
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Christian Simoes Isnes

Generating historical network logs
for cyber range
exercises

Master’s thesis in Information Security
Supervisor: Basel Katt
Co-supervisor: Muhammad Mudassar Yamin
June 2023

Christian Simoes Isnes

Generating historical network logs for
cyber range
exercises

Master’s thesis in Information Security
Supervisor: Basel Katt
Co-supervisor: Muhammad Mudassar Yamin
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Generating historical network logs for cyber range
exercises

Christian Simoes Isnes

CC-BY 2023/06/01

Abstract

Cyber attacks are increasingly more common, and studies show that threats from
Advanced Persistence Threats (APTs), are increasing exponentially. Training cy-
bersecurity professionals in realistic environments is crucial to be prepared for
handling a real incident. These training environments can go by the name Cy-
ber Range (CR); whose intention is to provide a safe and isolated environment
where cyber security personnel can exercise without risk of affecting any related
production systems.

A CR consists of an infrastructure of clients and servers emulating a business
or organization in a realistic manner. A part of making the scenario realistic is
to have realistic network logs for a blue team to analyze. The research contribu-
tions of this thesis include investigating methods and techniques for generating
historical network data, as this topic is highly lacking in current literature. This
thesis presents an approach to a generator for creating network logs for cyber ex-
ercises, with the capability of producing logs spanning over a long period of time,
generated in a significantly shorter time.

Following the Design Science Research (DSR) methodology, the thesis defines
the requirements for a network log generator and presents a developed artifact
that successfully generates logs with said functionality. The developed artifact util-
izes system clock manipulation and simulates user behavior using browser emu-
lation on the system to generate traffic, all while the generator captures all the
traffic on the network interface. The proposed artifact was tested in a closed en-
vironment with several other clients, with its results analyzed and compared to a
baseline of normally generated traffic. The artifact can successfully generate net-
work logs as PCAP files for cyber exercises with customizable start and stop times,
different work schedules for traffic distributions, and a speed ranging from 10 to
30 times faster than in real time.

iii

Sammendrag

Cyberangrep blir stadig mer vanlige, og studier viser at trusler fra Advanced Per-
sistance Threats (APT’er), øker eksponentielt. Trening av cybersikkerhetsprofes-
jonelle i realistiske miljøer er avgjørende for å være forberedt på å håndtere en
virkelig hendelse. Disse treningsmiljøene kan kalles Cyber Ranger (CR); hvor de-
res hensikt er å tilby et trygt og isolert miljø der cybersikkerhetspersonell kan øve
uten fare for å påvirke relaterte produksjonssystemer.

En CR består av en infrastruktur av klienter og servere som etterligner en
virksomhet eller organisasjon. En del av å gjøre scenariet realistisk er å ha real-
istiske nettverkslogger for cybersikkerts-personellet å analysere under øvelser i
Cyber Rangen. Forskningen i denne oppgaven omfatter metoder og teknikker
for å generere historiske nettverkslogger, da dette emnet ikke er omfattet i tid-
ligere publisert forskning. Denne prosjektet presenterer en løsning til generering
av nettverkslogger for cyberøvelser, med evnen til å produsere logger som spenner
over en lang periode, generert på betydelig kortere tid.

Ved å følge forskningsmetodikken Design Science Research (DSR), definerer
prosjektet kravene til en nettverkslogggenerator. Til slutt presenterer den en utvik-
let generator for nettverkslogger som genererer logger med nevnte funksjonalitet.
Det utviklede generatoren manipulerer systemklokken til å gå raskere enn normalt
og simulerer brukeratferd ved hjelp av nettleseremulering på systemet for å gener-
ere trafikk, alt mens generatoren fanger all trafikken på nettverksadapteren. Arti-
fakten er testet i et lukket nettverksmiljø med et gitt antall andre klienter på nettet,
og resultatene fra loggene er analysert og sammenliknet med normaltrafikk gener-
ert på normalt vis. Nettverkslogg-generatoren, som er den ferdige artifakten et-
ter dette prosjektet, kan generere nettverkslogger som PCAP-filer for cyberøvelser
med tilpassbare start- og stopptider, forskjellige arbeidsplaner for trafikkdistribus-
joner, og en hastighet på generering som varierer fra 10 til 30 ganger raskere enn
sanntid.

v

Preface

This master thesis concludes my Master of Science Degree in Information Security
at the Norwegian University of Science and Technology (NTNU) in Gjøvik, Nor-
way.

The Norwegian Cyber Range, NCR, provided the topic. The limited existing re-
search in the area of network traffic generators and being able to provide new
research on the topic was a large motivational factor for writing this thesis.

Acknowledgements

I want to formally thank my two supervisors from the NCR, Muhammad Mudassar
Yamin and Basel Katt, for their guidance during the writing of the project. Their
knowledge and advice provided during the project helped make this thesis pos-
sible. I would also like to thank the other lecturers and staff for their time and
knowledge shared throughout their courses over the past five years.

Additionally, I want to direct thank my family for their continuous support and
encouragement during my five years at NTNU, through my Bachelor’s degree in
IT Operations and Information Security and my final Master’s degree in Informa-
tion Security.

Lastly, I want to direct thanks to a dear friend Håvard for all the technical discus-
sions and for pulling me up from all the bottomless rabbit holes I kept digging.

Christian Simoes Isnes
Gjøvik, 01/06/2023

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xi
Tables . xiii
Code Listings . xv
Acronyms . xvii
1 Introduction . 1

1.1 Problem description . 1
1.2 Scope and limitations . 2
1.3 Research questions . 2
1.4 Contribution . 3
1.5 Outline . 3
1.6 Keywords . 3

2 Background and related work . 5
2.1 Background . 5
2.2 Related work and State-of-the-art . 6

2.2.1 Traffic generation techniques 6
2.2.2 Tools for generating benign network traffic 7
2.2.3 Tools suited for generating traffic with malicious character-

istics . 8
2.2.4 Automatically generating network flow data 9
2.2.5 Generating logs with timestamps set in the past, and faster

than real-time . 9
2.2.6 Discussion . 10

3 Methodology . 11
3.1 Research design in this thesis . 13

3.1.1 Activity 1: Awareness of problem 13
3.1.2 Activity 2: Suggestion . 13
3.1.3 Activity 3: Development . 14
3.1.4 Activity 4: Demonstration . 15
3.1.5 Activity 5: Evaluation . 15
3.1.6 Activity 6: Conclusion . 16

ix

x C.S.Isnes: Generating historical network logs

4 Requirements and technical design . 17
4.1 Requirements . 17
4.2 Technical Design . 19

4.2.1 Manager . 20
4.2.2 Agent . 21
4.2.3 Controlling time . 24
4.2.4 Capturing network traffic . 27
4.2.5 Design discussion . 28

5 Development and implementation . 31
5.1 Development process . 31

5.1.1 Documentation and version control 31
5.2 Implementation . 32

5.2.1 Interaction . 32
5.2.2 Control the time . 32
5.2.3 Generating timeline of events 34
5.2.4 Capture and process network data 38
5.2.5 Implementation discussion . 38

6 Deployment and demonstration . 39
6.1 Deployment requirements and limitations 39
6.2 Demonstration and testing . 40

6.2.1 Test environment . 41
6.2.2 Generating data . 42

7 Evaluation and discussion . 43
7.1 Evaluation . 43

7.1.1 Analysis platform . 43
7.1.2 Performance of the generator 44
7.1.3 Analysis of generated logs . 45
7.1.4 External expert evaluation . 49
7.1.5 Evaluation of functionality . 50
7.1.6 Evaluation of requirements . 51
7.1.7 Capture traffic in suitable format 53
7.1.8 Transform PCAP to flow data 54

7.2 Limitations . 54
7.3 Ethical considerations . 54

8 Conclusion and future work . 57
8.1 Conclusion . 57
8.2 Future work . 58

Bibliography . 59
A Attached Material . 63
B Generator . 65

Figures

3.1 DSR cycle . 12

4.1 Illustration of using different interface for manager communication 20
4.2 Class diagram for the client agent . 22
4.3 Client-action distribution on normal work day 22
4.4 OpenSSL posting issue and expiry date of www.vg.no (as of 25th

of march . 24
4.5 Registry keys for time offsets . 25
4.6 Accelerify configuration . 26
4.7 Configuration alternatives for TimestampMode [30] 28
4.8 Summarized architecture with functionality defined 29

5.1 Registry key to change sync behavior of NTP 32
5.2 Visualization of clock speeding and slowing down to real-time dur-

ing log generation of 3 events. 34
5.3 Bar chart visualizing frequency distribution of events for a normal

and 24/7 work schedule . 35
5.4 Logical flow diagram for making a Google search with Selenium. . 36

6.1 Event from WLMS initiating a shutdown due to expired license. . . 40
6.2 Topology of the network used for testing 41

7.1 Artica TA Add-on for Splunk . 44
7.2 Converting PCAP files to flow data using Suricata’s replay function. 44
7.3 Event distribution of Test 1 (24h BASELINE) 45
7.4 Event distribution of Test 3 (24h 20x) 46
7.5 Event distribution of Test 4 (7d 20x) 46
7.6 Event distribution of Test 5 (7d 20x 247-schedule) 47
7.7 Event types categorized by Suricata . 47
7.8 Destination port destination port of flow events from 7.7 48
7.9 Randomly selected TLS event viewed in Splunk 49

B.1 CLI input for starting Test5 . 65
B.2 Visible HTTP-Date header compromising the integrity of the logs . . 65
B.3 ARP background traffic in the captured file 66

xi

xii C.S.Isnes: Generating historical network logs

B.4 The start of the PCAP file for Test 6. 66
B.5 More background traffic illustration from Test 6. 66

Tables

3.1 Overview of tools and specifications used for artifact development . 15

4.1 Launch options for browsers to ignore certificate error 24

6.1 Test environment specifications . 41
6.2 Log generation test parameters . 42

7.1 Statistics of generated logs . 45
7.2 Comparison of a selection of traffic generators 50
7.3 Requirements and their fulfillment . 52

xiii

Code Listings

4.1 Example structure of config.json read by manager at launch 20
4.2 Example of the event to browse an URL 23
4.3 Basic usage of Selenium . 23
4.4 Reg. key for manipulating WINPCAP timestamp mode 27

5.1 Definition of accepted CLI arguments 32
5.2 Example of an event to browse a webpage 33
5.3 Event for browsing Google . 35
5.4 Disable certificate checks in Seleniums Chrome-options 37
5.5 Download a file using Powershell from URL 37
5.6 Malicious base event . 37
5.7 Snippets from the code for activating WINDUMP on the network

interface . 38

xv

Acronyms

API Application Programming Interface. 18, 26, 33, 40, 52

CIM Common Information Model. 44

CLI Command-Line Interface. 7, 9, 18, 32, 51

CR Cyber Range. 1–3, 5–7, 10, 17, 38

DDOS Distributed Denial-Of-Service. 7

DNS Domain Name System. 47

DS Design Science. 11

DSR Design Science Research. 11, 13, 16, 32, 39, 40, 57

ELK-stack Elasticsearch, Logstash and Kibana stack. 6, 29, 38

GUI Graphical User Interface. 7

JSON Javascript Object Notation. 20

KVM Kernel-based Virtual Machine. 40

NAT Network Address Translation. 40

NCR Norwegian Cyber Range. 1, 2, 5, 6, 9, 14, 17, 19, 21, 24, 27, 38, 54, 58

NIDS Network Intrusion Detection System. 7, 8

NPC Non-Player/Person Character. 7, 8

NTP Metwork Transfer Protocol. xi, 25, 26, 32, 33, 40

PCAP Packet-CAPture. 9, 27–29, 38, 41–44, 54, 57

PKI Public Key Infrastructure. 24, 54

xvii

xviii C.S.Isnes: Generating historical network logs

REST Representational State Transfer. 18, 51

RTT Return Trip Time. 58

SIEM Security Information and Event Management. 6, 27, 38, 54

SiLK System for Internet-Level Knowledge. 9

TLS Transport Layer Security. xi, 47, 49, 57

WLMS Windows Licence Monitoring Software. xi, 39, 40

XDR Extended detection and response. 6

Chapter 1

Introduction

In recent years, maintaining a high level of cyber security has become increasingly
critical as cyber attacks have become more frequent, sophisticated, and damaging.
Cyber attack statistics show that the cost of dealing with a cyber security incident
increases yearly, and the threats from advanced persistent threats (APTs) are in-
creasing exponentially [1]. A recent analysis by Google’s Threat Analysis Group
has shown that Russian government-backed attackers targeting users in NATO
countries increased over 300% in 2022 compared to 2020 [2]. Threat campaigns
from APTs have also shown a strong focus on critical infrastructure, utilities, and
public services, as well as the media and information space.

Training and education for cybersecurity professionals must evolve to keep
pace with the changing threat landscape of cyber incidents. Cyber Range (CR)s
or testbeds are created to increase security personnel’s skills.

The American National Institute of Standards and Technology (NIST) agency
has a set of definitions for a CR: [3]:

• A CR is an interactive, simulated platform representing a certain organiza-
tion’s networks, tools, and applications. The CR provides a well-defined safe
environment where cyber professionals can gain hands-on skills in a secure
environment for product development or security-posture testing.
• The CR consists of tools that may include hardware and software or a com-

bination of virtual and actual components. A well-made CR includes traffic
generation, which creates true-to-life network emulation and not static pre-
programmed events.

Emulating cyber attacks risk disrupting and damaging production systems if
not done in a closed environment. A CR ensures this isolation, and the exercise is
not at risk of affecting related systems.

1.1 Problem description

In the context of work at NCR for training industrial and high educational part-
ners, they came up with the problem of not having historical network logs for

1

2 C.S.Isnes: Generating historical network logs

the clients in a CR exercise. A crucial part of providing the personnel with the
best possible scenario is to have artificially generated network logs undistinguish-
able from real-world everyday web activities, as defined by NIST [3]. Scenarios
initiated at the CR need logs that imitate the scenario’s infrastructure and con-
tain network traffic over a set period. This timeframe may be historical, meaning
it contains events that have happened in the past before the exercise at a CR is
taking place.

Without a reliable system for generating these historical logs, a CR needs
to orchestrate the infrastructure for the exercise in advance and record logs for
the wanted events in real-time. If the scenario benefited from logs spanning two
months back, it would require the infrastructure to be initiated two months back
in time, running 24/7 and recording network logs with user events which will be
part of the exercise.

Setting up the infrastructure that extended time in advance to create the ne-
cessary logs is not always doable since a CR may have a short time to prepare
the environment for an exercise. The NCR have previously deployed nearly 400
machines in an environment in just 37 minutes [4]. Although to make an infra-
structure real, you need to have realistic-looking network traffic as well.

This research aims to investigate methods of generating historical network
traffic data and develop a network traffic generator that can generate traffic faster
than in real-time.

1.2 Scope and limitations

The research in this thesis will focus mainly on generating traffic for network logs.
For the generated network logs, only some types of traffic will be prioritized, such
as web browsing. It is likely that the system could easily be expanded to integrate
more protocols for more realism, for instance, sending emails to introduce SMTP
traffic and similar.

1.3 Research questions

This thesis is building upon the following research questions:

• Question 1: What is the current state of the art of historic log generation
and their limitation
Research into the state of the art of historical log generation will help the
audience become more aware of the problem and will be approached using
a literature study. Additionally, it will help provide a deeper understanding
of the limitations of the current generators, which will later be addressed.
• Question 2: How these limitations from question 1 be addressed

Limitations of the topic of historical log generation will be presented at the
end of the literature study. In order to address these, they will be approached
using the DSR methodology, which will finally present a working historical

Chapter 1: Introduction 3

network log generator artifact. The artifact will demonstrate a way of ad-
dressing these limitations.

1.4 Contribution

This thesis will contribute log generation for CRs and other cyber exercises. We
will investigate methods and techniques for generating historical network traffic
data and build a working system for generating logs that can be integrated into a
CR. A system for generating new, unique, and customizable network logs tailored
for a scenario will benefit training environments as they can provide a realistic
simulation for security personnel to train on.

1.5 Outline

This chapter introduced the problem, while the next chapter will provide back-
ground information and the current state of the art of network traffic generators.
Chapter three will introduce the method used to solve the discussed problem, and
chapters four to six will provide a solution to the problem using the discussed
methodology. The discussion will be provided in chapter seven, along with evalu-
ation, and the thesis will be concluded in chapter eight along with future work.

1.6 Keywords

Cyber Range, network log generator, historical network logs, cyber exercise

Chapter 2

Background and related work

2.1 Background

A CR can simulate an entire network and be customized in terms of infrastructure
to match a household, small company, or larger enterprise. The CR will imitate
a practicing company’s current live network or the infrastructure of a newly up-
graded network. This CR infrastructure can then be attacked, and personnel can
practice defensive mechanisms and forensics in a safe environment. Yamin et al.
state that an exercise in the cyber range involves different groups of people for
preparation and execution. The groups are divided into three parties: The white
team, the blue team, and the red team. The white team is responsible for creating
and administrating the exercise environment. The red team will try to exploit and
attack the exercise infrastructure, while the blue team will attempt to defend and
prevent the attacks.

Cloudshare has drawn comparisons between a cyber range and a shooting
range, as they both serve the same fundamental purpose [6]:

"Think about how a shooting range allows marksmen to test their skills
in a controlled environment. Every military worldwide has shooting
ranges to help impart and refine essential skills. Cyber ranges embrace
this same idea – test and hone skills when there’s no threat to worry
about." [6]

The Norwegian Cyber Range (NCR) project was established in 2018 at the
Norwegian University of Science and Technology in Gjøvik, Norway. The estab-
lishment of the NCR was a part of the Norwegian government’s new strategy for
strengthening societal cyber security, and it opened its physical facilities in August
2022 [7]. The NCR is under constant development. According to PhD candidate
and lecturer Grethe Østby, the NCR will be used internally at the university to
conduct exercises as parts of leadership classes and full-scale exercises and ana-
lyses for external organizations [8]. Unlike some other CR’s used for training, the
NCR also provides facilities to include all roles of an organization during a cyber

5

6 C.S.Isnes: Generating historical network logs

incident, not just IT professionals. The board of directors, PR department, CISO,
and other functions also handle an incident at the NCR [9]. This way, all involved
parties in an organization will be better prepared if a real cyber incident happens.

A security exercise for a CR can be divided into five phases: preparation, dry
run, execution, evaluation, and repetition. Exercises have been observed to last
from a couple of hours to a couple of days The preparation and dry run may,
however, take up to several months [4]. Generating months’ worth of historical
network data for the Security Information and Event Management (SIEM) solu-
tion would significantly increase the time in the preparation and dry-run phase.
The purpose of the dry run is to perform final preparations before the execu-
tion, including quality assessments of the infrastructure and testing vulnerabilit-
ies. Therefore, the dry run phase would be ideal for generating necessary logs for
the SIEM before the execution.

Uetz et al. value the log data as indispensable for detecting network breaches
in a timely manner. The blue team, which detects and prevents attacks on the
infrastructure, depends on logs to analyze, often done through a SIEM solution.
Exactly how these logs are parsed and analyzed varies between the form of SIEM
solution a CR has implemented. The purpose of a SIEM solution is to record, warn,
monitor, connect, anticipate, and display the security events and information on
network-connected systems [11]. As mentioned by Hasbi et al., a widely used
SIEM solution is the Elasticsearch, Logstash and Kibana stack (ELK-stack) and
Wazuh, with the latter being an open-source security platform for XDR and SIEM
protection. This particular SIEM solution is also integrated at the NCR in Norway.

2.2 Related work and State-of-the-art

In this chapter, we review relevant related work and the state of the art on gener-
ating network logs. The chapter will describe the currently available tools, their
capabilities, and other research related to the thesis field. To our knowledge, no
publicly available research on generating network logs with historical timestamps
exists. One of the reasons for this might be that performing cyber exercises and
running CRs are relatively new concepts, and publishing research papers often
take time. To some degree, this can make the state of the art not reflect the current
research when this thesis was written. However, This chapter will cover research
on different components of building a historical network traffic generator. Firstly
it will cover research in the area of traffic generation itself, which is a crucial
component of the thesis work, and proceed with other research and techniques,
specifically on time manipulation.

2.2.1 Traffic generation techniques

Generating the traffic can be divided into three main techniques, manual inter-
vention, automatic generation, and user automation.

Chapter 2: Background and related work 7

Automatic generation
As for automatic generation, tools can generate realistic traffic up to 10Gbps. They
can generate this enormous amount of data in a short amount of time at the cost
of computing power/resources. This type of traffic is often used to test Network
Intrusion Detection System (NIDS) for their throughput, and although the traffic
can be defined as realistic, it is not based on user behavior [12].

User automation
User automation can be achieved using Non-Player/Person Character (NPC)-like
systems to emulate users and perform actions on a computer. These NPCs can be
scripted to perform certain actions on a target system at specific times relevant to
the case at the CR [13].

Manual intervention
A difficult task in generating realistic traffic is that no genuine users interact with
the computer. Although not viable, a solution is manually interacting with the
computers in the CR over a set period to generate the desired traffic manually. The
client traffic would then need to be logged into network analysis software to store
the traffic for future use. This solution could generate the most realistic traffic of
its alternatives since it is generated by humans interacting with computers [12].

However, as previously mentioned, the historical logs may span several months.
Daily interaction with all the computers in the infrastructure would require signi-
ficant human resources and is not liable to generate logs over a long period.

2.2.2 Tools for generating benign network traffic

The Cisco TReX generator is Open-source and maintained by Cisco. It is flexible
and can be used in stateless and stateful configurations. TRex can scale up to
10-30M packets per second (Mpps) and generate traffic from L3 to L7 [14]. It
is Command-Line Interface (CLI)-based, can be interacted with through Python,
and has a community-built Graphical User Interface (GUI). This traffic generator
is advertised as realistic benign traffic but is not to be confused with benign user-
behaviour realistic traffic. Cisco TReX is primarily meant to test the throughput
of NIDS’, and the traffic would likely look like a Distributed Denial-Of-Service
(DDOS) attack due to the data’s amount, repeatability, and structure. The packets
generated by such a tool would easily be identified as artificially generated traffic
by a forensics investigator.

A paper released by researchers from the Institute for Infocomm Research in
Singapore introduced a web-traffic generator. Their work presents a web traffic
generator based on the Markov Model, Dirichlet distribution, and Hybrid distri-
bution and focuses specifically on generating realistically looking web-browsing
traffic. The background traffic used in CR must be comparable and not distin-
guishable from the random traffic generated from everyday web activities, which
is what their research was about. [15].

8 C.S.Isnes: Generating historical network logs

The GHOSTS Framework was created at the Carnegie Mellon University Soft-
ware Engineering Institute in Pennsylvania [13]. The tool aims to create high
realism in cyber warfare exercises by establishing and building realistic NPCs.
The framework was created for generating highly realistic observable network
traffic. Researchers can utilize the GHOSTS NPCs to simulate interactions such
as browsing websites, downloading files, sending and responding to emails, and
much more [13].

Uetz et al. did a study for adaptable log generation for testbeds. Their study
was motivated by the lack of variety in exercise datasets. The solution was based
on user emulation on a client and performing adversary emulation with one step
of each tactic in the ATT&CK Matrix for Enterprise from MITRE. Their research is
publicly available but does, however, only cover real-time emulation, which hap-
pens live during an exercise, and not with the purpose of creating logs of historical
context [10]. Their developed artifact SOCBED is open source and publicly avail-
able on GitHub and has support for generating benign and malicious network
events. SOCBED is different from the other presented works in this chapter as
it is a full tool for deploying the infrastructure using VirtualBox and Ansible for
generating the traffic on the clients.

2.2.3 Tools suited for generating traffic with malicious characterist-
ics

GENESIDS is a traffic generator specializing in creating packets for testing NIDS
solutions. To generate application layer payloads, it uses snort rules and reverses
these rules into actual network packets, and can only generate "malicious-looking"
traffic. It will parse a Snort file with a set of rules and generate traffic that imitates
malicious traffic matching the rules signature. For instance, a password cracker,
Brutus, uses its name in the HTTP header. A Snort-rule to detect this would look
for the ASCII pattern "Mozilla/3.0 (Compatible); Brutus/AET" in the HTTP head-
er/UA. If GENESIDS were to create traffic matching this, it would generate an
HTTP packet containing this pattern in the header but lacking other data related
to the password crack attempt [16]. This technique is well suited for testing and
IDS looking for a particular pattern in its signature. However, the packets gen-
erated this way will lack other data in an actual attack and therefore be easily
distinguishable.

Gjerstad presented a master thesis on "Generating labeled network datasets
of APT with the MITRE CALDERA framework". In a thesis section, the author util-
ized MITRE CALDERA to generate network logfiles containing malicious traffic,
imitating APT29 and emulating observed activity. CALDERA is a framework de-
veloped by MITRE that can perform adversary simulation and malicious network
attacks on-demand and emulate a particular adversary, for instance, APT29[17].
However, this software produces actual malicious traffic on the network using
CALDERA. At the same time, this thesis might only need the characteristics of
such traffic to supplement the bening traffic in the final logs.

Chapter 2: Background and related work 9

2.2.4 Automatically generating network flow data

It is not given that all network traffic generators or network capture programs
can generate flow data. Several of them are primarily generating Packet-CAPture
(PCAP) files. Flow data is a more compressed output of network traffic, providing
a communication summary. It is more beneficial for initial analysis and narrowing
down the investigation as it provides a better overview.

Tools are available to generate the network flows from PCAP. One of the meth-
ods is using the SiLK Security Suite from CERT to perform the conversion [18].
The System for Internet-Level Knowledge (SiLK) suite is a set of network ana-
lysis tools developed by the CERT NetSA (CERT Network Situational Awareness
Team), including tools for analyzing and converting flow data. According to the
documentation, a tool in the SiLK suite is called rwptoflow and will "Generates
SiLK Flow records from packet data". It is a CLI-based tool and should be relat-
ively easy to integrate into another tool to automate the creation of NetFlow logs
and the more detailed packet capture files.

Another tool is Suricata. Suricata is an open-source network analysis and
threat detection software with high performance that can capture raw network
data and create flow data based on packet captures1. Since the Norwegian Cyber
Range (NCR) already uses Suricata for generating flows in real-time on the clients
for the SIEM solution, it is likely that Suricata may be the correct tool to solve the
problems related to capturing traffic and converting it to flow data.

2.2.5 Generating logs with timestamps set in the past, and faster
than real-time

No relevant tools or documented techniques were found in generating traffic/logs
that are not happening at the present time. Research for this particular topic or
problem was conducted on academic and non-academic sources. Researching of
Academic sources was primarily conducted through Google Scholar. Search terms
used for research include, but are not limited to, the following:

• Historic network log generation
• Network log generation
• Artificial network logs
• Network logs in the past
• Cyber Range network traffic generator
• Cyber Range network log generation clock
• Cyber exercise historic network logs
• Cyber testbed historic log generation

Research on general traffic generation was found and explored, but their func-
tionality only supported traffic generation in real-time on a client. A solution with
functionality for setting a start and end date and generating network logs for that
particular timeframe was not found.

1https://suricata.io/

10 C.S.Isnes: Generating historical network logs

According to Vykopal et al., a number of CRs are funded and developed by gov-
ernment and military agencies. There are likely to be classified CRs with many
technical details regarded as sensitive, thus leading to the information and re-
search for these cyber ranges being non-public [19]. For this reason, solutions to
this problem may exist, although they are researched and developed in closed fa-
cilities with their details classified. Another possible reason, as mentioned in the
introduction to the chapter, is that publishing research papers may take some time
and thus are not publicly available at the time of writing this thesis.

2.2.6 Discussion

The tools discovered and covered in this chapter are not dedicated to generating
the data needed for a cyber range, which has to be automatically generated and
realistic with user-like behavior. The found research is mostly papers that solve a
specific problem and do not provide their code/algorithms/final product.

A crucial part of deploying a realistic CR infrastructure is to have realistic
traffic in the network, both traffic generated in real-time and historical events in
the logs. The limitation in the current state-of-the-art includes that none of the
explored works can natively generate any traffic in the past or future, only at the
present time. A limitation of a selection of tools is the lack of functionality for
capturing the network traffic. For instance, the GHOSTS framework can generate
traffic using user simulation but lacks functionality for capturing and saving this
network traffic. Some work present tools and techniques with functionality that,
in combination, can generate realistically-looking network traffic with both be-
nign and malicious events. However, all the explored works lack functionality for
generating traffic with customized timestamps which have happened in the past
and seems to be a common limitation on all explored generators.

Chapter 3

Methodology

The methodology used for this thesis is Design Science Research (DSR). The method
is a problem-solving paradigm seeking to create more knowledge by creating in-
novative artifacts. Several variations exist of DSR, and this project uses the model
presented by Hevner et al., a DSR model for information systems [20]. DSR is
used to develop and evaluate new designs, artifacts, and systems, focusing on
creating and integrating theoretical and practical knowledge to develop solutions
to real-world problems. This chapter will provide theoretical knowledge of the
DSR methodology and further explain how the DSR methodology is applied to
the thesis. According to Hevner et al., DSR can be fundamentally defined as the
following:

The fundamental principle of design science research is that know-
ledge and understandingof a design problem and its solution are ac-
quired in the building and application of an artifact [20].

A DSR methodology process consists of the following steps:

1. Awareness of problem: Definition of the research problem and justification
of the solution’s value.

2. Suggestion Objectives and requirements to generate a suggested solution
to the problem.

3. Development An artifact is created based on the requirements and object-
ives.

4. Demonstation: Using the created artifact to solve the problem practically.
5. Evaluation: Observing the results of the artifact in use and comparing it to

the objective.
6. Communication: Will conclude the process and communicate the results

and contributions.

Iivari describe the Design Science (DS) activity of building information techno-
logy artifacts as important for prescriptive research in Information Systems [21].
Hevner et al. have provided some rules for conducting DS research, where the
most important of these is that the research conducted with the DSR methodology

11

12 C.S.Isnes: Generating historical network logs

must produce an "artifact created to address a problem" [20]. The new developed
artifact should draw from existing theories, practices and knowledge in order to
provide a solution to a defined problem[20].

Figure 3.1: Design Science Research process model from [20]

Chapter 3: Methodology 13

The DSR process is followed chronologically, and each activity provides an out-
put used as input in the next stage, as illustrated in Figure 3.1. DSR is a cycle where
the result outputted from the development, evaluation, and conclusion phase is
used as knowledge for further development of the problem and improved solu-
tions. Development rarely results in a perfect result on the first iteration, and this
cycle ensures that the artifact will undergo several iterations for improvement.

3.1 Research design in this thesis

The DSR methodology can be tailored to a project based on various needs. Nuna-
maker Jr et al., Eekels et al. and Peffers et al. include an extra activity, demonstra-
tion, for formally producing results for the evaluation [22–24]. This additional
activity, demonstration, has been included in the methodology for this thesis as
it is considered an important step in understanding the results presented in the
evaluation phase.

3.1.1 Activity 1: Awareness of problem

This activity defines the research questions and objectives for the project and jus-
tifies the value of a solution that solves the defined problem. This activity requires
knowledge about the state of the art and the importance of providing a solution.

A part of becoming more aware of the problem is to study the current state of
the art and challenges in the domain of the topic. A literature study in section 2.2
describes the current state of the art for historical traffic generators. The literature
study was primarily conducted by reading papers found through Google Scholar
using search strings such as "traffic generator", "network log generation", "histor-
ical network logs", and more. Studying these papers showed the current state of
the art and how network logs are generated for cyber exercises.

Formal papers are often published a while after they are written and may not
present the current state of the art, which can provide a false view of the current
research state of the topic. No relevant resources were found to cover the specific
problem of generating historical network logs, which still indicates the lack of re-
search on the area. The papers provided context for generating network traffic for
other purposes. This activity provides knowledge about the problem and outputs
a proposal of the problem for the next activity. The activity of becoming aware of
the problem was covered in Chapter 1 Introduction, and Chapter 2, Background
and Related Work.

3.1.2 Activity 2: Suggestion

Within the Suggestion activity, we have split it into two subactivities; definition of
requirements and technical design. Design principles start with the deduction of
its requirements. Defining requirements does not directly create characteristics of
a potential artifact but provides a suggestion for a solution from a generic point

14 C.S.Isnes: Generating historical network logs

of view. Walls et al. explain that without adequate requirements defined, creating
an artifact is challenging. The main characteristics of the artifact to be created
originate from the task this thesis is based upon. Further requirements for building
the historical network generator result from meetings between the author and
the supervisors from the NCR. Technical requirements and related use cases are
summarized in Chapter 4.1, Requirements.

The technical design process is building upon the requirements created in the
previous subactivity, created in cooperation with the NCR. To design and develop
a historical network generator, it has to be partly adapted to the current infrastruc-
ture in the NCR, while still being generic enough to provide a contribution in the
general field of network traffic generation. The current design of the NCRs infra-
structure will impact how the generator is designed and developed. The technical
design will explore various ways of designing the artifact through continuous test-
ing and finally present a design for a proposed artifact as a tentative design. The
main activities in design and development are covered in Chapter 4.2, Technical
Design.

3.1.3 Activity 3: Development

The development activity creates an artifact based on the tentative design output-
ted as a suggestion from the last activity. It aims to address the problem and solve
the defined objective by providing a working artifact. The output from this activity
is an actual artifact that will be used for further demonstration and testing in the
next activity. The development activity is covered in Chapter 5, Development and
Implementation.

Choice of programming language

An artifact has to be developed using a programming language or a combination
of several languages. For developing the artifact for this thesis, Python is selected
as it is both requested by the NCR and a suitable language to solve the problem.
Python itself might not solve all the problems and require supplementation by
Bash or PowerShell scripts depending on the underlying operating system. Python
is suitable due to the wide range of available packages and the fact that its an
interpreted language meaning it executes instructions directly without being pre-
compiled into a binary file. This makes prototyping more effective and facilitates
easy code and debugging.

Technical specifications

Table 3.1 lists the technical specifications used for the final development. More
in-depth specifications are provided in Chapter 5.2, Implementation.

GIT is a vital source control tool to track changes and store the code externally.
Source control is kept by GIT integrated into VSCode and through GitKraken, a

Chapter 3: Methodology 15

Table 3.1: Overview of tools and specifications used for artifact development

Environment Software Version

Programming Language Python v3.10.2
IDE/Code Editor Visual Studio Code v1.77
Git GUI GitKraken v9.2.0
Browser Chrome 112.0
Client/dev platform Windows 10

GUI for administering GIT repositories. This thesis case is located in a private
repository on GitHub.

Technological scalability

One of the requirements mentioned in Chapter 4.1 is the requirement for the
artifact to be developed so that it can be expanded on and scaled in the future.
To support this, the development will focus on using classes and modules with
a structure such that new modules can be added in the future and seamlessly
integrated into the already-designed base system.

3.1.4 Activity 4: Demonstration

Demonstrating the artifact is done to see if the artifact solves one or more instances
of the problem. The demonstration can be part of a case study, experimentation,
simulation, or similar during later stages. The defined problem does not have to be
perfectly solved since DSR is a cycle that facilitates future artifact improvements.

The artifact in this project is the historical network generator. The generator
should be tested inside an infrastructure to measure performance and reliabil-
ity. Furthermore, the generated logs should be compared to a baseline of normal
traffic in order to measure how well the artifact works.

3.1.5 Activity 5: Evaluation

Evaluation will use the results from the demonstration to determine the work’s
strengths and weaknesses. The results from the demonstration will be observed
and measured as to how well the artifact provides a solution to the problem. The
primary metric to be evaluated for the artifact in this project is how the gener-
ated logs are differentiated from normal logs for a forensics investigator and the
generator’s performance in terms of speed.

The evaluation will include a direct comparison of functionality between the
proposed artifact and a selection of other generators reviewed in Section 2.2,
Related works, and State-of-the-art. A selection of the logs is handed to an external
analyst for a non-biased evaluation of the generated traffic. This will contribute
to the depth of analysis of the generated network traffic.

16 C.S.Isnes: Generating historical network logs

Additionally, we will evaluate to what degree the technique used to generate
the logs fulfills the requirement of generating logs faster than in real time and in
a historical timeframe. The evaluation of the artifact will be presented in Chapter
7, Evaluation and Discussion.

3.1.6 Activity 6: Conclusion

The final activity in DSR, conclusion, will communicate the original problem and
its importance. It will conclude the process and results, and describe how the
project contributes to other researchers and relevant audiences. This step also
includes publishing the process and results publicly available for contributing to
further research in the area and finally concludes the thesis.

Chapter 4

Requirements and technical
design

4.1 Requirements

This chapter discusses the requirements for building a historical log generator.
The requirements are a product of discussions in meetings with the supervisors
from NCR, as they have insight into what specific requirements the artifact should
be able to meet to work in a cyber exercise/CR.

The general requirements from the meetings are as follows:

• customizable benign traffic
• customizable and simple malicious events
• remote starting of traffic generation on client
• CLI-interface on the client itself to start generator
• traffic from Windows and/or Linux
• configurable timeframe for logs
• realistic distribution of benign traffic
• custom distribution of malicious traffic
• easy to expand with more features
• capture traffic in suitable format
• process captured data to flow data

Most network events will be from benign traffic caused by emulated users
using the clients daily. Investigators will analyze the network events generated
during an exercise. Therefore, it is important that they are not standing out from
other traffic and provide human-like behavior. The benign traffic must also be
customizable regarding what websites should be visited or similar, as this can
vary between the scenarios.

The malicious network traffic should present some simple activities. In the case
of logs generated from Windows clients, an action could mimic an action from

17

18 C.S.Isnes: Generating historical network logs

MIMIKATZ 1: It is a tool commonly used by threat actors to extract information
from a system. A specific event to be generated is exfiltrating a file and sending it
from a client in the network using PowerShell to a server allegedly belonging to
a threat actor.

Since the log generation is to be integrated and automated with the setup of
the cyber range infrastructure, it has to support communication with other clients.
Providing a REST interface for configuration is desired as it is a standardized
way of network communication. These REST routes are for the clients generating
traffic and will be used to set the parameters for the log generator. The REST
interface has to support and accept configuration alternatives as:

• Start time of logs
• End time of logs
• Schedule (generate 24/7 or 8-16)
• Generator speed

The traffic generator needs functionality for starting it directly on the clients.
The possibility of starting the generator on the client also opens up the possibil-
ity of using different methods for starting the generator, such as through launch
scripts on the client, in addition to manually starting on a client if needed. The CLI
interface should support the same arguments as the interface for remote starting.

The traffic generated needs to be from Windows or Linux clients. Since Win-
dows is most used in enterprises, it is prioritized. Large portions of the code can
be reused cross-platform, with some OS-specific APIs and compatibility customiz-
ation.

The network activity has to be generated within a certain timespan with a set
start and end date. The start date might be one month ago, and the end date is the
day the exercise begins. This timeframe has to be customizable for each scenario
and support historical dates.

The distribution of benign traffic may differ for each scenario as it depends
on what kind of business is attending the exercise. In the case of a hospital or
other business operating 24/7, there might be more activity during nighttime.
Other businesses operating on a normal work schedule would have significantly
less traffic during the night. This kind of traffic distribution has to be supported
and can be achieved through distribution templates (one for 24/7 and one for a
normal work schedule)

In certain cases, the timeframe for activity from threat actors can be linked
to their 8-16 work schedule in their respective time zone. For instance, malicious
traffic from APT28, named Tsar Team by Mandiant and located in Russia, may
perform most of their action-on-target activities between the 8 and 16 in Moscow,
or purposedly during the night local time 2. Allowing custom time zones for mali-
cious activity may provide more realism and contribute to threat-actor attribution
if that is a part of the exercise.

1https://github.com/gentilkiwi/mimikatz
2https://www.mandiant.com/resources/insights/apt-groups

Chapter 4: Requirements and technical design 19

Designing the artifact so that it is easy to expand with more features is one of
the more important requirements. This ensures that future development on the
artifact doesn’t require significant restructuring and can be built using the same
structure.

Network data should be saved in a format suitable for further processing. The
traffic must be captured so that all data is kept and captured on-client to facilitate
log-exporting from the client to a SIEM solution. Lastly, the captured data has to
be converted to valid network flow data, if not already in such format.

4.2 Technical Design

The problem presented in the thesis can be solved in multiple ways. This thesis
will attempt to solve it by manipulating the clock of the clients and performing
user activities on the client through a script. Another possible technique not ex-
plored will be presented in section 8.2, Future work. The artifact’s design aims to
fulfill and solve the requirements presented in the previous section. The proposed
design will primarily achieve two things; provide clients with software which are
emulating users to generate true-to-life network traffic with randomness and also
a system to create network logs faster than real-time by manipulating the system
clock on the clients.

A cyber range consists of several clients making up an infrastructure, and
Yamin et al. states that the NCR has successfully deployed an infrastructure of
400 clients in the past[4]. It would therefore be beneficial to have a centralized
way of controlling the traffic generation of all the clients.

The traffic generator’s proposed architecture is split into two parts, a manager
and an agent, where the manager controls all agents. An agent is a separate Python
script on its own virtual server inside the infrastructure. A manager’s only task is
to distribute work to the agents.

Beau et al. deployed a real-time network traffic generation system at the NCR
using a manager and agent for generating traffic [12]. They encountered a chal-
lenge with traffic between the managers and clients, which was of significant
volume and showed up in the monitored network traffic, which the blue team
analyzed. In order to not cause traffic between the manager and agent to inter-
fere with the recorded network logs on the client, it is possible to utilize a network
interface. To communicate between the manager and clients, the manager and
client can be provided a separate subnet on a separate network interface, e.g., in-
terface 2. This way, network traffic captured on interface 1 will not contain events
between the manager and agents as it happens on a different network. Figure
4.1 shows how using two different interfaces, and thereby two different networks
can separate manager-client traffic from the traffic captured for generating the
network logs.

20 C.S.Isnes: Generating historical network logs

Figure 4.1: Illustration of using different interface for manager communication

4.2.1 Manager

The manager needs user input to be configured for that particular scenario. There
are numerous ways of passing configurations to a script, where one is to use
command-line inputs. Since the scripts are made using Python and will be running
directly on the system as Python, they can easily be configured using command-
line arguments when launching the script. For instance, as "python3 manager.py -s
01012022 -t 01022022". The downside to using this is the constraints of the com-
mand line prompt, which limits the number of characters. For systems running
Windows XP or newer, this limit is 8196 characters which might not be sufficient
considering the possible need to pass the IP of each client to the manager when
starting [26].

Using a configuration file read by the main script on startup is easier to main-
tain and more scalable. A JSON file is not limited and can thus provide more data
to the Python script and be directly transferred to Python objects.

Code listing 4.1: Example structure of config.json read by manager at launch

{
"start":string(dd/mm/yyyy),
"stop":string(dd/mm/yyyy),
"schedule":enum("normal","247")
"agents":[ip]

}

Chapter 4: Requirements and technical design 21

Listing 4.1 provides a scalable way of configuring the manager. It can be fur-
ther expanded to allow more specifications and handle an array of IPs representing
the clients with listening agents.

A manager can interact with clients in several ways: one of which is through
SSH. The newest builds of Windows 10 and Windows 11 include a pre-installed
SSH client based on OpenSSH 3. Using SSH, the manager would have to SSH
into each client with Administrator privileges and start the agent script through
commands.

Another way of remotely starting the agents is by providing a REST interface
to the agents and starting the agent script on the client through a lunch script from
the Hypervisor or schedule. A manager could then POST the start parameters to
the agent.

4.2.2 Agent

The agent is deployed to all clients from the manager. The agent software is a
Python script with four primary tasks, timeline generation, manipulation of the
system clock, and generating benign and malicious network events. The second-
ary tasks for the client are to capture network data and export it to the Wazuh
SIEM solution used in the NCR. Figure 4.2 shows a class representation of the
agent. The classes responsible for generating traffic are represented in orange, the
timeline and clock classes are in blue, and the main agent connecting everything
is illustrated in red.

Timeline generation

Generation of the timeline is happening in the Scheduler class, whose primary
purpose is to generate a timeline of events to execute by the agent.

A timeline contains events the agent will execute and is distributed in a real-
istic manner regarding regular work hours, as defined in the requirements. A visu-
alized model shown in Figure 4.3 shows a dynamic distribution of event frequency
throughout the day, with a peak of events around midday. Having a dynamic distri-
bution of events makes for a realistic traffic pattern with little to no traffic during
nighttime, increasing in the morning and decreasing in the afternoon.

Another requirement was to support various work hours for the clients, for
instance, simulate a hospital open 24/7. Since these types of workplaces also have
employees working at night, there was a need to generate a new timeline to reflect
this work pattern.

The timeline of events will be generated using randomization to add diversity
to the agent’s actions. There are several actions to choose from, each with a set
of options for an event. This event option is specific per action and is different
between action types. The example in Code Listing 4.2 shows an event for brows-
ing a website and two options.

3https://learn.microsoft.com/en-us/windows/terminal/tutorials/ssh

22 C.S.Isnes: Generating historical network logs

Figure 4.2: Class diagram for the client agent

Figure 4.3: Client-action distribution on normal work day

Chapter 4: Requirements and technical design 23

Code listing 4.2: Example of the event to browse an URL

{
"name": "Browse website",
"classification": "benign",
"clock": [],
"module": "browser",
"method": "browse_url",
"done" : false,
"options": [
[
"https://vg.no",
"https://helseboka.no"

]
]

}

Generating network traffic

The client’s systems will generate background traffic by doing automated oper-
ations such as NTP requests, updates checks, ARP traffic, etc. The network data
does, however, also need human-behaviour traffic to make it realistic. This net-
work traffic complements the background traffic created by the clients and is not
a replacement. As mentioned in Chapter 4.1 about requirements, the modules for
generating traffic need to support various options to be customized for different
scenarios at the CR.

It is possible to download a website through Python. However, downloading a
single HTML file does not provide realistic network traffic. To simulate a real user
browsing the internet, Selenium may be implemented through Python. Selenium
is an open-source project aiming at browser automation and can be integrated
with several browsers such as Chrome, Firefox, Edge, and more.

Code listing 4.3: Basic usage of Selenium

from selenium import webdriver
from webdriver_manager.chrome import ChromeDriverManager

Create driver for Chrome (can be created for Firefox or other if desired)
driver = webdriver.Chrome(service=Service(

ChromeDriverManager().install()), options=options)

Browse to Google
driver.get("https://www.google.no")

Incorrect system time can introduce errors related to website certificates upon
request. Since this artifact will likely encounter related issues, it must be dealt
with. Websites’ HTTPS certificates are set with an issue and expiry date. If the
client browsing the web server has a system time prior to the issue time or after
the expiry time, the browser will throw a ERR_CERT_DATE_INVALID error and
consider the requested site to be insecure.

As seen in Figure 4.4, the news agency vg.no has a certificate that browsers
and other clients will invalidate if the time is before January 26th or after April

24 C.S.Isnes: Generating historical network logs

26th.

Figure 4.4: OpenSSL posting issue and expiry date of www.vg.no (as of 25th of
march

.

Handling errors related to this and forcing the visiting of the website is differ-
ent between which webdriver Selenium is using. The various options of what flag
to launch the driver with are listed in Table 4.1. Passing these flags is merely a
workaround, not a solution, as the certificates are still invalid for the browser. The
NCR will implement a Public Key Infrastructure (PKI)-service for certificates in the
future, and this thesis will not consider how to browse with a valid certificate.

Table 4.1: Launch options for browsers to ignore certificate error

Webdriver Launch flag

Chrome –ignore-certificate-errors
Firefox accept_untrusted_certs
Internet Explorer acceptSslCerts

Supporting malicious events is also a requirement. After threat actors have
gained a foothold in infrastructure, they will try to accomplish lateral or horizontal
movement in a system. These actions often require new tools to be downloaded
onto the system. Since Browsers will verify downloaded files and have built-in se-
curity measures, it is ineffective at downloading malicious files. However, Power-
Shell has access to all parts of the host using the .NET framework and is a trusted
application that is almost always allowed to execute scripts with impunity [27].

Implementing PowerShell events to upload/download files is, therefore, suit-
able to match malicious traffic in the generator. PowerShell supports web requests
using the Invoke-Webrequest method. Using Subprocesses in Python, we are able
to run PowerShell commands on the system directly from the main Python script.

4.2.3 Controlling time

Controlling time correctly is necessary for two reasons. First, generating logs faster
than in real-time is required for the artifact to solve the projects defined problbem
and serve its purpose in a cyber range. Secondly, it has to be able to generate logs
with timestamps set in the past and not the current date and time. The follow-
ing subsections present various ways of controlling the system’s time, which was
explored and tested, and which one was more suited for implementation.

Chapter 4: Requirements and technical design 25

Time-shifting using NTP

The Metwork Transfer Protocol (NTP) handles clock synchronization between
computer systems. Therefore, shifting the systems’ clocks back in time is suitable
for generating logs with correct timestamps.

By default, Windows systems only allow NTP-sync offsets of up to 48 hours
for systems running anything newer than Windows Server 2008 4. For generat-
ing logs months back in time; this may not be sufficient. This can be bypassed
by changing two registry keys related to the Windows Time Service named Max-
PosPhaseCorrection and MaxNegPhaseCorrection, which allows for overriding this
48-hour limit.

Figure 4.5: The two time-offset limit keys in the registry

By changing these values to 0xFFFFFFFF, the time can be pulled from the NTP-
server no matter what the offset compared to the Windows Systems time is.

During testing of time-shifting using NTP for Windows Clients, after five to
ten synchronizations of the clock through NTP, Windows failed to adjust the time
anymore and reported an error that the time offset from the system clock was too
large. This error was reported even though all time offsets were removed through
the registry keys in Figure 4.5, and it worked only seconds ago. It is uncertain
if the error presented by the Windows Time service was a bug or intended. This
behavior, in combination with Windows not supporting NTP Broadcast packets,
rendered this solution not optimal for implementation.

Time skipping

The timeframe of the logs to be generated is significantly larger than the time
available for generating them. To solve this, the log generator can skip through
time between actions on the clients. Instead of waiting for an activity to happen on
a client, it will skip the system clock to the following action and instantly execute
them one after the other. Logically it can be presented as "set time to 8:30, browse
www.vg.no, set time to 9:30, search on www.google.com, set time to 10:40, search
on www.google.com"

This can be achieved in two ways, by controlling the time of the system itself
or the time of a specific application. System time can be controlled by utilizing
system calls in both Linux and Windows. Controlling the time of a particular ap-
plication can be used with the library faketime/libfaketime, which allows a user
to make the underlying system report a fake time to your application [28]. The
library is attached to the program’s in-memory image through the library loader

4https://learn.microsoft.com/en-US/troubleshoot/windows-server/identity/configure-
w32ime-against-huge-time-offset

26 C.S.Isnes: Generating historical network logs

and intercepts and handles the system calls related to the system time. This pro-
gram is available for Linux applications as a Debian package 5. No program or
library with similar functionality has been discovered for Windows.

A drawback of this technique is that it leads to a gap in the logs between
events on the client, where there may be several hours during the night with no
packets. This is not a realistic-looking scenario since clients automatically send
packets between themselves and externally, such as ARP requests, NTP time sync
with external servers, etc.

Manipulating clock speed

Controlling the speed of the clock provides the ability to traverse large timeframes
in a short amount of time.

Accelerify is an application that automates this process of speeding up time on
the computer6. The program was developed by Cylance Inc. in 2013, a software
firm later acquired by Blackberry in 2019. The program has a command line inter-
face that accepts two parameters, -i, which sets the interval of how often it should
skip time, and -a, which sets how many seconds it should skip on each iteration.
The program’s official description was "Accelerate the system clock to observe OS
behavior.". It was used, amongst other things, in sandboxes to observe malware
activity as the system time progressed quickly.

Figure 4.6: Accelerify test configuration

Figure 4.6 shows a setup for moving time by 30 seconds every 1 second. This
practically moves the system clock by 30 days in 24 hours/1 day. In the specific run
illustrated, the starting time was 10:32, and the program set to traverse time at 30
seconds every 1 second. The program ended after six intervals, and after running
for 6 seconds, the system’s time changed to 3 minutes and stopped at 10:35. The
technique used by the program is to some degree similar to time skipping, as de-
scribed above. However, it often skips small intervals instead of skipping intervals
between events. This way, there will be no significant gaps in the logs, and the
system will generate background traffic as usual.

Accelerify does not have an open-source codebase, but this functionality can
be recreated through a Shell/Bash or Python Script accessing the Win32 API to

5https://packages.debian.org/stable/faketime
6https://betanews.com/2013/05/07/accelerify-speeds-up-your-pc-clock/

Chapter 4: Requirements and technical design 27

control the system’s clock.

4.2.4 Capturing network traffic

The final network traffic should be prepared for importing into a SIEM solution
as the WAZUH framework, backed by an ELK stack for log visualization and pro-
cessing. The NCR already has Suricata installed on clients for capturing data, so
it was naturally tested if it would work with this artifact. The artifact requires
manipulating the system’s time during runtime, which Suricata failed to support
when capturing the traffic. When Suricata starts, it reads the system clock into
memory and keeps an internal clock inside the program to limit the number of
system calls to the clock service. If the system’s time changes when Suricata runs,
it won’t know of the change and will keep timestamping packets using its internal
clock as if nothing has happened. An attempt was made to alter Suricatas code-
base and build a new binary from a source that supports hardware timestamping
for each packet. Still, the extensive size and complexity of the codebase made this
not doable with the limited resources. Although Suricata supports real-time cap-
turing of packets, it also accepts offline processing using data from PCAPs 7. This
opens the possibility of using other software to capture the network traffic and
pass the PCAP to Suricata for processing. The offline mode can read from a PCAP
file, process the traffic, and export flow data, if captured, live.

A PCAP captured by WINDUMP8 with the modified timestamping engine may
be passed to Suricata to make sure events added to Eve.json are correctly timestamped
before being pushed to a SIEM solution for analysis. WINDUMP is the Windows
version of TCPDUMP9 and can watch, diagnose, and save network traffic to disk
[29]. WINDUMP utilizes WINPCAP10 as its capture engine and shares a similar
default behavior to Suricata when handling timestamping of packets. The library
is synced with the computer clock only at the beginning of the packet capture and
keeps an internal clock in the program using CPU ticks for tracking progression.
As a result, any changes to system time during runtime won’t be reflected in the
packets. WINPCAP supports different ways of timestamping, which can be modi-
fied in the registry key in Code Listing 4.4 [30]. The different allowed modes are
presented in Figure 4.7.

Code listing 4.4: Reg. key for manipulating WINPCAP timestamp mode

HKLM\System\CurrentControlSet\Services\NPF\TimestampMode

The registry key adds support for configuring the timestamp mode of packets
captured through WINPCAP. The key value suited to solve the problem is mode 2,
which equals KeQuerySystemTime. The behavior for timestamping packets using
this mode is to query the Windows system call KeQuerySystemTimePrecise for each

7https://suricata.readthedocs.io/en/suricata-6.0.0/command-line-options.html
8https://www.winpcap.org/windump/
9https://www.tcpdump.org/

10https://www.winpcap.org/default.htm

28 C.S.Isnes: Generating historical network logs

Figure 4.7: Configuration alternatives for TimestampMode [30]

packet and thus get the correct system time and attach it to each packet in the
PCAP.

Using WINDUMP for capturing the network data at the network interface level
as PCAP files and processing them through Suricatas offline-replay mode achieves
the goal of capturing network data with modified timestamps and processing to a
format suitable for flow analysis.

4.2.5 Design discussion

Figure 4.8 illustrates the proposed architecture. The architecture components are
designed based on the various options for each component discussed throughout
this chapter. The log generation agent, situated in the middle of the mentioned
figure, is responsible for all the client’s actions. The proposed design can be sum-
marised as the following:

• Timeline generation: Generating the timeline means creating a distribu-
tion of events throughout the day. The frequency of events every hour varies
based on the time of the day and activity level during working hours. The
events need to be selected randomly amongst a set of possible events and
have customizable options.
• Clock manipulation: The agent will manipulate the clock to generate logs

faster than in real-time and with historical timestamps. In order to generate
logs faster than in real-time, functionality similar to the Accelerify program
can be recreated in Python with access to the Windows API. The module
needs support for setting the clock to a specific time and adjusting the per-
ceived speed of the clock too much faster than in real-time to traverse large
timeframes quickly. The clock should move fast between the events in the
timeline and at normal speed during execution.
• Generating benign events: Generating benign events is important to gen-

erate realistic data. The agent should be equipped with Selenium for sim-
ulating web browsing, mimicking a user’s daily online activities. The gen-
erator’s code should be developed to facilitate easy implementation of new
data-generating modules, such as email.
• Generating malicious events: The agent should support generating events

with malicious characters using PowerShell. PowerShell can be used to both
upload and download files, and is often used by threat actors for this pur-

Chapter 4: Requirements and technical design 29

pose, both exfiltrating data and downloading tools to the system.
• Network capture: WINDUMP can capture the network data at the network

interface and use the manipulated system clock to timestamp the packet.
The PCAP logs can further be processed in Suricata using its offline replay
mode to generate structured flow data for indexing in, for instance, Splunk
or the ELK-stack.

The proposed design summarised above aims to cover the general require-
ments for the artifact defined in 4.1. Whether the requirements are successfully
fulfilled will be evaluated in Section 7.1.6

Figure 4.8: Summarized architecture with functionality defined

Chapter 5

Development and
implementation

5.1 Development process

The process model used for development was Prototyping. This model involves
creating a working design relatively quickly as proof of concept. A big advantage
of this model is that it is relatively fast and efficient at ensuring the artifact meets
the defined requirements. Since we have no reference point for other historical
network log generators, the prototyping model is great at testing various solutions
and figuring out which is better for further development.

Other models, such as waterfall, was considered, but it does not work well
when the project risk undergoing significant changes during the development
phase. Prototyping, on the hand, works excellently for projects like this, where
design decisions are made during the development as various techniques are
tested, and the vision of the final deliverable is not yet set.

Kanban boards were combined with the prototyping model to keep track of
progress. A kanban board is used to manage tasks and was created with the follow-
ing columns: "To do", "In development", "In testing", and "Done". Having a Kanban
board helps facilitate a structured process and easy overview of what stage any
functionality is in at any time.

Practically, the prototyping process and kanban boards were used concur-
rently. Since we had no reference point as to which proposed solution was more
suited for implementation due to limited research on the area, all artifact com-
ponents were individual prototypes. The proposed artifact implemented was the
product of these various prototypes, which originates from the ideas in the tech-
nical design.

5.1.1 Documentation and version control

Version control of the code was kept through a GitHub repository. Code was only
committed to the main branch when functioning without errors, while other in-

31

32 C.S.Isnes: Generating historical network logs

development changes were kept in a separate experimental branch. This ensures
that the main branch always contains working examples of the artifact and can
easily be reverted to if needed.

5.2 Implementation

Section 4.2 suggested an artifact-design which is used as an input for this next
DSR-activity which is development/implementation of the suggested artifact. The
implemented solution is developed using Python. Further details on implementing
the artifact in production are covered in Chapter 6.1, Deployment.

5.2.1 Interaction

The manager or a client can start the agent through the CLI. When started directly
on the client, it requires a set of arguments which are defined in Code Listing 5.1

Code listing 5.1: Definition of accepted CLI arguments

parser.add_argument(’--start’, type=int, required=True)
parser.add_argument(’--stop’, type=int, required=True)
parser.add_argument(’--schedule’, choices=[’normal’,’247’], required=True)
parser.add_argument(’--speed’, type=int, required=True)

Start and Stop define the timeframe of when to generate logs in the format
DDMMYYYY. It will generate traffic from 00:00 on the Start-date until the end of
the day on the Stop-date. Schedule support either "Normal" or "247" representing
the work schedule, further explained in Section 5.2.3. The Speed argument will
set the clock multiplier determining how fast the clock should move when not
performing an event, for instance, during the night or on the weekend. The current
speed argument implementation only accepts 10, 20, or 30.

5.2.2 Control the time

Prerequisite

NTP has to be disabled on the client’s initialization to ensure it won’t interfere
with the time manipulation. The interval for NTP sync in Windows varies between
Windows versions and regions, although it is around two hours, in addition to a
sync during system boot.

Figure 5.1: Registry key to change sync behavior of NTP

Chapter 5: Development and implementation 33

Registry keys can be interacted with through Powershell and thus disabled
as shown in Code listing 5.2. A similar function exists to enable NTP after the
program is finished by changing the Type parameters value to "NTP".

Code listing 5.2: Example of an event to browse a webpage

def disable_ntp(self):
"""
What: Disable the NTP sync service on Windows.
Purpose: Make sure client does not sync during run.

"""
try:
subprocess.run(r’C:\Windows\System32\Windll\v1.0\powershell.exe\
Set-ItemProperty HKLM:\SYSTEM\CurrentControlSet\services\W32Time\Parameters
-Name "Type" -Value "NoSync"’, shell=True)

except subprocess.CalledProcessError as e:
print(e.output)
raise ValueError("Error occured when disabling NTP")

else:
return True

Manipulating clock

The host systems clock is administered through the Windows API using the win32api
wrapper for Python. Taking inspiration from the Accelerify.exe binary mentioned
in Section 4.2.3, its functionality is replicated in Python with more functional-
ity and precision. Figure 4.2 shows the functionality in the Clock class. First and
foremost, it can set a completely new system time to whenever the log generation
is supposed to start. Further, a system named time-machine is implemented. The
functionality of the time machine is to run the system clock faster than in real-time
effectively.

Taking inspiration from JavaScripts built-in setInterval method [31], similar
functionality was replicated in Python. In order to not cause operations from
blocking the main thread in Python, it is implemented in a separate thread of
its own. The functionality of the original setInterval method is to call a function
at specified intervals. The loop is ended by canceling/terminating its thread. The
implemented code is taking inspiration from [32] in order to create a threaded
timer, with its full code found in /src/modules/clock.py

The time-machine module primarily supports arguments for how often the
time should be skipped (interval) and by how much (shift). The interval decides
how often to call the function changing the time of the system, called moveTime().
That particular function will, in turn, read the system’s current time, add a delta
time equal to the shift number, and write the clock back on the system. This func-
tionality will effectively move the time of the system forward by a tiny amount,
and when being called on a short interval as five to ten times per second, create
the perception that the time of the system is moving significantly faster than in
real-time. The time-machine module can be started and stopped at any time to
turn the clock back to running at average speed and back to fast speed.

34 C.S.Isnes: Generating historical network logs

Figure 5.2: Visualization of clock speeding and slowing down to real-time during
log generation of 3 events.

Figure 5.2 illustrates how the time machine will control the speed between
events from the timeline, which will be generated and covered in 5.2.3. The il-
lustrated timeline shows a clock-speed multiplication of 10 between the events.
This is just a placeholder and can be adjusted to facilitate the faster or slower
generation of the logs.

5.2.3 Generating timeline of events

Timeline generation is customizable in terms of work schedules. The timeline is
populated with events simulating a real user during the time they are at work. In a
normal work environment, it may be from 7-15 during the day, while for hospitals
and other facilities open 24/7/365, this schedule will contain more traffic during
the night. This is solved by an array data structure with 24 cells, each representing
an hour daily. The value of a certain index represents the number of events to be
generated at that particular hour. This data structure can be represented in the
following bar chart indicating the distribution of events throughout the day for
both a normal work schedule and a facility open during the night, though with
some decrease in activity.

In addition to generating traffic during the night for facilities with a 24/7
work schedule, it will also generate events for weekends with a 50% reduction in
frequency. For a normal work schedule, no events will be generated for weekends.
The frequency distribution is illustrated as bar charts in Figure 5.3, with each bar
representing the number of events for that particular hour during the day.

Chapter 5: Development and implementation 35

Figure 5.3: Bar chart visualizing frequency distribution of events for a normal
and 24/7 work schedule

.

Generating network traffic

The modules for generating network traffic are needed to provide true-to-life
activities emulating users on a network.

Benign: Web browsing with Selenium

Providing realistic network traffic is crucial, so several modular browsing tech-
niques have been created. The first event implemented is a simple event to browse
a specific webpage directly and close the browser afterward.

The second event is slightly more complex, which is to make a search on
Google. The event contains a set of options for what to search on Google. The
function implemented will open a Chrome instance, search for the specified query
and view the results. Once Google provides the results, the script will make a de-
cision to view the next page of results or stay on the first page. Afterward, it has
an 80% chance of clicking a random result and browsing that page. In 20% of
cases, it won’t find the desired result and close the browser. Between the set of
actions, random delays are added to introduce randomness in the browsing and
make the behavior seem more like a human than a script. This approach is logic-
ally visualized in Figure 5.4.

Code listing 5.3: Event for browsing Google

{
"name": "Search on google",
"time": "1675508400",
"module": "browser",
"type": "search_google",
"options": [
"how to make a sandwich",
"how to make a cake",
"how to make a pizza"

]
}

36 C.S.Isnes: Generating historical network logs

Figure 5.4: Logical flow diagram for making a Google search with Selenium.

Chapter 5: Development and implementation 37

Chrome’s webdriver used by Selenium supports launching with several argu-
ments that ignore various SSL certificate errors. The arguments used to enable
browsing through certificate errors are seen in Code Listing 5.4

Code listing 5.4: Disable certificate checks in Seleniums Chrome-options

options = webdriver.ChromeOptions()
options.add_argument("--ignore-certificate-errors")
options.add_argument("--disable-extensions")
options.add_argument("--ignore-ssl-errors")
options.add_argument("--ignore-certificate-errors-spki-list")

After the class responsible for browsing websites is initiated, the illustrated
options are added to the launch arguments.

Malicious: Make web requests using PowerShell

A threat actor with a foothold in a system can, in many cases, have access to the
local PowerShell framework. Specifically, two functions have been implemented to
emulate malicious traffic from a threat actor inside a client. The first functionality
is to download a specific file from a URL using PowerShell illustrated in Code
listing 5.5

The raw event for a malicious event is seen in Code Listing 5.6

Code listing 5.5: Download a file using Powershell from URL

try:
subprocess.run(f’C:\Windows\System32\powershell.exe Invoke-Webrequest "{url}"’,
shell=True)

except subprocess.CalledProcessError as e:
print(e.output)
raise ValueError("Error when downloading file")

else:
return True

Code listing 5.6: Malicious base event

{
"name": "Download file",
"classification": "malicious",
"clock": "",
"module": "powershell",
"method": "download_file",
"done" : false,
"options": [

[
"https://webhook.site/c926c08d-0882-478e-8170-06740db5a159/privesc.sh",
"https://webhook.site/c926c08d-0882-478e-8170-06740db5a159/winenum.sh"

]
]

}

The URLs available for this event are specifically to download files with mali-
cious names indicating post-exploitation frameworks or tools to elevate privileges.
The other event using Powershell is highly similar, but with the functionality of
POST a file from the client to a web server, also using PowerShell.

38 C.S.Isnes: Generating historical network logs

5.2.4 Capture and process network data

Cyber Range (CR)’s often have integrated SIEM solutions for log analysis, whereas
Norwegian Cyber Range (NCR) is currently running the WAZUH framework backed
by an ELK-stack. In order to capture all the data to and from the client-generating
traffic, the generator will utilize WINDUMP for listening to and capturing all data
passing through the network interface. Code Listing 5.7 shows snippets of the
commands for achieving starting packet capturing on the network interface. An
important prerequisite is to set the TimestampMode of the WinPcap library to "2"
to make it timestamp each packet using the actual system time. The implementa-
tion of WINDUMP for capturing data on the network interface will save the raw
data as a PCAP file in the project’s directory once the generator is finished with its
timeline.

Code listing 5.7: Snippets from the code for activating WINDUMP on the network
interface

#Set timestamping mode
subprocess.run(r’powershell.exe Set-ItemProperty

HKLM:\SYSTEM\CurrentControlSet\services\NPF
-Name "TimestampMode" -Value 2’, shell=True,
check=True, stderr=subprocess.PIPE)

Start capturing service
wdump_path = os.path.dirname(full_path) + ’\\windump.exe’
self.capture = subprocess.Popen([wdump_path, ’-i’,’1’,’-w’,’captured.pcap’],

stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

5.2.5 Implementation discussion

The final artifact created successfully generates network logs faster than in real-
time and within a customizable timeframe. The agent creates a timeline of events
to perform within the provided timeframe and proceeds with setting the system
time to the start date and running quickly until the first event in the timeline. Once
an event in the timeline is hit, the system clock returns to real-time speed and does
the action on the client, such as browsing a website. Once the action mimicking a
user is completed, the clock will proceed quickly until the next event. This cycle
goes until all events in the timeline are executed and the end of the last day has
been reached. Meanwhile, all network flows are captured on the interface and
saved as a PCAP file.

Automatic conversion from PCAP files to flow data using Suricata is not im-
plemented as a part of the artifact as it serves a different purpose than traffic
generation. Additionally, different Cyber Range (CR)s may want different format-
ting of their logs before importing in a SIEM solution.

Chapter 6

Deployment and demonstration

This chapter will cover limitations for deployment and prerequisites for the log
generator to work properly on the deployed system. The fourth activity of our
implemented DSR methodology is to demonstrate and test the artifact provided
by the development phase. This chapter will cover details regarding the testing
of the historical traffic generator. The results from the testing will be evaluated in
the next chapter.

6.1 Deployment requirements and limitations

The created artifact has some requirements, which also can be perceived as limit-
ations. The target system must meet the following conditions for the traffic gen-
erator to work properly.

• Windows operating system.
• WINDUMP requires WinPCAP to be installed.
• Administrator privileges
• No external clock synchronization

Windows is the operating system for which the artifact is developed and
tested. Testing was primarily performed on Windows 10 22H2 Pro. A few test
runs were also done on Windows 11 22H2 Pro, and no issues occurred. There
is no indication that the techniques utilized won’t work on other Windows ver-
sions either. The proposed solution for generating historical logs, and manipu-
lating the system clock, introduces some problems that only occur in Windows’s
Enterprise version. The problem encountered in testing the artifact was regarding
the License-handling of Enterprise-systems. The Enterprise edition of Windows
has a more strict Windows Licence Monitoring Software (WLMS), which will is-
sue a shutdown command to the system when the license period for Windows
Enterprise has expired.

The event logged as ID1074, System shutdown by user or process, occurred
shortly after setting the systems clock to the start date when attempting to gen-
erate logs and is seen in Figure 6.1. This action does not make the system clock

39

40 C.S.Isnes: Generating historical network logs

Figure 6.1: Event from WLMS initiating a shutdown due to expired license.

pass the original expiry date of the system. Still, a theory is that Windows is inter-
preting it as an attempt to circumvent its evaluation period by moving the clock
back in time and is therefore issuing a shutdown command.

WINDUMP, the Windows version of tcpdump, is responsible for capturing all
data on the network interface. In order to properly function, it relies on libraries
supplied by WinPcap, which has ceased development. Both programs are free un-
der the BSD license and function using the latest supplied version. WinPcap v4.1.3
and v3.9.5. WinPcap has to be installed on the system for WINDUMP to work. A
reboot is not required after installing WinPcap.

Adminsitrator privileges are required for accessing the Windows API calls
used for controlling the clock on the system. The script will check for these per-
missions on start and terminate if the condition is unmet.

External clock synchronization outside of NTP has to be disabled, specific-
ally synchronization from hypervisors to the guest operating system. The scripts
provided with this thesis disable NTP synchronizing before starting. This ensures
the system won’t issue a periodic time-synchronization request and will reset the
clock while the script generates the network logs. Sometimes, hypervisors syn-
chronize the clock with the guest operating system outside of using NTP. VMWare
can be configured with a periodic time synchronization which will synchronize the
guest operating systems clock with the host’s through VMware-tools [33]. Kernel-
based Virtual Machine (KVM) as a hypervisor also offers this functionality through
kvm-clock. Performing external time-synchronization while the script runs will
compromise the generated logs, thus the requirement to disable this type of ex-
ternal clock-synchronization. When the artifact was deployed on NTNU Skyhigh,
which uses KVM as its virtualization engine, the system clock on the guest oper-
ating was periodically synced to its host, even though NTP and Windows Periodic
Time synchronization were disabled. On VMWare hypervisors, this functionality
is disabled by default and does not interfere with the traffic generator.

6.2 Demonstration and testing

The fourth activity in the DSR methodology is to demonstrate the artifact provided
by activity four, the development phase. Figure 6.2 illustrates the topology used
for testing. The network comprises five guest Windows 10 clients on an internal
network with internet access using Network Address Translation (NAT) through

Chapter 6: Deployment and demonstration 41

the host.

6.2.1 Test environment

Figure 6.2: Topology of the network used for testing

The client generating said logs for testing has internet access and is in a net-
work with 4 other Windows Clients. The other clients on the network will provide
background traffic from broadcast packets and other client-to-client requests oc-
curring automatically in the background. All clients are virtual, running with 2
virtual cores and 4GB of memory. Specifications of the clients in the infrastruc-
ture are listed in Table 6.1.

Table 6.1: Test environment specifications

Category Product Version

Hypervisor VMWare Workstation 17 Pro
Operating System Windows 10 Pro 2H22
Software Python v3.11.3
Software WINPCAP v4.1.3
Software WinDump 3.9.5
Software Chrome v113.0
Guest HW 2 vCore and 4GB RAM

Apart from the client recording logs, the other four clients in the network
were idle during all test scenarios. WINDUMP which is used for capturing network
traffic, does by default limit the capture length of packets to reduce the size of the
PCAP files. This is handled by the snaplen flag when initiating the WINDUMP
capture process, which limits the daily PCAP size to about 120 MB. This value is

42 C.S.Isnes: Generating historical network logs

set to default for all test runs except for Test 3, which will run with snaplen set to
0 which will capture absolutely all data. This is sufficient for extracting the extra
data available for analysis and evaluation.

6.2.2 Generating data

Changing the clock speed changes the time it takes to generate the logs. When
the speed multiplier is 1x, the system runs in real-time, while at 10x, it runs at 10
times the normal speed between events. Results are generated in the mentioned
infrastructure using the parameters presented in Table 6.2. The results of the logs
generated are presented in Section 7.1.2

Table 6.2: Log generation test parameters

Nr: Start Stop Schedule Speed

1 03/01/2022 03/01/2022 Normal 1x
2 03/01/2022 03/01/2022 Normal 10x
3 03/01/2022 03/01/2022 Normal 20x
4 03/01/2022 09/01/2022 Normal 20x
5 03/01/2022 09/01/2022 247 20x
6 03/01/2022 03/01/2022 Normal 20x (full packets)

Based on a normal schedule, the timelines were generated with 86 user events
to perform per day on the weekdays and zero events during the weekends. Since
the historical network logs are only to be generated on one client in the test scen-
arios, the agent is started directly on the clients without remote activation. The
clients running on the 247 schedule, which generates some events during the
night and weekends, produce 143 events per day hours, regardless of the day of
the week.

Figure B.1 illustrate how the network traffic generator is started directly on
the client through the CLI. The primary python script agent.py is called with the
required flags –start, –stop, –schedule and –speed. Once called, the script will
initiate all required modules and ensure they’re correctly started before generating
traffic based on the timeline.

At the end of each log generation, a PCAP is saved by the generator containing
all the log data collected on the network interface in that period of time.

Chapter 7

Evaluation and discussion

This chapter evaluates the artifact’s results and discusses the limitations of the
current version.

7.1 Evaluation

The fifth activity in the DSR methodology is evaluating the artifact. The evaluation-
activity is utilizing the outputs from the demonstration and aims to assess how
well the artifact solved the problem and answered the research questions. The
primary problem and challenge in this project were to create a method to gener-
ate logs both faster than in real-time and also with timestamps set back in time.
Both of these objectives had to be achieved while still providing network logs with
a realistic structure replicating the traffic of a normal user. The artifact results are
also assessed in regard to the requirements defined in section 4.1, which are used
as guidelines for developing the historical network traffic generator.

In order to provide a baseline of what "normal" traffic would look like in
that particular infrastructure, normal logs were generated. The historical network
traffic generator was set to record the network traffic for 24hrs in the infrastruc-
ture, while the agent generated user events as normal. The speed was set to 1x,
meaning the clock was running at normal speed at the present time. This will help
with, amongst other things, determining changes in flow integrity and structure
of the logs generated historically compared to the logs captured in real-time. A
24hr network sample will provide a baseline for traffic during the daytime but
also during the night.

7.1.1 Analysis platform

The raw generated logs are files in a PCAP format that may grow gigabytes large
for longer timeframes and be challenging to analyze alone. In order to process and
evaluate the logs in a more structured manner, it is analyzed in Splunk. Splunk
makes it possible to search, analyze and visualize data in a structured manner. To

43

44 C.S.Isnes: Generating historical network logs

make data available for analysis in Splunk, it has to be in a format Splunk is able
to index.

Figure 7.1: Artica TA Add-on for Splunk

Splunk supports various add-ons, including one for Suricata named "Artica TA
Add-on", as shown in Figure 7.1. This add-on will provide Common Information
Model (CIM) compliant field extracts for services, including Suricata, which add
support for Suricata’s exported eve.json file. In order to generate flow data from
a PCAP file using Suricata, it was run using its offline replay mode 1. Figure 7.2
shows how the file 03-09.pcap was converted to flows and outputted to eve.json.
After the data was converted, it was imported to an index in Splunk using the
Artica schematic and made searchable.

Figure 7.2: Converting PCAP files to flow data using Suricata’s replay function.

7.1.2 Performance of the generator

Part of the research task was to generate valid network logs faster than in real
time. The proposed artifact solves this by running the clock speed significantly
faster than normal. The time to generate the logs is presented in Table 7.1, with
the Nr. column representing the respective set of parameters from Table 6.2.

From the point of development and configuration, there is no known limitation
on how high the speed multiplier can be set. Increasing the multiplier will likely
keep reducing the volume of recorded background traffic as it is captured over a
shorter time (real-time), and increase the flow duration for the packets captured.

1https://docs.suricata.io/en/latest/command-line-options.html

Chapter 7: Evaluation and discussion 45

Table 7.1: Statistics of generated logs

Nr: Total Packets Flow events Time to generate PCAP-size

1 1 769 007 22 764 24hr 0min 181MB
2 964 155 20 916 2hr 52min 97MB
3 1 213 491 20 504 1hr 27min 124MB
4 6 212 456 109 703 10hr 15min 923MB
5 9 171 135 199 749 11hr 37min 971MB
6 1 255 002 28 602 1hr 24min 1.4GB

7.1.3 Analysis of generated logs

Table 6.2 provide statistics for the time needed to generate logs for a set period
of time. The statistics show the provided artifact can generate network logs signi-
ficantly faster than in real-time.

Figure 7.3 and 7.4 show the event distribution through a day of captured
network. The volume of traffic for each hour results from the generated timeline
based on the schedule "normal" which is a curve relatively similar to the bell curve
to cause an increase in traffic in the morning and a decrease in the afternoon. Both
distributions show a relatively similar pattern, with the baseline traffic having 11%
more events than the logs generated at 20x speed.

Given that Test 3 is generating traffic in nearly 1/20th the time of the baseline
traffic, the variance in the number of events is acceptable. It could also result from
other external factors, such as unreliable background traffic from other clients in
the network during log generation.

Figure 7.3: Event distribution of Test 1 (24h BASELINE)

Figure 7.5 shows the distribution of events of Test 4, 7 days generation on a
normal schedule at 20x speed. The chart confirms that the timeline service can

46 C.S.Isnes: Generating historical network logs

Figure 7.4: Event distribution of Test 3 (24h 20x)

successfully generate traffic in a relatively realistic manner in terms of volume,
with little to no traffic during the night and on weekends.

Figure 7.5: Event distribution of Test 4 (7d 20x)

One of the requirements of the historical network log generator was to have
support for different traffic distributions to emulate different work hours. The two
implemented schedules are ’normal’ and ’247’, with the latter generating some
traffic during the night and weekends, in addition to the daytime. 7 days of traffic
using a timeline schedule generating events 24/7 is generated in test 5 with a
speed of 20x. This traffic is displayed in Figure 7.6, and shows how the generated
traffic is more evenly distributed throughout the week, although still with more
traffic during the day than at night.

Using Test 6 (1d 20x with full packet capture), we can look at the event type
categorization by Suricata in Figure 7.7. It shows that 44% of the events imported

Chapter 7: Evaluation and discussion 47

Figure 7.6: Event distribution of Test 5 (7d 20x 247-schedule)

to Splunk are classified as DNS, with 42% of the events being a flow. Searching
within the flow event type, we can see the most common destination ports for
the flows in 7.8. Primarily 53/DNS, 443/HTTPS, and 80/HTTP, which are to be
expected as the current iteration of the artifact only emulates user activity on
browsing websites.

Figure 7.7: Event types categorized by Suricata

One can access additional information for certain event types, such as Domain
Name System (DNS) and Transport Layer Security (TLS). TLS events include data
about the certificate for the visited site. Two of those fields are the "notbefore" and
"notafter" which indicate the validity time range for that particular certificate. The
certificates are sent from the visited web server and reflect the current certificate

48 C.S.Isnes: Generating historical network logs

Figure 7.8: Destination port destination port of flow events from 7.7

Chapter 7: Evaluation and discussion 49

available when viewing the website. Since this information is sent from the server,
it is not affected by the manipulated clock on the server, and the timestamp may
not be within the valid range. This is briefly touched upon in section 4.2.2. An
example event for TLS is displayed in Figure 7.9. The timestamp for the event is
from 03/01/2022, even though the certificate of the visited website is valid from
30/06/2022 until 30/09/2023, effectively being out of the valid timespan. The
currently provided artifact is not able to deal with this. Additional screenshots of
logs in raw PCAP format are found in section B.

Figure 7.9: Randomly selected TLS event viewed in Splunk

7.1.4 External expert evaluation

An external expert working with network analysis and incident handling was
given the logs to get a more objective evaluation of the logs. Prior experience
is from three years of work with threat hunting and network analysis.

The expert did know how the logs were generated and what the thesis was
about. None of the author’s findings or thoughts were communicated to the expert
before he had made up some thoughts and presented his findings. The analysis
was performed in the same environment described above, with flow data conver-
ted by Suricata and loaded into Splunk. Some specific guidance questions were
given along with the data samples:

• How are the logs different from regular traffic?
• Apart from what you see in the logs, can you think of anything that may

compromise the integrity of the generated logs?
• Are the logs realistic-looking? Why/why not?

50 C.S.Isnes: Generating historical network logs

Analysis:

At first glance, they look realistic independently; nothing immediately sets the logs
apart from normal. The logs generated at high speed show fewer events during
"off-hours" when the client is not performing user actions. This is likely because
the client is observing less background traffic since what may appear as 8hrs of
the night in the logs is just 30 minutes of network traffic captured in real-time.
This makes the generated logs distinguishable compared to a baseline of normal
traffic captured at normal speed. There is an overall need for more background
traffic, although that could be a challenge with the current technique used for
generating logs faster than real time.

For HTTP(S) flows, the HTTP header "Date" is set by the server the client is
talking to, reflecting the time of the web server and not the client’s time. The re-
sponse from the webservers will therefore have a header that does not correspond
with the time of the logs as the client’s time is being manipulated. This traffic is
by default encrypted when using HTTPS and thus won’t affect the integrity of the
logs for the forensics investigators if they only have access to encrypted data. If
the network data is decrypted, this information will be available and cause a mis-
match between the "Date" header and the packet timestamp. B.2 show an example
of the server-date found in an unencrypted HTTP session in a PCAP from Test 6.
The timestamp of that particular HTTP packet-stream 15:56 on 3rd of January
2022. Over a year before the date issued by the web server.

7.1.5 Evaluation of functionality

Other network log generators exist with various functionality. Comparing this
thesis’ artifact with other network log generators helps determine what new func-
tionality this artifact contributes and what tasks it solves differently than other
solutions. A set of traffic generator functions are compared on a basic level in
Table 7.2.

Table 7.2: Comparison of a selection of traffic generators

Product Generate User-realism Capture Historic Remote
traffic to file activation

Cisco Benign: Yes No Yes No No
TREX Malicious: No

Ghosts Benign: Yes Yes No No Yes
Framework Malicious: Partly

THESIS Benign: Yes Yes Yes Yes Yes
ARTIFACT Malicious: Yes

The provided artifacts’ primary task was to address the limitation of generating
historical logs, as no other known tool is doing this for realistic-looking network

Chapter 7: Evaluation and discussion 51

traffic. The GHOSTS framework mainly supports malicious traffic since it does
not by default, but it is an open-source project with modules that can easily im-
plement this functionality. Of the compared generators presented in Table 7.1, our
proposed network traffic generator is able to achieve all of the evaluation points,
which are a result of the limitations found during the study on state of the art.

7.1.6 Evaluation of requirements

An important step of the evaluation phase is to cover the requirements defined in
Chapter 4.1 and to see to what degree they are fulfilled. A requirement defined
can be fulfilled in either the design or implementation phase. If a requirement is
fulfilled in the implementation phase, it is implied that it is also covered in design.
Evaluating these requirements help grasp to what degree the thesis has reached
and completed its objectives and solved the defined problem.

The requirements and their fulfillment for the historical network traffic gen-
erator are listed in table 7.3, and accompanied by a detailed evaluation of their
fulfillment:

Customizable benign traffic

The dynamic benign traffic is primarily created by web-browsing agents simu-
lating a real user. The search strings are fully customizable for each scenario and
can be tailored for businesses by simply replacing the list of possible queries. Each
event has also introduced randomness to make further the benign traffic look real-
istic.

Simple malicious events

Malicious events are implemented in terms of PowerShell commands. The com-
mands simulating malicious activity are also customizable regarding the URL to
download from or which file to upload.

Remote starting of traffic generation on client

The agent provides a module for remote activation. It supports communication
over HTTP through a REST interface listening to incoming requests. The function-
ality is limited, but it provides the same functionality as starting. This requirement
is classified as partly implemented, as this thesis does not supply a program to start
the generator on several clients remotely. The REST interface is implemented on
the agent and activated with the ’–api’ flag during CLI-start as discussed in 5.2

CLI-interface on the client itself to start generator

The agent software supports launching arguments directly on the client, gener-
ating the logs without needing a manager. Supported CLI arguments are –start

52 C.S.Isnes: Generating historical network logs

Table 7.3: Requirements and their fulfillment

Requirement Fulfillment

Customizable benign traffic Design: Yes
Implementation: Yes

Customizable and simple malicious events Design: Yes
Implementation: Yes

Remote starting of traffic generation on client Design: Yes
Implementation: Partly

CLI-interface on the client itself to start the generator Design: Yes
Implementation: Yes

Traffic from Windows and/or Linux Design: Yes
Implementation: Yes

Configurable timeframe for logs Design: Yes
Implementation: Yes

Realistic distribution of benign traffic Design: Yes
Implementation: Yes

Custom distribution of malicious traffic Design: Yes
Implementation: Yes

Easy to expand with more features Design: Yes
Implementation: Yes

Capture traffic in suitable format Design: Yes
Implementation: Yes

Transform PCAP to flow data Design: Yes
Implementation: No

which defines the date the generator should start at. –stop is specifying the stop
date for the generator. –schedule accepts either "normal" or "247" indicating which
work-schedule the events should be distributed for during a day. The final para-
meter –speed accepts either 10, 20 or 30, setting the clock-speed multiplier for
when the system is not generating events.

Traffic from Windows and/or Linux

The traffic generator is currently developed to work for Windows. Everything ex-
cept the code controlling the Clock should, in theory, work on a Linux system
without altering the codebase. The Clock modules use Windows-specific APIs and
do not have cross-operating system compatibility.

Chapter 7: Evaluation and discussion 53

Configurable timeframe for logs

The timeframe is set by a start and stop date of when to generate the logs for. The
timeframes can be set several years in the past, and the generated logs will reflect
this in their timestamps.

Realistic distribution of benign traffic

The agent has support for two different timeframes of logs simulating work sched-
ules. One schedule is "normal", with most activity between 8 and 15, Monday to
Friday. The other schedule is 24/7, with slightly more traffic during the day but
still with traffic during the night and weekends, simulating activity levels at a
hospital or similar. The benign traffic is fit to these schedules.

Custom distribution of malicious traffic

The scheduler for malicious traffic has a slightly different configuration than be-
nign traffic. The malicious traffic is set to a much lower frequency, with a 50%
chance of generating 1 malicious event per day. The malicious-looking event will
be generated from 21 in the evening to 04 in the morning, outside of normal,
benign traffic.

Easy to expand with more features

The code is designed in a class-based structure with future expansion in mind.
It can easily be added with more modules to support more types of user activ-
ities, other work schedules, and other functionality. The main traffic generator,
which reads events from the timeline, is designed so that functions for actions
to do are dynamically called based on ’module’ and ’method’ for that particu-
lar event. This code design allows for implementing new features and sending
emails without changing the generator’s code. This functionality is found in the
dynamic_call function in src/agent.py

7.1.7 Capture traffic in suitable format

The logs are captured and saved raw as PCAP files. The current configuration of
the artifact supplied with this thesis will limit the capturing of packets to a certain
size to keep the size of the PCAP file down. With no limit on packet size in the
capture file, the PCAP will size about 1GB per day worth of logs and can easily be
modified with the snaplen flag on WINDUMP, as per its documentation. The PCAP
file is saved in the log generators directory and is ready for further processing if
required.

54 C.S.Isnes: Generating historical network logs

7.1.8 Transform PCAP to flow data

This particular step was covered in the design phase, with a proposed solution
being to use Suricata for transforming the captured PCAP files to flow data. As
this functionality is to some degree outside the scope of the traffic generator itself
and is on post-processing of data, it is not implemented in the current version.
The technique of converting PCAP files to flow data is described above in Section
7.1.1.

7.2 Limitations

An extension of the limitation defined in Chapter 1, Introduction, with additions of
limitations identified while evaluating the generator’s performance. The generator
mainly explored the generation of web-browsing traffic as the network data type
emulating a user. The way the system is implemented makes for a relatively larger
flow duration than normal, which limits the realism of the logs themselves, which
could be distinguished from "normal" traffic.

The current iteration of the network traffic generator does not automatically
supply the logs to a SIEM solution. The logs are available as raw files on the client
who generates them and can be imported to any SIEM solution supporting logs
from Suricata. However, importing the generated logs should not be challenging
if the client already has a log exporter for a SIEM solution, such as WAZUH.

Even though the timestamps of the packets are correct in terms of being histor-
ical, some parts are not affected. For instance, HTTP packets have a "Date" header
set by the web server before sending to the client. This header is not affected by the
system clock and will therefore show real-time the website was visited. However,
this requires access to the decrypted traffic to be viewed.

When the system is web-browsing using Selenium, it ignores all certificate
errors, and the browser shows a warning that the website is not secure. However,
the traffic is still encrypted and has no known impact on the captured PCAP traffic.
The NCR plans to implement a PKI service for handling certificates in the future,
and ignoring all certificate errors was a sufficient solution to the problem for this
thesis.

The agent is designed to work on Windows systems, where the requirements
are defined in either Windows or Linux. The Windows operating system domin-
ates the market share for desktop computers with a 73.5% market share, making
Windows a clear priority over a Linux agent [34].

7.3 Ethical considerations

The primary ethical consideration for this project is license requirements since it
is heavily based on development. To my knowledge, no strict license agreements
on components and code are used, limiting the implementation. The Accelerify
clock tool discussed in 4.2.3 was the only component with an unknown license.

Chapter 7: Evaluation and discussion 55

It was also one of the main contributing factors in recreating its functionality in
Python from scratch.

The traffic generator has functionality implemented to replicate malicious
traffic. It is, however, not dealing with any malicious and harmful data and only
replicates patterns and characteristics of it.

Chapter 8

Conclusion and future work

8.1 Conclusion

The final activity in our implemented DSR methodology is to conclude and com-
municate the process and results. This thesis has looked into generating historical
network traffic logs for use in cyber exercises and the related challenges. Even
though the closely related topic of the real-time generation of network traffic has
been discussed in numerous papers, there was no research on the generation of
network logs that have historical characteristics and are generated significantly
faster than in real-time. This conclusion, backed by a literature review, provides
arguments for the first research question defined in Section 1.3, about state-of-
the-art and limitations for historical log generation.

The second research question the thesis builds upon is how the limitations
of state-of-the-art historical log generators can be addressed. Research already
existed on generating network logs in real-time and with realistic user behavior,
which made addressing the limitations regarding the time perspective of the logs
the main subject of this thesis. This was addressed by manipulating the speed of
the system’s clock, simple user simulation on the system, and capturing the traffic
on the network interface.

The developed artifact generates network logs in a PCAP format. The pro-
posed network traffic generator in this thesis solves its problem by simulating a
fast-moving clock on the system in order to traverse large timeframes in a short
amount of time. During the day, the client will perform several user actions ac-
cording to a generated timeline of randomized events following a work schedule.
Meanwhile, all traffic is captured on the network interface and timestamped with
the manipulated system time. The final result is client network logs generated for
a customizable timeframe with user-simulating behavior at a significantly faster
speed than the timeframe of the logs themselves.

The artifact shows a proof of concept of generating logs faster than in real-time
to show one way to solve the problem. The artifact does have some limitations in
the current iteration. TLS certificates sent from the server may have issues and
expiry dates outside of the timeframe of the logs themselves, and HTTP headers

57

58 C.S.Isnes: Generating historical network logs

sent from a web server to the client will have the server’s timestamp and not the
client. Additionally, the logs are only saved as PCAP and require further processing
to be imported into software such as Splunk or ELK-stack. The source code for the
artifact, including data samples, can be found on the Norwegian Cyber Range
(NCR) GitHub1, in addition to attachments to the thesis.

8.2 Future work

HTTP-Header "Date" mismatching

For HTTP(S) flows, the HTTP header "Date" is set by the server the client is talk-
ing to, reflecting the time of the web server and not the client’s time. This can
theoretically be fixed by processing the PCAP and looking for HTTP packets to
replace the "Date" value with the client’s system clock at that specific time. To in-
crease accuracy, the "Date" time value could be set to the current time, excluding
the Return Trip Time (RTT) between the client and the server. Actions similar to
this may corrupt the integrity of the packets and require a recalculation of the
checksums.

Unrealistic flow duration for background traffic

Background traffic is always generated, including when the clock on the system
is moving significantly faster than in real-time. Every flow has a timestamp for
the first packet (flow.start), and when the last packet in that particular flow is
received, a timestamp is created for the last packet (flow.end). Since the system’s
clock is moving significantly faster than in real-time, the timestamp difference
between the first and last packet in a flow is larger than if the system clock was
running at normal speed. This type of behavior is a byproduct of the technique
used for generating logs fast. This might be addressed using a different technique,
as mentioned below.

Investigate alternative method for generating background traffic

A different technique for background traffic generation briefly touched upon in
this thesis but not explored is to generate background traffic using traffic tem-
plates. These templates could include various background traffic patterns and as-
semble realistically in a tool such as Scapy to create PCAPs. With proper timestamp
manipulation, it could be possible to generate historical network logs quickly and
not compromise the flow duration as the technique explored in this project does.

1https://github.com/ncr-no/historical-log-generation

Bibliography

[1] Purplesec. ‘Cyber security statistics, the ultimate list of statsdata, & trends
for 2023.’ (2023), [Online]. Available: https://purplesec.us/resources/
cyber-security-statistics/ (visited on 14/03/2023).

[2] G. TAG. ‘Fog of war: How the ukraine conflict transformed the cyber threat
landscape.’ (2023), [Online]. Available: https://blog.google/threat-
analysis-group/fog-of-war-how-the-ukraine-conflict-transformed-
the-cyber-threat-landscape/ (visited on 14/03/2023).

[3] N. Gov. ‘The cyber range: A guide.’ (2023), [Online]. Available: https://
www.nist.gov/system/files/documents/2020/06/25/The%5C%20Cyber%
5C%20Range%5C%20-%5C%20A%5C%20Guide%5C%20%5C%28NIST-NICE%5C%
29%5C%20%5C%28Draft%5C%29%5C%20-%5C%20062420_1315.pdf (visited on
16/03/2023).

[4] M. M. Yamin and B. Katt, ‘Modeling and executing cyber security exercise
scenarios in cyber ranges,’ Computers & Security, vol. 116, p. 102 635, 2022.

[5] M. M. Yamin, B. Katt and V. Gkioulos, ‘Cyber ranges and security testbeds:
Scenarios, functions, tools and architecture,’ Computers & Security, vol. 88,
p. 101 636, 2020.

[6] Cloudshare. ‘Why you need cloud-based cyber range simulation for cyber-
security training.’ (2022), [Online]. Available: https://www.cloudshare.
com/blog/cloud-based-cyber-range-simulation-for-cybersecurity-
training/ (visited on 23/03/2023).

[7] NTNU. ‘Norwegian cyber range.’ (), [Online]. Available: https://www.
ntnu.no/ncr#:~:text=Norwegian%5C%20Cyber%5C%20Range%5C%20er%
5C%20en,for%5C%20cybertrusler%5C%20blir%5C%20stadig%5C%20st%
5C%C3%5C%B8rre. (visited on 23/03/2023).

[8] NTNU. ‘Ntnu has a training arena for handling cyber attacks.’ (), [On-
line]. Available: https://norwegianscitechnews.com/2022/01/ntnu-
has- a- training- arena- for- handling- cyber- attacks/ (visited on
23/03/2023).

[9] G. W. Øverli. ‘Fullskala krisehåndteringsøvelse i norwegian cyber range.’ (),
[Online]. Available: https://www.oa.no/fullskala-krisehandteringsovelse-
i-norwegian-cyber-range/s/5-35-1433118 (visited on 23/03/2023).

59

https://purplesec.us/resources/cyber-security-statistics/
https://purplesec.us/resources/cyber-security-statistics/
https://blog.google/threat-analysis-group/fog-of-war-how-the-ukraine-conflict-transformed-the-cyber-threat-landscape/
https://blog.google/threat-analysis-group/fog-of-war-how-the-ukraine-conflict-transformed-the-cyber-threat-landscape/
https://blog.google/threat-analysis-group/fog-of-war-how-the-ukraine-conflict-transformed-the-cyber-threat-landscape/
https://www.nist.gov/system/files/documents/2020/06/25/The%5C%20Cyber%5C%20Range%5C%20-%5C%20A%5C%20Guide%5C%20%5C%28NIST-NICE%5C%29%5C%20%5C%28Draft%5C%29%5C%20-%5C%20062420_1315.pdf
https://www.nist.gov/system/files/documents/2020/06/25/The%5C%20Cyber%5C%20Range%5C%20-%5C%20A%5C%20Guide%5C%20%5C%28NIST-NICE%5C%29%5C%20%5C%28Draft%5C%29%5C%20-%5C%20062420_1315.pdf
https://www.nist.gov/system/files/documents/2020/06/25/The%5C%20Cyber%5C%20Range%5C%20-%5C%20A%5C%20Guide%5C%20%5C%28NIST-NICE%5C%29%5C%20%5C%28Draft%5C%29%5C%20-%5C%20062420_1315.pdf
https://www.nist.gov/system/files/documents/2020/06/25/The%5C%20Cyber%5C%20Range%5C%20-%5C%20A%5C%20Guide%5C%20%5C%28NIST-NICE%5C%29%5C%20%5C%28Draft%5C%29%5C%20-%5C%20062420_1315.pdf
https://www.cloudshare.com/blog/cloud-based-cyber-range-simulation-for-cybersecurity-training/
https://www.cloudshare.com/blog/cloud-based-cyber-range-simulation-for-cybersecurity-training/
https://www.cloudshare.com/blog/cloud-based-cyber-range-simulation-for-cybersecurity-training/
https://www.ntnu.no/ncr#:~:text=Norwegian%5C%20Cyber%5C%20Range%5C%20er%5C%20en,for%5C%20cybertrusler%5C%20blir%5C%20stadig%5C%20st%5C%C3%5C%B8rre.
https://www.ntnu.no/ncr#:~:text=Norwegian%5C%20Cyber%5C%20Range%5C%20er%5C%20en,for%5C%20cybertrusler%5C%20blir%5C%20stadig%5C%20st%5C%C3%5C%B8rre.
https://www.ntnu.no/ncr#:~:text=Norwegian%5C%20Cyber%5C%20Range%5C%20er%5C%20en,for%5C%20cybertrusler%5C%20blir%5C%20stadig%5C%20st%5C%C3%5C%B8rre.
https://www.ntnu.no/ncr#:~:text=Norwegian%5C%20Cyber%5C%20Range%5C%20er%5C%20en,for%5C%20cybertrusler%5C%20blir%5C%20stadig%5C%20st%5C%C3%5C%B8rre.
https://norwegianscitechnews.com/2022/01/ntnu-has-a-training-arena-for-handling-cyber-attacks/
https://norwegianscitechnews.com/2022/01/ntnu-has-a-training-arena-for-handling-cyber-attacks/
https://www.oa.no/fullskala-krisehandteringsovelse-i-norwegian-cyber-range/s/5-35-1433118
https://www.oa.no/fullskala-krisehandteringsovelse-i-norwegian-cyber-range/s/5-35-1433118

60 C.S.Isnes: Generating historical network logs

[10] R. Uetz, C. Hemminghaus, L. Hackländer, P. Schlipper and M. Henze, ‘Re-
producible and adaptable log data generation for sound cybersecurity ex-
periments,’ in Annual Computer Security Applications Conference, 2021, pp. 690–
705.

[11] M. Hasbi, A. R. A. Nurwa, D. F. Priambodo and W. R. A. Putra, ‘Infrastructure
as code for security automation and network infrastructure monitoring,’
MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer,
vol. 22, no. 1, pp. 201–214, 2022.

[12] S. Beau and R. Rouquette, ‘Under review: Automatic and realistic traffic
generation in a cyber range,’ Académie Militaire de Saint-Cyr Coëtquidan,
Tech. Rep., 2022.

[13] D. D. Updyke, G. B. Dobson, T. G. Podnar, L. J. Osterritter, B. L. Earl and
A. D. Cerini, ‘Ghosts in the machine: A framework for cyber-warfare ex-
ercise npc simulation,’ CARNEGIE-MELLON UNIV PITTSBURGH PA, Tech.
Rep., 2018.

[14] M. Swann, J. Rose, G. Bendiab, S. Shiaeles and N. Savage, ‘Tools for net-
work traffic generation–a quantitative comparison,’ arXiv preprint arXiv:2109.02760,
2021.

[15] C. Javali and G. Revadigar, ‘Network web traffic generator for cyber range
exercises,’ in 2019 IEEE 44th Conference on Local Computer Networks (LCN),
IEEE, 2019, pp. 308–315.

[16] F. Erlacher and F. Dressler, ‘How to test an ids? genesids: An automated
system for generating attack traffic,’ in Proceedings of the 2018 Workshop
on Traffic Measurements for Cybersecurity, 2018, pp. 46–51.

[17] J. L. Gjerstad, ‘Generating labelled network datasets of apt with the mitre
caldera framework,’ M.S. thesis, 2022.

[18] M. L. Just Hacker Things, ‘Converting pcap files to network flow data,’ Tech.
Rep., 2021.

[19] J. Vykopal, R. Ošlejšek, P. Čeleda, M. Vizvary and D. Tovarňák, ‘Kypo cyber
range: Design and use cases,’ 2017.

[20] A. Hevner, S. Chatterjee, A. Hevner and S. Chatterjee, ‘Design science re-
search in information systems,’ Design research in information systems: the-
ory and practice, pp. 9–22, 2010.

[21] J. Iivari, ‘A paradigmatic analysis of information systems as a design sci-
ence,’ Scandinavian journal of information systems, vol. 19, no. 2, p. 5, 2007.

[22] J. F. Nunamaker Jr, M. Chen and T. D. Purdin, ‘Systems development in
information systems research,’ Journal of management information systems,
vol. 7, no. 3, pp. 89–106, 1990.

[23] J. Eekels and N. F. Roozenburg, ‘A methodological comparison of the struc-
tures of scientific research and engineering design: Their similarities and
differences,’ Design studies, vol. 12, no. 4, pp. 197–203, 1991.

Bibliography 61

[24] K. Peffers, T. Tuunanen, M. A. Rothenberger and S. Chatterjee, ‘A design
science research methodology for information systems research,’ Journal
of management information systems, vol. 24, no. 3, pp. 45–77, 2007.

[25] J. G. Walls, G. R. Widmeyer and O. A. El Sawy, ‘Building an information
system design theory for vigilant eis,’ Information systems research, vol. 3,
no. 1, pp. 36–59, 1992.

[26] Microsoft. ‘Command prompt (cmd. exe) command-line string limitation.’
(), [Online]. Available: https://learn.microsoft.com/en-us/troubleshoot/
windows-client/shell-experience/command-line-string-limitation
(visited on 31/03/2023).

[27] T. Micro. ‘Tracking, detecting, and thwarting powershell-based malware
and attacks.’ (2023), [Online]. Available: https://www.trendmicro.com/
vinfo/us/security/news/cybercrime-and-digital-threats/tracking-
detecting-and-thwarting-powershell-based-malware-and-attacks
(visited on 19/03/2023).

[28] U. Manpage. ‘Ubuntu manpage faketime.’ (), [Online]. Available: https:
//manpages.ubuntu.com/manpages/trusty/man1/faketime.1.html
(visited on 20/05/2023).

[29] R. Technology. ‘Windump overview.’ (), [Online]. Available: https://www.
winpcap.org/windump/ (visited on 07/05/2023).

[30] Elvidence. ‘Understanding time stamps in packet capture data (.pcap) files.’
(), [Online]. Available: https://www.elvidence.com.au/understanding-
time-stamps-in-packet-capture-data-pcap-files/ (visited on 18/05/2023).

[31] Mozilla. ‘Setinterval().’ (), [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/API/setInterval (visited on 28/03/2023).

[32] J. Oduor. ‘How to perform threading timer in python.’ (), [Online]. Avail-
able: https : / / www . section . io / engineering - education / how - to -
perform-threading-timer-in-python/ (visited on 28/03/2023).

[33] Vmware. ‘Configuring time synchronization between guest and host oper-
ating systems.’ (), [Online]. Available: https://docs.vmware.com/en/
VMware-Tools/11.1.0/com.vmware.vsphere.vmwaretools.doc/GUID-
C0D8326A-B6E7-4E61-8470-6C173FDDF656.html (visited on 29/04/2023).

[34] Scaler. ‘What is the operating system market share?’ (), [Online]. Available:
https://www.scaler.com/topics/operating-system-market-share/
(visited on 06/05/2023).

https://learn.microsoft.com/en-us/troubleshoot/windows-client/shell-experience/command-line-string-limitation
https://learn.microsoft.com/en-us/troubleshoot/windows-client/shell-experience/command-line-string-limitation
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/tracking-detecting-and-thwarting-powershell-based-malware-and-attacks
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/tracking-detecting-and-thwarting-powershell-based-malware-and-attacks
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/tracking-detecting-and-thwarting-powershell-based-malware-and-attacks
https://manpages.ubuntu.com/manpages/trusty/man1/faketime.1.html
https://manpages.ubuntu.com/manpages/trusty/man1/faketime.1.html
https://www.winpcap.org/windump/
https://www.winpcap.org/windump/
https://www.elvidence.com.au/understanding-time-stamps-in-packet-capture-data-pcap-files/
https://www.elvidence.com.au/understanding-time-stamps-in-packet-capture-data-pcap-files/
https://developer.mozilla.org/en-US/docs/Web/API/setInterval
https://developer.mozilla.org/en-US/docs/Web/API/setInterval
https://www.section.io/engineering-education/how-to-perform-threading-timer-in-python/
https://www.section.io/engineering-education/how-to-perform-threading-timer-in-python/
https://docs.vmware.com/en/VMware-Tools/11.1.0/com.vmware.vsphere.vmwaretools.doc/GUID-C0D8326A-B6E7-4E61-8470-6C173FDDF656.html
https://docs.vmware.com/en/VMware-Tools/11.1.0/com.vmware.vsphere.vmwaretools.doc/GUID-C0D8326A-B6E7-4E61-8470-6C173FDDF656.html
https://docs.vmware.com/en/VMware-Tools/11.1.0/com.vmware.vsphere.vmwaretools.doc/GUID-C0D8326A-B6E7-4E61-8470-6C173FDDF656.html
https://www.scaler.com/topics/operating-system-market-share/

Appendix A

Attached Material

Additional materials are delivered as attachments to the project report.

• Historical log generator code

◦ /results - PCAP and Suricata flow data for test 1-6.
◦ /code - All code used for the historical log generator

63

Appendix B

Generator

Figure B.1: CLI input for starting Test5

Figure B.2: Visible HTTP-Date header compromising the integrity of the logs

65

66 C.S.Isnes: Generating historical network logs

Figure B.3: ARP background traffic in the captured file

Figure B.4: The start of the PCAP file for Test 6.

Figure B.5: More background traffic illustration from Test 6.

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Problem description
	Scope and limitations
	Research questions
	Contribution
	Outline
	Keywords

	Background and related work
	Background
	Related work and State-of-the-art
	Traffic generation techniques
	Tools for generating benign network traffic
	Tools suited for generating traffic with malicious characteristics
	Automatically generating network flow data
	Generating logs with timestamps set in the past, and faster than real-time
	Discussion

	Methodology
	Research design in this thesis
	Activity 1: Awareness of problem
	Activity 2: Suggestion
	Activity 3: Development
	Activity 4: Demonstration
	Activity 5: Evaluation
	Activity 6: Conclusion

	Requirements and technical design
	Requirements
	Technical Design
	Manager
	Agent
	Controlling time
	Capturing network traffic
	Design discussion

	Development and implementation
	Development process
	Documentation and version control

	Implementation
	Interaction
	Control the time
	Generating timeline of events
	Capture and process network data
	Implementation discussion

	Deployment and demonstration
	Deployment requirements and limitations
	Demonstration and testing
	Test environment
	Generating data

	Evaluation and discussion
	Evaluation
	Analysis platform
	Performance of the generator
	Analysis of generated logs
	External expert evaluation
	Evaluation of functionality
	Evaluation of requirements
	Capture traffic in suitable format
	Transform PCAP to flow data

	Limitations
	Ethical considerations

	Conclusion and future work
	Conclusion
	Future work

	Bibliography
	Attached Material
	Generator

