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Abstract

The sharing culture, especially Open-Source, has become important with the in-
creased use of technology and the internet. In programming, languages like Py-
thon rely on the open-source community to create libraries for people to use. This
allows anyone to implement complex application functionality simply by adding
a package.

However, the danger of letting anyone publish such packages is the possibility
of evil actors trying to exploit the users by uploading malicious packages, which
can cause significant damage if they can sneak into popular projects.

The thesis aims to increase the domain knowledge of the characteristics com-
monly found in malicious packages in the Python Package Index (PyPi) and to see
how common machine learning models perform on this data. We have used static
indicators and metadata of a dataset consisting of 382,712 benign and 7,639 ma-
licious Python packages. We have used the feature ranking method Information-
Gain and common machine learning models from the Python library Scikitlearn
to find the most valuable features and identify the expected performance from the
models.

From the experiments conducted, did we find the Neural Network Perceptron
model to perform the best with the default options among those we tested with
an F1-score of 92% against the verification dataset. We also found the most com-
mon features among the malicious packages to be two commonly used libraries,
"requests" and "setuptools". From the results of testing the models, we found that
it can identify most of the small malicious samples while the average size of those
misclassified was much higher. It needs to be looked closer at improving the de-
tection of larger and potentially more sophisticated packages.

We conclude that static indicators and machine learning could be good for de-
tecting malicious packages. However, more research into optimization is needed,
as well as more profound knowledge of what combination of indicators is typic-
ally malicious. We have contributed with extended knowledge on the topic and
on how some models perform on static indicators on a larger dataset of packages.
We have also provided recommendations for what could be focused on further in
research on the topic.
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Sammendrag

Delingskulturen som finnes på internett og spesielt knyttet til åpen kildekode har
vært viktig ved den økende interessen for teknologi. Innenfor programmering og
språk slik som Python lener seg på gruppen som produserer og deler sine prosjek-
ter med andre i form av programmer og funksjonalitet.

Men, faren ved å stole på andre gjør det mulig for ondsinnede aktører å utnytte
vanlige brukere ved å lokke med god funksjonalitet. Ved å legge med skadelig kode
i disse pakkene som deles kan føre til store konsekvenser hvis de klarer å snike
seg med i større programvareprosjekter.

Denne oppgaven har som mål å øke kunnskapsnivået om attributter som er
vanlig å finne på slike ondsinnede pakker i Python sitt pakkebibliotek PyPi samt
undersøke hva slags prestasjon kan forventes av de vanligste maskinlærings mod-
ellene. Vi har gjort eksperimenter på metadata og statiske indikatorer hentet fra
ett datasett som inneholder 382,712 legitime og 7,639 ondsinnede Python pak-
ker. Vi har benyttet oss av InformationGain algoritmen for å rangere indikatorene
og modeller hentet fra maskinlærings-biblioteket Scikitlearn for å finne de beste
indikatorene samt å identifisere forventet presisjon innen klassifisering.

Fra eksperimentene fant vi at Neural Network modellen Multilayer Perceptron
presterte best med de originale parameterne. Det høyeste F1 resultatet fra tester
mot datasettet for verifisering viste 92%. Vi fant også at de vanligste indikatorene
blant ondsinnede pakker var de to godt brukte bibliotekene "requests" og "setuptools".
Resultatene fra testing av modeller fremstår det som vi klarer å detektere mange
av de små ondsinnede pakkene, siden gjennomsnittlig størrelse var mye høyere
blant de feilklassifiserte. Det må derfor trolig ses nærmere på hvordan forbedre
deteksjon av større og potensielt mer sofistikerte pakker.

Vi konkluderer med at statiske indikatorer og maskinlæring kan være en god
kombinasjon for å detektere ondsinnede pakker. Men det trengs mer forskning på
hvordan optimalisere hver modell samt mer kunnskap om hvilke kombinasjoner
av indikatorer er oftest sett blant de ondsinnede pakkene. Vi har bidratt med mer
kunnskap, blant annet om hvordan ulike modeller klarer å klassifisere ondsinnede
pakker basert på metadata og statiske indikatorer. Vi har også kommet med forslag
til hva som kan fokuseres på videre innen dette området.
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Chapter 1

Introduction

This chapter will introduce the thesis by presenting some of the challenges users of
open-source software face today, before describing the motivation for conducting
such a thesis and then what contributions we aim to provide.

1.1 Background

Open-source or free software has been along for a long time and developers can
today achieve a lot and save themselves a good amount of work by utilizing free
libraries. As most programming languages have packages of code that can be im-
plemented to easily solve certain tasks. One package repository for the well-known
language Python is called Python Package Index(PyPi) and counted on an ordin-
ary day in February 2023 4,489,234,921 downloads across all packages avail-
able[1]. This shows to what extent the repository of only this language is used
weekly. Since these packages are open-source, in theory, everyone can contribute
and that opens the possibility for malicious actors. If a malicious package ends
up being used in a project widely used, that one project could risk being affected
because of the one bad package being used as a dependency. This is called supply
chain attacks and is a field that has gained a lot of interest in recent years after
being the reason for several significant security incidents. As more come to realize
the importance of securing the supply chain, more interest has been in developing
tools and methods to verify what is put into the supply chain and not only focus on
the end product. By analyzing the data about known bad packages and comparing
it against legitimate packages, could we assist in the development of indicators to
use in combating fake and malicious packages. According to the paper by Vu et
al. [2] the results of comparing different detection approaches that there was a
high number of false positives present. Showing the need for further work towards
making it easier to prioritize and further analyze individual packages.
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1.2 Motivation

Open-source projects and libraries are a large and essential part of the software
development process, both for people coding as a hobby and for professionals
working for big companies. Part of the motivation for doing this project is the
ability to contribute back to the open-source community, which is mainly based
on voluntary effort, and to aid in the security itself by improving on the knowledge
about malicious packages located in these repositories. Part of the motivation is
also based on the work done by ReversingLabs, experts, and other companies re-
garding supply chain attacks and research into open-source security. Improving
the security and methods to detect malicious packages will not only benefit the
users but also aid the security companies as they hopefully can improve in detect-
ing malicious packages with fewer resources or gain more intelligence on who is
behind the campaigns. As reported by several companies, have there already been
detected multiple new malicious packages in PyPi, early January where there re-
ports of multiple evil packages circulating in PyPi[3]. As this issue not only appears
in new and low populated packages were also in the large and well-used Machine
Learning package "PyTorch" compromised late December last year[4]which shows
us to be cautious whenever using existing libraries. Some of the initial motivation
for conducting this project is also based on whether it is possible to identify mali-
cious packages only based on metadata and static indicators, which will be used
in this thesis. It will also be interesting to see whether some indicators tend to
appear more often among the malicious samples or not.

1.3 Expected impact

After finishing this thesis, the goal is to provide more insight into what attributes
are commonly found among especially malicious packages in PyPi. The expected
impact of this thesis is firstly to provide more insight into what type of features
are commonly found in malicious packages by looking into the static indicators
in the data. Secondly, the thesis will look into what performance can be expected
on this data for some of the common machine learning models that are easy for
users to implement using existing libraries. More, the thesis aims to contribute to-
wards improving the general knowledge about malicious packages and give some
directions to what should be focused on in further research into machine learning
to aid in identifying malicious packages.

1.3.1 Research questions

• RQ1 What indicator or combination of indicators are most commonly found
in malicious packages?
• RQ2 What features are better at determining whether a package is mali-

cious?
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• RQ3 What performance can be expected from machine learning models
when applied on static indicators found in malicious packages?

1.4 Overview

After introducing the reader to the background and the main focus of the thesis,
will we further present what has been done, how, and what results we have
achieved. The structure of the thesis is made so the reader first will go through
some background information regarding machine learning and what a package is
before presenting related work. Afterward, will there come a chapter describing
the methods used and give the reason for why certain decisions have been taken.
Lastly, the results will be presented part by part as shown in the methodology,
and a discussion of the results will come at the end accompanied by a section of
feature work.





Chapter 2

Background

The next chapter is split into two parts to increase readability by separating the
different aspects. The first introduces and focuses on the theoretical foundation
upon which the thesis is built and will help in understanding the methodology
and the concepts discussed in the thesis. For the second part, previous research
and related work will be described to give an insight into what has already been
conducted in this research field and to give reasons for why this thesis should be
conducted.

2.1 Theory

This next section will describe the general theory about the technologies used dur-
ing the thesis. One of the main aspects of this thesis is the programming language
Python and its package manager PyPi which stores all additional libraries. It will
briefly describe what it is and how it works before we will go through malware
analysis and machine learning which is also important parts of the thesis.

2.1.1 Python

Python is one of several programming languages that have become highly popular
and is seen used across many areas, first released in 1991[5]. Being a high-level
language, the syntax of Python is straightforward, making it easy to learn and
write, besides maintaining high readability for the users. Python is an interpreted
language which means the code is compiled while being run instead of the need
to be fully compiled before it can be used. It can also easily be extended with
functions written in Python or the C language to make fast and effective additional
functionality. This makes the language powerful and highly customizable, one
reason for its popularity and widespread use. Python is open-source and owned
by "The Python Software Foundation", making it available for everyone to use
and contribute. A major part of the language is the "Python Package Index" (PyPi)
which hosts all packages available by the official Python contributors and all other
third-party modules contributed to by the open-source community.

5
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2.1.2 Packages and package managers

As mentioned, PyPi is the official package manager for Python. It consists of most
packages for implementing additional functionality, allowing developers to create
new applications quickly. A package or library is code encapsulated and ready for
use. It is either written by the official Python contributors or by the open-source
community. The reusable code can be in the form of functions, small applica-
tions, or similar that allows users to directly implement functionality that is able
to handle most tasks, such as utilizing machine learning models or saving data
to a special format that the existing packages can enable. Within these packages
are there usually one or multiple files present, which contain the code and ad-
ditional content for it to work correctly. When the package is uploaded to PyPi,
it is listed together with metadata that describes attributes such as the file size,
dependencies, descriptions, and author contact information.

To put a number on how much code is available in PyPi, does the official
page mention the need for 14,7TB free space to mirror the full repository with
all packages and their multiple releases[6]. While another statistics page for PyPi,
"pypistats.org"[1] did record 799,225,593 downloads on an arbitrary day, while
the last month showed 20,643,058,415 downloads from all packages in the PyPi
repository. Both the large size and the number of downloads show to some extent,
the size of the Python ecosystem and how widely it is used.

2.1.3 Malware analysis

Since the internet was created, malware has been developed and distributed inten-
tionally and accidentally. As technology has evolved alongside the increased use
of technical devices, the number of malware and level of sophistication increased.
Malware is a shortened name for malicious software and is used to describe code
designed to cause harm or lead to infections. Some of the most common malware
types are mentioned in the well-known malware analysis book "Practical mal-
ware analysis" Sikorski [7] and are the following: viruses, Trojan horses, worms,
rootkits, scare-ware, and spyware. One infamous addition to the list is ransom-
ware which has been widely used in later years to spread havoc in several in-
dustries. In order to handle encounters with different malware, knowledge about
how it works and what is done is necessary, both for preventive measures and
for cleaning up all bits and pieces afterward. Malware analysis is the term used
for this activity, and one description is "Malware analysis is the art of dissecting
malware to understand how it works, how to identify it, and how to defeat or
eliminate it."(Sikorski [7] p. xxviii)

As one of the reasons for conducting this thesis is based on the occurrences
of malware on the internet. This section is included to improve understanding of
where the data comes from and why it could be helpful in such a use case. Malware
analysis is the umbrella term used for describing how malware is investigated
and understood by researchers. Within malware analysis, there are mainly two
common methods to inspect a malware sample, either "static analysis" or "dynamic
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analysis", and these concepts will be touched upon in the following sections.

Compiled vs. interpreted code

In order to run programs on a machine, the code itself needs to be compiled or
interpreted before it is able to run. When talking about compiled programs, some
well-known languages are C and C++. These two are examples of languages that
converts the code into machine code which is hard to read for users but consists of
simple commands for the machine. In order to run programs written in either of
these, a compiler needs to be used to compile the program and make it runnable.
The text representation is lost in the process, and the newly created program only
contains the machine code. However, it runs on most computers but may need a
specific library or software to work. Different from languages that need a compiler
are interpreted languages such as Python, which needs an interpreter for the code
to work. These languages are known under the term "higher-level" languages and
are interpreted or compiled during run time and do need a specific interpreter to
run. The code does not lose its text representation and is just as easy or hard to
read before it is run as after, making it easier to inspect than compiled code. The
two methods for malware analysis will be described below but can just as well be
used on interpreted code, where the code can be viewed directly in a text editor.

Static

The first category of methods, known as Static analysis, comes in two parts, ba-
sic and advanced analysis. One of the first steps in malware analysis is the basic
static analysis which involves techniques and tools for examining the suspect file
without running it but looking at its properties. This step indicates whether a file
is malicious or not and could provide information on some of its functionality by
listing strings and modules, it utilizes. In this thesis the data consists of indicators
which are found by utilizing static analysis tools to extract these characteristics
of the samples. However, dealing with more advanced samples, these techniques
might still be ineffective as the writer most likely has utilized techniques to cover
their tracks.[7]

For the more advanced part in this category, advanced static analysis requires
a higher degree of knowledge, at least when handling compiled samples. The
method is based on reverse-engineering the specific malware sample by using a
disassembler which gives the analyst a list of instructions on what the sample is
programmed to do.

Dynamic

Dynamic analysis means running the malware in a secure and isolated sandbox.
Same as for static analysis, the dynamic method is divided into basic and ad-
vanced, where basic is about running and observing the consequences of the
sample. Extra programs are often used to record the changes conducted by the
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sample to see what activity is conducted whether it is to store something to the
disk, make network connections, or other harmful activities. The advanced op-
tion is to run the sample using a debugger to follow the code while it executes
manually. The benefit of running the code in question is the ability to look at what
happens when the program is executed and inspect the changes made step by step.
This is normally the case, but more advanced samples can contain certain tech-
niques and capabilities that hide their malicious intent if it detects it’s running in
a sandbox or similar and demands the use of advanced methodologies to manage
to identify the actual activity.

2.1.4 Machine learning

Machine learning (ML) has been a hot topic in computer science in recent years,
and many industries have picked up on this technology. It is commonly used on
large amounts of data to detect patterns that are hard for humans to understand
and recognize. The need for such tools has increased because the amount of data
that is generated makes it impossible for humans to manually inspect and find
patterns. There exist many different models that vary from simple to advanced and
complicated methods and algorithms. ML models are mainly based on math and
statistics, and the decision to predict in one direction is based on the underlying
algorithms applied to the training set. This section will go through some common
machine learning (ML) models and the process for conducting such projects.

Process

When implementing a machine learning project is there several common steps to
go through. I will briefly describe the main aspects of the process and what steps
are taken. However, it will not go in-depth into all the small steps which are used
but give a broader overview of how such a project is structured.

The first step in an ML process is to gather and preprocess the data. After
the data has been acquired is it necessary to clean and structure the data so the
models later on can interpret it. One common way to store all the data entries is
to convert them to a Comma Separated Values (CSV) file where all data has the
same structure. During this process are the data also normalized and converted to
an appropriate format. This means that features with numbers of different sizes
are converted to the same scale for the model to later easier interpret and not only
favor the highest numbers. Categorical variables are also handled, one common
way is to convert the categories into a binary list and include them as features for
the samples.

After the data have been structured is it time to get familiar with, and identify
the best features to use. For getting familiar with the data is it common to use
visualizing and statistical methods to get an understanding of what type of data
is used and to understand what features might belong together. During this pro-
cess is also the composition of samples is considered, whether the datasets are
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balanced and contain a similar number of samples representing each of the cat-
egories to divide into. If the amount of samples in each class differs is the dataset
imbalanced, and we usually use the term minority class for the one with lower
representation and the major class for the one over-represented. Then to identify
the most prominent features does it exist several methods and algorithms. Within
the categories of filters, wrappers, and embedded methods are there several al-
gorithms to choose from to rank the features. One method which will be described
more in Section 3.3.1 is Information Gain (IG) which belongs to the filter method.
It is computationally inexpensive compared to other methods, which makes it fast
and easy to implement. Then, after a set of features has been identified are the
data split into three parts, which are training, testing, and validation set which
will be utilized in the next part.

After the data have been prepared, is it time to decide on a model to use and
train it. There are several categories of ML models, and some of them will be
described in the following sections. What model to choose depends on the type
of problem to solve and in some cases, it could be beneficial to test multiple up
against each other to see what performs best. After the model is selected, can it be
fitted on the training data so it can learn patterns based on the algorithms used
in the model.

When the model is fitted with the training data is it ready to be evaluated on
the test data. Based on what the model learned when being fitted does it now try
to predict what is found in the test data. The results from this are usually a con-
fusion matrix which consists of how many of the samples were correctly classified
and how many were wrong for the classes used. To evaluate the performance of
the model several metrics can be used, some of which will be described in Sec-
tion 3.1.2.

Based on how the model performed in the previous stage it can now be optim-
ized by testing various parameters and options that are available for the model.
The last step is then to retest the final model on the verification data which were
saved throughout the process in order to verify the results on a new dataset. These
final results can then give an indication of how well the model performs, at least
for the data which were used.

Supervised vs unsupervised

Machine learning models are mainly classified into two categories called super-
vised and unsupervised learning. On a high level, the supervised learning models
are trained by being fed data where the correct label is provided. The user guides
these models to understand what features and traits are common for each cat-
egory it can be divided into. When using unsupervised models, they are provided
training data that do not contain a label or correct solution. These types of models
have to compare and interpret the features describing the characteristics of each
sample and divide them into probable groups. Having its differences, each type is
specified to handle certain types of problems and use cases. On the other hand, it
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is common for both to classify samples into different groups and categories or do
regression, which is used to describe and predict statistical changes.[8]

Models

The first category of model architectures is distance based. These have in com-
mon that they base the classification on the distance measured between features
that it is trained on. Using math and statistical algorithms, they can classify new
samples by computing a score of all the features for each sample and predict the
class with the closest score. The first model is called K-nearest Neighbours and uses
the training set to divide into a set number of neighbors which the user decides.
The training data is divided into the number of neighbors based on their calcu-
lated similarities. New samples are predicted to be a specific category based on
which neighbors are closest. The second algorithm included is Support Vector Ma-
chine(SVM), also mentioned as SVC as that is the package’s name in Scikitlearn.
This model draws hyperplanes in multidimensional space to separate the plotted
groups and makes predictions based on what side of the lines the new sample is
plotted.

Multilayer Perceptron(MLP) is a fundamental type in the ML subfield called
"Deep learning" where Artificial Neural Networks (ANN) are used. The name
comes from the way the model is built by multiple layers of nodes also called
"perceptrons". The network of nodes consists of one input layer, one or more hid-
den layers before the last output layer. Each node does a computation on the input
they receive with an activation function which produces output that is sent to the
next layer. The complexity of the model and the network of nodes increases with
the number of layers and perceptrons, but deeper models are able to learn intric-
ate relationships between the data and offer a great deal of flexibility for the users
making it highly popular. Being a complex model understanding how it works and
why it takes certain decisions is harder to understand compared to others such as
models based on tree structures which are possible to debug.

The second architecture category included in the thesis is rule-based algorithms
and, in this case, a few variations based on tree algorithms. The first is Decision
Trees which create a binary tree structure where the dataset is split on specific
parameters deciding whether to go down one path of the tree or another. Each
new step splits the remaining data into partitions until the leaf nodes or end de-
cisions can categorize all training data. [8] Being a quite simple model it is easy
to interpret as it is possible to view each decision that is taken and see the reason
why each sample was categorized as it was. However, it will end up differently
each time as it depends on the training data and can lead to different results with
each build. The second model in this category that is included is the Random
Forest which is based on using multiple decision trees where each individual uses
a random subset of the training data. The full model can then use the statistics
from all generated trees to build a better-performing model. The last model in-
cluded in this category is the Gradient-boosted trees which is also a method based
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on decision trees where one and one are added at the time, correcting the mis-
takes of the previous one and therefore giving the name "boosting". As this model
learns from the previous in the attempts to increase accuracy, it is vulnerable to
overfitting.

The last category and final model to be added to the comparison is Naive
Bayes which is a well-known model and the oldest among statistical methods.
Naive Bayes makes assumptions as to what class each sample belongs to based on
statistics of the different features present. Even though the simplistic approach of
using probability, it has in some cases, shown to perform quite well on real-life
problems such as spam classification[8].

Cross-validation

When implementing machine learning models, various methods are used to valid-
ate the results achieved during the training phase. When experimenting and train-
ing models the dataset is usually split into two parts where one is used for train-
ing and the second for testing. In this process, cross-validation can be included to
verify whether the achieved results are representable for the whole dataset or if
some irregularities appeared. This could be a poor selection of the type of samples
used in testing the data, resulting in reduced performance as the model has not
seen the data that only appear in the test set. The method chosen to be used in
this thesis is K-fold. The K in K-fold is the number of parts the dataset will be split
into. When using cross-validation, the dataset in use is split into K equal parts, and
in turn, one part is being used as the testing set while the others form the training
data for the ML model. For each fold, the same procedure will be conducted, and
looking at the average of the predicted results can help the reader better determ-
ine how well the model performs on different compositions of the same dataset.
Cross-validation is used to improve the performance of the ML algorithm. If you
train on a single selection of the data, there is always a chance that the training
data or the test data is biased. This bias can give you an artificially high or low
accuracy. Repeating the random split of the data K-times will average out such
biases[8].

2.2 Related work

Supply chain security is a field that has gained a lot of interest in recent years
after being the reason for several significant security incidents. As more come
to realize the importance of securing the supply chain, more interest has been
in developing tools and methods to verify what is put into the supply chain and
not only focus on the end product. This thesis will look at lower-level security by
looking at how to identify malicious packages in the package repository, especially
for Python. When looking closer at the interpreted languages that do not need
to be compiled to run, Python, JavaScript, and Ruby are commonly looked at
together and separately in research papers. This can be seen in articles looking at
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malicious packages and their package managers since all mentioned languages,
use an open-source repository to provide their users with extra code libraries.
Some papers include the package managers of all three, like the paper from Ohm
et al. [9], while others focus on one language and package manager like [10].
An observation from the viewed literature is that it tends to be more research
on the JavaScript package manager NPM than the two others mentioned. The
related works described in the following chapter are divided into three pieces. The
first section focuses on research on package managers and packages in general.
The second part will consist of papers describing the threats and security of the
package repositories. At the same time, the last piece focuses on what has been
done to detect and prevent malicious packages.

2.2.1 Analyzing malicious packages

Bommarito and Bommarito [10] did an empirical summary of 178,592 packages
and 1,745,744 releases from PyPi, looking at package metadata and source code.
From their results, they state that PyPi had a growth rate of around 47% for act-
ively maintained packages and 39% for new authors publishing and contributing
to existing packages. Meaning the number of actively used packages rapidly in-
creases simultaneously with the number of contributors and authors. From their
statistics, they experienced a skewed distribution by looking at releases per pack-
age, releases per author, and imports per package. Where a small number of pack-
ages accounted for a large percentage of the statistics, which means some few
packages are very actively maintained while most others are not. Another exciting
finding after looking at a large portion of containers is that most are contributed
to by individuals, not organizations or multiple people.

Ruohonen et al. [11] conducted a large-scale static analysis on Python pack-
ages focusing on security. The researchers took a snapshot of the PyPi, and the
analysis was done on over 197 000 packages, discovering more than 749 000 se-
curity issues. Even relying only on static analysis, they found many issues, and
around 46% of the packages contained at least one security vulnerability. The
most common type of issues found were related to exception handling and code
injections.

2.2.2 Threats and security in package repositories

One of the first comprehensive surveys of potential risks in Open source libraries
also called registries is by Kaplan and Qian [12]. As they look into the top regis-
tries, they point out multiple weaknesses, one being that contributors only need
to sign up by email before publishing packages. This makes it easy for attackers
to upload packages without revealing their identity. Some of the registries do not
have any control mechanisms in place that can detect malicious code. They rely on
user reports and admins’ inspections to combat malicious packages. This can also
lead to some packages having a long lifespan before removal. When they wrote
their research, they also understood that only ten people had access to remove
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packages, and they were responsible for around 40k developers each. As the num-
ber of people and resources available for working on securing the repositories are
low and few compared to the massive amounts of packages have made companies
and researchers put their focus on detecting malicious samples in the repositories.
This leads continuously to new discoveries and further improved knowledge on
techniques used by attackers[13].

When discussing some of the common attack vectors, typosquatting, and com-
bosquatting are mentioned. These are commonly found in all of the Open Source(OS)
registries and attempt to trick the developers into installing and using the wrong
package. This is done by uploading packages with similar names as those that
already exist and waiting for users to install the wrong package. The paper by
Ohm et al. [9] looked closer at a dataset of malicious packages and identified
that 61% of the malicious packages they analyzed mimicked existing packages
by name. The average Levhenstein distance was about 2.3, where the number
refers to how many edits are done between the two names. Even though some
switch out a letter or two in an attempt to disguise themselves, others have also
been seen to switch the order of words, like "kafka-python" for "python-kafka,"
which can fool a simple test like Levenshtein. Ladisa et al. [14] have also looked
into the taxonomy of attacks found in OS software (OSS). Other common attack
vectors for actors targeting OSS are also described. Most normal is attempting to
compromise highly valued accounts or to become maintainers in order to inject
malicious code into already popular packages. This has been found during differ-
ent investigations and does seem to be a big problem, at least when the number
of preventive measures is relatively low.

Some challenges mentioned by Kaplan and Qian [12] are based on heavy code
reuse and trivial packages. Trivial packages only have a few lines of code and
implement simple functionality are often used by developers to improve efficiency
and reduce the amount of code needed. Using many small packages can expand
the attack surface for a threat actor and make it easier to target. Code reuse is also
an issue, especially in NPM, as they mention that packages rely on several other
packages and make the tree of dependencies long and hard to maintain. This
could also make it easier for an attacker to sneak in a malicious package that, in
the worst case, can impact a large crowd using a single dependency which could
potentially spread further. As found by Duan et al. [15], several malicious packages
were downloaded over 100 000 times and show the magnitude it could potentially
have. The danger malicious packages introduce is that when they manage to inject
themselves inside a larger chain of dependencies or into more popular ones, it
allows them to be part of larger software packages widely used. They can then
be hard to detect as only one small package is hidden among the others, which
can cause a compromise. Another paper by Zerouali et al. [16] found the average
time it took to fix half of all vulnerabilities was 55 months in NPM and 94 months
in RubyGems, showing how long time attackers potentially have to exploit the
weaknesses or wait and let it spread to new project or apps.
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2.2.3 Detecting malicious packages

After looking into threats and the general security of the top OS repositories, it is
time to view what has been done regarding how malicious packages can be detec-
ted, which techniques are implemented, and what technology could be beneficial.

A wide collection of tools have been created for detecting malicious pack-
ages, and Vu et al. [2] compares several of them in a benchmark to identify their
strengths and weaknesses as well as to understand how well they perform. The dif-
ferent automatic detection programs are tested on a dataset with 168 malicious,
1430 popular benign, and another 986 randomly selected benign packages. One
of the things they identified was the goal of the maintainers, which is to mitigate
most of the low-effort attacks with a minimum amount of effort. For the work-
load to be manageable, they cannot aim to remove all malicious packages, and
any tools they implement need to have close to zero false positives. Otherwise,
they will not be able to handle it. The result from testing the different automated
tools is between 50% and 66% percent detected rate. A downside of the results
they discover is the false positive rates are high and sometimes even higher than
the rate of true positives, making them hard for the repository maintainers to
utilize.

Besides automated detection programs, applications like "spellbound" are presen-
ted by Taylor et al. [17] and focus on detecting and defending against typosquat-
ting attacks. SpellBound is designed to be an easy solution for users as it is in-
tegrated on the user end into the package manager. It will defend the users by
checking the requested package by name with similarly named packages. It also
has the ability to do specific transformations to detect a larger number of possible
name variations. Suppose it detects other more popular packages with the same or
similar name. Will the user be alerted and have the ability to abort the installation
to investigate further and verify that the correct package is installed.

Another contribution towards securing the supply chain is made from Vu [18],
which presents the tool "PY2SRC". The purpose of this tool was to ease the job
for the developers when choosing which libraries to implement in their projects
by automatically identifying and providing the sources of the specific PyPi pack-
ages. From their results, "PY2SRC" outperform the other information sources they
tested, and it provides reliable attribution metrics for verifying if the link to the
code corresponds to what is expected.

Not only have tools been created for the purpose of combating malware, but in
general, are researchers trying to prevent attacks from all platforms and surfaces.
Bringing in new technology is nothing new, and several attempts have been con-
ducted trying to utilize ML in detecting malware. One of the more common places
malware is found is in the Windows ecosystem. Surveys for using ML have been
made by both Ucci et al. [19] and Shalaginov et al. [20]. The last also provides a
tutorial for how ML models could be implemented and used to detect compiled
executables. Freely available ML tools are listed, and the full methodology to use
ML is provided together with well-known algorithms that can be used for fea-
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ture extraction and selection and describing some models that could be used for
classification. However, both were mostly directed toward handling Windows ex-
ecutable files. Milje [21] attempts to develop a new method for analyzing Python
packages and detecting malware. In that research, static analysis features were
extracted from the samples by using the Abstract Syntax Tree(AST) to show func-
tion calls, imported modules, and variables. Rules and weights were also used for
deciding the degree of maliciousness of each sample tested and by combining a
certain amount of indicators or features, it is deemed malicious.





Chapter 3

Methodology

The thesis is a quantitative research project that is based on a dataset of malicious
and benign packages collected by ReversingLabs. Based on the timeframe, the
focus will be on broader experiments to answer the research questions(RQ) and
identify what could be done in future research into the topics.

The thesis aims to identify what features most often appear in malicious Py-
thon packages compared to legitimate ones. It is also to improve the domain know-
ledge on this topic and look at what features they contain to answer RQ1 and RQ2.
To answer RQ3 about how Machine Learning(ML) models perform, will several
models be tested to see how well they can predict what is malicious or not only
using static indicators. This will be better described later in the chapter. Results
from testing the different models will be a sub-goal of improving the knowledge
about what characteristics are found in the packages. As it will show how well
different models can handle this type of data and specifically the dataset used in
the project. The results will also be a foundation for further research into choos-
ing and optimizing ML models to solve similar challenges. For gathering statistics
and identifying the features better suited for separating malicious and legitimate
packages feature ranking algorithms will be utilized together with some of the ML
models which have the ability to describe what conditions are used for categor-
izing samples. Before describing what models and methods to use the origin and
structure of the dataset used will be discussed as well as tools and techniques.

3.1 Technology

Much of the thesis utilizes technology, especially ML, to see how different models
perform. And when using ML, do we also need metrics to evaluate how well they
can perform. This section will describe what type of ML models to use and how
each model will be trained and tested. It will then describe what metrics will be
used to present and compare the results achieved.

17
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3.1.1 Machine learning

One of the main technologies that will be utilized during this thesis is ML. Some
applications allow for easy implementation of ML methods, such as Weka and
other free alternatives, as mentioned by Shalaginov et al. [20]. However, to easier
handle and work on the results and to specify our needs, the choice fell on using
Python with a machine learning library. Several libraries are available for this
type of work, some being TensorFlow[22], Pytorch[23], and SciKitLearn[24]. The
choice fell on SciKitLearn as it contains most of the well-known algorithms and
other ML functionality, as well as being well documented with multiple tutorials
and explanations available online. Using Python instead of other tools makes it
possible to design the experiments by writing them in code, making it easy to
repeat and distribute afterward. However, we are using a library to try to identify
malicious ones. Some recent supply chain attacks have shown us that we can never
be too safe, and several packages in PyPi have been shown to be malicious. Even
the extensive and well-used ML library "PyTorch" was recently in 2023 found to
be compromised[4]. However, for such large packages, these attacks tend to be
detected quickly due to the number of people using and relying on them. One of
the precautions taken when using these libraries is to ensure the name is correct
and that one of the newest but well-tested versions is used.

For deciding on what ML models to use in the experiments, inspiration has
been found among previous research papers and by looking at the most commonly
used models. Another factor was whether it was included in the SciKitLearn pack-
age, which suited our needs and would ease the process by relying only on one
library for the ML part.

Based on previous research on using ML for detecting malware, some of the
most common models used are from the model categories known as statistical,
distance, and rule-based methods. The papers by Shalaginov et al. [20], Singh et
al. [25] and Chio and Freeman [8] describe some of the most well-known and
used ML approaches in depth. How to optimize and get the best performance for
each model is out of the scope of this thesis as we are more interested in whether it
can perform sufficiently when implemented with minimal effort. To answer RQ3 a
few models from each category are implemented. Hence, it is possible to see what
category and type of models are best suited for such a task as classifying static
indicators. This will also partly contribute towards answering RQ2 in identifying
the best-performing features. How will be described further in Section 3.2.3. The
data that will be used are labeled, so the thesis focuses on the "supervised learning
models" as previously described in Section 2.1.4.

The models which are used in the thesis will be mentioned below but more
detailed descriptions are to find in Section 2.1.4 From the distance-based cat-
egory will Support Vector Machine (SVM) and Multi-layer Perceptron (MLP) be
included. Both are highly common to use and represent both simple and advanced
types. The models are also mentioned as SVC and MLPC in the thesis because of
the name they have in the Scikitlearn library being classifiers.
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For the rule-based category of methods to use are some variations of tree-
structured models. Decision trees, RandomForest, and Gradient Boosted trees will
be included in the project. As described in Section 2.1.4 they are based on the same
structure but with some variations for optimizing. This is interesting to look at to
see whether it impacts the results.

The last category of methods to be included in the statistical model is Naive
Bayes. It utilizes a simplistic approach by relying on statistics discovered in the
data to predict. Since it had proven to perform well in real-life scenarios in some
cases, it was interesting to include it in the comparison.

To verify the results we find some of the experiments will be run with cross-
validation using the K-fold method. It will be used to both verify the results and
for splitting the datasets into train and test parts. The second method that also
will be applied in some of the experiments is the included function called "train-
test-split". This method allows us to say how large of a test set should be created
in percentage and it will automatically randomly divide the dataset into two parts
of the desired size. The reason for using both methods is that cross-validation
retrains the model K times with different parts of the dataset and therefore takes
more time and resources to run. This is evaded in the second method as well as
we get one model from the training process instead of the number for K.

3.1.2 Metrics

Scoring metrics are an essential part necessary to compare results. There are sev-
eral to choose from and which ones to pick and why will be discussed in the
following subsection of the thesis.

When conducting experiments with ML models, there is a need to be able to
evaluate the results that are achieved. One standard method to display the results
is the confusion matrix. It displays the number of false positives, true positives,
false negatives, and true negatives in a matrix, making it easy to compare results
based on numbers found in each category. Since each metric has its own strengths
and weaknesses, published articles do not always agree upon what metrics are
preferred. However, they are all based on the confusion matrix, which is common
to publish. We chose to do so. This way other researchers can calculate their pre-
ferred matrix for their own specific comparison. When discussing the results other
standard terms to use are the type-1 and type-2 errors. Type-1 errors refer to the
number of false positives, and in this case, this means incorrectly labeling benign
packages as malicious. On the other hand, type-2 errors refer to the false negat-
ive rate. and means the rate at which malicious packages are classified as benign.
Besides the scoring metrics are these terms often used to describe the results and
different use cases could prefer to reduce one error type over the other.

Several methods and metrics can be used to describe the results, where one of
the simplest and most common is accuracy. This method is computed by dividing
the number of correct predictions by the number of predictions and then mul-
tiplying by 100. The positive about this method is it is easy to use and implement
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and could give the reader an impression of how the model performs. However,
the weakness of this metric is that it does not consider whether it is more accur-
ate in predicting one class over the other. When using imbalanced datasets, this
could potentially lead to high-accuracy results, but all samples are classified as
the majority class, and the model is not able to detect any of the minority class.

Other metrics that are more often used to give the reader a more complete
picture of the results are precision and recall. Precision is the term that describes
type-1 errors which refers to false positives. On the other hand, recall, also called
sensitivity, measures type-2 errors and refers to the false negative rate. These two
metrics are often combined in a method called F1-score which combines precision
and recall. The score presents a balance between them which is beneficial for
imbalanced datasets where one class is over-represented. This gives us a better
view of how each class performs and gives a more realistic view of the results.

Some of the metrics for presenting the results of a classification problem are
described, for the experiments in this thesis accuracy and the F1-score will be
included among the results. Since they both are widely used in ML projects, they
are easy to implement and give the reader a good impression of how the models
perform and are to be used when comparing the results.

3.2 Data

The following section will describe the data being used in the thesis, firstly where
it comes from, then what it contains, and how it is being processed before it can
be used in the desired experiments.

3.2.1 Origin

The origin of the data is the collaboration with ReversingLabs, which already
possessed a large number of packages extracted from the PyPi registry. As they
continuously conduct research into malicious packages in open-source registries,
they were able to provide data and expert knowledge for this research project. All
packages they analyze are run through their TitaniumCore platform, a machine-
learning hybrid cloud platform that scans through different files to find malware
and other threats. Their platform can handle many file types and is built to be
scalable and handle a large amount of traffic[26]. Based on the work done by Re-
versinglabs regarding supply chain attacks and security research into open-source
repositories, this thesis is enabled by having access to a large dataset of both be-
nign and malicious packages.

The data provided for this project was received in a 503MB large text file
which contained metadata and behavioral information in the form of indicators
of 382,712 samples, where 7,639 were labeled as malicious and 375,073 were
labeled as benign. As there are many more legitimate packages to be found in the
PyPi repository, the dataset is also quite skewed regarding how many samples are
found in each class. To increase the number of malicious samples they were able
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to provide, they included all versions of the malicious samples they had stored.
In contrast, only the latest versions of the benign packages were provided to keep
the numbers somewhat reasonable for this project. Later in the thesis will the im-
pact of a skewed dataset be discussed. It is realistic to have a lot more benign
than malicious packages as most are taken down rather quickly, and most of the
activity is legitimate. However, as will be discussed later in the thesis, some ex-
periments will be conducted with various data compositions to see if the models
improve. One reason behind it is that models need data to be trained to classify
correctly. By varying the degree of imbalance, the trained model might be able
to take the minority class into higher consideration. Regarding the time frame in
which samples have been collected ReversingLabs have been conducting research
into these open-source repositories for about four years. They try to mirror what is
available in the live repository for conducting analysis. That means all the samples
in the dataset have been found in PyPi at least for some time during the last four
years until January 2023. Due to confidentiality, the dataset will not be publicly
available.

As the thesis focuses on static indicators, all data received is the extracted in-
dicators and parts of the metadata that is commonly found in the Python packages.
Each sample in the dataset contains a certain amount of information in fixed fields.
Having the file structured in a certain way makes accessing and reading individual
data elements easy. In the example, the listing in 3.1 is the structure of one indi-
vidual sample displayed. As seen, each sample is identified by its hash-sum, which
is unique for each sample and makes it possible to pinpoint each precisely. Gen-
erally, for all samples, the metadata fields containing the project name, version,
and package size are included as well as other features, most noticeably "threat
name". This indicates what capabilities the samples have as they are divided into
categories such as "Trojan", "Infostealer", "Potentially Unwanted Software" and
other types that already are well established in the industry. There is, however, no
identification as to what family it might belong to, but it could indicate behavior
specific to each type. In this thesis, the field will be used to know and determine
whether samples are malicious or benign.

Code listing 3.1: Sample format preview

"dad9821834bf916ddfc9e6eb79b4218c444c6057": {
"project_name": "pip_security",
"version": "0.0.8",
"package_size": 5711594,
"threat_name": "Trojan.Generic",
"reviewed": "yes",
"package_stats": {
"python_files_count": 1,
"executable_files_count": 1,
"non_text_files_count": 1

},
"indicators": [
"Creates a process.",
"Executes a file.",
"Exits the script.",
"Imports the \"os\" module, which contains miscellaneous operating system
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interfaces.",
"Imports the \"setuptools\" module, which is a package development process

library.",
"Imports the \"sys\" module, which provides access to system-specific

parameters and functions.",
"Writes data to the STDOUT stream."

]
}

Another feature that could be of interest is the package stats which describes
the number of different files provided in the package, in the example, only one
Python file is present. Besides the basic metadata is the list of indicators of high
interest, these fields describe the static indicators found in the package and can
give us an idea of what the package can do. The indicators, as seen in the example,
describe different characteristics for each package, such as the module "OS" is
imported or that it executes a file. These indicators are produced in the static
analysis process and end up as a list describing what packages are included, the
activity it executes, and the capabilities it might have. In the raw data, all samples
contain a set of these indicators and during the preprocessing, all indicators are
extracted and stored in a list numbered by the order they are found. The list of
all unique indicators ended up at 571 numbered descriptions which are referred
to as an indicator with a number. The content of each sample after converting
each of the indicators seen in Code listing 3.1 can be seen in Table 3.1. After each
indicator has been converted to a binary list, does it contain the number "1" if
the mapped indicator is found in the sample. Some of the initial motivation for
conducting this project is also based on whether it is possible to identify malicious
packages only based on the type of data seen below and to understand better what
combination of indicators is most likely to appear among the malicious samples.

Table 3.1: Visualized sample content and structure

hash ac2625cd4d072143fc286d7ed8d6b634bf0470e7
project_name sphinx-issues
version 3.0.1
package_size 8227
class_malicious 0
py_file_count 1
exec_file_count 0
non_text_file_count 0
num_indicators 3
indicator0 0
indicator1 0
..
indicator570 0
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3.2.2 Pre-processing

Before the initial data can be used in ML applications and the planned experiments
it is necessary to convert it to another suitable format. The most common file type
to use is CSV which stands for "Comma Separated Values" which are easy to read
and write to and from programs and do not need compression or indexing source.
A short program is made in Python using Jupiter-notebook to load each sample
and convert it to the CSV format, in the process also converting the indicator list
to a binary list representing all the indicators found in the entire dataset. This is
one method to make each sample a fixed length and make them all fit a specific
format for more manageable handling using ML models and is chosen over others
because of its ease of implementation as well as considering the number of unique
indicators is manageable. Another method that could be of interest to try at a later
stage would be Word2Vec combined with a common bag of words (CBOW) which
is a method that can group words together based on their context. By using a
different approach like this, similar indicators could possibly be grouped together,
the number of features could be reduced as well as each feature might be of higher
quality. It could also possibly be more future-proof in regard to handling new
samples with new indicators not previously seen as the chosen approach would
not be able to handle new and different features whiteout recomputing the whole
model and pre-processing method or removing the new ones.

A couple of other modifications are also done on the data during the pre-
processing phase, one being to remove features and another converting to num-
bers. From the example seen in listing Code listing 3.1 is the field "reviewed"
removed as it does not provide any useful information to the model other than it
has been reviewed by a person. In a certain scenario, it could be used for identify-
ing how many samples have been manually verified and not, and then have more
confidence that the classification is correct. As the time is limited we assume that
the data is mostly accurate and the other features could be depended on. Another
feature that is removed is "package-stats" which contains three features packed
inside a list which is then extracted and used as individual parts in the sample.

Another technique that will be applied to the datasets before they can be
trained or tested is normalization. A part of the preprocessing steps in ML is to
normalize the data, especially when having features with numbers in different
scales. The function StandardScalar from Scikitlearn[27] allows us to normalize
the numeric features by removing the mean and scaling for each feature based on
the whole training dataset. By using this process, the models are better suited for
comparing features as they are to be found in the same range of numbers and can
make better predictions. When using the function to find the mean and standard
deviations for each selected feature in training data, the values stored so the same
can be used for the training set, which makes the results more realistic compared
to doing the normalization processes for each individual dataset.

Another major decision is taken on how to handle version numbers in the
dataset. As identified by related work, dependency confusion is a common attack



24 Røe, S: Identifying Malicious Python Packages Using ML

Figure 3.1: Showcasing how version numbers can appear.

vector and means setting the version number artificially high for the system to
prefer the malicious package over legitimate ones which then contain a lower
version. That is one of several problems that can be observed in the data from
manual inspection, other issues can be that text, such as the project name is writ-
ten in the version number as well and is so a text string instead of a number. As
some of the models that are going to be used only handle numbers make this a
problem. One of the simpler solutions that are being used in this thesis is to use
code for automatically detecting numbers in the version field and adding them
together to have a single number to compare against. It is probably not an ideal
solution but since the project focus is more on indicators and the short time as-
pect makes it a viable solution for this thesis. It should however work well for most
packages where the version numbers are of normal sizes, for packages where text
and version numbers are combined, and where the version is fixed at a high level.
Some errors must be expected and as seen in the Figure 3.1 legitimate packages
can also contain abnormal version numbers and reduce the integrity of the feature
itself, which will be taken into consideration later in the thesis when looking at
the results. As some of the models are only able to handle numbers the hash and
project name are also removed later in the process right before the models will be
run, but it is kept in the datasets to easier conduct further analysis into specific
samples if needed.

3.2.3 Datasets

In preparation for conducting the experiments, several different datasets will be
created based on the main data. By creating multiple datasets with different com-
positions of data, it is possible to see how specific algorithms are able to handle
and perform with different amounts of samples, especially for this dataset that
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has a big difference in the number of samples from the two classes of benign and
malicious.

Before dividing data into different datasets for use in experiments 20% of the
initial data are randomly selected and saved. The reason for removing a part of the
initial dataset is to have some untouched data that can be used as a verification
dataset to test the models at the end of the project when the best settings are
found and applied. The results can then be verified by testing against "new" and
unseen data. This will onward be called the verification dataset and is removed
before the rest of the datasets are created.

The datasets that will be used in the experiments can be divided into three
groups based on methods to reduce the imbalance in the dataset. A couple of
techniques that can be used are down-sampling and up-sampling, while the last
category of dataset types will consist of more realistic approaches to what is most
likely seen in the wild and the received dataset. By comparing the results from the
different datasets, it is also possible to see how different models perform based
on how much data they are fed. More explanations about the different categories
of datasets will be described in this section.

For conducting the experiments and to answer the RQs are a few different
techniques applied when creating the different datasets. The idea behind this was
to see how the models performed with different amounts of samples as well as
the degree of imbalance. It would also possibly allow us to see whether some se-
lection of samples gave a noticeably better or worse performance. Each dataset
can be grouped into three different categories based on what technique it is based
on. The first technique for handling imbalanced datasets is to use down-sampling.
By reducing the number of occurrences from the largest class the dataset can be-
come better balanced and make it easier for the ML model to correctly classify
the minority class. Another well-known technique for reducing the imbalance in
datasets is to use up-sampling. With this method samples from the minor class are
duplicated to reduce the imbalance in the dataset, without reducing the informa-
tion located in the major class, it improves the balance and betters the significance
of the minor class. The downside of duplicating the minor class is the reuse of the
same samples, which could reduce the generality of the model depending on how
well the samples reflect the real world. Besides trying to balance the dataset as
seen in the other dataset versions, a few do appear as possibly more realistic than
others. Some of the datasets utilize the complete range of benign samples but also
increase the number of samples from the malicious pool as well. Even though the
full dataset does not necessarily mirror reality in what can be expected for the dif-
ferent classes, a few of the datasets will be set up to be similar. It means quite an
imbalanced dataset which is interesting to include for the sake of comparing res-
ults and checking whether the models can correctly classify the minor class even
though they see so few samples, which is true for real-world applications. Each
dataset will be given a brief introduction below but an overview of the differences
between them in regards to the number of samples can be seen in table Table 3.2.
When referring to the full dataset below describing each of the datasets used in
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Table 3.2: Overview of the datasets used in experiments

Dataset Number of samples Benign Malicious
Dataset1 (Dataset1) 20,414 14,291 6,125
Dataset2 (Dataset2) 12,250 6,125 6,125
Dataset3 (Dataset3) 9,187 6,125 3,062
Dataset4 (Dataset4) 306,170 300,045 6,125
Dataset5 (Dataset5) 162,272 150,022 12,250
Dataset6 (Dataset6) 318,420 300,045 18,375
Dataset7 (Dataset7) 21,437 18,375 3,062
Verification dataset 76,542 75,028 1,514

the experiments is the reminding data after the test dataset is extracted for having
untouched data to compare against in the end.

Dataset1: This is in the category of down-sampling and utilizes all of the ma-
licious samples which equals 30% off all the samples in the dataset. The other
70% percent of the dataset is benign samples which were extracted from the full
dataset.

Dataset2: This dataset consists of all the malicious samples while the number
of benign is reduced to the same number as for benign, using the down-sampling
method. For this dataset, the split between malicious and benign is equal and
will be used in comparison with the other datasets and with different models to
identify whether the results change with a balanced dataset.

Dataset3: For the third dataset which is also utilizing the down-sampling tech-
nique 50% of the malicious samples are extracted from the main dataset together
with the doubled number of benign samples. This equals 3,062 malicious and
6,125 benign in the dataset, making a total of 9,187. By making a separate data-
set taking a selection of the minor class is to see whether the results change when
randomly selecting samples since it contains some bias because of different mal-
ware campaigns or similar that could populate a portion of the dataset.

Dataset4: This is one of the more realistic approaches and uses all the data
except the validation data left out in the beginning of the project. That results in
quite an imbalanced dataset which is interesting to include for the sake of compar-
ing results and checking whether the models can correctly classify the minor class
even though they see so few samples, which is valid for real-world applications as
well.

Dataset5: One of the datasets which are created with the up-sampling method,
is created by duplicating all the existing malicious packages which means two
times the number of malicious samples, which equals 12 250. The amount of
benign, on the other hand is down-sampled and uses 50% of all the samples in
that category and equals to 150,022.

Dataset6: The second dataset uses up-sampling, instead of doubling the num-
ber of features it has now been tripled which equals 18,375 malicious samples. For
the number of benign samples, all are used, for it to be more realistic regarding
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the total dataset that has been used.
Dataset7: Like dataset3, this dataset also uses 50% of the malicious packages

but differs from the other variation in the number of benign samples selected.
For this version, the number of benign samples is six times higher than the 3,062
malicious samples extracted and equals to 18,375.

Verification dataset: As previously mentioned, this dataset is created by ex-
tracting 20% of the initial data before this process of dividing the data into differ-
ent datasets is conducted. This set of samples is then saved until the end of the
project before it is used to verify the trained models.

3.3 Experiments

After describing what technology and data are being used, it is time to go through
how they are combined into the experiments, which are split into five parts. These
experiments can again be seen as two parted where experiments 1 and 2 are seen
as the first part of experiments since these results will be utilized in experiments
3 to 5. In experiment 1, the features will be ranked to identify who gives the
most information in separating malicious and benign samples. This experiment
will be used to help answer RQ 1 and 2. Experiment 2 is used to implement and
test the selection of the most common ML models described in Section 3.1.1 and
compare the results against each other. The second group of experiments con-
sists of the last three, named experiment 3, 4, and 5. These will utilize some of
the results achieved in the first group to conduct some more detailed analysis ex-
periments. Experiment 3 is called model optimization and will test three of the
top-performing models from experiment 2 and test a few parameters for optimiz-
ing the model. In this experiment will also be the threshold for reducing one of the
error types be looked into. This experiment is used to help answer RQ3 by looking
at what performance can be expected from the models. Experiment 4 will be used
to find the best combination of features to use in further classification. This will be
done based on the results found in experiment 1 to identify how few features can
be used without a significant drop in performance. Experiment 5 is the last one
and will be used to test the results achieved in the first four experiments against a
verification dataset. Besides re-testing the models will also some statistics for the
dataset be looked at to answer RQ1

Before describing how the first experiment is to be conducted is there a para-
meter that needs to be mentioned. One option which will be used during most
experiments is the random state. While conducting experiments 1 and 2 and dur-
ing the prepossessing of data, will all randomization options use the parameter
"random-state" of 42. This means when datasets are split into training and test
sets or when training the model, a number is used to calculate the operation’s
randomness. All operations that are supposed to be random use a logic that cal-
culates the randomness based on something specific in this case a number, which
makes these operations "pseudo-random". Besides the possibility of reproducing
the experiments and results achieved in this project, it will also make all opera-
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tions more equal when testing the different models as changing the random state
might give different results across the models. The "random-state" is also changed
to seven in experiments 3, 4, and 5 to see if this affects the results. If time and
resources were available would it also be interesting to redo multiple of the tests
using different numbers as the "random-state" to see whether it impacts the res-
ults, this is considered future work

3.3.1 Experiment 1: Feature ranking

The first experiment conducted is to look closer at how the features perform.
The feature ranking method "information gain" or IG for short will be utilized
to understand the most helpful features and contribute to answering RQ2. IG
is used to calculate the reduction in entropy by dividing the dataset by specific
features. The method is used to describe how likely a feature is to appear and
the entropy can be interpreted as how much information is provided for each
feature. The higher entropy, the better the feature at dividing the dataset into
different groups. This allows us to rank the feature and get an overview of what
features are better or worse to use in the experiments as the more features, the
more complex and more resources are needed to compute. IG is computationally
inexpensive compared to other methods making it a fast and easy way to rank
features. This makes it suitable for these initial experiments. Still, with a more
extensive scope and the time to go more in-depth, several of the other methods
available should also be implemented to compare the features against each other.

The experiment is conducted on all seven datasets shown in Table 3.2 where
the algorithm IG is tested on each individually, and the top 10 highest ranked
features will be extracted from each dataset and compared against each other to
show whether the same results can be seen when the number of samples varies as
they do in the different datasets. By ranking the features, we prepare for what is
to come in the following experiments as well as identify what is seen as the most
valuable features which relate to RQ2.

One note about the last part of the results is that all of the datasets are nor-
malized together. Different from how the process is usually conducted where the
training data is normalized first, and the test data is normalized based on results
from the training data. Here the whole dataset is normalized together before the
feature ranking algorithm is run.

3.3.2 Experiment 2: Model comparison

For the second experiment in the first group, will all seven datasets be tested with
the selection of ML models described in Section 3.1.1 in order to see how they
perform on different types of datasets with different degrees of imbalance. The
reason is to help answer RQ3 by improving knowledge about what models work
better than others on the data type used in this thesis and for different amounts
of data. An in-depth comparison of different models is out of scope so a selection
is chosen and tested with default settings to indicate what performs best with
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little to no optimization. Different algorithms do perform differently based on
the situation and are designed for different use cases. Getting a brief overview of
how some of the most well-known models perform is beneficial in the search for
finding the best features, models, and information to identify malicious packages.
This experiment will be conducted twice using cross-validation with two different
numbers for K, 5, and 10. The reason for picking these two numbers is based on
what is commonly seen in tutorials as well as them being reasonable in terms of
how large the testing set will be. When using the number 5 the size of the test set
when splitting each dataset equals to 20% but when 10 is used the size of the test
set decreases to 10% of the data.

3.3.3 Experiment 3: Model optimization

In the second group of the experimentation process, in experiment 3 will some
deeper analysis be conducted. This experiment is based on the results from the
first two experiments conducted. The three best-performing models identified in
experiment 2 are retested on the datasets trained with a few different parameters,
both to verify the results and to determine if they could be improved even more by
applying small changes to the configuration. The purpose of this experiment is to
answer the RQ3 regarding how well these models perform and give an indication
of which model has more potential than others. As each model is of a different
type, do they not have the same parameters which can be used and adjusted. The
different parameters used in this project will be briefly described before the results
are presented in the next chapter. Each action in this experiment uses dataset 1 as
it contains fewer samples than the others. It is not as realistic as some of the others
in terms of the number of samples or the composition, but it will still give an in-
dication of what performs better. It also drastically reduces the time and resources
needed for testing each option. The thesis focus is not training the best models
but rather on giving an overview of what could be expected. A more thorough test
across multiple datasets with more parameters would be highly interesting but is
considered future work.

Thresholds

Another step in experiment 3 about the model optimization process is to look at
how the models can be altered to improve either the precision or recall results.
Depending on the use case improving the model results in one of the metrics can
be preferred, in a setting where the lowest FP rate is wanted being able to tune
the model can be of interest. As stated in Vu et al. [2], the maintainers prefer a
system with close to or zero false positives as they are only able to handle a few
incidents and they prefer letting multiple malicious samples pass but rather catch
most low-effort attacks. This can partly be confirmed by experts in the industry
as well as they often don’t have the manpower to analyze large amounts of false
positives, and it will be more economical to detect a possible attack with other
means. Two methods for investigating what thresholds can be set for the models
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to prioritize is a Receiver Operating Characteristics (ROC) curve and Precision-
Recall (PR) curve. In order to implement these two measuring techniques the ML
models need to be able to provide probability scores when applied to the test data
and not only return binary results to what class is correct. The point of evaluating
the models with these techniques is to see what thresholds can be used to favor
one metric or find the optimal balance between precision and recall, or TPR and
FPR. The ROC curve creates a graph plotting the model performance at different
thresholds for the TPR and FPR. Since the thesis mainly deals with imbalanced
datasets, will the use of a similar method PR curve be more beneficial as it is able
to give more information[28].

The PR curve will be created for each of the datasets with the three selected
models. By doing the experiment on all the datasets is it possible to compare the
results in order to see how different thresholds would impact the results based on
the number of samples and which methods the datasets are based on.

3.3.4 Experiment 4: Optimal number of features

In the search of identifying the best-performing features and to see what impact
a reduced number of features have on the models a new round of tests will be
conducted. For each dataset, the results from experiment 1 will be used to test
the three top models identified in experiment 3. Based on the ranked features the
worst will be removed one at a time before each of the models are tested to see
how the performance is impacted. It will also allow us to see how few features
can be used and still maintain a certain performance. By running these tests, we
will also attempt to verify the results from the feature ranking by seeing how well
the top features perform by themself or whether more features are better for the
results.

The experiment is conducted by going through each of the features in the
ranked list from the worst to the best. For each feature are the three models trained
and tested using cross-validation 5-fold where the average F1-score of these folds
are used to compare the results against each other. This experiment will only be
conducted on dataset 1 to see what results can be achieved how the results change
based on the number of features. As each sample contains more than 500 features
would the time and resources needed to test the model over 500 times be greater
than what potential results it might reveal. For this thesis, the subset of samples
is seen as sufficient, and deeper testing and experimentation with the number of
features is seen as future work.

Another way this experiment could be conducted is to remove exactly the
same features for the datasets to make the tests more similar. This might have
an impact. However from a brief comparison, the top features seem to be quite
similar, some features might change some places up or down the list based on
what dataset. It introduces more "variety" in the test by doing it this way. Still, it
will be used since it seems more realistic regarding the natural order to conduct
ML projects, where feature selection is a natural part of the process. Computing
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different feature rankings and seeing that many of the same features are ranked as
the top ones makes it clearer that they are helpful and provide some value across
the different compositions.

3.3.5 Experiment 5: Model evaluation

After the project has gone through the first four experiments, the achieved results
will be utilized in this last experiment. The results regarding what models and op-
tions to prefer should be identified and implemented before the final experiment
is conducted. To finalize the thesis and test whether the discovered results might
have some value, will the three best models be tested on the verification dataset
that was left out before creating the datasets for the experiments. The sole pur-
pose of leaving out that portion of the dataset, in the beginning, was to have the
ability to evaluate the models created on data not previously seen in the thesis.
This allows us to see how well the trained models can handle new data.

This experiment will be used as the final means of answering RQ1 and RQ3, it
will however also provide some verification of the results regarding RQ2. Firstly
will this experiment build upon the results achieved in Experiment 4 by using
the optimized models against the verification dataset. Each of the seven datasets
will be used in training the three selected models found in experiment 2 with the
settings discovered in experiment 3. This testing process is then conducted twice
to test the models and datasets against the verification data using all indicators
and one time only using the top 100 as identified in experiment 1. After running
these experiments, should we be able to further answer RQ2 in terms of how
well the top 100 features work in classification. It will also contribute towards
answering RQ3 by giving an insight into what performance can be expected from
the models used in this thesis.

After conducting these experiments on the verification dataset, will the miss-
classified samples be stored for each test and used to compare statistics. We will
then look at what features are commonly found in the entire dataset, among the
correctly classified and the wrongly classified samples. By looking into the differ-
ences between the whole dataset and the miss-classified samples some indicators
might point out as the reason why it evaded the model and give an indication of
what could be done to improve them. These statistics will also help in answering
RQ1. Other results that are interesting to look into are whether the same samples
are missed in the different datasets or if the models tend to overlook the same
samples. This will simply be measured by comparing each class’s missed samples
with the number of unique samples. Another experiment that would be interest-
ing to look closer at is to dive deeper into the results and samples missed and see
what type of characteristics it has and look at the package types to improve the
knowledge even further, but this is seen as future work.
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Results

After describing the methodology in the previous chapter, the following presents
the results discovered in the experiments. Similar to the method’s structure, the
results will be divided into five experiments. Experiments 1 and 2 can be seen as
the first group, and these results are used to decide on what to use in the last three.
The first two show more general results from ranking the features and testing the
selection of models. In contrast, the second part which consists of experiments 3,
4, and 5 goes more in-depth into the three top models identified in the first. After
the three models are selected, a few optimization steps will be tested and imple-
mented to see if the results improve from the first part before testing again against
a new test dataset. Before describing the results, Table 4.1 contains an overview
of the indicators listed in the thesis besides the non-binary features. Each feature
is numbered and accompanied by a description, and the table will be used when
referencing and discussing what each indicator means. Each indicator is found by
using static analysis techniques to identify the capabilities and characteristics of
a sample, how it is found and created is described more in Section 3.2.1.

As previously described the experiments are divided into five parts, and the
results from each will be presented in their own section below.

4.1 Results experiment 1: Feature ranking

The results from the feature ranking are presented in Table 4.2 and show the top
10 ranked features from each of the seven datasets described in Section 3.2.

When looking at the results in Table 4.2, we can see that several of the same
indicators tend to appear in most of the datasets. Similarities can be seen based
on how the datasets are constructed, such as for datasets 1, 2, and 3, which
used downsampling. They only differ in the composition of benign and malicious
samples and the number of features. They have almost identical results except for
a few deviations, the order of a few and Indicator39 found in dataset 2, while the
two other datasets listed Indicator46 instead. When looking at dataset 4, which
contains all the features, and datasets 5 and 6, which have increased the num-
ber of malicious by duplication, the same indicators are present but have some

33
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Table 4.1: Overview of indicators and descriptions.

Indicator Description
Indicator4 Concatenates an unusual amount of strings, commonly used for

obfuscation.
Indicator9 Creates a process.
Indicator12 Creates/Opens a file.
Indicator22 Imports the "os" module, which contains miscellaneous operating

system interfaces.
Indicator27 Imports the "setuptools" module, which is a package development

process library.
Indicator39 Reads from files.
Indicator45 Uses string related functions.
Indicator46 Writes data to the STDOUT stream.
Indicator77 Imports the "requests" module, which is used for sending HTTP

requests.
Indicator80 Makes HTTP GET requests.

Table 4.2: Top 10 highest-ranked features for each dataset

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7
1 package_size package_size package_size package_size package_size package_size package_size
2 py_file_count py_file_count py_file_count indicator12 py_file_count py_file_count py_file_count
3 num_indicators num_indicators num_indicators indicator27 num_indicators num_indicators num_indicators
4 indicator4 indicator80 indicator80 num_indicators indicator4 indicator4 indicator4
5 indicator80 indicator4 indicator4 py_file_count indicator80 indicator12 indicator80
6 indicator77 indicator77 indicator77 indicator46 indicator77 indicator80 indicator77
7 non_text_files non_text_files non_text_files indicator22 indicator12 indicator77 non_text_files
8 indicator12 indicator12 indicator12 indicator4 non_text_files indicator27 indicator12
9 version version version indicator45 indicator46 indicator46 version

10 indicator46 indicator39 indicator46 indicator39 indicator45 indicator45 indicator46

differences from the first group. There do not seem to be significant variations in
terms of what features are listed, but the order they appear tends to change. A
reason might be that the number of malicious samples changes the dynamic in
the dataset. It could also be because of the composition of samples, especially in
the down-sampled variations where much information is lost when the number
of benign samples is reduced.

One aspect that makes it hard to detect malicious samples based on single
indicators is that they could likely appear in legitimate applications, and most
indicators are not necessarily malicious. Indicators 46, 77, and 80, which have
a description in Table 4.1 indicate the ability of a sample to write output from
the program and make GET web requests over HTTP. That could mean the spe-
cific sample requests additional information online or tries to download additional
malware. Even though other indicators, such as Indicator4, which reacts on un-
usual amounts of a string concatenation, could be viewed as more malicious since
it could be used as an obfuscation technique, but just as well for legitimate pur-
poses. When looking further into what features to use to detect malicious samples,
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should it be looked closer at what combinations of features are commonly found
in the malicious packages. A deeper analysis of the combinations found in the
malicious samples is seen as future work but could provide more knowledge on
what specific feature combinations could indicate malicious packages.

4.2 Results experiment 2: Model comparison

The following section will present the results from testing a selection of models
described in Section 3.1.1 against the seven datasets shown in Table 3.2. Two
tables are shown, the first Table 4.3 showing the average F1 score from the cross-
validation 5-fold technique. The second table that can be viewed is similar to the
first but shows the results when using 10-fold for cross-validation. The last entry
for both tables consists of the average F1 score across all datasets. A brief descrip-
tion of the models can be found in the Section 2.1.4, but to clarify the shortened
names: SVC stands for Support Vector Machine, KNN for K-Nearest Neighbors, GB
for GradientBoosting and MLPC for Multi-Layer Perceptron Classifier.

Table 4.3: Results model comparison average F1-score using 5-fold cross-
validation

Model RandomForest DecisionTree SVC Naive Bayes KNN GB MLPC
Dataset 1 0,76 0,46 0,96 0,59 0,94 0,53 0,98
Dataset 2 0,77 0,66 0,97 0,77 0,95 0,59 0,98
Dataset 3 0,78 0,50 0,96 0,60 0,95 0,43 0,97
Dataset 4 0,71 0,11 0,88 0,06 0,90 0,32 0,91
Dataset 5 0,74 0,41 0,93 0,21 0,92 0,43 0,94
Dataset 6 0,64 0,35 0,93 0,16 0,92 0,38 0,94
Dataset 7 0,82 0,44 0,94 0,36 0,93 0,46 0,95
AVERAGE: 0,75 0,42 0,94 0,39 0,93 0,45 0,95

Table 4.4: Results model comparison average F1-score using 10-fold cross-
validation

Model RandomForest DecisionTree SVC Naive Bayes KNN GB MLPC
Dataset 1 0,93 0,55 0,96 0,59 0,95 0,58 0,97
Dataset 2 0,90 0,61 0,97 0,77 0,96 0,64 0,97
Dataset 3 0,81 0,48 0,96 0,60 0,96 0,51 0,96
Dataset 4 0,64 0,12 0,88 0,06 0,90 0,33 0,91
Dataset 5 0,73 0,41 0,93 0,21 0,92 0,42 0,94
Dataset 6 0,74 0,39 0,93 0,16 0,92 0,45 0,92
Dataset 7 0,83 0,43 0,94 0,36 0,93 0,52 0,95
AVERAGE: 0,80 0,43 0,94 0,39 0,93 0,49 0,95

The results from the second experiment about model comparison can be seen
in the two models Table 4.3 and Table 4.4. The first observation that can be seen
is that the average results for the seven datasets are the same for each model in
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both tables except for RandomForest, DecisionTree, and GB. RandomForest has
the highest difference in performance between the two tables, with a score 0.5
higher when 10-fold is used. For DecisionTree, the average score only changes by
0.1, while it changes by 0.4 for GB. Except for these changes, the average of the
results stays the same for both tables. This can show that the number of splits used
during k-fold cross-validation has less to say, at least reading from these results.
The reason might be how the dataset is structured and what samples are included
since the difference using a larger number for K-folds means splitting the dataset
into smaller pieces and reducing the dataset size to be tested. Too small of a test
set could lead to an unfortunate combination of samples, which lowers the overall
score. Still, since the test is run multiple times with each split piece as the testing
set, it will be possible to determine whether one run has significantly lower scores.

For the best-performing models, we can see SVC with an average of 94%, KNN
with 93%, and MLPC with 95%. These scored significantly higher than others such
as Naive Bayes, GB, and DecisionTrees, with average scores of 45% and lower.
Only RandomForest had an average score that could be considered good at 80%
but is still quite a bit lower than the three at the top. The lousy performance could
be because the models are unsuitable for this type of data, or it would have needed
a more comprehensive preprocessing and feature extraction process to perform.
Other reasons could be the need for further optimization and different parameters
for the models to perform in this scenario. These results are also used to decide
on what models to use in the following experiments. It also contributes towards
answering RQ3 by showing what performance can be expected from the selected
models.

4.3 Results experiment 3: Model optimization

As stated in the methodology, the three top-performing models from experiment 2
will be used in this and the following experiments. This experiment was conducted
to test a few parameters to identify whether modifying some default options would
pay off in terms of increased performance. As found in the previous subsection
could we see the two tables Table 4.3 and Table 4.4 that the average results for
each model across all datasets are pretty similar with different values using K-
fold. There are also three models that stick out with significantly higher average
scores when compared to the rest, they are MLPC, SVC, and KNN. When looking
at the average F1-score across all datasets, does SVC score 94%, KNN 93%, and
MLPC 95%. These three models will then be used in the following experiments,
which in this will be about testing a few different parameters before looking at
the threshold using the PR curve. Each of the three models has its own subsection
where the parameters that will be used are briefly described.
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4.3.1 MLPC

One of the models that performed best in experiment 2 was MLPC which gave
an average score of 95% seen in Table 4.3 across the seven datasets used in the
initial testing. MLPC, a classifier based on a neural network, is implemented with
many options to choose from. When optimizing the model, the user can choose
the number of hidden layers to use, what loss function to implement, and many
others for more granular control. This experiment will test the options for deciding
what activation and solver function to use. The activation function is used to make
the network more dynamic and able to handle more complex tasks and learn by
implementing mathematical functions that can map the complex output from the
different nodes in the network[29]. Each method has different properties that
make them more suitable for specific types of problems, the ones available in
ScikitLearn are called "identity", "logistic", "tanh" and "relu". The second parameter
tested is the solver function which refers to the weight optimization between the
nodes in the neural network. The options available are named "lbfgs" which by
SciKitLearn is said to be a "quasi-Newton method", the second option is "sgd"
short for "stochastic gradient descent". While the third is "adam" a gradient-based
optimizer proposed by Kingma and Ba [30][31]. It was decided not to look closer
at optimizing the number of hidden layers. This is one of the key parameters for
this type of model, but it was considered too big of a task when the focus is to get
an overview of what performance could be expected. As there is no standard way
to find the optimal number, the range of options to test is seen as too large and
therefore is added to future work. The default value used in Scikitlearn is 100 for
the number of hidden layers.

The results from testing the options mentioned above can be seen in Table 4.5
which show what parameters are used, how each run of the 5-fold cross-validation
performs, and the average of those five. A second table shows some extended
results from how this model performs with the default parameters across the
seven models. It also contains the number of both correctly and wrongly classified
samples in the categories of benign and malicious.

Seen in the Table 4.5 is the overview of results found when testing the different
options as described above. Two combinations stand out from these results with
an average F1-score of 98%. The default options are "relu" and "adam", together
with "logistic" and "adam" performed the best among the options. From these
results on this type of data, whether the default parameters are used or not when
training the MLPC model does not seem to matter. For the other options, some
combinations scored significantly lower with an average score of around 90%,
showing it does matter which parameters are chosen. As these experiments are
conducted on dataset 1 the results are higher than what can be expected for higher
dataset sizes since dataset 1 only contains a subset of the benign. Another aspect is
the number of hidden layers which as mentioned previously in this section should
have been experimented on but is put in future work. However from these results
and what is found in experiment 2: model comparison the default value of 100
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Table 4.5: Model optimization results for MLPC, random_state = 7

Model: MLPC
Parameters K1 k2 K3 K4 K5 Average
activation=’identity’, solver=’lbfgs’ 0,94 0,95 0,95 0,94 0,94 0.94
activation=’identity’, solver=’sgd 0,92 0,93 0,93 0,93 0,92 0,93
activation=’identity’, solver=’adam’ 0,95 0,95 0,95 0,95 0,93 0,94
activation=’logistic’, solver=’lbfgs’ 0,97 0,93 0,97 0,96 0,94 0,96
activation=’logistic’, solver=’sgd’ 0,89 0,90 0,89 0,91 0,89 0,90
activation=’logistic’, solver=’adam’ 0,98 0,97 0,97 0,98 0,97 0,98
activation=’tanh’, solver=’lbfgs’ 0,95 0,93 0,95 0,94 0,94 0,94
activation=’tanh’, solver=’sgd’ 0,93 0,94 0,93 0,94 0,93 0,93
activation=’tanh’, solver=’adam’ 0,98 0,93 0,97 0,97 0,96 0,96
activation=’relu’, solver=’lbfgs’ 0,91 0,94 0,94 0,93 0,92 0,93
activation=’relu’, solver=’sgd’ 0,95 0,95 0,95 0,95 0,95 0,95
activation=’relu’, solver=’adam’ 0,98 0,96 0,98 0,98 0,98 0,98

Table 4.6: Results and time it takes for MLPC to be trained and tested with the
train-test-split function.

MLPC DS1 DS2 DS3 DS4 DS5 DS6 DS7
Accuracy 0.987 0.982 0.979 0.996 0.992 0.993 0.988
F1-score 0.978 0.983 0.968 0.916 0:653 0.946 0.958

TN 4246 1748 1832 89921 44751 89544 5495
FP 39 36 31 68 269 475 45
FN 40 27 26 231 83 128 30
TP 1800 1864 868 1631 3579 5379 862

Time 0:01:48 0:00:54 0:00:38 0:10:03 0:09:07 0:14:42 0:01:09

hidden layers performs quite well being one of the best models in this comparison.
Another table Table 4.6 does also show some extended results from how the

model performs with its default parameters. In these results are the function
"train-test-split" used to extract 30% of the dataset and show the confusion matrix
as well as the F1 score for the seven datasets. It does also show the time it takes to
train and test the model. This shows that on larger datasets like dataset 4 (DS4)
that it takes 10 minutes to train and test the model.
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4.3.2 SVM

The second of the three top-performing models is SVC which had an average F1-
score of 94% across all datasets. The SVM model implemented in Scikitlearn al-
lows for a large degree of customizability in regard to what options to provide and
what thresholds to set for the model. One primary attribute is the kernel which
is picked for this experiment to give an indication of what might work best for
this type of data and give a foundation for further research into optimizing the
more specific parameters to see what works best. The kernels available for use in
this model are: "linear", "poly", "rbf" and "sigmoid. When talking about SVM, the
kernel is the name for what algorithm is used to solve the problem, the features
are plotted, and in this use case, a line is drawn between the features for being
able to make a decision as to what to predict. The simplest method to use is when
a line could separate the data and refers to the "linear" kernel. When the data is
more complex and is not separable by only drawing a straight line, more advanced
mathematical expressions can be used in an attempt to best separate the data.

The SVM model implementation used in these experiments is called "SVC" and
is one of several variations that can be implemented from the ScikitLearn library.
As specified in the documentation another implementation called "LinearSVC" is
also recommended besides the one used here. Its different implementation makes
it able to better handle larger amounts of samples as it offers more flexibility in
regards to choosing a loss function and penalty[32].

Table 4.7: Model optimization results for SVC, random_state = 7

Model: SVC
Parameters K1 K2 K3 K4 K5 Average
kernel=’linear 0,95 0,95 0,95 0,95 0,94 0.95
kernel=’poly’ 0,89 0,91 0,89 0,91 0,90 0,90
kernel=’sigmoid’ 0,69 0,83 0,32 0,70 0,32 0,57
kernel=’rbf’ 0,96 0,96 0,96 0,97 0,96 0,96

Table 4.8: Time it takes for SVC to be trained and tested with the train-test-split
function.

SVC DS1 DS2 DS3 DS4 DS5 DS6 DS7
Accuracy 0.977 0.974 0.971 0.995 0.989 0.992 0.980
F1-score 0.962 0.975 0.955 0.873 0.926 0.931 0.927

TN 4248 1723 1848 89985 44879 89916 5503
FP 37 61 15 4 141 103 37
FN 99 34 63 414 380 614 88
TP 1741 1857 831 1448 3282 4893 804

Time 0:00:23 0:00:10 0:00:04 1:14:03 0:09:08 1:04:12 0:00:16

The results from testing the different kernels in the SVC models can be seen in
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Table 4.7. Similar to the results found for MLPC it is also here the default settings
that achieve the best results. With an average F1-score of 96% does "rbf" score
the highest above the "linear" kernel which also scored relatively high with an
average of 95%. Conveniently does there not seem to be necessary to change the
major parameter to improve the results, however, all models do have multiple
options that can be modified and with the goal of creating the best models deeper
testing is necessary. Dataset 1 is also used in this experiment and from what can
be seen in the results from experiment 2 does that dataset have overall higher
scores compared to the other where more benign samples are included.

Another table included is seen in Table 4.8 and shows the metrics for this
model when the function "train-test-split" is used. This function split the dataset
so 30% is used as testing data. The results show the confusion matrix and F1 score
for the seven datasets as well for the time it takes to both train and test, which is
over one hour for the larger datasets like dataset 4 (DS4).

4.3.3 KNN

The last model to include in this third experiment is the KNN model, it achieved
an average F1-score of 93% in the first comparison found in Table 4.3. KNN does
as the two other models contain a wide variety of options to choose from when
attempting to optimize the model. One of the most attractive features here is to
look at how many neighbors perform the best on this type of data. And to keep a
manageable amount of testing no other options will be added as it would demand
quite a bit of resources and time, as previously stated finding the best parameters
for each model is out of scope as this serves as a foundation for further research.
All problems are different and might require other combinations of parameters to
perform optimally.

The default number of neighbors used in KNN is five, we tested the range
between 1 and 40 neighbors on dataset 1. It would have been interesting to in-
crease the range and see whether a higher number of neighbors are better in
classifying this data, but due to restrictions in time and resources, it was decided
that up to 40 would be sufficient for this thesis. A more profound and extensive
experiment into optimizing each model would be recommended in future work.

Table 4.9: Time it takes for KNN to be trained and tested with the train-test-split
function.

KNN DS1 DS2 DS3 DS4 DS5 DS6 DS7
Accuracy 0.960 0.947 0.943 0.995 0.988 0.989 0.966
F1-score 0.932 0.948 0.911 0.872 0.922 0.907 0.877

TN 4232 1703 1798 89939 44881 89871 5453
FP 53 81 65 50 139 148 87
FN 186 111 91 181 407 812 126
TP 1654 1780 803 1479 3255 4695 766

Time 0:00:06 0:00:10 0:00:01 0:52:09 0:14:58 0:46:27 0:00:11
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Figure 4.1: Performance with different number of neighbors.

As for KNN the results from testing the two distance measuring algorithms
and the number of neighbors be seen in Figure 4.1. The graph shows that the
default "distance" based option performs better than the "uniform" option. From
the Figure 4.1 we can see that the score is quite high already at one neighbor
with an F1-score right below 94%. It can then be seen that the performance in-
creases and has a peak at seven neighbors. For the distance-based line can we see
the performance remains the same and slightly increases between seven and 17
neighbors before it goes into a small drop. The line which is blue can then be seen
maintaining a flat and slightly downward-facing line as the number of neighbors
increases. The trend for the Uniform parameter can be seen decreasing slowly and
steadily after the peak at 7 neighbors. The highest score is 96,5 and is found with
15,16,17 and 24 neighbors using the Distance-based parameter shown in blue.

Another table with results can also be seen in Table 4.9 and shows the time it
takes to train and test the model using the "train-test-split" function. For each of
the seven datasets are 30% used for testing and the rest for training, and the table
shows the confusion matrix produced together with the F1 score and the time it
takes to run. For KNN can we see that it takes 52 minutes to train and test the
model on a larger dataset, dataset 4 (DS4)
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4.3.4 Thresholds

The following subsection will present the results from looking into methods to
decide on thresholds and further optimize the results of the models. As described
in Section 3.3.3, the Precision-Recall (PR) curve will be used instead of the more
common Receiver Operating (ROC) curve as most datasets are imbalanced, and
more realistic results can be achieved with that method. When conducting these
tests, each dataset was trained and tested with each of the three models with
the "train-test-split" function. This is for reducing the number of results as cross-
validation is looked at in other parts of the experiment. The training set equals
30% of the dataset while the remaining 70% is used for training. The models will
be trained with the best options, as found in the previous section. Below will the
results from each dataset be listed to view the trends. All three models are listed
in each of the graphs, and the legend shows the word "AP" which stands for the
Average Precision calculated from the graphs. Each graph is accompanied by a
table showing the results from testing the models which were used to create the
PR-curve, it consists of the precision and F1-score as well as the confusion matrix
which consists of TN, FN, FP, and TP.

Table 4.10: Results from models making PR-curve for dataset 1

MLPC SVC KNN
Precision 0.987 0.977 0.960
F1-score 0.978 0.962 0.932
TN - FP 4246 - 39 4248 - 37 4232 - 53
FN - TP 40 - 1800 99 - 1741 186 - 1654

Table 4.11: Results from models making PR-curve for dataset 2

MLPC SVC KNN
Accuracy 0.982 0.974 0.947
F1-score 0.983 0.975 0.948
TN - FP 1748 - 36 1723 - 61 1703 - 81
FN - TP 27 - 1864 34 - 1857 111 - 1780

Table 4.12: Results from models making PR-curve for dataset 3

MLPC SVC KNN
Accuracy 0.968 0.971 0.911
F1-score 0.968 0.955 0.911
TN - FP 1832 - 31 1848 - 15 1798 - 65
FN - TP 26 - 868 63 - 831 91 - 803
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Figure 4.2: Precision-Recall curve for dataset 1.

Figure 4.3: Precision-Recall curve for dataset 2.
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Figure 4.4: Precision-Recall curve for dataset 3.

Table 4.13: Results from models making PR-curve for dataset 4

MLPC SVC KNN
Accuracy 0.996 0.995 0.995
F1-score 0.916 0.873 0.872
TN - FP 88921 - 68 89985 - 4 89939 - 50
FN - TP 231 - 1631 414 - 1448 383 - 1479

Table 4.14: Results from models making PR-curve for dataset 5

MLPC SVC KNN
Accuracy 0.992 0.989 0.988
F1-score 0.953 0.926 0.922
TN - FP 44751 - 269 44879 - 141 44881 - 139
FN - TP 83 - 3579 380 - 3282 407 - 3255

Table 4.15: Results from models making PR-curve for dataset 6

MLPC SVC KNN
Accuracy 0.993 0.992 0.989
F1-score 0.946 0.931 0.907
TN - FP 89544 - 475 89916 - 103 89871 - 148
FN - TP 128 - 5379 614 - 4893 812 - 4695
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Figure 4.5: Precision-Recall curve for dataset 4.

Figure 4.6: Precision-Recall curve for dataset 5.
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Figure 4.7: Precision-Recall curve for dataset 6.

Table 4.16: Results from models making PR-curve for dataset 7

MLPC SVC KNN
Accuracy 0.988 0.980 0.966
F1-score 0.958 0.927 0.877
TN - FP 5495 - 45 5503 - 37 5453 - 87
FN - TP 30 - 862 88 - 804 126 - 766
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Figure 4.8: Precision-Recall curve for dataset 7.
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From the results shown in the figures and tables above can some tendencies
can be seen. Firstly we can see in all the figures that the orange line visualizing
results from KNN performs a bit lower than the other two, similar to previously
found results. For the first three datasets seen in Figure 4.2, Figure 4.3 and Fig-
ure 4.4 can we see quite high scores where the lines have a sharper curve up in
the corner indicating both high precision and high recall.

However, when looking at the results from the graph in dataset 4 as seen in
Figure 4.5 and the metrics in Table 4.13 can we see the scores are lower, and
at least the line for KNN show that the precision drops faster when the recall
increases even more than what is seen in the other graphs. The reason for bigger
differences in this dataset might be the huge imbalance which is reduced in the
others. This imbalance can make the model sacrifice the precision in order to
increase the recall as there are so few occurrences of the minor class. This can be
supported when looking at dataset 5 shown in Figure 4.6 where the balance of the
dataset is better by removing some benign samples and duplicating the malicious
ones. Here the results perform better and give higher scores for both precision
and recall.

Confirming the results we already have achieved, MLPC performs overall bet-
ter than both SVC and KNN. In some of the figures as seen above, they do perform
quite similarly, but for the larger datasets, it is more evident that MLPC gives the
best results with a curve closer to the upper right corner. However, one of the
reasons for conducting this experiment is the need for the lowest amount of false
positives to reduce the workload of analysts, as identified in related works and
confirmed by experts. As we can see in the figures for dataset 4 Figure 4.5, data-
set 5 Figure 4.6, and dataset 6 Figure 4.7, where all models already perform pretty
well, is it possible to prioritize the precision and reducing the FP-rate by lowering
the recall slightly. At least for MLPC which performs best, the loss of recall is low
even when the precision is maintained.

Another observation from comparing the results found in dataset 4 Table 4.13,5
Table 4.14 and 6 Table 4.15 is the number of FP seems to be the lowest in dataset 4
where all the data used is compared to dataset 5 and 6 which uses the upsampling
technique. The score increases, but with the increased number of FP, it might not
be worth it based on these initial results.

4.4 Results experiment 4: Optimal number of features

In this next section will the three top models and the results from experiment 1:
feature ranking be combined to find the optimal number of features. The results
will be presented in the graph Figure 4.9 showing how the performance changes
based on how many features are removed. A second table will also be used to
present the exact results for a certain number of indicators. As seen in Table 4.17
are the F1-scores listed for each model in intervals of 50 features until 24 are left.
The rest of the features and their scores are then shown, removing two at a time.

As this test is done on one of the smaller datasets it can be affected by the lack
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Figure 4.9: Figure comparing performance against the number of features.

of diversity of features and samples, but from the results in experiment 1, most of
the top-rated features are the same. Several of the indicators used in this project
are only found in a few of the samples. Since the occurrences of some indicators
are pretty low, several of them can be removed without losing too much perform-
ance. The results from this experiment are shown in Table 4.17 and show that
at least the first 200 features can be removed from MLPC and SVC with a min-
imal drop in performance. Looking closer at MLPC, we can see that the F1 score
only drops from 97,9% to 97,3% when removing the 200 worst-ranked features
as identified in experiment 1. This has minimal impact compared to the reduced
amount of resources needed to compute the data, especially for larger datasets. If
speed and resource usage is more important than the model’s accuracy, even more
indicators can be removed. With only 126 indicators the F1 score of MLPC will
still stay at around 95,6% only reduced by 2,3% from using over 500 features.

The same tendencies can be seen across all three models, but another obser-
vation of the results from the KNN model is that it can keep a score of above
90% event when only relying on the top 14 features, the score is then still at 92%,
higher than both of the two other models. What is interesting is that both SVC and
KNN tend to perform better than MLPC when looking at using fewer features, but
the highest scores are still found with MLPC using 176 features and higher. There
could be several reasons for these results, and the most obvious one might be
the optimization of models. Because the higher complexity of the MLPC model
probably ruins some of the performance, at least for the lower number of indic-
ators. We do still see that results achieved in experiment 1 do hold up as we can
see relatively high scores even with a highly reduced number of features. Ideally,
the same tests should be conducted for several of the datasets, mainly dataset 4,
which contains all samples. But the time and resources needed to test and train
the models so many times are more significant than what is seen as reasonable
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Table 4.17: Overview selected number of features

Num indicators MLPC SVC KNN
576 0,979 0,960 0,965
526 0,977 0,960 0,965
476 0,975 0,960 0,966
426 0,976 0,959 0,966
376 0,973 0,958 0,966
326 0,967 0,958 0,964
276 0,967 0,956 0,963
226 0,967 0,955 0,963
176 0,962 0,954 0,962
126 0,956 0,952 0,961
76 0,941 0,947 0,959
26 0,901 0,927 0,944
24 0,899 0,925 0,943
22 0,871 0,922 0,941
20 0,865 0,918 0,936
18 0,828 0,910 0,931
16 0,779 0,907 0,928
14 0,765 0,877 0,923
12 0,747 0,863 0,884
10 0,673 0,821 0,868
8 0,648 0,776 0,792
6 0,607 0,767 0,699
4 0,598 0,660 0,654
2 0,338 0,016 0,143

for this thesis and its research questions. It is therefore moved to future work to
conduct a deeper analysis of the results and to expand on the experiments.

Another representation of the results can be seen in Figure 4.9, we can see
that the performance of the models decreases quite slowly when removing fea-
tures. First, when reaching around 40 features and below, we can see the curve
go significantly downwards.
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4.5 Results experiment 5: Model evaluation

In the following section will the presented results show how the models and data-
sets performed against an untouched part of the data that was left out at the
beginning of the project. This is called the verification data and has not been used
in any of the experiments up until now, it consists of data from 75,028 benign and
1,514 malicious samples. The three top-performing models are trained with the
best options identified in Section 4.3 on each of the initial datasets. This process
is also done two times in order to find results from where all indicators are used
and compare against only using the top 100. Based on the results in experiment 4
found in Section 4.4, the performance loss was low, and the impact will be tested
in this part.

4.5.1 Re-test models

Table 4.18: Results from testing models against the designated test data.

Num features SVC KNN MLPC
Dataset 1

All 0,79 0,71 0,77
Top 100 0,77 0,64 0,74

Dataset 2
All 0,64 0,56 0,68
Top 100 0,63 0,47 0,71

Dataset 3
All 0,75 0,52 0,68
Top 100 0,74 0,50 0,68

Dataset 4
All 0,88 0,86 0,91
Top 100 0,87 0,85 0,90

Dataset 5
All 0,87 0,87 0,90
Top 100 0,86 0,84 0,89

Dataset 6
All 0,90 0,87 0,92
Top 100 0,89 0,85 0,91

Dataset 7
All 0,81 0,76 0,86
Top 100 0,80 0,76 0,83

The results from this experiment can be seen in Table 4.18, which shows the
results for each model when trained on all indicators and the top 100. For each
result entry, can the dataset used in the training process be seen, all seven were
used. One general observation from these results is that the KNN model tends
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Table 4.19: Extended Results for dataset 4, 5, and 6.

Accuracy F1-score TN FP FN TP
Dataset 4
All features
SVC 0,996 0,879 75025 3 324 1190
KNN 0,995 0,859 75006 22 357 1157
MLPC 0,997 0,910 74993 35 222 1292
Topp 100
SVC 0,995 0,869 75025 3 349 1165
KNN 0,995 0,848 74994 34 374 1140
MLPC 0,996 0,901 75001 27 251 1263
Dataset 5
All features
SVC 0,995 0,868 74772 256 156 1358
KNN 0,995 0,866 74903 125 263 1251
MLPC 0,996 0,899 74813 215 102 1412
Topp 100
SVC 0,994 0,861 74807 221 202 1312
KNN 0,994 0,839 74841 187 286 1228
MLPC 0,995 0,887 74807 221 130 1384
Dataset 6
All features
SVC 0,996 0,901 74905 123 171 1343
KNN 0,995 0,873 74931 97 266 1248
MLPC 0,997 0,924 74956 72 152 1362
Topp 100
SVC 0,996 0,886 74890 138 201 1313
KNN 0,994 0,855 74883 145 276 1238
MLPC 0,997 0,912 74927 101 161 1353
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to perform the worst among the three, while SVC and MLPC have more or less
similar results. It seems to vary a bit between the datasets whether which one
performs the best, such as in datasets 1 and 3, where SVC can be seen with higher
scores than MLPC. It shows that by reducing the number of benign packages by
downsampling, SVC might tend to perform better, but the overall highest results
are seen from MLPC. The highest score can be seen marked in bold and is found
in Dataset 6, which uses the upsampling technique to increase the number of ma-
licious samples. Here are all the malicious packages duplicated two times, details
can be seen in Table 3.2. From the results we have found during this experiment,
there still seems to be the case that training with more data tends to improve
the performance of the models. As the upsampling technique achieves the over-
all highest scores, not doing anything to the training data also achieved an F1
score of about 91%, which only differs 1% percent from the highest. The reason
might be the type of samples and the number from the different categories. As the
data have not been reviewed before the experiments, it is hard to decide precisely
why the results ended up like this. Even though the primary training and testing
data was split at the beginning of the project and an unfortunate split of features
might have been the case since we don’t know how the type of features are di-
vided across the dataset other than the number of samples. If all samples of one
malware category ended in only one of the datasets, it would be a natural reason
why a particular part of the samples is misclassified.

When looking at the difference between using all the features or only the top
100 can wee see that the results only differ a few percentages in performance.
Especially when looking at the results from dataset 4,5 and 6 where most of the
data is used, does it only differ 1% percentage between all indicators compared
to the top 100. That can be interpreted as most of the samples in the testing
set are similar to what is found in the training data. It does not manage to clas-
sify everything but still provides relatively high scores compared to the amount
of work that has been put into optimization. Looking closer at the results in the
most realistic datasets, can we see some extended results in Table 4.19 where
the number of correctly and wrongly classified samples are listed for the three
datasets 4, 5, and 6. From what we can see in Table 4.19, the highest score and
best compromise between false positive(FP) and false negative(FN) are using all
features, dataset 6 for training and MLPC. With an F1-score of 92%, 72 wrongly
classified benign and 152 malicious is the best outcome. The model still misses
several samples, but compared to the almost 75,000 benign packages correctly
classified, it can seem good at catching most attacks without too many FP. As this
experiment was constructed and used to see what performance can be expected
for the different models, we can see that with a larger dataset and upsampling it is
possible to achieve a F1-score between 85% and 92% depending on the model and
technique. Based on this experiment, the model to recommend is MLPC or similar
variants, but SVC could also be of interest as it is not far behind MLPC in terms
of the F1 scores found here. Both models also have many parameters for further
optimization, possibly leading to even better results. Still, more care should also



54 Røe, S: Identifying Malicious Python Packages Using ML

probably be given to the training data ensuring a good composition of different
samples. Regarding how many features to use towards answering RQ2, utilizing
only the top 100 features identified using the IG should also be considered. After
removing over 400 features can we still see the models perform well, losing min-
imal performance. For some of the datasets, it only appears to differ 1%.
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4.5.2 Statistics

The last subsection of this chapter will show some statistics from the results iden-
tified in experiment 5 and the features in the verification dataset. Three tables
are present, the first being Table 4.20, which show the number of wrongly classi-
fied samples when using datasets 4,5, and 6 as the training data. All features and
samples were used in the training data as it provided the best results. The table
shows the total number of wrongly classified samples across all models, according
to the category, for each model and the number of unique samples. This way, it is
possible to see whether several of the misclassified samples overlap between the
models.

The second Table 4.21 shows the top five features that occur among the ma-
licious samples. The table also includes the number of appearances the indicator
has in each category and the percentage. This will show to what degree the most
common features are to appear in either malicious or benign packages.

The third and last Table 4.22 shows the average of the non-binary values com-
paring wrongly classified samples and the entire dataset. The average for the mali-
cious samples and benign samples are also separated to see the average differences
between the categories.

Table 4.20: Amount of wrongly classified samples using all features and the full
training set.

Total Benign Malicious SVC KNN MLPC Unique
Dataset 4 963 60 903 327 379 257 420
Dataset 5 1117 596 521 412 388 317 669
Dataset 6 881 292 589 294 363 224 489

Table 4.21: Test dataset statistics sorted by occurrences in malicious samples.

Indicator Total Benign Malicious Total% Benign% Malicious%
indicator27 48405 47058 1347 63.24 62.72 88.97
indicator77 13758 12699 1059 17.97 16.93 69.95
indicator80 11643 10599 1044 15.21 14.13 68.96
indicator4 1685 982 703 12.25 7.73 66.38
indicator22 44354 43808 546 57.95 58.39 36.06

The focus of in this part is to look closer at the statistics for dataset 4, 5, and
6 which is considered more realistic and contains the highest number of samples
in training the models. First out are some statistics for how many samples are
misclassified by each model on the three datasets. In Table 4.20 the number of
wrongly classified samples for each model, the total in each dataset, and the num-
ber of unique samples are shown. The table shows that dataset 6 has the low-
est overall number of misclassified samples when having the largest training set.
However, the number of unique samples misclassified across all models is slightly
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higher than the highest number of misclassified samples in Dataset 4. SVC missed
327 samples, KNN 379, and MLPC 257, the number of unique missed samples is
420. This shows that most missed packages are the same across all the models, but
some of the models miss a few other samples than the rest. The same tendencies
can also be seen for datasets 5 and 6 as well where the number of unique samples
is higher than for each model, this shows there are some commonalities among
the models as to what type of samples is misclassified.

Looking away from the fact that three different models were used, one reason
can be that duplicating the malicious samples seems to increase the number of FP
by somewhat reducing the number of FN. Bringing back what was identified by Vu
et al. [2], the need for a few FP as possible is necessary for the administrators as
they have limited time and resources for dealing with wrongly classified samples.
So based on the results found in this thesis can it seems using the full dataset
for training without any modifications might be the best option, upsampling can
however to a certain degree reduce the number of wrongly classified malicious
samples, but seems to increase the number of wrongly classified benign.

Some general statistics can be seen in Table 4.21 which show the top 5 most
common features among the malicious samples. The indicators are sorted by the
number of occurrences found in the malicious samples and show the most com-
mon features among the malicious samples. Besides the numbers describing the
occurrences is also the percentage for how often it occurs in its category compared
to the total number of samples in the test dataset and the same for the number of
benign or malicious. These results show that Indicator27 occurs in almost 89% of
the malicious packages and right below 63% of benign. This indicator is triggered
by the inclusion of the package "setuptools" which is commonly used in Python
projects to include other files and handle external libraries. One reason it is less
common among benign packages could be because many are made using standard
functions and one or few files, contributing with trivial functionality which lowers
the requirements of handling dependencies. Another reason could be several of
the benign relies on the packaging option provided by PyPi itself. More interesting
can be to look at the indicators 77, 80, and 4 which are found in between 66%
and 69% malicious but only between 7% and 16% of benign. These indicators as
described in Table 4.1 and relate to HTTP requests and can be used in many le-
gitimate packages but are highly relevant in malicious use cases for reaching data
on the internet. Either trying to download additional malware or reaching back
to the attacker.

When looking at the highest-ranked feature across all datasets is the package
size. It might seem unnatural, but when taking a look at the Table 4.21 can we
see that the average package sizes for the missed samples are much higher than
both the correctly classified and the full test set looking at each class individually.
Several reasons could be the cause, but one that is more likely is the size and type
of malicious packages that are found in the specific datasets used. If the models are
trained on seeing small malicious samples in training, they may misclassify larger
ones. This can be strengthened by looking at Table 4.22 which shows the average
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of non-binary features between the correctly and wrongly classified samples. Here
can we see that the package sizes of the correctly classified samples are much
lower compared to the samples wrongly classified. This could mean the larger
samples are harder to classify and one reason for this might be the type of samples
used in the training process. It is much more likely that a large number of the
malicious samples seen are small and simple packages and with a higher number
of larger and more complex malware samples, the results might be different. This
could also be supported by looking at the average size of malicious samples in
the verification dataset which is much lower compared to the wrongly classified.
However, since the average is used in these statistics it might not be fully accurate,
but since it is split up into both correctly and wrongly classified it will still give
indications as to what is typical.

Table 4.22: Overview of average values for non-binary features in verification
set, correctly and wrongly classified samples.

Version Package size Py_files Exec_files Non_text_files Num_indicators
Missed samples
Mal 5,97 2210 6,34 1,17 1,48 7,73
Ben 7,52 5872 34,43 6,70 31,80 25,61
Correct samples
Mal 2,52 887 9,62 0,81 2,22 13,02
Ben 4,69 929 16,65 0,52 44,15 15,63
Verification dataset
Mal 3,36 1207 8,83 0,90 2,04 11,74
Ben 4,69 932 16,67 0,52 44,14 15,64





Chapter 5

Discussion and conclusion

The previous chapter shows all the results achieved during the experiments. The
following chapter will discuss the discovered results and how they relate to the
research questions. Afterward, will there be dedicated a section to describe the
limitations of the thesis and then evaluate the validity of the thesis. Lastly, will
the thesis be concluded.

5.1 Results

The results which were presented in the previous chapter will be discussed one
research question at a time with what implications they might have.

5.1.1 RQ1

RQ1 was about looking into what indicator or combination of indicators are most
commonly found among the malicious packages. This RQ was mainly answered
in experiment 5 with the part on statistics. Several of the other experiments were
also used to facilitate the last experiment and allowed us to not only look at what
features are commonly found in the malicious packages but extend the question
by also seeing what was typical for the missed samples. From the results of ex-
periment 5, we could see that the indicator related to the use of the package
"setuptool" was found in almost 89% of the malicious packages in the verifica-
tion dataset. However, It was also quite common among benign packages and
occurred in about 62% of the benign. The other indicators which were also com-
monly found among the malicious were related to the use of web GET requests,
then a library for interacting with the operating system, and an unusual amount
of string concatenations. Most of these indicators can often be seen in legitimate
applications, but the unusual concatenation of strings stands out as potentially
more malicious. This indicator was found in over 66% of the malicious and only
7% of the benign, meaning it could be better suited at identifying at least some
of the malicious samples, which will be discussed more in the next section about
RQ2. Further research is needed to identify what combinations of indicators are
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more common to appear among the malicious samples. That may require further
analysis of the samples and their indicators, focusing closer on what combinations
most often occur. It might even be necessary to divide the samples into their mal-
ware categories and find commonalities to answer that question further. Looking
at single indicators that appear often is not enough by itself to indicate whether a
sample is malicious or not since they use tools and techniques that very well could
be used for legitimate purposes.

5.1.2 RQ2

RQ2 is also about indicators similar to RQ1 but aims to identify which features are
better suited to classify benign and malicious PyPi packages. Several experiments
have been contributing towards answering this RQ most noticeable and specific
is experiment 1. The feature ranking was primarily directed towards answering
both RQ1 and RQ2 but is also used as a foundation for some of the others. The
indicators were only ranked with the information gain (IG) algorithm, and since
there exist several different methods should several experiments be conducted
to verify these results. However, we found from experiments 4 and 5 that only
relying on the ranked indicators from IG provided nearly as high results as when
all features were used. From experiment 4 seen in Section 4.4, did we find that
we could utilize only the 26 highest ranked features and still preserve an F1 score
over 90% for all three of the models, at least for testing on a subset of samples,
in this case for dataset 1. This might change when using a more extensive and
more diverse number of samples, but when relying on the top 100 indicators,
can we from experiment 5 in Section 4.5 see that the models only lose 1% of
the performance on the dataset 4, 5, and 6 compared to using all indicators. This
also proves that by using the IG algorithm, we can remove many of the indicators
to reduce the computational power and time needed to train and test the models
with minimal loss of precision. Another key point from the performance of the 100
top features is that some of the over 500 indicators which have been used in this
thesis are better than others. It is probably possible to narrow it down from the
top 100 to even fewer with further research and experimentation to identify some
specific indicator combinations that can correctly identify malicious and benign
packages.

5.1.3 RQ3

For the last research question, RQ3, the focus was on identifying what perform-
ance could be expected from some of the most common Machine Learning (ML)
models available. Experiments 2, 3, and 5 contributed to answering this RQ, test-
ing a broader selection of models, followed by a low-effort attempt to optimize
the top three before the results were eventually verified in the last experiment.
Experiment 2 was the background for what models to use further in the thesis
and resulted in MLPC, SVC, and KNN, which gave the best performance with the
default settings and were the only models to have an average F1 score over 90%
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across the seven datasets. Simple adjustments were tested on the models, and
the general observation was that the default options performed among the best.
KNN was tested differently by looking at how many neighbors performed the best,
which showed that the numbers 15 to 17 are the best fit together with 7 and 24
in this use case and data.

Part of experiment 3 about optimizing the models was the precision-recall
(PR) curve created for the seven datasets as shown in Section 4.3.4. Not directly
answering the RQ but contributing towards an issue identified by Vu et al. [2]
regarding the need for a low or close to zero false positive rate for the admin-
istrators to handle the workload. From the PR curves could we see that for the
larger datasets 4, 5, and 6 MLPC was the best performing with SVC close after.
It also seemed possible to improve precision meaning minimizing the number of
false positives by reducing the threshold for the recall. How well it works and
what performance to expect need to be examined further but it could be a viable
path to follow to maximize the precision and reduce the number of FP.

To give a final answer to the RQ can the results found in experiment 5 that are
written in Section 4.5 and table Table 4.19 show that we can expect an F1 score
between 84% and 92% for the three used models with more extensive training
sets. For others that want to look closer at ML and such static indicators is it a
viable solution to invest a bit more into experimenting and optimizing the chosen
model, we have at least contributed with a brief overview of what can be ex-
pected from SVC, KNN, and MLPC. All three do also have numerous options for
further optimizing the models, and the results can probably be improved, but we
achieved, at best, an F1 score of 92% with MLPC and upsampling the number of
malicious samples in the dataset.

5.2 Limitations

There are some known limitations to the thesis and the achieved results. One
general limitation of the thesis is the limited time frame of one semester. This
resulted in a lower depth in some of the experiments than what would have been
wanted. As some of the experiments were only conducted on single subsets of
the full data, some results should also be verified with more extensive testing in
future work with more time and resources. Some experiments can be quite time-
consuming as seen in Section 4.3 and Table 4.6, over an hour is used to train and
test MLPC on the larger datasets.

Another limitation is the dataset and the knowledge of what type of malicious
packages are present. There have not been conducted deeper analyses or verifica-
tion of the data other than it has been found in PyPi in the last four years. Initially,
the datasets the data was divided into were also made using a pseudo-random
function in Python with a given random state. As most results are based on these
actions, some bias could be introduced by poorly dividing the samples and making
them unbalanced regarding the composition of the samples. When picking what
ML models to include in the thesis, did we rely on what was commonly found
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in the literature and what was documented on the internet so it would be easy
to implement. The default options were also used for all models initially, which
could be unfair to some models that could have performed better with other para-
meters. We did however decide on prioritizing the easiest approach and favorite
the models which worked best "out-of-the-box"

Regarding the features, the version number was edited to easier fit the use of
ML models. The version number was summed up and kept as a number instead
of multiple digits which is normal. As other studies have looked into and tools are
available to combat typosquatting and dependency confusion, was that aspect not
prioritized.

5.3 Validity

Several aspects must be considered in terms of the validity of the thesis. One aspect
is how the project was conducted since it was implemented in code with Python
and the ML library SciKitLearn. We must acknowledge that mistakes could have
occurred. The documentation and guides for using the tools have been followed
but as known human error could still occur.

Another aspect of the validity of the results is the data used in the thesis.
Based on the magnitude of the data it has not been possible to go through and
verify what type of samples have been used, but as described in Section 3.2 does
it contain most malicious samples that have been located in the PyPi repository in
the later years. The number of malicious samples was also increased by using all
known malicious versions of the same samples, which could make the achieved
results biased toward some malware samples. As attack campaigns come in waves
is there also likely to believe that several of the samples present stem from such a
campaign and represents a part of the samples.

In regard to the experiments that have been conducted have the focus been on
taking a broader look at features and ML model performance on static indicators.
That means some of the experiments were only conducted on smaller datasets
which might reflect only the data found in the specific set and not the whole data
handled in the project or the real world.
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5.4 Conclusion

In conclusion, this thesis aimed to look into what static indicators and features are
commonly found in malicious Python packages, which are better for identifying
these packages, and what performance could be expected from common machine
learning models on this type of data. The motivation for conducting this project
was to learn more about supply chain security in the Python Package Reposit-
ory (PyPi) and contribute towards increasing the domain knowledge on how to
combat malicious packages. From the cooperation with ReversingLabs, we were
fortunate to have access to the static indicators and metadata of a larger dataset.
Which was a great opportunity to provide more knowledge on the topic and show
how well ML works together with this type of data.

We tried to answer these questions by conducting multiple experiments with
common machine learning models and the feature ranking algorithm Information-
Gain implemented from the Python library Scikitlearn. These experiments were
then tested on multiple subsets of a dataset consisting of 375,073 benign pack-
ages and 7,639 malicious ones. From the results of training and testing a selection
of model did we find that the Multi-Layer Perceptron (MLP) and Support Vector
Machine (SVM) performs best when minimal work was put into optimization.
MLP scored the highest when tested on the verification data, which were left out
during the project, and had an F1 score of 92% using all features trained on a
dataset where the number of malicious samples was increased with upsampling.
When MLP was trained using the same data but only the top 100 indicators res-
ulted in an F1 score of 91% and shows that over 400 indicators can be removed,
and the performance only decreases by 1%. Without modifying the balance of
the training data, the drop was only 1% which shows that a more balanced data-
set might improve the accuracy of the models but, more importantly is a diverse
and large training set. A brief experiment was also conducted, trying a few differ-
ent parameters for the three top-performing models, which resulted in a minimal
difference in results. However, this must be verified by more comprehensive ex-
perimentation.

Among the top indicators of malicious packages is the library for interacting
with the web "Requests" and "Setuptools" for bundling libraries are most common.
While the features about the package size, the number of indicators in a sample,
the number of Python files, and indicator4, which triggers on unusual amount of
string concatenations, are among the top-ranked features regarding how well they
can divide the samples into categories. These results also show that there are many
commonalities between both malicious and benign packages, but some features
are still better suited. There is, however still a need to identify combinations of
features that tend to indicate malicious activity over single indicators.

The thesis focused on the broader picture, and some of the experiments were
conducted on a subset of samples, which might introduce bias into the results.
The tools, models, and techniques are not too comprehensive so other alternat-
ives could be better suited. More research is needed to optimize the models to
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increase performance. It is also recommended to dive deeper into the samples,
especially the misclassified ones, and compare the attributes they have in com-
mon against those predicted correctly to see what the models miss and identify
how they could be improved. Our contribution has improved domain knowledge
in the field by showing what features were the highest ranked and proved more
useful in classification based on a larger dataset of Python packages. We have also
recommended two models that worked best out of the box for us during these
experiments on this data, which could point to others where to continue with
research into this topic. This information shows to some degree that static indic-
ators work well to classify malicious samples with relatively high F1 scores with
minimal effort and can be used as a supplement to discovering new threatening
packages in an increasingly growing industry.



Chapter 6

Future work

In this short chapter will some of the items that have been mentioned as future
work be presented. It will be discussed what could be done with the data before
some ideas for new experiments and methods are listed.

6.1 Data

One of the issues which have been pointed out in previous research is the lack of
data. This project has had access to quite a large dataset that spans multiple years
but could as always probably contain more. However, one thing that would have
been of high interest is a deeper analysis of what samples and types of malware
actually are found in the dataset. As it could be quite time-consuming to go deeper
into each of the samples, investigating and labeling all the data according to what
malware type and family it belongs to and its capabilities. It would have been
a great step for further increasing the knowledge about the dataset and would
facilitate more and different experiments. It would also contribute to verifying
whether how large part of the sample set belongs to attack campaigns or whether
most samples are unique.

6.2 Methodology and experiments

From what has been done in this thesis regarding experiments several things could
have been done in a different way and be extended upon. Especially when find-
ing the best indicators to use, instead of only using the information gain (IG)
algorithm, several different filters, wrappers, and embedded methods should be
tested and compared. Both to see what features are prioritized across the differ-
ent methods and to conduct further tests with the achieved results to find the best
features and scoring methods. Another experiment related to the features which
could be done much more extensively is finding the optimal number of features.
In the thesis, only one downsampled dataset was used in this experiment, but

65



66 Røe, S: Identifying Malicious Python Packages Using ML

with time and resources, it could be replicated to verify the results with other
compositions of samples.

One method that could be used to look closer at the indicators and how each
sample is classified is to utilize one of the tree algorithms. Even though they did
not perform that well in these experiments, they have the ability to let the users
easily follow the tree downwards to see what steps and decisions are taken and
make it possible to debug where it misclassifies individual samples. Even though it
might be demanding to follow large tree structures it that a possibility to get more
familiar with how the model "thinks" about the data and to better understand how
they could be improved in a more manual fashion.

The experiments conducted with machine learning (ML) models could have
been extended in terms of what models to include in the initial comparison but
also when it comes to optimizing each individually to see how high performance
could be achieved. A few options were tested for only three of the models, the
model implementations in Scikitlearn have more possibilities available for further
optimizing the models. This is essential to look closer at if the optimal performance
is wanted from the models, especially MLPC do probably have a huge potential in
testing different numbers for the hidden layers parameter.

Another experiment that could have been interesting to test on the dataset
is to use the unsupervised learning method clustering. To look further into what
features tend to belong the use of clustering could potentially be helpful by discov-
ering new patterns among the features and samples that have not been detected
with the current methods.
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Experiment 2: Model comparison

A.1 5-fold cross-validation
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fold accuracy f1-score TP FN FP TN
Dataset_1 0,00000 0,00000 0.0 0.0 0.0 0.0
RandomForestClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,79505 0,49057 2844.0 0.0 837.0 403.0
2.0 0,80480 0,50281 2883.0 0.0 797.0 403.0
3.0 0,98653 0,97761 2827.0 13.0 42.0 1201.0
4.0 0,95420 0,91859 2841.0 2.0 185.0 1055.0
5.0 0,94783 0,90427 2864.0 0.0 213.0 1006.0
0.7587694758445607
DecisionTreeClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,73433 0,23104 2836.0 8.0 1077.0 163.0
2.0 0,67818 0,63581 1622.0 1261.0 53.0 1147.0
3.0 0,59270 0,59029 1222.0 1618.0 45.0 1198.0
4.0 0,60568 0,59649 1283.0 1560.0 50.0 1190.0
5.0 0,72422 0,25823 2761.0 103.0 1023.0 196.0
0.4623740099575916
SVC 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97453 0,95720 2817.0 27.0 77.0 1163.0
2.0 0,97526 0,95671 2866.0 17.0 84.0 1116.0
3.0 0,97771 0,96251 2824.0 16.0 75.0 1168.0
4.0 0,97820 0,96342 2822.0 21.0 68.0 1172.0
5.0 0,97649 0,95997 2836.0 28.0 68.0 1151.0
0.9599602366063833
GaussianNB 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,57958 0,58953 1134.0 1710.0 7.0 1233.0
2.0 0,56356 0,57328 1104.0 1779.0 3.0 1197.0
3.0 0,58413 0,59241 1151.0 1689.0 9.0 1234.0
4.0 0,58780 0,59397 1169.0 1674.0 9.0 1231.0
5.0 0,58339 0,58804 1168.0 1696.0 5.0 1214.0
0.5874448351031785
KNeighborsClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,95593 0,92208 2839.0 5.0 175.0 1065.0
2.0 0,96081 0,92908 2875.0 8.0 152.0 1048.0
3.0 0,96890 0,94693 2823.0 17.0 110.0 1133.0
4.0 0,98335 0,97218 2827.0 16.0 52.0 1188.0
5.0 0,95347 0,91630 2853.0 11.0 179.0 1040.0
0.9373121593448188
GradientBoostingClassifie 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,72233 0,15875 2843.0 1.0 1133.0 107.0
2.0 0,76414 0,44560 2733.0 150.0 813.0 387.0
3.0 0,78619 0,73229 2016.0 824.0 49.0 1194.0
4.0 0,85329 0,80093 2279.0 564.0 35.0 1205.0
5.0 0,79500 0,49426 2837.0 27.0 810.0 409.0
0.526366126586417
MLPClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,98310 0,97252 2794.0 50.0 19.0 1221.0
2.0 0,98775 0,97918 2857.0 26.0 24.0 1176.0
3.0 0,98849 0,98124 2807.0 33.0 14.0 1229.0
4.0 0,99143 0,98601 2815.0 28.0 7.0 1233.0
5.0 0,98702 0,97860 2818.0 46.0 7.0 1212.0
0.979510238601707
fold accuracy f1-score TP FN FP TN
Dataset_2 0,00000 0,00000 0.0 0.0 0.0 0.0
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RandomForestClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,96898 0,96880 1194.0 61.0 15.0 1180.0
2.0 0,63429 0,46539 1164.0 0.0 896.0 390.0
3.0 0,68490 0,53772 1229.0 0.0 772.0 449.0
4.0 0,91592 0,90645 1246.0 0.0 206.0 998.0
5.0 0,96694 0,96807 1141.0 51.0 30.0 1228.0
0.7692881737796351
DecisionTreeClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,79551 0,80783 896.0 359.0 142.0 1053.0
2.0 0,53306 0,20334 1160.0 4.0 1140.0 146.0
3.0 0,79878 0,76580 1151.0 78.0 415.0 806.0
4.0 0,63918 0,72025 428.0 818.0 66.0 1138.0
5.0 0,74531 0,79269 633.0 559.0 65.0 1193.0
0.6579815247226706
SVC 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,96776 0,96726 1204.0 51.0 28.0 1167.0
2.0 0,97714 0,97824 1135.0 29.0 27.0 1259.0
3.0 0,97429 0,97442 1187.0 42.0 21.0 1200.0
4.0 0,97061 0,97032 1201.0 45.0 27.0 1177.0
5.0 0,96735 0,96873 1131.0 61.0 19.0 1239.0
0.9717946341256789
GaussianNB 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,72082 0,77603 581.0 674.0 10.0 1185.0
2.0 0,71102 0,78388 458.0 706.0 2.0 1284.0
3.0 0,69143 0,76226 482.0 747.0 9.0 1212.0
4.0 0,68694 0,75720 487.0 759.0 8.0 1196.0
5.0 0,70898 0,77823 486.0 706.0 7.0 1251.0
0.7715214151509158
KNeighborsClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,96816 0,96755 1209.0 46.0 32.0 1163.0
2.0 0,93102 0,93014 1156.0 8.0 161.0 1125.0
3.0 0,95469 0,95267 1222.0 7.0 104.0 1117.0
4.0 0,94367 0,94000 1231.0 15.0 123.0 1081.0
5.0 0,97184 0,97230 1170.0 22.0 47.0 1211.0
0.952531204552314
GradientBoostingClassifie 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,72204 0,77796 576.0 679.0 2.0 1193.0
2.0 0,61143 0,41451 1161.0 3.0 949.0 337.0
3.0 0,66163 0,50090 1205.0 24.0 805.0 416.0
4.0 0,64531 0,48181 1177.0 69.0 800.0 404.0
5.0 0,73469 0,79417 546.0 646.0 4.0 1254.0
0.5938724843043044
MLPClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97755 0,97726 1213.0 42.0 13.0 1182.0
2.0 0,98449 0,98532 1137.0 27.0 11.0 1275.0
3.0 0,98490 0,98485 1210.0 19.0 18.0 1203.0
4.0 0,98612 0,98594 1224.0 22.0 12.0 1192.0
5.0 0,97306 0,97426 1135.0 57.0 9.0 1249.0
0.981526525710216
fold accuracy f1-score TP FN FP TN
Dataset_3 0,00000 0,00000 0.0 0.0 0.0 0.0
RandomForestClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,95049 0,92025 1222.0 0.0 91.0 525.0
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2.0 0,78455 0,50868 1237.0 0.0 396.0 205.0
3.0 0,78280 0,53442 1209.0 0.0 399.0 229.0
4.0 0,97278 0,95994 1188.0 12.0 38.0 599.0
5.0 0,98530 0,97634 1253.0 5.0 22.0 557.0
0.7799250220710253
DecisionTreeClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,70294 0,50364 1015.0 207.0 339.0 277.0
2.0 0,71273 0,23256 1230.0 7.0 521.0 80.0
3.0 0,74905 0,43436 1199.0 10.0 451.0 177.0
4.0 0,46652 0,56367 224.0 976.0 4.0 633.0
5.0 0,85955 0,76964 1148.0 110.0 148.0 431.0
0.5007723865939028
SVC 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97987 0,96985 1206.0 16.0 21.0 595.0
2.0 0,97443 0,95973 1231.0 6.0 41.0 560.0
3.0 0,96843 0,95307 1190.0 19.0 39.0 589.0
4.0 0,97115 0,95709 1193.0 7.0 46.0 591.0
5.0 0,97550 0,96056 1244.0 14.0 31.0 548.0
0.9600582617571906
GaussianNB 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,55060 0,59825 397.0 825.0 1.0 615.0
2.0 0,57726 0,60498 466.0 771.0 6.0 595.0
3.0 0,55308 0,60126 397.0 812.0 9.0 619.0
4.0 0,54709 0,60343 372.0 828.0 4.0 633.0
5.0 0,52695 0,57044 391.0 867.0 2.0 577.0
0.5956731526159827
KNeighborsClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,96899 0,95230 1212.0 10.0 47.0 569.0
2.0 0,96899 0,95065 1232.0 5.0 52.0 549.0
3.0 0,96788 0,95136 1201.0 8.0 51.0 577.0
4.0 0,95101 0,92500 1192.0 8.0 82.0 555.0
5.0 0,97333 0,95690 1244.0 14.0 35.0 544.0
0.9472430006746702
GradientBoostingClassifie 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,76768 0,50058 1197.0 25.0 402.0 214.0
2.0 0,71219 0,22091 1234.0 3.0 526.0 75.0
3.0 0,70169 0,23249 1206.0 3.0 545.0 83.0
4.0 0,57267 0,61763 418.0 782.0 3.0 634.0
5.0 0,56287 0,59010 456.0 802.0 1.0 578.0
0.43234412417546747
MLPClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,98640 0,97998 1201.0 21.0 4.0 612.0
2.0 0,98368 0,97496 1224.0 13.0 17.0 584.0
3.0 0,98204 0,97408 1184.0 25.0 8.0 620.0
4.0 0,95700 0,93881 1152.0 48.0 31.0 606.0
5.0 0,97224 0,95732 1214.0 44.0 7.0 572.0
0.9650297072914347
fold accuracy f1-score TP FN FP TN
Dataset_4 0,00000 0,00000 0.0 0.0 0.0 0.0
RandomForestClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,99579 0,88111 60020.0 0.0 258.0 956.0
2.0 0,99562 0,88438 59941.0 0.0 268.0 1025.0
3.0 0,98602 0,44416 60036.0 2.0 854.0 342.0
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4.0 0,98553 0,45443 59979.0 6.0 880.0 369.0
5.0 0,99536 0,86840 60013.0 3.0 281.0 937.0
0.7064950169846604
DecisionTreeClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97080 0,13035 59312.0 708.0 1080.0 134.0
2.0 0,97269 0,10397 59465.0 476.0 1196.0 97.0
3.0 0,76823 0,09582 46290.0 13748.0 444.0 752.0
4.0 0,67745 0,08641 40549.0 19436.0 315.0 934.0
5.0 0,83973 0,14631 50579.0 9437.0 377.0 841.0
0.11257074501976769
SVC 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,99615 0,89263 60017.0 3.0 233.0 981.0
2.0 0,99546 0,87997 59937.0 4.0 274.0 1019.0
3.0 0,99572 0,87757 60033.0 5.0 257.0 939.0
4.0 0,99561 0,87943 59984.0 1.0 268.0 981.0
5.0 0,99551 0,87298 60014.0 2.0 273.0 945.0
0.8805141391005658
GaussianNB 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,37618 0,05949 21827.0 38193.0 6.0 1208.0
2.0 0,37448 0,06279 21648.0 38293.0 10.0 1283.0
3.0 0,36372 0,05757 21082.0 38956.0 6.0 1190.0
4.0 0,38083 0,06153 22077.0 37908.0 6.0 1243.0
5.0 0,36904 0,05904 21386.0 38630.0 6.0 1212.0
0.06008203440205334
KNeighborsClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,99641 0,90090 60014.0 6.0 214.0 1000.0
2.0 0,99562 0,88605 59924.0 17.0 251.0 1042.0
3.0 0,99610 0,89062 60022.0 16.0 223.0 973.0
4.0 0,99637 0,90406 59966.0 19.0 203.0 1046.0
5.0 0,99642 0,90210 60006.0 10.0 209.0 1009.0
0.8967472859415009
GradientBoostingClassifie 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,98411 0,39149 59948.0 72.0 901.0 313.0
2.0 0,98310 0,38430 59876.0 65.0 970.0 323.0
3.0 0,93801 0,28512 56681.0 3357.0 439.0 757.0
4.0 0,92137 0,27211 55519.0 4466.0 349.0 900.0
5.0 0,93326 0,28959 56314.0 3702.0 385.0 833.0
0.3245218083492121
MLPClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,99668 0,91636 59919.0 101.0 102.0 1112.0
2.0 0,99610 0,90902 59801.0 140.0 99.0 1194.0
3.0 0,99675 0,91120 60014.0 24.0 175.0 1021.0
4.0 0,99657 0,90987 59964.0 21.0 189.0 1060.0
5.0 0,99686 0,91767 59972.0 44.0 148.0 1070.0
0.9128236361951224
fold accuracy f1-score TP FN FP TN
Dataset_5 0,00000 0,00000 0.0 0.0 0.0 0.0
RandomForestClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,98496 0,89604 29864.0 35.0 453.0 2103.0
2.0 0,95067 0,51055 30019.0 1.0 1600.0 835.0
3.0 0,98706 0,91029 29903.0 62.0 358.0 2131.0
4.0 0,98681 0,90585 29967.0 2.0 426.0 2059.0
5.0 0,94981 0,49078 30040.0 1.0 1628.0 785.0
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0.7427018279710997
DecisionTreeClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,92534 0,39980 29225.0 674.0 1749.0 807.0
2.0 0,97258 0,80525 29725.0 295.0 595.0 1840.0
3.0 0,76320 0,07398 24462.0 5503.0 2182.0 307.0
4.0 0,94115 0,66503 28648.0 1321.0 589.0 1896.0
5.0 0,87031 0,08837 28041.0 2000.0 2209.0 204.0
0.40648743531112147
SVC 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,98955 0,93216 29787.0 112.0 227.0 2329.0
2.0 0,98937 0,92698 29920.0 100.0 245.0 2190.0
3.0 0,98971 0,93156 29847.0 118.0 216.0 2273.0
4.0 0,99032 0,93563 29858.0 111.0 203.0 2282.0
5.0 0,98845 0,91821 29974.0 67.0 308.0 2105.0
0.92890834306743
GaussianNB 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,43768 0,21775 11665.0 18234.0 16.0 2540.0
2.0 0,42086 0,20471 11240.0 18780.0 16.0 2419.0
3.0 0,43267 0,21215 11563.0 18402.0 10.0 2479.0
4.0 0,43175 0,21181 11534.0 18435.0 7.0 2478.0
5.0 0,43492 0,20724 11718.0 18323.0 16.0 2397.0
0.21073044022400503
KNeighborsClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,98721 0,91209 29887.0 12.0 403.0 2153.0
2.0 0,98749 0,91022 29991.0 29.0 377.0 2058.0
3.0 0,98955 0,92816 29925.0 40.0 299.0 2190.0
4.0 0,98746 0,91169 29946.0 23.0 384.0 2101.0
5.0 0,98835 0,91563 30025.0 16.0 362.0 2051.0
0.9155587741000015
GradientBoostingClassifie 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,94300 0,46870 29789.0 110.0 1740.0 816.0
2.0 0,94494 0,42998 29994.0 26.0 1761.0 674.0
3.0 0,88334 0,52052 26613.0 3352.0 434.0 2055.0
4.0 0,94503 0,45939 29912.0 57.0 1727.0 758.0
5.0 0,90923 0,28426 28923.0 1118.0 1828.0 585.0
0.43256948383192084
MLPClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,99242 0,95264 29735.0 164.0 82.0 2474.0
2.0 0,99150 0,94080 29986.0 34.0 242.0 2193.0
3.0 0,99106 0,94453 29695.0 270.0 20.0 2469.0
4.0 0,99267 0,95339 29782.0 187.0 51.0 2434.0
5.0 0,98857 0,91724 30027.0 14.0 357.0 2056.0
0.9417192289749629
fold accuracy f1-score TP FN FP TN
Dataset_6 0,00000 0,00000 0.0 0.0 0.0 0.0
RandomForestClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,96148 0,49661 60021.0 4.0 2449.0 1210.0
2.0 0,98913 0,89965 59890.0 117.0 575.0 3102.0
3.0 0,95724 0,43495 59913.0 2.0 2721.0 1048.0
4.0 0,96057 0,47192 60051.0 1.0 2510.0 1122.0
5.0 0,98957 0,90616 59814.0 114.0 550.0 3206.0
0.6418593880927375
DecisionTreeClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
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1.0 0,93692 0,36248 58525.0 1500.0 2517.0 1142.0
2.0 0,97469 0,77328 59323.0 684.0 928.0 2749.0
3.0 0,94691 0,19634 59890.0 25.0 3356.0 413.0
4.0 0,94755 0,15486 60038.0 14.0 3326.0 306.0
5.0 0,74328 0,27276 44269.0 15659.0 690.0 3066.0
0.351944124240413
SVC 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,99220 0,92881 59945.0 80.0 417.0 3242.0
2.0 0,99284 0,93515 59940.0 67.0 389.0 3288.0
3.0 0,99165 0,92536 59854.0 61.0 471.0 3298.0
4.0 0,99267 0,93252 59990.0 62.0 405.0 3227.0
5.0 0,99267 0,93535 59839.0 89.0 378.0 3378.0
0.9314389459137418
GaussianNB 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,38386 0,15646 20807.0 39218.0 20.0 3639.0
2.0 0,42147 0,16564 23184.0 36823.0 20.0 3657.0
3.0 0,38322 0,16015 20660.0 39255.0 24.0 3745.0
4.0 0,42529 0,16492 23470.0 36582.0 18.0 3614.0
5.0 0,38887 0,16092 21033.0 38895.0 24.0 3732.0
0.1616171586061061
KNeighborsClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,99125 0,91870 59980.0 45.0 512.0 3147.0
2.0 0,99085 0,91473 59974.0 33.0 550.0 3127.0
3.0 0,99058 0,91404 59894.0 21.0 579.0 3190.0
4.0 0,99132 0,91813 60030.0 22.0 531.0 3101.0
5.0 0,99089 0,91705 59898.0 30.0 550.0 3206.0
0.9165299134042932
GradientBoostingClassifie 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,95707 0,43254 59908.0 117.0 2617.0 1042.0
2.0 0,96008 0,69454 58252.0 1755.0 787.0 2890.0
3.0 0,94438 0,11627 59909.0 6.0 3536.0 233.0
4.0 0,94565 0,09184 60048.0 4.0 3457.0 175.0
5.0 0,92629 0,56721 55914.0 4014.0 680.0 3076.0
0.3804819603192523
MLPClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,99044 0,92273 59439.0 586.0 23.0 3636.0
2.0 0,99422 0,95134 59719.0 288.0 80.0 3597.0
3.0 0,99256 0,93359 59878.0 37.0 437.0 3332.0
4.0 0,99375 0,94250 60024.0 28.0 370.0 3262.0
5.0 0,99256 0,94015 59487.0 441.0 33.0 3723.0
0.938061938917856
fold accuracy f1-score TP FN FP TN
Dataset_7 0,00000 0,00000 0.0 0.0 0.0 0.0
RandomForestClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97411 0,90133 3670.0 0.0 111.0 507.0
2.0 0,98507 0,94693 3653.0 12.0 52.0 571.0
3.0 0,97341 0,89425 3691.0 2.0 112.0 482.0
4.0 0,97317 0,89342 3690.0 0.0 115.0 482.0
5.0 0,90203 0,48403 3670.0 0.0 420.0 197.0
0.8239926531419016
DecisionTreeClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,87570 0,41364 3567.0 103.0 430.0 188.0
2.0 0,73484 0,49668 2590.0 1075.0 62.0 561.0
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3.0 0,79496 0,55130 2868.0 825.0 54.0 540.0
4.0 0,86914 0,62018 3268.0 422.0 139.0 458.0
5.0 0,86214 0,10860 3660.0 10.0 581.0 36.0
0.4380792626229339
SVC 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,98274 0,93874 3647.0 23.0 51.0 567.0
2.0 0,98134 0,93421 3640.0 25.0 55.0 568.0
3.0 0,98041 0,92606 3677.0 16.0 68.0 526.0
4.0 0,98460 0,94291 3676.0 14.0 52.0 545.0
5.0 0,98530 0,94737 3657.0 13.0 50.0 567.0
0.9378567163290716
GaussianNB 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,48624 0,35903 1468.0 2202.0 1.0 617.0
2.0 0,47808 0,35727 1428.0 2237.0 1.0 622.0
3.0 0,48542 0,34965 1488.0 2205.0 1.0 593.0
4.0 0,49895 0,35534 1547.0 2143.0 5.0 592.0
5.0 0,49009 0,35932 1488.0 2182.0 4.0 613.0
0.35612167811874107
KNeighborsClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97808 0,91840 3665.0 5.0 89.0 529.0
2.0 0,97948 0,92542 3654.0 11.0 77.0 546.0
3.0 0,98437 0,94199 3676.0 17.0 50.0 544.0
4.0 0,98577 0,94728 3678.0 12.0 49.0 548.0
5.0 0,98064 0,92801 3669.0 1.0 82.0 535.0
0.9322218334170322
GradientBoostingClassifie 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,88969 0,41388 3648.0 22.0 451.0 167.0
2.0 0,82673 0,61201 2959.0 706.0 37.0 586.0
3.0 0,80453 0,56625 2902.0 791.0 47.0 547.0
4.0 0,86331 0,62242 3218.0 472.0 114.0 483.0
5.0 0,86121 0,06886 3670.0 0.0 595.0 22.0
0.4566843729660235
MLPClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,98787 0,95847 3636.0 34.0 18.0 600.0
2.0 0,98811 0,95975 3629.0 36.0 15.0 608.0
3.0 0,98227 0,93851 3631.0 62.0 14.0 580.0
4.0 0,98787 0,95667 3661.0 29.0 23.0 574.0
5.0 0,98880 0,95973 3667.0 3.0 45.0 572.0
0.9546246851422694
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fold accuracy f1-score TP FN FP TN
Dataset_1 0,00000 0,00000 0.0 0.0 0.0 0.0
RandomForestClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,95348 0,91556 1432.0 0.0 95.0 515.0
2.0 0,95103 0,91379 1412.0 0.0 100.0 530.0
3.0 0,93340 0,87857 1414.0 0.0 136.0 492.0
4.0 0,96278 0,92910 1468.0 2.0 74.0 498.0
5.0 0,98580 0,97609 1421.0 2.0 27.0 592.0
6.0 0,98776 0,98014 1400.0 17.0 8.0 617.0
7.0 0,94757 0,90815 1405.0 0.0 107.0 529.0
8.0 0,97697 0,95959 1436.0 2.0 45.0 558.0
9.0 0,97158 0,95076 1423.0 7.0 51.0 560.0
10.0 0,95737 0,92294 1433.0 0.0 87.0 521.0
0.9334706311824196 0,00000 0,00000 0.0 0.0 0.0 0.0
DecisionTreeClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,66161 0,62869 766.0 666.0 25.0 585.0
2.0 0,72674 0,23562 1398.0 14.0 544.0 86.0
3.0 0,69050 0,64811 828.0 586.0 46.0 582.0
4.0 0,63957 0,59956 755.0 715.0 21.0 551.0
5.0 0,71303 0,66893 864.0 559.0 27.0 592.0
6.0 0,67238 0,64129 775.0 642.0 27.0 598.0
7.0 0,67124 0,63710 781.0 624.0 47.0 589.0
8.0 0,67663 0,63536 806.0 632.0 28.0 575.0
9.0 0,66340 0,63282 762.0 668.0 19.0 592.0
10.0 0,70701 0,20690 1365.0 68.0 530.0 78.0
0.5534369233291011 0,00000 0,00000 0.0 0.0 0.0 0.0
SVC 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97698 0,96067 1421.0 11.0 36.0 574.0
2.0 0,96817 0,94694 1397.0 15.0 50.0 580.0
3.0 0,97502 0,95823 1406.0 8.0 43.0 585.0
4.0 0,97747 0,95863 1463.0 7.0 39.0 533.0
5.0 0,97551 0,95840 1416.0 7.0 43.0 576.0
6.0 0,97698 0,96151 1408.0 9.0 38.0 587.0
7.0 0,97991 0,96743 1391.0 14.0 27.0 609.0
8.0 0,97501 0,95667 1427.0 11.0 40.0 563.0
9.0 0,97403 0,95602 1412.0 18.0 35.0 576.0
10.0 0,98236 0,97000 1423.0 10.0 26.0 582.0
0.9594502475108833 0,00000 0,00000 0.0 0.0 0.0 0.0
GaussianNB 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,57542 0,58297 569.0 863.0 4.0 606.0
2.0 0,57786 0,59263 553.0 859.0 3.0 627.0
3.0 0,58521 0,59647 569.0 845.0 2.0 626.0
4.0 0,56562 0,56284 584.0 886.0 1.0 571.0
5.0 0,57640 0,58829 559.0 864.0 1.0 618.0
6.0 0,58766 0,59480 582.0 835.0 7.0 618.0
7.0 0,60510 0,60987 605.0 800.0 6.0 630.0
8.0 0,57374 0,57971 571.0 867.0 3.0 600.0
9.0 0,59040 0,59339 595.0 835.0 1.0 610.0
10.0 0,58746 0,58967 594.0 839.0 3.0 605.0
0.5890645643387316 0,00000 0,00000 0.0 0.0 0.0 0.0
KNeighborsClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97062 0,94872 1427.0 5.0 55.0 555.0
2.0 0,95103 0,91453 1407.0 5.0 95.0 535.0
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3.0 0,95593 0,92386 1406.0 8.0 82.0 546.0
4.0 0,98188 0,96693 1464.0 6.0 31.0 541.0
5.0 0,98139 0,96880 1414.0 9.0 29.0 590.0
6.0 0,97209 0,95285 1409.0 8.0 49.0 576.0
7.0 0,96570 0,94234 1399.0 6.0 64.0 572.0
8.0 0,97893 0,96334 1433.0 5.0 38.0 565.0
9.0 0,97893 0,96414 1420.0 10.0 33.0 578.0
10.0 0,95590 0,92077 1428.0 5.0 85.0 523.0
0.9466288067084102 0,00000 0,00000 0.0 0.0 0.0 0.0
GradientBoostingClassifie 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,74094 0,43179 1312.0 120.0 409.0 201.0
2.0 0,78844 0,48571 1406.0 6.0 426.0 204.0
3.0 0,75808 0,45714 1340.0 74.0 420.0 208.0
4.0 0,73506 0,67311 944.0 526.0 15.0 557.0
5.0 0,76641 0,72056 950.0 473.0 4.0 615.0
6.0 0,70813 0,67035 840.0 577.0 19.0 606.0
7.0 0,76629 0,46704 1355.0 50.0 427.0 209.0
8.0 0,69525 0,65521 828.0 610.0 12.0 591.0
9.0 0,80255 0,75015 1033.0 397.0 6.0 605.0
10.0 0,79569 0,50999 1407.0 26.0 391.0 217.0
0.582107205691319 0,00000 0,00000 0.0 0.0 0.0 0.0
MLPClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,98727 0,97876 1417.0 15.0 11.0 599.0
2.0 0,97698 0,96348 1375.0 37.0 10.0 620.0
3.0 0,98972 0,98332 1402.0 12.0 9.0 619.0
4.0 0,98629 0,97574 1451.0 19.0 9.0 563.0
5.0 0,99119 0,98558 1409.0 14.0 4.0 615.0
6.0 0,97258 0,95645 1371.0 46.0 10.0 615.0
7.0 0,99020 0,98447 1387.0 18.0 2.0 634.0
8.0 0,98383 0,97328 1407.0 31.0 2.0 601.0
9.0 0,98383 0,97354 1401.0 29.0 4.0 607.0
10.0 0,98236 0,97092 1404.0 29.0 7.0 601.0
0.9745535571121133 0,00000 0,00000 0.0 0.0 0.0 0.0
fold accuracy f1-score TP FN FP TN
Dataset_2 0,00000 0,00000 0.0 0.0 0.0 0.0
RandomForestClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97224 0,97199 601.0 29.0 5.0 590.0
2.0 0,96082 0,96053 593.0 32.0 16.0 584.0
3.0 0,64327 0,49363 575.0 0.0 437.0 213.0
4.0 0,91102 0,90644 588.0 1.0 108.0 528.0
5.0 0,92082 0,91499 606.0 0.0 97.0 522.0
6.0 0,92408 0,91629 623.0 0.0 93.0 509.0
7.0 0,96816 0,96837 589.0 29.0 10.0 597.0
8.0 0,91837 0,90859 628.0 0.0 100.0 497.0
9.0 0,96571 0,96749 558.0 35.0 7.0 625.0
10.0 0,97388 0,97472 576.0 23.0 9.0 617.0
0.8983040810215683 0,00000 0,00000 0.0 0.0 0.0 0.0
DecisionTreeClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,73878 0,77305 360.0 270.0 50.0 545.0
2.0 0,78531 0,80733 411.0 214.0 49.0 551.0
3.0 0,52163 0,18611 572.0 3.0 583.0 67.0
4.0 0,58694 0,43146 527.0 62.0 444.0 192.0
5.0 0,63184 0,47982 566.0 40.0 411.0 208.0
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6.0 0,58939 0,30236 613.0 10.0 493.0 109.0
7.0 0,70367 0,76566 269.0 349.0 14.0 593.0
8.0 0,76082 0,79439 366.0 262.0 31.0 566.0
9.0 0,72653 0,78233 288.0 305.0 30.0 602.0
10.0 0,66612 0,74389 222.0 377.0 32.0 594.0
0.6066382944878324 0,00000 0,00000 0.0 0.0 0.0 0.0
SVC 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,96571 0,96517 601.0 29.0 13.0 582.0
2.0 0,96082 0,96007 600.0 25.0 23.0 577.0
3.0 0,98204 0,98302 566.0 9.0 13.0 637.0
4.0 0,96245 0,96401 563.0 26.0 20.0 616.0
5.0 0,96816 0,96892 578.0 28.0 11.0 608.0
6.0 0,97796 0,97763 608.0 15.0 12.0 590.0
7.0 0,96327 0,96302 594.0 24.0 21.0 586.0
8.0 0,97224 0,97199 601.0 27.0 7.0 590.0
9.0 0,96653 0,96824 559.0 34.0 7.0 625.0
10.0 0,96816 0,96917 573.0 26.0 13.0 613.0
0.9691255300734698 0,00000 0,00000 0.0 0.0 0.0 0.0
GaussianNB 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,71673 0,77305 287.0 343.0 4.0 591.0
2.0 0,71673 0,77394 284.0 341.0 6.0 594.0
3.0 0,71755 0,78954 230.0 345.0 1.0 649.0
4.0 0,71265 0,78298 238.0 351.0 1.0 635.0
5.0 0,70041 0,77105 240.0 366.0 1.0 618.0
6.0 0,68408 0,75429 244.0 379.0 8.0 594.0
7.0 0,69878 0,76571 253.0 365.0 4.0 603.0
8.0 0,67347 0,74747 233.0 395.0 5.0 592.0
9.0 0,71265 0,78191 242.0 351.0 1.0 631.0
10.0 0,70041 0,77191 237.0 362.0 5.0 621.0
0.7711862675695047 0,00000 0,00000 0.0 0.0 0.0 0.0
KNeighborsClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,96980 0,96924 605.0 25.0 12.0 583.0
2.0 0,96898 0,96796 613.0 12.0 26.0 574.0
3.0 0,93224 0,93268 567.0 8.0 75.0 575.0
4.0 0,95673 0,95688 584.0 5.0 48.0 588.0
5.0 0,96571 0,96512 602.0 4.0 38.0 581.0
6.0 0,95020 0,94700 619.0 4.0 57.0 545.0
7.0 0,97143 0,97081 608.0 10.0 25.0 582.0
8.0 0,95184 0,94883 619.0 9.0 50.0 547.0
9.0 0,97224 0,97289 581.0 12.0 22.0 610.0
10.0 0,97388 0,97411 591.0 8.0 24.0 602.0
0.9605516932565692 0,00000 0,00000 0.0 0.0 0.0 0.0
GradientBoostingClassifie 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,74776 0,79303 324.0 306.0 3.0 592.0
2.0 0,67837 0,75220 233.0 392.0 2.0 598.0
3.0 0,52898 0,20414 574.0 1.0 576.0 74.0
4.0 0,63755 0,48131 575.0 14.0 430.0 206.0
5.0 0,65959 0,51228 589.0 17.0 400.0 219.0
6.0 0,67265 0,50555 619.0 4.0 397.0 205.0
7.0 0,67837 0,75406 227.0 391.0 3.0 604.0
8.0 0,86286 0,85159 575.0 53.0 115.0 482.0
9.0 0,72571 0,78894 261.0 332.0 4.0 628.0
10.0 0,67918 0,76080 207.0 392.0 1.0 625.0
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0.6403906832817295 0,00000 0,00000 0.0 0.0 0.0 0.0
MLPClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,98531 0,98502 615.0 15.0 3.0 592.0
2.0 0,93224 0,92960 594.0 31.0 52.0 548.0
3.0 0,98612 0,98695 565.0 10.0 7.0 643.0
4.0 0,97306 0,97463 558.0 31.0 2.0 634.0
5.0 0,94776 0,94847 572.0 34.0 30.0 589.0
6.0 0,98857 0,98831 619.0 4.0 10.0 592.0
7.0 0,93224 0,93112 581.0 37.0 46.0 561.0
8.0 0,98612 0,98582 617.0 11.0 6.0 591.0
9.0 0,97224 0,97377 560.0 33.0 1.0 631.0
10.0 0,96816 0,96887 579.0 20.0 19.0 607.0
0.9672580445142402 0,00000 0,00000 0.0 0.0 0.0 0.0
fold accuracy f1-score TP FN FP TN
Dataset_3 0,00000 0,00000 0.0 0.0 0.0 0.0
RandomForestClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,78020 0,52582 605.0 0.0 202.0 112.0
2.0 0,95212 0,92143 617.0 0.0 44.0 258.0
3.0 0,78455 0,51232 617.0 0.0 198.0 104.0
4.0 0,96844 0,95076 610.0 10.0 19.0 280.0
5.0 0,78020 0,50490 614.0 0.0 202.0 103.0
6.0 0,94342 0,91503 587.0 9.0 43.0 280.0
7.0 0,96409 0,94931 577.0 25.0 8.0 309.0
8.0 0,96732 0,95342 581.0 17.0 13.0 307.0
9.0 0,95643 0,92727 623.0 0.0 40.0 255.0
10.0 0,97821 0,96416 629.0 5.0 15.0 269.0
0.8124419424117321 0,00000 0,00000 0.0 0.0 0.0 0.0
DecisionTreeClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,73014 0,44643 571.0 34.0 214.0 100.0
2.0 0,70403 0,45161 535.0 82.0 190.0 112.0
3.0 0,71491 0,24713 614.0 3.0 259.0 43.0
4.0 0,60283 0,61376 264.0 356.0 9.0 290.0
5.0 0,68553 0,15249 604.0 10.0 279.0 26.0
6.0 0,45484 0,56245 96.0 500.0 1.0 322.0
7.0 0,58215 0,61600 227.0 375.0 9.0 308.0
8.0 0,45861 0,56134 103.0 495.0 2.0 318.0
9.0 0,78758 0,56570 596.0 27.0 168.0 127.0
10.0 0,52723 0,55894 209.0 425.0 9.0 275.0
0.4775848828162711 0,00000 0,00000 0.0 0.0 0.0 0.0
SVC 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97824 0,96815 595.0 10.0 10.0 304.0
2.0 0,97933 0,96817 611.0 6.0 13.0 289.0
3.0 0,97388 0,95904 614.0 3.0 21.0 281.0
4.0 0,97280 0,95712 615.0 5.0 20.0 279.0
5.0 0,97497 0,96186 606.0 8.0 15.0 290.0
6.0 0,96083 0,94322 584.0 12.0 24.0 299.0
7.0 0,97171 0,95793 597.0 5.0 21.0 296.0
8.0 0,97712 0,96629 596.0 2.0 19.0 301.0
9.0 0,97821 0,96552 618.0 5.0 15.0 280.0
10.0 0,97712 0,96270 626.0 8.0 13.0 271.0
0.961000283910544 0,00000 0,00000 0.0 0.0 0.0 0.0
GaussianNB 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,53428 0,59470 177.0 428.0 0.0 314.0
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2.0 0,56148 0,59900 215.0 402.0 1.0 301.0
3.0 0,59195 0,61220 248.0 369.0 6.0 296.0
4.0 0,53972 0,58570 197.0 423.0 0.0 299.0
5.0 0,54625 0,59078 201.0 413.0 4.0 301.0
6.0 0,56692 0,61804 199.0 397.0 1.0 322.0
7.0 0,55604 0,60694 196.0 406.0 2.0 315.0
8.0 0,54684 0,60456 184.0 414.0 2.0 318.0
9.0 0,53050 0,57704 193.0 430.0 1.0 294.0
10.0 0,54031 0,57287 213.0 421.0 1.0 283.0
0.5961832381601531 0,00000 0,00000 0.0 0.0 0.0 0.0
KNeighborsClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97280 0,95935 599.0 6.0 19.0 295.0
2.0 0,97497 0,96134 610.0 7.0 16.0 286.0
3.0 0,96844 0,94974 616.0 1.0 28.0 274.0
4.0 0,97715 0,96398 617.0 3.0 18.0 281.0
5.0 0,96844 0,95026 613.0 1.0 28.0 277.0
6.0 0,97171 0,95912 588.0 8.0 18.0 305.0
7.0 0,97062 0,95624 597.0 5.0 22.0 295.0
8.0 0,97168 0,95820 594.0 4.0 22.0 298.0
9.0 0,97603 0,96207 617.0 6.0 16.0 279.0
10.0 0,96950 0,94982 625.0 9.0 19.0 265.0
0.9570119350819237 0,00000 0,00000 0.0 0.0 0.0 0.0
GradientBoostingClassifie 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,75626 0,48624 589.0 16.0 208.0 106.0
2.0 0,77476 0,51064 604.0 13.0 194.0 108.0
3.0 0,70294 0,18507 615.0 2.0 271.0 31.0
4.0 0,62024 0,62912 274.0 346.0 3.0 296.0
5.0 0,70294 0,18991 614.0 0.0 273.0 32.0
6.0 0,57563 0,62282 207.0 389.0 1.0 322.0
7.0 0,58215 0,62055 221.0 381.0 3.0 314.0
8.0 0,57190 0,61955 205.0 393.0 0.0 320.0
9.0 0,80610 0,58796 613.0 10.0 168.0 127.0
10.0 0,60131 0,60645 270.0 364.0 2.0 282.0
0.5058327010833037 0,00000 0,00000 0.0 0.0 0.0 0.0
MLPClassifier 0,00000 0,00000 0.0 0.0 0.0 0.0
1.0 0,97606 0,96584 586.0 19.0 3.0 311.0
2.0 0,98041 0,97106 599.0 18.0 0.0 302.0
3.0 0,99021 0,98517 611.0 6.0 3.0 299.0
4.0 0,98694 0,98007 612.0 8.0 4.0 295.0
5.0 0,98368 0,97553 605.0 9.0 6.0 299.0
6.0 0,98041 0,97256 582.0 14.0 4.0 319.0
7.0 0,95321 0,93250 579.0 23.0 20.0 297.0
8.0 0,96623 0,95238 577.0 21.0 10.0 310.0
9.0 0,99020 0,98492 615.0 8.0 1.0 294.0
10.0 0,94118 0,90847 596.0 38.0 16.0 268.0
0.9628506411801212 0,00000 0,00000 0.0 0.0 0.0 0.0
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Experiment 5: model evaluation
results

B.1 All samples and features
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All
Accuracy F1-score True Negative False Positive False Negative True Positive
Dataset 1
SVC
0,99031 0,78956 74408 620 122 1392
KNeighborsClassifier
0,98550 0,70958 74076 952 158 1356
MLPClassifier
0,98846 0,76781 74199 829 54 1460

Dataset 2
SVC
0,97887 0,64313 73468 1560 57 1457
KNeighborsClassifier
0,97139 0,55775 72971 2057 133 1381
MLPClassifier
0,98187 0,67885 73687 1341 47 1467

Dataset 3
SVC
0,98784 0,74845 74226 802 129 1385
KNeighborsClassifier
0,96746 0,52234 72689 2339 152 1362
MLPClassifier
0,98234 0,68233 73738 1290 62 1452

Dataset 4
SVC
0,99573 0,87920 75025 3 324 1190
KNeighborsClassifier
0,99505 0,85926 75006 22 357 1157
MLPClassifier
0,99664 0,90954 74993 35 222 1292

Dataset 5
SVC
0,99462 0,86829 74772 256 156 1358
KNeighborsClassifier
0,99493 0,86574 74903 125 263 1251
MLPClassifier
0,99586 0,89908 74813 215 102 1412

Dataset 6
SVC
0,99616 0,90134 74905 123 171 1343
KNeighborsClassifier
0,99526 0,87303 74931 97 266 1248
MLPClassifier
0,99707 0,92402 74956 72 152 1362

Dataset 7
SVC
0,99211 0,81438 74613 415 189 1325
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KNeighborsClassifier
0,98994 0,76072 74548 480 290 1224
MLPClassifier
0,99423 0,85977 74745 283 159 1355
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B.2 All samples and top 100 features
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100 ALL
Accuracy F1-score True Negative False Positive False Negative True Positive
Dataset 1
SVC
0,98950 0,77159 74380 648 156 1358
KNeighborsClassifier
0,98031 0,63748 73710 1318 189 1325
MLPClassifier
0,98633 0,73506 74045 983 63 1451

Dataset 2
SVC
0,97792 0,62922 73418 1610 80 1434
KNeighborsClassifier
0,96112 0,47495 72220 2808 168 1346
MLPClassifier
0,98457 0,70512 73949 1079 102 1412

Dataset 3
SVC
0,98729 0,73823 74197 831 142 1372
KNeighborsClassifier
0,96397 0,49708 72421 2607 151 1363
MLPClassifier
0,98197 0,67712 73715 1313 67 1447

Dataset 4
SVC
0,99540 0,86875 75025 3 349 1165
KNeighborsClassifier
0,99467 0,84821 74994 34 374 1140
MLPClassifier
0,99637 0,90086 75001 27 251 1263

Dataset 5
SVC
0,99447 0,86117 74807 221 202 1312
KNeighborsClassifier
0,99382 0,83851 74841 187 286 1228
MLPClassifier
0,99541 0,88746 74807 221 130 1384

Dataset 6
SVC
0,99557 0,88567 74890 138 201 1313
KNeighborsClassifier
0,99450 0,85468 74883 145 276 1238
MLPClassifier
0,99658 0,91173 74927 101 161 1353

Dataset 7
SVC
0,99177 0,80325 74626 402 228 1286
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KNeighborsClassifier
0,98990 0,75745 74562 466 307 1207
MLPClassifier
0,99318 0,83439 74705 323 199 1315
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