.virtualbox.org/
https://www.vmware.com/products/workstation-player.html
https://www.vmware.com/products/workstation-player.html
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page

12 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

host, where the sandbox software analyses the generated data and produces a
report based on the activity. An illustration of this simplified relationship can be
seen in Figure 2.3.

Figure 2.3: A simplified example of the relationship between a host running
sandboxing software and guest VM.

2.1.5 Obfuscation

Obfuscation is a collection of techniques that makes a program or file harder to
detect or more complicated to analyse [16]. It is worth mentioning that legitim-
ate software also uses obfuscation techniques to prevent attackers from stealing
intellectual property, discovering vulnerabilities, and making unauthorised modi-
fications [25]. There are several types of obfuscation techniques, and the most
relevant ones for this thesis are listed below.

Packing

Packing is a technique used to compress the software or file in order to obfuscate it
and outputs a new executable which is a packed program [16]. This new executable
contains the previous one as compressed data, and upon execution, it runs a
decompression routine that extracts the original file in memory and triggers the
execution [16]. Some packers may only pack code and data sections, others might

Chapter 2: Background 13

leverage encryption techniques to make it more challenging to analyse, and some
may utilise special techniques to avoid analysis [16].

The decompression routine, or the unpacking snub, becomes the new entry
point for the packaged executable, and it is often small and has a simple function-
ality [16]:

• Resolve all imports from the original executable.
• Transfer the execution to the Original Entry Point (OEP).
• Unpack the original executable into memory.

Should one attempt a static analysis of the packed software, then it is the function-
ality of the unpacking snub you would observe rather than the packaged software’s
functionality. An illustration of a unpackaged and packaged software can be seen
Figure 2.4.

(a) Unpackaged Executable (b) Packaged Executable

Figure 2.4: The left figure is the unpackaged executable, while the right figure
illustrates a packaged executable. The illustration is based on the illustrations
from [16]

Simple Encoding

Simple encoding is the use of encoding algorithms such as base64 encoding or
xor encryption to obscure the data[20]. Attackers use these simple algorithms
because they are easy to implement, take fewer system resources, and can obscure

14 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

the code’s content from analysts and coders [20]. For example, base64 encoding
is essentially just using a 64-character set, where every 3 bytes of binary data is
translated into 4 characters from the character set [20]. XOR means exclusive OR,
and it is a logical operator. XOR encoding uses a static byte value and modifies
each byte by performing an XOR operation with the static value [16].

Encryption

Encryption is another method malware authors use to obfuscate the malware
binary and command and control traffic [20]. Encrypting the malware, code, or
strings within the malware can obfuscate it from analysis and detection [20]. Added
cryptographic functionality to the trojanized software could serve the function of
decrypting incoming command and control traffic [26], encrypting the data for
exfiltration data [20], or in the case of some trojanized software, allowing it to act
as ransomware or wipers.

Domain Generation Algorithm

Domain Generation Algorithm (DGA) is a method by which malware can avoid
depending on a specific IP address, or domain [26]. Instead, based on a routine, it
generates a new domain that the attacker can purchase and continue delivering
Command and Control Traffic (C2) traffic or receive exfiltrated data. These routines
must be predictable for the malware and the author behind it while still being
unpredictable for security researchers [26]. It usually consists of a Seed or base
element, a variable that changes with time, and one or more top-level domains
[26].

2.1.6 Evasion

Virtual environments are different from regular host environments, often by a large
amount of detectable and observable artefacts [27]. Virtual environments are often
used to analyse suspicious and benign files both. Evasion techniques are attempts
by malware to detect that it is running in a virtualised or debugging environment
and, depending on if it is, either acts benign without arousing suspicion or carries
out its malicious purpose [27]. However, it is worth mentioning that with the
increased use of cloud services across organisations [28] and increased virtualised
environments, this might no longer be synonymous with being analysed [29]. There
are several types of evasion techniques, and this section lists examples relevant to
this thesis.

Detecting Virtualisation

Detecting virtualisation consists of several sub-techniques that all look for indicators
of the system being virtualised, and this thesis will describe several of them. For
an expansive list, one can visit the collection of evasion techniques by Checkpoint

Chapter 2: Background 15

and Ladutska [27]. Detecting virtualisation boils down to hunting for artefacts
within the file system indicating virtualisation, such as names of processes, installed
drivers, registry keys, hardware, Mac addresses and more [26]. One way to get
OS and hardware info is to utilise Windows Management Interface (WMI) queries
using COM interfaces and methods. Other detection methods can be timing-based,
such as having long delays before performing any malicious activity to escape
detection or detecting when a Sandbox attempts to skip such delays [30].

Detecting Debugging & Analysis Tools

Another method malware authors use to avoid being analysed is to detect the
presence of a debugger, as one being present is a solid indication that the mal-
ware sample is actively being debugged [16]. Detecting debugging is as simple
as using Windows API functions such as IsDebuggerPresent, CheckRemoteDebug-
gerPresent, NtQueryInbformationProcess, and OutputDebugString [16]. Another
typical method is to perform the previous calls’ functions manually rather than use
the Windows API. Other methods include identifying debugger behaviour through
checksum checks, timing checks, and INT scanning [16]. Other than strictly check-
ing for debuggers or the presence of a virtual environment, it is also possible to
check for malware analysis and security tools on the system [26].

User activity & Logic Bombs

It is also not uncommon to check the system for traces of activity that one would
expect either from a live server environment or user usage. Checking if the window
of the process is in focus, checking the number of monitors, browser history, mouse
movement, and more [26]. Another method is using a logic bomb, which only
activates the malware on a specific hardware, system, domain, specific event, or
more. Should the trojanized software not be on the intended system then it does
not detonate [26].

2.2 The Cuckoo Sandbox

This section concerns Cuckoo Sandbox, which is the primary sandboxing tool
used during this thesis. It first presents a basic overview of the sandbox and its
capabilities before describing more in-depth the components and modules Cuckoo
is composed of, and lastly describes Cuckoo’s networking capability and some of
its available tools.

2.2.1 Cuckoo Basics

Cuckoo Sandbox is an open-source automated malware analysis tool. Initially,
it started as a Google Summer of Code project in 2010, and from there went
through several versions before the final version was published on June 19, 2019

16 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

[31]. Cuckoo is used to automatically run malicious and benign files, collect the
behaviour and changes on the system, and provide an analysis of the collected data.
Cuckoo was designed to be modular and work both as a standalone application
and to be integrated into a framework [31].

Cuckoo is able to retrieve information from the guest system related to the
creation, deletion, and downloaded files. It can collect memory dumps of both
malware processes and full dumps of the machine memory. It can collect and
monitor network traffic and trace the calls made by the malware and the processes
it spawns. It is able to do this on most file formats, including Windows Executables,
DLL, PDF, Microsoft Office, Zip, and more [31].

Files are uploaded to the guest system either through the command line or
a web interface, and Cuckoo supports both simulating the network, routing it
through Virtual Private Network (VPN) or tor, dropping the traffic, or simply just
letting it through to the internet [31].

Cuckoo Sandbox was chosen for this thesis early during the project in collab-
oration with the project supervisors. However, during the project work timeline,
it was found that the Cuckoo Sandbox Project was officially archived on April
26, 2021, 2, and since then, it has not seen active development. Due to the fact
that Cuckoo was no longer developed, it was considered to switch to CAPEv2 3, a
community developer fork of the cuckoo. It was decided to continue with Cuckoo
for the following reasons:

1. The project was already underway, and it would take time from the project
and thesis in order to set up, configure, and run CAPEv2.

2. Cuckoo Sandbox has, in general, more and better documentation over several
years and was more familiar to the author of the thesis.

3. Other online-hosted sandbox solutions are available that could be used to
reference the results of the Cuckoo analysis and supplement should there
have been any discrepancies.

4. Cuckoo was a contemporary solution during most attacks from which the
trojanized software was deployed. Therefore it could also provide relevant
insight into whether differential behaviour analysis could have detected or
prevented some attacks.

2.2.2 The Cuckoo Architecture

Cuckoo Sandbox is a central management software that handles the execution and
analysis of the samples with one or more distributed and isolated guest machines.
At the start of each analysis, a fresh host is started by Cuckoo and the sample is
transferred over a virtual network to the guest, where it is executed and analysed.
An illustration of the process can be seen in figure 2.5.

2https://github.com/cuckoosandbox/cuckoo
3https://capev2.readthedocs.io/en/latest/

https://github.com/cuckoosandbox/cuckoo
https://capev2.readthedocs.io/en/latest/

Chapter 2: Background 17

Figure 2.5: An Illustration of the Cuckoo Sandbox Architecture from the official
Cuckoo documentation [31].

2.2.3 Components

This chapter is based on the information provided in the Hatching blog post by
Zutphen [32], one of the backend developers of Cuckoo4.

Machinery modules are the components that interact with the hypervisor (such
as Virtualbox or VMware) or the physical machine (if the guest is a physical
machine rather than a virtual one). These modules start, stop, and restore the VM
to a clean slate Zutphen [32].

The Scheduler is continuously running while Cuckoo is. It handles initialising
the configured machinery module, for example, a configured VirtualBox module,
and starting new tasks if there are enough resources on the system Zutphen [32].
As the Scheduler is running, it checks for any available VMs; if there are, it checks
for any pending tasks. Lastly, when the Scheduler is ready to start a task, it hands
it over to the Analysis Manager Zutphen [32].

The Analysis Manager starts with the Scheduler when there is a new task
and enough resources. When it starts, it will find a machine that matches the one
requested by the task, as different tasks can require to run in different environments

4https://cuckoosandbox.org/about

https://cuckoosandbox.org/about

18 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

such as Linux or Windows. Before it starts any machine, it will first start any
required auxiliary modules, then it will start the machine, and from there on, the
Guest Manager will handle the analysis. Finally, the Analysis Manager will stop
the machine after a set time or a critical timeout.

Auxiliary Modules are responsible for all sorts of tasks and must be completed
before the machine starts or as it runs. An example of these modules is Sniffer,
which dumps all network traffic the machine generates.

The Cuckoo Agent is a simple Python HTTP server that can start processes and
upload files. It sits on the guest VM and must be already started when the machine
is brought up.

The Guest Manager continuously communicates with the Cuckoo agent on the
guest VM. It checks if the machine is started, and when it is, it uploads everything
needed for the analysis to the guest through the Cuckoo agent and starts the
Analyzer. Then it keeps in contact with the agent and asks if the Analyzer is
finished yet. Should a critical timeout be reached, then it stops the Analyzer.

The Analyzer is a Python file on the host machine that is uploaded to the guest
machine by the Guest Manager through the Cuckoo Agent. There are different
analyzers for each platform, and the configuration of the Analyzer depends on
what parameters the analysis had when it was started. For example, the Analyzer
will inject a DLL file named "Cuckoo Monitor" on Windows systems, which logs
behaviour by hooking data and following processes.

The Result Server is located on the host machine and receives all the behavioural
data extracted from the guest. It then stores this data in the correct format and
under the correct directory.

Processing Modules are Python scripts that allow one to define how the raw
results are supposed to be analysed [33]. It transforms the behavioural data from
the guest machine into data that the signatures can use Zutphen [32]. It also allows
the results to be easily presentable as a report Zutphen [32]. There is a total of 24
modules. The complete list can be found at [33]. However, below are listed a few
of the processing modules.

• AnalysisInfo –generates some basic information about the analysis.
• Memory – Runs Volatility5 on a full memory dump
• Dropped – Information on the files dropped by the malware and dumped by

Cuckoo.

5https://www.volatilityfoundation.org/

https://www.volatilityfoundation.org/

Chapter 2: Background 19

• BehaviorAnalysis – Parses raw behaviour logs and provides the complete
process tracing, a process tree, and a behavioural summary.

Signatures are ran against the data when it completes processing. Should any of
the signatures have a match, then that match will be added to the results. Cuckoo
supports creating signatures, and there is a community repository from which one
can download signatures developed by others6

2.2.4 Routing & Tools

Routing

As previously mentioned in Section 2.2.1, there is several routing options available
when using Cuckoo. These can be found in Table 2.1.

Table 2.1: Cuckoo Network Routing Options from [34]

Routing Option Description
None Routing Cuckoo does no routing.
Drop Routing Drops all non-cuckoo traffic.
Internet routing allows the guest full access to internet.
InetSim Routing Uses the InetSim project7 which is a suite de-

signed to simulate different internet services
[34].

Tor Routing Routes the network traffic through the Tor
network8.

VPN Routing Routes the traffic through a VPN as to simu-
late a different country location.

Volatility Framework

Cuckoo uses the Volatility Framework for memory forensics. The Volatility Frame-
work is an open-source collection of tools written in Python[16] for analysing
volatile memory (RAM). There are several Volatility plugins9 available for Cuckoo,
examples being plugins for detecting hooked API, hidden processes, and injected
code.

YARA

YARA is a pattern-matching tool used to identify and classify malware samples
through rule-making that matches textual or binary patterns [35]. There is a

6https://github.com/cuckoosandbox/community/
9The full list can be found in the memory.conf file: https://github.com/cuckoosandbox/cuckoo/

blob/master/cuckoo/private/cwd/conf/memory.conf

https://github.com/cuckoosandbox/community/
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/private/cwd/conf/memory.conf
https://github.com/cuckoosandbox/cuckoo/blob/master/cuckoo/private/cwd/conf/memory.conf

20 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Cuckoo module for YARA which allows one to create YARA rules based on the
behavioural information provided by Cuckoo Sandbox [36].

2.3 Other Technologies

This section introduces other technologies, such as online sandboxes, virtualisation
tools, and analysis tools used for the thesis. The purpose of this section is to
familiarise the reader with the name and functionality of the tools referenced in
later chapters of the thesis.

2.3.1 Online Sandboxes

Malware sandbox services are also available online through websites and API
interfaces; these services usually have some functionality available for free or
signed-in users, with some functionality locked behind a payment service or license.
This section provides a short introduction to three online sandbox services that
were used either for dataset collection, comparison, or running samples.

VirusTotal

VirusTotal is an online sandboxing service that allows one to drop and test files and
URLs against several antivirus engines, website scanners, and sandboxes through
API or the site itself [37]. When a file has been run, it presents the user with several
tabs from which one can inspect information, such as AV detections, static details,
behavioural data, and relations to other files, domains and IP addresses [38].
Additionally, each file has a community section in which users can comment on the
file. The site also has additional functionality that, alongside sample downloads, is
locked behind a premium subscription intended for enterprises [38].

Any.Run

Any.Run is another service that allows one to test URLs and files for maliciousness
[39]. Any.Run boots up a virtual machine according to user-selected criteria, from
which the user can navigate the URL, file installation, or file use. As the file is
run, its behavioural data is analyzed, and after the run is presented to the user.
However, the most important feature for this thesis is that one can search public
analysis tasks for hashes and download their samples using a free user [40].

Hatching Triage

Hatching Triage (Triage from now on) is a sandboxing solution similar to Any.Run in
that the user can submit files and URLs according to user criteria (such as OS, web
browser, and internet connection) [41]. It collects behaviour and static data from
the sample and provides a user interface to interact with the VM as the malware
runs. After the run, it presents the information in a report similar to Cuckoo

Chapter 2: Background 21

Sandbox with signatures, a process tree, networking information, and a MITRE
ATT&CK matrix. It assigns a score between 1 and 10, calculating maliciousness from
where 1 is no malicious behaviour detected, 2-5 is likely benign, 6-7 is suspicious
behaviour, 8-9 is likely malicious, and 10 is a known bad file 10. Triage is developed
by some of the developers behind Cuckoo Sandbox [42], and the cloud version is
free to use for individual persons and researchers.

2.3.2 Tools

This section briefly introduces the tools such as software, libraries, or scripts
used for the VMs and the malware analysis. These introductions are intended to
familiarise the reader with the capabilities and functions of the tools most relevant
to the thesis. However, this section does not provide a complete overview of the
tools nor their full functionality or configurations. However, links are provided to
the documentation from which this can be found.

VirtualBox

VirtualBox is a hypervisor software capable of running on Windows, macOS, Linux,
or Oracle Solaris operating systems [43]. In addition, VirtualBox supports hosting
many different OS, such as several versions of Windows, a large amount of the
Linux family, and others [43]. The complete list can be found at https://www.
virtualbox.org/wiki/Guest_OSes.

VirtualBox has many options for the VM that it hosts. However, some of the
most relevant ones for this thesis are listed below11

• Hardware emulation for a few devices, such as storage, networking, and
USB.
• Record and restore the system state through snapshots.
• Modify motherboard options such as RAM allocation.
• Configure CPU utilisation, such as the number of processors, execution cap,

and nested virtualisation.
• Hardware virtualisation extensions such as paravirtualisation interface to

improve time-keeping and nested paging.

PaFish

Paranoid Fish (Pafish) is an open-source tool for detecting virtual machines and ana-
lysis environments [44]. It accomplishes this by leveraging several anti-debugger,
-VM, and -sandbox checks within the Windows environment it is run [29]. When
executed, it runs through these techniques, such as using the Windows API to
check if it is being debugged, CPU-based timing checks, and searching for registry
keys related to virtual machines [44].

10The complete scoring system with explanations https://tria.ge/docs/scoring/
11The complete list of configuration options can be found at: https://www.virtualbox.org/

manual/UserManual.html#BasicConcepts

https://www.virtualbox.org/wiki/Guest_OSes
https://www.virtualbox.org/wiki/Guest_OSes
https://tria.ge/docs/scoring/
https://www.virtualbox.org/manual/UserManual.html#BasicConcepts
https://www.virtualbox.org/manual/UserManual.html#BasicConcepts

22 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

PeStudio

PeStudio12 is a static malware analysis tool that runs in a Windows environment.
It does not require installation and can be dropped onto the system and run
from there. The purpose of PeStudio is to discover suspicious artefacts within an
executable file [45]. It does so by presenting an overview of the different sections
of the PE file, as described in Section 2.1.3, and listing the observed contents of the
file, such as strings, imports, compile date, and more. Then, it flags and highlights
different potential suspicious artefacts [46]. These suspicious artefacts could be
things that have been seen previously in malware, imports that could be used
maliciously, or other such suspicious artefacts [46].

Exeinfo PE

Exeinfo PE is a tool to detect packers, compilers, and cryptors used to build a PE
file [20].

Stringshifter

Stringsifter is an analysis tool utilising ML to rank strings based on their relevancy
for malware analysis [47]. It can take both binaries and strings as input and
produce ranked results.

FLOSS

FLOSS obfuscated string solver is an open-source tool that automatically deobfus-
cates strings from malware samples [48]. It can also extract regular strings from
samples, but the primary purpose is to decode and deobfuscate strings.

PeFile Library

Pefile is a library module for Python, and it is used to work with PE files [49].
It can be used to read and extract the information in a PE file through Python
programming.

2.4 State of the Art

This section presents relevant academic literature for closed-source and open-
source detection of software supply chain compromises. Additionally, it was decided
to include some government and industry literature on detecting software supply
chain attacks as they present solutions to the problem. The sections 2.4.1 and 2.4.3
presents the answer to RQ1. What are the current state-of-the-art methods for
detecting a trojanized version of closed-source software?

12PeStudio homepage: https://www.winitor.com/

https://www.winitor.com/

Chapter 2: Background 23

2.4.1 Closed-Source Detection

This first section presents the academic literature on closed-source software supply
chain attacks. It is worth mentioning that there is little published research on the
security and detection of closed-source supply chain attacks [11] [8].

In Barr-Smith et al. [11] the authors presented an approach to detecting mali-
ciousness in closed-source software based on a differential analysis of binaries. This
was accomplished by developing a system consisting of several modular compon-
ents written in Python that they named Exorcist. Exorcist’s two main components
are an automatic static analysis using deobfuscation and automated reverse engin-
eering methods and a detection method for abnormal activity during dynamic runs.
Then, the system applies a weighted heuristic system to suspicious differences
between the binaries, and if the weight of this system exceeds a threshold, it is
identified as malicious. The project tested their system against 12 samples of supply
chain attack binaries, with their findings being a presence of obfuscation in either
a minor or major form in all the samples and a prevalence of additions of static
indicators of maliciousness.

In Wang [8] the author proposed a signature-less detection approach for supply
chain attacks based on tracking information flows from strategic locations. Wang
identifies that the main problem of detecting a software supply chain attack lies
in the fact that modern mission-critical systems, such as SolarWinds Orion, often
consist of millions of lines of code and have complex dependencies on third-party
software packages that it then becomes impossible for any cyber defence to know
the inner workings of all the software components. The author then identifies that
there is a need to develop novel detection capabilities that: "1) is independent from
various suppliers; 2) requires no signature or prior knowledge of the attack.". The
author’s solution is essentially to use inter-packet timing-based flow watermarking
technologies to tag outgoing data and detect anomalies in traffic indicative of
command and control traffic or data exfiltration.

2.4.2 Open-Source Detection

Comparatively, there have been several recent ventures of academic research into
open-source software supply chain attacks. One such paper is in Ohm et al. [50]
where the authors researched how malicious functionality was injected into the
supply chain through malicious repositories such as npm, PyPI, and RubyGems.
The authors manually collected and analysed a dataset of 174 malicious software
packets used as part of attacks on the software supply chain. The paper also
presented two general attack trees; one provides a view of the techniques to inject
malicious code into the open-source ecosystem, while the other provides an attack
tree to execute malicious code. Most relevant of their findings on the malicious

24 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

packages was that 55% had data exfiltration as the goal, 49% employed obfuscation
tactics, and 56% triggered malicious behaviour on installation.

Another work by Marc Ohm et al. [51] presents a framework for dynamic
analysis of software and its third-party dependencies named Buildwatch. This was
accomplished through an analysis of compromised npm packages. They compared
the compromised packages to a baseline of their legitimate benign versions using
Cuckoo Sandbox. One of the key findings of the authors was that the malicious
packages had an increase in STIX Cyber Observable Objects[52] compared to
the benign versions, with these most often being related to operations on files
or previous unseen processes used to run malicious additions. Limitations of the
case study were the sample size of 6, only using samples that had malicious
behaviour during installation, and the command and control servers were no
longer operational.

Finally, in another work by Ohm et al. [53], the authors used the malicious
samples from [50] together with the top 15 thousand npm packages (which were
considered to be benign). They leveraged this combined dataset with a diverse
set of commonly used supervised machine learning techniques to find the best-
performing techniques to detect malicious packages. Their finding was that Kernel
Support Vector Machines, Multi-Layer Perceptrons, and Random Forest produced
the best results, and they then tested the results on real-world data. Combining
the results of the three classifiers, they managed a True Positive Rate of 70% and
identified 13 previously unknown malicious packages.

There have also been other recent academic research into using machine
learning techniques to detect malicious packages, such as in Sejfia and Schäfer
[54] where they presented AMALFI, which is lightweight, in that it requires only a
few seconds to extract features and run the classifier against it. Furthermore, in Vu
et al. [55], they presented LastPyMile a method of detecting discrepancies between
source code and packages in PyPi by detecting differences between build artefacts
of software packages and the source code repository itself, and in Scalco et al. [56]
where they ported the LastPyMile [55] method to be used for JavaScript packages
in the npm system. Another look into detecting malicious packages was in Ladisa
et al. [57], where the focus was on open-source Java projects; they presented
indicators of malicious behaviour in Java bytecode which was observable through
static indicators.

2.4.3 Industry relevant detection

Looking at the previous two sections, the disparity between academic literature
on detecting closed- and open-source software supply chain attacks in the form
of detecting trojanized software or packages becomes apparent. Therefore, it is
necessary to look at what the industry is doing to understand their best practices
and the solutions they have developed for this problem. It is worth keeping in
mind that industry papers do not go through the same peer review process that
academic literature does, and when published on behalf of businesses, they can

Chapter 2: Background 25

have the intention of marketing a solution.

The first industry white paper is one by Splunk (LaFerrera and Kovar [58]), and
it is in some ways similar to Wang [8] in that it describes a method for detecting
software supply chain attacks through outgoing traffic from critical servers and
highly restricted and critical networks. They propose a method of anomaly detection
through the use of the open-source methods JA3 and JA3s hashing, where JA3 is
a method for generating an MD5 hash of a specific value found in the SSL/TLS
handshake process, while JA3s is a method for calculating JA3 hash for server
sessions. It is worth keeping in mind that this is more of a way of detecting
anomalous behaviour from these critical networks and servers that do not generate
large volumes of SSL/TLS events rather than detecting and preventing trojanized
software installation.

The second industry white paper is by Intel (Zhang et al. [59]. It is a combination
of work by Intel and Microsoft, and they developed a solution for utilising hardware-
based control flow monitoring and anomaly detection by following the zero-trust
principle and combining this with CPU telemetry and machine learning heuristics.
The solution continuously monitors the behaviour of known programs and verifies
that they behave as expected. Through testing, it detected process hijacking and
software supply chain backdoors through behaviour deviation in otherwise benign
processes while generating low amounts of false positives.

Chapter 3

Methodology

This chapter presents the methodology used within this thesis to answer the
research questions from Section 1.5. It presents the method by which the dataset
was collected and the included challenges therein, presents the experimental and
hardware specifications used for the testing environment, before finally describing
the techniques and tool usage for the malware analysis.

3.1 Dataset

The dataset is a collection of samples consisting of legitimate and benign software
versions and the trojanized version of that application. Where possible, it was
attempted to collect the benign version from either immediately before or between
different versions of the trojanized software. However, this proved very difficult,
leading to some samples being older by some degree or even newer software
versions.

The malicious sample hashes were found by visiting reports and writeups
by security researchers, experts, and companies. These hashes were then used
as search criteria, where a small number of samples were downloaded from the
sandbox platform Any.Run. Most of the malicious samples were found in VirusTotal,
where the supervisor from CrossPoint Labs could download them, as this required
an enterprise license.

The legitimate samples were downloaded using tools such as WayBackMachine1

to visit a snapshot of a previous version of the suppliers’ site through software re-
positories such as http://www.oldversion[.]com/, and in some cases, as samples
uploaded to either VirusTotal or Any.Run.

Challenges

There have only been a few closed-source software supply chain attacks[60], so the
sample set is small. In addition, it proved challenging to find and download most

1Link to the site by the internet archive: https://archive.org/web/

27

http://www.oldversion[.]com/
https://archive.org/web/

28 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Table 3.1: Benign Samples

Software Type MD5 Compile Date File Version
SmartPSS exe 51ebe0db8fabace8ebc9d005b3c6cdec 2009-12-05 23:50:41 V2.002.0000009.0.R.190426

Swiss Ranger exe 6120d14f8bb27b469724333947d5717e 2009-12-05 23:50:52 1.0.14.706
eGrabIt exe 8a6783a0b5cff2932b35b8c58925f5ab 1999-04-08 22:24:47 3.1.0.85

Talk2M eCatcher exe 877848de6f2135e2dbc7d036f6804528 1992-06-20 00:22:17 4.3.0.15531
CCleaner exe 4d4f7f80a542a93d0d3c822153e2c254 2015-12-29 22:34:49 5.32.00.6129
MediaGet exe deb8a3ceadaa16500777aecb27d4b9bf 2018-12-13 13:05:01 UTC 2, 1, 0, 0

3CXDesktopApp msi 20a680ee3826a8cb316a7bed58eb31c3 2023-01-23 08:30:50 UTCa 18.11.1213
Solarwinds Orion dll 2d9b1245d42bb9f928da2528bb057de2 2020-08-11 15:40:55 2020.2.15300.12766

M.E.Doc dll 23fdc5d07b0a7d743137cce040345ba2 2017-03-01 12:54:15 UTC Unknownb

a This is the creation date, rather than compiling timestamp. b The version number is unknown.

Table 3.2: Trojanized Samples

Software Type MD5 Compile Date File Version
SmartPSS exe 1430291f2db13c3d94181ada91681408 2020-08-01 04:44:50 V2.002.0000007.0.R.181023-General-v1

Swiss Ranger exe e027d4395d9ac9cc980d6a91122d2d83 2011-05-28 18:04:38 1.0.14.706
eGrabIt exe 1080e27b83c37dfeaa0daaa619bdf478 2007-03-31 17:09:46 3.0.0.82 (version 3.0 Build 82)

Talk2M eCatcher exe eb0dacdc8b346f44c8c370408bad4306 2007-03-31 17:09:46 4.0.0.13073
CCleaner exe 75735db7291a19329190757437bdb847 2015-12-29 22:34:49 5.33.00.6162
MediaGet exe bc32bd0289e420add468315bc007a984 2018-02-06 23:19:12 UTC 2, 1, 0, 0

3CXDesktopApp msi 0eeb1c0133eb4d571178b2d9d14ce3e9 2023-03-13 06:33:26 UTCc 18.12.0416
3CXDesktopApp msi f3d4144860ca10ba60f7ef4d176cc736 2023-03-03 12:21:46 UTCd 18.12.0407

Solarwinds Orion dll b91ce2fa41029f6955bff20079468448 2020-03-24 09:52:34 2019.4.5200.9083
M.E.Doc dll 3efe62f6cb7285153114f888900a0962 2017-06-21 14:58:42 UTC 189

c d This is the creation date, rather than compiling timestamp.

of the malicious samples on free and open sources, which created a delay when
having to request samples as they were found rather than being able to download
them directly.

However, finding legitimate versions to compare them to was the most challen-
ging part. This was because none of the suppliers had the old versions available on
their sites. Therefore, WayBackMachine was used to find some of the samples by
going to an old snapshot, but this was unreliable as, in most cases, the download
link and binary were not saved. For some others, finding the samples through free
software repositories was possible. However, this was also unreliable as the sample
was bundled or packed with other software, even in cases where it was possible to
find it.

The previous solutions were not applicable for samples part of enterprise
solutions such as SolarWinds.Orion.Core.BusinessLayer.dll and ZvitPublishedOb-
jects.dll. There was no way to download them using WayBackMachine, nor were
they hosted in online software repositories. Eventually, hashes for legitimate ver-
sions were found on online forums, and they could then be downloaded from
VirusTotal.

Contacting other researchers through email was attempted, but this proved
ineffective. However, with time and effort, most legitimate versions were found
with only two malicious samples having no pairs and therefore were excluded
from the analysis.

Chapter 3: Methodology 29

3.2 Experimental Setup

This thesis’s setup and experimentation environment were performed from a
Windows 10 Desktop computer using a nested virtualisation scheme to conduct
the experiments. The specifications and components for the host computer can
be seen in Table 3.3. The main host used the hypervisor VirtualBox to host an
Ubuntu Guest VM, which functioned as the Cuckoo host for the experiments. The
Cuckoo Host specifications and software installations can be seen in Table 3.4.
Lastly, the Cuckoo Host also had an installation of VirtualBox, which was used to
host a Windows 7 VM. Ubuntu was chosen as the Cuckoo host and Windows 7 was
selected for the guest because this was the recommended setup by the developers
of the platform [34].

Table 3.3: Hardware and Software components of the Host Computer

Component Specification

CPU 12th Gen Intel(R) Core(TM) i7-12700, 2100 Mhz, 12 Core, 20
Threads

RAM 32GB DDR5 4800MHz

GPU NVIDIA GeForce RTX 3060 Ti

C:\ Kingston NV1 NVMe M.2 SSD 1TB 2100M MBps(R) / 1700 MBps
(W)

D:\ WD Blue 3D 2.5" SSD 1TB 560 Bps(R) / 530 MBps (W)

OS Microsoft Windows 10 Home Build 19044

VirtualBox Version 6.1.40 r154048 (Qt5.6.2)

Cuckoo Host Setup

The Cuckoo host was installed according to the recommendations provided in the
documentation for Cuckoo in [34]. This includes all the dependencies listed in
their documentation. The Volatility module was used to handle memory analysis,
while the Yara module and the Community signatures were used for signature
detection. The Cuckoo was configured with just a single type of network available,
INetSim, to simulate internet services. INetSim together with Tcpdump to then
dump the network behaviour. INetSim was chosen to emulate network activity to
keep the samples isolated for the safety of the host computer and network.

The Cuckoo Guest

The Cuckoo guest setup went through several iterations testing the VM detection
capabilities. Initially, the machine was installed and configured as described in

30 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Table 3.4: Guest VM Ubuntu Linux: Cuckoo Host

Component Specification

Processor 8 Cores
CPU Settings 100% Execution Cap, Nested Virtualization
RAM 16GB
Video Memory 128 MB
Disk 200 GB VHD
Kernel 5.15.0-71-generic
OS Ubuntu 20.04.6 LTS

Software Version

Cuckoo Sandbox 2.0.7
VirtualBox 6.1.38_Ubuntu R153438
Python2 2.7.18
Python3 3.8.10
Yarapython 3.6.3
TcpDump 4.9.3
INetSim 1.3.1
MongoDB v3.6.8
Volatility 2.6.1
pydeep 0.4
openpyxl 2.6.4
ujson 2.0.3
libcap2-bin 2.13.3-7ubuntu5.2

Cuckoo’s documentation [34]. The Windows 7 machine was installed using an iso
file on VirtualBox, the dependencies such as Python2 and pillow were installed, and
the agent script was downloaded onto the machine. Then, the Windows firewall
and automatic updates were turned off, and a Host-Only Adapter was set up
using VirtualBox, which would isolate the machine allowing only communication
to-and-from the host.

Initially, all the samples were run through that virtual machine, providing
some starting results. However, as will be discussed in the results chapter, some
of the samples did not behave any differently during behavioural analysis. It was
reasoned that this could be due to the samples detecting that they were in a
virtual environment, and Paranoid Fish2 was used to harden the VM for anti-VM
techniques. Pafish was executed through Cuckoo Sandbox as this best simulated
the experiment environment. The Pafish report initially contained 25 detections,
ranging from hypervisor detections, low processor count, and several detections
on VirtualBox artefacts. The first changes made were made in the VirtualBox GUI.
These changes can be seen in Table 3.5, where the top "GuestInitial" is the initial

2https://github.com/a0rtega/pafish

https://github.com/a0rtega/pafish

Chapter 3: Methodology 31

specification while "GuestFinal" is the final.

Table 3.5: Nested Virtualised Windows: Cuckoo Guest Ver1

GuestInitial Specification

Processor 1 Core
CPU Settings 100% Execution Cap, Nested Virtualization
RAM 2 GB
Video Memory 30 MB
Disk 80 GB VHD
OS Windows 7 SP1 Build 7601
Paravirtualisation Hyper-V

Software Version

VirtualBox Guest Additions 6.1.38
Python2 2.7.18
Python2.5.3 Pillow Pillow-2.5.3

GuestFinal Specification

Processor 2 Cores
CPU Settings 100% Execution Cap, Nested Virtualization
RAM 4 GB
Video Memory 128 MB
Disk 80 GB VHD
OS Windows 7 SP1 Build 7601
Paravirtualisation Legacy

Software Version

Python2 2.7.8

In addition to adding more RAM, video memory, and an additional CPU core,
the paravirtualisation interface was changed to legacy rather than Hyper-V. This
was as the Hyper-V interface reveals that the system is running on a hypervisor
(by default named VBoxVBoxVBox), while the legacy option did not. Two guides
were followed while hardening the VM, those being [61] and [62]. Noisy services
such as User Access Control and Security Center were turned off, and VirtualBox
guest additions were uninstalled. From these two guides were also a total of three
scripts which aided in hardening the VM:

• The first script is from [61], there was a script to fake hardware components
inside the VM3. However, the script was intended for Windows, not Linux.
Therefore, The relevant commands were, ported to a very simple shell script
for this purpose. The VirtualBox commands allowed for faking several hard-
ware components from inside the VM. The relevant commands can be seen

3https://github.com/xyafes/VBoxAntiDetection/blob/main/statick.bat

https://github.com/xyafes/VBoxAntiDetection/blob/main/statick.bat

32 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

in Code listing A.1.
• The second script was also from [61], the script, named dynamic.ps14 was

intended to run on the Cuckoo Guest. It renames several registry keys that
can be used to recognise a virtual environment by an attacker.
• The last script is from [62]. It is a registry file and it changes a few registry

keys related to the bios while deleting several related to VirtualBox. The
script can be seen in Code listing A.2.

The results of the changes can be seen in Figure 3.1, where there was only a
total of 2 detections after the configurations. The two detections are the "difference
between CPU time-stamp counters and the difference between CPU time-stamp
counters forcing VM exit." These two techniques use RDTSC instructions to reveal
if it is running in a virtual machine. It does this by retrieving an in-CPU 64-bit
counter that increases at a constant speed close to the CPU frequency [63]. This
value is called the time-stamp counter (TSC). Measuring TSC before and after
an operation execution allows one to find the time elapsed, which can detect a
virtual environment [63]. The author of the thesis was able to find some possible
workaround for this using some other virtualisation tools but was unable to find
one for VirtualBox. The comparative results for the Pafish run can be found in
Figure 3.1, while the individual figures can be found in the appendix under A.1
and A.2.

3.3 Experiments & Analysis

This section describes both the tools and methods used to conduct the differential
analysis on the trojanized and legitimate samples. It first describes the methods
and experiments used during the static differential analysis before doing the same
for the dynamic differential analysis.

For this thesis, it was decided to focus on techniques that do not require a
reverse engineering specialist or high-level expertise, so disassemblers such as
IDA and hands-on debuggers were not included in the methods. This is as most
organisations have several tens, if not hundreds, of different software components.
When one considers that much of this software receives regular updates, it becomes
apparent that it would require much time to review each sample and analyse it in
disassemblers and debuggers. Therefore, it would be a more scalable solution to
have a system in place that compares the previous version to the next and reports
if there are suspicious changes. However, designing such a system and complicated
work beyond the scope of a master’s thesis. Therefore, this thesis seeks to find
what indicators can be found with sandboxing and basic static analysis techniques
that can be automated.

4https://github.com/xyafes/VBoxAntiDetection/blob/main/dynamic.ps1

https://github.com/xyafes/VBoxAntiDetection/blob/main/dynamic.ps1

Chapter 3: Methodology 33

(a) Initial PaFish Detections (b) Initial PaFish Detections

Figure 3.1: Figure 3.1a to the left shows the initial 25 detections, while Figure 3.1a
to the right shows the final 2

3.3.1 Static Differential Analysis

The purpose of this section is to describe how the static differential analysis was
performed on the samples. Two different environments were set up for the static
differential analysis. The first was a separate snapshot of the Ubuntu environment
used to run Cuckoo Sandbox, which had Stringshifter 5, Manalyze6, PeFile 7, and
FLOSS8 installed. The second was a separate snapshot of the Windows 7 VM guest
used for running the sandboxing malware, with Exeinfo PE9 and PeStudio 10.

The first part of the analysis was undertaken from the Windows 7 VM, and
the first step was loading each sample pair into Exeinfo PE. This can give an
initial understanding of the software, allowing us to observe any changes in how

5https://github.com/mandiant/stringsifter
6https://github.com/JusticeRage/Manalyze
7https://github.com/erocarrera/pefile
8https://github.com/mandiant/flare-floss
9https://github.com/ExeinfoASL/ASL

10https://www.winitor.com/

https://github.com/mandiant/stringsifter
https://github.com/JusticeRage/Manalyze
https://github.com/erocarrera/pefile
https://github.com/mandiant/flare-floss
https://github.com/ExeinfoASL/ASL
https://www.winitor.com/

34 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

the sample was compiled and if there are changes in the software packaging. In
addition, should the sample be packaged, Exeinfo Pe can be used to attempt to
unpackage it.

The next step is to load the sample into PeStudio. PeStudio provides a lot
of static information on a PeFile and provides an initial analysis by providing
indicators of maliciousness and anomalies within the file. The two files are both
loaded into PeStudio, and the two outputs are compared against each other. Each
of the tabs is manually compared to each other, focusing on the data highlighted by
PeStudio. PeStudio is used to compare and note down the following information:

• General information:

◦ Global Entropy, File Size, Signature, Version Info

• Sections

◦ Changes in the names, names, entropy, file ratio, raw size, virtual size,
and characteristics.

• Library/Imports/Exports

◦ Changes in the number of imported functions/API, exported functions,
or libraries.

• Strings

◦ Changes in the number of flagged strings, which is are strings seen in
relation to previous attacks.
◦ PeStudio also tags strings with techniques from the MITRE Adversarial

Tactics, Techniques, and Common Knowledge (ATT&CK) framework.
This is a curated knowledge base for known adversarial behaviour
through attributing tactics and technique abstraction [64]. Most relev-
ant here is that it relates a string or event to a type of method of attack,
such as process injection or data obfuscation.
◦ Any addition of strings marked with under group or labels that indicate

obfuscation or evasion.

• Overlay

◦ Changes, addition, or removal of the overlay.

The next step was to use a combination of FLOSS and Stringsifter ranking
functions. First, FlOSS was run against both the legitimate and trojanized binary.
Then this output was piped through the ranking function of Stringsifter, which
ranked the strings based on suspiciousness and outputted the suspicious strings
from both samples into four different CSV files. The CSV files were in the interval
top 10-, 100-, 1000-, and 10 000-suspicious strings according to the Stringsifter
ML model. These four files then had their output compared to each other and
generated four lists with the unique strings from the malicious sample for each
top interval set.

The intended goal of using Stringsifter and Floss was to identify strings not

Chapter 3: Methodology 35

found by PeStudio, de-obfuscate strings, remove those in the legitimate software,
and then analyse the remainder for potential maliciousness and suspiciousness.
Different amounts of strings were extracted to see if there was a cutoff point
for useful indicators and if there was a similarity between the upper and lower
information gain area. Compared to PeStudio, Floss and Stringsifter neither provide
additional information to the strings nor flag them. Following below is an example
of suspicious strings:

• New Suspicious Top-Level Domains:

◦ cf, club, cn, co, ga, gq, icu, info, ml, pw, ru, tk, tokyo, top, work, xyz. 11

• New Possible Code Access:

◦ Examples: .php, .sh, .bat, .ps

• New URL or Domain

◦ Domains or URLs not previously accessed in legitimate software. So if
the software contacts google.com in the legitimate and in the malicious,
it visits something.google.com, then it is not suspicious.

• New Encoded Strings:

◦ Ex. Base64, XOR

• Possible Credential Access:

◦ Presence of strings indicating possible theft of logins such as passwords
and usernames.

• Possible C2:

◦ Strings that hint at possible command and control traffic.

The last step was using a Python script that utilises the library Pefile to export
these functions to a CSV file and perform general comparisons between the two
samples. The script does the following actions:

• Calculates the global entropy of the two samples using the Shannon entropy
formula.
• Fetches the entry point and file size, then compares them to see if there is a

difference.
• Enumerates the sections in the file, gets the different values in each section,

and calculates the entropy.
• The script reviews all the imported libraries, functions, and API calls in both

samples and builds one list for the removed imports and one for the new
ones in the malicious sample.
• Lastly, prints the extracted information to a CSV file.

The information gathered from the analysis was continuously tracked in a

11Based on the list from table1 in https://unit42.paloaltonetworks.com/
top-level-domains-cybercrime/

https://unit42.paloaltonetworks.com/top-level-domains-cybercrime/
https://unit42.paloaltonetworks.com/top-level-domains-cybercrime/

36 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Google Sheets sheet with a unique page for each binary. This Google Sheets sheet
highlighted where there were changes, such as an increase or decrease of entropy,
or if there was no change between the binaries. Eventually, when all samples were
analysed, a single Google Sheets page was created to contain the observed static
differences between the samples.

3.3.2 Dynamic Differential behaviour Analysis

The purpose of this section is to describe how the trojanized software and the
legitimate software were dynamically analysed using sandboxing software and
then how the resulting reports from the sandbox were used to perform a differen-
tial analysis of the results. The two environments used to run the samples were
the Cuckoo sandbox with a few different configurations and the online sandbox
Triage12.

The samples were run locally using Cuckoo Sandbox. They were run both on a
hardened and unhardened VM with INetSim simulating an internet connection
and without INetSim doing so. First, the information in the static analysis part
of Cuckoo from both files was compared to the results from the previous static
analysis. Then, the detected Cuckoo and YARA signatures were noted in Google
Sheets and compared to each other, where changes in any detections from benign
to malicious samples were highlighted. Next, the process tree, network traffic,
dropped files, dropped buffers, and process memory was compared between the
binaries. This was to understand if the malicious sample had any behavioural
differences from the benign sample that was not detected by any signature. A
focus here was inspecting if the process behaved differently by starting a new or
changed process, connecting outwards to new domains or IP addresses, or if there
were changed contents or files in the memory or buffer of the sample.

Lastly, the samples were uploaded and run in the online sandbox Triage with an
internet connection. Additionally, samples that would not run on the local VM due
to dependency or version issues were run with and without an internet connection
in the Triage sandbox. This allowed one to observe if there was any difference in
behaviour when an internet connection was added, and it could support and add
to the evidence collected from the Cuckoo sandbox runs.

12https://tria.ge/

https://tria.ge/

Chapter 4

Results

This section is intended to summarise the different findings from the analysis
together into a clear picture of the differences and indicators found across the
samples. First, it presents the results from the static analysis before doing the same
for the dynamic analysis. Lastly, it puts these results into the perspective of the
research question and how these results contribute to a better understanding of
the problem by providing perspective to the methods and places where one can
look to detect trojanized closed-source software.

4.1 Analysis of Trojanized Software

This section provides the analysis of the individuals’ samples and their findings. It
is worth mentioning that if a step from the analysis method is not mentioned, then
one can consider that the technique did not provide any findings, new information,
and insight for the analysis. Also, the tables and contents only contain what differed
from the legitimate sample. This means if they were both unsigned, imported 2
functions from Kernel32.dll, and triggered a signature for debugging detection in
Cuckoo, then this is not mentioned. This is because we concern ourselves with the
differences rather than the similarities in the files for the purpose of this analysis.

4.1.1 NotPetya

In June 2017, Ukraine was the target of a Wiper malware disguised as ransom-
ware. However, the attack spread beyond Ukraine and hit several other regions,
with estimates of the damages caused being more than 10 billion dollars [65].
It spread through a trojanized version of M.E.Docs containing a backdoor in the
’ZvitPublishedObjects.dll’ module [66]. ’ZvitPublishedObjects.dll’ had a few static
changes from the benign sample, and we could not extract behavioural data from
this sample even after attempting several analysis methods. Nevertheless, the
differential analysis results can be found in Table 4.1:

As seen in Table 4.1 above, PeStudio provided most of the data on this sample
pair. There were some minor changes in entropy and file size, some changes in

37

38 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Changed Variable Benign Malicious Change Method

File Entropy 5,121 5,122 +0,001 PeStudio

File Size 5094400 5207040 +112640 PeStudio

PDB Path c:\branch\source\
ZvitPublishedObjects\
obj\Release\
ZvitPublishedObjects.
pdb

c:\branch2\source\
ZvitPublishedObjects\
obj\Release\
ZvitPublishedObjects.
pdb

Very Slight change. PeStudio

.text Entropy 5,112 5,123 +0,011 PeStudio

.text Raw-size 5092352 5204992 +112640 PeStudio

.text Virtual-size 5091988 5204724 +112736 PeStudio

.rsrc Entropy 2,835 2,831 -0,004 PeStudio

Flagged Strings 17 22 +5 PeStudio

MITRE Strings 12 17 +5 PeStudio

Table 4.1: NotPetya: Changes in entropy, size, PDB path, and flagged/MITRE
strings.

two sections, an increased amount of flagged strings, and several possible MITRE
techniques. Some of the most interesting observations are the addition of 6 possible
obfuscation through encryption techniques and the two related to packing. When
one references this finding against the analyses by ESET [66] and Talos [67], we
can see that these strings were part of functions used by the attacker to send and
receive command and control traffic.

In addition, the list’s top lists generated through the use of FLOSS and String-
sifter did reveal some possible suspicious indicators. For example, there were no
’.ru’ domains in the benign file, while in the malicious one, there was a sudden
addition of seven ’.ru’ domains, where 6 of them were email domains, and one was
a search engine. While this would be very suspicious in most software, M.E.docs
was (and is, at the time of writing) Ukrainian software at the time of the attack,
so it might not be as questionable there as in other software. Lastly, some strings
hinted at possible credential theft, network connections, and script download.

c:\branch\source\ZvitPublishedObjects\obj\Release\ZvitPublishedObjects.pdb
c:\branch\source\ZvitPublishedObjects\obj\Release\ZvitPublishedObjects.pdb
c:\branch\source\ZvitPublishedObjects\obj\Release\ZvitPublishedObjects.pdb
c:\branch\source\ZvitPublishedObjects\obj\Release\ZvitPublishedObjects.pdb
c:\branch\source\ZvitPublishedObjects\obj\Release\ZvitPublishedObjects.pdb
c:\branch2\source\ZvitPublishedObjects\obj\Release\ZvitPublishedObjects.pdb
c:\branch2\source\ZvitPublishedObjects\obj\Release\ZvitPublishedObjects.pdb
c:\branch2\source\ZvitPublishedObjects\obj\Release\ZvitPublishedObjects.pdb
c:\branch2\source\ZvitPublishedObjects\obj\Release\ZvitPublishedObjects.pdb
c:\branch2\source\ZvitPublishedObjects\obj\Release\ZvitPublishedObjects.pdb

Chapter 4: Results 39

Type New Strings found Method

MITRE Data
Obfuscation

TripleDESCryptoServiceProvider, CipherMode,
CreateDecryptor, GZipStream, Encryption, Decryption

PeStudio

MITRE Software
Packing

Compress, Decompress PeStudio

MITRE Access
Token Manipulation

OpenProcessToken, GetTokenInformation PeStudio & FLOSS &
Ranked_Strings

MITRE Execution
through API

set_UseShellExecute PeStudio

MITRE Modify
Registry

CreateSubKey PeStudio

Possible C2 "AbsoluteUri:{0}Host:{1}Port:{2}UserName:
{3}Password:{4}

FLOSS &
Ranked_Strings

Possible Credential
Access

"edropu:{0}name:{1}smtpServer:{2}smtpLogin:
{3}smtpName:{4}smtpPass:{5}email:{6}"

FLOSS &
Ranked_Strings

Suspicious
Top-Level Domains

Yandex.ru, mail.ru, ya.ru, list.ru, inbox.ru, bk.ru, and
"mail.ru"

FLOSS &
Ranked_Strings

Possible Code
Access

http://www.me-doc[.]com.ua/other_scripts/to_is_
pro_execute_medoc.php

FLOSS &
Ranked_Strings

Top 10k Ranked
Strings difference

The malicious sample had 433 different strings than the
benign out of the top 10 000 strings.

FLOSS & Stringsifter

Table 4.2: NotPetya: Static changes in strings

4.1.2 Solorigate

The backdoor in Solarwinds Orion Software suite was in the dll file
SolarWinds.Orion.Core.BusinessLayer.dll, and the backdoor is composed of more
than 4000 lines of code [68]. Microsoft conducted an in-depth analysis of the
attack in [68], where using reverse-engineering forensic techniques, they were
able to uncover that the backdoor’s capabilities included 13 subclasses and 16
methods, as well as conducting an extensive check for the environment to ensure
that it would only be running in an enterprise network rather than on an analysts
machine. The analysis by Microsoft provides a good reference for what malicious
artefacts we can discover using basic static methods compared to their advanced
static and dynamic methods.

It is worth mentioning that just like the NotPetya backdoor, we could not extract
dynamic behaviour from the sample, having the same problem that the sample is
part of a larger software environment.

The Solorigate sample had one of the highest increased global entropies of
all files while having an increased entropy in the executable section (.text) and
a slightly lower entropy in the resources (.rsrc) section. There was also a slight
increase in global file size due to the .text section being marginally larger by about
33kb, which is most likely due to the 4000 lines of code added in the malicious
sample compared to the benign. Where the trojanized sample starts to show a
real difference compared to the legitimate one is in the strings composing the

AbsoluteUri: {0} Host: {1} Port: {2} UserName: {3} Password: {4}
AbsoluteUri: {0} Host: {1} Port: {2} UserName: {3} Password: {4}
edropu: {0} name: {1} smtpServer: {2} smtpLogin: {3} smtpName: {4} smtpPass: {5} email: {6}
edropu: {0} name: {1} smtpServer: {2} smtpLogin: {3} smtpName: {4} smtpPass: {5} email: {6}
http://www.me-doc[.]com.ua/other_scripts/to_is_pro_execute_medoc.php
http://www.me-doc[.]com.ua/other_scripts/to_is_pro_execute_medoc.php

40 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Changed Variable Benign Malicious Change Method

File Entropy 5,551 5,583 +0,032 PeStudio

File Size 977896 1011032 +33136 PeStudio

.text Entropy 5,538 5,569 +0,031 PeStudio

.text Raw-rize 968192 1001472 33280 PeStudio

.text Virtual-size 968112 1001340 33228 PeStudio

.text File-ratio 99,01% 99,05% +0,04 PeStudio

.rsrc Entropy 3,034 3,016 -0,018 PeStudio

.rsrc Virtual-size 1324 1312 -12 PeStudio

.rsrc File-Ratio 0,16 0,15 -0,01 PeStudio

Flagged Strings 5 18 +13 PeStudio

MITRE Strings 7 12 5 PeStudio

Table 4.3: SolarWinds.Orion.Core.BusinessLayer.dll: changes in entropy, size, and
amount of flagged/MITRE strings

program. PeStudio reported increased flagged strings and a general increase in
MITRE-tagged strings. The table for these changes with the specific values can be
seen in Table 4.3.

The extra flagged strings and MITRE techniques become apparent due to
several strings related to the Windows API and systems function, such as those
related to processes and token manipulation. Amongst those functions are the
names of Windows utilities for Base64 encoding and decoding and functions for
software packing and unpacking. Also present in the malicious sample is 162
compressed base64 encoded strings, which, when decoded, reveal several WMI-
queries for uncovering the system environment, 2 new domains (avsvmcloud[.]com
and api.solarwinds[.]com), and new possible access token manipulation functions.

When we reference these findings against the analysis by Microsoft, we find
that the new domain avsvmcloud[.]com, we find that this was the location of
the C2 server, while the api.solarwinds[.]com domain was used to test network
connectivity after a blocklisted drivers test [3]. Additionally, several hardcoded IP
addresses and subnet masks were encoded in the file. According to FireEye [3],
these IPs were used for the C2 traffic. Therefore, when the backdoor communicates
with the C2 server, it receives a DNS record that would resolve to one of these IP
subnets, which would decide if it should continue beaconing, stop beaconing, or
start stage two of the attack[3]. A table containing the interesting artefacts from
the differential string analysis can be seen in Table 4.4

Chapter 4: Results 41

Type New Strings found Method

MITRE
Data Ob-
fuscation

Base64Decode, FromBase64String, ToBase64String PeStudio

MITRE
Software
Packing

Compress, Decompress, Deflate, Inflate PeStudio

MITRE
Access
Token Ma-
nipulation

LookupPrivilegeValue, OpenProcessToken, AdjustTokenPrivileges,
SeRestorePrivilege(O), SeTakeOwnershipPrivilege(O)

PeStudio &
FLOSS &
Ranked_Strings

MITRE
Execution
through
API

set_UseShellExecute PeStudio

MITRE
Disabling
Security
Tools

Kill PeStudio

MITRE
Process
Discovery

GetCurrentProcess PeStudio

Encoded
Strings(O)

162 Base64 and deflated strings(O). Amongst these strings are appsync-api,
eu-west-1, us-west-2, us-east-1, us-east-2.

FLOSS &
Ranked_Strings

IP Ad-
dresses(O)

13 new IP addresses (11 unique), 17 network masks.
IP Addresses: 74.114.24.0, 71.152.53.0, 41.84.159.0, 41.84.159.0,
217.163.7.0, 20.140.0.0, 154.118.140.0, 131.228.12.0, 172.16.0.0,
144.86.226.0, 10.0.0.0, 99.79.0.0, 99.79.0.0
Network Masks: 255.0.0.0, 255.255.0.0, 255.255.0.0, 255.255.248.0,
255.255.254.0, 255.255.254.0, 255.255.254.0, 255.255.252.0,
255.255.252.0,255.240.0.0, 255.240.0.0, 255.254.0.0, 255.254.0.0,
255.255.255.0, 240.0.0.0, 240.0.0.0, 224.0.0.0

FLOSS &
Ranked_Strings

New URL
or Domain

2 Domains in Base64 Encoding (avsvmcloud.com, api.solarwinds.com)(O), 9
New URLs

FLOSS &
Ranked_Strings

WMI Quer-
ies(O)

Select * From Win32_OperatingSystem,
Select From Win32_Process,
Select From Win32_SystemDriver,
Select From Win32_NetworkAdapterConfiguration where IPEnabledt̄rue

FLOSS &
Ranked_Strings

Top 10k
Ranked
Strings
difference

The malicious sample had 838 different strings than the benign out of the top
10 000 strings.

FLOSS &
Stringsifter

The (O) represents that the string was encoded/obfuscated.

Table 4.4: SolarWinds.Orion.Core.BusinessLayer.dll: Static changes in strings

42 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

4.1.3 Dragonfly Campaign

In 2013 and 2014 the Dragonfly (Energetic Bear) Group1 successfully compromised
the support sites of three ICS vendors, MESA Imaging, eWon, and MB Connect
Line [69]. From there, the attackers managed to trojanize five different legitimate
software on the site. The attackers trojanized the software with either the Sysmain
RAT or the Havex Rat [70]. An in-depth analysis was conducted by Langill [69] on
behalf of Belden Concluded that the target of the attack was the pharmaceutical
industry.

Swiss Ranger

The Swiss Ranger software was made by MESA imaging and is the driver software
for their industrial cameras Swiss Ranger [70]. It was the first trojanized software
in 2013, and it was implanted with the Sysmain RAT. It remained for 6 weeks
until it was detected and removed. We were able to run both static and dynamic
differential analyses on the sample.

The trojanized sample had several differences in the static analysis of the PE
file structure and sections. The trojanized Swiss Ranger was 130KB larger than
the benign, had no version info, and had its packer changed from Nullsoft to
Zip archive. Attempting to unzip the archives reveals that the two files are quite
different inside, with the malicious having the setup file for Swiss Ranger and
the RAT dll. In contrast, the legitimate one had a directory containing several
installation files. This can be seen in Figure 4.1.

Figure 4.1: The left side is the malicious sample, while the right is the benign.

There were several changes in the PE sections, with the section ’.ndata’ missing
and the section ’.CRT’ added to the trojanized version. There were also several
changes across the sections, with both decreases in entropy in some sections, such
as ’.data’, and increases in the ’.text’ and ’.rsrc’ sections. The complete list of these
changes can be found in Table A.1.

Looking at the files’ resources and imports, we find that the malicious sample
has more resources, a changed manifest, and imports more libraries. For example,

1MITRE has a subpage on this group in https://attack.mitre.org/groups/G0035/

https://attack.mitre.org/groups/G0035/

Chapter 4: Results 43

in Table 4.5, we can see that there has been a change in imported libraries, with
one removed and two added, and some differences in the number of imports from
the different libraries.

Type Benign Malicious

Re-
sources
Amount

12 15

Mani-
fest

XML 1.0 document, ASCII text, with very
long lines, with no line terminators

XML 1.0 document, ASCII text, with CRLF line
terminators

Lib-
raries

8 9

Lib-
rary
Im-
ports

USER32.dll: 62, KERNEL32.dll: 59,
ADVAPI32.dll: 9, GDI32.dll: 8, SHELL32.dll:
6, COMCTL32.dll: 4, ole32.dll: 4,
VERSION.dll: 3

USER32.dll: 55, KERNEL32.dll: 70, ADVAPI32.dll:
5, GDI32.dll: 8, SHELL32.dll: 8, COMCTL32.dll: 2,
ole32.dll: 5, OLEAUT32.dll: 1, SHLWAPI.dll: 1

Table 4.5: Havex-SwissRanger: Static Differential Analysis Resources & Library

Type New Strings found Method

MITRE Data
Obfuscation

extract PeStudio

MITRE Access
Token
Manipulation

runas PeStudio

MITRE
Execution
through API

ShellExecuteEx PeStudio

MITRE
Process
Injection

SetDllDirectory PeStudio

MITRE
Windows
Discovery

GetWindowText PeStudio

Possible LotL Setup=cmd/c%temp%\setup.exe&c:
\windows\system32\rundll32.exe%temp%\tmp687.dll,RunDllEntry
p.exe&c:
\windows\system32\rundll32.exe%temp%\tmp687.dll,RunDllEntry

Floss &
Ranked_Strings

Top 10k
Ranked
Strings
difference

The malicious sample had 3915 different strings than the benign out of the
top 10 000 strings.

FLOSS &
String-
sifter

Table 4.6: Havex-SwissRanger: Static Differential Analysis Strings

Looking at the strings of the PE file, we can see indications of unpacking of
obfuscated files with the ’extract’ being referenced. We also see some techniques
related to token manipulation, execution through API, process injection, and
Windows directory. There was a general reduction in flags and tagged MITRE
techniques in the malicious version compared to the benign. However, this can

Setup=cmd /c %temp%\setup.exe & c:\windows\system32\rundll32.exe %temp%\tmp687.dll, RunDllEntry
Setup=cmd /c %temp%\setup.exe & c:\windows\system32\rundll32.exe %temp%\tmp687.dll, RunDllEntry
p.exe & c:\windows\system32\rundll32.exe %temp%\tmp687.dll, RunDllEntry
p.exe & c:\windows\system32\rundll32.exe %temp%\tmp687.dll, RunDllEntry

44 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

be attributed to the malicious sample being essentially "double-packed" with the
legitimate setup being bundled with the ’dll’ inside the PKZIP executable file. The
most interesting artefact from the string analysis is the presence of a Living of the
Land (LotL) technique with the two commands:

• Setup=cmd/c%temp%\setup.exe&c:\windows\system32\rundll32.exe%temp%
\tmp687.dll,RunDllEntry
• p.exe&c:\windows\system32\rundll32.exe%temp%\tmp687.dll,RunDllEntry

Here we can see the setup and the RAT ’tmp687.dll’ being ran by the PKZIP
executable file. The table for this can be seen in Table 4.6.

Lastly comes the dynamic differential behavioural analysis using Cuckoo Sand-
box. The malicious version deviated heavily from the legitimate sample and
triggered several more signatures. Amongst the signature detections was an at-
tempt at using sleep to delay analysis, increased read-write-execute memory events,
possible keylogging, dropping a binary and executing it, and more.

As observed in the static string analysis, tmp687.dll is run with the parameter
RunDllEntry by Rundll32.dll. This process triggers several detections for both
process discovery and injection. The process tree for the sandbox run can be seen
in Figure 4.2. At the same time, the complete list of different dynamic behaviour
in the trojanized sample can be found in the appendix Table A.2.

Figure 4.2: The benign process tree is at top, with the malicious at the bottom

Talk2M eCatcher

Talk2m eCatcher is a remote access software developed by eWon, and in 2014 it
was trojanized by the Dragonfly group as well. It differs from the Swiss Ranger
compromise in that it was implanted with a newer RAT called Haxex rather than
Sysmain [70]. The trojanized version remained at the Ewon support site for 10

Setup=cmd /c %temp%\setup.exe & c:\windows\system32\rundll32.exe %temp%\tmp687.dll, RunDllEntry
Setup=cmd /c %temp%\setup.exe & c:\windows\system32\rundll32.exe %temp%\tmp687.dll, RunDllEntry
p.exe & c:\windows\system32\rundll32.exe %temp%\tmp687.dll, RunDllEntry

Chapter 4: Results 45

days until it was taken down [70].

File and Sections:
There is no difference in the entropy of the file. However, the malicious sample is
not signed and is missing version info. Additionally, the packer has changed from
Inno/Borland Delph to Nullsoft. The section names have also completely changed
from descriptive names in legitimate such as CODE, DATA, and BSS, to generic
such as ’.text’ and ’.data’. Additionally, there is a significant entropy increase in
the remaining ’.rdata’ section, some, but not all, of which can be attributed to
the benign one having a ’.idata’ and ’.rdata’ sections. This sample also had the
setup and malicious dll file within the Nullsoft executable compared to a folder
containing installation files in the legitimate one. The list of differences can be
seen in the appendix Table A.3.

Resources and Imports:
The malicious sample had increased resources up to 14 from 6, and the executable’s
manifest was also changed to have CRLF line terminators rather than very long lines
with no line terminators. There was also an increase of +70 functions imported,
up to 152 from 82. Furthermore, the trojanized sample imports more libraries
and has changes in the libraries imported. The table containing the differences
between the samples can be found in appendix Table A.4.

String Differences:

As can be seen in Table 4.7, the sample has several new strings related to
modifying, deleting, and enumerating registry keys and values. Furthermore, it has
the ShellExecute and LoadLibraryEx. The malicious sample also has 5 additional
URLs within its strings, those being for OCSP domains belonging to Symantec and
Tawte. This addition may be due to the Nullsoft installer or the malware authors’
expanded capability to check the validity and revocation status certificates. While
some Tawte domains are present in the legitimate ones, the Symantec domains
are unique to the malicious sample.

Behavioural Differences:
The behaviour of the trojanized version is also quite different from the legitimate

benign sample. However, it behaves similarly to the Sysmain RAT from the Swiss
Ranger sample. Like the Sysmain RAT, the Havex RAT also has behaviours indicative
of process discovery, injection, and enumeration. Furthermore, it also injects into
processes. However, it differs from Sysmain (and the legitimate eCather) because
it checks the adapter address, attempts to hide the malicious files, and has HTTP
traffic towards a C2 domain through a POST Request containing system information.
Lastly, it configured WPAD proxy configurations possibly to attempt to intercept
traffic, and this sample also has more ’Allocates Read-Write-Execute Memory’ events

46 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Type New Strings found Method

New URL or Domain Two domains (Symantec & tawte) both OCSP links. Total
of 5 URLs. All towards OCSP domain

FLOSS &
Ranked_Strings

MITRE Execution
through API

ShellExecute, LoadLibraryEx PeStudio & Floss &
Ranked_Strings

MITRE Modify
Registry

RegCreateKeyEx, RegSetValueEx PeStudio & Floss &
Ranked_Strings

MITRE Data
Destruction

RegDeleteKey, RegDeleteValue PeStudio & Floss &
Ranked_Strings

MITRE Query
Registry

RegEnumKey PeStudio & Floss &
Ranked_Strings

MITRE File and
Directory Discovery

FindFirstFile, FindNextFile PeStudio & Floss &
Ranked_Strings

MITRE Remote File
Copy

MoveFile, MoveFileEx, CopyFile PeStudio & Floss &
Ranked_Strings

MITRE System Time
Discovery

GetTickCount PeStudio & Floss &
Ranked_Strings

Top 10k Ranked
Strings difference

The malicious sample had 1335 different strings than the
benign out of the top 10 000 strings.

FLOSS & Stringsifter

PeStudio could not open the file, though the unique strings extracted with A.3 from the malicious
sample could be put into PeStudio.

Table 4.7: Havex-Talk2M eCatcher: Static Differential Analysis Strings

than the legitimate version. The table of differences from the behavioural data can
be seen in the appendix Table A.5.

eGrabit

eGrabit is another eWON software trojanized with the Havex RAT by the Dragonfly
group. It is not public knowledge how long this malicious version was up.

File and Sections:
The eGrabit sample pairs are very similar to the eCatcher pair, which is reasonable
as it is the same developer for the software, the same attacker, and it was conducted
simultaneously. In this sample, we also observe a change in that the trojanized
version is neither signed nor has version info. Furthermore, the packer (or installer)
has changed from ’Wise Installer’ to Nullsoft, and a new section named ’ndata’ has
been added to the malicious. There is a very slight increase in global entropy but
several significant changes in entropy for the sections. Especially the executable
section ’.text’ is increased by 0,826. The rest of the differences can be seen in table
Table A.6. However, worth mentioning is an increase of flagged and MITRE-tagged
strings by PeStudio.

Resources and Imports:
The malicious version has an increase in the number of resources, amount of

Chapter 4: Results 47

libraries, and imported functions. For example, the number of functions in the
malicious library is 151 compared to the 15 from the benign. The trojanized eGrabit
also has no manifest compared to the benign one that has one. The details of the
changes can be found in the appendix under Table A.7.

String Differences:
There was a large difference in the number of imported libraries, which is matched
in the differences between the flagged and mitre-technique tagged strings by
PeStudio. In addition, the malicious sample has several new strings related to
the Windows API, indicating that it has the added functionality (compared to the
benign sample) to manipulate clipboard data, interact with the registry, process
injections, and more. It is also worth mentioning that when the script using Floss &
Stringsifter’s ranking method was run against the malicious and benign sample, it
found that in the top 10 000 ranked strings, only 69 of them were equal. This was
the most significant difference across all the sample pairs and was likely caused
due to the change in packers. This table can be found in the appendix Table A.8.

Behavioural Differences:
The observed dynamic differences can be found in the appendix under Table A.9,

which look almost identical to the behaviour of eCatcher. This can be explained
by the fact that both trojanized samples carry the same version of the Havex RAT;
however, the two samples have different C2 domains.

4.1.4 DoFoil

MediaGet is a Russian BitTorrent client, and in early March 2018, it was used as part
of a large-scale coin mining attack [71]. The update server used for the application
had been compromised, leading to the legitimate software downloading an update
containing a new ’mediaget.exe’ almost identical to the legitimate version but with
additional backdoor capability [71]. After an hour, this malicious MediaGet binary
would attempt to connect to its C2 server, where it would receive the command to
download the DoFoil2.

We had to make some accommodations to run this binary. We found both the
update and a benign version of the installer for MediaGet. However, the malicious
update would not install or run on a system without MediaGet preinstalled. We
attempted to compare the behaviour of the software installation to the update,
but this was not comparable due to the amount and difference in behaviour
between a complete installation and a single file drop. We were unable to uncover
a legitimate update for the software, and installing an old version and installing a
modern update would have a difference of more than 5 years. Therefore, instead of
comparing the full update’s behaviour, we compared the behaviour from running
the exe files on a system with MediaGet preinstalled.

2DoFoil is a malware dropper, also called Smoke Loader. https://www.microsoft.com/en-us/
wdsi/threats/malware-encyclopedia-description?name=win32%2Fdofoil

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%2Fdofoil
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?name=win32%2Fdofoil

48 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

File and Sections:
The trojanized version of MediaGet.exe has a lower entropy than the benign one,

both globally and across all sections. However, the file and most sections are bigger
in the malicious sample. The most notable difference between the pair is that the
trojanized version is unsigned, while the legitimate one is signed. Though the
malicious update was not compared to the legitimate installer, we noted that it was
signed by a different company than the legitimate files from MediaGet. This can be
seen in Figure 4.3, where the two signatures are pictured beside each other. The
signature on the left matches the signature on the benign version of the MediaGet
executable file, while the signature on the right belongs to an unrelated third-party
company. The table for these observed differences can be found in the appendix
under Table A.10.

Figure 4.3: The left side of the image contains the signature for the legitimate
installer, while the right contains the signature for the malicious.

Resources and Imports:
Compared to several other sample pairs, the resources and manifest of the sample
pair are identical. The library imports from the malicious sample are slightly lower,
though these two samples load far more functions than all of the other samples,
with them having over 3500 imported functions each. This list can be found under
Table A.11 in the appendix.

String Differences:
The trojanized version of MediaGet has four hardcoded C2 domains that can be
found in the strings of the program. Two of the domains are ’.bit’ domains. The
’.bit’ domain is a decentralized TLD that runs on an older fork of bitcoin, named
Namecoin, it cannot be connected unless the client is running a Namecoin client or
it queries a DNS server that supports the .bit domain like a Namecoin DNS. It then
becomes apparent why the sample has 71 hardcoded Namecoin DNS servers. The
two other domains are common TLDs (.online and .com). It is worth mentioning
that one of the .bit domains and the .com domain both try to impersonate the
legitimate MediaGet site.

Behavioural Differences:
As seen in Table 4.9, the sample had a sparse amount of additional dynamic

Chapter 4: Results 49

Type New Strings found Method

Possible Code
Access

http://goshan[.]bit/start.php
http://goshan[.]online/start.php
http://medla-get[.]com/start.php
http://media-get[.]bit/start.php

FLOSS &
Ranked_Strings

IP Addresses 71 New addresses, resolves to NameCoin DNS servers [71] FLOSS &
Ranked_Strings

Top 10k Ranked
Strings
difference

The malicious sample had 536 different strings than the benign out of
the top 10 000 strings.

FLOSS &
Stringsifter

Table 4.8: DoFoil-MediaGet: Static Differential Analysis Strings

Signature Instruction Comment

This executable has a PDB path Malicious: X:\MediaGet\src\Desktop.3745\
build-ide\release\mediaget.pdb
Legitimate: E:\mediaget-adframes-release\
release\mediaget.pdb There is an observed
change in PDB path.

Searches running processes
potentiall to identify processes
for sandbox evasion, code
injection or memory dumping

Process32NextW Searches 39 times
compared to 8

Encryption Keys have been
identified in this analysis

1 detection in the malicious sample, none in the
benign.

There was little
information on
this within the
report and
signature

Table 4.9: DoFoil-MediaGet: Cuckoo Dynamic Analysis

indications of maliciousness. While both files triggered a few signatures, the dif-
ference was minute. It is worth mentioning that Cuckoo detected a difference in
the PDB paths between the two samples, and it detected encryption keys in the
malicious sample. However, the report on what or where these encryption keys
were detected was lacklustre and did not provide much insight.

4.1.5 Floxif

CCleaner Using basic static and dynamic sandboxing, We were not able to un-
cover any significant differences or findings from the trojanized CCleaner installer.
The only differences found were:

• a slight increase in file size and overlay,
• the virtual size of ’.ndata’, and
• a slight increase in entropy for the ’.rsrc’ section.

This can be seen in table Table 4.10. In order to verify that it was not simply
the local installation or configuration of Cuckoo Sandbox, this sample was also
run in the Triage sandbox and an online Cuckoo Sandbox hosted by an Estonian

http://goshan[.]bit/start.php
http://goshan[.]online/start.php
http://medla-get[.]com/start.php
http://media-get[.]bit/start.php
X:\MediaGet\src\Desktop.3745\build-ide\release\mediaget.pdb
X:\MediaGet\src\Desktop.3745\build-ide\release\mediaget.pdb
E:\mediaget-adframes-release\release\mediaget.pdb
E:\mediaget-adframes-release\release\mediaget.pdb

50 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Cert. However, none of these produced any different or new behavioural data. The
reason for this may simply be that the legitimate benign version of the CCleaner
installer triggered far more detections and signatures across sandboxes than any
other sample (malicious or benign). In total, both the legitimate and malicious
triggered 39 signatures in Cuckoo, which ranged from several signatures intended
to detect evasion techniques, anti-sandboxing, anti-analysis, enumeration, and
more.

Changed Variable Benign Malicious Change Method

File-size 9747512 9791816 +44304 PeStudio

.ndata Virtual-Size 3477504 3510272 +32768 PeStudio

.rsrc Entropy 4,96 4,961 PeStudio+0,001

Overlay Size 9655648 9699952 PeStudio+44304

Table 4.10: Floxif-CCleaner: Static Differential Analysis General File & Sections

4.1.6 Darkside

In 2021 (Likely, May or earlier), the Darkside affiliate UNC2465 was able to
trojanize Dahua’s video surveillance software named SmartPSS through their
website [72]. The trojanized software was removed in June when Mandiant notified
the company after one of Mandiants client’s users downloaded the now malicious
installer [72]. It was discovered as the installer executed several scripts and had
a chain of downloads leading to SMOKEDHAM and NGROK being dropped and
installed on the computer[72].

SmartPSS

File and Sections:
Similar to the trojanized binaries in the Dragonfly campaign, the malicious Smart-
PSS installer is "double-packed", with an additional Nullsoft installer wrapping
a Nullsoft setup file and containing an additional file. This can be seen in the
Figure 4.4, where instead of a dll file (as with the Dragonfly Campaign), it contains
a file named smartpss.exe.

However, the version info from this file is rather different than the name
suggests. The version info describes that this is MSHTA.exe, which is a legitimate
executable file from Microsoft. The version info can be seen in Figure 4.5. At the
time of the attack, the hash value of this executable was unknown, but it has since
been tagged as related to the Darkside campaign. A complete summary of the file
and section differences can be found in the appendix Table A.12.

Resources and Imports:
There is a considerable drop in the number of resources in the malicious binary

Chapter 4: Results 51

Figure 4.4: The left side is the malicious sample, while the right is the benign.

Figure 4.5: The renamed binary’s version info, screenshot taken from VirusTotal
page

52 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

compared to the legitimate one. Furthermore, the malicious sample utilises one
less library, with five more total function imports. The dropped library is the
’VERSION.dll’. This can be seen in Table 4.11

Type Benign Malicious

Resources Amount 84 21

Libraries 8 7

Library Imports 155 160

KERNEL32.dll 59 62

ADVAPI32.dll: 9 13

ole32.dll: 4 5

Version.dll 3 0

Table 4.11: Darkside-SmartPss: Static Differential Analysis Resources & Library

Behavioural Differences:
The malicious and benign SmartPSS installers produced almost identical results

in Cuckoo Sandbox regarding signature detections and behavioural data. However,
where they differed was in that the trojanized installer had a suspicious URL within
the memory dump (’http://sdoc[.]xyz/ID-508260156241’), with this URL being a
’.xyz’ domain not present in the legitimate binary. However, Cuckoo Sandbox did
not record any attempt by the installer to connect outwards towards this domain.
Running the sample in Triage Sandbox revealed that the malware would leverage
the renamed MSHTA.EXE (’smartpss.exe’) to run the URL. These two entries for
this can be seen in Table 4.12.

Signa-
ture

Instruction Comment

Suspi-
cious
Top-
Level
Do-
mains

http://sdoc[.]xyz/ID-508260156241 This was found in process memory of
the malicious process

Triage:
Ex-
ecutes
Dropped
EXE

Runs C:\PROGRAMDATA\SMARTPSS-Win32_ChnEng_
IS\smartpss.exehttp:
//sdoc[.]xyz/ID-508260156241
andC:\SMARTPSS-Win32_ChnEng_IS_V2.002.
0000007.0.R.181023-General.exe

This is as explained by [72], and the file
itself can be unzipped. This reveals two
files inside, the legitimate installer and
the malware dropper.

Table 4.12: Darkside-SmartPss: Triage & Cuckoo Dynamic Analysis

The trojanized software and the legitimate one did not produce human-readable
strings other than the link for the Nullsoft installer. The reason for this was likely the
packer. Furthermore, upon opening the sample with 7zip, inspecting it dynamically,
and reading the online analysis conducted by Mandiant [72], it was decided that

C:\PROGRAMDATA\SMARTPSS-Win32_ChnEng_IS\smartpss.exe http://sdoc[.]xyz/ID-508260156241
C:\PROGRAMDATA\SMARTPSS-Win32_ChnEng_IS\smartpss.exe http://sdoc[.]xyz/ID-508260156241
C:\PROGRAMDATA\SMARTPSS-Win32_ChnEng_IS\smartpss.exe http://sdoc[.]xyz/ID-508260156241
C:\SMARTPSS-Win32_ChnEng_IS_V2.002.0000007.0.R.181023-General.exe
C:\SMARTPSS-Win32_ChnEng_IS_V2.002.0000007.0.R.181023-General.exe

Chapter 4: Results 53

the other artefacts within (the installer for the legitimate SmartPSS) were not
interesting for the thesis. This was, as reported by Mandiant [72] and observed in
the Sandbox runs, that the malicious functionality of the sample was limited to a
downloader.

4.1.7 3CX Supply Chain Attack

In March 2023, it was publicized that 3CX, the business communications supplier,
had been the target of an attack and that its Voice over IP (VOIP) software had
been trojanized by a suspected North Korean TA (UNC4376) [73].

This case is special because 3CX was compromised through another supply
chain attack, where a trading software named ’X_trader’ had been trojanized [74].
An employee (at 3CX) had downloaded X_trader onto his personal computer, and
from there, the TA had pivoted onto the corporate networks using the VPN and
the employee’s stolen credentials [74]. Eventually, the TA compromised the build
environments for the 3CX Desktop application and, from there, trojanized the
application [74].

The trojanized 3CX software contained malicious code that, when started,
would run the malware downloader SUDDENICON [73]. This would receive C2
traffic from encrypted files on a GitHub page. The last stage of the attack would
be the download of ICONICSTEALER, an information stealer [73].

File and Sections:
The analysis of the 3CXDesktop app focused on the two trojanized files, ’ffmpeg.dll’
and ’d3dcompiler_47.dll’, as these were the known malicious files from the attack.
The first file, ’ffmpeg.dll’, had an increased global entropy, filesize, with changes in
both size and entropy in most sections. Furthermore, the trojanized sample had
one less section, missing the ’.voltbl’ from the benign file. Meanwhile, the second
file ’d3dcompiler_47.dll’ had only a few noteworthy changes. The largest of these
was the global filesize increase of 277KB, where there was no increase in section
sizes but rather a reduction in their file-size ratio. However, this increase in filesize
can be explained by the certificate being 554KB larger in the malicious sample
compared to the benign. This could indicate that the certificate has added code
between the versions, which according to the writeup by Blackberry [75], there
was an encrypted shellcode in here [75].

The table for the differences in the d3dcompiler_47.dll file sizes and sections
can be found in Table 4.13, while the complete list of differences in ’ffmpeg.dll’
can be found in the appendix under Table A.13

String Differences:

There was no noticeable difference between the two samples’ imports, re-
sources, or manifest. However, there was a slight difference in the ’ffmpeg.dll’.
Compared to the benign version, the malicious version contains a reference to two

54 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Changed Variable Benign Malicious Change Method

File Entropy 6,392 6,535 0,143 Pefile Script

File-size 4891080 5168344 +277264 Pefile Script

.text File-Ratio 75,79% 71,72% -4,07% Pefile Script

.rdata File-Ratio 19,09% 18,07% -1,02% Pefile Script

.data File-Ratio 1,34% 1,27% -0,07% Pefile Script

.pdata File-Ratio 2,68% 2,54% -0,14% Pefile Script

Certificate Size 8648 563176 +554528 Pefile Script

Flags 41 43 +2 Pefile Script

Table 4.13: VEILEDSIGNAL-3CX-d3dcompiler_47.dll: Static Differential Analysis
General File & Sections

libraries, ’ekernel32.dll’ and ’d3dcompiler_47.dll’. The first could be a typo, or the
section was interpreted slightly wrong. However, the second reference is to the
’.dll’ library with the drastically increased certificate. From the same analysis by
Blackberry [75], we now know this was due to ’ffmpeg.dll’ locating and reading
the other dll to decrypt the shellcode stored in the certificate. This leads to the
other two deviations within the file: a new import of the function VirtualProtect
and a repeating string with a unique pattern.

From an analysis of the event by Zanki and ReversingLabs [76], we can see that
this string an RC4 key used to decrypt the shellcode, meanwhile the Blackberry
analysis concluded that the VirtualProtect function was used to mark the shellcode
as executable [75].

The table containing the differences for the strings can be found in Table 4.14

Type New Strings found Method

New executable
Reference

ekernel32.dll & d3dcompiler_47.dll FLOSS &
Ranked_Strings

MITRE Process
Injection

VirtualProtect PeStudio

Possibly Encoded
Strings

The string "3jB(2bsG#\spacefactor\@m{}c7" is repeated twice.
Once on it’s own, and once several times over in a long string.

FLOSS &
Ranked_Strings

Top 10k Ranked
Strings difference

The malicious sample had 1573 different strings than the benign out
of the top 10 000 strings.

FLOSS &
Stringsifter

Table 4.14: VEILEDSIGNAL-3CX-ffmpeg.dll: Static Differential Analysis Strings

Behavioural Differences:
There was not much difference between the two installers being run in the Cuckoo
Sandbox nor within the Triage Sandbox from a differential analysis perspective.
The two samples triggered the same detections within both sandboxes over multiple
configurations to the run.

3jB(2bsG#\spacefactor \@m {}c7

Chapter 4: Results 55

4.2 Summarised Results and Research Questions

Static Analysis Summarised

From the analysis, we can see that nine out of the ten files analysed had an increase
in file size and had sections with higher virtual size than their benign counterparts.
The file size increase is unsurprising as all of the samples had some variation
of added code or bundled malware that would cause it to increase. In addition,
an increase in the virtual size of one or more sections was observed across nine
samples. This observation can be explained by the use of packers and functionality
intended to load payloads or malware into memory.

Furthermore, when the malicious samples were compared to the benign ver-
sions, either an increase or decrease in section entropy was observed in eight
samples. Furthermore, there was also a high amount of entropy increase and
decrease across the samples. Lastly, we found that most of the samples had an
increased raw size of one or more sections. On average, the samples had 10,5
(Median: 9,5) of the differences noted in the Figure 4.6.

There were a few findings that were only present in a small subset of the
sample pairs, such as missing signatures between versions, the significant increase
in certificate size in one sample, changes in packers, or changes in section names
or numbers, that could provide an indicator that the sample should be inspected
further for malicious behaviour. A summary of changes in sections, general file
changes such as size or signature, and PeStudio flagged or tagged MITRE string
amount can be found in Figure 4.6

The second most frequent occurrence was the addition of strings that could be
used for obfuscation and access token manipulation. However, these only occurred
in three samples each. As with the SolarWinds supply chain attack, the sudden
addition of these strings within a binary could be a reasonable indicator for further
investigation. This could be seen in the Solorigate sample, where there were
more than 100 compressed and base64 encoded strings that contained suspicious
strings related to both system reconnaissance C2 domains. Figure 4.7 contains
the summarised occurrence of suspicious or malicious indicators within the string
section of the samples. At the bottom are two numerical values, the first of which
is the total number of indicators in each file, while the second is the number of
different strings in the top 10 000 strings ranked by Stringsifter. Furthermore, the
value on the right is the total number of times this indicator appeared across all
samples. It is worth mentioning that the ’X’ marks the presence of one or more
strings marked to the MITRE technique on the left and further down (starting at
Possible LotL) indicators not assigned MITRE techniques.

Imports of libraries and functions naturally tie into this as expanded imports
could hint at changes in functionality and purpose of the software just as strings
or section differences can. The library and function imports from most samples
could be inspected using Pestudio or the Pefile library. However, some samples,
such as the dlls from the NotPetya and Solorigate campaigns, did not readily reveal
what functions and libraries it imported when inspecting them using the tools

56 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Figure 4.6: This table summarises the differences observed in the File and Section
tables. The X represents that the sample file had one or more observed changes.
On the bottom is a number for the total change, while on the side is the number
for how many times this difference was found.

Chapter 4: Results 57

Figure 4.7: This table shows the a summary of the differences observed in the
Strings of the PE file. The X represents that the sample file had one or more of the
observed difference from the benign file. On the bottom is a number for the total
change, while on the side if the number for how many times this difference was
found.

58 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

and methods from this thesis. Out of the 10 samples, only five of these showed
differences. Drastic reductions in imports could be an indication that the software
was packaged. However, only the malicious eCatcher and eGrabit samples had
significant increases in the number of functions when compared to the benign
ones. An overview of these changes can be seen in Figure 4.8, where an X indicates
that the change to the left has occurred.

Figure 4.8: The left side is the malicious sample, while the right is the benign.

Dynamic Analysis Summarised

Sandboxing technology combined with differential analysis can provide some
insight into the behaviour of a trojanized file and could reveal the presence of
an otherwise undetected malicious sample. However, Sandboxing provided the
least indicators of potential maliciousness during the analyses of the malicious
and benign samples. An example is the seven sample pairs we were able to run;
Only five trojanized versions showed a difference in the behaviour compared to
the benign sample.

Of these five, the trojanized MediaGet and SmartPSS had a low variation to
the legitimate binary, with the first only having encryption keys and an increased
amount of Process32NextW API calls compared to the benign. The malicious Smart-
PSS, on the other hand, only differed from the benign sample with a suspicious
TLD in memory and its access through the execution of the renamed MSHTA.

Comparatively, the three Dragonfly RATs triggered several more signatures in
all categories and had a very different behaviour than their legitimate counterpart.
In addition, these samples triggered several detections, especially those related to
process injection, persistence, and network. However, this could be due to the age
of these three samples, as they are several years older than the other samples. So

Chapter 4: Results 59

they could use deprecated and well-known methods that are no longer considered
advanced. An overview of the different signatures triggered by the samples can be
seen in Figure 4.9

Figure 4.9: The table above summarised the signatures detections only present in
the malicious samples.

It is also possible that the cause of this is their purpose compared to the other
trojanized software. The other samples analysed were primarily stage 1 download-
ers (MediaGet, SmartPSS, and 3CX) or a highly targeted backdoor (CCleaner). It
is also possible that the old samples could not detect the sandbox process, while
the benign ones could.

60 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

4.2.1 Research Questions

RQ2. What indications of compromise can one detect in closed-source software
supply chain attacks by comparing a previous benign file to a trojanized version?

There are several indicators which one can use to detect a potential closed-
source software supply chain attack. Some highlighted static examples from the
analysis are the presence of obfuscated strings, changes in the file sections, or
new and unexplained imports or functionality of libraries related to execution
through API. Meanwhile, for dynamic differential analysis, network traffic towards
unrelated third-party domains, new system calls to sleep, or potential code injection
behaviour could be indications.

RQ3. To what extent can basic static and dynamic-sandboxing differential ana-
lysis techniques be used in detecting malicious behaviour and static changes in
trojanized software compared to the legitimate version?

Basic static analysis performed far better than initially expected in uncovering
potential malicious behaviour. In the 10 sample pairs analysed, we observed
suspicious differences indicative of a compromise in all of them except for CCleaner.
In addition, several malicious artefacts uncovered using basic static techniques
could be observed in the sandbox runs. Furthermore, for other samples that either
could not run or did not behave differently in the sandbox run, such as M.E.Doc or
3CX, indicators were readily available that there had been changes. For example,
in M.E.Doc’s ’ZvitPublishedObjects.dll’, strings related to encryption and SMTP
communication were added. At the same time, for 3CX, there was a significant
increase in the certificate size for ’d3dcompiler_47.dll’ and the many changes to
the different sections of ”ffmpeg.dll’.

The Cuckoo Sandbox and Hatching’s Triage revealed malicious behaviour
different from the software’s usual behaviour in three samples while providing
some suspicious indicators in two more. However, they could not detect malicious
behaviour differences in the CCleaner and 3CX samples. This leads to the conclusion
that sandboxing can be useful at identifying some malicious behaviour and should
be part of a larger solution. However, on its own, it can be avoided or not provide
sufficient insight. Therefore, it can be used as part of a more comprehensive
solution, especially if the malware samples are part of an active attack, as then
the C2 domains would be online rather than defunct, which could lead to several
differences should C2 traffic occur or second stage malware be dropped onto the
system.

RQ4. To what extent is looking for obfuscation and evasion techniques reliable
in detecting trojanized closed-source software?

In the 10 samples analysed, there were indications of obfuscation or evasion
techniques within seven samples. This ranged changes in packers, renaming of
executables, presence of encoded strings, imported functions intended for encryp-
tion, or dynamic behaviour such as calling a sleep system call function. However,

Chapter 4: Results 61

it should be noted that several benign samples triggered signatures in Cuckoo
and online sandboxes indicative of sandbox evasion, system fingerprinting, system
sleep, and more. An example of this is CCleaner which enumerates the system for
everything from installed AV to virtualisation software, and several of the samples
checked for whether they were being debugged, checking disk and memory, WMI
queries and more.

One consideration is if the build process is compromised, as in Solarwinds and
CCleaner, could the attackers use these pre-existing checks rather than adding new
functionality?

Table 4.10 illustrates which samples had indicators of obfuscation or evasion
techniques identified during the analysis.

Figure 4.10: This summarises which samples had obfuscation or evasion IoCs.

Chapter 5

Discussion, Conclusion, and
Future Work

This chapter discusses the methods, results, and limitations of the thesis. Further-
more, it includes the conclusion of the thesis and the future work section.

5.1 Discussion

In Section 3.1, the challenges of finding legitimate and malicious samples were
described. To summarise, there has only been a few closed-source software supply
chain attacks throughout the years, so there is a small sample size to collect.

Furthermore, finding the legitimate benign version within a similar timeframe
was also challenging as they were no longer available for download and hashes
for these files are not discussed and analysed the same way the attacks are. This
mirrors the experience of the authors of Barr-Smith et al. [11], in which this lack
of data and the need for a known benign binary added difficulty to the differential
analysis task. However, the authors in Barr-Smith et al. [11] also theorised that this
could explain the scarcity of previously published research. This is a reasonable
and likely conclusion after conducting this master’s thesis in the same domain.

This issue led to some of the samples being newer rather than older such as
MediaGet and the Solarwinds Orion dll. Furthermore, the initial goal was to look
at behaviour changes over successive benign samples compared to the Trojanized
samples. However, this idea was dropped due to the difficulty of finding the samples,
the time consumption of finding them, and the time constraints of the thesis.

A point that needs to be discussed is whether these samples and, by extension,
this thesis applies to future supply chain attacks. Unfortunately, this is a difficult
question to answer, as these types of attacks are very few compared to conventional
malware attacks, so there is no large sample base for one to draw conclusions
from or see trends within. A consequence of this is that solutions developed to
detect closed-source software supply chain attacks lack the data to validate their
solution, as was the case in Wang [8]. It is also worth mentioning that the actors

63

64 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

behind most of these supply chain attacks were APT groups with high capability
and expertise.

There were other limitations within this paper, the first being the usage of
Cuckoo Sandbox as the sandboxing platform. As explained in Section 2.2.1, this
sandbox was chosen early during the project, and it was only discovered underway
that this project was no longer developed. The reasons for remaining with Cuckoo
were also described within Section 2.2.1, so we will not touch upon that in this
section. However, it is worth mentioning some of the drawbacks of this approach.

The first of these is that there is a possibility that some of the trojanized samples
could detect the environment, which caused there to be no difference to the benign
sample or simply that Cuckoo could not detect the malware. This was compensated
by running the samples on the online sandbox platform Triage. However, by doing
so, one loses the customizability and control over the parameters for the run. An
improvement would have been to conduct more in-depth research on the available
options for open-source sandboxes in the pre-planning phase of the thesis. However,
the Cuckoo Sandbox was period relevant for most of the attacks except for 3CX,
and there was only a single sample where Triage managed to detect additional
functionality compared to Cuckoo.

Another intentional limitation of the thesis was keeping to basic static analysis
techniques and dynamic analysis through sandboxing. There is a limit to the
number of indicators one can find through observing the behaviour of the file
in a sandbox and keeping to analysing the file’s metadata. However, this was
an intentional limitation, as the problem demands solutions that can be scaled
upwards. This thesis serves as a first step into first seeing if it is possible and what
the extent is.

The findings within this thesis have shown that even attacks that were highly
sophisticated at the time and led to extensive financial damages could have been
uncovered through a differential analysis process using basic static analysis tech-
niques, sandboxing and no budget. Furthermore, the methods used within this
thesis do not require a reverse engineer to dig through every line of code in a
disassembler or debugger in every single third-party closed-source software. In-
stead, the indicators of compromise found detailed in this thesis could also have
been found by using libraries and software to automate and alert on anomalies or
indicators.

At the time of writing, only two other academic papers were found after an
extensive literature search. These two papers by Wang [8] and Barr-Smith et al.
[11] likewise noted the lack of research in detecting closed-source software supply
chain attacks.

5.1.1 Conclusion and Future Work

Closed-Source Software supply chain attacks are complicated to defend against,
and the potential for damage is massive. This thesis aimed to take early steps
into a domain of research where there is little published to see if there are simple

Chapter 5: Discussion, Conclusion, and Future Work 65

solutions or methods to address a complex problem. Furthermore, the findings
within this thesis serve as an early contribution to this domain, to possible solutions,
and to understand the problem.

The findings and results of the analysis indicate that it is possible to uncover
suspicious changes through a static differential analysis of the PE file and the
embedded strings of trojanized software. It was found that most of the samples
had several changes from the benign version to the trojanized version, and trails
of obfuscation, C2 artefacts, and expanded potential malicious capabilities that
could be found through analysis of the embedded strings. It was also found that
most of the trojanized samples had several changes in the sections ranging from
increased entropy, added sections, or changes in file ratio. Meanwhile, dynamic
sandboxing of the samples provided fewer differences, with two samples having
no differences during the sandbox analysis.

5.1.2 Future Work

There is a need to conduct more research into this domain. For example, the
indicators provided in this thesis could be as comparative data to similar analyses
of future software supply chain attacks. It would also be relevant to observe the
changes between several generations of software before the trojanization occurred
to establish a baseline for the change between versions. Furthermore, working
towards an open-source solution or proof of concept for detecting these malicious
changes between software versions would be relevant and valuable for future
research. Finally, it could also be an interesting approach to test and compare
several sandbox solutions available and analyse differential changes through this
method.

Bibliography

[1] NTB. ‘Norske kraftselskaper berørt av solarwinds-hacking.’ Visited: 31.05.2023.
(), [Online]. Available: https://e24.no/teknologi/i/9O6P7l/norske-
kraftselskaper-beroert-av-solarwinds-hacking.

[2] J. Lemon. ‘Solarwinds hides list of its high-profile corporate clients after
hack.’ Visited: 31.05.2023. (), [Online]. Available: https://www.newsweek.
com/solarwinds-hides-list-its-high-profile-corporate-clients-
after-hack-1554943.

[3] FireEye. ‘Highly evasive attacker leverages solarwinds supply chain to com-
promise multiple global victims with sunburst backdoor.’ Visited: 29.05.2023.
(), [Online]. Available: https://www.mandiant.com/resources/blog/
evasive-attacker-leverages-solarwinds-supply-chain-compromises-
with-sunburst-backdoor.

[4] S. Ramakrishna. ‘New findings from our investigation of sunburst.’ Vis-
ited: 31.05.2023. (2021), [Online]. Available: https://orangematter.
solarwinds.com/2021/01/11/new-findings-from-our-investigation-
of-sunburst/.

[5] D. Temple-Raston. ‘A ’worst nightmare’ cyberattack: The untold story of
the solarwinds hack.’ Visited: 31.05.2023. (2021), [Online]. Available:
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-
cyberattack-the-untold-story-of-the-solarwinds-hack.

[6] S. Corporation. ‘Solarwinds corporation (swi) - form 8-k | current report.’
Visited: 31.05.2023. (2020), [Online]. Available: https://seekingalpha.
com/filing/5276758.

[7] European-Union-Agency-for-Cybersecurity, ‘Enisa threat landscape for sup-
ply chain attacks,’ 2021. DOI: https://www.doi.org/10.2824/168593.

[8] X. Wang, ‘On the feasibility of detecting software supply chain attacks,’ in
MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM),
2021, pp. 458–463. DOI: 10.1109/MILCOM52596.2021.9652901.

[9] G. Myre and S. Bond. ‘Top cyber firm, fireeye, says it’s been hacked by
a foreign govt.’ Visited: 31.05.2023. (2020), [Online]. Available: https:
//www.npr.org/2020/12/08/944416183/top- cyber- firm- fireeye-
says-its-been-hacked-by-a-foreign-govt.

67

https://e24.no/teknologi/i/9O6P7l/norske-kraftselskaper-beroert-av-solarwinds-hacking
https://e24.no/teknologi/i/9O6P7l/norske-kraftselskaper-beroert-av-solarwinds-hacking
https://www.newsweek.com/solarwinds-hides-list-its-high-profile-corporate-clients-after-hack-1554943
https://www.newsweek.com/solarwinds-hides-list-its-high-profile-corporate-clients-after-hack-1554943
https://www.newsweek.com/solarwinds-hides-list-its-high-profile-corporate-clients-after-hack-1554943
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://orangematter.solarwinds.com/2021/01/11/new-findings-from-our-investigation-of-sunburst/
https://orangematter.solarwinds.com/2021/01/11/new-findings-from-our-investigation-of-sunburst/
https://orangematter.solarwinds.com/2021/01/11/new-findings-from-our-investigation-of-sunburst/
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://www.npr.org/2021/04/16/985439655/a-worst-nightmare-cyberattack-the-untold-story-of-the-solarwinds-hack
https://seekingalpha.com/filing/5276758
https://seekingalpha.com/filing/5276758
https://doi.org/https://www.doi.org/10.2824/168593
https://doi.org/10.1109/MILCOM52596.2021.9652901
https://www.npr.org/2020/12/08/944416183/top-cyber-firm-fireeye-says-its-been-hacked-by-a-foreign-govt
https://www.npr.org/2020/12/08/944416183/top-cyber-firm-fireeye-says-its-been-hacked-by-a-foreign-govt
https://www.npr.org/2020/12/08/944416183/top-cyber-firm-fireeye-says-its-been-hacked-by-a-foreign-govt

68 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

[10] and European Union Agency for Cybersecurity, ENISA threat landscape
2022 : July 2021 to July 2022, A. Malatras, M. Theocharidou, I. Lella, E.
Tsekmezoglou, C. Ciobanu and R. Naydenov, Eds. European Network and
Information Security Agency, 2022. DOI: doi/10.2824/764318.

[11] F. Barr-Smith, T. Blazytko, R. Baker and I. Martinovic, ‘Exorcist: Automated
differential analysis to detect compromises in closed-source software supply
chains,’ in Proceedings of the 2022 ACM Workshop on Software Supply Chain
Offensive Research and Ecosystem Defenses, ser. SCORED’22, Los Angeles,
CA, USA: Association for Computing Machinery, 2022, pp. 51–61, ISBN:
9781450398855. DOI: 10.1145/3560835.3564550. [Online]. Available:
https://doi.org/10.1145/3560835.3564550.

[12] I. Red Hat. ‘What is open source?’ Visited: 15.05.2023. (), [Online]. Avail-
able: https://www.redhat.com/en/topics/open-source/what-is-open-
source.

[13] I. T. College. ‘Open source vs. closed source software.’ Visited: 15.05.2023.
(), [Online]. Available: https://iticollege.edu/blog/open-source-vs-
closed-source-software/.

[14] K. I. Encyclopedia. ‘Closed-source software (proprietary software).’ Visited:
15.05.2023. (), [Online]. Available: https://encyclopedia.kaspersky.
com/glossary/closed-source/.

[15] J. Boyens, A. Smith, N. Bartol, K. Winkler, A. Holbrook and M. Fallon,
‘Cybersecurity supply chain risk management practices for systems and or-
ganizations,’ National Institute of Standards and Technology, Gaithersburg,
MD, Tech. Rep. NIST Special Publication (SP) SP 800-161, Rev 1, Includes
updates as of May 5,2022, 2022. DOI: 10.6028/NIST.SP.800-161r1.

[16] M. Sikorski and A. Honig, Practical malware analysis : The hands-on guide
to dissecting malicious software, eng, San Francisco, 2012.

[17] N. Pachhala, S. Jothilakshmi and B. P. Battula, ‘A comprehensive survey on
identification of malware types and malware classification using machine
learning techniques,’ in 2021 2nd International Conference on Smart Elec-
tronics and Communication (ICOSEC), 2021, pp. 1207–1214. DOI: 10.1109/
ICOSEC51865.2021.9591763.

[18] Iacob and I. M. Ioan Ionita. ‘The anatomy of wiper malware, part 1: Common
techniques.’ Visited: 16.05.2023. (), [Online]. Available: https://www.
crowdstrike.com/blog/the-anatomy-of-wiper-malware-part-1/.

[19] D. Simpson, A. Lobo, A. Jupudi, D. Vangel and C. Davis. ‘Coin miners.’ Visited:
16.05.2023. (), [Online]. Available: https://learn.microsoft.com/en-
us/microsoft-365/security/intelligence/coinminer-malware?view=
o365-worldwide.

[20] K. A. Monnappa, Learning Malware Analysis, eng. Packt Publishing, 2018,
ISBN: 1788392507.

https://doi.org/doi/10.2824/764318
https://doi.org/10.1145/3560835.3564550
https://doi.org/10.1145/3560835.3564550
https://www.redhat.com/en/topics/open-source/what-is-open-source
https://www.redhat.com/en/topics/open-source/what-is-open-source
https://iticollege.edu/blog/open-source-vs-closed-source-software/
https://iticollege.edu/blog/open-source-vs-closed-source-software/
https://encyclopedia.kaspersky.com/glossary/closed-source/
https://encyclopedia.kaspersky.com/glossary/closed-source/
https://doi.org/10.6028/NIST.SP.800-161r1
https://doi.org/10.1109/ICOSEC51865.2021.9591763
https://doi.org/10.1109/ICOSEC51865.2021.9591763
https://www.crowdstrike.com/blog/the-anatomy-of-wiper-malware-part-1/
https://www.crowdstrike.com/blog/the-anatomy-of-wiper-malware-part-1/
https://learn.microsoft.com/en-us/microsoft-365/security/intelligence/coinminer-malware?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/intelligence/coinminer-malware?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/intelligence/coinminer-malware?view=o365-worldwide

Bibliography 69

[21] J. Wright. ‘Month of powershell: Threat hunting with powershell differ-
ential analysis.’ Visited: 16.05.2023. (), [Online]. Available: https://
www.sans.org/blog/threat-hunting-with-powershell-differential-
analysis/.

[22] Microsoft. ‘Pe format.’ Visited: 18.05.2023. (), [Online]. Available: https:
//learn.microsoft.com/en-us/windows/win32/debug/pe-format.

[23] I. VMware. ‘What is a hypervisor?’ Visited: 19.05.2023. (), [Online]. Avail-
able: https://www.vmware.com/topics/glossary/content/hypervisor.
html.

[24] Oracle. ‘Snapshots.’ Visited: 19.05.2023. (), [Online]. Available: https://
docs.oracle.com/en/virtualization/virtualbox/6.0/user/snapshots.
html.

[25] C. Linn and S. Debray, ‘Obfuscation of executable code to improve resistance
to static disassembly,’ in Proceedings of the 10th ACM Conference on Computer
and Communications Security, ser. CCS ’03, Washington D.C., USA: Asso-
ciation for Computing Machinery, 2003, pp. 290–299, ISBN: 1581137389.
DOI: 10.1145/948109.948149. [Online]. Available: https://doi.org/10.
1145/948109.948149.

[26] O. Or-Meir, N. Nissim, Y. Elovici and L. Rokach, ‘Dynamic malware analysis in
the modern era—a state of the art survey,’ ACM Comput. Surv., vol. 52, no. 5,
Sep. 2019, ISSN: 0360-0300. DOI: 10.1145/3329786. [Online]. Available:
https://doi.org/10.1145/3329786.

[27] Checkpoint and R. Ladutska. ‘About evasion techniques.’ Visited: 19.05.2023.
(), [Online]. Available: https://evasions.checkpoint.com/about/.

[28] Eurostat. ‘Cloud computing - statistics on the use by enterprises.’ Visited:
24.05.2023. (), [Online]. Available: https://ec.europa.eu/eurostat/
statistics-explained/index.php?title=Cloud_computing_-_statistics_
on_the_use_by_enterprises#Use_of_cloud_computing:_highlights.

[29] VMRay. ‘Vm detection – passing the pafish test.’ Visited: 24.05.2023. (),
[Online]. Available: https://www.vmray.com/cyber-security-blog/a-
pafish-primer/.

[30] Checkpoint. ‘Evasions: Timing.’ Visited: 19.05.2023. (), [Online]. Available:
https://evasions.checkpoint.com/techniques/timing.html.

[31] C. Foundation. ‘What is cuckoo?’ Visited: 19.05.2023. (), [Online]. Available:
https://cuckoo.readthedocs.io/en/latest/introduction/what/.

[32] R. v. Zutphen. ‘Cuckoo sandbox architecture.’ Visited: 19.05.2023. (), [On-
line]. Available: https://hatching.io/blog/cuckoo-sandbox-architecture/.

[33] C. Foundation. ‘Processing modules.’ Visited: 19.05.2023. (), [Online]. Avail-
able: https://cuckoo.readthedocs.io/en/latest/customization/
processing/.

https://www.sans.org/blog/threat-hunting-with-powershell-differential-analysis/
https://www.sans.org/blog/threat-hunting-with-powershell-differential-analysis/
https://www.sans.org/blog/threat-hunting-with-powershell-differential-analysis/
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://www.vmware.com/topics/glossary/content/hypervisor.html
https://www.vmware.com/topics/glossary/content/hypervisor.html
https://docs.oracle.com/en/virtualization/virtualbox/6.0/user/snapshots.html
https://docs.oracle.com/en/virtualization/virtualbox/6.0/user/snapshots.html
https://docs.oracle.com/en/virtualization/virtualbox/6.0/user/snapshots.html
https://doi.org/10.1145/948109.948149
https://doi.org/10.1145/948109.948149
https://doi.org/10.1145/948109.948149
https://doi.org/10.1145/3329786
https://doi.org/10.1145/3329786
https://evasions.checkpoint.com/about/
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cloud_computing_-_statistics_on_the_use_by_enterprises#Use_of_cloud_computing:_highlights
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cloud_computing_-_statistics_on_the_use_by_enterprises#Use_of_cloud_computing:_highlights
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cloud_computing_-_statistics_on_the_use_by_enterprises#Use_of_cloud_computing:_highlights
https://www.vmray.com/cyber-security-blog/a-pafish-primer/
https://www.vmray.com/cyber-security-blog/a-pafish-primer/
https://evasions.checkpoint.com/techniques/timing.html
https://cuckoo.readthedocs.io/en/latest/introduction/what/
https://hatching.io/blog/cuckoo-sandbox-architecture/
https://cuckoo.readthedocs.io/en/latest/customization/processing/
https://cuckoo.readthedocs.io/en/latest/customization/processing/

70 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

[34] C. Foundation. ‘Processing modules.’ Visited: 19.05.2023. (), [Online]. Avail-
able: https://cuckoo.readthedocs.io/en/latest/installation/host/
routing/.

[35] V. M. Alvarez. ‘Yara: The pattern matching swiss knife for malware re-
searchers (and everyone else).’ Visited: 19.05.2023. (), [Online]. Available:
https://virustotal.github.io/yara/.

[36] V. M. Alvarez. ‘Cuckoo module.’ Visited: 19.05.2023. (), [Online]. Available:
https://yara.readthedocs.io/en/stable/modules/cuckoo.html.

[37] Microsoft. ‘Virus total (preview).’ Visited: 27.05.2023. (), [Online]. Avail-
able: https://learn.microsoft.com/en-us/connectors/virustotal/.

[38] VirusTotal. ‘Reports.’ Visited: 27.05.2023. (), [Online]. Available: https://
support.virustotal.com/hc/en-us/articles/115002719069-Reports.

[39] Any.Run. ‘Any.run documentation.’ Visited: 27.05.2023. (), [Online]. Avail-
able: https://app.any.run/docs/.

[40] Any.Run. ‘Any.run plans.’ Visited: 27.05.2023. (), [Online]. Available: https:
//app.any.run/plans/.

[41] Hatching. ‘Hatching triage.’ Visited: 27.05.2023. (), [Online]. Available:
https://hatching.io/triage/.

[42] Hatching. ‘Hatching about page.’ Visited: 27.05.2023. (), [Online]. Available:
https://hatching.io/about/.

[43] O. and/or its affiliates. ‘Virtualbox user manual: Chapter 1. first steps.’
Visited: 24.05.2023. (), [Online]. Available: https://www.virtualbox.
org/manual/ch01.html.

[44] A. Ortega. ‘Pafish.’ Visited: 25.05.2023. (), [Online]. Available: https://
github.com/a0rtega/pafish.

[45] M. Ochsenmeier. ‘Pestudio: Malware initial assessment.’ Visited: 25.05.2023.
(), [Online]. Available: https://www.winitor.com/.

[46] N. Fox. ‘Pestudio overview: Setup, tutorial and tips.’ Visited: 25.05.2023. (),
[Online]. Available: https://www.varonis.com/blog/pestudio.

[47] Mandiant. ‘Github stringsifter.’ Visited: 25.05.2023. (), [Online]. Available:
https://github.com/mandiant/stringsifter.

[48] Mandiant. ‘Github stringsifter.’ Visited: 25.05.2023. (), [Online]. Available:
https://github.com/mandiant/flare-floss.

[49] E. Carrera Ventura, pefile, version 2023.2.7, Feb. 2023. [Online]. Available:
https://github.com/erocarrera/pefile.

[50] M. Ohm, H. Plate, A. Sykosch and M. Meier, ‘Backstabber’s knife collection:
A review of open source software supply chain attacks,’ in Detection of
Intrusions and Malware, and Vulnerability Assessment, C. Maurice, L. Bilge,
G. Stringhini and N. Neves, Eds., Cham: Springer International Publishing,
2020, pp. 23–43, ISBN: 978-3-030-52683-2.

https://cuckoo.readthedocs.io/en/latest/installation/host/routing/
https://cuckoo.readthedocs.io/en/latest/installation/host/routing/
https://virustotal.github.io/yara/
https://yara.readthedocs.io/en/stable/modules/cuckoo.html
https://learn.microsoft.com/en-us/connectors/virustotal/
https://support.virustotal.com/hc/en-us/articles/115002719069-Reports
https://support.virustotal.com/hc/en-us/articles/115002719069-Reports
https://app.any.run/docs/
https://app.any.run/plans/
https://app.any.run/plans/
https://hatching.io/triage/
https://hatching.io/about/
https://www.virtualbox.org/manual/ch01.html
https://www.virtualbox.org/manual/ch01.html
https://github.com/a0rtega/pafish
https://github.com/a0rtega/pafish
https://www.winitor.com/
https://www.varonis.com/blog/pestudio
https://github.com/mandiant/stringsifter
https://github.com/mandiant/flare-floss
https://github.com/erocarrera/pefile

Bibliography 71

[51] M. Ohm, A. Sykosch and M. Meier, ‘Towards detection of software sup-
ply chain attacks by forensic artifacts,’ in Proceedings of the 15th Inter-
national Conference on Availability, Reliability and Security, ser. ARES ’20,
Virtual Event, Ireland: Association for Computing Machinery, 2020, ISBN:
9781450388337. DOI: 10.1145/3407023.3409183. [Online]. Available:
https://doi.org/10.1145/3407023.3409183.

[52] OASIS. ‘Stix™ version 2.0. part 3: Cyber observable core concepts.’ Visited:
17.05.2023. (), [Online]. Available: https://docs.oasis-open.org/cti/
stix/v2.0/cs01/part3-cyber-observable-core/stix-v2.0-cs01-
part3-cyber-observable-core.html.

[53] M. Ohm, F. Boes, C. Bungartz and M. Meier, ‘On the feasibility of supervised
machine learning for the detection of malicious software packages,’ in
Proceedings of the 17th International Conference on Availability, Reliability
and Security, ser. ARES ’22, Vienna, Austria: Association for Computing
Machinery, 2022, ISBN: 9781450396707. DOI: 10.1145/3538969.3544415.
[Online]. Available: https://doi.org/10.1145/3538969.3544415.

[54] A. Sejfia and M. Schäfer, ‘Practical automated detection of malicious npm
packages,’ in Proceedings of the 44th International Conference on Software
Engineering, ser. ICSE ’22, Pittsburgh, Pennsylvania: Association for Com-
puting Machinery, 2022, pp. 1681–1692, ISBN: 9781450392211. DOI: 10.
1145/3510003.3510104. [Online]. Available: https://doi.org/10.1145/
3510003.3510104.

[55] D.-L. Vu, F. Massacci, I. Pashchenko, H. Plate and A. Sabetta, ‘Lastpymile:
Identifying the discrepancy between sources and packages,’ in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2021, Athens, Greece: Association for Computing Machinery, 2021, pp. 780–
792, ISBN: 9781450385626. DOI: 10.1145/3468264.3468592. [Online].
Available: https://doi.org/10.1145/3468264.3468592.

[56] S. Scalco, R. Paramitha, D.-L. Vu and F. Massacci, ‘On the feasibility of
detecting injections in malicious npm packages,’ in Proceedings of the 17th
International Conference on Availability, Reliability and Security, ser. ARES
’22, Vienna, Austria: Association for Computing Machinery, 2022, ISBN:
9781450396707. DOI: 10.1145/3538969.3543815. [Online]. Available:
https://doi.org/10.1145/3538969.3543815.

[57] P. Ladisa, H. Plate, M. Martinez, O. Barais and S. E. Ponta, ‘Towards the
detection of malicious java packages,’ in Proceedings of the 2022 ACM
Workshop on Software Supply Chain Offensive Research and Ecosystem De-
fenses, ser. SCORED’22, Los Angeles, CA, USA: Association for Comput-
ing Machinery, 2022, pp. 63–72, ISBN: 9781450398855. DOI: 10.1145/
3560835 . 3564548. [Online]. Available: https : / / doi . org / 10 . 1145 /
3560835.3564548.

https://doi.org/10.1145/3407023.3409183
https://doi.org/10.1145/3407023.3409183
https://docs.oasis-open.org/cti/stix/v2.0/cs01/part3-cyber-observable-core/stix-v2.0-cs01-part3-cyber-observable-core.html
https://docs.oasis-open.org/cti/stix/v2.0/cs01/part3-cyber-observable-core/stix-v2.0-cs01-part3-cyber-observable-core.html
https://docs.oasis-open.org/cti/stix/v2.0/cs01/part3-cyber-observable-core/stix-v2.0-cs01-part3-cyber-observable-core.html
https://doi.org/10.1145/3538969.3544415
https://doi.org/10.1145/3538969.3544415
https://doi.org/10.1145/3510003.3510104
https://doi.org/10.1145/3510003.3510104
https://doi.org/10.1145/3510003.3510104
https://doi.org/10.1145/3510003.3510104
https://doi.org/10.1145/3468264.3468592
https://doi.org/10.1145/3468264.3468592
https://doi.org/10.1145/3538969.3543815
https://doi.org/10.1145/3538969.3543815
https://doi.org/10.1145/3560835.3564548
https://doi.org/10.1145/3560835.3564548
https://doi.org/10.1145/3560835.3564548
https://doi.org/10.1145/3560835.3564548

72 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

[58] M. LaFerrera and R. Kovar, ‘Detecting supply chain attacks: Using splunk
and ja3/s hashes to detect malicious activity on critical servers,’ Splunk, San
Francisco, CA, Tech. Rep. 21-21294-Splunk-Detecting Supply Chain Attacks-
101-WP, 2021. [Online]. Available: https://www.splunk.com/en_us/
pdfs/resources/whitepaper/detecting-supply-chain-attacks.pdf.

[59] Z. Zhang, S. Natarajan and A. Banerjee, ‘Detecting process hijacking and
software supply chain attacks using intel threat detection technology,’ Intel,
Santa Clara, CA, Tech. Rep. 0222/DCC/MZ/PDF, 2022. [Online]. Available:
https://www.intel.com/content/dam/www/central-libraries/us/en/
documents/white-paper-inteltdt-abd.pdf.

[60] S. Cordey, ‘Software supply chain attacks. an illustrated typological review,’
en, Zurich, Report, 2023-01. DOI: 10.3929/ethz-b-000584947.

[61] B. Bingöl. ‘Virtualbox detection, anti-detection.’ Visited: 20.05.2023. (),
[Online]. Available: https://berhanbingol.medium.com/virtualbox-
detection-anti-detection-eng-54a4cde1b509.

[62] R. Taissun. ‘Installing and running cuckoo malware analysis platform –
part 2.’ Visited: 20.05.2023. (), [Online]. Available: https://secvision22.
wordpress.com/2017/01/19/installing-and-running-cuckoo-malware-
analysis-platform-part-2/.

[63] Y. Oyama, ‘How does malware use rdtsc? a study on operations executed
by malware with cpu cycle measurement,’ in Detection of Intrusions and
Malware, and Vulnerability Assessment, R. Perdisci, C. Maurice, G. Giacinto
and M. Almgren, Eds., Cham: Springer International Publishing, 2019,
pp. 197–218, ISBN: 978-3-030-22038-9.

[64] MITRE. ‘Mitre att&ck home page.’ Visited: 01.06.2023. (), [Online]. Avail-
able: https://attack.mitre.org/.

[65] A. Greenberg. ‘The untold story of notpetya, the most devastating cyberat-
tack in history.’ Visited: 31.05.2023. (2020), [Online]. Available: https://
www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-
crashed-the-world/.

[66] A. Cherepanov. ‘Analysis of telebots’ cunning backdoor.’ Visited: 28.05.2023.
(), [Online]. Available: https://www.welivesecurity.com/2017/07/04/
analysis-of-telebots-cunning-backdoor/.

[67] D. Maynor, M. Olney and Y. Younan. ‘The medoc connection.’ Visited:
28.05.2023. (), [Online]. Available: https://blog.talosintelligence.
com/the-medoc-connection/.

[68] Microsoft. ‘Analyzing solorigate, the compromised dll file that started a soph-
isticated cyberattack, and how microsoft defender helps protect customers.’
Visited: 29.05.2023. (), [Online]. Available: https://www.microsoft.
com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-

https://www.splunk.com/en_us/pdfs/resources/whitepaper/detecting-supply-chain-attacks.pdf
https://www.splunk.com/en_us/pdfs/resources/whitepaper/detecting-supply-chain-attacks.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/white-paper-inteltdt-abd.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/white-paper-inteltdt-abd.pdf
https://doi.org/10.3929/ethz-b-000584947
https://berhanbingol.medium.com/virtualbox-detection-anti-detection-eng-54a4cde1b509
https://berhanbingol.medium.com/virtualbox-detection-anti-detection-eng-54a4cde1b509
https://secvision22.wordpress.com/2017/01/19/installing-and-running-cuckoo-malware-analysis-platform-part-2/
https://secvision22.wordpress.com/2017/01/19/installing-and-running-cuckoo-malware-analysis-platform-part-2/
https://secvision22.wordpress.com/2017/01/19/installing-and-running-cuckoo-malware-analysis-platform-part-2/
https://attack.mitre.org/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://blog.talosintelligence.com/the-medoc-connection/
https://blog.talosintelligence.com/the-medoc-connection/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/

Bibliography 73

compromised-dll-file-that-started-a-sophisticated-cyberattack-
and-how-microsoft-defender-helps-protect/.

[69] J. T. Langill, ‘Defending against the dragonfly cyber security attacks,’ Belden,
San Francisco, CA, Tech. Rep. Version 2.0, 2014. [Online]. Available: https:
//www.belden.com/hubfs/resources/knowledge/white-papers/Belden-
White-Paper-Dragonfly-Cyber-Security-Attacks-AB_Original_68751.
pdf?hsLang=en.

[70] E. Hjelmvik. ‘Full disclosure of havex trojans.’ Visited: 29.05.2023. (), [On-
line]. Available: https://www.netresec.com/?page=Blog&month=2014-
10&post=Full-Disclosure-of-Havex-Trojans.

[71] Microsoft. ‘Poisoned peer-to-peer app kicked off dofoil coin miner outbreak
by.’ Visited: 28.05.2023. (), [Online]. Available: https://www.microsoft.
com/en-us/security/blog/2018/03/13/poisoned-peer-to-peer-app-
kicked-off-dofoil-coin-miner-outbreak/.

[72] T. McLellan, R. Dean, J. Moore, N. Harbour, M. Hunhoff, J. Wilson and
J. Nuce. ‘Smoking out a darkside affiliate’s supply chain software comprom-
ise.’ Visited: 28.05.2023. (), [Online]. Available: https://www.mandiant.
com/resources/blog/darkside-affiliate-supply-chain-software-
compromise.

[73] J. Johnson, F. Plan, A. Sanchez, R. Fontana, J. Nicastro, D. Andonov, M.
Fodoreanu and S. Daniel. ‘3cx software supply chain compromise initiated
by a prior software supply chain compromise; suspected north korean
actor responsible.’ Visited: 31.05.2023. (), [Online]. Available: https :
//www.mandiant.com/resources/blog/3cx-software-supply-chain-
compromise.

[74] A. Prodromou and 3CX. ‘Security update thursday 20 april 2023 – initial
intrusion vector found.’ Visited: 31.05.2023. (), [Online]. Available: https:
//www.3cx.com/blog/news/mandiant-security-update2/.

[75] Blackberry. ‘Initial implants and network analysis suggest the 3cx sup-
ply chain operation goes back to fall 2022.’ Visited: 30.05.2023. (), [On-
line]. Available: https://blogs.blackberry.com/en/2023/03/initial-
implants-and-network-analysis-suggest-the-3cx-supply-chain-
operation-goes-back-to-fall-2022.

[76] K. Zanki and ReversingLabs. ‘Red flags flew over software supply chain-
compromised 3cx update.’ Visited: 30.05.2023. (), [Online]. Available:
https://www.reversinglabs.com/blog/red-flags-fly-over-supply-
chain-compromised-3cx-update.

https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.microsoft.com/en-us/security/blog/2020/12/18/analyzing-solorigate-the-compromised-dll-file-that-started-a-sophisticated-cyberattack-and-how-microsoft-defender-helps-protect/
https://www.belden.com/hubfs/resources/knowledge/white-papers/Belden-White-Paper-Dragonfly-Cyber-Security-Attacks-AB_Original_68751.pdf?hsLang=en
https://www.belden.com/hubfs/resources/knowledge/white-papers/Belden-White-Paper-Dragonfly-Cyber-Security-Attacks-AB_Original_68751.pdf?hsLang=en
https://www.belden.com/hubfs/resources/knowledge/white-papers/Belden-White-Paper-Dragonfly-Cyber-Security-Attacks-AB_Original_68751.pdf?hsLang=en
https://www.belden.com/hubfs/resources/knowledge/white-papers/Belden-White-Paper-Dragonfly-Cyber-Security-Attacks-AB_Original_68751.pdf?hsLang=en
https://www.netresec.com/?page=Blog&month=2014-10&post=Full-Disclosure-of-Havex-Trojans
https://www.netresec.com/?page=Blog&month=2014-10&post=Full-Disclosure-of-Havex-Trojans
https://www.microsoft.com/en-us/security/blog/2018/03/13/poisoned-peer-to-peer-app-kicked-off-dofoil-coin-miner-outbreak/
https://www.microsoft.com/en-us/security/blog/2018/03/13/poisoned-peer-to-peer-app-kicked-off-dofoil-coin-miner-outbreak/
https://www.microsoft.com/en-us/security/blog/2018/03/13/poisoned-peer-to-peer-app-kicked-off-dofoil-coin-miner-outbreak/
https://www.mandiant.com/resources/blog/darkside-affiliate-supply-chain-software-compromise
https://www.mandiant.com/resources/blog/darkside-affiliate-supply-chain-software-compromise
https://www.mandiant.com/resources/blog/darkside-affiliate-supply-chain-software-compromise
https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
https://www.mandiant.com/resources/blog/3cx-software-supply-chain-compromise
https://www.3cx.com/blog/news/mandiant-security-update2/
https://www.3cx.com/blog/news/mandiant-security-update2/
https://blogs.blackberry.com/en/2023/03/initial-implants-and-network-analysis-suggest-the-3cx-supply-chain-operation-goes-back-to-fall-2022
https://blogs.blackberry.com/en/2023/03/initial-implants-and-network-analysis-suggest-the-3cx-supply-chain-operation-goes-back-to-fall-2022
https://blogs.blackberry.com/en/2023/03/initial-implants-and-network-analysis-suggest-the-3cx-supply-chain-operation-goes-back-to-fall-2022
https://www.reversinglabs.com/blog/red-flags-fly-over-supply-chain-compromised-3cx-update
https://www.reversinglabs.com/blog/red-flags-fly-over-supply-chain-compromised-3cx-update

Appendix A

Additional Material

A.1 Screenshots

75

76 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Figure A.1: A screenshot of the initial detections in Paranoidfish for the Cuckoo
Guest VM. The part of the bottom that is missing belongs to Qemu and Boch and
is not relevant as it was running in VirtualBox

Chapter A: Additional Material 77

Figure A.2: A screenshot of the final detection in Paranoidfish for the Cuckoo
guest VM.

78 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

A.2 Code

A.2.1 VirtualBox Shellscript

Code listing A.1: VirtualBox Shell Script for editing VM. Based on the script from
[61]

#!/bin/sh
vboxmanage modifyvm "cuckoo1" --paravirtprovider legacy
vboxmanage modifyvm "cuckoo1" --macaddress1 6CF0491A6E12
vboxmanage modifyvm "cuckoo1" --bioslogoimagepath C:\aqr.bmp
vboxmanage modifyvm "cuckoo1" --hwvirtex on
vboxmanage modifyvm "cuckoo1" --vtxvpid on
vboxmanage modifyvm "cuckoo1" --vtxux on
vboxmanage modifyvm "cuckoo1" --apic on
vboxmanage modifyvm "cuckoo1" --pae on
vboxmanage modifyvm "cuckoo1" --longmode on
vboxmanage modifyvm "cuckoo1" --hpet on
vboxmanage modifyvm "cuckoo1" --nestedpaging on
vboxmanage modifyvm "cuckoo1" --largepages on
vboxmanage modifyvm "cuckoo1" --mouse ps2

vboxmanage setextradata "cuckoo1" "VBoxInternal/CPUM/EnableHVP" 0
vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/

DmiSystemVendor" "ASUS"
vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/

DmiSystemProduct" "ASUS␣ZenBook␣Pro"
vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/

DmiSystemVersion" "1.0"
vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/

DmiSystemSerial" "1A2B3C4D5E6F"
vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/

DmiSystemSKU" "UX580GD-AB1234"
vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/

DmiSystemFamily" "Ultrabook"
vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/

DmiSystemUuid" "9852bf98-b83c-49db-a8de-182c42c7226b"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBIOSVendor" "ASUS␣Inc."

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBIOSVersion" "1.10.3"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBIOSReleaseDate" "10/15/2022"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBIOSReleaseMajor" "5"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBIOSReleaseMinor" "9"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBIOSFirmwareMinor" "0"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBIOSFirmwareMajor" "1"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBoardVendor" "ASUSTek␣Computer␣Inc."

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBoardProduct" "Zenbook␣Pro"

Chapter A: Additional Material 79

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBoardVersion" "A01"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBoardSerial" "IMB456721"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBoardAssetTag" "ASUS-ZEN-3417"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBoardLocInChass" "Board␣Loc␣In"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiBoardBoardType" "10"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiChassisVendor" "Asus␣Inc."

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiChassisType" 10

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiChassisVersion" "Mac-F22788AA"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiChassisSerial" "CSN12345678901234567"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiChassisAssetTag" "WhiteHouse"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiOEMVBoxVer" "Extended␣version␣info:␣1.00.00"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/pcbios/0/Config/
DmiOEMVBoxRev" "Extended␣revision␣info:␣1A"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/ahci/0/Config/Port0/
ModelNumber" "Hitachi␣HTS543230AAA384"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/ahci/0/Config/Port0/
FirmwareRevision" "ES2OA60W"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/ahci/0/Config/Port0/
SerialNumber" "2E3024L1T2V9KA"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/ahci/0/Config/Port1/
ModelNumber" "Slimtype␣DVD␣A␣␣DS8A8SH"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/ahci/0/Config/Port1/
FirmwareRevision" "KAA2"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/ahci/0/Config/Port1/
SerialNumber" "ABCDEF0123456789"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/ahci/0/Config/Port1/
ATAPIVendorId" "Slimtype"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/ahci/0/Config/Port1/
ATAPIProductId" "DVD␣A␣␣DS8A8SH"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/ahci/0/Config/Port1/
ATAPIRevision" "KAA2"

vboxmanage setextradata "cuckoo1" "VBoxInternal/Devices/acpi/0/Config/AcpiOemId" "
ASUS"

A.2.2 VirtualBox Registry File

Code listing A.2: Registry file from [62]
Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\SYSTEM]
"SystemBiosDate"="06/12/10"
"SystemBiosVersion"="BC1.05"
"VideoBiosVersion"="VC1.20"

80 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

[-HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\VBOX__]
[-HKEY_LOCAL_MACHINE\HARDWARE\ACPI\FADT\VBOX__]
[-HKEY_LOCAL_MACHINE\HARDWARE\ACPI\RSDT\VBOX__]
[-HKEY_LOCAL_MACHINE\SOFTWARE\Oracle\Virtual Box Guest Additions]
[-HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\VBox*]
[-HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\CriticalDeviceDatabase\pci#

ven_80ee&dev_cafe]
[-HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Class\{4D36E97D-E325-11CE-BFC1

-08002BE10318}\0020]
[-HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Enum\PCI\VEN_80EE&DEV_CAFE&

SUBSYS_00000000&REV_00]
[-HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\services\VBoxGuest\Enum]
[-HKEY_LOCAL_MACHINE\SYSTEM\ControlSet002\Enum\PCI\VEN_80EE&DEV_CAFE&

SUBSYS_00000000&REV_00]
[-HKEY_LOCAL_MACHINE\SYSTEM\ControlSet002\Control\Class\{4D36E97D-E325-11CE-BFC1

-08002BE10318}\0020]
[-HKEY_LOCAL_MACHINE\SYSTEM\ControlSet002\Control\CriticalDeviceDatabase\pci#

ven_80ee&dev_cafe]
[-HKEY_LOCAL_MACHINE\SYSTEM\ControlSet002\Enum\PCI\VEN_80EE&DEV_CAFE&

SUBSYS_00000000&REV_00]
[-HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4D36E97D-E325-11CE-

BFC1-08002BE10318}\0020]
[-HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CriticalDeviceDatabase\pci#

ven_80ee&dev_cafe]
[-HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\PCI\VEN_80EE&DEV_CAFE&

SUBSYS_00000000&REV_00]
[-HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\VBoxGuest\Enum]

A.2.3 Script using Floss and stringsifter

Code listing A.3: Python/Jupyter script using Floss & Stringsifter

#!/usr/bin/env python
coding: utf-8

In[1]:

import subprocess
import csv
import os
from multiprocessing import Pool
import time

In[2]:

Run flarestrings command for file1_path

TThis function runs Flare-Floss (https://github.com/mandiant/flare-floss)
against the executable file that it receives as a variable.
Flare-Floss works more or less like strings but can also de-obfuscate

strings.
def runFloss(pathToFile):

commandFlarestring = [’floss’,’-q’, pathToFile]
flarestringOutput = subprocess.check_output(commandFlarestring, text=True)
return flarestringOutput

Chapter A: Additional Material 81

Flare only works for PE files, so this is ran if the file is a MSI file.
this uses stringsifter (https://github.com/mandiant/stringsifter) instead
This basically works as regular string does.

def runFlarestrings(pathToFile):
commandFlarestring = [’flarestrings’, pathToFile]
flarestringOutput = subprocess.check_output(commandFlarestring, text=True)
return flarestringOutput

This uses the rank_strings function from stringsifter (https://github.com/
mandiant/stringsifter)

Ranked_strings essentially just ranks based on ML model trained on malware
strings etc.

So it should hopefully rank the most suspicious and relevant strings at the
top.

other than that it loops 4 times as we have 4 intervals (10, 100, 1000, and
10 000)

then it returns the 4 ranked lists as a single list.
def rankThemStrings(flarestringOutput):

initialAmount=10
rankedStringsLists = {}

for i in range(4):
stringsAmount=str(initialAmount)
initialAmount=initialAmount*10
commandRankStrings = [’rank_strings’, ’-l’, stringsAmount,’-s’]
rankstringOutput = subprocess.check_output(commandRankStrings, input=

flarestringOutput, text=True)
rankedStringsList = rankstringOutput.splitlines()
rankedStringsLists[f’{i+1}’] = rankedStringsList

return rankedStringsLists

This just compares the strings in the two lists and removes duplicates in 1
from 2.

then it returns a filtered list, this is relevant as we want the differences
between the two highlighted

def filterStrings(list1, list2):
filterComplete = [string for string in list2 if string not in list1]
return filterComplete

More or less the super function, runs the other functions.
def runFiles(file1, file2):

Checks if the file is a msi file or not, since flare does not work with
anything else than pe files :(

We also use multiprocessing so that it does not take years to complete... ok
more like two or three hours.

This cuts it down by a lot. MediaGet still takes ages though... 39minutes...
if os.path.splitext(file1)[1] == ’.msi’:

with Pool(processes=2) as pool:
results = pool.map(runFlarestrings, [file1, file2])

else:
with Pool(processes=2) as pool:

results = pool.map(runFloss, [file1, file2])

these names are legit. ok?
LegitList = results[0]
MalList = results[1]

82 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Multiprocessing for the ranking function. So we can rank both the baddy and
the nice list

with Pool(processes=2) as pool:
LegitLists = pool.map(rankThemStrings, [LegitList, MalList])

Let there be one list!
This function just runs the filter/comparison function 4 times (one for each

of our intervals!)
This gives us a list of each interval that contains the unique strings in

the malicious sample.
filterLists = []
for i in range(4):

filterList = filterStrings(LegitLists[0][f’{i+1}’], LegitLists[1][f’{i+1}’
])

filterLists.append(filterList)

return LegitLists, filterLists

Here be writetocsv function. We all know what this does, we’ve all seen it
before.

def write_to_csv(folderPath, fileName, data1, data2):
filePath = os.path.join(folderPath, fileName)
with open(filePath, ’w’, newline=’’) as csvFile:

writer = csv.writer(csvFile)
Just writes the rows to the csv file. Makes it a lot easier to read.
writer.writerow([folderPath, ’malicious_’+folderPath])
for item1, item2 in zip(data1, data2):

writer.writerow([item1, item2])

The unique function! What a unique name.
So this function just takes the beginning folder path (so Solarwinds/ from

nr 1)
This allows us to place the csv file back into the correct folder, which

makes life easier.
def writeUnique(folderPath, fileName, filteredOutput):

filePath = os.path.join(folderPath, fileName)
with open(filePath, ’w’, newline=’’) as csvFile:

writer = csv.writer(csvFile)
for string in filteredOutput:

writer.writerow([string])

In[3]:

could I have done this smarter? Yes. Should I? Perhaps
But at the end of the day there is only 24 binaries,
so instead of using 5 hours where i can spend 1 minute and all that stuff.
from this is also becomes obivous that this file is SUPPOSED to be in the same

folder as the folders
to the binaries.
Everything is coded with the expection that first comes the legitimate binary,

then second comes the malicious.
file_paths = {

Chapter A: Additional Material 83

0: ’SolarWinds/SolarWinds.Orion.Core.BusinessLayer.dll’,
1: ’SolarWinds/Malicious␣-␣SolarWinds.Orion.Core.BusinessLayer.dll’,
2: ’M.E.doc␣-␣NotPetya/ZvitPublishedObjects.dll’,
3: ’M.E.doc␣-␣NotPetya/Malicious␣-␣ZvitPublishedObjects.dll’,
4: ’ccleaner/CCleaner_v5.32.6129.exe’,
5: ’ccleaner/CCleaner_v5.33.6162.exe’,
6: ’Mesa/SwissrangerSetup1.0.14.706.exe’,
7: ’Mesa/Malicious-SwissrangerSetup1.0.14.706.exe’,
8: ’eGrab/egrabitsetup.exe’,
9: ’eGrab/Malicious-egrabitsetup.exe’,
10: ’DoFoil/mediaget.exe’,
11: ’DoFoil/Malicious␣-␣mediaget.exe’,
12: ’eCatch/eCatcherSetup.exe’,
13: ’eCatch/Malicious-eCatcherSetup.exe’,
14: ’Darkside/DH_SMARTPSS-Win32_ChnEng_IS_V2.002.0000009.0.R.190426.exe’,
15: ’Darkside/Malicious-SMARTPSS-Win32_ChnEng_IS_V2.002.0000007.0.R.181023-General-

v1.exe’,
16: ’3CXd3dcompiler/d3dcompiler_47.dll’,
17: ’3CXd3dcompiler/Mal_d3dcompiler_47.dll’,
18: ’3CXffmpeg/ffmpeg.dll’,
19: ’3CXffmpeg/Mal_ffmpeg.dll’,
20: ’3CX32/3CXDesktopApp32.exe’,
21: ’3CX32/Mal_3CXDesktopApp32.exe’
#22: ’3CX64/3CXDesktopApp64.exe’, # Commented these out as technically Floss not

supposed to run against files
#23: ’3CX64/Mal_3CXDesktopApp64.exe’# Larger than 16MB, and these are almost 150.
}## Dont mind that there is other file /almost/ as large, as these just would not

finish.

In[]:

The main function! CODE PRACTICES!
So this is a messy function, but its mine and i love it.
It goes from the first file_paths dictrionary to the last
as each sample is a pair, we increase it by 2.
Included a timer to have some perspective of how long everything takes.

if __name__ == ’__main__’:
startTime = time.time()
i = 0
while i < 22:

print(file_paths[i], file_paths[i+1])
LegitLists, listOfFilter = runFiles(file_paths[i], file_paths[i+1])

file_path = file_paths[i]
folder_name = file_path.split(’/’)[0]

Writes in total 8 csv files, 2 for each interval.
1 is the ranked strings from the samples, while the other is the unique

strings in the malicious sample.
for c in range(4):

a = str(c+1)
write_to_csv(folder_name, a+folder_name+’.csv’, LegitLists[0][a],

LegitLists[1][a])
writeUnique(folder_name, a+’Differences’+folder_name+’.csv’,

listOfFilter[c])
i=i+2
elapsedTime = time.time() - startTime

84 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

print(f"{folder_name}␣finished␣at:␣{elapsedTime}␣seconds")

In[]:

In[]:

A.3 Analysis

A.3.1 Swiss Ranger Tables

A.3.2 eCatcher Tables

A.3.3 eGrabit Tables

A.3.4 MediaGet Tables

A.3.5 SmartPSS Tables

A.3.6 3CX Desktop App tables

Chapter A: Additional Material 85

Changed
Variable

Benign Malicious Change Method

File Entropy 7,99 7,981 -0,009 PeStudio

File-size 1181500 1311927 +130427 PeStudio

Version Info Yes. None. Changed. PeStudio

PDB Path None. d:\Projects\WinRAR\SFX\build\sfxzip32\Release\sfxzip.
pdb

Very Slight
change.

Cuckoo
Static

Packer Nullsoft Zip Archive Changed. Exeinfo
PE

Double
Packed

When unzipped contains a
directory

When unzipped contains a packaged setup executable & an
additional executable dll file

Change. 7zip

Secion
Changes

.ndata .CRT Name &
Content

PeStudio

.text Entropy 6,44 6,511 +0,071 PeStudio

.text
File-Ratio

2,04 4,02 +1,98 PeStudio

.text
Raw-Size

24064 52736 +28672 PeStudio

.text
Virtual-Size

23628 52299 +28671 PeStudio

.rdata
Entropy

5,047 4,967 -0,08 PeStudio

.rdata
File-Ratio

0,43 0,55 +0,12 PeStudio

.rdata
Raw-Size

5120 7168 +2048 PeStudio

.rdata
Virtual-Size

4764 7029 +2265 PeStudio

.data
Entropy

4,801 1,320 -3,481 PeStudio

.data
File-Ratio

0,09 0,04 -0,05 PeStudio

.data
Raw-Size

1024 512 -512 PeStudio

.data
Virtual-Size

154712 121304 -33408 PeStudio

.rsrc Entropy 4,773 5,129 0,356 PeStudio

.rsrc
File-Ratio

0,82 1,21 0,39 PeStudio

.rsrc
Raw-Size

9728 15872 6144 PeStudio

.rsrc
Virtual-Size

9464 15400 5936 PeStudio

Overlay Size 1140540 1234103 93563 PeStudio

Overlay
Signature

Nullsoft PKZIP Changed. PeStudio

Overlay
File-Ratio

96,53 94,07 -2,46 PeStudio

Click 4.1.3 to go back to Section 4.1.3

Table A.1: Havex-SwissRanger: Static Differential Analysis General File & Sections

d:\Projects\WinRAR\SFX\build\sfxzip32\Release\sfxzip.pdb
d:\Projects\WinRAR\SFX\build\sfxzip32\Release\sfxzip.pdb

86 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Signature Instruction Comment

A process attempted to delay the
analyst task

rundll32.exe tried to sleep 168 seconds, actually delayed analysis
time by 168 seconds

The malicious sample attempts to
sleep, while the benign does not.

Allocates Read-Write-Execute
Memory (Events)

NtProtectVirtualMemory 51 in malicious compared to 21
in benign.

Creates a suspicious Process C:\Windows\System32\cmd.exe"/cC:
\Users\rick\AppData\Local\Temp\setup.exe
c:\windows\system32\rundll32.exeC:
\Users\rick\AppData\Local\Temp\tmp687.dll,RunDllEntry

Two files ran by command line.
Same we saw in static analysis.

Creates a thread using
CreateRemoteThread in a
non-child process indicative of
process injection

2296: c:\windows\system32\rundll32.exeC:
\Users\rick\AppData\Local\Temp\tmp687.dll,RunDllEntry
2540: C:\Windows\system32\rundll32.exe""c:
\users\rick\appdata\roaming\sydmain.dll"",AGTwRec"

n/a

Creates a windows hook that
monitors keyboard input

SetWindowsHookExW, hook_identifier: 13 (WH_KEYBOARD_LL) Uses a hook to monitor user input

Creates executable files on the
filesystem

setup.exe & tmp687.dll The two files that the other
signatures detect being ran.

Drops a binary and executes it C:\Users\rick\AppData\Local\Temp\setup.exe The setup file that is ran.

Drops an executable to the user
AppData Folder

C:\Users\rick\AppData\Local\Temp\setup.exe
c:\Users\rick\AppData\Roaming\NSDS.dll"

One file was dropped in AppData
by the legitimate, however, these
two were not.

Installs itself for autorun at
Windows Startup

HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Run\load
C:\Windows\system32\rundll32.exe"c:
\users\rick\appdata\roaming\sydmain.dll",AGTwLoad

Sets rundll32 to run the
sydmain.dll’s AGTwLoad function
at startup

Manipulates memory of non-child
process indicative of process
injection

Process 2296 (setup.exe) manipulating memory of non-child
process 2020 (explorer.exe)
Process 2540 (sydmain.dll) manipulating memory of non-child
process 2020 (explorer.exe)

setup.exe & sydmain.dll
manipulates the explorer.exe
process.

Potential code injection by writing
to the memory of another process

Process 2296 injected into non-child 2020
Process 2540 injected into non-child 2020

setup.exe & sydmain.dll injects
into explorer.exe process

Repeatedly searches for a
not-found process

Process32NextW: rundll32.exe 183 events detected by Cuckoo

Searches running processes
potentiall to identify processes for
sandbox evasion, code injection or
memory dumping

Process32FirstW 40 events detected by Cuckoo.
Malware getting a handle on
running processes and checking
name to inject into

This executable has a PDB path d:
\Projects\WinRAR\SFX\build\sfxzip32\Release\sfxzip.pdb

PDB path that is not present in
the legitimate sample

Click 4.1.3 to go back to Section 4.1.3

Table A.2: Havex-SwissRanger: Cuckoo Dynamic Analysis

C:\Windows\System32\cmd.exe" /c C:\Users\rick\AppData\Local\Temp\setup.exe
C:\Windows\System32\cmd.exe" /c C:\Users\rick\AppData\Local\Temp\setup.exe
c:\windows\system32\rundll32.exe C:\Users\rick\AppData\Local\Temp\tmp687.dll, RunDllEntry
c:\windows\system32\rundll32.exe C:\Users\rick\AppData\Local\Temp\tmp687.dll, RunDllEntry
c:\windows\system32\rundll32.exe C:\Users\rick\AppData\Local\Temp\tmp687.dll, RunDllEntry
c:\windows\system32\rundll32.exe C:\Users\rick\AppData\Local\Temp\tmp687.dll, RunDllEntry
C:\Windows\system32\rundll32.exe ""c:\users\rick\appdata\roaming\sydmain.dll"",AGTwRec"
C:\Windows\system32\rundll32.exe ""c:\users\rick\appdata\roaming\sydmain.dll"",AGTwRec"
C:\Users\rick\AppData\Local\Temp\setup.exe
C:\Users\rick\AppData\Local\Temp\setup.exe
c:\Users\rick\AppData\Roaming\NSDS.dll"
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\load
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\load
C:\Windows\system32\rundll32.exe "c:\users\rick\appdata\roaming\sydmain.dll",AGTwLoad
C:\Windows\system32\rundll32.exe "c:\users\rick\appdata\roaming\sydmain.dll",AGTwLoad
d:\Projects\WinRAR\SFX\build\sfxzip32\Release\sfxzip.pdb
d:\Projects\WinRAR\SFX\build\sfxzip32\Release\sfxzip.pdb

Chapter A: Additional Material 87

Changed
Variable

Benign Malicious Change Method

File-size 44232128 43971440 -260688 Pefile
Script

Signature Yes. No. Change. Cuckoo
Static

Version Info Yes. No. Change. Cuckoo
Static

Packer Inno/Borland Delphi Nullsoft PiMP Stub Changed. Exeinfo
PE

Double Packed When unzipped contains a
directory

When unzipped contains a packaged setup executable
& an additional executable dll file

Change. 7zip

Secion
Changes

CODE, DATA, BSS, .idata, .tls,
.rdata, .reloc, .rsrc

.text, .data, .ndata, .rdata, .rsrc Sections missing
and added.

Pefile
Script

CODE/.text
Entropy

6,561 6,380 -0,181 Pefile
Script

CODE/.text
File-Ratio

0,09% 0,05% -0,04% Pefile
Script

CODE/.text
Raw-Size

37888 23040 -14848 Pefile
Script

CODE/.text
Virtual-Size

37732 22590 -15142 Pefile
Script

DATA/.data
Entropy

2,739 4,986 +2,247 Pefile
Script

DATA/.data
Virtual-Size

588 111572 +110984 Pefile
Script

.rdata Entropy 0,204 5,036 +4,831 Pefile
Script

.rdata
File-Ratio

0% 0,01% +0,01% Pefile
Script

.rdata
Raw-Size

512 4608 +4096 Pefile
Script

.rdata
Virtual-Size

24 4324 +4300 Pefile
Script

.rsrc Entropy 5,617 5,402 -0,215 Pefile
Script

.rsrc File-Ratio 0,05% 0,03% -0,02% Pefile
Script

.rsrc Raw-Size 24064 11776 -12288 Pefile
Script

.rsrc
Virtual-Size

23732 11456 -12276 Pefile
Script

Click 4.1.3 to go back to Section 4.1.3

Table A.3: Havex-Talk2M eCatcher: Static Differential Analysis General File &
Sections

88 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Type Benign Malicious

Resources
Amount

6 14

Manifest XML 1.0 document, ASCII text, with very long
lines, with no line terminators

XML 1.0 document, ASCII text, with
CRLF line terminators

Libraries 5 8

Total
Imports

96 151

USER32.dll 12 60

AD-
VAPI32.dll

6 9

OLEAUT32.dll 5 0

COMCTL32.dll 1 4

GDI32.dll 0 8

VER-
SION.dll

0 3

ole32.dll 0 4

SHELL32.dll 0 6

Click 4.1.3 to go back to Section 4.1.3

Table A.4: Havex-Talk2M eCatcher: Static Differential Analysis Resources & Library

Chapter A: Additional Material 89

Signature Instruction Comment

The executable contains unknown PE
section names indicative of a packer
(could be a false positive

.ndata added, CODE, DATA, BSS missing the .ndata is the packer from the nullsoft installer.

A process attempted to delay the
analyst task

rundll32.exe tried to sleep 591 seconds, actually
delayed analysis time by 591 seconds

Malicious sample attempts to sleep. Common
evasion tactic[30]

Allocates Read-Write-Execute Memory
(Events)

NtProtectVirtualMemory 20 compared to 8

Checks adapter address which can be
used to detect virtual network
interfaces

GetAdaptersAddresses Is called once by the malicious sample.

Creates a windows hook that monitors
keyboard input

SetWindowsHookExW, hook_identifier: 13
(WH_KEYBOARD_LL)

Monitoring keyboard input of user

Creates executable files on the
filesystem

C:
\Users\rick\AppData\Local\Temp\TmProvider.dll
C:\Users\rick\AppData\Local\Temp\eCatcherSetup.
exe

Creates two additional files compared to usual,
these are also the files being ran for nefarious
purposes.

Creates hidden or system file C:
\Users\rick\AppData\Local\Temp\TmProvider.dll
C:\Users\rick\AppData\Local\Temp\eCatcherSetup.
exe

Hides the two files dropped in the AppData folder
with SetFileAttributesW.

Expresses interest in specific running
processes

process: potential process injection target explorer.exe The signature looks for process API calls and
tracks them. It triggers based on a list (where
explorer is part of it) and alerts if one or more
triggers

HTTP traffic contains suspicious
features which may be indicative of
malware related traffic

POST
http://zhayvoronok[.]com/wp-includes/pomo/idx.
php?id=6163674211069016526008BFC60-25&v1=038&
v2=498139398&q=5265882854508EFCF958F979E4

POST method with no referer header

Installs itself for autorun at Windows
Startup

rundll32 C:\Windows\system32\TMPprovider038.
dll",RunDllEntry
rundll32 C:\Windows\system32\TMPprovider038.
dll",RunDllEntry

Malicious dll file being sat to run at startup

Manipulates memory of non-child
process indicative of process injection

NtAllocateVirtualMemory, Process injection: Process
2892 manipulating memory of non-child process 2020.
21 Events

process 2892 is rundll32 running ’TmProvider.dll,
RunDllEntry’. 2020 is explorer

Performs some HTTP Request POST
http://zhayvoronok[.]com/wp-includes/pomo/idx.
php?id=6163674211069016526008BFC60-25&v1=038&
v2=498139398&q=5265882854508EFCF958F979E4

Triggers once more due to the request

Potential code injection by writing to
the memory of another process

NtAllocateVirtualMemory, Process injection: Process
2892 injected into non-child 2020, 21 events"

process 2892 is rundll32 running ’TmProvider.dll,
RunDllEntry’. 2020 is explorer

Searches running processes potential to
identify processes for sandbox evasion,
code injection or memory dumping

Process32FirstW, 26 events Another alert for process injection

Sends data using the HTTP POST
Method

POST
http://zhayvoronok[.]com/wp-includes/pomo/idx.
php?id=6163674211069016526008BFC60-25&v1=038&
v2=498139398&q=5265882854508EFCF958F979E4

Triggers once more due to the same request

Sets of modifies WPAD proxy
autoconfiguration file for traffic
interception

RegSetValueExA, WpadDecisionReason WPAD being configured.

Click 4.1.3 to go back to Section 4.1.3

Table A.5: Havex-Talk2M eCatcher: Cuckoo Dynamic Analysis

C:\Users\rick\AppData\Local\Temp\TmProvider.dll
C:\Users\rick\AppData\Local\Temp\TmProvider.dll
C:\Users\rick\AppData\Local\Temp\eCatcherSetup.exe
C:\Users\rick\AppData\Local\Temp\eCatcherSetup.exe
C:\Users\rick\AppData\Local\Temp\TmProvider.dll
C:\Users\rick\AppData\Local\Temp\TmProvider.dll
C:\Users\rick\AppData\Local\Temp\eCatcherSetup.exe
C:\Users\rick\AppData\Local\Temp\eCatcherSetup.exe
http://zhayvoronok[.]com/wp-includes/pomo/idx.php?id=6163674211069016526008BFC60-25&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://zhayvoronok[.]com/wp-includes/pomo/idx.php?id=6163674211069016526008BFC60-25&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://zhayvoronok[.]com/wp-includes/pomo/idx.php?id=6163674211069016526008BFC60-25&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
C:\Windows\system32\TMPprovider038.dll", RunDllEntry
C:\Windows\system32\TMPprovider038.dll", RunDllEntry
C:\Windows\system32\TMPprovider038.dll", RunDllEntry
C:\Windows\system32\TMPprovider038.dll", RunDllEntry
http://zhayvoronok[.]com/wp-includes/pomo/idx.php?id=6163674211069016526008BFC60-25&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://zhayvoronok[.]com/wp-includes/pomo/idx.php?id=6163674211069016526008BFC60-25&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://zhayvoronok[.]com/wp-includes/pomo/idx.php?id=6163674211069016526008BFC60-25&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://zhayvoronok[.]com/wp-includes/pomo/idx.php?id=6163674211069016526008BFC60-25&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://zhayvoronok[.]com/wp-includes/pomo/idx.php?id=6163674211069016526008BFC60-25&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://zhayvoronok[.]com/wp-includes/pomo/idx.php?id=6163674211069016526008BFC60-25&v1=038&v2=498139398&q=5265882854508EFCF958F979E4

90 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Changed
Variable

Benign Malicious Change Method

File Entropy 7,995 7,998 +0,003 PeStu-
dio

File-size 2376808 2525510 +148702 PeStu-
dio

Signature Yes. No. Changed. PeStu-
dio

Version Info Yes. No. Changed. PeStu-
dio

Packer Wise Installer Nullsoft PiMP Stub Packer/installer
changed

Exeinfo
PE

Double
Packed

When unzipped contains
a directory

When unzipped contains a packaged setup executable & an
additional executable dll file

Change. 7zip

Secion
Changes

.ndata .ndata added Pefile
Script

Overlay No. Yes, nullsoft. Changed. PeStu-
dio

.text
Entropy

5,554 6,38 +0,826 PeStu-
dio

.text
File-Ratio

0,02 0,91 +0,89 PeStu-
dio

.text
Raw-Size

512 23040 +22528 PeStu-
dio

.text
Virtual-Size

510 22590 +22080 PeStu-
dio

.rdata
Entropy

2,839 5,036 +2,197 PeStu-
dio

.rdata
File-Ratio

0,04 0,18 +0,14 PeStu-
dio

.rdata
Raw-Size

1024 4608 +3584 PeStu-
dio

.rdata
Virtual-Size

533 4324 +3791 PeStu-
dio

.data
Entropy

0,269 4,986 +4,717 PeStu-
dio

.data
File-Ratio

0,02 0,004 -0,016 PeStu-
dio

.data
Raw-Size

512 1024 +512 PeStu-
dio

.data
Virtual-Size

20 111572 +111552 PeStu-
dio

.rsrc Entropy 7,996 3,919 -4,077 PeStu-
dio

.rsrc
File-Ratio

99,63 0,1 -99,53 PeStu-
dio

.rsrc
Raw-Size

2368000 2560 -2365440 PeStu-
dio

.rsrc
Virtual-Size

2371584 2304 -2369280 PeStu-
dio

Flagged
Strings

18 36 +18 PeStu-
dio

MITRE
Strings

7 14 +7 PeStu-
dio

Click 4.1.3 to go back to Section 4.1.3

Table A.6: Havex-eGrabit: Static Differential Analysis General File & Sections

Chapter A: Additional Material 91

Type Benign Mali-
cious

Resources
Amount

4 6

Manifest XML 1.0 document, ASCII text, with very long lines, with no line
terminators

None.

Libraries 2 8

Library Imports 15 151

KERNEL32.dll 14 58

USER32.dll 1 60

GDI32.dll 0 8

COMCTL32.dll 0 4

SHELL32.dll 0 6

ADVAPI32.dll 0 9

ole32.dll 0 4

VERSION.dll 0 3

Click 4.1.3 to go back to Section 4.1.3

Table A.7: Havex-eGrabit: Static Differential Analysis Resources & Library

Type New Strings found Method

MITRE Execution
through API

ShellExecute, LoadLibraryEx PeStudio

MITRE Modify Registry RegSetValueEx, RegCreateKeyEx PeStudio

MITRE Data Destruction RegDeleteValue, RegDeleteKey PeStudio

MITRE Process Injection SetWindowLong, FindWindowEx, SendMessageTimeout,
GetWindowLong

PeStudio

MITRE Query Registry RegEnumKey, RegEnumValue, RegQueryValueEx PeStudio

MITRE File and
Directory Discovery

FindFirstFile, FindNextFile, GetSystemDirectory. PeStudio

MITRE Remote File Copy MoveFile, MoveFileEx, CopyFile PeStudio

MITRE Clipboard Data CloseClipboard, SetClipboardData, EmptyClipboardData,
OpenClipboard.

PeStudio

MITRE Sandbox Evasion Sleep PeStudio

MITRE System
Information Discovery

ExpandEnvironmentStrings PeStudio

MITRE System Time
Discovery

GetTickCount PeStudio

Top 10k Ranked Strings
difference

The malicious sample had 9931 different strings than the
benign out of the top 10 000 strings.

FLOSS &
Stringsifter

Click 4.1.3 to go back to Section 4.1.3

Table A.8: Havex-eGrabit: Static Differential Analysis Strings

92 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Signature Instruction Comment

A process attempted to delay the
analyst task

rundll32.exe tried to sleep 547 seconds, actually delayed
analysis time by 547 seconds

Attempts to sleep most likely to delay
analysis

Allocates Read-Write-Execute
Memory (Events)

NtProtectVirtualMemory 39 Compared to 28 in benign

Checks adapter address which
can be used to detect virtual
network interfaces

GetAdaptersAddresses Is called once by the malicious sample

Creates a windows hook that
monitors keyboard input

SetWindowsHookExW, hook_identifier: 13
(WH_KEYBOARD_LL)

Monitoring keyboard input of user

Creates executable files on the
filesystem

C:
\Users\rick\AppData\Local\Temp\egrabitsetup.exe
C:\Users\rick\AppData\Local\Temp\TmProvider.dll

Creates two additional files compared to
the benign.

Creates hidden or system file C:
\Users\rick\AppData\Local\Temp\egrabitsetup.exe
C:\Users\rick\AppData\Local\Temp\TmProvider.dll

Uses SetFileAttributesW to hide the
dropped files.

Drops an executable to the
userAppData Folder

C:
\Users\rick\AppData\Local\Temp\egrabitsetup.exe
C:\Users\rick\AppData\Local\Temp\TmProvider.dll

Another signature triggers on these files
being created

Expresses interest in specific
running processes

potential process injection target:explorer.exe The signature looks for process API calls
and tracks them. It triggers based on a list
(where explorer is part of it) and alerts if
one or more triggers

HTTP traffic contains suspicious
features which may be indicative
of malware related traffic

POST http://www.pc-service-fm.de/modules/mod_
search/src.php?id=
25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&
v1=038&v2=498139398&q=5265882854508EFCF958F979E4

The pattern behind v2 matches the one
from Talk2m, which makes sense, as they
were part of the same campaign. POST
method with no referer header.

Installs itself for autorun at
Windows Startup

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\
Microsoft\Windows\CurrentVersion\Run\TmProvider
HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\Run\TmProvider

Sets itself to start at startup.

Manipulates memory of
non-child process indicative of
process injection

NtAllocateVirtualMemory, Process 2800 manipulating
memory of non-child process 2020

2800 is rundll32 running ’TmProvider.dll,
RunDllEntry’. 2020 is explorer

Performs some HTTP Request POST http://www.pc-service-fm.de/modules/mod_
search/src.php?id=
25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&
v1=038&v2=498139398&q=5265882854508EFCF958F979E4

Another generated event due to outbound
post.

Potential code injection by
writing to the memory of
another process

Process TmProvider.dll 2800 into non-child 2020 2800 is rundll32 running ’TmProvider.dll,
RunDllEntry’. 2020 is explorer

Searches running processes
potentiall to identify processes
for sandbox evasion, code
injection or memory dumping

Process32NextW, process_name: audiodg.exe Alert for process injection

Sends data using the HTTP POST
Method

POST http://www.pc-service-fm.de/modules/mod_
search/src.php?id=
25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&
v1=038&v2=498139398&q=5265882854508EFCF958F979E4

Another generated event due to outbound
post.

Sets of modifies WPAD proxy
autoconfiguration file for traffic
interception

RegSetValueExA, RegSetValueExW Runs 15 times, changing 15 wpad keys.

The executable contains
unknown PE section names
indicative of a packer

section: .ndata .ndata is there due to nullsoft installer

Click 4.1.3 to go back to Section 4.1.3

Table A.9: Havex-eGrabit: Cuckoo Dynamic Analysis

C:\Users\rick\AppData\Local\Temp\egrabitsetup.exe
C:\Users\rick\AppData\Local\Temp\egrabitsetup.exe
C:\Users\rick\AppData\Local\Temp\TmProvider.dll
C:\Users\rick\AppData\Local\Temp\egrabitsetup.exe
C:\Users\rick\AppData\Local\Temp\egrabitsetup.exe
C:\Users\rick\AppData\Local\Temp\TmProvider.dll
C:\Users\rick\AppData\Local\Temp\egrabitsetup.exe
C:\Users\rick\AppData\Local\Temp\egrabitsetup.exe
C:\Users\rick\AppData\Local\Temp\TmProvider.dll
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run\TmProvider
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run\TmProvider
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\TmProvider
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\TmProvider
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4
http://www.pc-service-fm.de/modules/mod_search/src.php?id=25697426326281793500C8F590-891062d5c51294011447f8168bc4437c&v1=038&v2=498139398&q=5265882854508EFCF958F979E4

Chapter A: Additional Material 93

Changed
Variable

Benign Malicious Change Method

File
Entropy

7,225 7,206 -0,019 PeStu-
dio

File-size 14040816 14117376 +76560 PeStu-
dio

Signature Yes. No. Change. Cuckoo
Static

PDB Path E:\mediaget-adframes-release\
release\mediaget.pdb

X:\MediaGet\src\Desktop.3745\
build-ide\release\mediaget.pdb

Very Slight
change.

PeStu-
dio

.text
Entropy

6,296 6,285 -0,011 PeStu-
dio

.text
File-Ratio

42,95% 42,77% -0,18% PeStu-
dio

.text
Raw-Size

6030336 6038528 +8192 PeStu-
dio

.text
Virtual-Size

6038357 6030251 +8106 PeStu-
dio

.rdata
Entropy

7,484 7,454 -0,03 PeStu-
dio

.rdata
File-Ratio

52,04% 52,32% +0,28% PeStu-
dio

.rdata
Raw-Size

7306240 7386112 +79872 PeStu-
dio

.rdata
Virtual-Size

7305847 7385751 +79904 PeStu-
dio

.data
Entropy

6,194 6,174 -0,02 PeStu-
dio

.data
File-Ratio

0,83% 0,81% -0,02% PeStu-
dio

.data
Raw-Size

115224 114688 -536 PeStu-
dio

.data
Virtual-Size

137376 135808 -1568 PeStu-
dio

.reloc
Raw-Size

443392 445952 -2560 PeStu-
dio

.reloc
Virtual-Size

443036 445630 -2594 PeStu-
dio

Click 4.1.4 to go back to Section 4.1.4

Table A.10: DoFoil-MediaGet: Static Differential Analysis General File & Sections

E:\mediaget-adframes-release\release\mediaget.pdb
E:\mediaget-adframes-release\release\mediaget.pdb
X:\MediaGet\src\Desktop.3745\build-ide\release\mediaget.pdb
X:\MediaGet\src\Desktop.3745\build-ide\release\mediaget.pdb

94 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Type Benign Malicious

Libraries 33 28

Library Imports 3559 3529

LIBEAY32.dll 74 69

MSVCP100.dll 81 61

MSVCR100.dll 123 112

opencv_core320.dll 7 0

Opencv_img_hash320.dll 8 0

opencv_imgproc320.dll 1 0

opencv_videoio320.dll 5 0

opencv_videoio320.dll 2 0

Qt5Core.dll 910 922

Qt5Network.dll 153 175

Qt5Widgets.dll 1418 1416

SSLEAY32.dll 64 61

Click 4.1.4 to go back to Section 4.1.4

Table A.11: DoFoil-MediaGet: Static Differential Analysis Resources & Library

Chapter A: Additional Material 95

Changed
Variable

Benign Malicious Change Method

File-size 143921828 132620403 -11301425 Pefile
Script

Double
Packed

When unzipped
contains a install
directory

When unzipped contains a packaged install executable
& an additional executable file

Change. 7zip

Renamed
Execut-
able

Not Applicable for
this.

The malicious sample contains a renamed executable file. The file with the name
Smartpss.exe, has the version info for a microsoft file named MSHTA.exe

New 7zip

.text
Entropy

6,433 6,435 +0,002 Pefile
Script

.text
Raw-Size

23040 26112 +3072 Pefile
Script

.text
Virtual-
Size

22738 25687 +2949 Pefile
Script

.rdata
Entropy

5,180 5,261 +0,081 Pefile
Script

.rdata
Raw-Size

4608 5120 +512 Pefile
Script

.rdata
Virtual-
Size

4496 4992 +496 Pefile
Script

.data
Entropy

4,618 4,134 -0,484 Pefile
Script

.data
Raw-Size

1024 1536 +512 Pefile
Script

.data
Virtual-
Size

110456 152888 +42432 Pefile
Script

.ndata
Virtual-
Size

278528 32768 -245760 Pefile
Script

.rsrc
Entropy

6,101 6,321 +0,220 Pefile
Script

.rsrc
File-Ratio

0,14% 0,13% -0,01% Pefile
Script

.rsrc
Raw-Size

205312 177152 -28160 Pefile
Script

.rsrc
Virtual-
Size

205048 176824 -28224 Pefile
Script

Click 4.5 to go back to Figure 4.5

Table A.12: Darkside-SmartPss: Static Differential Analysis General File & Sections

96 M. Refsnes: Exploring Trojanized Closed-Source Software Supply Chain Attacks

Changed Variable Benign Malicious Change Method

File Entropy 6,683 6,704 +0,021 Pefile Script

File-size 2789376 2814976 +25600 Pefile Script

Secion Changes .voltbl Missing .voltbl missing Pefile Script

.text Entropy 6,690 6,718 +0,028 Pefile Script

.text File-Ratio 80,18% 80,12% -0,06% Pefile Script

.text Raw-Size 2236416 2255360 +18944 Pefile Script

.text Virtual-Size 2236128 2254956 +8828 Pefile Script

.rdata Entropy 5,810 5,802 -0,008 Pefile Script

.rdata File-Ratio 16,94% 17,01% +0,07% Pefile Script

.rdata Raw-Size 472576 478720 +6144 Pefile Script

.rdata Virtual-Size 472548 478396 +5848 Pefile Script

.data Entropy 3,544 3,541 -0,003 Pefile Script

.data Virtual-Size 1433832 1433880 +48 Pefile Script

.pdata Entropy 6,112 6,065 -0,047 Pefile Script

.pdata Raw-Size 44544 45056 +512 Pefile Script

.pdata Virtual-Size 44424 44784 +360 Pefile Script

.00cfg Entropy 0,429 0,511 +0,082 Pefile Script

.00cfg Virtual-Size 40 56 +16 Pefile Script

.gxfg Entropy 5,047 5,214 +0,168 Pefile Script

.gxfg Virtual-Size 10800 11248 +448 Pefile Script

_RDATA Entrop 2,472 3,261 +0,789 Pefile Script

_RDATA Virtual-Size 244 348 104 Pefile Script

.reloc Entropy 5,442 5,412 -0,030 Pefile Script

.reloc File-Ratio 0,44% 0,45% +0,01% Pefile Script

.reloc Raw-Size 12288 12800 +512 Pefile Script

Table A.13: VEILEDSIGNAL-3CX-ffmpeg.dll: Static Differential Analysis General
File & Sections

	Abstract
	Sammendrag
	Peface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Topics Covered by the Project
	Key Words
	Problem Description
	Justification, Motivation, and Benefits
	Research Questions
	Scope & Contributions
	Ethical and Legal Considerations
	Thesis Outline

	Background
	Theory
	Closed Source Software Supply Chain Attack
	Malware
	Portable Executable
	Sandboxing
	Obfuscation
	Evasion

	The Cuckoo Sandbox
	Cuckoo Basics
	The Cuckoo Architecture
	Components
	Routing & Tools

	Other Technologies
	Online Sandboxes
	Tools

	State of the Art
	Closed-Source Detection
	Open-Source Detection
	Industry relevant detection

	Methodology
	Dataset
	Experimental Setup
	Experiments & Analysis
	Static Differential Analysis
	Dynamic Differential behaviour Analysis

	Results
	Analysis of Trojanized Software
	NotPetya
	Solorigate
	Dragonfly Campaign
	DoFoil
	Floxif
	Darkside
	3CX Supply Chain Attack

	Summarised Results and Research Questions
	Research Questions

	Discussion, Conclusion, and Future Work
	Discussion
	Conclusion and Future Work
	Future Work

	Bibliography
	Additional Material
	Screenshots
	Code
	VirtualBox Shellscript
	VirtualBox Registry File
	Script using Floss and stringsifter

	Analysis
	Swiss Ranger Tables
	eCatcher Tables
	eGrabit Tables
	MediaGet Tables
	SmartPSS Tables
	3CX Desktop App tables

