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Abstract

Surveillance video is often a crucial piece of evidence in criminal investigations.
It is time critical to collect the video data before it is made unavailable due to
privacy policies or hard drive storage capacities. The video data is often deleted
within a week or so, and if it’s not collected by then, the evidence might be lost.
Additional evidence may surface during the investigation in certain criminal cases,
and retrieving deleted surveillance videos is often crucial.

The recovery of deleted data, data from unallocated areas of the hard drives, is
commonly known as carving. There are several methods of carving data; search-
ing for a header-footer signature is one of the most basic methods and is suit-
able for files with a recognizable signature to determine the start and end of the
file. Another reliable method is frame-based carving, which involves searching for
the smallest parts of a video (frames) and reconstructing the video. This method
can effectively handle fragmented and partly overwritten files. However, when it
comes to retrieving surveillance video, it may not always be successful due to the
unique file formats used by surveillance systems.

The surveillance systems store timestamps along with the video data to help
determine when an incident occurred. And while the systems are running, they
are constantly storing new video data, and either by privacy policies or to prevent
reaching storage capacity, the system deletes older video data.

We propose carving methods for several surveillance systems, including
Milestone, Mirasys, Avigilon, and Detec, that recover video data within a time-
frame of interest. By identifying patterns surrounding timestamps in the video
data, our methods search for those patterns with a regular expression. The regu-
lar expression matches a range of timestamps to include a time frame of interest.
In the data surrounding the timestamps, we find information to carve out the
corresponding frame data. Our results indicate that the methods have very high
precision and recall values for retrieving old video data not yet overwritten.

We also present a method and a tool to discover patterns of timestamps, sig-
natures, offsets, and size information within the video data. We use this method
in our video data analysis and present these patterns as part of developing the
carving algorithms. We hope this method and tool may lay the foundation for
recognizing patterns in other systems.
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Sammendrag

[ straffesaker er ofte overvakingsfilm en viktig del av bevisbildet. Det er viktig
a fa innhentet opptakene sa tidlig som mulig pa grunn av krav om sletting og
lagringsplass pa overvakingssystemene. Pa grunn av personvernregler blir ofte
opptak slettet etter en uke, og da kan bevis forsvinne om det ikke er innhentet
innen det. I lgpet av en etterforsking kan det ogsa dukke opp nye bevis som gjor
nye omrader eller tidsrom aktuelt for innhenting av overvakingsmateriale, og da
kan gjenoppretting av slettede opptak vere avgjgrende.

Gjenoppretting av slettede data fra uallokerte omréder pa en harddisk er kjent
som ’carving’. Det finnes flere metoder for a gjenopprette data, og en av de mer
grunnleggende er & sgke etter kjente start- og slutt-signaturer i en fil. For denne
er det viktig at filtypen har en definert start og slutt. En annen utprgvd metode er
bilde-basert gjenoppretting. Denne leter etter de miste bestanddelene i en videofil,
enkeltbilder, og gjenoppretter videoen ved & sette samme alle enkeltbildene. I
tillegg kan denne metoden handtere filer som er delvis overskrevet, samt filer
som er lagret pa spredte plasser pa harddisken. Men, disse generiske metodene
kan ha problemer med & gjenopprette overvikingsmateriale pa grunn av at dette
ofte lagres i proprietere filformater.

For all videodata som lagres er det sveert viktig & lagre tidspunkt sammen med
videoen, slik at det er mulig & tidfeste en hendelse. Og mens overvakingssystemer
kjgrer lagrer de en konstant strgm med ny videodata, og sletter gammel data
fortlgpende, enten pa grunn av personvernhensyn eller for & unnga at lagrings-
plassen gar fullt.

Vi presenterer metoder som gjenoppretter overvakingsmateriale fra flere over-
vakingssystemer, inkludert Milestone, Mirasys, Avigilon og Detec, der gjenoppret-
tingen fokuserer pé et gitt tidsrom. Ved a finne gjentakende mgnster omkring
tidsstempler i videodataene, lages et sgkemgnster med mulighet for & definere et
aktuelt tidsrom for & sgke etter videodata. I de data som ligger omkring tidsstem-
plene har vi funnet nok informasjon om stgrrelser og avstander til & gjenopprette
de tilhgrende videodata. I vére resultater virker metodene til 4 veere lovende med
sveert hgye verdier for presisjon og gjenkallelse.

I tillegg har vi utviklet en metode og et verktgy for & analysere og gjenkjenne
mgnster i videodata, disse mgnstrene kan besta av tidsstempel, signaturer, stgrrelse-
og avstandsinformasjon. I var analyse av videodata fra de forskjellige overvak-
ingssystemene ble denne metoden brukt til & lage gjenopprettingsmetodene for
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slettet overvakingsfilm. Vi héper at denne analysemetoden og verktgyet kan danne
grunnlaget for & gjenkjenne mgnster i andre lignende systemer.
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Chapter 1

Introduction

Using video surveillance as evidence in criminal cases is highly relevant due to
its presence and objectivity, the common reason for installing such systems is to
detect abnormal activity. But there is also privacy policies that limits the period
of time we can store the surveillance data, a common limit is one or two weeks.
This means that after this limit the surveillance video is lost, unless it is possible
to recovered the deleted data.

The most basic methods for recovering data are signature-based carving tech-
niques that look for distinct headers and footers of a file. For instance, AVI video
files always start with the ASCII characters "RIFF" followed by four bytes that in-
dicate the file’s size. MPEG files, on the other hand, begin with four hexadecimal
bytes 0x00 00 01 BA and end with 0x00 00 01 B9. This information allows for
the complete recovery of the files.

Digital video data is stored using various codecs, each with different char-
acteristics. Some codecs offer high compression rates, others prioritize lossless
compression, and some are designed for network streaming. IP cameras typically
use MPEG-4 and MJPEG codecs, although H.264 has become more prevalent in
recent times [1]. The codecs store the video data internally in smaller parts called
frames, and each frame has a recognizable header. Frame-based recovery recon-
structs video files by identifying the signature of frames and placing them in the
correct sequence [2].

Surveillance data is only useful with information about the recording time. A
video showing a person walking through the backdoor of a building has no value
unless we know when it happened; it might be the suspect we are looking for
if we know that it happened in the middle of the night. Therefore, surveillance
systems typically store metadata along with the frames, including timestamps,
index numbers, frame sizes, and other relevant information for the system’s use.
The additional data can render traditional recovery tools ineffective as they cannot
identify this particular type of data. Our research will analyze these metadata and
propose methods to carve for surveillance video. Also, since this metadata contains
timestamps and other information, it is possible to specify a relevant timeframe
for recovery.
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We choose the surveillance systems to analyze by looking at the leading pro-
viders[3] and doing an Internet search for popular systems. We will analyze Mile-
stone, Avigilon, Mirasys, Detec, and Agent-DVR systems.

1.1 Research questions

RQ1 - Is it possible to recover surveillance video that is partially over-
written using a timeframe-based approach?

We aim to find methods to recover surveillance data that are deleted and po-
tentially partially overwritten by newer surveillance data and specify which time
frame we are recovering data within. By analyzing the video data produced by sur-
veillance systems, we aim to identify structures in the data, focusing on timestamps
to narrow down and make the recovery process more effective.

RQ2 - Can existing common carving tools recover surveillance video?

We want to analyze the performance of existing carving tools on surveillance
video. Is the surveillance data stored in a manner that allows for deleted data
to be retrieved using these tools?

RQ3 - Is it possible to find a generic pattern for stored data of surveil-
lance systems?

Once we have identified the structures within the surveillance data, we aim to
identify any common patterns that may exist. Surveillance systems share certain
properties, such as timestamped recordings, locating specific recordings by time,
and skipping to a particular time when playing back a recording. These similarities
may help us recognize generic patterns.

1.2 Thesis structure

This thesis is divided into seven chapters. In chapters 2 and 3, we will present
some background information and related work. The fourth chapter presents the
experiment of recording video data with different surveillance systems and how
we create the data we will try to recover. In chapter five, we present the results
of the experiments and later discuss them in chapter six. In the last chapter, we
present our conclusion and further work.

1.3 Contributions

Our major contributions in this thesis are carving methods for video data produced
by several surveillance systems, including Milestone, Mirasys, Avigilon, and De-
tec. The carving methods focus on recovering data within a given time frame of
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interest. They are working on a low level to recover the smallest non-overwritten
parts of the video data. We also present a method and a tool to highlight patterns
within video data. Using this tool, we could discover the internal structures and
create the carving methods.






Chapter 2

Background

2.1 Filesystems

To record videos in CCTV systems a Digital Video Recorder (DVR) is responsible
for storing the data, and there must be an underlying filesystem to keep track of
the files in the system. DVR systems that are delivered as software are installed on
computers or servers and the data storage is done in standard filesystems such as
FAT, NTFS, Ext4, ExFat, etc. On the other hand, an all-in-one box DVR system, with
a proprietary operating system, will often use a proprietary filesystem for data
storage. And the filesystem might store the video data in streams and channels,
instead of files and folders [4]. This research will focus on the software systems
using standard filesystems, but uses similar methods of reverse engineering the
data from proprietary systems.

When describing a filesystem and the possibility of recovering deleted data,
the filing cabinet analogy is often used. A card index has information on all the files
in the system, and the content of the files is stored in drawers in the filing cabinet.
Each index card has information about where the content of the file is located. By
knowing the name of the file, it is possible to retrieve the content of a file [5]. The
smallest addressable storage unit of a filesystem can be referred to as a cluster,
and a cluster is made up of one or more sectors, the smallest allocation unit on a
hard drive. In the filing cabinet analogy, a cluster is represented by a drawer, and
sectors are compartments in the drawer. If a file is larger than a drawer, the file
is stored over multiple drawers, preferably consecutive. A drawer or a cluster can
only contain allocated data from one file in the card index.

The file’s metadata, including timestamps, access rights, directory hierarchy,
and more, is stored in a separate database in the file system, the card index, using
a small part at the beginning of the storage space. Without this database, it is
almost impossible to recover information or data from a file in the filesystem;
similar to a blueprint map of a building, the map contains information on which
rooms contain what information and which rooms are unoccupied [5].
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2.1.1 Deleting a file

In the filing cabinet analogy, when deleting a file, the index card would first only
get a mark as deleted, but the rest of the card and the file content is untouched,
and the file will not be visible to the user. In most filesystems, it would be an
easy task to recover this file since the index card and file content are intact. After
a while, the map of the drawers will update and mark the drawers/sectors as
unoccupied and available for other files to use for storage. The entry of the index
card is also wiped after a while to make room for new files and their information

[6].

2.1.2 FAT

In FAT (File Allocation Table) file systems, the information on which clusters are
occupied or not is stored in the ’file allocation table’, and the file metadata inform-
ation is stored in the ’directory table’. The file allocation table contains one entry
per cluster in the filesystem, and the directory table contains one entry per file or
folder in the filesystem. Each file entry in the directory table points to the start-
ing cluster of the file, and the clusters entry in the file allocation table contains a
pointer to the next cluster, which in turn points to the next cluster all to the end
of the file where the clusters entry is marked with an EOF (end of file)[7].

Deleting a file will, in the filing cabinet analogy, only put a mark on the index
card; in FAT, the file would first only be marked with a special first character in
the file name. Then set all entries belonging to the file in the FAT to unoccupied
clusters. This removes the pointers to the cluster locations of the file, making the
recovery of a file difficult since the file metadata is unattached to the file content,
where the pointers from one cluster to another are also missing [8].

2.1.3 NTFS

The blueprint map is a bit simpler in NTFS (New Technology File System), where
each cluster is represented by only one bit, called a bitmap. Each bit can only
indicate whether a cluster is allocated to a file or unallocated and available [9].

The card index is maintained by MFT (Master File Table), and each file entry
has information about all the allocated clusters for the file. As in FAT, the file entry
is only marked as deleted, the file content is left untouched for now, and the cluster
is marked unallocated in the bitmap [10]. But the cluster pointers are untouched,
making recovery far less difficult for files in NTFS file systems.

2.1.4 Ext4

In Ext4, the smallest addressable units are called blocks, similar to drawers in the
filing cabinet. And a range of blocks can be addressed in an extent. Similar to the
bitmap in NTFS, Ext4 also has a bitmap over the blocks, the Data Block Bitmap
[11].
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Each card in the card index is known as an inode in Ext4, and the card index
is the inode Table and the inode Bitmap. The inode can directly reference up to
twelve extents in the inode itself and even more extents through indirect address-
ing, where blocks are used to store extent references. As in the other file systems,
deleting a file will mark the file as deleted, set a timestamp for when the file was
deleted, and update the bitmaps for the blocks and inode to make the space un-
allocated. In addition, the critical inode data is zeroed out: the file size and the
extent references, making recovery of a file using the inode information difficult.

2.2 File recovery

2.2.1 Deleted file recovery

As a file is marked as deleted in a FAT or NTFS filesystem, no actual data is altered,
and metadata and file content are intact. The operating system is simply not show-
ing the deleted files. Retrieval software could be used to show the files marked
as deleted, and the user can choose to recover the file, i.e., removing the deleted
marking [5].

2.2.2 Carving signatures

Media formats and other file formats are often stored in a structured manner,
resulting in recognizable patterns of data within the file data. These patterns can
be used as signatures to identify the start and end of a file. For example, a JPEG file
has the pattern 0xFF D8 as the start signature and 0xFF D9 as the end signature.
This allows us to search for those patterns to recover JPEG files [12].

This recovery method is useful when the files cluster information or the file
table is missing and for files with a known header signature and size information
or footer signature. This method is known as signature-based file carving and is
used for media files, office files, compound files, databases, etc., with a structured
body. Some of the most used tools for this method are Scalpel, Foremost, and
PhotoRec [13].

2.2.3 Structure based carving

Knowledge of the internal structure of files can be used to create methods of
carving for those structures. Some types of files, such as zip files, document files,
and video files, have specific internal structures, which make structure-based carving
an effective approach [14]. The internal structures contain information about off-
sets and the size of blocks of data that can be carved contiguously or individually
and put together afterward.
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2.2.4 Fragmentation

As mentioned earlier files are preferably stored in consecutive clusters, but this
is not always possible. Files that are larger than the biggest space of consecut-
ive clusters must be split over multiple sets of consecutive clusters, resulting in
a fragmented file [15]. The file might be scattered across different parts of the
hard drive, but the file system keeps track of the location and correct order of
the clusters. Fragmentation makes recovery of a file difficult when the cluster in-
formation is missing. We will discuss methods for recovery of fragmented files in
Chapter 3.

2.3 Codecs

The most used video stream standards used in digital cameras have for several
years been MPEG-4, MJPEG, and H.264 [16], and in the latest years, H.265 has
also become popular.

2.3.1 MJPEG

The JPEG standard describes a set of compression standards for still images, and
compressing each frame in a video into a series of JPEG images is often referred
to as Motion-JPEG (MJPEG) [17]. Many of the parameters for the images don’t
change from frame to frame, such as aspect ratio and color space; these paramet-
ers can be described only once in a while for the video stream. But some video-
specific parameters such as framerate and interlacing must be defined outside the
JPEG standard. The JPEG File Interchange Format (JFIF) used within JPEG files
describes these parameters. This would mean that the MJPEG streams don’t fully
follow the JFIF standard [16].

The Motion JPEG (MJPEG) video protocol consists of a series of JPEG images.
And the most interesting markers in JPEG for carving purpose is the start and
end of a JPEG image 0xFF D8 and 0xFF D9 [18]. Investigating the MJPEG stream
from a camera shows that the JPEG images are streamed back to back without
any additional information.

2.3.2 MPEG-4

The ISO/IEC 14496-2:2004 [ 19] defines the MPEG-4 Visual codec. Where MPEG-4
is a container for different codecs, the MPEG-4 Visual is the codec defined. Frames,
or portions of frames, are described in a Video Object Plane (VOP). Intra and pre-
dicted VOPs are used to describe the frames; an intra-VOP draws a full frame, and
a predicted VOP draws a frame using different prediction methods in reference to
intra-VOPs.

The signature of a VOP is a start code of 0x00 00 01, followed by a byte that
indicates the type of data in the VOP. Specifically, the signature for a video frame
is 0x00 00 01 B6, and a type-byte between 0x20 and 0x2F indicates the decoding
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header information. The MPEG-4 decoder can decode the frame data and extract
its size with this information.

2.3.3 H.264

In H.264, defined in ISO/IEC 14496-10:2009 [20], video data is separated into
Network Abstraction Layer (NAL) units. Each NAL unit is identified by a start
signature of either 0x00 00 01 or 0x00 00 00 01. There are three types of NAL
units: Sequence Parameter Set (SPS), Picture Parameter Set (PPS), and Slice. SPS
and PPS contain important decoding information such as resolution and bit depth,
while Slices contain frame data. Slices are comprised of two types of frames: IDR
and P/B frames.

Instantaneous Decoder Refresh (IDR) frames draw a full frame, while Predict-
ive or Bi-Directional (P/B) frames only contain changes from the previous frame
and require a reference IDR frame to draw a picture. The type of NAL unit is de-
termined by the byte following the start signature, with 0x67 representing SPS,
0x68 representing PPS, 0x65 representing IDR, and 0x61 representing P/B type
frame data.

2.3.4 H.265

H.265 codec, also known as High Efficiency Video Coding (HEVC), has an im-
proved compression performance compared to H.264. Being a continuation of
H.264, the high-level NAL units are kept, including SPS, PPS, and Slices [21].
The major improvement from H.264 is a 50% bit-rate saving due to improved
compression methods [22].

Therefore, the signatures for the different NAL units are equal to those in
H.264 in reference to carving video data.

2.4 Binary formats

In our analysis of the binary data from the different surveillance systems, we need
to decode different values into valuable data, such as numbers and timestamps.

Numbers are stored as a bit representation of the value, using 0 and 1. A byte
is a group of eight bits representing 256 values (0-255). In order to store larger
number, multiple bytes are used; two bytes has 65 536 values, four bytes (32 bits)
has 232 values, and eight bytes has 24 values.

While interpreting data stored in bytes, we must account for the endianness of
the data, in which order the bytes are stored from least to most significant. In Big
Endian, the most significant byte is stored first, in the same manner as we write
out normal numbers. The number 4660 is stored in big-endian as 6x12 34. And in
little-endian, this value is stored in reversed byte order, with the least significant
value first. 4660 in little endian is 0x34 12.
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Timestamps are usually represented as a number of intervals since a start time,
epoch, and it’s the number of intervals that is stored. Different timestamp formats
specify how the timestamp is converted to a number.

2.4.1 Windows Ticks

Windows Ticks is a time format that counts ticks since an epoch. A tick is a 100-
nanosecond interval. And the time format represents the number of ticks that have
passed since midnight on January 1st, 0001 [23].

The date 2023-03-14 12:34:56 (UTC) equals 638143940960000000 intervals.
In hexadecimal, little endian: x00 18 7D 84 88 24 DB 08

2.4.2 Windows Filetime

Similar to Windows Ticks, Filetime also counts the number of 100-nanosecond in-
tervals since an epoch. The epoch for Windows Filetime is January 1, 1601 (UTC)
[24].

The date 2023-03-14 12:34:56 (UTC) equals 133232708960000000 intervals.
In hexadecimal, little endian: 0x00 18 06 62 71 56 D9 01

2.4.3 Unix time

Unix Time is defined as the number of seconds elapsed since an epoch, January 1,
1970 [25]. And is often represented in a 32-bit signed integer but is also written
in 64-bytes to prevent an overflow problem from occurring in 2038. In addition,
the 64-bit representation has a resolution of microseconds.

The date 2023-03-14 12:34:56 (UTC) equals 1678797296 seconds. In hexa-
decimal, little endian: OxFO 69 10 64
And for 64-bit, 2023-03-14 12:34:56 (UTC) equals 1678797296000000 micro-
seconds. In hexadecimal, little endian: 6x00 5C 7A 74 DB F6 05 00

2.4.4 APFS Filetime

APFS timestamps are a 64-bit unsigned value that counts nanoseconds from Janu-
ary 1, 1970. This is the same epoch as Unix time, only in a greater resolution,
seconds vs. nanoseconds. To convert from APFS timestamp to Unix time, the value
must be divided by one billion, 10° [26].

2.5 DVRvs VMS

In proprietary Digital Video Recorder (DVR) systems the video signal from cam-
eras is converted to digital streams within the DVR and stored on the hard drive in
a video file using the same video codec for all video streams [4]. In Video Manage-
ment Software (VMS) the video signals are digital from the cameras and stored on
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hard drives through a Network Video Recorder (NVR), this means that the codec
in the video streams is determined by the cameras. Unless the NVR re-encodes
the stream into another codec, but that would take a lot of processing power. This
makes carving in VMS systems a little more difficult since there can be different
codecs used in the same system.






Chapter 3

Related work

3.1 Bi-fragment carving

Traditional file carving techniques cannot automatically reassemble fragmented
files. Garfinkel [27] surveyed over 300 hard drives and found that most of the
fragmented files consisted of only two fragments: bifragmented files. By using
the traditional carving techniques, recovering data between a known header and
footer signature, the result was files that contained foreign data within the re-
covered file. This survey was conducted in 2007 and may not reflect today’s situ-
ation as technology has evolved since then with updated file systems, various file
formats and sizes, and different types of usage.

Bifragmented file recovery must carve from the header signature to the end of
the first fragment and from the start of the second fragment to the footer signa-
ture. One method is to test all possible fragments by trying all gaps between the
header and footer signature and selecting a candidate where the file is correctly
assembled.

The proposed method from Garfinkel is carving fragmented files with fast ob-
ject validation. Fast object validation is a validation of the internal structure of
the file; for example, if a Microsoft Word file is rendered without errors, the file
structure is valid. By knowing the internal structure of a file type, the carver can
validate the file while it’s being carved. In a Microsoft Office file, the validator can
look for a CDH-header in the file’s first sector and other structures and signatures
within the file. There are also recognizable structures within JPEG image files, but
additionally, the image is stored using a Huffman-coded representation, and the
validator can check if the carved data is valid Huffman symbols. To carve a bi-
fragmented file, the method starts with the smallest gap and tries to concatenate
and validate all sizes of the two fragments, then continues to increase the gap if
none is validated. This method will be time-consuming if the gap is large since
the algorithm is at best O(n?) when carving for a known header and footer.

Pal and Memon [12] describes other techniques to recover fragmented files. A
technique for predicting characters based on the type of documents is described
for text documents. Certain documents contain a higher frequency of certain char-

13
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acters, such as HTML documents containing more "<", ">", "/" and "=" than plain
text documents. For images, they describe a system that analyses the pixel differ-
ences between a cluster’s end and another’s beginning to find the most probable
combination; this is done by calculating the sum of differences of the last n pixels
of the first cluster and the first n pixels in the other clusters, where n is the width of
the image. The combination with the lowest difference sum is the most probable.

3.2 Frame-based recovery

Searching for internal fragments of files is a possible method if the separate parts
can be put back together in the correct order. Na et al. [2] proposed a method
that carves for frames of fragmented video files. They showed that the method
was successful for MPEG-4 Visual and H.264 encoded video. The method was
described in two phases: The extraction phase and the connection phase.

There are different types of video codecs, as they use different methods for
compressing and delivering video data. It is important to know what codec was
used to encode the video when trying to recover and play video from unallocated
areas of the disk. Each codec has different header information, and it is possible
to recognize the codec used depending on the structure of the frame header. The
extraction phase searches for signatures of frames and interprets codec header
information in the frames.

As mentioned in Chapter 2, MPEG-4 Visual frame information starts with
the three bytes 0x00 00 01 followed by a byte indicating the data type. And a
type-byte between 0x20 and 0x2F indicates the decoding header information. The
method uses this header information to validate the frame data with a MPEG-4
Visual decoder. If the frame data is verified, the decoder returns the frame size,
and the frame is extracted.

H.264 frames are extracted similarly; as also mentioned in Chapter 2, H.264
frames have a signature of either 0x00 00 01 or 6x00 00 00 01 and a byte for
the data type. Similar to the decoding header information in MPEG-4 Visual, the
SPS and PPS NAL units contain decoding information. The method extracts SPS,
PPS, and Slice to combine them and verify the frame data with an H.264 decoder.

In the connection phase, the method tries to put the frames back together in
the correct order. First, they assumed that if two or more frames were following
each other back to back, they were considered contiguous and already in the cor-
rect order, and if not, this was a fragmented file. MPEG-4 files have an information
block for the size of each frame, stored in an Sample-to-Size (STSZ) box, usually
at the end of the file. If a STSZ box is successfully carved in the extraction phase,
the method uses this information to put the frames back in the correct order by
comparing them with the frame sizes from the NAL units of the frames.

The result of their experiment on damaged or corrupted video showed that the
method recovered close to every frame regardless of fragmentation. The results
showed a restoration ratio of 40-50% of a video that was 50% overwritten, i.e.,
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almost all the data that was not overwritten. And the amount of fragmentation of
the file did not affect the restoration rate.

3.3 Frame-based recovery AVI

Similar to the method proposed by Na et al. to carve frames as fragments, a method
to carve AVI video format was proposed by Yang et al. [15]. The AVI file consists
of four parts, file header, stream info list, frames (audio and video), and an index
with information and reference to each frame. The index records consist of four
parts, frame type id, frame flags, frame offset relative to a starting point, and frame
size. Each frame contains a header with a signature of the frame type id and size
of the frame. Then by extracting both frames and indexes in the extraction phase
and using the frame information from both frames and index in the reordering
phase to assemble the fragments back together in the correct order.

A fragment is considered a set of extracted frames stored contiguously on the
hard drive. And by comparing the set of frames in the fragment to sets of frames
in the index, it is possible to reorder the frames even if there are frames with the
same size.

3.4 Time codes in surveillance video

Surveillance equipment and systems are becoming more common for domestic
use, and brands such as Hikvision, DAHUA, and Hanbang are the leading brands.
The most commonly used video formats among these brands are either common
video formats encapsulated with proprietary data or a proprietary video format.
Luet al. [28] suggested a method that searches for patterns in the metadata within
the video data.

They used recorded data from the same camera to compare and find recur-
ring patterns with metadata such as signatures and time codes. They found that
the videos contained repeating flags that appeared thousands of times within the
video data, and by analyzing the repeating patterns, they found information about
video channel numbers, and close to that, they also found time codes. A four-byte
time code that described the time in the first two bytes and the date in the last
two was identified. At last, they extracted the video data from the data with the
patterns as playable video and validated the video by checking that it was play-
able.

3.5 Metadata and timestamp carving

Nordvik et al. [29] propose a method that focuses on filesystem metadata informa-
tion. Generic Metadata Time Carving is based on the assumption that the structure
of the file systems file table allows for timestamps to be stored closely on the hard
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drive. For files, there are timestamps for when the files are created, modified,
deleted, accessed, etc. And these timestamps are often equal to each other.

When a timestamp is located, the method scans for matching timestamps
within a designated search window following the initial timestamp. To locate the
file and retrieve its data, they used semantic parsers to identify the filesystem,
validate the file record, and analyze the metadata. By examining the file record,
they could find the file’s physical location and try to recover the file data.

Porter et al. did additional research and developed the method Timestamp pre-
fix carving for filesystem metadata extraction [30]. They improved the method by
comparing a prefix part of candidate timestamps instead of only considering equal
timestamps. They searched for temporally similar timestamps by only comparing
the n most significant bytes. If the prefix length n is decreased, the timestamp
equivalency will cover a longer time period. This is because the most significant
bytes will represent years, months, and days in the timestamps. The results of their
experiments showed that the improved method could massively increase recall for
recovering filesystem metadata.
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Methodology

In this section, we describe how we analyzed each surveillance system to find
patterns in the video data storage, and we suggest carving algorithms where ap-
plicable that allow for searching within a time frame. We analyzed a controlled
dataset where we had complete control of all input and the recording period. To
create the datasets for each surveillance system, we created a setup with seven IP
cameras from different vendors. The cameras supported different video codecs,
such as MJPEG, H.264, and H.265. Each surveillance system was installed on a
clean operating system, either Windows 10 or Ubuntu 22.04, depending on the re-
quirements of the systems. We used separate hard drives for the video recordings,
one for each surveillance system, and the hard drives were zeroed and formatted
with an appropriate file system before being allocated. NTFS for Windows and
Ext4 for Linux.

We did two rounds of recording, the first round to fill the hard drive with
video data we would later try to recover and the second round a month later
to overwrite approximately half the first recording round. There is a criterion in
all the surveillance systems that they support deleting video data after a given
period due to privacy regulations, and we set the systems in this experiment to
delete surveillance data that was more than seven days old. By waiting a month
between the two rounds of recording, we ensured that the systems did a deletion
procedure before recording the second round. After each round of recording, we
created an image file of the entire disk to get a snapshot of the content before and
after the data was overwritten.

For each system, we will describe the setup of the system, version number,
number of cameras, size of video storage, configuration of the surveillance system,
dates for both recording periods, and how much of the allocated storage was used
in the second recording.

The first part of analyzing the video data is to run an existing carving tool
on the disk image to examine if the tool is able to carve information from the
surveillance system. Several tools can carve multimedia files [13], but one tool
stands out with a higher percentage of valid recovered files and overall better
performance, PhotoRec [31]. Fikri et al. [32] showed in an experiment with video

17
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files as one of the file types that PhotoRec had a slightly lower rate in the number
of recovered files but far better results in the validity of the recovered files. The
high percentage of correct files is because PhotoRec uses structure-based carving
when possible [13].

Then we will analyze the structure of the folders and files to find the most
relevant files for the video recording and recovering of deleted video data. We
will analyze the files on a binary level for the most relevant files to recognize how
video data is stored and how the system keeps track of the timestamps for the
video data. And finally, suggest a carving algorithm for the surveillance system if
applicable.

To present binary data and highlight different parts, we will present the binary
data in a hexadecimal view with an accompanied table to describe the highlighted
data with the type of data and a description. In addition, we will use a highlight-
ing color scheme for the hexadecimal view; see Figure 4.1 and Table 4.1 for an
example of such highlighting. Signatures are highlighted with an orange color, off-
sets and sizes with a green color, counting data with a light cyan color, timestamps
with a pink color, and video data and other raw data are highlighted with a yellow
color.

Offset (h) | @@ ©1 @2 @3 @4 ©5 @6 @7 @8 @9 @A @B OC @D OE @F UTF-8
Gpooooo00e | 46 52 41 4D 61 3C @01 @@ 23 01 @@ @@ 20 °@ @@ @@ FRAMa< #
gpppeeeele @A @@ @7 ED 24 39 48 78 D9 @1 00 @@ 20 00 99 oe 9Hx
pppREEERZe | @@ @@ @1 83 68 @B 1C 22 @0 88 @1 B3 68 BB 1C 22 h " h "
ApAREEER3E | @0 e@ Q00 00 0@ @0 @@ A1 48 @1 @C @1 FF FF @1 4@ @ @
AppeeoeR4e | @0 PP @3 00 B0 00 PP A3 00 00 O3 @@ 7B AC 99 00 {

Figure 4.1: Example of highlighting a binary file with different colors for different
content. Signatures are highlighted with an orange color, offsets and sizes with a
green color, counting data with a light cyan color, timestamps with a pink color,
and video data and other raw data are highlighted with a yellow color. (Offsets
described in Table 4.1)

Offset
in hex Field type Datatype Description
0x0 signature  char[4] Frame start signature FRAM

0x4 size uint32 size of the frame

0x8 number uint32 current frame number, increasing
0xC offset uint32 offset to start of video data

0x10  size uintl6 length of header segment

0x12  timestamp uint64 frame timestamp (Windows Filetime)
0x20 data video data

Table 4.1: Example of presentation of binary content
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4.1 Analyzing filesystems

Some video recording systems store their data inside their own proprietary filesys-
tem and structure. Reverse engineering methods can be applied to analyze and
find the correct interpretation for that data. By investigating the data from a CCTV
system with an unknown filesystem, Tobin et al. [33] presented a pragmatic ap-
proach to recovering data from a hard drive. Using an "eavesdrop" approach with
a monitoring tool, they found starting points on the hard drive for further analysis.
Then by using known values and offsets from the monitoring tool, they decoded
the data. Specifically, they were using a known timestamp to find the location and
encoding method of that timestamp in the raw data.

Another approach is to compare two images of the same DVR system taken at
different times and identify similar patterns and structures. Sandeepa et al. [34]
proposed this method in a study of a HikVision DVR system and found signatures,
offset pointers, size information, tree structures, and timestamps.

4.1.1 Finding patterns

After discovering the files with video recordings and index files, we analyze con-
tent on a binary level. First, we look for signatures that are similar across multiple
files or appear in a recurring pattern throughout the file. If we find a signature, we
extract a chunk of surrounding data from multiple signatures and compare those
chunks. The length from one signature to the next can indicate the size of the
data area between the signatures, and we search for this value relatively close to
the signature. Some values increase from one chunk to the next, and these can be
counters that indicate the internal number of the chunk. Another changing value
type is timestamps, which are stored as a number-value of time since an epoch.
From one chunk to the next, the change in time can be seconds or even fractions of
a second. Han et al. [35] did a similar analysis of the HIKVISION DVR file system
using known values and offsets to identify them in the binary data.

Figure 4.2 shows two types of common patterns. Common for both is video
data being prefixed with header information with signatures, size information,
and a timestamp of the recording. The difference is where the index is stored. The
first example keeps the index in a separate file and contains a list with reference
to all of the video data. In the second example, the index is stored within the
video data and has reference to only a subset of the video data. Another index
will follow the next subset of video data and holds the reference to those parts,
and so on. For the surveillance software to search for specific video data, another
overview index may reference all the indexes within the video data.

Another common pattern is to group together several video frames into one
’frame-group’ and provide the size and timestamp information in a frame-group
header. This reduces the number of index-lines as they only need to reference the
frame-group instead of each individual frame.
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Figure 4.2: Two types of common patterns in dvr-files. The left side shows video
data and index stored in separate files, and the right side shows video data and
index stored in the same file.

4.1.2 Highlighting software

In order to identify and highlight these types of repetitive patterns, we created a
tool that highlights timestamps within a dvr-file with known data. The tool takes a
file where we expect to find timestamps within a time range, searches for multiple
types of timestamps, and highlights the findings.

The tool takes a date-time value and a precision level and creates regex pat-
terns for the different types of timestamps. The supported timestamps are cur-
rently Windows Ticks, Microsoft Filetime, Apple APFS time, and Unix epoch, both
seconds and microseconds. The tools also support both little and big endian.

The precision levels are divided into three levels; high = timerange within
seconds, medium = timerange within a few hours, and low = timerange about
a months. Table 4.2 shows the different regex patterns and time ranges from the
same date-time value with varying levels of precision.

The output is a CSV file containing bookmarks that can be imported into the
hex-editor 010 Editor [36]. Such an import is shown in Figure 4.3.

To supplement our tool, we used video codec viewers to identify specific parts
of the video data to get an overview of offsets and size information that we could
match against an index or header information, such as h264-bitstream-viewer [37].
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Table 4.2: Regex patterns from different precision levels for date time value
"06.10.2022 20:36:16"

Regex

Time range (UTC)

Windows Ticks

High
Medium
Low

.{3}\x6A\XDA\xA7\xDA\x08
{4} [\xCA-\XEA]T\xA7\xDA\x08

. {5} [\x9C-\xB2]\xDA\x08

20:36:14 - 20:36:16
18:38:45 - 22:34:58
2022-09-21 - 2022-10-21

Windows Filetime

High 31\ \x48\\xC3\\xD9\\xD8\x01 20:36:15 - 20:36:17
Medium .{4}[\xB3-\xD31\xD9\xD8\x01 18:39:42 - 22:35:56

Low .{5} [\XCE-\XE41\xD8\x01 2022-09-21 - 2022-10-21
Unix seconds

High [\X3F-\x411\x3C\x3F\x63 20:36:15 - 20:36:17
Medium . [\x1C-\x5C]1\x3F\x63 18:18:40 - 22:55:59

Low {2} [\x2B-\x531\x63 2022-09-21 - 2022-10-22
Unix ms

High {23 [\x07-\x27]\xA5\x63\XEA\x05\x00 20:36:14 - 20:36:17
Medium {43} [\x62-\x64]1\XEA\X05\x00 18:38:31 - 22:13:16

Low .{5}[\XE9-\XEB]\x05\x00 2022-09-19 - 2022-10-27
APFS

High {3} [\X7F-\xFF]\x3C\x95\x1B\x17 20:36:14 - 20:36:16
Medium {5} \x8F-\x9B]\x1B\x17 18:41:57- 22:40:11

Low {6} [\x17-\x1F]\x17 2022-09-21 - 2022-10-21
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time64_t APFS

time64_t APFS

time_t Unix Seconds
time64_t APFS

time_t Unix Seconds
time_t Unix Seconds
time_t Unix Seconds

Bookmarks

Value Start
10/06/2022 21:28:29 379997h
10/06/2022 20:26:24 379ABOh
10/06/2022 18:35:02 380520h
10/06/2022 18:49:51 39CF19h
10/06/2022 22:54:42 3CD524h
10/06/2022 18:55:10 3DD5E7h
10/06/2022 21:44:18 4169F3h
10/06/2022 18:52:38 45440Ch
10/06/2022 19:11:38 462566h
465FCFh

4A585Dh

10/06/2022 21:19:47 4A7421h
4CA5DFh

10/06/2022 22:44:52 4D5CF1h
10/06/2022 19:45:08 535EAAh
10/06/2022 21:50:58 56444Bh

Figure 4.3: Bookmarks imported into 010 Editor to highlight potential timestamps within a time range.
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4.2 Milestone

4.2.1 Setup

Milestone XProtect VMS version 22.2a [38] was installed on a clean Windows 10
operating system, and seven cameras were configured. We set up the system to
record continuously and with a deletion policy of 7 days. The first recording period
was conducted from 22. Sept 2022 18:50 UTC to 26. Sept 2022 19:25 UTC, and
the second period from 27. Oct 2022 to 30. Oct 2022. The system reported at this
point that the data storage used 50 percent of the allocated storage. When the
second recording period started, the system deleted all the files from the previous
recordings.

4.2.2 Filestructure of recordings

The recording disk has a folder 'MediaDatabase’ with over 600 folders. The folders
have names with the camera name followed by a timestamp, one hour between
each folder. Within each folder, there is a config file and three folders, one with
the recorded data. In that folder, there are index files describing timestamps and
offsets within the recorded data. And the recorded data is stored in files named
’blockNN.blK’, where NN is a number from 0 to the number of block files. The size
of each of the block files is a maximum of 16MB.

4.2.3 Filecontent of relevant files

blockNN.blk files contain the video data, separated into frames, and each frame is
preceded by timestamps, size and other information. Multiple frames are grouped
into a ’frame-group’ of approx 40 - 80 frames. See Figure 4.4 and Figure 4.5

cindex.idx contains an index of all the block files. Each block file is described
by 24 bytes: position, size, first timestamp, and last timestamp. This is illustrated
and described in Figure 4.6 and Table 4.5.

sindexN.idx files (where N is a number) contain an index of all frame-groups
within block files. Each frame-group is described with 40 bytes: two timestamps
describing the timespan for the frame, the blockNN number, the start and end
offset to the frame-group, and the number of frames in the frame-group. This is
illustrated and described in Figure 4.7 and Table 4.6.

4.2.4 Proposed carving method

Since the index data is written to separate files from the recorded data, it is difficult
to find the connection between the index and block files when the folder structures
are missing, for example, in an unallocated section of the hard drive. It could be
possible to find the index and match the internal data such as timestamps and size
of the blocks to join the index with the block data. But the block header contains
enough data to retrieve the video content.



24 Jostein Magnussen-Vik: Timeframe-based carving

Offset (h) | @@ 21 82 @3 84 @5 @6 @7 ©8 09 BA @B @C @D @E OF UTF-8
Apeeponeee | 50 BB @B @6 EF CE D8 @1 @@ CF 31 @7 EF CE D8 @1 | P

pppe@Aeeele | @0 00 00 00 00 f0 @0 @0 90 F1 87 00 28 @@ ae ee (
peoopeee28 | 5@ B8 @8 86 EF CE @8 @6 EF CE DB 81 | P P
fppAARAA3G | 00 20 e Ao 26 AB @2 @0 00 00 2@ @@ &

fogl

@E 27 CC 00 @1 @@ ee @1 83
83 68 @B 14 55 @0 @0 @@ @@ h U h U

gppeeoee4e | 00 1o ee a2
PPPERRAA50G | 6B
geeea7F1E® | 2@ 7@ 39 @7 EF CE D8 @1 8@ 34 64 @8 EF CE D8 @1 p9 4d
PRRRARATFICA 00 00 60 00 0P 0P A0 B0 EE C1 87 00 28 @9 A0 88 (
peeea7FlDe | 2@ 7@ 39 @7 EF CE D8 @1 20 7@ 39 @7 EF CE D8 @1 p9 p9
QRRRAATFIED 00 00 00 00 00 00 A0 00 C8 9C 02 00 PP 20 20 28 3
PRRAATFIFG | @@ 1@ 8@ @2 9C C8 @0 @E 27 F4 00 @1 @@ AP A1 B3 !
pROERTF200 | 68 @B 1C 22 @0 @0 @1 83 68 OB 1C 22 20 @00 @0 @0 h " h "

280 0o

Figure 4.4: Milestone frame-group headers (Offsets described in Table 4.3)
The value in offset 0x18 is the size of the frame-group: 0x07F190. Adding this
size to the first offset after the header, 0x20, gives us the location of the next
frame-group: 0x7F1B0.

Offset

in hex Field type Datatype Description

0x0 timestamp uint64 first timestamp in the frame-group
(Windows Filetime)

0x8 timestamp uint64 last timestamp in the frame-group
(Windows Filetime)

0x18  size uint32 size of the frame-group

0x1C  number uint32 number of frames in frame-group

Table 4.3: blockNN.blk frame-group header structure
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Offset (h) | 8@ 81 @2 @3 @4 @5 @6 @7 08 09 @A @B @C @D @E OF UTF-8
popee2ABee | CB 20 C9 18 F6 E@ 780 59 1@ @6 EF CE DB @1 7@ 59 pY pY
pepeeZAE7e | 1@ @6 EF CE DB @1 @0 00 0@ 00 00 @0 @00 8@ 56 32 V2
POOORZABED | @1 PO 00 P9 00 A0 00 10 @@ @1 32 56 @0 BE CD 2v
POPBRZAE2E0 | 9@ @0 00 @0 @1 83 68 @B 14 55 A0 @@ @1 aB h U h
POPOBZAEAD | 14 B7 00 @0 00 A0 00 80 @1 4E @81 F@ 2C 63 N Gc
pepepZASED | BB @@ 1A 12 EA 69 13 89 38 B9 2E @5 C1 5B 8. §

@e@da3DADE | 6B B2
28@pa3DAE® | EF CE
@00BA3DAF® | @0 PO

80 60 7B B3 A7 FA 5A 9C 9@ FA 17 @86 h M} { z
9@ FA 17 @6 EF CE D8 @1 @20 00 00 @@
FC @7 00 0@ 00 00 B0 @0 00 10 00 A6

@eeea3DERd | @7 FC 27 CE @2 @22 @@ @@ @1 83 68 BB 14 55 ' h U
PPPRA3DEL1D | B0 B8 68 @B 14 B9 @0 00 B0 90 80 80 ©1 4E h N
2eee@3DE20 | @1 FB@ 44 Fb6 @B @@ 1A 12 EC F1 BA C5 D4 @D D

Figure 4.5: Milestone frame headers. (Offsets described in Table 4.4)
The value in offset 0x2A87E is the size of the frame: 6x013256. Adding this size to
the first offset after the header, 0x2A886, gives us the location of the next frame:
Ox3DADC.

Offset

in hex Field type Datatype Description

0x0 timestamp uint64 first timestamp in the frame (Win-
dows Filetime)

0x8 timestamp uint64 last timestamp in the frame (Win-
dows Filetime)

0x18  size uint32 size of the frame

0x22  size uint32 size of the frame (big endian)

0x26  number uint32 frame counter

Table 4.4: blockNN.blk frame header structure
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Offset (h) | 2@ @1 B2 @3 @4 @5 86 @7 @8 29 PA @B @C @D PE OF UTF-8
appAReooee | @@ @0 PP @0 6F 95 FC @@ 5@ BB 88 @6 EF CE D8 @1 0 P
fppeeeeele | A@ AA 2C 2C EF CE D3 @1 o1 00 @0 @9 21 2B FC @@ 0o '+
pEREOPPA20 | 6@ D2 35 2C EF CE D8 @1 F@ D1 5C 52 EF CE D8 @1 | ° , R
peREDEEE3A 82 B0 00 @@ B3 4F FC @@ 1@ 73 64 52 EF CE D8 81 0 sdR

appeeeee4e | 9@ DA 88 78 EF CE DB @1 @3 00 @@ @0 51 24 FC @@ 3 X
gppepeeese Be 7B 9@ 78 EF CE D8 @1 3@ 54 BY7 9E EF CE D8 @1 { x oT

Figure 4.6: Content of Milestone cindex.idx. (Offsets described in Table 4.5)

Offset
in hex Field type Datatype Description
0x0 number uint32 NN value in blockNN.blk filename

0x4 size uint32 size of the blockNN.blk file

0x8 timestamp uint64 first timestamp in the blockNN.blk file
(Windows Filetime)

0x10 timestamp uint64 last timestamp in the blockNN.blk file

(Windows Filetime)

Table 4.5: cindex.idx index structure

Offset (h) | @@ @1 82 @3 @4 @5 @6 @7 @8 29 PA OB @C @D °E OF UTF-8
pppepeeEee | C@ F1 D1 29 EF CE DB @1 98 56 FB 2A EF CE DB 81 V o x
AppAREEE1e | @@ @0 e@ A0 00 PO G0 @@ @@ Q0 PP @@ TE DB EC @@ ~
fppeeeeeze | 12 5@ F4 @0 28 00 @@ 0@ Be F7 82 2B EF CE D8 @1 P ( +
pppeeeeeze | A@ AA 2C 2C EF CE D8 @1 @@ 00 00 90 60 o0 ee ae 0
pppRRRER4AR | B@ @0 @@ @0 12 50 F4 @@ 6F 95 FC @0 28 @0 A0 80 P o (
pEEEMPEAS50 | 6@ D2 35 2C EF CE D8 @1 6@ AC 5F 2D EF CE D8 @1 | ~ , -

Figure 4.7: Content of Milestone sindexN.idx. (Offsets described in Table 4.6)

Offset

in hex Field type Datatype Description

0x0 timestamp uint64 first timestamp in the frame-group
(Windows Filetime)

0x8 timestamp uint64 last timestamp in the frame-group

(Windows Filetime)
0x18 number uint32 NN value in blockNN.blk filename

0x1C  offset uint32 start offset for frame-group
0x20  offset uint32 end offset for frame-group
0x24  offset uint32 number of frames in frame-group

Table 4.6: sindexN.idx index structure
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The regex pattern must cover a period from 22.09.2022 18:50 UTC to 26.09.2022
19:25 UTC. In Windows Filetime format, the five bytes with the lowest signific-
ance can be any value, the sixth byte must range from 0xCE to 0xD1, and the two
most significant bytes are 6xD801. This gives a range from 0x0000000000CED801
(21.09.2022 21:20 UTC) to OxFFFFFFFFFFD1D801 (26.09.22 23:30 UTC).

And a timeframe regex pattern of . {5} [\xCE-\xD1]\xD8\x01

Code listing 4.1: Carving Milestone videodata

input: imagefile, regex for timeframe search
output: files of carved data

load imagefile
read chunk of data
regex-search chunk for frame-group headers
#(<TIMEFRAME><TIMEFRAME>. {16}<TIMEFRAME><TIMEFRAME>)
if frame-group header found:
read frame-group header and body
if last frame-group is contiguous with this one:
continue
else:
save carved data to file
read next chunk of data
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4.3 Mirasys

4.3.1 Setup

Mirasys VMS system version 9.4.0.1 [39] was installed on a clean Windows 10
operating system, and one camera was configured due to demo-license limitations.
We set up the system to record continuously on a disk of 230 GB and with a
deletion policy of 7 days. The first recording period was conducted from 11. Jan
2023 12:42 UTC to 16. Jan 2023 23:07 UTC, and the second period from 1. Feb
2023 to 6. Feb 2023. The system reported at this point that the data storage used
50 percent of the allocated storage. When the second recording period started,
the system did not delete any of the existing files.

4.3.2 Filestructure of recordings

After installation, the system allocates almost the entire media disk with 455 GB
of 465 GB. A folder ’dvr’ with one subfolder 'materials’ is created at the root level,
under 'materials’, a total of 10001 files were created; 5000 pairs of files, .dat and
.jrn, both named ’dvrfile00000001’ - *dvrfile00005000’ and an index file "Materi-
alFolderIndex.dat’ (Figure 4.8)

dvrfile0000010jm K8
dvrfile00000011.dat Ke
dvrfile00000011 jrn KB
materials dvrfile00000012.dat KB
dvrfile00000012.jrn KB
dvrfile00000013.dat 560 KB
dvrfile00000013 jrn KB
dvrfile00000014.dat 560 KB
dvrfile0000014,jm Ke

s Mirasys_data (0:)
dvr

Figure 4.8: Files automaticly generated by Mirasys on the mediadisk.

4.3.3 Filecontent of relevant files

All dvrfileOOOONNNN.jrn are initially empty files. All dvrfileOOONNNN.dat files
are equal in size (94 MB) and initially with no data (all 0x00). MaterialFolderIn-
dex.dat contains a repeating pattern of 44 bytes, describing every dvrfileOOOONNNN.dat,
whether it is in use or not, and the first and last timestamp in Windows Ticks
format. This is illustrated and described in Figure 4.9 and Table 4.7

After recording, the dvrfileOOONNNN.dat files contain recognizable patterns.
The files contain groups of indexes and frame-groups alternating in the file. The
index describes the subsequent frame-group; one file can contain multiple indexes
and frame-groups.

The first part is an index-overview for the groups later in the file. Every 24
bytes describe an index and frame-group: the first and last timestamp in the group,
the size of the group, and the size of the index. This is illustrated and described
in Figure 4.10 and Table 4.8
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Figure 4.9: Hex view of MaterialFolderIndex.dat in Mirasys. (Offsets described
in Table 4.7)

Offset Field type Datatype Description

0x0 flag uintl6 is dvrfileOOONN.dat allocated to recordings

0x6 number uint32 NN value in dvrfileOOONN.dat filename

0x0A timestamp uint64 first timestamp in the dvrfileOOONN.dat file
(Windows Ticks)

0x12 timestamp uint64 last timestamp in the dvrfileOOONN.dat file
(Windows Ticks)

Table 4.7: MaterialFolderIndex.dat index structure

Offset (h) | @0 @1 @2 @3 @4 @5 06 @7 08 @9 @A @B 0C @D OE OF UTF-8

£000AE1000 | 1@ AF AB 9E D9 F3 DA @8 8@ 4F D4 AA D9 F3 DA 08 on

20PEPR1010 | @@ Co0 D1 @@ @4 @@ @0 @@ 6@ E3 D8 AA D9 F3 DA @8 Vs

20Pe01020 | 49 D4 D6 B3 D9 F3 DA @8 @0 BO C5 00 04 00 00 00 @ .

2080201030 | 20 68 DB B3 D9 F3 DA @88 @@ 59 D9 BC D9 F3 DA @8  hr Yo

200001040 | @@ @@ D2 @@ @4 @@ @0 @@ E@ EC DD BC D9 F3 DA @8 c

20PePR1050 | 1@ DB 59 C1 D9 F3 DA @8 @@ B0 60 00 02 00 00 00 :

2080201060 | CO 54 @8 2D DI F3 DA @8 6@ 02 06 37 D9 F3 DA 88 | T - 7

Figure 4.10: The index overview in each dvrfileOOOONNNN.dat in Mirasys. (Off-

sets described in Table 4.8)

Offset Field type Data type Description

0x0 timestamp uint64 first timestamp in group (Windows Ticks)
0x8 timestamp uint64 last timestamp in group (Windows Ticks)
0x10  size uint32 size of group

0x14 number uint32 number of clusters for each group

Table 4.8: The index overview in each dvrfileOOOONNNN.dat in Mirasys.
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An index starts with the signature 6x95 FD B7 14 and the number of frames
in the index at offset 10. From offset 14 it contains information about every sub-
sequent frame: 32 bytes per frame that contain: timestamp, offset to the frame,
size, and type of frame.

Offset (h) | @@ ©1 @2 @3 @4 05 @6 @7 @8 @9 @A @B OC @D OE @F UTF-8
pe@@leleee | 95 FD B7 14 97 4C EC 6A @3 00 7E 00 00 @0 A6 4B L = K
geeelelele | 1D 3A @3 1@ AF A@ 9E D9 F3 DA ©8 @@ 50 19 99 oe 5 P
ApAR1e1eZ2e | @@ @@ @0 BB 7C @C @@ A1 34 CD 16 C7 @0 @0 A6 4B | 4 K
AeA@1e1e3@ | 1D 3A @3 38 DF A5 9E D9 F3 DA @8 BB CC 1C @0 @@ H 1|

peeelelede @0 ee @0 72 32 00 00 A0 34 CD 16 C7 00 @0 A6 4B r2 4 K
geeplelese | 1D 3A @3 4@ E8 AA 9E D9 F3 DA @8 2D FF 1C @9 @@ HNGES =
ARAR1RIREE | @0 @@ 00 CO 31 @0 @@ A0 34 CD 16 C7 00 B0 A6 4B 1 4 K
peepleler’e | 1D 3A @3 5@ F1 AF 9E D9 F3 DA @B ED 30 1D @9 @@ B

Figure 4.11: One of the indexes in dvrfileOOOONNNN.dat in Mirasys. (Offsets
described in Table 4.9)

Offset Field type Data type Description
0x0 signature  char[4] Index signature 0x95 FD B7 14

OxA number uint32 number of indexlines (frames) in index
OxE indexlines lines of index rows, each 32bytes
indexlines starting at offset OXE

OxE signature  char[2] Indexline signature 0xA6 4B

0x13 timestamp uint64 frame timestamp (Windows Ticks)

0x1B  number uint64 offset to frame. From start of file

0x23  number uint32 size of frame

0x27 number uint8 type of frame (interframe vs intraframe)

Table 4.9: Structure of indexes in dvrfileOOOONNNN.dat in Mirasys.

Each frame contains a header with the signature 0x97 57 20 58, the timestamp
for the frame, and information about the source camera. The header length is 35
bytes, and the video data follows the header.

This makes it possible to recover the entire dvrfileOOONNNN.dat file.
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Figure 4.12: The first three frame headers

(Offsets described in Table 4.10)
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in dvrfileOOOONNNN.dat in Mirasys.

H

A

Offset Field type Data type Description

0x0 signature  char[4] Index signature 6x97 57 20 58
0xA timestamp uint64 frame timestamp (Windows Ticks)
0x14  size uintl6 length of camera info

0x16  signature  char[x] camera info

0x1F  size uint32 length of frame

0x23 data Video data

Table 4.10: Structure of frame header in dvrfileOOOONNNN.dat in Mirasys.
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4.3.4 Proposed carving method

Both the indexlines and the frame headers contain searchable timestamp inform-
ation. It is most beneficial to search for the indexlines first and try to recover as
much as possible of the file rather than only the individual frames. Each indexline
has the offset value from the start of the file to the frame, so it is possible to calcu-
late the beginning of the file by finding and verifying the first frame after the index.
Verifying is done by checking for frame signature and comparing the index and
frame timestamps. The recovery of the file will continue as long as the indexlines
have a corresponding frame, and write out the file as soon as the information
doesn’t match. This makes it possible to recover the whole file if it hasn’t been
overwritten. The method also searches for single frames with no corresponding
indexlines and recovers the frames.

The regex pattern for the timeframe must cover a period from 11. Jan 2023
12:42 UTC to 16. Jan 2023 23:07 UTC. In Microsoft Ticks timestamp format, the
five bytes with the lowest significance can be any value, the sixth byte must range
from 0xF3 to 0xF7, and the two most significant bytes are 0xDA08. This gives a
range from 0x0000000000F3DAG8 (10.01.2023 11:44 UTC) to OxFFFFFFFFFFF7DAOS
(16.01.2023 20:26 UTC).

And a timeframe regex pattern of . {5} [\xF3-\xF7]\xDA\x08

Code listing 4.2: Carving Mirasys videodata

input: imagefile, regex for timeframe search
output: files of carved data

load imagefile
read chunk of data
regex-search chunk for indexlines #(A6 4B .{3} <TIMEFRAME>)
if indexline found:
find index start #(signature "A6 FD B7 14")
interpret the index into list of frame offsets.

for each frameoffset:
if offset contains valid frame: #(signature "97 57 20 58")
verify frame header and body
continue
else:
# rest of file is overwritten
save carved data to file

else:
regex-search chunk for single frames #(97 57 20 58 .{6} <TIMEFRAME>)
read frame header and body
if last frame is contiguous with this one:
continue
else:
save carved data to file
read next chunk of data
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4.4 Avigilon

4.4.1 Setup

Avigilon Control Center version 7.14 [40] was installed on a clean Windows 10
operating system, and seven cameras were configured. We set up the system to
record continuously and with a deletion policy of 7 days. The first recording period
was conducted from 11. Oct 2022 20:00 UTC to 16. Oct 2022 15:00 UTC, and the
second period from 7. Nov 2022 to 9. Nov 2022. The system reported at this
point that the data storage used 50 percent of the allocated storage. When the
second recording period started, the system moved all video data files back into
the FilePool folder.

4.4.2 Filestructure of recordings

After installation, the system allocates almost the entire media disk with 460 GB of
465 GB, and a folder ’AvigilonData’ with three subfolders 'Db’, 'Dev’, and 'FilePool’
are created. Almost all of the total capacity of the volume is split into 128 MB files
and stored with increasing numbering in the ’FilePool’ folder; 3698 files were cre-
ated for this system. The 'Dev’ folder is used for storing recordings from devices,
and the recording system allocates files from ’filepool’. The system moves the file
into the correct camera folder and subfolder for the date under the ’dev’ folder. In
the camera and date folders, the files are renamed to a format representing the
first recording time in the file [day offset].[hour][ minute ][ seconds][ ms][timezone
offset].

The file cam00/2022-10-12/0.211249216+100.avd equals 12. Oct 2022 21:12:49.216
+01.

v == ACC_Data (D:) 1 0.000915071+200.avd 131072 KB
v 7 AvigilonData ] 0003958149+200avd 131072 KE
> BEDb 1 0010831881+200avd 131072 KB
v TiDev [ 0013843966+200avd 131072 KB
v 7 4.00f2071-722d-4602-834d-b6b3a699b4fd L] 0.020759070+200.avd 131072 KB

v 7 cam00 [ 0023649995+4200avd 131072 KB
2022-10-11 [ 0.030640780+200avd 131072 K&

2022-10-12 [ 0033545044+200avd 131072 KB

5025010443 [ 0040729918+200avd 131072 KB

2022-10-14 1 0043641898+200avd 131072 KB

2022-10-15 ] 0050549995+200avd 131072 KB

2022-10-16 ) 0053755897+200avd 131072 KB

> T 40049434-d21f-4cb9-9587-83607a20310 L] 0.060653626+200avd 131072 kB

] 0.063559576+200.avd 131072 KB

> 4.2419d68a-2dd2-21b2-a205-ecf7ffdbf6ff -
1 0.070459548+200.avd 131 072 KR

Figure 4.13: Files automaticly generated by Avigilon on the mediadisk.

4.4.3 Filecontent of relevant files

.avd files contain frame-groups and indexes alternating. Frame-groups contain
video data with the signature ’datp’, size info, and counters, as described in Fig-
ure 4.14 and Table 4.11. Following a set of frame-groups is metadata describing
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the preceding frame-groups along with a timestamp, described in Figure 4.15 and
Table 4.12. Within the metadata, there is an index containing offsets and the size
of the frame-groups, described in Figure 4.16 and Table 4.13.

The timestamp is in APFS time format big-endian, indicating the number of
nanoseconds since January 1, 1970. Overall the endianness is mainly big-endian:
in the timestamps, size of datp, counters, and other numbers. Except for the frame-
group size and offset in the index, denoted in Little Endian Base128 (Ieb128), a
variable length format to store numbers.

Offset (h) | @@ 81 B2
AOePRR2000 | 8@ 40 4E
apepeRZele 2@ 00 P8
poepeDpZEZE | GO @8 B8l
PE0ReR2030 | G0 @0 B8l
eoeeRR2840 | EF 6C 11

ARAR40GELD | @@ 40 2E
2000406E1D | @2 A0 @@
2000406E20 | 2@ 89 Bl
PPAR4B6E3® | BD DB AC
2eee406E40 | 17 AaC 15

a3
(1]
(1]
67
68
43

ae
ae
26
F1
90

B4
64
(1%
4D
EE
26

64
a8
F@
BE
EE

a5
61
(1]
40
3C
B@

61
ae
2C
4F
88

86
74
B85
32
8e
89

74
85
83
A7
27

@7 88 @9 8A @B OC @D @E @F UTF-8

70 0@ 00 00 00 00 00 @8 81 @N datp

52 @@ @1 @@ 65 00 00 @1 74 R @ t
95 A@ A 00 2D 69 B2 1@ @9 gM@2 =il

22 @@ 99 @1 @6 Fe 2C 1@ 44 h D
@B 9A FC 3@ 93 8D DF 77 7A C& 0 z
70 090 00 00 00 00 00 @@ B2 @. datp

52 @@ @1 @@ 65 00 00 0@ BA R 3

45 B8A 82 11 43 27 56 64 64 E C'vdd
99 F6 70 AB 4A 7C 24 44 CD z p J|$D
DC B4 49 FD 38 FF FF FF FF gIs

Figure 4.14: Two frame-group headers in Avigilon .avd file. (Offsets described in

Table 4.11)

Offset Field type Data type Description
0x0 size uint32 length of frame-group
0x4 signature  char[4] Frame-group signature datp
0xC number uint32 number within index
0x14 number uint32 counter of frame-group
0x18 number uintl6 decimal of counter (1-10)
0x20 data Video data
Table 4.11: Structure of frame-group header in Avigilon .avd file
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Offset (h) | @@ 81 82 @23 @4 @5 @6 @7 @8 89 @A OB OC @D @E OF UTF-8
ARRRE4AS200 | @@ @0 34 ee 72 63 66 63 @0 @@ @0 BE 72 63 66 6B 4 rcfc rcfh
AAAAE4AS210 | @0 A0 00 G0 00 @1 00 PO @0 DB 73 64 61 74 A0 @0 dat
OARREAS220 | @@ @0 12 C92 @1 @A 79 BA 12 @9 31 1D 9A D3 2D AC y 1
PEORE4AS230 | 4B 26 11 BA FO Bl 32 C8 47 79 60 12 12 29 71 95 | K& y* q
0BRRE4AS240 | F8 B6 9D 75 4F C6 11 B9 1E 16 17 5A 41 @E 5D 1A u0 ZA 1

PEOREAS250 | 4F 44 65 76 2F 34 2E 30 30 36 32 31 31 61 65 2D | ODev/4.006211lae-
PROPEA2260 | 66 32 33 65 2D 34 65 38 33 2D 62 32 34 3@ 2D 34 | f23e-4e83-b240-4
PRBBE4927 63 65 62 63 33 36 39 33 37 34 39 2F 63 61 6D 3@ cebc3693749/camd
PRORE4AS280 | 3@ 2F 32 3@ 32 32 2D 31 31 2D 3@ 37 2F 3@ 2E 32 | 0/2022-11-07/0.2
PEOOE4S298 | 31 31 32 34 39 32 31 36 2B 31 3@ 30 2E 61 76 64 | 11249216+100.avd
0RRRE4AS2A0 | 12 10 @8 @1 1@ 8@ 9C 81 ©2 138 80 49 30 65 38 @8 @0e8
ARRREASZER | 48 @0 12 12 @8 @2 10 80 DC 80 092 18 80 DC B1 B2 Q@ 0 0
PPOPEAS2CA | 38 65 38 0@ 40 @0 12 12 08 83 10 80 BO 88 B2 18 | 0e8 @

AARREAS2DE | B@ B8 82 @4 30 65 38 00 40 @@ 12 12 @8 @4 10 880 0e8 @
AAAOEAS2ER | BC 8F @1 18 8@ E8 82 @86 30 65 38 00 40 2@ A0 @0 0e8 @
POOOEAS2FR | 32 2D 74 6B 66 63 20 @@ 00 1E 74 6B 66 68 00 @@ | 2-tkfc tkfh
AARREAS300 | @@ @0 @0 65 17 25 66 85 DA 38 B8 AC 00 20 20 @@ e %f
0BRRE4AS310 | @@ 29 39 ES 00 @@ 32 @7 73 64 61 74 00 20 20 @8 )9 2 sdat

Figure 4.15: rcfc-metadata in Avigilon .avd file. (Offsets described in Table 4.12)

Offset Field type Datatype Description

0x0 size uint32 length of rcfc field

0x4 signature  char[4] Index signature rcfc

0x8 size uint32 length of rcfh field

0xC signature  char[4] Index signature rcfh

0x12  number uint32 counter for set of frame-group

0x16  size uint32 length of sdat field

Ox1A  signature  char[4] Index signature sdat

0x50  size uint8 length of filename

0x51  string char[x] filename

0xA0 index index of preceeding datp frame-groups.
Described in Table 4.13.

OxEE  size uint32 length of tkfc field

OxF2  signature  char[4] Index signature tkfc

0xF6  size uint32 length of tkfh field

OxFA  signature  char[4] Index signature tkfh

0x104 timestamp uint64 frame-group timestamp (APFS time)

Table 4.12: Structure of rcfc-metadata in Avigilon .avd file
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Offset (h) | 220 @1 82 @3 @4 85 86 @7 ©8 09 @A BB OC @D BE OF UTF-8
PReOE4AS2A0 12 10 08 @81 1@ 8@ 9C 81 @2 18 80 40 @@ B0 38 65 @ 0e
POOPEAS2ED | 38 00 40 @90 12 12 @28 P2 1@ 80 DC 80 82 18 8@ DC |8 @ 0 0
PRBBE422CE | B81 @2 3@ 65 38 90 40 @ 12 12 @8 @3 1@ 80 B@ B 0e8 @
ARARE4AS2DE | @2 18 80 BB 82 @4 30 65 38 @@ 40 @00 12 12 @8 @4 0e8 @
DPAMEAS2EeG | 1@ 8@ BC 8F @1 18 80 E8 82 @6 30 65 38 00 40 @@ 0e8 @

Figure 4.16: rcfc-index in Avigilon .avd file, from offset 0XAO in Figure 4.15.
(Offsets described in Table 4.13)

Offset Field type Data type Description

0x0 signature  char[1] Index signature 0x12
0x1 size uint8 length of index-line
0x3 number uint8 Index-line counter

0x5 number leb128 size of datp
0xA number leb128 offset of datp

Table 4.13: Structure of rcfc-index in Avigilon .avd file
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4.4.4 Proposed carving method

The content of rcfc-metadata within .avd files contains searchable timestamp in-
formation with a distinct signature. In order to retrieve the frame-group data, we
analyze the index lines 100 bytes prior to the timestamp. Each indexline has the
datp size and offset from the start of the original .avd file.

The proposed carving method searches all bytes before the rcfc-metadata and
creates a list of offsets and sizes of datp frame-groups. When we find rcfc-metadata,
the indexlines are compared to the list of offsets and sizes to verify that they are
of the same origin. The logical file start is calculated and used as a reference for
carving the next datp frame-groups. We consider the frame-groups contiguous if
they share the same logical file start, and consecutive frame-groups are carved out
as one file.

The regex pattern for the timeframe must cover a period from 11. Oct 20:00
UTC to 16. Oct 15:00 UTC. In APFS timestamp format, the six bytes with the low-
est significance can be any value, and the seventh byte must range from 0x1D to
0x1E, and the most significant byte is ©x17. This gives a range from 6x171D000000000000
(11.10.2022 11:23 UTC) to 0x171EFFFFFFFFFFFF (17.10.2022 23:46 UTC).

And a timeframe regex pattern of .\x17[\x1D-\x1E].{6}

Code listing 4.3: Carving Avigilon videodata

input: imagefile, regex for timeframe search
output: files of carved data

load imagefile
read chunk of data
search chunk for datp frame-group #(.{4}datp)
if datp found:
read datp-header info into list

regex-search chunk for rcfc-metadata timestamp #(.{4}rcfc.*tkfh.{6}<TIMEFRAME>)
if metadata found:
read indexlines.
if indexlines matches datp-list
set logical file start
if carve start not set, set to first datp
set carve end to last datp

if new carve start
save carved data to file
read next chunk of data
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4.5 Detec

4.5.1 Setup

Detec Next version 2.1.2207 [41] was installed on a clean Windows 10 operat-
ing system, and seven cameras were configured. We set up the system to record
continuously and with a deletion policy of 7 days. The first recording period was
conducted from 26. Sept 2022 20:00 UTC to 1. Oct 2022 17:38 UTC, and the
second period from 30. Oct 2022 to 1. Nov 2022. The system reported at this
point that the data storage used 50 percent of the allocated storage. When the
second recording period started, the system did not delete any of the existing
files.

4.5.2 Filestructure of recordings

After installation, the system allocates almost the entire media disk with 457 GB
of 465 GB and creates only files and no folders. Two files for disk information and
overview were made, "Disk0000.info" with details of the size of the available space
and information on the size and amount of .sector files, and "Disk0000.index"
which contains an index of the offsets and sizes of frames within the .sector files.
Figure 4.17 shows an excerpt of the file structure.

The system split 449 GB into 104,9 MB files and stored them with increas-
ing numbering, named "00000000.sector" to "00004597.sector". A quick content
analysis of these files shows that they contain video data. The .sector files are
considered one big continuous file hence offsets in "Disk0000.index" are counted
from file 0 throughout the last .sector file.

Last, there are a series of index files and database files with similar naming,
"RecordingChunkinfo.[0-7].index" and "RecordingInfo.[0-7].database". The index
files contain timestamps and references to frames stored in .sector files. The offsets
and size of frames are located with a line number in Disk0000.index.

The databases "RecordingInfo.[0-7].database" are SQLite 3 databases which
contain one table with five columns: "Recordingld", "RecordingFrom", "Record-
ingTo", "FirstRecordingChunkId" and "DataChannelld". The database keeps track
of which camera the different frame-data chunks belong to. The column "DataChan-
nelld" contains binary data to identify the camera, columns "RecordingFrom", "Re-
cordingTo", and "FirstRecordingChunkId" refer to timestamps and line number in
the corresponding "RecordingChunkInfo.[0-7].index".

4.5.3 Filecontent of relevant files

All 00000000.sector files are allocated by the system when configuring the media
storage. The files are allocated in a contiguous manner, so when 00000000.sector
ends 00000001 .sector starts in the next cluster. A small header with a timestamp,
signature, and frame size precedes each frame. The timestamp is in Windows Ticks
format little-endian, followed by four bytes with 0xFF, and last in the header is
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~

m= Detec_data (D:) Name Size
|| UUUUHD T sELLON 1UC 4Ud ND
D 00004595.sector 102 403 KB
D 00004596.sector 102 403 KB
D 00004597.sector 102 403 KB
[ Disk0000.index 1379433 KB
[ Disk0000.info 1 KB
O RecordingChunkinfo.0.index 853 935 KB
0 RecordingChunkinfo.1.index 853 935 KB
0 RecordingChunkinfo.2.index 853 935 KB

Figure 4.17: Files automaticly generated by Detec on the mediadisk.

the size of the frame as a uint32 little-endian. The length of the header is 28 bytes,
and the frame data follows the header, described in Figure 4.18 and Table 4.14.
The next frame header starts immediately after the frame data.

Offset (h) | 22 @1 82 @3 @4 @5 @6 @7 @8 09 BA @B OC @D OE OF UTF-8
0eeeR1s5D7@ | 38 F1 A9 D2 9A A3 DA @8 FF FF FF FF 08 @@ @@ 00 | 8 K

peee@l5DER | CB 54 @9 29 E6 @6 @@ @@ 5A @5 @9 00 90 00 Pl A1 ) z
@eeep15D90 | 21 E@ @0 82 1A 94 DF 26 E7 68 3A A6 F1 84 @F D9 | ! .
00e0B15DAG | 42 B9 AB @C DB DE 2A 16 8@ 3D 21 39 2A D7 @6 65 | B =19%% e

@eeeelspeEe | FB 1F 27 56 AC BC A8 @5 C5 23 BD @E 88 59 3D B4 'V Y=

Figure 4.18: Frame header and content in Detec .sector file. (Offsets described
in Table 4.14)

Offset Field type Data type Description

0x0 timestamp uint64 frame timestamp (Windows Ticks)
0x8 signature  char[4] OxFF FF FF FF

0x18 number uint32 size of frame

0x1C data Video data

Table 4.14: Frame header and content in Detec .sector file.

4.5.4 Proposed carving method

The header for each frame in the .sector files contains a searchable timestamp with
a distinct signature and information about the frame size. This makes carving for
frames a simple task since the header contains all the necessary information, the
start offset is the first byte of the timestamp, and the full length of the carved data
is the frame size plus 28 bytes. We consider the frames contiguous if a new frame
starts directly after the end of the previous one, and all consecutive frames are
carved out as one big file.

The regex pattern for the timeframe must cover a period from 26. Sept 20:00
UTC to 1. Oct 17:38 UTC. In Microsoft Ticks timestamp format, the five bytes with
the lowest significance can be any value, the sixth byte must range from 0x9F
to 0xA3, and the two most significant bytes are 0xDA@8. This gives a range from
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0x00000000009FDAOS (25.09.2022 14:12 UTC) to OxFFFFFFFFFFA3DAG8 (01.10.2022
22:55 UTQ).
And a timeframe regex pattern of . {5} [\x9F-\xA3]\xDA\x08

Code listing 4.4: Carving Detec videodata

input: imagefile, regex for timeframe search
output: files of carved data

load imagefile
read chunk of data
regex-search chunk for frame headers #(<TIMEFRAME> FF FF FF FF)
if frame header found:
read frame header and body
if last frame is contiguous with this one:
continue
else:
save carved data to file
read next chunk of data

4.6 Agent DVR

Agent DVR is a VMS available for Windows, Linux, MacOS, and Raspberry Pi [42].
There is one installation package for Windows and one for Linux, MacOS, and
Raspberry Pi, and we installed both packages to discover potential differences.

4.6.1 Setup Windows

Agent DVR for Windows version 4.2.4 was installed on a clean Windows 10 oper-
ating system, and seven cameras were configured. We set up the system to record
continuously and with a deletion policy of 168 hours (seven days). The first re-
cording period was conducted from 5. Oct 2022 13:40 UTC to 10. Oct 2022 16:00
UTGC, at this time, the recordings had reached the maximum capacity of the stor-
age disk and overwritten the first day of recordings. The earliest recording that
was present was 6. Oct 2022 19:21. The second period lasted from 4. Nov 2022 to
6. Nov 2022, and at this time, the system reported that the data storage used 245
GB of 465 GB of the allocated storage (52 percent). When the second recording
period started, the system deleted all the files from the previous recordings.

4.6.2 Setup Linux

Agent DVR for Linux version 4.2.6 was installed on a clean Ubuntu 22.04 operat-
ing system, and the camera configuration was copied from the Windows install-
ation and implemented in the Linux installation. We set up the system to record
continuously and with a deletion policy of 168 hours (seven days). The first re-
cording period was conducted from 5. Oct 2022 20:45 UTC to 10. Oct 2022 07:30
UTGC, at this time, the recordings had reached the maximum capacity of the storage
disk and overwritten the first day of recordings. The earliest recording that was
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present was 6. Oct 2022 15:58 UTC. The second period lasted from 6. Nov 2022 to
7. Nov 2022, and at this time, the system reported that the data storage used 247
GB of 465 GB of the allocated storage (53 percent). When the second recording
period started, the system deleted all the files from the previous recordings.

4.6.3 Filestructure of recordings

After installation, the system creates a folder called 'Media’ with two sub-folders,
’audio’ and ’'video’. The video folder has separate folders for each camera con-
figured in the system, named with an internal ID reference. The system stores
camera video data in the folders with the date and time as their name. Each video
file lasts 15 minutes and is stored in a Matroska Multimedia container. This struc-
ture is equal in the Windows and Linux setup (Figure 4.19)

Matroska is a multimedia container that can hold various audio and video
streams. It supports all known audio and video compression formats by design,
making it an ideal container for video data from different IP cameras. Matroska
files store the video stream in the original format, such as MJPEG, H.264, and
H.265. Additionally, it is based on Extensible Binary Meta Language (EBML), al-
lowing users to include metadata such as recorded time, duration, and title in the
file [43].

v = AgentDVRdata (D) Name Size > @@ lost+found —

v " Media [ 1.2022-10-06_20-36-16_445.mkv 76 478 KB ~ @ media 2items
> T audio [) 1.2022-10-06_20-51-18_409.mkv 76 429 KB > @ audio 5items
v i video [ 1.2022-10-06_21-06-19_543.mkv 76 126 KB ~ @ video 7items

ABGLN [ 1.2022-10-06_21-21-20_598.mkv 79 196 KB ~ [ ABGLN 355 ikems
AVMNX [) 1.2022-10-06_21-36-24_055.mkv 76 536 KB 0 1_2022-10-06_17-03-55_890.mkv 80,6 MB
= i nr e @ et misse s
RFBCI [9 12022-10-06.22-21-28 003mkv 76 349 KB 0 1_202210-06_17-33-57_954mkv 76,915
RGGDQ [) 1.2022-10-06_22-36-29_384mkv 76 332 KB 0 1_2022-10-06_17-48-59_002.mkv 79,2 MB
zamaL [ 1.2022-10-06_22-51-30 468mky 76 511 KB B 1_2022-10-06_18-04-00_019.mkv 78,9 MB

["] 1.2022-10-06_23-06-32_302mkv 76 476 KB B 1_2022-10-06_18-19-01_030.mkv 77,5 MB

(a) AgentDVR - Windows (b) AgentDVR - Linux

Figure 4.19: File structure generated by AgentDVR - Windows and Linux.

4.6.4 Filecontent of relevant files

The .mkv files contain valid Matroska formatted data but contain no timestamp
information binary stored throughout the file. However, there is a timestamp for
the entire 15-minute video written in the metadata of the Matroska header. The
value is referred to by the attribute name STARTTIME and consists of a num-
ber stored as ASCII text. The number is a Windows Ticks timestamp denoting
the timestamp for the first frame in the video; as in Figure 4.20, the timestamp
638006871795433856 equals 2022-10-06 21:06:19.
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Offset (h) | 22 @1 82 @3 @4 @5 @6 @7 @8 09 BA @B OC @D OE OF UTF-8

popopooeea 1A 45 DF A3 A3 42 86 B1 @1 42 F7 81 @1 42 F2 B1 EQJ B B B
popopoRe1le @4 42 F3 81 @8 42 82 B8 6D 61 74 72 6F 73 6B 61 B B matroska

peopREOZ2E0 | 3@ 67 CB Al 45 A3 89 53 54 41 52 54 54 49 4D 45 | @gd E STARTTIME
ppopREO298 | 44 87 92 36 33 38 38 30 36 38 37 31 37 39 35 34 | D 6380068717954
PPPPEREZAD | 33 33 38 35 36 67 C8 96 45 A3 8F 54 49 4D 45 53 | 3385690 E TIMES
0O0RpRER2E® | 54 41 4D 50 4F 46 46 53 45 54 44 B7 81 30 67 C8 | TAMPOFFSETD @g8
pppRERRZCE | A2 45 A3 88 44 55 52 41 54 49 4F 4E 44 87 94 30 E DURATIOND @
pepRARGEZDE | 38 3A 31 35 3A 30 30 2ZE 31 31 3@ 30 30 30 30 30 | 0:15:00.11000000

Figure 4.20: File header in AgentDVR .mkv file. (Offsets described in Table 4.15)

Offset Field type Data type Description

0x0 signature  char[4] EMBL signature (6x1A 45 DF A3)
0x287 signature char[10] Metadata name: STARTTIMED
0x293 timestamp char[18] File timestamp (Windows Ticks)
0x31C data Video data

Table 4.15: File header in AgentDVR .mkv file.

4.6.5 Carving, and proposed method for filtering

Since the video data isn’t stored with a high timestamp frequency, with timestamps
for every frame or frame-group, we are unable to propose a new carving method
for this system. However, since the video data is stored as MKV files and are valid
multimedia files, using existing tools to carve for multimedia files is most benefi-
cial. It is possible to then highlight the relevant files from the result by inspecting
the carved files’ metadata and matching the timestamp against a timeframe regex.
The regex pattern must cover a period from 05.10.2022 13:40 UTC to 10.10.2022

16:00 UTC. In Windows Ticks format, the 13 digits with the lowest significance
can be any value, the 14th digit must range from 0 to 1, and the four most signific-
ant digits are 6380. This gives a range from 638000000000000000 (28.09.2022
22:13 UTC) to 638019999999999999 (22.10.22 01:46 UTC).

And a timeframe regex pattern of 6380[0-1].{13}

Code listing 4.5: Carving AgentDVR videodata

input: imagefile, regex for timeframe search
output: files of carved data

Perform carving with an existing tool for mkv files

load result file from caving
read header of file
regex-search header for metadata #(STARTTIME .{3}<TIMEFRAME>)
if metadata found:
highlight file result
else:
move file to another folder
read next result file from carving
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4.7 Summary of methodology

In summary, we found that almost all of the VMS systems we examined store
their video data in a proprietary format, and only one uses a standard format. The
different proprietary formats include timestamps embedded within the video data,
enabling us to propose methods that carve out the video data within a specific time
frame, even down to individual frames or frame-groups.






Chapter 5

Results

To get an overview of the content of the discs and an indication of how much data
has not been overwritten and can potentially be recovered, we use a method of
calculating the entropy and the hash value for each 512-byte sector on the disk.
Using blockhashing to compare small pieces of data was described by Garfinkel
et al. [44] as sub-file forensics and by Hansen [45] as block-hashing. A sector on
the disk that could potentially be recovered is a sector with equal hash before and
after the overwriting and an entropy above a threshold. A lower entropy threshold
could be used to find sectors that are not empty and contains only zeros, and a
higher threshold could find sectors that contain compressed data, which coincides
with video data. An entropy of zero would indicate that all bytes in the sector are
of the same value, typically only zeros. We deemed a sector as potentially non-
overwritten if the hash values were equal and the entropy was greater than zero
because we wanted to include index, metadata, and video data. In addition to
these calculations, we created visualizations for each surveillance system, one of
what was equal between the two recordings and another of what was actually
recovered.

Bitmap Graphics File ASCll TextFile  Source CodeFile  Microsoft Word Doc  JPEG Grapics File Zip Compressed or

PG Encrypted File
(BMP) (TXT) © (boc) (Pe) (ZIPIGNUPG)

2 3 4 5 6 7
Entropy Scores (0-8)

Figure 5.1: Spectrum of Approximate Entropy Calculations [46].
Shows that compressed data, images, and video has a high entropy. And
text and uniform data (bitmap) have a lower entropy.

Casey et al. [47] defined a vocabulary for file recovery, and we will follow this
standard as much as possible. And to define the files or data we are trying to re-
cover in our experiment, we will use the terms overwritten and not-overwritten.
We are looking to recover data from the first round of recordings that the sur-
veillance systems deleted, and this data is classified as 'non-allocated’ in the file
system. For our experiment, this data is either ’overwritten’ with data from round

45
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two or ‘non-overwritten’ and can potentially be recovered. The ’allocated’ data
in the file system is mainly files from the second round of recordings, and files for
configuration, logs, etc., and should not be in the recovered data.

For our recovered data, the correct term by the standard of Casey et al.[47]
is to use 'Content Recovered’ since most of our methods focus on only recovering
the content of the files or even just fragments of the content, and not filename or
metadata. We will use the short name 'Recovered’ for Content Recovered since we
are not using any other classes.

To measure precision and recall for our methods, we will consider the non-
overwritten data as 'Positives’ and the overwritten data as Negatives. The positives
are data from the first round that is non-allocated and potentially still available,
and the negatives are no longer existing. To visualize these quantities and simul-
taneously show the fragmentation of the data, we created figures for each system
that show the entire disk. The first figure shows where there are non-overwritten
parts, and the second figure shows the recovered areas of the disk, both marked
with a green color.

After we did the recovery of the various systems, we logged all offsets from
which the method recovered data. These offsets became the next part of calculat-
ing precision and recall.

e The non-overwritten data that was recovered was considered True Positives.

e The allocated data that was recovered was considered False Positives.

e The non-overwritten data that was not recovered was considered False Neg-
ative

e The allocated data that was not recovered was considered True Negative.

To calculate the precision and recall, we used the following formulas:

.. TP
Precision = ———
TP+ FP
TP
Recall = ——
TP+ FN

5.1 Results from carving

In this section, we present the results from the carving experiments. We list the
predicted and actual results in both numbers and visualizations for each system,
together with the calculated precision and recall. And last, we summarize all the
results in Table 5.3.

In the visualization, each pixel is a sum of several sectors (256 or 128 sectors
per pixel) and gets a green color based on the results for each sector. For example,
for a given pixel that represents 256 sectors, if there are no recovered sectors, the
pixel will get a black color. If only half of the sectors are recovered, the color will
be dark green. And if all of the sectors are recovered, the pixel will be entirely
green.
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5.1.1 Milestone

The disk contained a total of 465 GB (976 773 168 sectors) and after the disc was
overwritten with 50 % new data in the second recording period there was 220 GB
(461 642 936 sectors) of data that was non-overwritten (Figure 5.2a).

Using an existing carving tool resulted in zero files carved from unallocated
areas of the disk.

The proposed carving method was implemented as a Python script and ran on
the analysis computer for 4 hours and 35 minutes. The result was a total of 216
GB of data, 20831 files; the largest files were 32 MB, the smallest was 24 KB, and
the average size was 10.6 MB. The recovered data is visualized in Figure 5.2b.

(a) Milestone non-overwritten data (b) Milestone recovered data

Figure 5.2: x for Milestone (256 sectors per pixel)

The analysis classified the recovered data as: 214 GB from non-overwritten
data and 2 GB from allocated data. However, 6.1 GB of non-overwritten data was
not recovered, and 243.6 GB of allocated data was correctly not recovered. This
results in a precision of 0.990 and a recall of 0.972.

The timeframe for the carving was from 22 Sept 18:50 to 26 Sept 19:25; the
first timestamp recovered was 22 Sept 19:01, and the last was 26 Sept 19:25. This
means that we have video recovered from both ends of the recording.

The size of the frame-groups recovered varied from 116 bytes to 1.5 MB
(1579319 bytes), and the average size of a frame-group was 238 KB (244015
bytes)
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5.1.2 Mirasys

The disk contained a total of 232.9 GB (488 382 464 sectors) and after the disc
was overwritten with 50 % new data in the second recording period there was
75.4 GB (158 039 672 sectors) of data that was non-overwritten (Figure 5.3a).
Using an existing carving tool resulted in zero files carved from the entire disk.
The proposed carving method was implemented as a Python script and ran on
the analysis computer for 1 hours and 2 minutes. The result was a total of 77 GB
of data, 3269 files; the largest files were 46 MB, the smallest was 5.9 KB, and the
average size was 24.1 MB. The recovered data is visualized in Figure 5.3b.

(a) Mirasys non-overwritten data (b) Mirasys recovered data

Figure 5.3: Disk overview of the data for Mirasys (128 sectors per pixel)

The analysis classified the recovered data as: 75.3 GB from non-overwritten
data and 1.7 GB from allocated data. However, 97 MB of non-overwritten data
was not recovered, and 155.8 GB of allocated data was correctly not recovered.
This results in a precision of 0.998 and a recall of 0.977.

The timeframe for the carving was from 11 Jan 12:42 to 15 Jan 23:07; the
first timestamp recovered was 11 Jan 12:43, and the last was 15 Jan 23:07. This
means that we have video recovered from both ends of the recording.

The size of the frame-groups recovered varied from 5954 bytes to 905 KB
(926834 bytes), and the average size of a frame-group was 26 KB (27044 bytes)
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5.1.3 Avigilon

The disk contained a total of 465 GB (976 769 023 sectors) and after the disc was
overwritten with 50 % new data in the second recording period there was 230 GB
(482 281 276 sectors) of data that was non-overwritten (Figure 5.4a).

Using an existing carving tool resulted in zero files carved from the entire disk.

The proposed carving method was implemented as a Python script and ran on
the analysis computer for 2 hours and 31 minutes. The result was a total of 217.2
GB of data, 7780 files; the largest files were 128 MB, the smallest was 6.5 KB, and
the average size was 28.5 MB. The recovered data is visualized in Figure 5.4b.

(a) Avigilon non-overwritten data (b) Avigilon recovered data

Figure 5.4: Disk overview of the data for Avigilon (256 sectors per pixel)

The analysis classified the recovered data as: 217.1 GB from non-overwritten
data and 37 MB from allocated data. However, 12.8 GB of non-overwritten data
was not recovered, and 235.7 GB of allocated data was correctly not recovered.
This results in a precision of 0.999 and a recall of 0.944.

The timeframe for the carving was from 11 Oct 20:00 to 16 Oct 15:00; the first
timestamp recovered was 12 Oct 12:33, and the last was 15 Oct 22:35. This means
there are about 16 hours from both ends of the recording we have no recovered
video from.

The size of the frame-groups recovered varied from 2218 bytes to 24 MB
(25189376 bytes), and the average size of a frame-group was 1,9 MB (1986015
bytes)
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5.1.4 Detec

The disk contained a total of 465 GB (976 773 168 sectors) and after the disc was
overwritten with 50 % new data in the second recording period there was 232 GB
(486 483 603 sectors) of data that was non-overwritten (Figure 5.5a).

Using an existing carving tool resulted in zero files carved from the entire disk.

The proposed carving method was implemented as a Python script and ran on
the analysis computer for 5 hours and 14 minutes. The result was a total of 232
GB of data, 2375 files; the largest files were 101 MB, the smallest was 8 MB, and
the average size was 99.9 MB. The recovered data is visualized in Figure 5.5b.

(a) Detec non-overwritten data (b) Detec recovered data

Figure 5.5: Disk overview of the data for Detec (256 sectors per pixel)

The analysis classified the recovered data as: 231.9 GB from non-overwritten
data and 3 MB from allocated data. However, 76 MB of non-overwritten data was
not recovered, and 233.8 GB of allocated data was correctly not recovered. This
results in a precision of 0.999 and a recall of 0.999.

The timeframe for the carving was from 26 Sept 20:00 to 1 Oct 17:38; the
first timestamp recovered was 29 Sept 18:32, and the last was 1 Oct 17:38. This
means that we have no recovered video from the first three days of recordings,
but all until the end of the recording.

The size of the frame-groups recovered varied from 972 bytes to 13 KB (13699
bytes), and the average size of a frame-group was 9 KB (9449 bytes)
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5.1.5 AgentDVR-Windows

The disk contained a total of 465 GB (976 771 073 sectors) and after the disc was
overwritten with 50 % new data in the second recording period there was 219.8
GB (461 036 543 sectors) of data that was non-overwritten (Figure 5.6a).

The first part of the carving method was done by loading the image of the
disk into PhotoRec with standard settings, and selecting only to carve MKV files.
PhotoRec ran for 2 hours and 43 minutes. The result was a total of 287.7 GB, 1850
files. This result was not narrowed down to the wanted time frame.

The second part of the carving was implemented as a Python script and ran on
the analysis computer for 3 minutes. This moved the files outside the time frame
to another location, and the remaining result was a total of 131.9 GB of data, 844
files; the largest files were 684 MB, the smallest was 11 MB, and the average size
was 160 MB. The recovered data is visualized in Figure 5.6b.

The analysis classified the recovered data as: 129.6 GB from non-overwritten
data and 2.3 GB from allocated data. However, 90.3 GB of non-overwritten data
was not recovered, and 243.6 GB of allocated data was correctly not recovered.
This results in a precision of 0.983 and a recall of 0.589.

The timeframe for the carving was from 5 Oct 13:40 to 10 Oct 16:00; the
first timestamp recovered was 6 Oct 19:36, and the last was 10 Oct 15:49. This is
consistent with the earliest recording after the first round; the storage had reached
maximum capacity and started overwriting the first day of recordings. This means
that we have video recovered from both ends of the recording.

The size of the files fragments varied from 84 KB (86016 B) to 916 MB (960544768
B), and the average size of a fragment was 98 MB (102759636 B)

(a) AgentDVR-Win non-overwr. data (b) AgentDVR-Win recovered data

Figure 5.6: Disk overview of the data for AgentDVR-Win (256 sectors per pixel)
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5.1.6 AgentDVR-Linux

The disk contained a total of 465 GB (976 752 047 sectors) and after the disc was
overwritten with 50 % new data in the second recording period there was 209 GB
(438 272 446 sectors) of data that was non-overwritten (Figure 5.7a).

The first part of the carving method was done by loading the image of the
disk into PhotoRec with standard settings, and selecting only to carve MKV files.
PhotoRec ran for 1 hours and 17 minutes. The result was a total of 125 GB, 737
files. This result was not narrowed down to the wanted time frame.

For the second part we used the same Python script as for the Windows carving
and ran on the analysis computer for 2 minutes. None of the files was outside the
time frame, so no files was moved to another location. The result was a total of
125 GB of data, 844 files; the largest file was 22 GB, the smallest was 1 MB, and
the average size was 173,6 MB. The recovered data is visualized in Figure 5.7b.

The analysis classified the recovered data as: 104 GB from non-overwritten
data and 21 GB from allocated data. However, 105 GB of non-overwritten data
was not recovered, and 235.7 GB of allocated data was correctly not recovered.
This results in a precision of 0.831 and a recall of 0.497.

The timeframe for the carving was from 5 Oct 20:45 to 10 Oct 07:30; the first
timestamp recovered was 5 Oct 23:17, and the last was 10 Oct 07:17. This means
that we have video recovered from both ends of the recording.

The size of the files fragments varied from 4096 bytes to 1.9 GB (2113732608
B), and the average size of a fragment was 70 MB (73975505 B)

(a) AgentDVR-Linux non-overwritten data (b) AgentDVR-Linux recovered data

Figure 5.7: Disk overview of the data for AgentDVR-Linux (256 sectors per pixel)



Chapter 5: Results 53

5.1.7 Result overview

We summarize all the results of the recovered data in Table 5.1 and Table 5.2. The
results from AgentDVR are in a separate table because the PhotoRec method isn’t
comparable to our methods. While PhotoRec operates at a file level, our methods
operate at a much lower level; frames or framegroups. Also it is not within scope
to compare a generic carver, such as PhotoRec, to our specific carving methods.

We then list the size of the chunks of data recovered. A chunk of data refers
to the smallest unit a method recovers, including frames, frame-groups, and file
fragments. If the data is recovered contiguously, a chunk of data refers to the
individual parts, not the entire contiguous data chunk.

System P N TP FP TN FN | Precision Recall
Milestone | 220.1 245.6 214 2.0 243.6 6.1 0.990 0.972
Mirasys 75.4 157.5| 75.3 1.7 155.8 0.1 0.998 0.977
Avigilon 230 235.8 | 217.1 0.037 235.7 128 0,999 0.944
Detec 232 233.8 | 231.9 0.003 233.8 0.076 0,999 0,999

Table 5.1: Precision and recall for recovered data (rounded to GB)

System P N TP FP TN  FN | Precision Recall

AgentDVR Win 219.8 2459 | 129.6 2.3 243.6 90.3 0,983 0,589
AgentDVR Linux 209 256.8 104 21 235.7 105 0,831 0,497

Table 5.2: Precision and recall for carved video with PhotoRec (rounded to GB)
After highlighting relevant time frame.

System Min Max Average
Milestone 116 B 1.5MB 238KB
Mirasys 5.8 KB 0.9 MB 26 KB
Avigilon 2.2 KB 24MB 1.9MB
Detec 972 B 13 KB 9 KB
AgentDVR Win 84 KB 916 MB 98 MB
AgentDVR Linux 4KB 2015MB 70 MB

Table 5.3: Sizes of recovered chunks of data, chunks are frame-groups, frames or
file fragments depending on the carving method.

5.2 Verification of content

In this section, we will briefly describe how we verified the content of the carved
data. After we recovered the video data, we needed to confirm that the video
was actually playable, and using a video player was an easy approach. Typically,
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surveillance systems come with their own players that can manage their unique
formats, including headers and video data. But this requires the data to be com-
plete with all surrounding files we are not recovering, such as index files and
configuration.

To extract only the video data from the recovered data, we implemented a
variant of the carving method. We used the same approach to read header in-
formation from the recovered files but concatenated the video data from one file
into another. This new file consisted of only the video data, without headers in
between. Usually, video players cannot render video data without container in-
formation, but ffplay can play a video stream without container information. Us-
ing ffplay in the FFmpeg tool [48] in Linux Ubuntu, stream specifiers can be given
as arguments to the program if necessary. But in our experiment, we did not need
these specifiers, ffplay could play all video formats we loaded, an example shown
in Figure 5.8.

Jostein@Loke: /media/MasterDatad/Detec/output

$ Ffplay 2022-09-29_201016-201141_13366_282049654150_282154509767 . detec

Figure 5.8: Example of verifying a recovered file from Detec with ffplay.
Note that the timeframe of the video file is 20:10:16 - 20:11:41 UTC, and the
timestamp imprinted in the video file is 22:11:15 UTC +2 (local time Norway).

For video codecs with frame types that use other frames as a reference, similar
to H.264 and its intra- and inter-frames, the carved video must contain an intra-
frame that other inter-frames can refer to. The video needs a full frame to know
what image to render; if the video consists only of inter-frames, the player can’t
render a full frame to calculate the changes in the inter-frames.

5.3 Summary of results

We implemented our suggested methods with Python scripts and ran the scripts
on our experimental data. The implemented code is made available on GitHub!.

Before and after overwriting, we carefully analyzed the data to gather inform-
ation that we could use to calculate the success rate of our methods. We also

https://github.com/josvik/timeframe-carver


https://github.com/josvik/timeframe-carver
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created a visualization showing how much data we could recover. Lastly, we out-
lined a method for extracting playable content from the proprietary data and used
this to verify the content we recovered.






Chapter 6

Discussion

6.1 Precision and Recall

In our initial analysis of the disks and the potentially recoverable data, we made a
hash comparison between the disk after the two recordings. We compared sector
by sector and counted the equal ones but not those with no data (zero entropy).
But there are still some amounts of data on the disks that are equal but do not
contain any video data that would be recovered. This is file system data (file and
directory structure, journals, logs, etc.), configuration files, log files, index files,
and other files used by the VMS. The values used for calculating precision and
recall are, to some degree, affected by these types of data. They are calculated as
positives but will never be recovered and considered True Positives. However, this
is such a small amount of data that it wouldn’t affect the calculations enough.

For the proposed carving methods we implemented (not PhotoRec), there
was a recall of 0.944-0.999, and the parts considered false negatives, i.e., not
recovered, were at most 0.06 or 6.1 GB out of 220.1 GB of data. The lowest value
for false negatives was as low as 0.001 or 76 MB out of 219.8 GB of data. Most
of this data is the type that is mistaken for recoverable data, and the actual recall
value is even closer to 1.0. These results do not include those that used an existing
carving tool (PhotoRec) because the results are not comparable.

Another key component that affects recall is how big the recovered chunks of
data are. For the Detec system’s method, the average frame-group size is 9 KB, and
this method has the highest-scoring recall: 0.999, see Figure 6.1. The recovery of
Avigilon data had a chunk size of 1.9 MB and a recall of 0.944. And the AgentDVR
systems have average fragment sizes of about 100 MB and the lowest recall value.
This means that a larger chunk of data will increase the possibility of corrupted
data due to some part being overwritten, and therefore the carving will recover
data from the second round of recording instead (overwritten data).
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Figure 6.1: Recall value per chunk size.

6.2 Overwriting policy and recover period

In our experiments, we configured all the VMS to have the same policy for how
long they kept their video data available for the consumer. We carried out the
second round of recordings by a good margin to that policy; the policy was seven
days, and the typical period between the two recordings was a month.

There are two significant differences in how the systems store their data;
file-system-based storage and preallocated-based storage. These differences af-
fect how the systems handle their deletion policy and overwrite old recordings,
illustrated in Figure 6.2.

File-system-based

Milestone m———
AgentDVR Win : —————————
AgentDVR Linux | ee—
Preallocated-based |
IV TSy S e ———
Avigilon I

Detec —

Figure 6.2: Periods of recovered data within the start and end of the first record-
ing, all systems have a first recording period of approximately 100 hours.

The first type is the systems that use a file-system-based storage approach
(Milestone and AgentDVR), where files with video data are stored under folders
determined by the recording date and time. Each recording is a new file, delimited
by size (Milestone) or time (AgentDVR). Milestone splits all files at 16 MB size and
a separate storage folder for every hour, while AgentDVR stores the video data into
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files with a 15-minute duration. When the deletion policy is reached, the systems
use the file-system’s own deletion method, and the storage area for that video data
is made available for future video data. The overwriting policy is then determined
by the file-system, not by the VMS.

The other type is preallocated-based storage which allocates the available stor-
age space at initialization (Mirasys, Avigilon, and Detec). The allocated files are
not deleted in the file system but reused by the VMS. The allocated files are treated
as an internal file system or a pool of available storage area, and the overwriting
policy is handled by the VMS itself.

The difference in storage type creates different results in recovery; for file-
system-based storage, the recovered data is evenly spread across the first record-
ing period. And for two of the systems with preallocated based storage, big chunks
of data are missing, especially from the oldest recordings. This indicates that the
systems are overwriting the oldest recordings first.

6.3 Carving time / performance

There are significant variations in how much time the carving methods took, from
just over an hour up to almost six hours. The disk sizes were practically identical
with 500 GB drives, except for Mirasys, with a size of 230 GB. For this comparison,
we multiply the timing with the difference for Mirasys, and we include the timing
for both AgentDVR as a reference to an existing carver.

The fastest carving methods were Mirasys at 2 hours and 15 minutes (1:02 x
(500/230)) and Avigilon at 2 hours and 31 minutes. Then the two slowest meth-
ods were Milestone at 4:35 and Detec at 5:41 shown in Figure 6.3. The main
difference in these methods is that the fastest ones had an index structure stored
within the video data, and the slowest ones only had frames or frame-groups
stored.

5:00 | A
4:00 A
3:00 .
2:00 .
1:00 H .
0:00

Mirasys AvigilonMilestone Detec Ag.Win Ag.Linux

Carving method

Time

Figure 6.3: Timing of carving methods (in  hours:minutes)
The first two uses an index-based carving, and the next two a non-index-
based carving. The last two is included as a reference to existing carver.

Carving with index information will drastically reduce the carving time and
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maintain high accuracy and recall values. Together with carving for indexes and
the referenced frames, it’s possible to carve for individual frames as long as the
timestamp is stored in the frame header. By using the information in the index and
verifying the offsets found in the index, it is possible to skip ahead while carving,
as long as we, for example, find valid frame headers at the given offset. By utilizing
this feature, there is no need to search every sector of the disk, therefore reducing
the carving time.

6.4 File slack

In all file systems, there is a given allocation size that’s the smallest bit of address-
able data; in NTFS, this is known as clusters [10], and in ext4, it’s known as blocks
[11]. A typical size is 4096 bytes, which means that if a file only contains 4000
bytes, there will be 96 bytes that are not in use by that file. This is known as file
slack [14].

As mentioned, some VMS systems use preallocated-based storage where the
files are considered one big filesystem. For example, the file system for Detec has
allocated 4598 .sector files, each has a size of 104.9 MB (104 860 099 bytes), and
the Disk0000.info file also describes each file as 104 860 099 bytes. But the file
system is set up with a cluster size of 4096 bytes, and a .sector file will take up
25 601 clusters leaving 1 597 bytes in file slack that will never be used.

When the system writes video data to the .sector files, it will write until reach-
ing the file size limit and then continue writing at the beginning of the following
.sector file. This jump between the two .sector files might occur in the middle of
a frame and, therefore, create over 1.5 KB of unrelated data in the middle of the
frame (Figure 6.4a). Our method does not account for this file slack and will be
unable to do contiguously carving over this jump.

A similar problem occurs for the Avigilon system. A .avd file has information
on the following .avd file, but only by its file name. When a file is 'deleted’, it
is renamed and moved back to the ’FilePool” folder, and the reference between
the .avd files is destroyed. The jump between two .avd files can also occur in
the middle of a frame, and the Avilgilon system stores the timestamp only in the
index. This means that if the index is stored in one .avd file and some of the
frames in the following .avd file, we cannot recover the frames stored after the
jump (Figure 6.4b).

There is a possibility to recover those frames using the same method as Frame-
based recovery [2]. From the index, we have the size of all the missing frames, and
by searching for individual frames that do not already belong to an index, we can
compare the size of the frame and index information. The result is contiguously
carved video data that spans multiple files.
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Figure 6.4: File slack in .sector files and jump in .avd files

6.5 Summary of discussion

In summary, there is a correlation between the size of the chunks we can identify
with a timestamp and the recall value. If the chunks are smaller, the recall value
is greater. We also found a correlation between the storage system, file-system-
based, or preallocated-based storage, and how the VMS overwrites their data.
This affects the recovery in such a way that there is a lower chance of recovering
older data on preallocated-based storage.

We also found that the methods that utilize index information have a signi-
ficantly shorter processing time than those that only carve for individual frames
or frame-groups. And at last, we discussed the possibility of missing some data
during the carving process due to file slack.






Chapter 7

Conclusion and Further Work

In this chapter we will revisit the research questions in Chapter 1 that laid the
foundation for this research, and give answers based on the experimental work in
chapter 4 and 5.

7.1 Research questions

RQ1 - Is it possible to recover surveillance video that is partially over-
written using a timeframe-based approach??

By analyzing the internal structures of the surveillance data, we found that all
the systems we analyzed have timestamps stored within their surveillance data.
And together with that information, we also found enough info to create carving
methods based on the internal structure in almost all of the systems. We presented
methods for carving data from Milestone, Mirasys, Avigilon, and Detec. For Agent-
DVR, we used an existing carving tool since the system stores the media files in
a Matroska multimedia container. The structure-based carving methods we sug-
gested showed very high performance on partly overwritten data, with precision
values of 0.990-0.999 and recall values between .944 and .999.

RQ2 - Can existing common carving tools recover surveillance video?

Our experiment on video data from surveillance systems shows that existing carving
tools are unable to recover the video data from a majority of the systems. The video
data is stored in a proprietary structure which the carving tool is unfamiliar with.
Out of all the analyzed systems, only the AgentDVR system stored video data in a
commonly used video file format and produced results.

We showed that files from the AgentDVR system have a timestamp embedded
in metadata, and we propose a method that highlights the results from an existing
carving tool based on a timeframe of interest. Using existing tools to recover data
was useful, but the performance was much poorer. Mainly because the video data
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was stored in big files, and new recordings could easily overwrite parts of the
video data.

RQ3 - Is it possible to find a generic pattern for stored data of surveil-
lance systems?

We found that there are patterns in the stored video data of most of the systems
we analyzed, while there are some differences in how the data is structured and
stored, there are key components in all of the system’s data. The most crucial
information is the timestamps, offsets, size values, and indexes. We found dif-
ferent types of timestamps; Windows Filetime, Windows Ticks, and APFS time.
The timestamps were stored in both little and big endian, in addition to being
stored as a number in ASCII text. We presented a method and a tool to highlight
the timestamps in order to reveal the patterns in stored video data. We used this
method and tool to analyze the systems in this thesis and showed an effective ap-
proach to discovering patterns and identifying timestamps and other data values.

7.2 Future work

There are possibilities to do further analysis on the surveillance data to increase
the precision rates by recovering configuration and index files stored outside the
video data. There is also potential in discovering and accounting for file slack
within the carved data, increasing the recall even more. Similarly, by finding a
method to reconnect the .avd files in the Avigilon system, there is a potential
to recover more of the relevant data. Another potential is to analyze and find
information about the video stream to combine individual camera streams from
the same video stream.

By implementing a frame-based recovery method, we could enhance the carving
tools to patch together individual frames into a more contiguous result. We could
also use index information more actively, for example, in the Milestone system, to
rearrange fragmented frames or frame-groups in the correct order.

There is also future work to find similarities in the different carving methods
and develop software that handles all the methods in one program and even adds
support to systems later to be analyzed. And another software development con-
tribution is to enrich the pattern-finding tool with more timestamps and make it
more generic by adding other signatures, such as video frame signatures. As noted
earlier, the implemented code is made available on GitHub'.

https://github.com/josvik/timeframe-carver
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