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Problem Description

Title: Private Information Exposed by the Use of Robot Vacuum Cleaner in Smart
Environments
Student: Benjamin Andreas Ulsmåg

The use of robot vacuum cleaners is rapidly increasing in all kinds of smart
environments. Vendors are developing new smart features and APIs to allow integ-
ration of third party systems and expand functionality, smart phone applications
are used to make it easier for users to personalize their robot vacuum cleaner
experience. These applications are delivered through cloud services where com-
mando and control is communicated between the smart environments and cloud
services. This communication is generating network traffic in local wireless and
cabled networks as well as on the Internet. The traffic generated by the robot va-
cuum cleaner reflects the actions made by users and can potentially expose user
private information if eavesdropped.

Smart phone applications use encrypted end-to-end communication to mit-
igate the risk of exposing private information. This kind of security measure is
implemented by the application itself and not the network infrastructure. Inform-
ation about IP-addresses, packet lengths, ports and low level protocols will still
be available for attackers carrying out network eavesdropping. The metadata and
header information can reveal IoT actions and potentially expose user private
information. This thesis aims to address and determine which kind of private in-
formation that can be exposed by carrying out passive eavesdropping attack on
network traffic generated by a robot vacuum cleaner.

Supervisor: Jia-Chun Lin
Co-supervisor: Ming-Chang Lee
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Abstract

Robot vacuum cleaners are popular IoT devices and are deployed in all kinds of
smart environments. Integration with IoT systems introduce more security and
privacy issues related to the operation of these devices. Vendors have developed
smart phone applications where users can personalize cleaning or view informa-
tion about the vacuum cleaner. This increase the integration between user’s life
and the robot vacuum cleaner, which potentially exposes private information. In-
dustry standards include end-to-end encryption between the application, cloud
service and robot vacuum cleaner to secure the private information exchanged.
Regardless of encryption, network header metadata is still available through net-
work eavesdropping attacks. In this project we investigated the potential private
information exposed by this metadata. An Irobot Roomba i7 was deployed in two
different smart environments where passive network eavesdropping was conduc-
ted during smart feature triggering. Analysis revealed that it was possible to attrib-
ute different events triggered on the Irobot Roomba i7, only based on metadata
in the Internet traffic capture. Different signature-based detection algorithms are
proposed, with a high detection rate. Wi-Fi and Internet capturing metadata were
compared and similar patterns were identified, making the detection method ap-
plicable for Wi-Fi eavesdropping as well. This thesis covers the implementation,
capturing and analysis of network traffic and proposes event detection algorithms.
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Sammendrag

Robotstøvsugere er blitt populære IoT enheter og er mye brukt i ulike smarte
miljøer. Integrasjon med andre IoT systemer skaper flere sikkerhets og person-
verns utfordringer ved bruken av disse. Produsenter har utviklet applikasjoner
hvor brukere kan konfigurere rengjøring og se informasjon om robotstøvsugeren
etter eget ønske. Dette øker integrasjonen mellom brukernes liv og robotstøvsug-
eren, noe som kan eksponere mer privat informasjon. Industristandarder bruker
ende-til-ende kryptering av kommunikasjon mellom applikasjonen, skytjenester
og robotstøvsugere for å sikre den private informasjonen som sendes. Selv om
denne informasjonen er kryptert, vil metadata i nettverkspakker fortsatt være
tilgjengelig gjennom nettverksavlytningsangrep. I dette prosjektet skal vi under-
søke hva slags privat informasjon som potensielt kan bli eksponert av denne dataen.
En Irobot Roomba i7 ble installert i to forskjellige smarte miljøer hvor et passivt
nettverksavlytningsangrep ble gjort mens ulike robotstøvsuger funksjonaliteter
ble utført. Analyse av denne dataen avslørte at det var mulig å attribuere flere ulike
smarte funksjonaliteter som ble utført av robotstøvsugeren, bare ved å se på Inter-
nett trafikken. Ulike signatur-baserte identifiserings algoritmer ble laget og viste
en høy deteksjonsrate. Wi-Fi og Internett trafikken til robotstøvsugeren ble sam-
menlignet og like trafikkmønstre ble funnet, noe som gjør at deteksjonsmetodene
også kan brukes for Wi-Fi trafikk. Denne oppgaven tar for seg implementasjon,
konfigurasjon og analyse av nettverkstrafikk og presenterer en deteksjonsalgor-
itme for Irobot Roomba i7 hendelser.
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Chapter 1

Introduction

This chapter introduces the problem domain of the master project topic. Research
objectives is presented with the associated research questions which the thesis
aims to address. Further, the research delimitation and contribution is presented,
before the overall structure of the thesis is introduced.

1.1 Problem Domain

The increase of Internet Of Things (IoT) and deployment of smart environments
are rapidly increasing and are expected to increase further [1]. IoT devices are de-
signed to automate and streamline users daily activities and chores. Robot vacuum
cleaners, smart lighting, smart garage ports and smart door locks are becoming a
part of every smart home environment. The close integration between IoT devices
and users lifes, introduces new security and privacy challenges.

Robot vacuum cleaners have become a popular smart environment device.
These robots can automate floor cleaning based on users preferences and cus-
tomization [2]. Integration with other IoT devices allows cleaning to be triggered
based on human action, which can potentially expose user behavior and routines.

Other researches have addressed security challenges on robot vacuum clean-
ers with penetration testing, vulnerability assessments and active network eaves-
dropping and interception. It has also been conducted research about passive
eavesdropping in smart home environments including robot vacuum cleaners, but
without detailed analysis of the device. Event attribution and privacy challenges
associated with this is therefore not addressed.

1.2 Research Objectives

The goal of this thesis is to identify private information exposed in a smart en-
vironment, only based on network traffic generated by a Robot Vacuum Cleaner
(RVC). We want to address this from an attackers perspective, and only use pass-
ive eavesdropping in the different phases of network communication. To be able

1



2 B. Ulsmåg: Private Information Exposed by the Use of RVC in Smart Environments

to extract user private information, we analyze network traffic and attempt to
identify traffic pattern signatures. These three research questions were created to
address this topic and guide the research.

1. Which private information can be gathered from a robot vacuum cleaner
by carrying out a passive network eavesdropping attack in a smart environ-
ment?

2. How can the information exposed by the eavesdropping attack be misused
by an attacker?

3. Which security measures can be implemented to limit the exposed data and
decrease the risk of misuse?

1.3 Scope and Delimitation

The scope of this thesis is passive eavesdropping of WLAN and WAN traffic, this
excludes actions that will effect the traffic such as traffic shaping, man-in-the-
middle-attacks, traffic injection and similar actions. All traffic capturing and ana-
lysis are from the perspective of an attacker. Only information that is available
in the capturing files are therefore included in the thesis’ analysis. This excludes
decryption of traffic or knowledge about other local configurations and passwords
within the environments or devices.

Irobot Roomba i7 is the only robot vacuum cleaner considered in this thesis.
This robot vacuum cleaner is connected to a separate WLAN during the entire data
capturing process, allowing only cloud based communication. Local IoT commu-
nication and influence is therefore not included. Environment and network infra-
structure is delimited to only basic Internet access, this excludes security imple-
mentations of for example firewalls, access-lists, identity management and mul-
ticast addressing, which could affect the communication.

The complexity of eavesdropping is also not included, due to the large variety
of solutions in different smart environments and Internet access. WAN interfaces
are delivered by Internet Service Provider (ISP), access to this traffic flow will not
be considered and a simulated WAN Interface is created within the LAN of the
environments.

Analysis is done using Wireshark and basic python scripting. Signature is there-
fore only identified by human manual analysis through these tools. This limits the
analysis to only look at overall characteristics or initial traffic and not machine
learning.

1.4 Contribution

This project contributes with research on Irobot Roomba i7 robot vacuum cleaner,
including detailed network traffic analysis and successful identification and attri-
bution of different events. Previous researches have addressed the same security
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and privacy challenges with IoT smart environment including robot vacuum clean-
ers, but focusing on attributing different smart environment events not specifically
on a robot vacuum cleaner. Other projects have focused on robot vacuum cleaner,
but actively attacked the devices to evaluate the security and privacy issues by
exploiting different vulnerabilities detected. This thesis therefore add knowledge
about level of event attribution which is possible on an Irobot Roomba i7 and
proposes detection and signature for different events.

1.5 Thesis Structure

The rest of this thesis is divided into the chapters Background, Related work, Method,
Analysis and Results, Evaluation, Discussion and Conclusion. First the Background
chapter will present relevant information needed to understand the topic. Related
work will cover existing research on this area. The Method will present the dif-
ferent processes of selection, configuration, processing and analysis. Further the
analysis and results will be presented. This is followed by an evaluation chapter
to evaluate the research results. Lastly a discussion and conclusion chapter will
summarize the thesis’ challenges, decisions and answer the thesis’ research ques-
tions.





Chapter 2

Background

This chapter introduce fundamental concepts and background of Internet of Things
and smart environments. It will also present robot vacuum cleaners how they op-
erates and which communication protocols they use. Furthermore, it defines and
present an overview of traffic eavesdropping and potential defense mechanisms
which is important in regards to the research questions.

2.1 Internet of Things

IoT is a system of interconnected physical and virtual devices communicating
and sharing information, using the Internet or private networks. Autonomous IoT
devices are available for information sharing and event triggering continuously
and can act based on inputs, status or triggers from other IoT devices [3]. IoT sys-
tems take advantage of the large scale information sharing. Intelligence software
enables the devices to become smarter and more advanced based on information
shared among IoT devices. The devices includes a number of different hardware
components and software versions, while standardized communication protocols
and system architecture makes the integration between IoT platforms possible
[3].

Small devices like video cameras, smart door locks or air quality monitors have
limited local processors and storage. Complexity and the need for data processing
have made vendors integrate their systems to centralized cloud infrastructures.
Data from the IoT devices is therefore sent to cloud services, where it is processed.
Algorithms communicate commando and control traffic back to the devices based
on user configuration [4]. However, the use of cloud introduce latency because
sensor data needs to be transferred to the cloud server where it is processed and
actions are decided. All this extra transmission latency is not applicable in for
example a smart car breaking system because it requires fast decision making.
Local computing is therefore distributed closer to the sensor providing low latency
decision making, this is referred to as fog or edge computing [5].

5
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2.2 Smart Environments

Smart environments are identified by their seamless connectivity between the
sensors, edge devices and a centralized control system. Data is continuously col-
lected from the smart environment providing the centralized controller with live
data [6]. This data can be analyzed, and trigger actions from the controller to
other devices in the environment. In a smart home environment the controller
can be notified by a garage port opener or sensor that the car has left and trigger
a sequence of events such as locking the door, turning of all the lights or start-
ing the robot vacuum cleaner. In smart industry environments the IoT sensors
can communicate that temperature or other air quality measurements are outside
off the threshold values and then trigger systems to carry out actions to stabilize
this. Due to availability of this data, users can remotely monitor, automate and
control the environments based on their needs and requirements. This can give a
personalized user experience and value [7]. Several centralized smart home ap-
plications are developed to make the user experienced and device integration as
easy as possible, Home assistant [8] is an example of this. The application enables
integration between IoT systems, based on application programmable interfaces.
These interactions aims to include as many IoT systems as possible, introducing
security and privacy challenges across different IoT platforms.

2.3 Robot Vacuum Cleaners

Robot vacuum cleaners are popular smart home IoT devices. These robots can
clean the smart environment autonomously, and can be configured to clean based
on scheduled cleaning tasks or automatic cleaning based on integration with other
IoT systems. Newer models have advanced cleaning and navigation technology
and are able to map their surroundings, avoid obstacles and suggest cleaning
routines based on season or the level of dust in the environment. Popular robot
vacuum cleaner vendors are Irobot [9], Neato [10], Ecovacs [11] and Roborock
[12].

2.3.1 Robot Vacuum Cleaner Communication Protocols

The newest models from all the vendors Irobot [9], Neato [10], Ecovacs[11],
Roborock[12] and Neatsvor [13], use Wireless Fidelity (Wi-Fi) as their main com-
munication protocol. Wi-Fi is used to communicate with the cloud service, and
present live data in the associated smart home application.

IEEE 802.11 is a media access control specification used in modern Wi-Fi com-
munication [14]. Wi-Fi is used to connect wireless IoT devices to the wired smart
environment network infrastructure communicating with cloud services. Traffic
can therefore be eavesdropped both during wireless and wired communication
[15]. Wi-Fi transmission uses Media Access Control (MAC)-addresses [16] to de-
termine the packet origin and destination. A MAC address includes 48 bits, where
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the first 24 are used as an organization identifier. The last 24 bits are then used
as a unique identifier within an organization MAC range. Registers of organiza-
tions global MAC identifier are available online, and can be used to identify which
devices that are connected to wireless or wired networks [17].

2.4 Traffic Eavesdropping

Traffic eavesdropping is a technique used to collect network traffic, not addressed
to the collecting device [18]. Eavesdropping can be separated into two categor-
ies, passive and active. In active eavesdropping an attacker will interfere with
the traffic flow. This could be packet injection, modification or disruption. Pass-
ive eavesdropping will only collect traffic without any interference. To conduct
wireless eavesdropping an attacker will only need to be in wireless range of the
targeted devices [15] and in wired eavesdropping physical or remote access to
network devices in the smart environment is required and increases the complex-
ity.

Wireshark [19], Tshark [20], tcpdump [21] and Microsoft message analyzer
[22] are some tools that can be used for network eavesdropping. All these tools
can monitor traffic received on a specific Network Interface Card (NIC). During
wireless eavesdropping the wireless NIC needs to be in monitoring mode and pro-
cess all packets received. For wired eavesdropping an attacker can configure a
Switch Port Analyzer (SPAN) port on a LAN switch duplicating and forwarding
specified traffic to the interface connected to the capturing device. This function-
ality also have legitimate use cases with implementation of Intrusion Detection
Systems in networks as an example.

2.5 Eavesdropping Defense Mechanisms

Traffic shaping is a technique used to shape the network traffic based on policies.
This is used to optimize data networks, prioritizing traffic and limiting transmis-
sion of irrelevant data, but also proposed as a defense mechanism in IoT smart
environments [23]. Authors in [24] proposes a method to shape smart environ-
ment traffic to defend against traffic flow analysis attacks, mitigating the risk and
increase the complexity of such attacks.

Encryption is another popular defense mechanism against network eavesdrop-
ping. Traffic can be encrypted in different network layers simultaneously creat-
ing multi layer encryption. Applications create end-to-end encryption with for ex-
ample Transport Layer Security (TLS) [25] or Secure Shell (SSH) [26]. This can
also be done on the network layer by using different types of Virtual Private Net-
work (VPN)s. Two categories are tunneled or transport mode VPNs where tunnel
mode encrypts the original IP-header and add a new, hiding the original source
and detonation address [27] [28]. Both Internet Protocol Security (IPSec) [27]
and Layer Two Tunneling Protocol [28] are examples of popular VPN protocols.
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As for Wi-Fi communication it has become industry standard to include encryption
between the wireless devices and Access Points (AP), authentication can be done
with pre-shared keys, certificates or integration with identity access management
solution for example Windows active directory or Kerberos.

The use of global administrated MAC addresses introduce privacy and security
issues as a MAC address can be tracked or identified easily, especially in wireless
eavesdropping. Local MAC randomization [29] can be used to hide the original
global MAC address associated with an organization and use a new local MAC
address within a wireless network hiding device information for potential misuse.



Chapter 3

Related Work

This chapter introduce existing research and literature relevant for this thesis’
topic. Presented work are focused around security and privacy issues, related to
the topics: IoT, smart environment and robot vacuum cleaners. Further, related
work on different eavesdropping attacks and possible countermeasures, as well
as IoT event detection are described.

3.1 Smart Home Security and Privacy

The use of IoT devices in smart environments have increased the security issues
within these environments. According to Alferidah and Jhanjhi [30], and Swessi
and Idoudi [31] these issues are presented in all layers of the IoT systems hard-
ware, software and communication. The nature of information sharing also in-
troduces privacy issues in smart environments [30]. Alferidah and Jhanjhi [30]
have created an overview of the most critical vulnerabilities and possible counter
measures in an IoT environment.

IoT smart integration enables controllers to trigger actions based on sensor
data, without user interaction. Gu et al. [32] did a research on wireless Zigbee
traffic mining in a smart office environment. They were able to identify and at-
tribute 35 different events only by passively eavesdropping the wireless traffic.
With further analysis they were able to expose private information about the of-
fice routines based on this traffic.

3.2 Security and Privacy Challenges of Robot Vacuum Clean-
ers

The popularity of robot vacuum cleaners raises the concern for information se-
curity and privacy issues. Sundström and Nilsson [33] looked at the security im-
plementation and vulnerabilities on a Roborock S7. They discovered that the ro-
bot vacuum cleaner was reasonably secure. Due to ethical concerns, the cloud
service security was not in scope. During the setup stage they discovered that all

9
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devices within wireless coverage of the vacuum cleaner, could add initial configur-
ation, regardless of application support. According to Sundström and Nilsson [33]
the Roborock S7 was vulnerable against Dynamic Host Configuration Protocol
(DHCP) starvation attack from rouge devices on the same network. The authors
suggested that networks used to control a Roborock should at least have basic
authentication requirements, to avoid rouge devices. A similar research is done
by Ullrich et al. [10] where the robot vacuum cleaner was produced by Neato.
In this research the authors evaluated communication and security towards the
cloud service and application. They discovered that week cryptography and shared
private keys among the devices resulted in a huge privacy risk. The collected data
revealed personal information about the customers routines, apartment size, pets
and number of residents.

Sami et al. [34] did a research on private information eavesdropping, based
on laser sensor data of a robot vacuum cleaner. This sensor data was extracted
through a side-channel on the targeted robot vacuum cleaner. Through the re-
search they were able to sense vibrations in objects like pager bags and detect
words said by humans in the environment. By sensing vibrations on objects from
television or music speakers they were able to identify songs and tv shows, with
high precision. They suggested that manufactures have to make security imple-
mentations, limiting high precision private data to be extracted from the devices.

Nguyen [35], Kaminski et al. [36] and Torgilsman and Bröndum [37] all ad-
dress security and privacy concerns with the deployment off different robot va-
cuum cleaners. They use the STRIDE threat analysis framework to identify and
categorize the different vulnerabilities. They executed attacks towards the robot
vacuum cleaners to expose information. In addition several security and privacy
issues related to setup, LAN and cloud communication for these vacuum clean-
ers was discovered. All of them proposed security improvements that should be
implemented by the vendors.

3.3 Eavesdropping and Event Detection

Alyami et al. [38] establish a method to capture out-of-network encrypted Wi-Fi
traffic, and attribute different IoT devices within a smart environment. The re-
search had a 95 percent accuracy of identifying these devices, and in some cases
also their working state. Acar et al. [39] also conducted a similar research on
smart environments, using machine learning to identify devices and their actions.
These devices used Wi-Fi, Zigbee and Bluetooth. They also suggested counter-
measurements that can be implemented to defend against passive eavesdropping
attribution. Xiong et al. [40] proposes a network traffic flow mechanism to limit
the possibilities to attribute IoT devices and events with eavesdropping. They in-
ject dummy traffic, and delay random traffic packets to mix the network traffic
sequence. This defence mechanism creates more delay and latency within the en-
vironment, and disrupted some devices and functionalities.

Trimananda et al. [41] have created a tool to learn and create detection rules
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for IoT devices based on Wi-Fi and WAN traffic. The traffic in the research is en-
crypted, and they have only used packet lengths and IP address as attributes.
Events are triggered through the tool, and corresponding traffic capturing is initi-
ated. Timestamp and event capturing files are then used to train a machine learn-
ing algorithm to create event signatures. They were able to identify user behaviour
within the smart home using this tool.





Chapter 4

Method

This chapter covers the method used in this research, including choices made in
the smart environment architecture, capturing, filtering and analysis processes.
Further the logical structure of the detection algorithms are presented. The entire
method is broken down into several stages to better structure the research, as
illustrated in Figure 4.1.

Figure 4.1: Overview of the stages within the thesis methodology

4.1 Selection of Smart Environment

This research used only one robot vacuum cleaner which was selected based on
a set of requirements, a survey was therefore conducted at the start of the re-
search. A selection process for the associated smart home environments was also
conducted trying to simulate a general smart home.

Requirements within three different categories were used to select the RVC:
Communication protocols, smart home features and popularity were used in the
selection process. These requirements are described below:

• Communication protocol: Wi-Fi is the most wide spread communication
protocol in today’s smart environments [42]. Eavesdropping devices and
analysis tools are available for IEEE.802.11 and abstraction layers higher
in the Open Systems Interconnection (OSI) model [43]. Therefore the first
requirement for the RVC will be that it communicates over Wi-Fi.

13
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• Smart Home Features: The number features available, could increase attri-
bution and potentially more information could be exposed. The robot va-
cuum cleaner needs to have several smart home features to test [44].
• Popularity: The prevalence of different vendors and models will always vary,

based on the number of sold and used devices. Overall usage and good
reviews will increase the relevance of this thesis. Therefore popularity is
included in the evaluation of RVC.

Data and ratings from three robot vacuum cleaner review sites [45], [46] and
[47] were used in the first phase of the selection. A summary of all these reviews
was used to determine the most reliable robot vacuum cleaner vendors. To de-
termine the popularity of the different vendors, downloadings and ratings from
Google Play were compared [48].

Results from the review sites are presented in Table 4.1, and shows that the
two best rated robot vacuum cleaner vendors are Irobot and Roborock.

Table 4.1: Robot vacuum selection review-site comparison

(a) Results from review-site [45]

Vendor Number on top ten
Irobot 3

Roborock 3
Neatsvor 0
Ecovacs 0

iLife 2

(b) Results from review-site [46]

Vendor Number on top ten
Irobot 2

Roborock 2
Neatsvor 0
Ecovacs 2

iLife 1
(c) Results from review-site [47]

Vendor Number on top ten
Irobot 2

Roborock 2
Neatsvor 3
Ecovacs 1

iLife 0

(d) Summary of all review-sites

Vendor Number on top ten
Irobot 7

Roborock 7
Neatsvor 3
Ecovacs 3

iLife 3

Applications for different vendors’ robot vacuum cleaners are presented in
Table 4.2. It is worth mentioning that the "Smart Life" application is used to con-
trol the Neatsvor vacuum cleaner, but is primarily a smart home integration ap-
plication.
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Table 4.2: Robot vacuum cleaner applications download and rating statistics

Vendor Application Downloads Rating
Irobot Irobot Home 5 million + 4,0/5,0

Roborock Roborock 1 million + 4,6/5,0
Neatsvor Smart Life 10 million + 4,5/5,0
Ecovacs Ecovacs Home 1 million + 2,5/5,0

iLife iLifehome 50 thousand + NA

Both Irobot and Roborock received seven recommendations on the review
websites when the results from all sites were added. This is significantly higher
than the other three vendors on the list, each of which only had three represent-
ations. Additionally, both vendors were referenced in all three review sites which
strengthens their credibility.

In the application download and rating analysis, the Neatsvor application has
over 10 million downloads. However, this application is more focused on smart
home integration, and the high number of downloads is likely not solely due to
the robot vacuum cleaner. Meanwhile, Ecovacs home received a 2.5/5.0 rating,
and despite having a similar number of downloads as Roborock, it fell short in the
selection process. Hence, Irobot and Roborock emerged as the two most relevant
vendors. In a comparison of their products, it was found that the Irobot Roomba
i7 and Roborock S6 were the most suitable models, they include a wide range of
smart home features, uses Wi-Fi as their main communication protocol and are
the most popular [49] [50].

The final comparison was conducted using bestcordlessvacuumsite.com [51].
Irobot Roomba i7 and Roborock S6 have similar reviews and rating all over, and
they both have a sufficient number of smart home features, such as IoT smart
home integration, application, different cleaning types and detailed environment
discovery. The fact that the Irobot application is downloaded five times more than
the Roborock was the decisive factor. Irobot Roomba i7 is the selected robot va-
cuum cleaner for this master project and is presented in Figure 4.2.
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Figure 4.2: Irobot Roomba i7 [52]

To ensure the validity of the results across diverse settings, the testing was
conducted in two different smart environments, now called Oslo and Drammen.
The robot vacuum cleaner was configured from factory defaults for each of the en-
vironment. Both Oslo and Drammen had independent Internet access, provided
by an external ISP. To control the duration of each test, the available test area
was restricted to one room. This decreased the duration of each test, making the
research more efficient. Illustrations of both Oslo and Drammen smart environ-
ments are presented in Figure 4.3.
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(a) Oslo smart environment

(b) Drammen smart environment

Figure 4.3: Oslo and Drammen smart environments

The rest of the research environment had to support traffic eavesdropping and
analysis of the Irobot Roomba i7. This sets some requirements for the selection of
smart environment. It has to include an AP providing a separate Service Set Iden-
tifier (SSID) only to be used by the Irobot Roomba i7. This way the identification
of relevant and irrelevant traffic is possible without interference by other connec-
ted IoT devices. In addition to this, a wired network infrastructure needs to be
available providing LAN access to the traffic generated from the Irobot Roomba,
this is where the LAN eavesdropping is conducted. Lastly the environment would
need Internet connectivity to be able to connect to Irobot cloud services and be
controlled by a smart home application.

A Raspberry PI 3b+ was chosen as the capturing platform for this research.
These computers are designed to run autonomously and has build in Ethernet
and WiFi NICs. The Raspberry PI was installed with a Kali Linux operating system
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from [53]. Several network traffic analysis and capturing tools are included in
the Kali Linux distribution. During wireless capturing, the wireless NIC had to be
configured in monitor mode. A separate Wi-Fi adapter TP-LINK TL-WN722N V2/V3
was acquired and used as the monitoring wireless NIC.

Both Oslo and Drammen only had a single ISP modem, providing both WLAN
and LAN. To enable WAN interface simulation and eavesdropping, an additional
Access Point (AP) and LAN switch were installed. The AP translated all Wi-Fi traffic
generated form the Irobot Roomba with Network Address Translation (NAT) to
a single IP address in the smart environment LAN, simulating a WAN interface.
The AP then forwarded traffic to the ISP router through the switch. All traffic
forwarded on the interface connected to the AP were duplicated and forwarded
to the Raspberry PI, through a configured SPAN port. The network infrastructure
is shown in Figure 4.4, where the monitored and SPAN configured interfaces show
how the eavesdropping is carried out.

Figure 4.4: WAN simulating and eavesdropping in the smart environment infra-
structure

Wireshark [19] is a widely used network protocol analyser which allows net-
work capturing and analysis in real-time. It can be used for deep header inspection
in all network layers and perform basic identification of a wide range of differ-
ent protocols [19]. This software is integrated on Kali Linux and is available for
Windows at [54]. Tshark is a subprocess of Wireshark, and can be used to capture
traffic through command-line . In this process it is possible to define capturing fil-
ters which only store traffic that is interesting for the analysis phase. Tshark was
therefore used to capture traffic, and the manual analysis was done with Wire-
shark.

The network infrastructure in both environments consists of the devices presen-
ted in Table 4.3 and are connected in a smart environment infrastructure shown in
Figure 4.5. Telia was the ISP in both Oslo and Drammen and the same Sagemcom
router was used, this did not affect the internal Irobot Roomba communication
since the only function of Sagemcom is DHCP and Internet connectivity.
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Table 4.3: Smart environment device inventory

Device Type
Capturing platform Raspberry PI 3b+, with Kali Linux
Analysis platform HP Elitebook, with Windows 11

Access point TP-Link archer MR200, ver5.30
LAN switch Cisco catalyst 2960 series, 8 port
ISP router Sagemcom, Telia

Figure 4.5: Smart home setup [9]

4.2 Traffic Capturing

Two Tshark processes were executed simultaneously on the Raspberry PI, one
instance captured WAN traffic on the Ethernet NIC (eth0) and the other captured
WLAN traffic on the Wi-Fi adapter NIC (wlan1). Both instances had a capturing
filter argument, capturing only traffic relevant for the analysis phase. The syntax
for the Tshark filter is described in [20]. The Tshark arguments used in these
captures were interface specification -i, traffic filter -f and output file name -w.
Filtering was based on the Irobot Roomba’s Wi-Fi MAC address for WLAN, and
the simulated WAN IP-address for LAN. Due to local user restrictions, the Tshark
commands were executed in sudo mode. Tshark filter syntax as well as WLAN and
LAN specific syntax are listed below.

• tshark [ -i <capture interface> ] [ -f <capture filter> ] [ -w <outfile> ]



20 B. Ulsmåg: Private Information Exposed by the Use of RVC in Smart Environments

• sudo tshark -i wlan1 -f ’eth.host MAC address’ -w output.pcap
• sudo tshark -i eth0 -f ’ip.host WAN address’ -w output.pcap

A fixed capturing process was used the entire research, this created the best
foundation for event comparison. The entire capturing process is illustrated in
a flow diagram in Figure 4.6. First both WLAN and LAN Tshark capturing were
started. While these captures were ongoing, events were triggered according to a
test matrix. When all events had been triggered, the capturing was stopped and
files were extracted with WinSCP to a Windows machine for further analysis [55].

Figure 4.6: Event capturing process

4.3 Event Objectives

This section introduces the selection and triggering of different smart home fea-
tures on the Irobot Roomba i7. For all selected event objectives the justification,
functionality and triggering process are described. All event objectives, except
Standby traffic, are triggered 10 times in each of the smart environments Oslo
and Drammen.

Standby traffic capture is an event selected and is providing information about
the continuous traffic flow generated by the Irobot Roomba when no event is
triggered. This event is therefore used to identify network traffic which is not
relevant in the event detection process and can be excluded for event analysis.
Observed traffic is also used to identify the ongoing network session between the
Irobot Roomba and the cloud server and exclude traffic generated from other IoT
devices within the same environment. If an attacker can identify the present of an
Irobot Roomba it can launch targeted attack such as spare phishing and increase
the success rate.

The capturing started after the Irobot Roomba had been operational in Oslo
smart environment for one month, ensuring that the captured traffic is generated
when the vacuum cleaner is in operating state and not set-up phase. A continuous
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capture was conducted over 14 days. During this time no physical or application
interaction was done by the user. The capture was then extracted to the analysis
platform.

All other event objectives aims to expose different user behaviours and each
of them are described further in detail. Automated cleaning, is a cleaning event
triggered by integration with third party IoT systems. Through the Irobot applica-
tion it is possible to configure integration with IFTTT location services [56], trig-
gering a cleaning when the user’s phone is observed outside a configured radius
of the smart environment. It is also possible to integrate with Gust smart lock
system, Ecobee thermostat system, My Leviton smart home integration and MyQ
garage system [9]. IFTTT was selected as the preferred trigger integration due to
the availability. If this event is attributed an attacker will know when the user has
left the smart environment and can potentially conduct robbery without the risk
of the user being home or map the users routines such as working hours.

The location service is configured to trigger a cleaning event including the
entire smart home map when the user’s phone is more then 200 meters away
from the address of the smart environment. Event start is defined at the time
when a notification was received stating that cleaning is triggered, and finished
when a "finished cleaning" notification is received. Automated cleaning events are
only triggered once per day, but due to time constrains the configured cleaning job
was deleted and reconfigured for each event, allowing the event to be triggered
several times per day.

Application triggered cleaning, is triggered through the Irobot smart phone ap-
plication. Users can configure customized cleaning events only including parts of
the smart environment.The event is triggered by opening the Irobot application
and manually triggering a customized cleaning event defining all of the smart en-
vironment area. It is started when the application is opened and finished when
a "finished cleaning" notification is received. Attribution of this event will expose
information about user phone activity and if detected during a longer time period
expose user routines.

Scheduled cleaning can be configured through the smart phone application.
Users can schedule a cleaning by specifying an area in the smart environment and
time when the cleaning should start. This event is integrated into user’s routines
as it most likely is configured when the user is away from the smart environment.

The event is triggered by configuring scheduled cleaning jobs including the
entire smart map through the application. It is not possible to schedule cleanings
with less than three hours in between, due to time constrains only one predefined
cleaning job was used and the configured time was changed, allowing to trigger
the event more frequently.

Physical triggered cleaning can be triggered by pushing a physical button on
the Irobot Roomba marked with "Clean". This triggers a cleaning job of the en-
tire environment area that the robot vacuum cleaner can navigate in. This can
potentially trigger a map discovery if the surroundings are not recognized. Identi-
fication of this event will expose information about user present inside the smart
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environment. The cleaning event is finished when a notification is received.
Application start is an event to identify if the Irobot application is opened on

a user’s phone. Whenever the application is started it pulls live information from
the Irobot Roomba and displays it in the application. Exposure of this information
will reveal user interaction with the Irobot application. Triggering starts when
the application is started and finished when the application is closed. No specific
action is conducted in the application during this event.

Remove bin is when the bin on the Irobot Roomba is ejected from the vacuum
cleaner. This is typically done after a cleaning event or when a notification is
sent to the user. Identification of this event will place the user within the smart
environment together with the Irobot Roomba exposing user position.

The event is triggered when the user ejects the bin from the Irobot Roomba
and they are separated for at least 40 seconds, simulating the time it would take
to empty the bin. It is finished when the bin is reentered into the Irobot Roomba.

4.4 Traffic Filtering

This section introduce the method used to identify irrelevant traffic in the Standby
traffic and creating filters that excluded this traffic in further event analysis. It also
include the process of creating separate event files from the continuous environ-
ment captures. The overall process steps are shown in Figure 4.7, where there is
an iterative process between identification and filter creation.

Figure 4.7: Traffic filtering process

The Standby traffic capture is used to identify traffic patterns and protocols
that are irrelevant to the event triggering conducted in this project. Since there
was no interaction with the Irobot Roomba during the capturing period, all the
identified traffic patterns and protocols are irrelevant for the actual event object-
ives.

The capturing files are imported and opened in Wireshark and analyzed with
the use of Protocol hierarchy tool. This tools presents the different protocols and
their distribution within the capturing file. An example of this analysis is shown in
Figure 4.8. Traffic from each of the identified protocols are analysed and irrelevant
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traffic observed is excluded by adding logical expressions to the baseline filter
in Wireshark. Resulting in a complete basefilter excluding all irrelevant traffic
identified.

Figure 4.8: Wireshark protocol hierarchy tool

The basefilter is applied to the event capturing files and in addition a Wire-
shark time filter is added to only display traffic generated during an ongoing event,
creating one capture file per event. The Wireshark filter syntax is found in [19]
and the time filter syntax is presented below.

• (frame.len >= "Year Month day, start-time") && (frame.len <= "Year
Month day, end-time")

4.5 Traffic Analysis

The traffic analysis workflow is presented in Figure 4.9, and includes three subpro-
cesses: Protocol and event relation, Traffic sequence identification and Overall event
characteristics. Results from all these subprocesses were used to create event sig-
natures. These signatures are implemented into python detection algorithms to
evaluate the success rate of the signature detection.
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Figure 4.9: Traffic analysis process

Protocol and event relation are analyzed with Protocol hierarchy tools and
the identified protocol and their attributes are collected. If specific protocols occur
within the majority of the event files it could be used as a identification signature.

Traffic sequence analysis used same attributes as Trimananda et al. [41], without
the proposed machine learning algorithm. Packet length sequences were extrac-
ted with the use of a python script using a Pyshark library, and analyzed manually.
This analysis also includes the sequence of protocols, enabling signatures based on
more than just packet lengths as attributes. Traffic flow directions were also taken
in to account during this process. This included the traffic flows listed below:

• Traffic flow with Irobot Roomba as source address.
• Traffic flow with Irobot Roomba as destination address.
• Traffic flow both directions.

Overall characteristics of each event file were analyzed, and used to determine
if the number of 20 events were sufficient. Extracted information about number
of packets, number of bytes and protocols were used in this process. Standard de-
viation of this data indicated the consistency of each event objective.

Results of the three subprocesses were used to propose an event signature.
Attributes in the different signatures were implemented as search conditions in
a python function. A separate function was created for each event signature, re-
turning a confidence variable to the main function. This enables the detection
algorithm to add new signatures to increase the detection confidence of an event.
All these functions followed the same logical flow as presented in Figure 4.10
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Figure 4.10: Pseudo code for signature detection function

1 def Identify_event(event_file, event_confidence_variable):
2 event_signature = [’signature’]
3 if event_signature is in eventfile:
4 event_confident_variabel =+ level_of_confidece
5 else
6 None
7 return event_confidence_variabel

4.6 Signature Evaluation

All signature functions were integrated in a main python script. This script imports
selected pcap files and run through all the signature functions. True positive and
False positive detection increases the confident variable for each event. A compar-
ison of the confidence variables is executed at the end, to determine which event
is most likely to have been triggered. The main function follows the logic presen-
ted in Figure 4.11. If a signature is identified in the majority of other events it can
not be used to unlikely identify an event and will be rejected by this project.

Figure 4.11: Pseudo code for event detection algorithm

1 Main()
2 #import event pcap file
3 Capture = import(Event_file_x)
4 #run detection functions, and create confidence variables
5 #eventX_confident_variable = eX_cv
6 e1_cv = identify_event1(Capture, event1_confidence_variable)
7 e2_cv = identify_event2(Capture, event1_confidence_variable)
8 e3_cv = identify_event3(Capture, event1_confidence_variable)
9 e4_cv = identify_event4(Capture, event1_confidence_variable)

10 e5_cv = identify_event5(Capture, event1_confidence_variable)
11 e6_cv = identify_event6(Capture, event1_confidence_variable)
12 #compare event_confidence_variables highest is event
13 confidence_variables = [list of all variables]
14 for event in range(1,6)
15 if confidence_variabels[event] is larger than last

number
16 largest = confidence_variabels[event]

Capture analysis is conducted on the LAN traffic due to time constrains within
the project. To determine if the same method and type of signatures can be used to
identify events in WLAN, a comparison is done between corresponding LAN and
WLAN events. If the level of encryption is different for LAN and WLAN it is not
possible to identify the same protocol distribution, and other signatures needs to
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be utilized. Packet length sequences is visible in all levels of network communic-
ation and differences are determined of included header lengths. A comparison
is conducted to determine if the same sequences are present and if observed, the
same method and type of filters can be used.



Chapter 5

Analysis and Results

This chapter presents the analysis and results of standby traffic and event cap-
tures. First the standby traffic is analysed to identify traffic irrelevant to the event
objectives triggered. This is followed by a section for each event including ana-
lysis and results of overall event characteristics, protocol detection and packet
sequences resulting in a signature detection algorithm. WAN traffic is compared
with the corresponding WLAN traffic to identify if these signatures are applicable
in both transmissions domains.

5.1 Standby Traffic

This section presents the analysis of the captured Standby traffic to identify traffic
patterns or protocols to exclude in further event analysis. First an analysis of the
relevance of the different identified protocols is conducted. All occurring traffic
patterns within the standby event can be found in the event captures as well, but
are irrelevant for the actual event triggering.

The standby event capturing was conducted from 8th of January to 22th of
January 2023 in Oslo environment. During this time period there was no phys-
ical or application interacting with the Irobot Roomba, all traffic captured was
therefore generated by the Irobot Roomba or the connected Irobot cloud service.
This traffic is not created by any human interaction and not exposing any private
information. Beforehand, the Irobot Roomba had been installed and operated for
one month, ensuring that it was in an operating and not installation state. Smart
home map, room dividers and customized cleaning jobs were configured.

Wireshark protocol hierarchy analysis tool was used to display protocol stat-
istics and Table 5.1 presents the protocols and distribution of them. Approxim-
ately 50% of the captured traffic was identified as User Datagram Protocol (UDP)
traffic, this is mainly DNS but also some NTP and DHCP traffic. Another 26.2%
was TCP where the majority of the captured traffic is TLS which is used by the
Irobot Roomba to ensure end-to-end encryption with the cloud server. The last
protocol identified was Address Resolution Protocol (ARP) representing 24,6% of
the standby traffic.

27
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Table 5.1: Protocol hierarchy and statistics in standby traffic capture

Transport protocol Percentage Service protocol Percentage

UDP 49,2
DHCP 0,1
DNS 48,6
NTP 0,4

TCP 26,2 NA NA
ARP 24,6 NA NA

The network architecture in Oslo and Drammen creates a single broadcast
domain between the AP, capturing platform and the ISP router. As devices only use
physical layer MAC addresses to communicate on the LAN they need ARP to create
an IP to MAC forwarding table. ARP traffic is therefore broadcasted between these
devices requesting updates on IP to MAC information. The captured ARP traffic is
not generated by the vacuum cleaner in another broadcast domain and is added
as a part of the basefilter with the logical expression !arp.

The ISP modem is by default configured as the local DHCP server allocating,
reserving and leasing IP addresses to devices connected to the LAN. To ease the
detection of the simulated WAN traffic a DHCP reservation was configured on the
ISP routers for the AP’s LAN MAC address in both Oslo and Drammen. This kept
the simulated WAN address from changing during capturing and potentially lose
traffic. DHCP traffic was still needed to be exchanged between the AP and the ISP
modems requesting and verifying that the reserved DHCP leases still were active
during capturing. DHCP traffic in the LAN capture is therefore only generated
by the AP and the ISP modem and was added to the basefilter with the logical
expression !dhcp.

The most dominant protocol in the standby capture was DNS with 49.2% of
the packets. 98.3% of these DNS packets were requests and responses for the
DNS A record for Fully Qualified Domain Name (FQDN) a.root-servers.net, this
traffic flow is shown through Wireshark in Figure 5.1. This is one of the DNS top
level domain servers in the DNS hierarchy and will only point to top level domain
server such as .com, .org and .no. By analyzing the management console of the
AP, it was observed that the AP requested the DNS record for a.root-servers.net to
determine if it had Internet connectivity or not. A successful response will indicate
Internet connectivity. These DNS packets are therefore irrelevant in the analysis of
Irobot Roomba traffic and are specifically excluded in a Wireshark filter for further
DNS analysis with the following filter ((dns) && !(frame.len ==78 or frame.len
==94)). Frame lengths of 78 and 94 bytes are used to identify the DNS request
and response in Figure 5.1
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Figure 5.1: Reoccurring DNS traffic associated with a.root-server.net

When the filter was applied only 174 DNS packets were left. In the remaining
DNS traffic it was observed several DNS requests and responses generated by the
AP towards the TP-Link cloud services, these FQDNs are listed below and shown
in Figure 5.2.

• n-devs-gw.tplinkcloud.com
• n-deventry-gw.tplinkcloud.com

Figure 5.2: DNS traffic generated by the AP towards TP-Link cloud services

These DNS packets are excluded because they are related to the AP and not the
RVC. After exclusion only four different FQDN requests generated by the Irobot
Roomba were displayed. Three of the FQDN are towards the .irobot domain and
the last one is a part of .amazoneaws. Amazone Amazon Web Services (AWS) is a
large provider of cloud services and bought Irobot cooperation in 2022 [57] and
is therefore using Amazone AWS for their cloud services. These FQDNs are listed
below.

• 0.irobot.pool.ntp.org
• disc-prod.iot.irobotapi.com
• unauth1.prod.iot.irobotapi.com
• a2uowfjvhio0fa.iot.us-east-1.amazonaws.com

All DNS traffic generated by the Irobot Roomba are occurring regularly through-
out the entire standby traffic time period, this is presented in Figure 5.3. Iro-
bot’s public NTP server 0.irobot.pool.ntp.org is requested each 12th hour, in the
project’s standby traffic this is at 03:36 and 15:36. This is used to synchronize
the local clock on the Irobot Roomba to a global time zone, allowing all actions
or smart features using time to operate correct. disc-prod.iot.irobotapi.com, un-
auth1.prod.iot.irobotapi.com and a2uowfjvhio0fa.iot.us-east-1.amazonaws.com are
all requested once a day at the same time. The function of these requests are
not identified, but when trying to access the FQDNs through Google Chrome it
prompts "Missing Authentication Token", based on the naming convention of the
FQDNs it is easy to believe that they are used for re-authentication of the Irobot
Roomba.
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Figure 5.3: Irobot’s reoccurring DNS traffic presented in graphical view

The DNS observations identifies that the Irobot Roomba is depending on DNS
to be able to access Irobot’s cloud services. This protocol is a potential indication
of cloud functionality, used or access by the Irobot Roomba and is included in
further analysis of events. DNS request for a.root-servers.net had to be excluded
due to the large amount. All Irobot generated DNS requests had a packet size
larger then 78 bytes as shown in Figure 5.1 and all responses were larger then
the response for a.root-server.net. As the DNS response is the most interesting part
of the communication it is safe to exclude all DNS packets smaller then 94 bytes
without missing any DNS responses towards the Irobot domains.

Network Time Protocol (NTP) server-client sessions are identified every 30
minutes generating a large volume of NTP traffic. When observing DNS requests
to Irobot’s public NTP service 0.irobot.pool.ntp.org and NTP traffic in Wireshark
it is possible to identify that the Irobot Roomba is changing the corresponding
NTP server every time the DNS response is received, this is shown in Figure 5.4.
Since the NTP traffic is continuous it is not related to events triggered, and can
be excluded from further analysis by adding the logical expression !ntp to the
basefilter.

Figure 5.4: Irobot NTP client-server traffic

TCP traffic was analyzed in the same manner as the network service protocols
ARP, DHCP, DNS and NTP. Remaining TCP traffic is then displayed in Wireshark
and is shown in Figure 5.5. Wireshark’s protocol hierarchy statistic tools identi-
fied that 64.4% of the remaining TCP packets uses TLS to secure the connection,
this aligns with the observations in Figure 5.5 where the reoccurring TCP pattern
consists of two TLS packets including payload information and one empty TCP ac-
knowledge packet confirming that the last packet was received. Continuous TCP
traffic is generated to keep the TCP connection between the Irobot Roomba and
the cloud service open as TCP has a timeout value on all session. The majority of
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smart environments are installed behind NAT and the TCP session must therefore
be initiated from the distributed IoT devices. Keep-alive traffic includes the least
amount of data needed to keep the connection alive or continuously updated.
All event specific packets are therefore larger than 97 bytes. This filter is com-
bined with the DNS packet length filter and is applied with the logical expression
(frame.len > 97) excluding all packets less than 97 bytes.

Figure 5.5: Roccuring TCP traffic from the standby capturing displayed in Wire-
shark

Commando and control traffic from the Irobot’s cloud services is generated
from the same corresponding host as the TCP-keep-alive traffic. To identify the
FQDN used in this session establishment, a combined filter with DNS and TCP is
applied, as shown Figure 5.6. As presented the Irobot Roomba terminated the TCP-
keep-alive session right before a DNS request is sent for a2uowfjvhio0fa.iot.us-east-
1.amazonaws.com, and a new session is established with one of the IP addresses
in the DNS response. After the establishment of the new session there is uploaded
data to the new host, probably synchronising and updating current status on the
Irobot Roomba.

An attacker will have to eavesdrop traffic for less than 24 hours to be able to
identify which TCP session belongs to the Irobot Roomba. In a large scale eaves-
dropping attack attackers can trigger actions based on identification of this DNS
response, knowing that a Irobot vacuum cleaner is establishing a new session with
one of the responded IP addresses.

Figure 5.6: Identification of Irobot commando and control traffic displayed in
Wireshark

A base filter is created based on the observations described earlier in this sec-
tion to exclude irrelevant standby traffic from further analysis of events. DNS on-
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line verification generated by the AP and TCP-keep-alive traffic is excluded with
the same logical expression excluding all packets smaller then 98 bytes, (frame.len
> 97). This leaves the DNS responses to other Irobot cloud services which can be
used for service attribution. ARP, DHCP and NTP are excluded due to function-
ality. The base filter created and used in following analysis of event captures are
presented below. When this filter was applied to the Standby traffic capture the
total number of packets was reduced from 5,052,284 to 4,010 displaying only
0.8% of the captured traffic.

• (!ntp && !dhcp && !arp && frame.len > 97)

5.2 General Event Analysis

This section introduces the general capturing process conducted in both Oslo and
Drammen environment. Considerations and observations used during the event
triggering process are also presented.

Capturing is started on the Raspberry PI for both WLAN and LAN, filters used
on WLAN captures are the same in both environments due to static WLAN MAC
address for the Irobot Roomba. This MAC address is found through the Irobot
home application. However the simulated WAN address is different, in Oslo en-
vironment is was 192.168.0.56 and in Drammen is was 192.168.0.91, the reason
for this was that the IP address reserved in Oslo was already in use within the
Drammen LAN. Tshark commands for WLAN, Oslo LAN and Drammen LAN is
listed below.

• WLAN: sudo tshark -i wlan1 -f ’eth.host 50:6F:0C:2F:EB:A2’ -w ’output.pcap’
• Oslo: sudo tshark -i eth0 -f ’ip.host "192.168.0.51’ -w ’output.pcap’
• Drammen: sudo tshark -i eth0 -f ’ip.host "192.168.0.91’ -w ’output.pcap’

The initiated capture was continuous running in both environments during the
entire event triggering, since the output files never exceeded 500MB. During the
capturing all event objectives were triggered 10 times per environment, resulting
in 20 captures per event in total. All cleaning events were triggered and identified
as finished when the smart home application prompted a "finished cleaning" no-
tification. Both start and end time for all events was noted and used in the event
file extraction.

When all event triggering was conducted, the capturing was stopped and the
environment capturing file, including all triggered events, were extracted to an-
other computer via WinSCP file transfer application. The pcap files were opened
in Wireshark and a time filter was applied to extract individual files for each of
the different triggered events, resulting in 20 different files for each of the event
objectives. Timefilter syntax and example is presented below.

• (frame.time >= "Month day, year hh:mm:ss") && (frame.time <= "Month
day, year hh:mm:ss")
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• (frame.time >= "Jan 1, 2023 01:00:00") && (frame.time <= "Jan 2, 2023
20:59:59")

The basefilter is applied to all event files excluding the irrelevant traffic iden-
tified in Standby traffic analysis, traffic left is then associated to actions or events
triggered on the vacuum cleaner. Wireshark’s protocol hierarchy tool was used to
identify the protocol distribution of the events, further calculations about packets
and bytes sent during the events were performed with a python scripts. Packet
length sequences were extracted with python and manual analysis is used to
identify common traffic patterns within each event. All observed patterns or char-
acteristic were compared and used to create a event signature and detection al-
gorithm.

These detection algorithms are applied to all 120 event files to evaluate the
level of detection and to compare the different signatures with each other. If an
algorithm have more then 90% detection rate and not identified in any other event
objectives, it was possible to attribute.

5.3 Automated Cleaning

This section introduce specific configuration and decisions during Automated clean-
ing event and analysis. The results from the analysis will be presented at the end
of the section.

Automated cleaning is integrated with IFTTT location service and a cleaning
event is triggered when the user’s phone is observed more than 200 meters away
from the smart environment postal address. Start time is noted when a notification
is received and event end is noted when a notification for finished cleaning is
received. Due to time constrains during this master project several Automated
cleaning events were triggered on the same day. Irobot restrictions only allow
one triggering of these events each day, so the executed customized cleaning was
deleted and then reconfigured after event end. This allowed more then one event
per day.

Triggering date and time for all Automated cleaning events are presented for
Oslo in Table 5.2 and Drammen in Table 5.3. The triggering of these events in
Drammen follows a unrealistic time schedule due to limited availability of the
smart environment. However the triggering in Oslo environment was triggered
without recreating the cleaning configuration, executing one event per day. Attri-
bution of this event exposes detailed information about the user’s routines, and
when the environment was empty.
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Table 5.2: Automated cleaning triggering date and time overview for Oslo

Event Date Start time End time
1 21.02.2023 21:06 21:14
2 22.02.2023 07:37 07:45
3 23.02.2023 10:10 10:16
4 01.03.2023 07:42 07:47
5 02.03.2023 11:05 11:10
6 03.03.2023 07:03 07:08
7 06.03.2023 07:04 07:09
8 07.03.2023 08:42 08:47
9 08.03.2023 07:49 07:54
10 09.03.2023 07:22 07:29

Table 5.3: Automated cleaning triggering date and time overview for Drammen

Event Date Start time End time
1 25.02.2023 21:32 21:50
2 26.02.2023 01:53 02:10
3 26.02.2023 15:43 15:55
4 26.02.2023 17:00 17:12
5 26.02.2023 22:11 22:23
6 27.02.2023 07:57 08:10
7 27.02.2023 08:51 09:02
8 27.02.2023 11:03 11:13
9 27.02.2023 12:04 12:16
10 27.02.2023 13:36 13:48

Protocol distribution shows that there are two DNS response packets in each
of the event files, the rest of the traffic is TCP where the majority are TLS encryp-
ted. TCP packets without TLS is either TCP acknowledgement packets without
payload or a part of a TCP three-way-handshake or tare-down. When the event
is triggered it is observed an increase in packets between the Irobot Roomba and
the corresponding Irobot cloud server, this communication is at a consistent level
until a cleaning is done. Then a DNS response for FQDN 0550315.ingest.sentry.io
is received and a new TCP session to one of the responded IP addresses is estab-
lished. The entire corresponding TCP session from Oslo environment event 5 is
shown in Figure 5.7, this is consistent for all Automated cleaning events. After this
session is finished, a new DNS response for FQDN s3.amazoneaws.com is received
and a new TCP session is established to one of the responded IP addresses.
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Figure 5.7: TCP session between Irobot Roomba and 0550315.ingest.sentry.io,
initiated after a cleaning is finished

Calculations of number of bytes and number of packets with associated av-
erage and Standard Deviation (SD) are presented in Table 5.4 and Table 5.5. As
presented, the average and standard deviation in Oslo environment is signific-
antly higher than in Drammen, regardless of that the Drammen cleaning had a
longer duration overall. This might be due to the number of obstacles or carpet
in the environments. An interesting calculation is that more than 90% of all pack-
ets captured are sent between the Irobot Roomba and s3.amazoneaws.com, due to
large packet sizes in the session this includes more than 95% of the transferred
bytes. TLS encryption hides the information, but this is most likely an upload of
all the cleaning data collected during the event, and if encryption is broken a lot
of private information can be exposed. Event 6 in Oslo environment has a low
number of bytes and packets compared to the other events, but included both
DNS responses and upload traffic associated with them. This could be due to lack
of updates or disruption on transmission.

Table 5.4: Overall statistics for Automated Cleaning in Oslo

Event Packet number Total bytes sent
Event 1 2,703 3,882,164
Event 2 2,736 3,811,206
Event 3 2,659 3,818,287
Event 4 2,681 3,747,788
Event 5 2,589 3,704,329
Event 6 236 237,163
Event 7 2,701 3,860,634
Event 8 2,631 3,770,236
Event 9 2,609 3,738,406

Event 10 2,609 3,799,896
Average 2,415.4 3,437,010.9

SD 767.27 1,125,643
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Table 5.5: Overall statistics for Automated Cleaning in Drammen

Event Packet number Total bytes sent
Event 1 1,074 1,443,851
Event 2 1,131 1,524,076
Event 3 1,209 1,644,223
Event 4 1,207 1,641,145
Event 5 1,013 1,422,457
Event 6 1,013 1,422,457
Event 7 1,220 1,726,862
Event 8 1,248 1,715,015
Event 9 1,227 1,669,154

Event 10 1,456 1,838,832
Average 1,179.8 1,604,807.2

SD 131.48 144,434.9

The first 20 packet lengths in all event captures was extracted with a python
script presented in Appendix B and are analyzed to find common sequences that
can be used to identify the event. These packet lengths are shown in Figure 5.8.
D and S in front of the packet lengths indicates if the Irobot Roomba is destina-
tion or source of the packet. The yellow marked fields are the common identified
sequence pattern in all event captures. The sequence starts with two packets sent
from the Irobot cloud server to the Irobot Roomba with the lengths of 315 or 316
and 288 or 289 bytes, these two packets can be received in mixed order, but al-
ways appear as a packet pair. The Irobot Roomba then responded with a packet
pair with lengths of 176 and 186 or 187 bytes. This is followed by a packet from
the Irobot cloud server with the length of 408 or 409 bytes. The entire identified
packet sequence is therefore [315, 288, 176, 186, 408] or [288, 315, 176, 186,
408], with a offset of 1 byte due to the variation of packet size within the se-
quence. Oslo event 2 and Drammen event 8 does not include this sequence, and
it looks like one of the packet pairs are merged.



Chapter 5: Analysis and Results 37

Figure 5.8: Automated Cleaning extracted packet length sequences

Both packet length sequences and the presence of two FQDN are identified
in all Automated cleaning event captures. These observations forms the signature
for this event. Two python functions were created: one for the detection of the
DNS responses for 0550315.ingest.sentry.io and s3.amazoneaws.com and one to
identify the packet sequences [315, 288, 176, 186, 408] or [288, 315, 176, 186,
408]. The pseudo code for DNS detection is presented in Figure 5.9 and sequence
detection in Figure 5.10.

1 function cleaning_event_detection(event_capture)
2 if ’o550315.ingest.sentry.io’ in event_capture
3 dns1 == True
4 elsif
5 dns1 == False
6 if ’s3.amazonaws.com’ in event_capture
7 dns2 == True
8 elsif
9 dns2 == False

10 if dns1 and dns2 == True
11 cleaning_confidence = + 10
12 return cleaning_confidence

Figure 5.9: The algorithm for identifying DNS responses for FQDNs 0550315.in-
gest.sentry.io and s3.amazoneaws.com
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1 function detect_application_start(packet_lengths_src)
2 signature1 = [316, 289, 176, 187, 409]
3 signature2 = [289, 316, 176, 187, 409]
4 if signature1 in packet_lengths
5 automated_cleaning_confidence = + 10
6 elsif signature1 in packet_lengths
7 automated_cleaning_confidence = + 10

Figure 5.10: The algorithm for identifying the Automated cleaning packet length
sequence

To evaluate the detection algorithm it was used on all the different Automated
cleaning event files. The DNS signature detection algorithm was able to identify
the DNS responses for 0550315.ingest.sentry.io and s3.amazoneaws.com in all 20
event files. The sequence signature detection algorithm was able to identify the
signature in 18 of 20 event files, resulting in a successful detection rate of 90%.
The two events that did not include this signature were Oslo event 2 and Drammen
event 8, they had the sequences 510, 176, 187, 409 and 289, 316, 297, 409. As
mentioned in the sequence analysis the sequence detection will not be able to
identify these.

5.4 Application Triggered Cleaning

This section introduce specific configuration and decisions during the Application
triggered cleaning event triggering and analysis. The results from the analysis will
be presented at the end of the section.

Application triggered cleaning is an event triggered manually by the Irobot
Roomba’s users through the Irobot home application’s predefined or customized
cleaning jobs. The event used a customized cleaning job defining the entire area
of Oslo or Drammen smart map. This ensured that the cleaning area is constant
for all the triggered events, creating the best foundation for comparison. These
events can be triggered as many times as the user would like and is therefore the
same during the entire capturing phase.

Triggering date and time for all Application triggered cleaning events are presen-
ted in Table 5.6 for Oslo and Table 5.7 for Drammen. These events are triggered in
a non-realistic manner due to time constrains, this is especially for the Drammen
triggering where a new event was triggered every 30 minutes. In a realistic smart
environment these triggerings would occur less and not in a structured manner.
Application triggered cleaning is triggered when the user needs additional clean-
ing outside of the scheduled one, preferably triggering this when leaving home.
Identification of this event can therefore expose private information about user
location.
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Table 5.6: Application triggered cleaning triggering date and time overview for
Oslo environment.

Event Date Start time End time
1 28.02.2023 18:20 18:27
2 28.02.2023 18:35 18:42
3 01.03.2023 18:53 19:00
4 09.03.2023 07:44 07:49
5 09.03.2023 08:03 08:10
6 09.03.2023 08:25 08:31
7 09.03.2023 08:57 09:04
8 09.03.2023 09:18 09:26
9 12.03.2023 12:20 12:35
10 12.03.2023 12:54 13:09

Table 5.7: Application triggered cleaning triggering date and time overview for
Drammen environment.

Event Date Start time End time
1 25.02.2023 14:30 14:45
2 25.02.2023 15:00 15:15
3 25.02.2023 15:30 15:45
4 25.02.2023 16:00 16:15
5 25.02.2023 16:30 16:45
6 25.02.2023 17:00 17:15
7 25.02.2023 17:30 17:45
8 25.02.2023 19:00 19:15
9 25.02.2023 19:30 19:45
10 25.02.2023 20:00 20:15

Protocol distribution shows that there are two DNS response packets in each
of the event files, the rest of the traffic is TCP where the majority are TLS encryp-
ted. TCP packets without TLS are either TCP acknowledgement packets without
payload or a part of a TCP three-way-handshake or tare-down. When the event is
triggered it is observed an increase in packets between the Irobot Roomba and the
corresponding Irobot cloud server, this communication is at a consistent level until
the cleaning is done. Then a DNS response FQDN 0550315.ingest.sentry.io is re-
ceived and a new TCP session to one of the responded IP addresses is established.
The entire corresponding TCP session from Oslo environment event 5 is shown in
Figure 5.11, this is consistent for all Application triggered cleaning events. After this
session is finished a new DNS response for FQDN s3.amazoneaws.com is received
and a new TCP session is established to one of the responded IP addresses.
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Figure 5.11: TCP session between Irobot Roomba and 0550315.ingest.sentry.io,
initiated after application triggered cleaning is finished

Calculation of number of bytes and packets sent with associated average and
standard deviation for all Application triggered cleaning events are presented in
Table 5.8 and Table 5.9. Both number of packets and bytes sent are higher in
Oslo despite shorter duration of cleaning, this could be environment specific due
to floor, windows and furniture within each environment. More then 90% of the
packets are sent from the Irobot Roomba to FQDN s3.amazoneaws.com, as the
majority of these packets are close to maximum packet size of 1,500 bytes they
account for more then 95% of the bytes transferred. This is most likely an upload
of all the collected information form the cleaning. In Drammen environment both
number of packets and bytes sent are increased for each consecutive event, based
on similar duration and encrypted traffic it is not possible to determine why this
occurred in Drammen.

Table 5.8: Application triggered cleaning, overall statistics Oslo

Event Number of packets Total number of bytes
Event 1 2,667 3,732,218
Event 2 2,686 3,730,748
Event 3 2,656 3,710,958
Event 4 3,065 4,365,510
Event 5 2,880 4,076,534
Event 6 2,633 3,771,269
Event 7 2,661 3,786,648
Event 8 2,647 3,798,184
Event 9 2,729 3,798,630
Event 10 2,639 3,786,194
Average 2,726.3 3,855,689.3

SD 139.57 206,499.4
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Table 5.9: Application triggered cleaning, overall statistics Drammen

Event Number of packets Number of bytes
Event 1 708 802,488
Event 2 724 945,100
Event 3 740 956,470
Event 4 809 1,071,613
Event 5 824 1,088,836
Event 6 869 1,157,323
Event 7 855 1,144,086
Event 8 929 1,248,783
Event 9 988 1,321,061
Event 10 983 1,339,631
Average 842.9 1,107,539.1

SD 101.85 172,281.2

The first 20 packet lengths of each of the Application triggered cleaning events
are extracted with the python script presented in Appendix B. These sequences
are manually analyzed to identify common packet length sequence to be used
in event attribution. Packet lengths for all events are presented in Figure 5.12,
D and S indicate if the Irobot Roomba is destination or source of the packet. The
yellow marked fields are the common sequences identified in the majority of event
captures. Irobot cloud server is initiating the event with three packets with the
length of [208, 288, 315], the last two packets can occur in mixed order, and all
length can vary with one byte. Three packets are used to keep the complexity of
the signature low. Identified sequence signature for Application triggered cleaning
is [208, 288, 315] with the offset of 1 bytes for all packet sizes. Oslo event 9 is
the only event capture wich does not include the identified signature, expected
success rate of evaluation is therefore 95%.

Figure 5.12: Application triggered cleaning packet length sequence
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To identify Application triggered cleaning two detection algorithms are made,
one identifying the DNS responses 0550315.ingest.sentry.io and s3.amazoneaws.com
and one to identify the sequence signature specified above. Pseudo code for both
algorithms are presented in Figure 5.13 and Figure 5.14.

1 function cleaning_event_detection(event_capture)
2 if ’o550315.ingest.sentry.io’ in event_capture
3 dns1 == True
4 elsif
5 dns1 == False
6 if ’s3.amazonaws.com’ in event_capture
7 dns2 == True
8 elsif
9 dns2 == False

10 if dns1 and dns2 == True
11 cleaning_confidence = + 10
12 return cleaning_confidence

Figure 5.13: The algorithm for DNS detection in Application triggered cleaning
events

1 function detect_ATC(packet_lengths)
2 signature1 = [209,289,316]
3 signature2 = [209.316.289]
4 if signature1 in packet_lengths
5 ATC_confidence = + 10
6 elsif signature1 in packet_lengths
7 ATC_confidence = + 10
8 return ATC_confidence

Figure 5.14: The algorithm for identifying the Application triggered cleaning
packet sequence signature

To evaluate the detection algorithms they are tested on all the capturing files
for Application triggered cleaning, trying to identify both signatures. The results of
the identification are as expected, DNS detection had a success rate of 100% and
the sequence signature detection had a success rate of 95%. The isolated event
can therefore be identified with a high confidence, based on these results.

5.5 Scheduled Cleaning

This section introduce specific configuration and decisions during Scheduled clean-
ing event and analysis. The results from the analysis will be presented at the end
of the section.
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Scheduled cleaning is triggered through configuration of customized cleaning
jobs in the Irobot home application. A scheduled cleaning job was configured spe-
cifying the entire smart map as the cleaning area. Irobot restricts its users to not
configure two scheduled cleanings with less then 3 hours space, cleaning jobs
with less then 3 hours in between creates an error message. During this project
only one scheduled clean was configured, but after the cleaning was finished the
user entered the application changing the configured time. This enabled sched-
uled cleanings to be executed with less then 3 hours in between. It was observed
that whenever a scheduled cleaning job was changed, the Irobot Roomba made a
sound indicating that it got an update. The scheduled cleaning job is most likely
sent to the vacuum cleaner at the time of configuration and then triggered locally.
This way the Irobot Roomba is able to clean without Internet connection at the
triggering time.

Triggering dates and time for Scheduled cleaning are presented in Table 5.10
and 5.11. These events are triggered in a non-realistic way due to time con-
strains, this is supported by Irobot’s own restrictions mentioned above. Timings
from Scheduled cleaning can therefore not be used in the attribution of this spe-
cific event, however it would be a good indication if collected by an attack over
a longer period of time. If a cleaning event is detected every Monday, Wednesday
and Friday at 09:00 it is most likely due to scheduled cleaning, because a human
triggered event would differ more in time. An observation during triggering was
that the Irobot Roomba always started within 30 seconds before the scheduled
time, this is also observed in the actual packet capture. In Figure 5.15 event 2 in
Oslo is shown, and there the traffic starts right before the scheduled timestamp.
This is applicable for all events in the rage of 30-0 seconds before scheduled time.

Table 5.10: Scheduled cleaning triggering date and time overview for Oslo

Event Date Start time End time
1 10.03.2023 10:45 10:54
2 10.03.2023 11:15 11:24
3 10.03.2023 12:15 12:24
4 10.03.2023 13:30 13:39
5 10.03.2023 15:00 15:09
6 10.03.2023 15:30 15:39
7 10.03.2023 15:55 16:04
8 10.03.2023 16:10 16:19
9 11.03.2023 10:10 10:19
10 11.03.2023 10:30 10:39
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Table 5.11: Scheduled cleaning triggering date and time overview for Drammen

Event Date Start time End time
1 25.02.2023 20:30 20:45
2 25.02.2023 21:00 21:15
3 26.02.2023 11:20 11:35
4 26.02.2023 11:50 12:05
5 26.02.2023 12:20 12:35
6 26.02.2023 12:50 13:05
7 26.02.2023 13:20 13:35
8 26.02.2023 13:50 14:05
9 26.02.2023 14:20 14:35
10 26.02.2023 15:00 15:15

Figure 5.15: Start time for Scheduled cleaning in Oslo event 2, cleaning was
scheduled 11:15

Protocol distribution and overall traffic flow are similar as presented for Auto-
mated cleaning and Application triggered cleaning. The two same DNS responses
listed below are observed.

• 0550315.ingest.sentry.io
• s3.amazoneaws.com

Calculations of number of packets and bytes sent and SD are presented in
Table 5.12 and Table 5.13. Average and standard deviation in both Oslo and Dram-
men environment is small indicating small differences in the triggered events, this
could be due to locally triggered events on the Irobot Roomba.
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Table 5.12: Scheduled cleaning, overall statistics Oslo smart home

Event Number of packets Number of bytes
Event 1 2,541 3,669,941
Event 2 2,633 3,678,959
Event 3 2,622 3,660,004
Event 4 2,524 3,629,262
Event 5 2,627 3,658,515
Event 6 2,608 3,729,110
Event 7 2,596 3,645,238
Event 8 2,655 3,685,536
Event 9 2,573 3,713,211
Event 10 2,636 3,768,883
Average 2,601.5 3,683,865.9

SD 43.03 42,219.79

Table 5.13: Scheduled cleaning, overall statistics Drammen

Event Number of pkt Number of bytes
Event 1 996 1,354,755
Event 2 1,052 1,422,052
Event 3 1,150 1,592,566
Event 4 1,317 1,650,499
Event 5 1,166 1,570,805
Event 6 1,179 1,612,050
Event 7 1,160 1,582,275
Event 8 1,177 1,610,090
Event 9 1,205 1,634,883

Event 10 1,170 1,590,726
Average 1,157.2 1,562,070.1

SD 85,66 95,885,11

The 20 first packet lengths were extracted with a python script presented in
Appendix B. The manual analysis of the packet lengths presented in Figure 5.16,
resulted in two packet sequences of outbound traffic from the Irobot Roomba. The
packet lengths varied more than previously and had a byte offset of 15 and 5 bytes
depending on which signature sequence that was used. Both signature sequences
are listed below with the associated byte offset.

• 176, 173, 179, 443, 177, byte offset 15 bytes
• 176, 443, 179, 443, 177, byte offset 5 bytes
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Figure 5.16: Scheduled cleaning packet length sequences

As the DNS signature is the same as for the two previous cleaning events ana-
lyzed, the same detection algorithm is used to evaluate this. Further, a new de-
tection algorithm for the packet length sequence is presented in Figure 5.17. Both
DNS and sequence detection had a success rate of 100% in all capturing files.
Making this a good indication of the event if it is not detected in other events as
well.

1 function detect_application_start(packet_lengths_src)
2 signature1 = [176,173,179,443,177]
3 signature2 = = [176,443,179,443,177]
4 if signature1 in packet_lengths
5 SC_PTC_confidence = + 10
6 elsif signature1 in packet_lengths
7 SC_PTC_confidence = + 10
8 return SC_PTC_confidence

Figure 5.17: Algorithm for scheduled cleaning packet sequence signature detec-
tion

5.6 Physical Triggered Cleaning

This section introduce specific configuration and decisions during Physical triggered
cleaning event and analysis. The results from the analysis will be presented at the
end of the section.

Physical triggered cleaning events are only triggered by pressing the physical
button on the Irobot Roomba. During triggering the user had to press the but-
ton twice to start the cleaning. Event triggering dates and time are presented in
Table 5.14 and Table 5.15. The triggering in Oslo appears more realistic due to
Drammen’s strict triggering plan, these timestamps can therefore not be used to
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differentiate different cleaning events, but could have been a good indication if
captured in a real-life smart environment.

Table 5.14: Physical triggered cleaning date and time overview for Oslo

Event Date Start time End time
1 23.02.2023 18:08 18:24
2 23.02.2023 18:36 19:05
3 23.02.2023 19:14 19:34
4 23.02.2023 20:13 20:35
5 23.02.2023 20:44 21:06
6 09.03.2023 09:43 10:02
7 09.03.2023 10:30 10:50
8 09.03.2023 12:32 12:50
9 09.03.2023 13:16 14:05
10 09.03.2023 17:44 18:05

Table 5.15: Physical triggered cleaning date and time overview for Drammen

Event Date Start time End time
1 25.02.2023 22:00 22:12
2 25.02.2023 22:30 22:45
3 25.02.2023 23:00 23:15
4 25.02.2023 23:20 23:35
5 25.02.2023 23:40 23:55
6 26.02.2023 00:00 00:15
7 26.02.2023 00:20 00:35
8 26.02.2023 00:40 00:55
9 26.02.2023 01:06 01:20
10 26.02.2023 01:31 01:45

Protocol distribution and traffic flow are similar as in the other three cleanings
events presented above. The two same DNS responses are identified as well as
their corresponding TCP sessions. Standard deviation for both environments are
small, indicating that the events are similar and supporting that the hypothesis on
20 events are sufficient.
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Table 5.16: Physical triggered cleaning, overall statistics Oslo

Event Number of packets Number of bytes
Event 1 2,791 3,965,147
Event 2 3,180 4,357,126
Event 3 2,926 4,033,946
Event 4 2,872 4,112,516
Event 5 2,944 4,209,443
Event 6 2,984 4,122,412
Event 7 2,925 4,160,462
Event 8 2,869 4,100,166
Event 9 2,918 4,227,626
Event 10 2,768 3,957,559
Average 2,917.7 4,124,640.3

SD 113.98 122,683.4

Table 5.17: Physical triggered cleaning, overall statistics Drammen

Event Number of packets NUmber of bytes
Event 1 1,078 1,481,677
Event 2 1,087 1,484,930
Event 3 1,125 1,520,872
Event 4 1,088 1,517,429
Event 5 1,150 1,555,605
Event 6 1,086 1,507,084
Event 7 1,092 1,501,894
Event 8 1,115 1,510,971
Event 9 1,098 1,485,863
Event 10 1,100 1,492,331
Average 1,101.9 1,505,865.6

SD 22.05 22,318.19

The first 20 packet lengths are extracted with the same python script as for the
other events, presented in Appendix B. Analysis resulted in the identification of
the same packet sequence as for Scheduled cleaning event, this could be because
these two events are both triggered on the Irobot Roomba locally and not initiated
from the Irobot cloud server. If this is the reason, the identified sequence could
be present in all cleaning events. The extracted sequences are presented in Figure
5.18, yellow marked are the identified sequence and D and S represents if the
Irobot Roomba is destination or source of the packet.
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Figure 5.18: Physical triggered cleaning packet length sequences

The identified signatures are identical as for Scheduled cleaning, the two same
signature detection algorithms were used to evaluate the findings. Both algorithms
had a 100% success rate for identifying Physical triggered cleaning, this means that
neither of the events can be distinguished with these signatures. This attribution
could been done by using timestamps, but the events in this research have too
unrealistic triggering.

5.7 Application Start

This section introduce specific configuration and decisions during Application start
event and analysis. The results from the analysis will be presented at the end of
the section.

Application start events are triggered by the user opening the Irobot applic-
ation. Triggering dates and times are presented in Table 5.18 and Table 5.19.
No specific action was defined during the event, so several different actions was
executed such as, changing scheduled cleaning time, watch the dashboard and
display configuration. Only the initial event traffic will therefore be included in
the application open event.
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Table 5.18: Application start event date and time overview for Oslo

Event Date Start time End time
1 10.03.2023 10:26 10:27
2 10.03.2023 11:06 11:07
3 10.03.2023 11:56 11:57
4 10.03.2023 13:22 13:23
5 10.03.2023 14:58 14:59
6 10.03.2023 15:27 15:28
7 10.03.2023 15:51 15:52
8 10.03.2023 16:07 16:08
9 11.03.2023 10:06 10:07
10 11.03.2023 10:22 10:23

Table 5.19: Application start event date and time overview for Drammen

Event Date Start time End time
1 25.02.2023 20:50 20:52
2 25.02.2023 21:20 21:21
3 25.02.2023 22:20 22:22
4 25.02.2023 22:50 22:52
5 26.02.2023 11:10 11:11
6 26.02.2023 11:40 11:41
7 26.02.2023 12:10 12:11
8 26.02.2023 12:40 12:41
9 26.02.2023 13:10 13:11
10 26.02.2023 13:40 13:41

The protocol distribution analysis identified only TCP packets, no DNS packets
is sent during the event, indication that the requested information pulled from the
Irobot Roomba when the application is started is initiated from a2uowfjvhio0fa.iot.us-
east-1.amazonaws.com. If the smart phone had been located in the same smart
environment, it could be possible to identify a DNS request to this service. No
standard action was performed in the application during this event, the standard
deviation from the calculations presented in Table 5.20 and Table 5.21 is there-
fore large, and only the initiating traffic is relevant to this analysis. During event
5-10 in Drammen, the user performed a scheduled clean configuration resulting
in a high number of bytes sent compared to some of the other events.
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Table 5.20: Application start event overall statistics Oslo

Event Number of packets Number of bytes
Event 1 11 5,202
Event 2 22 8,698
Event 3 20 8,644
Event 4 17 7,135
Event 5 20 8,580
Event 6 20 8,608
Event 7 20 9,213
Event 8 23 9,527
Event 9 20 8,730
Event 10 19 8,877
Average 19.2 8,321.4
SD 3.29 1,258.62

Table 5.21: Application start, overall statistics Drammen

Event Packet number Total bytes sent
Event 1 30 20,875
Event 2 26 19,568
Event 3 8 2,655
Event 4 8 2,659
Event 5 26 19,561
Event 6 34 21,897
Event 7 29 20,222
Event 8 25 19,468
Event 9 33 21,744
Event 10 26 19,570
Average 24,5 16,821.9
SD 9.22 7.519.30

The first 20 packet lengths were extracted with the python script presented in
Appendix B, and the result is presented in Figure 5.19. The yellow marked fields
are a part of the identified packet length sequence. The identified sequences are
[209, 288, 315] and [209, 315, 288], where both sequences have an offset of
1 byte. This is the same packet sequence signature as identified in Application
triggered cleaning, and is therefore used to identify Application start. These se-
quences are therefore generated whenever the Irobot home application is started.
To differentiate these two events the DNS signature found in all cleaning events
have to be identified.
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Figure 5.19: Application start packet length sequences

Evaluation of Application start detection is determined with the same packet
length sequence detection algorithm presented in Figure 5.14. This detection had
a success rate of 90% detection of the event, and it is therefore possible to de-
termine that the application is started with high confidence.

5.8 Bin Remove

This section introduce specific configuration and decisions during Bin remove event
and analysis. The results from the analysis will be presented at the end of the sec-
tion.

Bin remove is triggered when the physical bin eject button is pressed on the
Irobot Roomba i7 and the bin is then released. It is injected by pushing the bin
back into place. Triggering dates and times are presented in Table 5.22 and 5.23,
intervals between the triggering is small, but in analysis it was possible to differ-
entiate when the different traffic occurred. During event triggering the response
from the Irobot Roomba was variable, sometimes it flashed and sometimes it did
not respond at all. The flashing is due to the Irobot Roomba loosing connection
to the charger and not ejection of the bin. The amount of packets and bytes are
also variable most likely due to the inconsistent in the event triggering process,
resulting in a high standard deviation. These calculations are presented in Table
5.24 and Table 5.25.
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Table 5.22: Bin remove date and time overview for Oslo

Event Date Start time End time
1 11.03.2023 17:30 17:31
2 11.03.2023 17:35 17:36
3 11.03.2023 17:40 17:41
4 11.03.2023 17:44 17:45
5 11.03.2023 17:47 17:48
6 11.03.2023 17:49 17:50
7 11.03.2023 17:51 17:52
8 11.03.2023 17:53 17:54
9 11.03.2023 17:55 17:56
10 11.03.2023 18:01 18:02

Table 5.23: Bin remove date and time overview for Drammen

Event Date Start time End time
1 26.02 15:22 15:23
2 26.02 15:30 15:31
3 26.02 15:35 15:36
4 27.02 15:05 15:06
5 27.02 15:10 15:11
6 27.02 15:15 15:16
7 27.02 15:20 15:21
8 27.02 15:25 15:26
9 27.02 15:30 15:31

10 27.02 15:35 15:36
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Table 5.24: Bin remove, overall statistics Oslo

Event Packet number Total bytes sent
Event 1 6 2,512
Event 2 15 5,765
Event 3 12 4,366
Event 4 15 7,869
Event 5 12 5,022
Event 6 17 8,426
Event 7 18 8,492
Event 8 12 5,022
Event 9 11 4,956
Event 10 12 5,022
Average 13 5,745.2
SD 3.43 1,937.64

Table 5.25: Bin remove, overall statistics Drammen

Event Packet number Total bytes sent
Event 1 23 8,610
Event 2 24 10,149
Event 3 9 4,407
Event 4 12 5,022
Event 5 8 4,333
Event 6 9 4,399
Event 7 17 6,595
Event 8 9 4,399
Event 9 15 7,869
Event 10 12 5,022
Average 13,8 6,080.5
SD 5.87 2,112.52

Packet length sequences were extracted with the python script in Appendix B,
and the results are presented in Figure 5.20. The identified sequences are marked
in yellow, packets with the length of 410 or 411 bytes were observed, these lengths
are not observed in other events and is defined as the sequence signature for Bin
remove. The detection algorithm created is presented in pseudo code in Figure
5.21 and is used to identify the signature in all event capture files. The evaluation
result of testing is 100% success rate of signature detection.
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Figure 5.20: Bin remove packet length sequences

1 function bin_remove(br_confidence)
2 if packet.length == 410 or 411 in capture.file
3 br_confident = + 10
4 return br_confident

Figure 5.21: Pseudo code for detection algorithm for Physical triggered cleaning
packet length sequence

5.9 Signature Comparison

This section will present the comparison of the different signatures used for event
attribution in the sections above. First an evaluation test where all signatures are
tested on all events to identify if the signatures are unique. This is followed by an
analysis of the evaluation results.

Remove bin signature seems to be detected in all events except Application
start, this signature is therefore removed from further analysis.

All the different cleaning events, Automated cleaning, Scheduled cleaning, Ap-
plication triggered cleaning and Physical triggered cleaning had the same DNS re-
sponses present in the packet capturing. First a DNS response for FQDN 0550315.in-
gest.sentry.io, followed by a response fors3.amasoneaws.com. These DNS packets
can therefore not be used as signature for any of the specific cleaning events,
but can increase confidence in a cleaning detection. However there are several
similarities between the identified sequences and this will be discussed further.

Signature sequence can not differentiate between Scheduled cleaning or Phys-
ical triggered cleaning. However the traffic sequence on all the scheduled cleaning
events is started within a minute before the scheduled cleaning’s configured trig-
gering time. It is safe to assume that scheduled cleaning is configured every whole
hour or half hour. A normal user would not configure a cleaning at 15:17, but more
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likely at 15:00. If an attacker is monitoring a smart environment during a longer
time period, the two different cleanings can be separated based on reoccurring
identification. A identified cleaning every Monday at 07:59 is most likely a sched-
uled cleaning, since humans are unable to provide the same level of consistency
as IoT devices.

We can assume that the sequence used to identify Application triggered cleaning
and Application start is due to the fact that the application is started, and not the
actual triggering of the cleaning event. It is still possible to differentiate between
these two events with the use of cleaning DNS signature. As all other cleaning
events, it includes a DNS response for FQDN 0550315.ingest.sentry.io and then
s3.amazoneaws.com. If the Application start sequences and the cleaning DNS re-
sponses are detected, an application triggered cleaning is most likely executed. An
element of uncertainty occurs if the user opens the application before or during
another cleaning event, then this could create a false positive.

The only difference between Automated cleaning and Application triggered clean-
ing is the first package in the sequence of Application start. This packet has the
length of 209 or 208 bytes and occurs every time the application is started. The
identification of this is therefore a good attribute to differentiate for these events.

5.10 Wireless and Wired Traffic Capture Comparison

This section will compare the corresponding LAN and WLAN captures, and de-
termine if the same method and identification can be applicable to identify events
only based on wireless traffic as well.

WLAN and LAN traffic were captured for all triggered events, but due to the
thesis’ time constrains only identification of signatures and detection algorithms
on LAN captures was conducted. The simulated WAN traffic had more available
attributes, due to the Wi-Fi’s encryption. In [41] they have already proposed a
method to identify actions based on packet lengths. This research therefore fo-
cused on the WAN traffic, to be able to include DNS as an identifier. To evaluate if
the same method and algorithms are applicable to WLAN traffic a comparison of
two corresponding captures was done. Through analysis we identified that the ad-
ded Wi-Fi header was 79 bytes and the base filter of 97 bytes in LAN captures was
therefore converted to 176 bytes in WLAN. When this filter was applied, the same
packet sequences as in the simulated WAN traffic were observed. These findings
are presented in Figure 5.22. With the basefilter applied, it was observed that the
WLAN capture included less packets than the corresponding LAN capture. This
could be the result of retransmission, dual Wi-Fi channels, signal disruption or
packet collision on the NIC in monitoring mode. When the NIC was configured in
monitoring mode, it collected all Wi-Fi traffic in the area. This includes traffic from
other SSIDs within wireless coverage. The original ISP modem was also broadcast-
ing it’s SSIDs, causing high Signal to Noise Ratio (SnR) for more than one SSID.
Without control traffic between the AP and the NIC it could potentially lose traffic.
Regardless of the packet loss it is still possible to identify similar patterns in WLAN
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traffic as in LAN traffic.

(a) WLAN

(b) LAN

Figure 5.22: WLAN and LAN comparison

WLAN captures need more analysis before they can be implemented in the
detection algorithm. An advantage of WLAN traffic is the availability of MAC ad-
dresses, an attacker can therefore easily identify the robot vacuum cleaner and
filter traffic based on this information. Compared to LAN where an attacker will
have to eavesdrop for up to 24 hours before the Irobot traffic can be identified.

Number of packets or bytes transmitted could also be used as an attribute to
identify that there has been triggered a cleaning within the smart environment.
This detection will be applicable for both LAN and WLAN eavesdropping.





Chapter 6

Evaluation

This chapter presents the evaluation of the identified signatures and algorithms
in a live smart environment. First the evaluation method and live smart envir-
onments are presented, this is followed by the manual data processing conduced
on the captured files. Then evaluation and results are presented with the detec-
tion success rate. During the evaluation the events Scheduled cleaning and Physical
triggered cleaning are merged into one event due to identical signatures. The rest
of the events Automated cleaning, Application triggered cleaning, Application start
and Remove bin are included.

6.1 Evaluation Method

This section describes the method used to evaluate the thesis results. The evalu-
ation process reuse network infrastructure, capturing process and data filtering as
in the original research. Some new aspects are included in the evaluation to make
the environments more representative for general smart environments. These new
aspects are describes in detail further in this section.

Event triggering was conducted in three different environments, now called
Guestroom, Bedroom and Living room. The environment layouts are shown in
Figure 6.1. The Irobot Roomba i7 was reverted to factory default for each of the
evaluation environments, this mitigates the chance of any interference between
the environments. User input such as robot, floor and room names were con-
figured differently for all environments. A map discovery process was executed as
part of the initial set-up phase.

59
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(a) Guestroom (b) Bedroom

(c) Living room

Figure 6.1: Evaluation environments

For each of the evaluation environments there were connected an additional
IoT device to the same SSID as the Irobot Roomba. These devices generated traffic
simulating a real-life smart environment. The additional IoT devices and associ-
ated evaluation environments are listed below.

• Guestroom: IPAD connected
• Bedroom: Laptop connected
• Living room: Smart phone connected

All events were triggered once in each of the evaluation environments. Each
event had a 30 minute time window where the event was triggered and finished
within. An example of an overall testing schedule is presented in the list below,
where the first event is triggered between 08:00 and 08:30.

• First event: between 08:00 and 08:30
• Second event: between 08:30 and 09:00
• Third event: between 09:00 and 09:30
• Fourth event: between 09:30 and 10:00
• Fifth event: between 10:00 and 10:30
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• Sixth event: between 11:30 and 11:00

To ensure that the order of events is not affecting the results it was decided
by a python script, using the library random. Script logic is presented in Figure
6.2. This function was executed three times, ensuring that the order of events was
random and had minimum influence cross events.

Figure 6.2: Pseudo code for event order randomize function

1 event_list = [scheduled_cleaning, Automated_cleaning,
Application_triggered_cleaning, Application_start,
Physical_triggered_cleaning, Bin_remove]

2 for three rounds do:
3 shuffle event_list
4 print shuffeled list

The basefilter created during baseline analysis in Chapter 5 is applied to all the
capturing files. This excluded traffic not relevant to the actual event triggered. One
additional processing step was included to be able to identify only the relevant
corresponding Irobot cloud server. During the restart of the Irobot Roomba it had
to request a DNS record for a2uowfjvhio0fa.iot.us-east-1.amazonaws.com before
establishing a TCP connection, this DNS response was extracted with a python
script presented in Appendix C, an pseudo code is presented in Figure 6.3. This
was further identified in Wireshark where the TCP hand-shake towards one of
the responded IP addresses was found. The IP observed in the TCP handshake
was added to the Wireshark filter. All traffic towards 50315.ingest.sentry.io and
s3.amazoneaws.com was therefore also excluded, but since only the DNS responses
are used, all DNS traffic is also included in the Wireshark filter and is possible to
identify.

Figure 6.3: Pseudo code for IP extraction from DNS response

1 Fuction find_dns_response(event_capture)
2 if a2uowfjvhio0fa.iot.us-east-1.amazonaws.com in event_capture
3 filter = Responded Ip-addresses and dns

The new basefilter was applied together with a time filter extracting one cap-
turing file for each 30 minutes, resulting in one event per file. Then event detection
algorithm were used on all the event files to evaluate the level of detection in the
general smart environment.

6.2 Evaluation Results

This subsection presents the data processing and rule detection results. First the
event order generated by the randomized script is presented. This is followed by
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the DNS extraction and identification of the corresponding Irobot cloud server
traffic. Evaluation results are presented and commented. Results from the ran-
domize event order function, are presented in Table 6.1. The randomization of
the event triggering order mitigates the influence cross events.

Table 6.1: Evaluation environments’ event triggering order

Order Guestroom Bedroom Living room
1 Automated clean Application start Remove bin
2 App triggered clean Scheduled cleaning App triggered clean
3 Scheduled cleaning App triggered clean Physical triggered
4 Physical triggered Physical triggered Application start
5 Application start Automated clean Scheduled cleaning
6 Bin remove Bin remove Automated cleaning

All capture files got processed by the DNS extraction algorithm identifying
DNS responses for a2uowfjvhio0fa.iot.us-east-1.amazonaws.com and extract in-
formation about the packet enabling identification in Wireshark. DNS responses
for packet captures in the three environments are shown in Figure 6.4, several
IP addresses are responded and the Irobot Roomba choose one of these to and
establish a TCP connection to.
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(a) Guestroom DNS extraction

(b) Bedroom DNS extraction

(c) Living room DNS extraction

Figure 6.4: Evaluation environment DNS extraction

A TCP handshake towards one of the IPs in the DNS response was identi-
fied right after the DNS response in Wireshark. The identification of these are
presented in Figure 6.5. This is a easy way for any attacker to identify corres-
ponding traffic based on DNS requests. The used basefilters are listed below, and
are identical for all environments except the IP address used to identify the Irobot
cloud server.

• ((frame.time >= "Apr <day>, 2023 XX:00:00") && (frame.time <= "Apr
<day>, 2023 XX:30:00")) AND
• (frame.len > 97) AND
• ((ip.addr == <DNS response IP>) or (dns && ip.dst == 192.168.0.56))
• DNS response IPs:

◦ Guestroom: 54.237.86.141
◦ Bedroom: 3.93.155.217
◦ Living room: 3.219.113.226
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(a) Guestroom corresponding Irobot cloud detection

(b) Bedroom corresponding Irobot cloud detection

(c) Living room corresponding Irobot cloud detection

Figure 6.5: Evaluation environments corresponding Irobot cloud detection

All 18 filtered event capturing files were processed by the detection algorithm
in Appendix A. No manual analysis was done to the files before hand and detec-
tion results are presented in Table 6.2. Scheduled cleaning and Physical triggered
cleaning are merged to Cleaning but no further signature identification is done.
The event is either Scheduled cleaning or Physical triggered cleaning.

Table 6.2: Evaluation results

Event Auto clean App clean Cleaning App start Bin removed
True positive 100% 100% 100% 100% 0%
False positive 0% 0% 0% 0% 66%

The rules and detection algorithm were able to detect all events, except Bin
remove, with 100% accuracy. Cleaning detection resulted in True positive for all
cleaning events. Bin remove detection gave False negative for all the bin remove
events. This might be because the ejection of the bin was executed without causing
the Irobot Roomba to lose connection to the charging connectors. The detection
algorithm also had False positive identification of Bin remove event for 66% of the
events. The bin remove signature is therefore not able to detect bin removal.
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Discussion

This chapter discusses the challenges, processes and decisions throughout the re-
search. The main topics is the thesis’ answer to the research questions. Further,
the limitation of Wi-Fi scope, how the events were triggered, why human analysis
was selected and the reason to exclude the complexity of eavesdropping.

7.1 Our Answer to Research Question 1

Which private information can be gathered from a robot vacuum cleaner by
carrying out a passive sniffing attack in a smart environment?

It is possible to identify the presence of an Irobot Roomba i7 vacuum cleaner
inside a smart environment based on the WLAN or LAN capture itself. In WLAN,
an attacker can eavesdrop and lookup all MAC addresses against open source
registers. For LAN capture the presence of DNS requests to any Irobot owned
domain will place a device behind the WAN address.

The signature detection algorithm proposed and evaluated in this project was
able to identify and attribute different events conducted on the Irobot Roomba
i7. Detection of Automated cleaning exposed information of when the user left
the location, revealing private information. By observing the last five Automated
cleaning events in Oslo is was possible to identify when the user left work, collect-
ing and analysis of events triggering over a longer time period can expose user
behaviour. Application triggered cleaning and Application start was also identified
exposing user interaction with the Irobot Roomba.

If implementations to differentiate physical triggered and scheduled clean-
ing are added, the detection of physical triggered cleaning will reveal user activ-
ity inside the smart environment. Schedule cleaning on the other hand can give
away user routines. We can assume that users usually configure scheduled clean-
ing when there is a high probability that there is no one at the location. This can
reveal environment routines.

For Application triggered cleaning and Application start it is harder to identify
the actual privacy exposure. The identification of these events can reveal more
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information if observed during longer time periods. Then user patterns and beha-
viors can be exposed. Users could trigger cleaning every time they are leaving for
work or the gym.

As mentioned for WLAN capturing, an attacker can extract private information
as soon as the capturing is started because identification of the traffic is based in
MAC addresses. For LAN, an attacker will have to eavesdrop WAN traffic for up to
24 hours before the DNS request to a2uowfjvhio0fa.iot.us-east-1.amazonaws.com
is sent, and the corresponding Irobot cloud service is identified.

7.2 Our Answer to Research Question 2

How can information exposed by the eavesdropping be misused by an at-
tacker?

Private information exposed in an attack can be utilized to identify user beha-
vior and routines. This could potentially reveal habits of when the user is leaving
the environment, and identify user presence with high confidence. This informa-
tion can be used to target user environment during empty hours, or address the
environment when the user is present. Such information can also be sold to other
actors.

The identification of devices can be used to target attacks, based on IoT in-
ventory. Spear phishing [58] will be more effective. They can also target attacks
to exploit known or unknown vulnerabilities for the identified devices. This will
increase the success rate of an attack. Exposed privacy information will threaten
the security of any smart environment.

7.3 Our Answer to Research Question 3

Which security measures can be implemented to limit the exposed data and
decrease the risk of misuse?

The most efficient way to defend against the detection algorithm, would be
to implement traffic shaping. This could disrupt the predicted network traffic
flows, pad existing packets or inject packets to break the patterns. This will be
an effective way to defend against this in LAN or WLAN eavesdropping. A disad-
vantage with traffic shaping, will be higher latency and more data processing on
local equipment. Implementation of traffic shaping could be on the robot vacuum
cleaner itself, this would secure the communication regardless of the smart home
environment infrastructure. Another approach is to implement this as a service
within the smart environment, then the overall security of the smart environment
would increase.

Irobot should implement random MAC addressing [59] for WLAN communic-
ation. This would allow the Irobot vacuum cleaner to use a random MAC address
each time is connects to a new network, or change randomly to mislead an at-
tacker.
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As for WAN or LAN traffic, DNS is an easy identifier due to the use of Wi-Fi
channel encryption. The initial session needs to be established based on a DNS
request revealing the the IP address to the initial corresponding host. However,
the daily change of corresponding host could be communicated through the secure
connection hiding the change in cloud server host. This would make the detection
of Irobot Roomba traffic harder to conduct by an attacker.

7.4 Collection of Wi-Fi Traffic

The selected TP-Link AP had Internet Group Management Protocol (IGMP) [60]
default enabled. This protocol enables devices on a local network to subscribe
to different multicast groups. Return traffic will then be addressed to the multic-
ast group and not the device’s MAC address. Due to this functionality, only the
outbound traffic generated form the robot vacuum cleaner was captured during
the standby event. Initial analysis of the standby traffic verified this when WLAN
basefilter was applied. These findings are shown in Figure 7.1.

Figure 7.1: Wireshark WLAN capture, included basefilter and enabled IGMP

If IGMP enabled Wi-Fi would to be in the scope of this thesis, a process of fil-
tering based on multicast group addresses should have been implemented. A 20
minutes Application triggered cleaning capturing was conducted in Oslo capturing
only traffic including the MAC address of the AP. The capture included 9,342 pack-
ets, which is 340% more than LAN traffic average for the same event. By applying
a Wireshark filter, excluding all traffic except Irobot and multicast MAC addressed,
we identified the new IGMP traffic flow, shown in Figure 7.2.
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Figure 7.2: WLAN IGMP application triggered cleaning test in Oslo

This increases the complexity of the filtering mechanisms and identification of
multicast traffic in Oslo and Drammen. The complexity occurs when more then
one IoT device is connected to the same network. Devices can subscribe to the
same or a new multicast group making the wireless environment more complex
and hard to navigate in. IGMP is not used in all Wi-Fi networks [14] and it is
therefor disabled on the AP.

7.5 Event Triggering

As shown in Chapter 5, several events were triggered during the same day and
with limited time between them. The reason for this is the time constraint of
this master project and the availability of smart environments. This increases the
possibility of cross event influence, especially in the end of cleaning when the
Irobot Roomba uploads cleaning data to the cloud service at s3.amazonsaws.com.
To mitigate the influence, it was decided to only focus on the event initiation and
not the end of cleaning reporting. Event triggering traffic is assumed to be the
same regardless of previous events.

Real-life simulation of a smart environment is hard to recreate as there will
not be triggered 5 cleaning events, within 2 hours. Event triggering timestamps
in this project will appear unrealistic due to structured triggering in a short time
period. Timestamps captured and identified in this research can therefore not be
used in attributing events, but as mentioned in the analysis it could be a good
attribute to include in the analysis and extraction of user private information.

7.6 Method of Analysis

Both human-based analysis and machine learning were discussed as the traffic
analysis method in this project. Several other researches have used machine learn-
ing to extract information from network traffic based on various attributes. During
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the literature review no documentation describing Irobot Roomba’s communica-
tion pattern or protocols was found, Irobot did also not reply with information
upon requests for this information. Either way, the data would have to be pre-
processed by a human to identify which attributes that could be used in further
analysis. The analysis method was therefore decided to be manual human-learn
rule-based learning.

7.7 The Complexity of Eavesdropping

The level of complexity of conducting an eavesdropping attack for WLAN, LAN
or WAN is not addressed in this thesis. This is a topic which should be addressed
in separate research, due to the variety of devices and configurations in different
smart environments. Smart environments used in this project only serve Internet
access to exclude possible local configuration.

In wireless eavesdropping, an attacker would only need to be in wireless range
of the targeted devices to collect corresponding network traffic. Eavesdropping
devices can be placed in the vicinity of the smart environment or installed in-
side an environment, collected data can be stored locally or exported to a online
service through Internet connection. There are pros and cons with the different
approaches which is not addressed. For LAN and WAN eavesdropping the attacker
would need physical access to the local network, or exploit remote access to net-
work devices. These operations challenge both physical and technical security and
are therefore out of scope for this thesis.





Chapter 8

Conclusions

The primary objective of this project is to evaluate if private information is exposed
by conducting a passive network eavesdropping attack on a smart environment
installed with a robot vacuum cleaner. In addition it addresses the potential risks
and countermeasures to defend against such attacks.

In order to meet the project requirements, a robot vacuum cleaner survey was
conducted to choose the most relevant vacuum cleaner available. The decision
was based on popularity and open-source review sites where Irobot Roomba i7
was identified as the most suitable. In order to determine if private information is
exposed, two smart environments were configured to conduct testing and collec-
tion of data generated by the robot vacuum cleaner. A series of event objectives
were defined based on the potential private information they could reveal if detec-
ted. Captures from the different events were analyzed to identify irrelevant traffic
to be removed and signatures to be used in event detection.

To ensure validity of the identified signatures, three evaluation environments
were configured presenting as live smart environments. All the events were triggered
within these environments and used as input in a signature detection algorithm
to determine if the signatures are consistent and possible to detect.

In conclusion, the identified signatures and detection algorithms were able to
identify Automated cleaning, Application triggered cleaning and Application start,
conducted on the Irobot Roomba only based on data from passive network eaves-
dropping attacks. The thesis also propose different defense mechanisms that would
make the proposed signatures and detection to fail. As the time constrains and re-
sources were limited, only one robot vacuum cleaner was used in the project, and
the complexity of eavesdropping is not addressed.

8.1 Future Work

Future research should look into development of an automated tool, which can
capture, process and analysis network traffic automatically based on the attributes
used in this research. This would ease the process and enable researches to extract
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similar results from a series of robot vacuum cleaners. In addition it could be
valuable to compare different vendors and privacy differences cross these vendors.
This would contribute to better security awareness and design for all users of robot
vacuum cleaners.

Further analysis of more events and new robot vacuum cleaners would be in-
teresting. Live smart environments can be designed with continuous packet cap-
turing and event triggering based on normal user behaviour. Live detection of
such events should also be developed which would decrease the detection time
and amount of storage acquired.
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Appendix A

Event Detection Algorithm

1 # Python code, Signeture detection
2 import pyshark
3 from pyshark.packet import consts
4 from pyshark.packet.common import Pickleable
5 import matplotlib
6 import numpy
7 import os
8

9

10 def cleaning_conf(c_conf):
11

12 dns_o_i_s_i = False
13 dns_aws = False
14 clean_end = None
15

16 #Loop all packets in capture
17 for packet in cap:
18

19 #find DNS response lager then 100 bytes
20 if packet.highest_layer == ’DNS’ and packet.ip.dst_host == wan_addr

:
21 #print(’dns’)
22 #find cleaning dns response
23 if packet.dns.resp_name == ’o550315.ingest.sentry.io’:
24 dns_o_i_s_i = True
25 #print(’dns1’)
26 if packet.dns.resp_name == ’s3.amazonaws.com’:
27 dns_aws = True
28 #print(’dns2’)
29

30 if dns_o_i_s_i and dns_aws == True:
31 c_conf =+ 10
32 return c_conf
33

34 return c_conf

81
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35

36 def get_type_of_cleaning():
37 indication_sc = 0
38 indication_tc = 0
39 cleaning_type = None
40 clean_start = None
41

42 #Loop through all packets in capture
43 for packet in cap:
44 #Add indication for sc
45 if packet.ip.dst_host == ’192.168.0.56’ and packet.length == (’

1101’ or ’1107’):
46 indication_sc = indication_sc + 1
47

48 #Add indication for tc
49 if packet.ip.dst_host == ’192.168.0.56’ and packet.length == (’1105

’ or ’1106’ or ’1099’):
50 indication_tc = indication_tc + 1
51

52 if indication_sc > indication_tc:
53 cleaning_type = ’scheduled cleaning’
54 if indication_sc < indication_tc:
55 cleaning_type = ’triggered cleaning’
56

57

58 return cleaning_type
59

60 def open_application_conf(oa_conf):
61 #open application True/False
62 open_application = False
63 ao_time = ’Opening time not identified’
64 oa_initiator = [209, 289, 316]
65 oa_initiator_1 = [209, 315, 289]
66 for packet in cap:
67 if packet.length == ’209’:
68 ao_time = packet.sniff_time
69 #print(ao_time)
70

71 if 209 in packet_length[0:20]:
72 oa_index = packet_length_dst.index(209)
73 oa_start_compare = packet_length_dst[oa_index:oa_index + len(

oa_initiator)]
74 open_application = numpy.allclose(oa_initiator,

oa_start_compare, atol= 3)
75 open_application_1 = numpy.allclose(oa_initiator_1,

oa_start_compare, atol= 3)
76 if (open_application or open_application_1) == True:
77 oa_conf =+ 10
78 return oa_conf
79
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80 if 208 in packet_length[0:20]:
81 oa_index = packet_length_dst.index(208)
82 oa_start_compare = packet_length_dst[oa_index:oa_index + len(

oa_initiator)]
83 open_application = numpy.allclose(oa_initiator,

oa_start_compare, atol= 3)
84 open_application_1 = numpy.allclose(oa_initiator_1,

oa_start_compare, atol= 3)
85 if (open_application or open_application_1) == True:
86 oa_conf =+ 10
87 return oa_conf
88

89 if 207 in packet_length[0:20]:
90 oa_index = packet_length_dst.index(207)
91 oa_start_compare = packet_length_dst[oa_index:oa_index + len(

oa_initiator)]
92 open_application = numpy.allclose(oa_initiator,

oa_start_compare, atol= 3)
93 open_application_1 = numpy.allclose(oa_initiator_1,

oa_start_compare, atol= 3)
94 if (open_application or open_application_1) == True:
95 oa_conf =+ 10
96 return oa_conf
97

98

99

100 return oa_conf
101

102 def find_packet_seq(tc_confident):
103 triggered_cleaning = [503, 175, 509, 1106, 179, 439, 1099, 179, 445,

1105, 176]
104 scheduled_cleaning = [179, 447, 1107, 176, 476, 176, 617, 179, 253,

626, 179, 447, 1107]
105 oopen_application = [209, 289, 316, 176, 187, 409]
106 bin_entered = [179, 186, 410]
107 auto_clean = [316, 289, 176, 187, 409]
108

109 if 503 in packet_length:
110 tc_index = packet_length.index(503)
111 tc_compare = packet_length[tc_index:tc_index + len(

triggered_cleaning) ]
112 tc_test = numpy.allclose(triggered_cleaning, tc_compare, atol= 1)
113

114 if tc_test == True:
115 tc_confident = tc_confident + 10
116

117 return tc_confident
118

119 def auto_clean_conf(ac_conf, packet_length):
120 auto_clean = [316, 289, 176, 187, 409]
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121 auto_clean_1 = [289, 316, 176, 187, 409]
122

123 if 207 in packet_length[0:30]:
124 return ac_conf
125 if 208 in packet_length[0:30]:
126 return ac_conf
127 if 209 in packet_length[0:30]:
128 return ac_conf
129

130

131 if 316 in packet_length:
132 ac_index = packet_length.index(316)
133 ac_start_compare = packet_length[ac_index:ac_index + len(auto_clean

)]
134 ac_indication = numpy.allclose(auto_clean, ac_start_compare, atol=

1)
135 if ac_indication == True:
136 ac_conf =+ 10
137 return ac_conf
138

139 if 315 in packet_length:
140 ac_index = packet_length.index(315)
141 ac_start_compare = packet_length[ac_index:ac_index + len(auto_clean

)]
142 ac_indication = numpy.allclose(auto_clean, ac_start_compare, atol=

1)
143 if ac_indication == True:
144 ac_conf =+ 11
145 return ac_conf
146

147 if 288 in packet_length:
148 ac_index = packet_length.index(288)
149 ac_start_compare = packet_length[ac_index:ac_index + len(

auto_clean_1)]
150 ac_indication = numpy.allclose(auto_clean_1, ac_start_compare, atol

= 1)
151 if ac_indication == True:
152 ac_conf =+ 12
153 return ac_conf
154

155 if 289 in packet_length:
156 ac_index = packet_length.index(289)
157 ac_start_compare = packet_length[ac_index:ac_index + len(

auto_clean_1)]
158 ac_indication = numpy.allclose(auto_clean_1, ac_start_compare, atol

= 1)
159 if ac_indication == True:
160 ac_conf =+ 13
161 return ac_conf
162
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163 return ac_conf
164

165 def trigger_clean_conf(tc_conf, oa_conf, c_conf):
166

167 #If there is a cleaning and tha application is opened, we can say that
it is likely that is has been a triggered clean

168 if oa_conf and c_conf == 10:
169 tc_conf =+ 10
170

171

172 return tc_conf
173

174 def physical_cleaning_conf(pc_conf, packet_length_src):
175 physical_clean = [176, 173, 179, 443, 177]
176 physical_clean_1 = [176, 443, 179, 443, 177]
177 count = 0
178 #The value can be 172, 176, 175 and 179
179 for packet in packet_length_src:
180

181 if 172 <= packet <= 179:
182 pc_compare = packet_length_src[count:count + len(physical_clean)]
183 pc_indicator = numpy.allclose(physical_clean, pc_compare, atol=

15)
184 pc_indicator_1 = numpy.allclose(physical_clean_1, pc_compare,

atol= 5)
185

186 if pc_indicator == True:
187 pc_conf =+ 10
188 return pc_conf
189

190 if pc_indicator_1 == True:
191 pc_conf =+ 11
192 return pc_conf
193

194 count = count + 1
195

196

197 return pc_conf
198

199 def remove_bin(br_conf):
200

201 removebin_value = ’410’
202 for packet in cap:
203 if packet.length == ’410’:
204 return 10
205 if packet.length == "411":
206 return 10
207 return 0
208

209 def dns_cleaning(c_conf, dns_names):
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210

211 if ’o550315.ingest.sentry.io’ and ’s3.amazonaws.com’ in dns_names:
212 return 10
213 else:
214 return 0
215

216 # MAIN Function is starts
217

218

219 folder = [r’C:\Users\benja\Documents\Mater test results\LAN\Live\Env3_dns’]
220 files = os.listdir(folder[0])
221 #print(folder[0] + ’\\’ + files[0])
222 wan_addr = ’192.168.0.56’
223

224 for file in files:
225 ac_conf = 0
226 oa_conf = 0
227 sc_conf = 0
228 tc_conf = 0
229 rb_conf = 0
230 pc_conf = 0
231 c_conf = 0
232

233

234 file_path = str(folder[0] + ’\\’ + file)
235 cap = pyshark.FileCapture(file_path)
236 cap.load_packets()
237 packet_length = [2000]
238 packet_length_dst = [2000]
239 packet_length_src = [2000]
240 packet_time = []
241 dns_names = []
242

243

244

245 for packet in cap:
246 if packet.highest_layer != ’DNS’:
247

248 if int(packet.length) != packet_length[-1]:
249 packet_length.append(int(packet.length))
250 #packet_time.append(int(packet.sniff_time))
251

252 if packet.ip.dst_host == wan_addr:
253 packet_length_dst.append(int(packet.length))
254

255 if packet.ip.src_host == wan_addr:
256 packet_length_src.append(int(packet.length))
257 else:
258 dns_names.append(packet.dns.resp_name)
259
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260

261

262

263 print(file)
264 #print(packet_length_dst)
265 ac_conf =+ auto_clean_conf(ac_conf, packet_length)
266 oa_conf =+ open_application_conf(oa_conf)
267 #c_conf =+ cleaning_conf(c_conf)
268 c_conf =+ dns_cleaning(c_conf, dns_names)
269 tc_conf =+ trigger_clean_conf(tc_conf, oa_conf, c_conf)
270 #pc_conf =+ physical_cleaning_conf(pc_conf, packet_length_src)
271 rb_conf =+ remove_bin(rb_conf)
272 #print(packet_length_dst[0:20])
273 #print(dns_names)
274

275 #print("Auto clean " + str(ac_conf) + ’ Open application ’+ str(
oa_conf) + ’ Cleaning ’ + str(c_conf) + ’ triggered ’ + str(
tc_conf) + ’ Pysical ’ + str(pc_conf))

276 if ac_conf > 0:
277 print(’Auto Clean’)
278 if tc_conf > 0:
279 print(’Triggered Cleaning’)
280 if c_conf > 0 and ac_conf == 0 and tc_conf == 0:
281 print(’Scheduled or Physical cleaning’)
282 if rb_conf > 0:
283 print(’Bin is removed’)
284 if oa_conf > 0 and tc_conf == 0:
285 print(’application is opened’)





Appendix B

Packet Lengths Extraction
Algorithm

1 import pyshark
2 from pyshark.packet import consts
3 from pyshark.packet.common import Pickleable
4 import matplotlib
5 import numpy
6 import os
7

8 folder = [r’filepath’]
9 files = os.listdir(folder[0])

10 #print(folder[0] + ’\\’ + files[0])
11 sum_lenght= []
12 sum_nr = []
13 print(files)
14 for file in files:
15

16 file_path = str(folder[0] + ’\\’ + file)
17 #print(file)
18 cap = pyshark.FileCapture(file_path)
19 cap.load_packets()
20 packet_lengths = []
21 packet_count = 0
22

23

24

25 for packet in cap:
26

27 # if packet.ip.dst_host == ’192.168.0.56’:
28 # packet_lengths.append(’D ’ + packet.length)
29 # else:
30 # packet_lengths.append(’S ’ + packet.length)
31 packet_lengths.append(int(packet.length))
32 packet_count = packet_count + 1

89
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33

34

35 print(file)
36 print(packet_count)
37 print(sum(packet_lengths))
38 sum_lenght.append(sum(packet_lengths))
39 sum_nr.append(packet_count)
40 #if len(packet_lengths) >= 20:
41 # print(packet_lengths[0:20])
42 #else:
43 # print(packet_lengths[0:len(packet_lengths)])
44

45

46 print(sum(sum_lenght)/10)
47 print(sum(sum_nr)/10)
48 print(sum_lenght)
49 print(sum_nr)
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DNS Extraction Algorithm

1 import pyshark
2 import os
3

4

5 def dns_ip_find ():
6

7

8 #Loop all packets in capture
9 for packet in cap:

10

11 #find DNS response lager then 100 bytes
12 if packet.highest_layer == ’DNS’ and packet.ip.dst_host == ’

192.168.0.56’:
13 #print(’dns’)
14 #find cleaning dns response
15 if packet.dns.resp_name == ’a2uowfjvhio0fa.iot.us-east-1.

amazonaws.com’:
16 print(packet.dns.pretty_print())
17 print(packet.sniff_time)
18 print(packet.number)
19 print(’dns1’)
20

21 if packet.dns.resp_name == ’unauth1.prod.iot.irobotapi.com’:
22 print(packet.dns.pretty_print())
23 print(packet.sniff_time)
24 print(’dns1’)
25

26 if packet.dns.resp_name == ’disc-prod.iot.irobotapi.com’:
27 print(packet.dns.pretty_print())
28 print(packet.sniff_time)
29 print(’dns1’)
30

31

32 if packet.dns.resp_name == ’0.irobot.pool.ntp.org’:
33 print(packet.dns.pretty_print())
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34 print(packet.sniff_time)
35 print(’dns1’)
36 if packet.dns.resp_name == ’o550315.ingest.sentry.io’:
37 print(packet.number)
38

39

40

41

42 return None
43

44

45 folder = [r’C:\Users\benja\Documents\Mater test results\LAN\Live\Env1_dns’]
46 files = os.listdir(folder[0])
47

48 for file in files:
49

50 print(file)
51 file_path = str(folder[0] + ’\\’ + file)
52 cap = pyshark.FileCapture(file_path, display_filter=’dns’)
53 cap.load_packets()
54

55 dns_ip_find()
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