
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f A

rc
hi

te
ct

ur
e

an
d

D
es

ig
n

D
ep

ar
tm

en
t o

f D
es

ig
n

Ba
ch

el
or

’s
th

es
is

Kristian Wobbes, Jonas Lillebø Haugen, Adrian
Nysted Riise

Navigating Preterm Parenthood

A web-based solution for supporting parents of
premature infants

Bachelor’s thesis in Web Development
Supervisor: Eleftherios Papachristos
May 2023

Kristian Wobbes, Jonas Lillebø Haugen, Adrian Nysted
Riise

Navigating Preterm Parenthood

A web-based solution for supporting parents of
premature infants

Bachelor’s thesis in Web Development
Supervisor: Eleftherios Papachristos
May 2023

Norwegian University of Science and Technology
Faculty of Architecture and Design
Department of Design

NAVIGATING PRETERM
PARENTHOOD

A web-based solution for supporting parents of

premature infants

Kristian Wobbes, Adrian Nysted Riise, Jonas Lillebø Haugen

NTNU Gjøvik | Institute for Design

 1

Foreword

In our journey towards obtaining our bachelor's degree, we explored the field of

web development. This thesis represents our combined efforts, dedication, and

enthusiasm for user-focused solutions.

We express our gratitude to our advisor, Eleftherios Papachristos, and extend our

appreciation to Oslo Universitetssykehus, Kenneth Strømmen, and Tom Stiris for

providing us with this opportunity.

This thesis presents the exploration, design, and development processes behind our

web application. Our group aimed to develop a solution meeting the needs and

expectations of the target audiences.

 2

Abstract

Title: Navigating Preterm Parenthood: A Web-Based Solution for Supporting

Parents of Premature Infants

Date: 15.05.2023

Participants: Adrian Nysted Riise, Jonas Lillebø Haugen, Kristian Wobbes

Supervisor: Eleftherios Papachristos

Employer: Oslo University Hospital

Subject: Web development

Keywords: Web development, web application, design, development

Number of pages: 80 + 40

Number of words: 14 641

Number of attachments: 17

This bachelor thesis investigates the challenge of providing up-to-date, customized,

and accurate information about premature infancy to support parents of premature

infants. We developed an online platform using a user-centered design approach,

incorporating relevant web development techniques, and creating a custom Content

Management System (CMS) for healthcare providers. By incorporating user

research and leveraging modern web technologies, we addressed the challenges

faced by parents and providers in accessing and managing information about

premature infancy. Our user-centered approach aims to ensure a seamless user

experience and the custom CMS allows for efficient content management. Upon

evaluation, we identified areas for improvement and provided recommendations for

further development.

 3

Abstract (Norwegian)

Tittel: Veiledning for foreldre til for tidlig fødte: En nettbasert løsning for støtte til

foreldre av premature spedbarn

Dato: 15.05.2023

Deltagere: Adrian Nysted Riise, Jonas Lillebø Haugen, Kristian Wobbes

Veileder: Eleftherios Papachristos

Oppdragsgiver: Oslo Universitetssykehus

Fag: Webutvikling

Stikkord: Webutvikling, webapplikasjon, design, utvikling

Antall sider: 80 + 40

Antall ord: 14 641

Antall vedlegg: 17

Denne bacheloroppgaven undersøker utfordringen med å tilby oppdatert, tilpasset

og nøyaktig informasjon om for tidlig fødte barn for å støtte foreldre til premature

barn. Vi utviklet en nettbasert plattform ved å bruke brukersentrerte

designmetoder, relevante webutviklingsteknikker og et innholdsstyringssystem

(CMS) for helsepersonell. Ved å inkludere brukerundersøkelser og utnytte moderne

webteknologier, håndterte vi utfordringene foreldre og tilbydere står overfor når det

gjelder å få tilgang til og administrere informasjon om for tidlig fødte barn. Vår

brukersentrerte tilnærming sikter mot å sikre en sømløs brukeropplevelse, og det

tilpassede CMS-et tillot effektiv innholdsadministrasjon. Etter evaluering

identifiserte vi områder for forbedring og ga anbefalinger for videreutvikling.

 4

Table of contents

FOREWORD ___ 1

ABSTRACT __ 2

ABSTRACT (NORWEGIAN) ___ 3

TABLE OF CONTENTS __ 4

1 INTRODUCTION __ 6

1.1 CURRENT SOLUTIONS __ 6

1.1.1 Oslo Universitetssykehus __ 6

1.1.2 Norsk helseinformatikk __ 6

1.1.3 Project owner concerns about today’s solutions __________________________________ 7

1.2 PROBLEM STATEMENT __ 7

1.3 PROJECT SCOPE ___ 8

2 EXPLORATION ___ 9

2.1 USER RESEARCH ___ 9

2.1.1 Product owner’s needs ___ 9

2.1.2 User profiles ___ 10

2.1.3 Interviews ___ 11

2.1.4 Affinity diagram __ 13

2.1.5 Personas ___ 14

2.1.6 Priority matrix __ 15

2.2 COMPETITOR ANALYSIS __ 16

2.3 SUMMARY ___ 18

3 DESIGN __ 19

3.1 METHODS ___ 19

3.1.1 Crazy 8’s ___ 19

3.1.2 Low-fidelity prototyping __ 21

3.2 CONDUCTING USER TESTS ___ 21

3.2.1 Creating the tasks __ 22

3.2.2 Feedback and results __ 22

3.3 SUMMARY ___ 23

4 DEVELOPMENT ___ 24

 5

4.1 CHOOSING TECHNOLOGIES ___ 24

4.1.1 CSR vs. SSR __ 24

4.1.2 Deciding on an approach ___ 26

4.2 FRONTEND ___ 28

4.2.1 Frontend technologies ___ 28

4.2.2 Setting up the frontend ___ 29

4.2.3 The finished design ___ 36

4.2.4 Frontend summary __ 45

4.3 BACKEND __ 46

4.3.1 Backend technologies ___ 46

4.3.2 Setting up the backend __ 47

4.4 CONTENT MANAGEMENT SYSTEM (CMS)___ 51

4.4.1 Technologies __ 52

4.4.2 Initial setup __ 54

4.4.3 ContentManager.vue / “Innholdsbehandler” _____________________________________ 60

4.4.4 ContentLibrary.vue / “Eksisterende innhold” ____________________________________ 68

4.4.5 MediaLibrary.vue / “Mediebibliotek” ___ 70

4.4.6 UserManagement.vue / “Administrer brukere” ___________________________________ 76

4.4.7 File structure and naming conventions __ 78

4.5 DEPLOYING THE APPLICATION ___ 79

4.6 APPLICATION EVALUATION __ 80

4.6.1 Conducting the test ___ 80

4.6.2 Results ___ 81

4.6.3 Summary ___ 81

5 REFLECTION ___ 82

5.1 ALIGNING THE FINAL DELIVERABLE WITH THE PROBLEM STATEMENT _______________________ 82

5.2 LEARNING OUTCOMES___ 83

5.3 CHALLENGES DURING DEVELOPMENT __ 85

5.4 RECOMMENDATIONS TO THE PRODUCT OWNER _______________________________________ 86

6 CONCLUSION ___ 87

7 REFERENCE LIST ___ 88

8 FIGURE LIST__ 92

9 TABLE LIST __ 94

10 APPENDIX ___ 95

INTRODUCTION

 6

1 Introduction

This thesis is a closing bachelor project in web development at the Institute for

Design at NTNU Gjøvik. The main contributions to this thesis are two web

applications aiming to provide information about prematurely born children. We

developed a user-facing MERN application along with a headless MEVN Content

Management System to support medical professionals in maintaining the

application.

1.1 Current solutions

The challenges faced by premature infants and their families are addressed by a

combination of efforts from healthcare institutions and informational resources.

Oslo Universitetssykehus and Norsk Helseinformatikk are two key players in

providing information and resources in this domain.

1.1.1 Oslo Universitetssykehus

Oslo Universitetssykehus provides comprehensive information on premature babies

on their website, covering aspects such as diagnosis, treatment, follow-up care, and

practical guidance for parents. The hospital emphasizes a family-centered care

approach and offers details about interdisciplinary collaboration to support

premature infants and their families (Oslo Universitetssykehus, 2020).

1.1.2 Norsk helseinformatikk

Norsk helseinformatikk offers general information about premature babies,

including causes, treatments, and support organizations. The website discusses

potential consequences of prematurity, treatment strategies, long-term

complications, and patient organizations like Prematurforeningen (Norsk

Helseinformatikk, 2021).

Both Oslo Universitetssykehus and Norsk Helseinformatikk contribute to addressing

the challenges faced by premature infants and their families by providing valuable

INTRODUCTION

 7

information and resources. Oslo Universitetssykehus focuses on medical care and

support, while Norsk helseinformatikk offers a broader overview of prematurity,

including causes, treatments, and potential long-term consequences.

1.1.3 Project owner concerns about today’s solutions

As per today, the information available to parents of prematurely born children is

limited and difficult to find. Information displayed at Oslo Universitetssykehus (Oslo

Universitetssykehus, 2020) own webpage lacks content and interactivity. To find

information, the user will have to navigate through various pages and dropdown

menus, making it difficult to reach information related to the user.

1.2 Problem statement

This thesis addresses the problem of:

“How can we develop an online platform to provide up to date,

customized, and accurate information about premature infancy to

support parents of premature infants?”,

and presents a solution through the research and development of a web application

that leverages modern technologies and practices. To tackle this issue, the research

is guided by the following questions:

1. How can web development techniques be applied to create a user-friendly

interface that addresses the specific needs of parents during these critical

stages of their parenting journey?

2. How can we use web technologies to develop a solution that both answers

the client's request and fits the user's needs?

3. How can we allow the healthcare providers to efficiently update and

disseminate1 information relevant to parents during the hospital stay and

homecare period?

1 Spread (information) widely.

INTRODUCTION

 8

1.3 Project scope

1. Minimum Viable Product: The final product in this thesis will be developed

to meet the criteria as a Minimum Viable Product (MVP).

2. WCAG: The Web Content Accessibility Guidelines (WCAG) are a vital part of

developing a web application. They were followed during the development of

this project; however, this thesis will not cover them in detail.

3. Deployment: The product will be deployed only for user testing and to

showcase the product to the product owner, further deployment and

performance testing will have to be conducted by the product owner.

4. Provide an application according to product owner wishes: Our

objective is to create an application that effectively addresses the product

owner’s requirements. To achieve this, we will conduct comprehensive user

research and user testing to not only validate but also refine the product

owner’s suggestions. This approach will guarantee a high level of usability,

ultimately resulting in a well-received application.

5. Content creation: The thesis will focus on the structure and navigation

within the main website rather than the content itself within the articles.

Example content will be generated for user testing and showcasing purposes.

EXPLORATION

 9

2 Exploration

In the Exploration chapter, we investigate the current landscape of the problem

domain, focusing on understanding the needs and preferences of the target

audience. By conducting user research, such as interviews, affinity mapping, and

personas development, we establish a foundation for our design decisions.

Additionally, we perform a competitor analysis to obtain inspiration from other

websites and uncover opportunities for our solution to stand out. The insights

gained in this chapter serve as a crucial starting point for the Design phase.

2.1 User research

To ensure the development of a quality product, it is crucial to identify users early,

enabling the collection of meaningful and relevant information through user

research (Baxter, Courage, & Caine, 2015, pp. 32-40).

To gain a thorough understanding of our objectives, we held discussions with the

project owner to obtain valuable insights into their vision for our project. During

these sessions, we discovered that, over the past two years, multiple teams had

been working towards creating content for a website targeting parents of premature

children.

At the beginning of this phase, we faced numerous possibilities, prompting us to

develop a structured project plan. This plan involved reviewing the existing website

content and conducting further user research through semi-structured interviews.

Our aim for this phase was to better understand the needs and pain points of

parents of premature infants and other stakeholders.

2.1.1 Product owner’s needs

The healthcare project team that the product owner belongs to aims to create a

website for expectant parents, current parents, and others seeking information

EXPLORATION

 10

about various aspects related to premature babies. The websites offered by Oslo

University Hospital are unsuitable due to their limitations.

The healthcare project team requires assistance and came with the following

suggestions:

1. An X-axis displaying a timeline from before and after birth, as well as before

and after admission to the neonatal intensive care unit.

2. A Y-axis with an interactive image of a body, where users can "click" on

various body parts, such as the heart, to be directed to a separate page

containing information about relevant medical conditions.

3. An interactive service for parents, allowing them to receive tailored

information based on their child's progress. For instance, if their child was

born three months early and is now in their sixth week of life, the service

would provide insights into what parents can expect during the current week

and the following week.

2.1.2 User profiles

In our efforts to understand our target audience, we created user profiles that

categorize users into primary, secondary, and tertiary segments (Table 1 - User

Profiles that explain the different features of primary, secondary, and tertiary users

in our study. Each profile is described in more detail, helping us better understand

the people involved.). This process was iterative, meaning that as we gained further

insights through user research, we were able to refine and update our user profiles

accordingly.

Following discussions with our product owner, the team recognized significant data

points including age, location, and potential disabilities. Through our interviews

detailed in section 2.1.3, we managed to collect valuable data points such as

education level, technology proficiency, and the specific devices being utilized.

EXPLORATION

 11

Table 1 - User Profiles that explain the different features of primary, secondary, and

tertiary users in our study. Each profile is described in more detail, helping us better

understand the people involved.

2.1.3 Interviews

“In the broadest sense, an interview is a guided conversation in which one person

seeks information from another” (Baxter, Courage, & Caine, 2015, p. 220).

Interviews are a design method used to gather information and insights from

various stakeholders involved in a project or problem. They can be conducted in

various formats, including structured, semi-structured, or completely unstructured

interviews, depending on the goals and needs of the research. Interviews are

EXPLORATION

 12

flexible and can be used in conjunction with other design methods, such as

personas, to gain a deeper understanding of users' needs, preferences, and

motivations.

Since the nature of the interview was to gain a deeper understanding of what the

underlying problems were, the group opted for semi-structured interviews. These

interviews were conducted with one couple admitted to the neonatal intensive care

unit at Rikshospitalet, a group of parents from Prematurforeningen, and three

different nurses from Oslo University Hospital.

Interview guides

The group created two different interview guides, one for parents and one for

nurses. For the parents, the goal was to identify challenges in the current solutions

and better understand the experiences of parents before, during, and after the birth

of their premature babies. Questions addressed topics such as information-seeking

behavior, the type of information they found, and their thoughts on the quality of

information.

The guide aimed at nurses gathered insights from nurses working with premature

babies and their parents. The goal was to identify challenges with current solutions

and understand how nurses contribute to creating a sense of security among

parents of premature infants. Questions addressed the type of information parents

lack, what information they ask for, and how nurses provide information. The

interview also explored how parents respond to the information provided, the level

of detail given, and the most common questions asked.

During the interviews, one group member led the conversation and asked

questions, while the two others took notes of the answers given. The notes were

written down in Miro as shown in Appendix 15 - Notes from interviews.

Results

The interviews revealed that both parents and nurses emphasize the importance of

communication, trust, and support. Parents are primarily concerned about the level

and quality of information provided and the potential long-term impacts on their

EXPLORATION

 13

child's development and health. They seek detailed information about their baby's

condition, treatment, and future prognosis. They also value communication and

support from healthcare professionals, highlighting the importance of trust and

confidence in these relationships.

On the other hand, nurses focus on providing appropriate, individualized

information and support to parents. They acknowledge the importance of a strong

nurse-parent relationship for trust and confidence-building. Nurses understand that

different parents may require different levels of information and support and

prioritize empowering parents through education and involvement in their child's

care. They also recognize the need to address parents' mental health and well-

being, as well as their child's condition.

2.1.4 Affinity diagram

An affinity diagram is a collection of large amounts of data that is organized into

groups or themes based on their relationships. Post-it notes are used, either

physical or digital notes, to sort based on similarities. This makes it easier to

extract important findings and themes that are vital to the further process of the

project (Dam & Siang, 2022).

To begin, the group utilized digital post-it notes containing key findings from

interviews and existing content reviews. Initially, the notes were sorted into distinct

categories such as hospital stay information, improvement ideas, reassuring

knowledge, experiences, and child communication. The purpose of this

categorization was to make the information more comprehensible. Next, the group

selected the most relevant categories and identified the critical findings within each

one.

The three main categories, as shown in Figure 1 - Affinity diagram priorities, were:

information regarding hospital stay, suggested improvements, and reassuring

knowledge. As shown in Appendix 16 - Affinity Diagram, the group then determined

which priorities were essential for the project within each of these categories, some

of those priorities were that it must be easy to update the information and easy to

EXPLORATION

 14

navigate. By using these categories, the group was able to gain a better

understanding of the underlying problems, and the most significant issues were

used to create the personas.

Figure 1 - Affinity diagram priorities

2.1.5 Personas

Personas is a tool that takes a user profile and then fills in details to create a

“typical” user. A persona is simply a fictional individual created to describe a

specific user. It can be difficult to relate to an abstract description of a problem or a

user. Therefore, it would be easier to identify with a persona that gives life to a user

(Baxter, Courage, & Caine, 2015, p. 41).

In a project, it is recommended that multiple personas are developed to represent

each user profile, as this approach facilitates the creation of a diverse set of traits

for each user category. Focusing solely on a single persona runs the risk of

excluding crucial data from end users who do not conform to the parameters of the

chosen persona (Baxter, Courage, & Caine, 2015, p. 41). Due to time constraints

EXPLORATION

 15

the group focused primarily on the personas for the primary user group, the

parents of premature infants, as shown in Table 1 - User Profiles that explain the

different features of primary, secondary, and tertiary users in our study. Each

profile is described in more detail, helping us better understand the people

involved.

As part of the project, the group devised three personas to embody the primary

user profile, drawing upon insights accumulated from interviews and conversations

with the product owner. Among these personas, a single primary persona and two

secondary personas were created, shown in Appendix 1 – Personas, with the latter

primarily shaped by the needs of the former, yet with additional requirements that

could be accommodated without impeding the product's capacity to satisfy the

primary persona. These personas were vital to the task of safeguarding the user’s

genuine needs.

2.1.6 Priority matrix

A priority matrix is a visual representation that organizes tasks according to their

impact and effort. The chart is divided into categories, including:

• High effort, high impact

• High effort, low impact

• Low effort, high impact

• Low effort, low impact

The objective is to prioritize tasks based on their significance and manageability

(Team Asana, 2022).

The group extracted crucial points from the interviews and arranged them in a

priority matrix. The matrix featured a Y-axis representing the user value from low

to high and an X-axis illustrating feasibility from low to high.

Key points with the highest user value and feasibility included "preparing parents

for changes", "using simple language", and "providing information about hospital

stays". Points with high value but low feasibility were "offering multiple languages",

"utilizing explanatory animations", and "incorporating video illustrations". This

EXPLORATION

 16

information assisted the group in determining which tasks to prioritize and address

first.

Figure 2 - Priority Matrix created in Figma.

2.2 Competitor analysis

Conducting a competitor analysis can help to gain a better understanding of

competitor solutions and differentiate a product in a particular industry. It allows for

identifying unique features and characteristics that set a product apart from its

competitors, as well as evaluating competitor strengths and weaknesses to enhance

and improve a product.

The group analyzed several webpages in the healthcare domain to conduct a

competitor analysis on existing solutions. Figure 3 - Extract from competitive

EXPLORATION

 17

analysis shows an excerpt of our competitive analysis, for a full overview see

Appendix 2 - Competitor analysis.

Figure 3 - Extract from competitive analysis

During the competitor analysis, our primary focus was the following aspects:

• Structure of content: By analyzing the content structure of competitor

solutions, we aimed to identify industry standards and best practices in

organizing and presenting information. This knowledge assisted in creating a

user-friendly and easily navigable product, ensuring alignment with user

expectations in the target market.

• Visual profile: Assessing the visual elements of competitor solutions, such

as color schemes, fonts, and imagery, provided insights into what is visually

appealing and effective within the industry. This information aided in the

development of a distinctive and memorable brand identity and an engaging

user experience.

• Language: By examining the language and tone used by competitors, we

gained insights into the most effective communication style for our target

audience. This understanding allowed us to create clear, concise, and

persuasive messaging that resonates with users and sets our product apart

from the competition.

• Categories: Understanding how competitors group information enabled us

to design a product that better meets user needs and provides a more

comprehensive solution.

To summarize their findings, the group created a table in Miro that outlined the

strengths, weaknesses, and potential areas of improvement for each website. Each

EXPLORATION

 18

group member was assigned two to three solutions to analyze and input data into

Appendix 2 - Competitor analysis.

2.3 Summary

In the Exploration chapter, the team delved into the problem domain, focusing on

understanding the target audience's needs and preferences. User research, affinity

mapping, and persona development provided a solid foundation for design

decisions. Additionally, a competitor analysis identified opportunities for the

proposed solution to stand out.

User research was conducted through interviews with parents and nurses to gather

relevant information. Based on these insights, user profiles were established and

iteratively refined. A priority matrix was used to identify and prioritize the most

impactful and feasible tasks to tackle.

The group also analyzed competitor websites to assess their strengths, weaknesses,

and areas that could be improved. The insights gained from the Exploration chapter

served as a foundation for the subsequent Design phase.

DESIGN

 19

3 Design

The Design chapter explores the process of creating a user-centric interface for the

web application. Various ideation and prototyping techniques, such as Crazy 8s and

Lo-Fi/Hi-Fi prototypes, are employed to iterate and refine design concepts. User

tests are conducted to ensure the design meets user needs and expectations,

providing valuable feedback for further improvements. This chapter emphasizes the

importance of a user-centered approach in developing an effective and engaging

web application.

3.1 Methods

3.1.1 Crazy 8’s

Crazy 8's, a core Design Sprint method, was employed in our design process to

generate diverse ideas and encourage creativity (Google, 2023). We performed this

exercise by sketching eight distinct concepts in eight minutes, focusing on

communicating the ideas rather than artistic perfection. As shown in Figure 4 -

Crazy 8's, the generated sketches enabled us to explore unconventional solutions

and identify potential directions for our web application design. This method was

instrumental in overcoming initial design constraints and fostering innovative

thinking within the team.

DESIGN

 20

Figure 4 - Crazy 8's

DESIGN

 21

3.1.2 Low-fidelity prototyping

Low-fidelity (Lo-Fi) prototyping was employed in the design process to create

simple, interactive representations of the web application. Figma, a collaborative

design tool, was utilized to create and iterate on Lo-Fi prototypes.

The initial low-fidelity prototype (Figure 5) was developed based on insights from

the Crazy 8's exercise and discoveries mentioned in the exploration phase. This

prototype allowed for a focus on the core structure and functionality of the web

application, without distraction from visual design elements.

Figure 5 - Initial low-fidelity prototype

3.2 Conducting user tests

Following the initial prototype development, a series of user tests were conducted

with eight students on campus to gather feedback and identify improvements.

Based on this input, four iterations of the low-fidelity prototype were completed,

refining the design to better meet user needs.

DESIGN

 22

3.2.1 Creating the tasks

Four tasks were assigned to each participant using the low-fidelity prototype:

1. Find information about the most common complications for your child.

2. Find the packing list for your stay.

3. From the packing list, navigate to the facilities the hospital has.

4. From the facilities, navigate to your partners.

Task data, including participant number, task number, time, mistakes, and notes,

was documented in an Excel table as shown in Appendix 17 - Low Fidelity User

Testing.

3.2.2 Feedback and results

For each test iteration, mistakes and feedback were used to improve the prototype.

Feedback included:

• Thumbnail description should have a length limit.

• Navigation buttons should have better descriptions.

• Breadcrumbs should be implemented.

• Unsure about results in search bar.

Based on feedback from participants, a last version of the low fidelity prototype was

created.

DESIGN

 23

Figure 6 - Fourth iteration of low-fidelity prototype

3.3 Summary

This chapter focuses on creating a user-centric web application interface using

ideation techniques like Crazy 8s and Lo-Fi/Hi-Fi prototypes. User tests validate the

design and offer valuable feedback for improvements, emphasizing a user-centered

approach. The design process involved Crazy 8's exercises, low-fidelity prototyping,

and user tests, leading to four prototype iterations based on participant feedback. A

final low-fidelity prototype was created accordingly. The group was ready to move

on to developing the solution.

DEVELOPMENT

 24

4 Development

The Develop chapter focuses on the technical aspects of building web applications.

We begin by discussing the selection of appropriate technologies, considering

factors such as client-side rendering (CSR) versus server-side rendering (SSR) and

the choice of backend and frontend frameworks. We then outline the process of

setting up the backend and creating a custom content management system (CMS)

tailored to the project's requirements. The chapter also covers frontend

development using React and SASS2, as well as the deployment of the application.

This section demonstrates the practical application of web development

technologies in bringing the design to life.

4.1 Choosing technologies

Choosing the appropriate technologies for an application is a critical decision in its

development process. Making the wrong choice could lead to user dissatisfaction

and low performance scores.

4.1.1 CSR vs. SSR

When considering the appropriate technologies for a website, it is crucial to

introduce the two main approaches for modern website rendering: client-side and

server-side.

Client-Side Rendering

In Client-Side Rendering (CSR), web pages are rendered directly in the user's

browser using JavaScript, where all the processing of logic, data retrieval, template

rendering, and routing is done on the client-side instead of the server (Miller &

Osmani, 2022).

2 Syntactically Awesome Style Sheets: https://sass-lang.com/

DEVELOPMENT

 25

A Single-page Application (SPA) is a web application design that initially loads a

single web document and dynamically updates its body content using JavaScript

APIs such as XMLHttpRequest and Fetch when displaying different content. This

approach offers users a more dynamic experience and potential performance

improvements by not reloading entire pages from the server. However, it also

presents drawbacks, including SEO challenges, increased effort required to manage

state and navigation, and complexities in performance monitoring (mdn web docs,

2023).

The advantage of utilizing Client-Side Rendering (CSR) to render web pages is that

it allows for faster initial loading times, as the server only sends the necessary

HTML, CSS, and JavaScript files required for rendering the page. CSR is an excellent

option for Single-Page Applications (SPAs) that load a considerable amount of

dynamic content as it can enhance the overall user experience and application

performance. However, a drawback of using CSR with SPAs is that subsequent

loading of data and dynamic content may be slower, as the client-side needs to

fetch data and render the content after the initial page load.

Server-Side Rendering

Server-Side Rendering (SSR) involves the generation of HTML pages from the

server in response to webpage navigation, eliminating the need for extra roundtrips

for data retrieval and template rendering on the client-side as it is processed before

the browser receives a response (Miller & Osmani, 2022).

Using Server-Side Rendering (SSR) for a webpage offers advantages, including

improved Search Engine Optimization (SEO) as the fully rendered HTML file is sent

from the server. This enables search engines to efficiently index the content,

potentially enhancing the page's search engine ranking. However, this approach

also has some drawbacks, including increased server load and slower initial loading

times as the server needs to process data retrieval and template rendering before

sending the fully rendered page to the client.

DEVELOPMENT

 26

Summary

To summarize, Client-Side Rendering (CSR) involves rendering webpages directly in

the user’s browser using JavaScript, allowing for faster initial loading times and

enhanced user experience for Single-Page Applications (SPA). However, it presents

some drawbacks, including SEO challenges and slower subsequent loading of data

and dynamic content.

On the other hand, Server-Side Rendering (SSR) generates HTML pages from the

server in response to webpage navigation, eliminating the need for extra roundtrips

for data retrieval and template rendering on the client. This approach offers

improved SEO and potentially better search engine rankings but can also result in

slower initial loading times and increased server load.

4.1.2 Deciding on an approach

As described in section 4.1.1 CSR vs. SSR, there are two primary approaches when

it comes to rendering webpages. To choose the right approach for our project, the

group needs to consider factors such as the project requirements, user experience,

and development resources.

Factors when choosing technologies

When it comes to selecting a technology for rendering webpages, the group

identified factors to consider. These include:

• Features

• Ease of use/learning curve

• Tradeoffs

• Costs

Considering these factors can help the group make an informed decision when

selecting the appropriate technology for the project.

DEVELOPMENT

 27

Evaluating Technology Stacks

To evaluate different technology stacks, it's important to consider the factors

mentioned in the previous section. The group created a spreadsheet that compares

the options based on these factors.

Figure 7 shows an excerpt of the spreadsheet used to evaluate the different

technologies. See, Appendix 13 - Technology evaluation for the complete version of

the evaluation.

Figure 7 - Extract from the technology evaluation

Choosing the MERN / MEVN stack

Based on the factors discussed above, the group decided that a Client-Side

Rendered approach was the optimal choice for the project due to its fast initial

render, user-friendliness, and decreased server load.

The MERN stack is a full-stack JavaScript framework for developing web

applications. MERN is an acronym for MongoDB, Express, React.js and Node.js.

These are the four technologies that make up the layers of the stack. The MEVN

stack is a variation of MERN, that uses Vue.js instead of React.js for the frontend

(MongoDB, Inc, 2023).

The group opted for a mix of MERN and MEVN stacks to meet the project's

demands for efficiency, scalability, and time constraints. Vue 3's exceptional

performance and Quasar's extensive component library allowed for a rapid setup

and swift application development. This enabled the group to swiftly develop the

CMS with a familiar user interface and customize the frontend of the application

with React.js.

DEVELOPMENT

 28

In the upcoming sections, we will explore these technologies in greater depth,

including their usage in the frontend, backend and CMS of the application.

4.2 Frontend

The frontend application is designed to be used by the end-users, primarily parents

of prematurely born babies. It serves as the software system's visual and

interactive layer, rendering and displaying content, and processing user inputs.

The frontend application was developed using React as the main JavaScript library.

It was styled using SCSS and communicates with the backend using Axios3. React

Router (React Router, 2023) allowed the application to operate with client-side

routing, enabling our application to update the URL upon clicking a link without the

need to request an additional document from the server.

4.2.1 Frontend technologies

React

React is an open-source JavaScript library developed by Facebook for building user

interfaces and has gained widespread popularity due to its emphasis on

component-based architecture, which promotes reusability and modularity in web

applications (Arancio, 2021). React’s main concepts include components, state, and

props.

Components are self-contained, reusable pieces of UI that can manage their own

state, while props are used to pass data between components. React applications

have improved performance through a virtual DOM, which optimizes the updating of

the actual DOM, resulting in faster rendering (Arancio, 2021). The library also

integrates seamlessly with other tools, libraries, and frameworks, making it an ideal

choice for modern web application development.

3 Axios: https://axios-http.com/docs/intro

DEVELOPMENT

 29

SCSS/SASS

SCSS (Sass) is a CSS preprocessor that extends the capabilities of CSS, making it

more maintainable, modular, and scalable than normal CSS (Richards, 2020). SCSS

introduces features such as variables, nesting, mixins, and inheritance, which

streamline the development process and help manage large-scale projects more

effectively. By utilizing SCSS, developers can create organized, reusable, and easily

maintainable stylesheets, improving the overall development experience

(Fileformat, 2023).

4.2.2 Setting up the frontend

The frontend was set up using Vite with the command “yarn create vite client”.

“client” was the name of the folder which was located inside the main project folder

alongside the backend and the CMS.

Vite

Vite was used to create our application because it significantly improves

development experience by addressing performance bottlenecks commonly

encountered with traditional JavaScript tooling. Vite leverages native ES modules in

the browser and benefits from the rise of JavaScript tools written in compile-to-

native languages. It optimizes the dev server start time by categorizing modules

into dependencies and source code (Vite, 2023).

Dependencies are pre-bundled using esbuild, a faster tool written in Go, while

source code is served over native ESM, allowing the browser to manage part of the

bundling process. This results in quicker server starts, more efficient file processing,

and an overall better development experience, ultimately boosting developers'

productivity and satisfaction (Vite, 2023).

Installing Dependencies

Key dependencies include:

- axios (v1.3.4): Enables browser XMLHttpRequests.

- jwt-decode (v3.1.2): Decodes JWT tokens.

DEVELOPMENT

 30

- moment (v2.29.4): Parses JavaScript time formats.

- react-router-dom (v6.10.1): Provides React Router bindings.

- sass (v1.58.3): JavaScript-compiled Dart Sass distribution.

Figure 8 - Frontend dependencies in “package.json”.

Folder Structure (Appendix 12 - Client folder structure)

The client’s folder structure is built upon Vite’s default structure. Most of the folders

and code lives within the “src” folder, and the group tried to separate content into

meaningful folders to better organize code and maintain separation of concerns.

• public: Favicon

• src: Contains the primary source code for the application.

o api: Files such as APIcalls using axios.

DEVELOPMENT

 31

o assets: Client-side assets such as icons.

o components: Custom built React components.

o pages: React components used as elements in React Router.

o routes: Private and public routes based on AuthContext.

o scss: Color and spacing variables, and a global “index.scss” file.

o utils: AuthContext and helper functions.

Routing

React Router was utilized to implement client-side routing. In contrast to

conventional websites that require server requests for each page load, client-side

routing updates the URL without fetching new documents. This approach allows for

immediate rendering of new UI elements and data retrieval, leading to quicker and

more engaging user experiences, including animations (React Router, 2023).

The App component is a functional component that sets up the application's

routing. It uses createBrowserRouter to define an array of route objects, each

containing a path and an associated element. Nested within these routes are child

routes with their own paths and elements.

The top-level route contains the RootPage element, an ErrorNotFound element for

handling errors, and an array of child routes. These child routes include the home

page, public routes for login, registration, and user validation, a “forgot” route for

password reset, a private route for logout, and several other routes with different

paths.

When a user navigates to a specific path, the corresponding element for that route

is rendered. The RouterProvider component wraps the entire routing structure,

allowing the defined routes to be used throughout the application.

DEVELOPMENT

 32

Figure 9 - React router in “App.jsx”

DEVELOPMENT

 33

Figure 10 - Sitemap of the website

DEVELOPMENT

 34

Setting up SCSS

Each component resides in its own folder, accompanied by a respective SCSS file.

To prevent global styling conflicts, styles are nested under the component's

className. A global SCSS file manages overarching styles throughout the app.

Separate files store color and spacing variables, enabling easy access by importing

them when necessary. The color variables encompass the entire color palette for

the platform, while spacing variables define pixel-based distances.

Figure 11 - The ArticleCard folder contains the "ArticleCard.jsx" and "ArticleCard.scss"

Figure 12 – Example of how a component is styled: Every element is styled and nested

inside ".ArticleCard" className, and color and spacing variables are imported in the file

DEVELOPMENT

 35

Connecting to the backend

Axios enables browser XMLHttpRequests. XHR objects facilitate server interaction,

allowing data retrieval from a URL without requiring a complete page refresh. This

capability enables web pages to update specific sections without interrupting the

user's experience (mdn web docs, 2023). Axios was used to create API calls to the

backend API to retrieve and store data in MongoDB.

Figure 13 – API calls to interact with the backend using Axios

DEVELOPMENT

 36

Context & Authentication

The authentication context is established for the React application utilizing a class

component called AuthProvider. This context offers various authentication-related

functionalities, such as user login, logout, registration, validation, password reset,

and the generation of headers containing tokens for authorized API requests.

AuthProvider is responsible for maintaining the authentication state, which includes

user authentication status, fetch loading state, user token, user details, and any

potential errors. The component state is initialized with a predefined initial state.

When the component is mounted, a token refresh method is called to refresh the

token if necessary. The class component provides several methods for handling

authentication, such as user login, logout, registration, validation, and password

reset. These methods initiate the corresponding API functions and update the

component state based on the received API response.

A method is implemented to set a timer to refresh the token one minute before its

expiration, while another method is responsible for terminating the timer. The JWT

token is decoded to ascertain the token's expiration time.

In conclusion, the authentication context is provided to the children components,

delivering the authentication state and methods as the context's value. A consumer

component is exported as well, enabling its use in other components to access the

authentication context. In the following section, we will discuss the finished design.

4.2.3 The finished design

The finished application features a homepage with general information about

premature babies. From the homepage, users can navigate through the website

using React Router links.

DEVELOPMENT

 37

Figure 14 - The finished design of the website

DEVELOPMENT

 38

Articles

Users can access CMS-authored articles across the site, with each featuring a

thumbnail including an image, title, and description. Clicking the thumbnail directs

to the article page, displaying the update date, title, description, text, media

(images/videos), and sources, based on CMS input.

Figure 15 - The article page

DEVELOPMENT

 39

Search

A user can search for articles via the search bar found in the navigation bar at the

top of the page. Upon entering letters, a list dynamically updates results based on

category, title, excerpt.

Figure 16 - The search bar, users can search for excerpt, title and category

Navigation

Each page, except for the lowest level ones, include links to deeper nested pages.

Breadcrumbs facilitate navigation back and visually represent hierarchy, while a

hamburger menu enables site-wide access.

DEVELOPMENT

 40

Figure 17 - The "Hamburger" menu provides easy navigation across the website

Figure 18 - Breadcrumbs are present on every page

Figure 19 – Links to nested pages

DEVELOPMENT

 41

Aktuelle artikler (relevant articles)

All but the lowest-level pages feature an "aktuelle artikler" section, displaying two

random, location-relevant articles. For instance, if a user is on the "foreldrerollen"

(parent role) page, only related articles will be shown.

Figure 20 - A section with relevant articles

Barnets løp (Child’s journey)

“Barnets løp” is a page that offers a personalized experience for parents of

prematurely born children. It features every article from the categories

“komplikasjoner”(complications), “ernæring”(nutrition), and

“kommunikasjon”(communication). Users can filter these articles based on the

current period and the week their baby was born. For instance, a user can set the

period to “Early Intensive” and indicate that the baby was born in the 24th week.

Consequently, the user will only see articles relevant to these filters. When a user

creates an account on the website, they are prompted to specify the week of their

baby's birth. This information automatically sets the “Født I uke”(born in week)

filter to the registered week by default.

DEVELOPMENT

 42

Figure 21 - Barnets løp (Child's journey)

Responsiveness

The fully responsive website adapts to devices from 320px wide and up, offering

smooth functionality on different screens. CSS media queries adjust elements like

buttons and article thumbnails at 768px wide, while CSS grid organizes content into

dynamic columns based on screen size.

DEVELOPMENT

 43

Figure 22 - Homepage, Mobile view

Footer

A footer is present across every page. This section includes user management links

(login, log out, register), contact info for Oslo Universitetssykehus, and its social

media connections.

Figure 23 - Footer

DEVELOPMENT

 44

User registration and login

Upon registering, users can input their premature baby's birth week. This is saved

in AuthContext, enabling the "barnets løp" page to set the default filter. Users can

also save articles as favorites, which are associated with their document in the

database, though favorites display on the webpage is not yet available.

Figure 24 – User registration

DEVELOPMENT

 45

4.2.4 Frontend summary

The frontend of the web application was built using React, SCSS, and Vite. Key

dependencies include axios, jwt-decode, moment, react-router-dom, and sass. The

frontend is organized with Vite's default folder structure, while React Router enables

client-side routing for seamless navigation.

SCSS is used to manage styles, with separate files for color and spacing variables.

Axios connects the frontend to the backend, handling data retrieval and storage in

MongoDB. An authentication context, provided by AuthProvider, offers various

functionalities like login, logout, registration, and validation.

The finished design includes a homepage, articles, search functionality, navigation,

an "aktuelle artikler" section, responsiveness, a footer, and user registration/login

capabilities, catering to end-users like parents of premature babies.

DEVELOPMENT

 46

4.3 Backend

The backend of the application refers to the server-side of the application, which is

responsible for managing the logic and data of the application. It is built using

Node.js, which is a server-side JavaScript runtime environment (Node, 2023).

4.3.1 Backend technologies

Node.js is an asynchronous event-driven JavaScript runtime, Node.js is designed to

build scalable network applications (Node, 2023). Simplified, Node.js is JavaScript

that runs outside the browser (Subramanian, 2019, p. 7).

Express is a minimal and flexible Node.js web application framework that provides a

robust set of features for web and mobile applications (Express, 2023). To

summarize, the framework is a web server framework specifically for Node.js and it

is not vastly different from other server-side frameworks (Subramanian, 2019, p.

9).

MongoDB is a non-relational document-oriented database that uses a JSON Object

for CRUD (Create, Read, Update and Delete) operations (Subramanian, 2019, p.

10).

Database

The data structure of a web application is complex since it requires balancing the

needs of the application, the performance characteristics of the database engine

and the data retrieval patterns (MongoDB, Inc, 2023).

A key decision in designing data models for MongoDB applications is how the

application represents relationships between data and the structure of documents.

The data can be embedded. Embedded database structure store data relationships

in a single document. The data can also be manually referenced in other

documents, collections, and databases. The application then runs a second query to

resolve the referenced fields (MongoDB, Inc, 2023).

DEVELOPMENT

 47

4.3.2 Setting up the backend

Defining a database structure

As described in Database, the task of structuring a database is acknowledged to be

challenging due to the need to simultaneously address the performance demands of

the application and ensure a balance with its usage. Five of MongoDB’s rules have

been followed to structure the database (Karlsson, 2022).

The database structure is divided into five schemas. The schemas were created

using Mongoose4, a popular Object Data Modeling (ODM) library for Node.js that

provides a straightforward way to interact with MongoDB databases. Each collection

in the database defines the structure of each document stored within that

collection. Below is a list of the schemas:

1. users

2. refreshtokens

3. media

4. categories

5. articles

Appendix 3 - Database schemas provide a detailed overview of the database’s

documents, fields, and data types. To summarize, the user-schema contains user

specific information. The refreshToken schema contains information about the

refresh token and is used for authentication; IP addresses are recorded against the

token to help identify any anomalous or malicious activities. The article schema

contains article-specific information. The category schema contains the various

categories the article can have, and the media schema contains media-specific

information. See Figure 25 - DB-schema visualization for a visualization of the

database structure.

4 Mongoose Documentation: https://mongoosejs.com/docs/

DEVELOPMENT

 48

Figure 25 - DB-schema visualization

The following database structure choices were made following the five guidelines

advocated by MongoDB (Karlsson, 2022):

Favor embedding

The content of each article is embedded inside the article schema. When accessing

an article, the content is also needed – the same applies to sources where it is

embedded also in the article schema.

Limit embedding

The need for accessing each category without accessing the list of articles under

each category necessitated the extraction of the category from the article schema.

DEVELOPMENT

 49

No JOIN or $lookup

With the current database structure, there is no need to utilize JOIN or $lookup.

Limit arrays

The only array that grows without bound is the articles inside the category, since

there is no limit to the amounts of articles can have one category.

Defining a file structure

The file structure, see Figure 26 - Backend file structure, has been divided into 7

folders:

1. assets

2. controllers

3. helpers

4. middlewares

5. models

6. routes

7. utils

The “assets” folder contains the images from the image uploads from the CMS. The

“controllers”- folder contains five controller files that control the logic for handling

route requests and has matching files for each of the endpoints.

DEVELOPMENT

 50

Figure 26 - Backend file structure

The “helpers”- folder contains a single file, “functions.js”. This file exports various

helper functions that are utilized throughout the project. The “middlewares”- folder

contains five middleware files: “authorize.middleware.js”, “authUser.js”,

“hasCategoryQuery.middleware.js”, “hasMediaTypeQuery.middleware.js” and

“role.middleware.js”. The first file is used to authorize a single route endpoint. The

second file is used to authorize a user when updating/changing their password. The

third and fourth files are used to check if a route has a query in the URL, and if it

does not it adds a default query. Lastly, the fifth file is used only to enable users

with a specific role to access an endpoint.

The ”models”- folder contains all the schemas that define the structure and content

of the database, further described in Defining a database structure. The “routes”-

folder contains all the route specific information. The “utils”- folder contains three

helper/utility function files: “connectDB.js,” “roles.js” and “upload.js”. The first

utility function is used to connect to a MongoDB database. The second helper/utility

function operates as an enumeration of each of the available roles used for

authorization. The third utility function is used to upload the images/videos to the

file system.

DEVELOPMENT

 51

4.4 Content Management System (CMS)

A custom Content Management System (CMS) has been developed for this project

to facilitate efficient management, organization, and publishing of content on the

web application. The CMS enables non-technical users to create, edit, and maintain

content without requiring extensive knowledge of web development (Barker, 2016).

It is designed as a Single Page Application (SPA) using the Quasar framework,

resulting in a Minimum Viable Product (MVP) that meets the project's requirements.

The custom CMS consists of six pages:

• Login: The login page enables users to authenticate themselves to access

the CMS. It is the only public route in the application.

• Oversikt: This page provides an overview of the available pages, offering

easy navigation for users.

• Innholdsbehandler: This page allows editors to create new articles for the

main application through a four-step process: configuring settings, uploading

the main picture, and adding title and description, adding sections (text,

media, or text & media), and adding sources and publishing the article.

• Eksisterende innhold: This page displays previously created articles, with

options to edit or delete them.

• Mediebibliotek: This page serves as a media library, displaying all

previously uploaded images and videos, with an option to upload new media.

• Administrer brukere: Accessible only to users with the "superadmin" role,

this page enables the creation, editing, and deletion of editor accounts.

A headless CMS is a modern approach to web development that separates the

presentation layer (frontend) from the content management layer (backend),

allowing developers to build custom frontend applications that access a database

through APIs. This decoupling provides increased flexibility, scalability, and

performance by enabling developers to choose their preferred frontend frameworks

and tools (Oracle, 2023).

DEVELOPMENT

 52

4.4.1 Technologies

This section will provide a brief explanation of the technologies used within

development of the CMS, and the reason for using these technologies.

• Vue 3: Vue 3 is one of the most performant mainstream frontend

frameworks, outperforming Angular and React in the js-framework-

benchmark (js-framework-benchmark, 2023). By utilizing the Composition

API, Vue 3 allows for TypeScript integration ensuring scaling capabilities

(Vue.js, 2023).

• Quasar Framework: Quasar is an enterprise-ready cross-platform VueJs

framework, containing a library of more than 70 Material Design web

components which allows for quickly creating responsive web applications

(Quasar, 2023).

• Pinia Store: Incorporating Pinia, the recommended state management

library for Vue applications, provides essential features such as stronger

conventions for team collaboration, Vue DevTools integration, Hot Module

Replacement, and Server-Side Rendering support, while offering a simpler

API and superior type inference support when used with TypeScript as

compared to its predecessor, Vuex (Vue.js, 2023).

• TypeScript: TypeScript, a strongly typed programming language that builds

upon JavaScript, provides enhanced tooling for better development at any

scale by adding additional syntax for types, enabling early error detection,

and ensuring compatibility with JavaScript environments such as browsers or

Node.js (TypeScript, 2023).

The rationale for the chosen technologies can be summarized into the following key

points:

• Custom CMS: While existing CMS solutions were considered, the decision to

develop a custom CMS aimed to enhance the learning outcomes of this

bachelor thesis and provide a tailored solution specific to the project’s

requirements.

DEVELOPMENT

 53

• Vue 3: Vue 3 with the Composition API was selected over React.js to gain

experience with an alternative syntax, as well as to leverage its modern and

performant nature, making it more comparable to Angular and Svelte.

• Quasar Framework: The choice of a component library was motivated by

the desire to simulate a professional working environment. Quasar was

chosen over Vuetify5, another popular Material Design based library for Vue

(Vue Community, 2023), due to its comprehensive set of components,

including those required for text editing, which Vuetify lacked.

The technology choices were also driven by efficiency, scalability, and time

constraints. Vue 3’s performance and Quasar’s component library enabled fast

development. Pinia Store managed state effectively, and TypeScript ensured type

safety, contributing to a maintainable and stable codebase. These technologies

offered a solid foundation for the CMS, fulfilling project requirements and

supporting future maintenance and growth.

5 https://vuetifyjs.com/en/

https://vuetifyjs.com/en/

DEVELOPMENT

 54

4.4.2 Initial setup

The initial configuration process was carried out through the Quasar Command Line

Interface (CLI) by executing the following commands:

$ yarn global add @quasar/cli

$ yarn create quasar

Figure 27 - CMS Setup, Quasar CLI configuration

During the Quasar CLI configuration (as shown in Figure 27), the project was set up

to utilize Vue 3 with the Composition API, TypeScript, Pinia for state management,

Axios for API calls, and Sass with SCSS syntax. Upon completing the project

installation, additional configurations for “.editorconfig”, ESLint, and Prettier were

implemented to ensure consistent coding style and automatic formatting upon

saving changes.

With the project installation and configuration completed, the development phase

began. The initial step involved creating all essential pages, along with establishing

the corresponding routing setup. Following this, the integration of “user-store.ts”,

“axios.ts”, and “ApiClient.ts” facilitated user login and communication with the

backend. The “user-store.ts” file (Figure 28) manages user authentication and

state, the “axios.ts” file (Figure 29) handles HTTP requests, and the “ApiClient.ts”

file (Figure 30) serves as an interface to interact with the backend API.

DEVELOPMENT

 55

Figure 28 - user-store.ts excerpt. Global state managing user authentication.

DEVELOPMENT

 56

Figure 29 - axios.ts: Facilitates communication with the backend, ensuring the users

authorization token gets sent as Authorization header for each request.

DEVELOPMENT

 57

Figure 30 - ApiClient.ts, interface to communicate with the backend

DEVELOPMENT

 58

Upon integrating the login functionality, route protection was implemented to

ensure proper access control. This was achieved by adding a “meta: {

requiresAuth: true }” property to each route that necessitated authentication and

an “onlySuperAdmin: true” property to routes restricted to the super admin role.

For public routes, “requiresAuth” was set to false. A function was then created to

check the “user-store” for authentication and role information, redirecting users

accordingly based on their status.

The code snippets below demonstrate the three different types of routes: one that

requires authentication (Figure 31), one that is restricted to the super admin role

(Figure 32), and a public route (Figure 33).

Figure 31 - Route protection, requiresAuth

Figure 32 - Route protection, onlySuperAdmin

Figure 33 - Route protection, public route

DEVELOPMENT

 59

In addition to the route configurations, a “beforeEach” function was added to the

router, as shown in Figure 34. This function checks the “user-store” for

authentication and role information before allowing access to a route, ensuring

proper access control is maintained.

Figure 34 - Route protection, before each route

DEVELOPMENT

 60

4.4.3 ContentManager.vue / “Innholdsbehandler”

Figure 35 - ContentManager.vue initial view

Upon successful implementation of routing and login functionality, the development

of the “ContentManager.vue” page, referred to as “Innholdsbehandler” in

Norwegian, was initiated.

Keeping track of changes

The first objective was to make a store to keep track of the articles during their

creation process. To achieve this, an article-store, “article-store.ts” was created and

later iterated using Pinia store. The default state contains an empty article, which is

updated as the creation progresses (see Appendix 5 - article-store.ts).

The “article-store.ts” contains the implementation of the Pinia store for managing

articles in progress. It starts with importing the required modules and defining the

default empty article object (EMPTY_ARTICLE). Following that, the

DEVELOPMENT

 61

“ExpandedSections” type is defined, which is an object containing Boolean values

for different sections.

The “useArticleStore” function is then defined, setting up the store’s state, actions,

and getters. The state holds information about the current step, editing status, the

current article, the original article, and expanded sections. Actions include functions

for toggling and setting section expansion, as well as resetting the store to its initial

state. The store also includes a getter to check if there are any unsaved changes in

the current article.

Lastly, a “deepCopy” function is implemented to create deep copies of the objects,

as the spread operator (…) does not suffice for deep cloning in this context. This

function serves as a simplified version of the lodash6 “_.cloneDeep()” method.

QSplitter with Configuration and Preview

In the “ContentManager.vue” page, the QSplitter7 component is used to enable the

user to interactively adjust the size of the configuration and preview sections. By

default, the configuration section is displayed on the left side and the preview

section on the right side, as shown in Figure 36.

6 https://lodash.com/
7 https://quasar.dev/vue-components/splitter#qsplitter-api

https://lodash.com/
https://quasar.dev/vue-components/splitter#qsplitter-api

DEVELOPMENT

 62

Figure 36 - QSplitter with Configuration and Preview

The QSplitter component is part of the Quasar Framework and allows for the

creation of resizable and flexible layouts by dividing a container into separate,

adjustable sections (Quasar, 2023). The primary purpose of implementing QSplitter

is to provide an intuitive user interface, allowing users to easily adjust the

configuration and preview sections based on their preferences and observe the

article's responsiveness across various screen widths while creating or editing

content in the CMS.

DEVELOPMENT

 63

Figure 37 - QSplitter code snippet

The code above creates a QSplitter component, which is bound to a “splitterModel"

reference that holds the current percentage value of the splitter. The limits prop

sets the minimum and maximum limits for the splitter's adjustment, ensuring the

sections do not become too small or too large.

Inside the QSplitter component, three slots are defined: before, separator, and

after. The before slot contains the configuration section “ConfigureEditorStepper”,

the separator slot contains the drag handle for resizing the sections, and the after

slot contains the preview section “PreviewDetailList”, “PreviewExcerpt”, and

“PreviewMainContent”. The drag handle is styled using the QAvatar8 component

with an appropriate icon to indicate its purpose.

In conclusion, the QSplitter component is aimed at enhancing the user experience

in the “ContentManager.vue” page by providing a flexible and adjustable layout for

the configuration and preview sections.

8 https://quasar.dev/vue-components/avatar/

https://quasar.dev/vue-components/avatar/

DEVELOPMENT

 64

QStepper

The QStepper component, a part of the Quasar Framework, is utilized to guide

users through the process of creating or editing articles by dividing the process into

multiple, sequential steps (Quasar, 2023). It offers a clear and organized approach

to content creation, with the goal of allowing users to easily navigate through the

required steps while maintaining a clear understanding of the process.

Figure 38 - QStepper example

As illustrated in Figure 38, the QStepper component is integrated into the

configuration section of the “ContentManager.vue” page. Each step represents a

distinct stage in the content creation process, and users are guided through the

following four steps:

• Settings: In this step, users configure the basic settings of the article, such

as its category, which period after birth the article is relevant, and relevancy

based on the gestational week a child is born.

• Main Content: Users upload the main image for the article and provide a

title and description.

• Sections: Users add various sections to the article, which may include text,

media, or a combination of text and media.

• Sources and Publishing: Users input the sources for the article and

publishing the article.

Creating and organizing article sections

The creation and organization of article sections are essential components of the

content creation process in the “ContentManager.vue” page. Users can add, edit,

and delete sections, as well as reorder them as needed, providing a flexible

approach to content creation.

DEVELOPMENT

 65

Figure 39 - Article section management

Add sections: Users can add new sections using three distinct buttons – "Text",

"Media", and "Text & Media". (See Appendix 6 -

ConfigureMainContentSectionAddButtons.vue).

• "Text": Clicking this button introduces a new section with a QEditor9,

providing a text editing interface for content input.

9 https://quasar.dev/vue-components/editor/

https://quasar.dev/vue-components/editor/

DEVELOPMENT

 66

• "Media": Selecting this option triggers a modal, enabling users to choose

their preferred media type (e.g., image or video) and input alternative text

for accessibility purposes.

• "Text & Media": This choice unveils a modal that permits users to specify

the media type, provide alternative text, and utilize a QEditor for text editing.

Furthermore, users can personalize the layout by aligning the media to the

right or left of the text.

Edit and delete sections: Users can edit or delete existing sections using the

appropriate buttons displayed within each section. The edit button expands the

section with its current content, facilitating any necessary modifications, or

contracts the section if already open. The delete button opens a confirm dialog with

the option to remove the section from the article.

DEVELOPMENT

 67

Figure 40 - Expanded section (Text)

DEVELOPMENT

 68

Reorder sections: Users can reorder sections by using the arrow buttons. The

main components involved in this reordering process are:

• “article-store.ts”: This is the store that holds the state and actions related

to the articles. It maintains a record of expanded sections using an object

called “expandedSections”. Each key in this object represents a section id,

and the corresponding Boolean value indicates whether the section is

expanded or not. (Code preview in Appendix 5).

• “ConfigureMainContentSectionButtons.vue”: This component defines the

buttons responsible for reordering the sections. The “moveUp” and

“moveDown” functions handle the movement of sections by swapping their

positions in either the “content” or “sources” array, depending on the section

type. The “swapItems” function is responsible for performing the actual

swap. (Code preview in Appendix 9).

• “ConfigureMainContentSection.vue”: This component renders the

individual sections and handles their expansion state. It sets the expansion

state of a section using the “setSectionExpanded” action from the store when

the model value of the expansion item is updated. (Code preview in Appendix

8).

• “ConfigureMainContent.vue”: This component renders all the sections and

is responsible for organizing the layout of the sections. (Code preview in

Appendix 7).

The combination of these functionalities allows users to create, edit, and organize

article sections efficiently, contributing to an intuitive and streamlined content

creation process within the custom CMS.

4.4.4 ContentLibrary.vue / “Eksisterende innhold”

The “ContentLibrary.vue” component, referred to as “Eksisterende innhold” in

Norwegian, is responsible for displaying a list of previously created articles in the

DEVELOPMENT

 69

custom CMS. The component provides users with the ability to search for articles,

edit, and delete them. Additionally, it contains a button to create a new article that

redirects the user to the “ContentManager.vue” component for article creation.

Figure 41 - ContentLibrary.vue

The component uses the Quasar QTable10 component to display articles in a grid

format, with pagination hidden. The QTable component is designed to be

responsive, with configuration options to display the table as cards, providing an

optimal viewing experience across various devices.

A search input field is provided at the top-left corner of the table, allowing users to

filter the displayed articles based on their search query. This functionality is

achieved by binding the “filter” property of the QTable component to a Vue ref

named “filter”. The search input field uses a debounce value of 300 milliseconds to

10 https://quasar.dev/vue-components/table#qtable-api

https://quasar.dev/vue-components/table#qtable-api

DEVELOPMENT

 70

ensure a smooth user experience and reduce the strain on the browser during rapid

input changes.

The component fetches the list of articles from the API using the “ArticleClient”

class when the component is mounted. The list of articles is stored in a Vue ref

named “articles”. A “loading” ref is used to indicate whether the component is

fetching data from the API. When the “loading” ref is set to true, the QTable

component will display a loading spinner.

The table columns are configured to display the following information for each

article:

• Cover media (image or video)

• Title

• Excerpt

• Creation date

• Last update date

Each article row in the table contains two action buttons: one to edit the article and

another to delete it. When a user clicks the edit button, they are redirected to the

“ContentManager.vue” component, where the selected article’s data is preloaded

for editing. If the user has unsaved changes in the “ContentManager.vue”

component, a confirmation dialog will appear, warning the user that they will lose

their unsaved changes if they proceed.

When a user clicks the delete button, a confirmation dialog is shown, asking the

user to confirm the deletion. If the user confirms, the article is deleted, and the list

of articles is updated.

In summary, the “ContentLibrary.vue” component serves as an interface for

managing previously created articles, where users can search, edit, and delete

articles.

4.4.5 MediaLibrary.vue / “Mediebibliotek”

The “MediaLibrary.vue” page, referred to as “Mediebibliotek” in Norwegian, is

responsible for managing and displaying the uploaded media files in the CMS, such

DEVELOPMENT

 71

as images and videos. It provides an interface to view and manage the uploaded

media files. The implementation of this page consists of two main components:

“MediaLibrary.vue” and “MediaLibraryContentUploader.vue”.

Figure 42 - MediaLibrary.vue

The “MediaLibrary.vue” component contains a tabbed interface to separate images

and videos, making it easy for users to navigate between different media types. It

utilizes the Quasar's QInfiniteScroll11 component to display a grid of media items,

11 https://quasar.dev/vue-components/infinite-scroll/

https://quasar.dev/vue-components/infinite-scroll/

DEVELOPMENT

 72

providing a smooth browsing experience for users. The media items are filtered

based on the selected tab, either showing images or videos accordingly.

Figure 43 - MediaLibrary.vue, Video tab

DEVELOPMENT

 73

Figure 44 - ApiClient.ts - MediaClient class

DEVELOPMENT

 74

Figure 45 - MediaLibrary.vue - script setup

On the mounted lifecycle hook, the “getMediaList” function is called to retrieve the

list of media items from the backend using the “MediaClient” class from the

“ApiClient.ts” file. The response is then assigned to the “mediaList” reactive

variable, which is used to render the media items on the page.

DEVELOPMENT

 75

The “MediaLibraryContentUploader.vue” component (Figure 46) allows users to

upload new media files to the CMS. It uses the Quasar QUploader12 component to

handle file uploads, providing a comprehensive interface with support for drag-and-

drop, multiple file uploads, and file type validation. The uploader is configured to

send the media files to the backend API using the “uploadFactory” function, which

sets the appropriate URL, method, and headers for the HTTP request.

Figure 46 - MediaLibraryContentUploader.vue

When a file upload is completed, the “onUploaded” function is called to emit an

“updateMediaList” event, which is listened for in the parent “MediaLibrary.vue”

component. This event triggers the “getMediaList” function to update the displayed

media list with the newly uploaded media files.

12 https://quasar.dev/vue-components/uploader

https://quasar.dev/vue-components/uploader

DEVELOPMENT

 76

4.4.6 UserManagement.vue / “Administrer brukere”

The “UserManagement.vue” component, referred to as “Administrer brukere” in

Norwegian, is a dedicated interface for managing user accounts. Accessible only to

users with the “superadmin” role, this component provides functionality for

creating, editing, and deleting editor accounts.

“UserManagement.vue” consists of a search input field, an "Opprett bruker" (Create

User) button, and a table displaying a list of user accounts. Each account is

represented by a card containing the username, email, and user role. Additionally,

there are two action buttons within the card: "rediger" (edit) and "slett" (delete).

Figure 47 - UserManagement.vue

The component retrieves user information from the backend API using the

“UserClient” class provided in the ApiClient.ts file (Appendix 11 - ApiClient.ts). This

class contains methods to handle actions like logging in, revoking and refreshing

tokens, registering users, updating users, and deleting users.

DEVELOPMENT

 77

When the "Opprett bruker" button is clicked, the “openUserModal” function is

called, which triggers the display of the “UserManagementEditUserModal.vue”

component. This modal allows users to input the new account's username, email,

role, and password.

Figure 48 - UserManagementEditUserModal.vue

The edit and delete buttons on each user account card also utilize the

“openUserModal” and “deleteUser” functions, respectively. When the edit button is

clicked, the “UserManagementEditUserModal.vue” component is displayed with pre-

filled fields corresponding to the existing account information. On the other hand,

clicking the delete button prompts a confirmation dialog, and upon confirmation,

the “deleteUser” function is called to remove the account.

DEVELOPMENT

 78

4.4.7 File structure and naming conventions

In this project, we have tried to follow the naming conventions outlined in the

Vue.js Style Guide13. The file structure and naming conventions for this project are

as follows:

Directory structure (Appendix 4 - CMS file structure)

• src: Contains the primary source code for the application.

o api: API related files.

o boot: Boot files which run before the root Vue instance is instantiated.

o components: Vue components used in the application.

o css: Global SCSS styling and variables.

o interfaces: TypeScript interfaces.

o pages: The primary view files, which are made up of components.

o router: Router configuration files for the application.

o stores: Pinia store configuration files for managing the application’s

state.

o utils: Utility files and helper functions.

• public: Static files, such as the favicon

Naming conventions

• Components: Vue components are named using PascalCase (e.g.,

“AppDialogConfirm.vue”). Single-instance components should be prefixed

with “The” (e.g., “TheSidebar.vue”).

• Filenames: All file names should be in kebab-case (e.g., “article-store.ts”).

• JavaScript Variables: Variables should be named in camelCase (e.g.,

“handleClick”).

• Event names: Custom event names should use kebab-case (e.g., “toggle-

edit”).

13 https://v2.vuejs.org/v2/style-guide/

DEVELOPMENT

 79

• HTML Attributes: Attributes should be written in kebab-case (e.g.,

“content-type”).

• Pinia Store: Modules, actions, mutations, and getters should be named

using camelCase (e.g., “useUserStore”, “generateRefreshToken”,

“isAuthenticated”).

4.5 Deploying the application

The application was deployed through Railway, a comprehensive platform that

facilitates the development, deployment, and scaling of applications. Railway’s

built-in support for Node.js and MongoDB made it a suitable choice for the project

(Railway Corporation, 2023).

Due to the mono-repo structure of the project, which houses all applications in a

single repository, a deployment solution was required that could link the repository

and deploy it on each folder. Railway enables this process.

Railway services are deployment destinations for the application. These services

connect with GitHub and deploy automatically on each commit. The Railway

dashboard displays the services created, as depicted in Figure 49 - Railway service

overview.

Figure 49 - Railway service overview

In the following section we will evaluate the final product and the results of the final

user test.

REFLECTION

 80

4.6 Application evaluation

In this section, we will evaluate the outcomes of our user testing after discussing

the design techniques, development procedures, and results of our project. Our

evaluation will be divided into two main sections: the Content Management System

(CMS) and the frontend of the application. We will examine the strengths and

weaknesses that were uncovered by the test results in each section, referring to the

data documented in the Excel spreadsheet (see Appendix 14 - User testing final

product) as appropriate.

4.6.1 Conducting the test

Following the development process of the project the group conducted a final user

test to gather feedback and an insight into what could be a further improvement of

the product. The test participants consisted of two healthcare workers who are also

the product owners, experienced men aged 50-67, and two student men aged 23-

25. The mix of ages and backgrounds provided a valuable perspective for

evaluating the product’s usability and potential improvements.

Four tasks were created for both the Content Management System and the

frontend, concluding in 8 tasks in total:

Content Management System

1. Log in with username “superadmin” and password
2. Create a new article

3. Edit the same article you created

4. Add a new user

Frontend

1. Log in with username “superadmin” and password

2. Navigate to “barnets løp” and filter to period “tidlig intensive” and born in

week 30

3. Search for an article and add to your favorites
4. Navigate to «Hvordan styrke båndet mellom foreldre og baby» without using

the search field and, hamburger menu or “aktuelle artikler”.

Throughout the testing, task data like time used, errors, and notes were

documented in an Excel spreadsheet (see Appendix 14 - User testing final product).

REFLECTION

 81

4.6.2 Results

Content Management System:

The test results for the CMS (see Appendix 14 - User testing final product) showed

that users were able to complete the tasks with minimal errors and within a

reasonable amount of time. The step-by-step process and the ability to preview the

article while it’s being made were well-received, and users appreciated the intuitive

interface. However, some suggestions for improvement include reversing the article

array for easier access to newer content, changing the color of the “Create User”

button for better differentiation, ability to filter media library content by category,

and using more descriptive button labels like “Save” or “Create” instead of “OK”.

Frontend:

For the frontend, users encountered some difficulties in navigating to specific

content without using the search bar or hamburger menu. There were also some

inconsistencies in the placement and visibility of certain elements, such as the

favorites icon, which could be improved for a better user experience. However, the

overall design and aesthetics were praised, and users found the website visually

appealing and easy to use.

4.6.3 Summary

In conclusion, the user testing provided valuable feedback for improving the

usability and functionality of the application. Both the CMS and the frontend

demonstrated strengths in their design and implementation. By addressing the

identified weaknesses and incorporating user suggestions, the application can be

further refined and enhanced to provide an even better user experience. This

process of evaluation and iteration is crucial for the successful development of any

application, and our bachelor thesis has shown the importance of incorporating user

feedback in the design process.

REFLECTION

 82

5 Reflection

In this chapter, we reflect upon how our solution aligns with the problem statement,

the learning outcomes, and challenges encountered during the development of the

web application. We discuss the knowledge and skills acquired throughout the

project and analyze the impact of our assumptions on the final product.

5.1 Aligning the Final Deliverable with the Problem Statement

The problem statement, “How can we develop an online platform to provide up to

date, customized, and accurate information about premature infancy to support

parents of premature infants?”, was answered through the research questions:

1. How can web development techniques be applied to create a user-friendly

interface that addresses the specific needs of parents during these critical

stages of their parenting journey?

2. How can we use web technologies to develop a solution that both answers

the client’s request and fits the user’s needs?

3. How can we allow the healthcare providers to efficiently update and

disseminate information relevant to parents during the hospital stay and

homecare period?

To address the first research question, we focused our efforts into developing a

usable website. The extent to which we achieved delivering a user-friendly website

was assessed in the final evaluation. By conducting user research, we were able to

identify the most relevant features and information that parents needed, which

were then incorporated into the application’s design. This approach ensured that

the platform was both easy to navigate and provided customized information

tailored to individual needs. Feedback was positive and only minor suggestions for

improvement have been raised.

For the second research question, we utilized various web technologies such as

MERN/MEVN stack, React, Vue, Quasar, SCSS/SASS, and backend technologies to

REFLECTION

 83

develop a solution that not only addressed the client’s request but also met the

user’s needs. By combining these technologies, we were able to create a seamless

user experience that efficiently delivered up-to-date information to parents of

premature infants.

To tackle the third research question, we developed a custom content management

system (CMS) that allowed healthcare providers to efficiently update and

disseminate information relevant to parents during the hospital stay and homecare

period. This CMS featured an intuitive interface and user roles for easy content

management, ensuring that information was always current and accessible for

parents.

In conclusion, the final deliverable successfully aligns with the problem statement

by providing an online platform that offers customized, accurate, and up-to-date

information about premature infancy to support parents of premature infants.

Through careful consideration of user needs, application of appropriate web

development techniques, and development of a custom CMS for healthcare

providers, we have created a solution that addresses the challenges identified in the

problem statement and meets the needs of both parents and healthcare providers.

5.2 Learning outcomes

The completion of this web development bachelor’s project has led to several key

learning outcomes, which are discussed below:

1. Comprehensive understanding of the web development process:

Through the various stages of research, design, development, and

deployment, the group gained a thorough understanding of the web

development process. This includes the importance of user research,

competitor analysis, and the use of design methodologies in creating an

effective web application.

2. Proficiency in web development technologies:

The project provided an opportunity to gain hands-on experience with web

development technologies such as MERN/MEVN stack, React, Vue, Quasar,

REFLECTION

 84

SCSS/SASS, and backend technologies. This experience has not only

improved the technical skills of the group, but also contributed to a deeper

understanding of how these technologies work together to create a seamless

user experience.

3. User research and user-centered design:

The group’s engagement in user research, including product owner’s needs,

interviews, affinity mapping, personas, and priority matrix, has emphasized

the importance of incorporating user needs and preferences in the design and

development process. This approach fosters a user-centered design, ensuring

that the final product is tailored to the target audience.

4. Competitor analysis:

By conducting a competitor analysis, the group learned how to identify

strengths and weaknesses in existing websites and use this information to

create a more competitive and effective product. This analytical skill is crucial

for future web development projects and for staying ahead in the industry.

5. Custom content management systems:

The development of a custom CMS using the Quasar framework and Vue 3

allowed the group to learn how to design and implement a custom solution

tailored to the project’s requirements. The experience of creating a custom

CMS has provided valuable insights into the intricacies of content

management, user roles, and the underlying technologies, such as Vue 3,

Quasar, Pinia Store, and TypeScript.

6. Deployment and project management:

The group learned the importance of effective project management in

ensuring that the web application was deployed successfully. This experience

has demonstrated the need for proper planning, communication, and time

management in the development process.

7. Evaluation and reflection:

By evaluating the final product and reflecting on the learning outcomes and

challenges, the group has gained a deeper understanding of the web

development process and the impact of assumptions on the final product.

REFLECTION

 85

This insight will be valuable for future projects, as it highlights areas for

improvement and growth.

5.3 Challenges during development

Throughout the web development project, several challenges were encountered,

which provided valuable learning experiences and opportunities for growth. This

section discusses some of the key challenges faced during the development process

and the solutions adopted to overcome them.

1. Understanding and integrating new technologies:

One of the challenges was familiarizing oneself with the Quasar framework, Vue

3, Pinia Store, and TypeScript, as these technologies were new for the group. To

overcome this, the group spent time researching and learning these technologies

through online resources, documentation, and hands-on practice.

2. Balancing functionality and usability:

Creating a custom CMS that provides necessary features while maintaining a

user-friendly interface was a challenge. To address this, the group conducted

user tests and sought feedback from the product owner and other stakeholders

to ensure that the CMS was intuitive and easy to use.

3. Managing project scope and time constraints:

Ensuring that the project remained within its scope and was completed on time

proved to be a challenge, especially considering the complexity of creating a

custom CMS. To tackle this issue, the group employed effective project

management techniques, such as setting clear objectives through a Gantt chart

(Appendix 10), prioritizing tasks, and maintaining regular communication with

the supervisor and other stakeholders.

4. Dealing with unanticipated technical issues:

During development, the group encountered unexpected technical issues, such

as bugs or compatibility problems between different technologies. To resolve

these issues, the group relied on problem-solving skills, online resources, and

sought guidance from the supervisor and peers when necessary.

REFLECTION

 86

5. Maintaining code quality and organization:

As the project progressed, maintaining clean and organized code became

increasingly challenging. The group addressed this issue by adopting best

practices for code organization, implementing proper naming conventions, and

using version control systems such as Git for tracking changes and collaborating

effectively.

6. Adapting to changing requirements:

Throughout the project, the group faced changes in requirements or priorities

due to user feedback or new insights gained during the development process.

Adapting to these changes required flexibility, effective communication with

stakeholders, and the ability to reevaluate and adjust the development plan.

5.4 Recommendations to the product owner

In conclusion, the project group wishes to make some concrete recommendations

to the product owner. Through this study, the group has documented our path to a

solution. Although our final product is fully usable as is, we have still found areas

which can be considered for further improvements. The list follows:

1. If the product is to be further developed, it should be tested in a real

environment with real users. Meaning parents of premature infants at a

hospital and after hospital stay.

2. If the solution is to be developed further, it is also recommended to ensure

the product is performant and scalable. This can be addressed by conducting

performance tests and optimizing the code wherever possible.

3. Implement feedback from final evaluation. This includes changing the

background image on the homepage, improving naming conventions, minor

changes on the sitemap, and adding links to various resources.

4. Implement a data trafficker to check if the product is being used by parents

at all.

5. If the project is to be continued, it is recommended to implement a full set of

articles through the Headless CMS.

CONCLUSION

 87

6 Conclusion

In this bachelor thesis, we have explored the problem of providing up-to-date,

customized, and accurate information about premature infancy to support parents

of premature infants. We have addressed this problem by developing an online

platform through a user-centered design approach, applying relevant web

development techniques, and creating a custom Content Management System

(CMS) for healthcare providers.

The application evaluation, as discussed in Chapter 4.6, revealed that our solution

has several strengths in terms of design and functionality. Both the CMS and the

frontend demonstrated positive user experiences, while the feedback obtained from

user testing indicated areas for further improvement. By addressing these issues,

the application can be refined and enhanced to better serve the needs of parents

and healthcare providers.

In our reflection (Chapter 5), we discussed how the final deliverable aligns with the

problem statement and the various learning outcomes achieved throughout the

project. We also examined the challenges encountered during the development

process, which provided valuable insights and opportunities for growth.

In conclusion, this bachelor thesis has successfully demonstrated the importance of

a user-centered approach in web development and the value of incorporating user

feedback in the design process. Our solution, which combines a user-friendly

interface with a custom CMS, effectively addresses the needs of both parents of

premature infants and healthcare providers. By continuing to refine and enhance

the application based on user feedback and emerging technologies, this platform

has the potential to become an invaluable resource for parents navigating the

challenges of premature infancy.

REFERENCE LIST

 88

7 Reference list

Arancio, S. (2021, August 5). Medium. Retrieved from ReactJS: A brief history. A

peak into the evolution of one of the world’s most popular programming

libraries. | by Stephen Arancio | Medium:

https://medium.com/@sjarancio/reactjs-a-brief-history-3c1e969a477f

Barker, D. (2016). Web Content Management: Systems, Features, and Best

Practices. In D. Barker, Web Content Management: Systems, Features, and

Best Practices (pp. 1-13). Sebastopol: O'Reilly Media, Inc.

Baxter, K., Courage, C., & Caine, K. (2015). Understanding your users: A practical

guide to user research methods (2 ed.). Morgan Kaufmann.

Dam, R. F., & Siang, T. Y. (2022). Interaction Design Foundation. Retrieved Februar

13, 2023, from https://www.interaction-design.org/literature/article/affinity-

diagrams-learn-how-to-cluster-and-bundle-ideas-and-facts

Design Council. (2019). Framework for Innovation: Design Council's evolved Double

Diamond - Design Council. Retrieved April 14, 2023, from

https://www.designcouncil.org.uk/our-work/skills-learning/tools-

frameworks/framework-for-innovation-design-councils-evolved-double-

diamond/

Express. (2023). Express. Retrieved April 11, 2023, from https://expressjs.com/

Fileformat. (2023, April 17). Fileformat. Retrieved from SCSS File Format - Sass

Cascading Style Sheet: https://docs.fileformat.com/web/scss/

Google. (2023, April 21). Design Sprints. Retrieved from Phase 3: Sketch, Crazy

8's: https://designsprintkit.withgoogle.com/methodology/phase3-

sketch/crazy-8s

REFERENCE LIST

 89

js-framework-benchmark. (2023). Js Framework Benchmark. Retrieved April 12,

2023, from https://rawgit.com/krausest/js-framework-

benchmark/master/webdriver-ts-results/table.html

Karlsen, J. T. (2021). Prosjektledelse - fra initiering til gevinstrealisering (5. utgave

ed.). Oslo: Universitetsforlaget.

Karlsson, J. (2022). MongoDB Schema Design Best Practices. Retrieved April 12,

2023, from

https://www.mongodb.com/developer/products/mongodb/mongodb-schema-

design-best-practices/

mdn web docs. (2023, February 18). mdn web docs. Retrieved from

XMLHttpRequest - Web APIs | MDN: https://developer.mozilla.org/en-

US/docs/Web/API/XMLHttpRequest

mdn web docs. (2023, April 14). SPA (Single-page application) - MDN Web Docs

Glossary: Definitions of Web-related terms | MDN. Retrieved from mdn web

docs: https://developer.mozilla.org/en-US/docs/Glossary/SPA

Miller, J., & Osmani, A. (2022). Rendering on the Web. Retrieved April 19, 2023,

from https://web.dev/rendering-on-the-web

MongoDB, Inc. (2023). Data Modeling Introduction. Retrieved April 12, 2023, from

https://www.mongodb.com/docs/v5.3/core/data-modeling-

introduction/#data-modeling-introduction

MongoDB, Inc. (2023, April 21). MERN Stack Explained. Retrieved from MongoDB:

https://www.mongodb.com/mern-stack

Node. (2023). About Node.js. Retrieved April 11, 2023, from

https://nodejs.org/en/about

Norsk Helseinformatikk. (2021, April 15). Norsk Helseinformatikk. Retrieved from

For tidlig fødsel (prematuritet) - NHI.no:

REFERENCE LIST

 90

https://nhi.no/sykdommer/barn/nyfodtmedisin/for-tidlig-fodsel-

prematuritet/?page=1

Oracle. (2023). What is a Content Management System. Retrieved April 12, 2023,

from https://www.oracle.com/content-management/what-is-cms/

Oslo Universitetssykehus. (2020, September 20). Oslo Universitetssykehus.

Retrieved from For tidlig fødte barn (prematur) på Ullevål sykehus - Oslo

universitetssykehus: https://oslo-universitetssykehus.no/behandlinger/for-

tidlig-fodte-barn-prematur?sted=nyfodtintensiv-pa-ulleval-sykehus

Quasar. (2023). Introduction to Quasar. Retrieved April 12, 2023, from

https://quasar.dev/introduction-to-quasar

Quasar. (2023). QSplitter. Retrieved April 18, 2023, from https://quasar.dev/vue-

components/splitter#qsplitter-api

Quasar. (2023). Stepper | Quasar. Retrieved April 18, 2023, from

https://quasar.dev/vue-components/stepper#qstepper-api

Railway Corporation. (2023, April 26). Railway Documentation. Retrieved from

Getting Started: https://docs.railway.app/getting-started

React Router. (2023, April 14). Feature Overview v6.10.0 | React Router. Retrieved

from React Router: https://reactrouter.com/en/main/start/overview#client-

side-routing

Richards, A. (2020, October 2). Medium. Retrieved from Learn the SCSS (Sass)

Basics in 5 Minutes | by Andrew Richards | The Startup | Medium:

https://medium.com/swlh/learn-the-scss-sass-basics-in-5-minutes-

73002653b443

Subramanian, V. (2019). Pro MERN Stack (2nd edition ed.). Bangalore, Karnataka,

India: Apress Media LLC.

REFERENCE LIST

 91

Team Asana. (2022, October 24). asana. Retrieved from Priority Matrix: Identify

What Matters and Get More Done [2023] [2022] • Asana:

https://asana.com/resources/priority-matrix

TypeScript. (2023, April 13). TypeScript: JavaScript With Syntax For Types.

Retrieved from TypeScript: https://www.typescriptlang.org/

Vite. (2023, April 18). Vite. Retrieved from Why Vite:

https://vitejs.dev/guide/why.html

Vue Community. (2023, April 26). UI Libraries | Vue Community. Retrieved from

Vue Community: https://vue-community.org/guide/ecosystem/ui-

libraries.html

Vue.js. (2023). Frequently Asked Questions | Vue.js. Retrieved April 12, 2023, from

https://vuejs.org/about/faq.html

Vue.js. (2023, April 13). State Management | Vue.js. Retrieved from Vue.js:

https://vuejs.org/guide/scaling-up/state-management.html#ssr-

considerations

FIGURE LIST

 92

8 Figure list

FIGURE 1 - AFFINITY DIAGRAM PRIORITIES __ 14

FIGURE 2 - PRIORITY MATRIX CREATED IN FIGMA. _____________________________________ 16

FIGURE 3 - EXTRACT FROM COMPETITIVE ANALYSIS ____________________________________ 17

FIGURE 4 - CRAZY 8'S ___ 20

FIGURE 5 - INITIAL LOW-FIDELITY PROTOTYPE__ 21

FIGURE 6 - FOURTH ITERATION OF LOW-FIDELITY PROTOTYPE ______________________________ 23

FIGURE 7 - EXTRACT FROM THE TECHNOLOGY EVALUATION _______________________________ 27

FIGURE 8 - FRONTEND DEPENDENCIES IN “PACKAGE.JSON”. ______________________________ 30

FIGURE 9 - REACT ROUTER IN “APP.JSX” ___ 32

FIGURE 10 - SITEMAP OF THE WEBSITE __ 33

FIGURE 11 - THE ARTICLECARD FOLDER CONTAINS THE "ARTICLECARD.JSX" AND "ARTICLECARD.SCSS" _ 34

FIGURE 12 – EXAMPLE OF HOW A COMPONENT IS STYLED: EVERY ELEMENT IS STYLED AND NESTED INSIDE

".ARTICLECARD" CLASSNAME, AND COLOR AND SPACING VARIABLES ARE IMPORTED IN THE FILE ___ 34

FIGURE 13 – API CALLS TO INTERACT WITH THE BACKEND USING AXIOS ______________________ 35

FIGURE 14 - THE FINISHED DESIGN OF THE WEBSITE ___________________________________ 37

FIGURE 15 - THE ARTICLE PAGE ___ 38

FIGURE 16 - THE SEARCH BAR, USERS CAN SEARCH FOR EXCERPT, TITLE AND CATEGORY ___________ 39

FIGURE 17 - THE "HAMBURGER" MENU PROVIDES EASY NAVIGATION ACROSS THE WEBSITE __________ 40

FIGURE 18 - BREADCRUMBS ARE PRESENT ON EVERY PAGE _______________________________ 40

FIGURE 19 – LINKS TO NESTED PAGES __ 40

FIGURE 20 - A SECTION WITH RELEVANT ARTICLES ____________________________________ 41

FIGURE 21 - BARNETS LØP (CHILD'S JOURNEY) ______________________________________ 42

FIGURE 22 - HOMEPAGE, MOBILE VIEW __ 43

FIGURE 23 - FOOTER __ 43

FIGURE 24 – USER REGISTRATION ___ 44

FIGURE 25 - DB-SCHEMA VISUALIZATION __ 48

FIGURE 26 - BACKEND FILE STRUCTURE ___ 50

FIGURE 27 - CMS SETUP, QUASAR CLI CONFIGURATION ________________________________ 54

FIGURE LIST

 93

FIGURE 28 - USER-STORE.TS EXCERPT. GLOBAL STATE MANAGING USER AUTHENTICATION. __________ 55

FIGURE 29 - AXIOS.TS: FACILITATES COMMUNICATION WITH THE BACKEND, ENSURING THE USERS

AUTHORIZATION TOKEN GETS SENT AS AUTHORIZATION HEADER FOR EACH REQUEST. __________ 56

FIGURE 30 - APICLIENT.TS, INTERFACE TO COMMUNICATE WITH THE BACKEND __________________ 57

FIGURE 31 - ROUTE PROTECTION, REQUIRESAUTH_____________________________________ 58

FIGURE 32 - ROUTE PROTECTION, ONLYSUPERADMIN ___________________________________ 58

FIGURE 33 - ROUTE PROTECTION, PUBLIC ROUTE _____________________________________ 58

FIGURE 34 - ROUTE PROTECTION, BEFORE EACH ROUTE _________________________________ 59

FIGURE 35 - CONTENTMANAGER.VUE INITIAL VIEW ____________________________________ 60

FIGURE 36 - QSPLITTER WITH CONFIGURATION AND PREVIEW _____________________________ 62

FIGURE 37 - QSPLITTER CODE SNIPPET __ 63

FIGURE 38 - QSTEPPER EXAMPLE __ 64

FIGURE 39 - ARTICLE SECTION MANAGEMENT __ 65

FIGURE 40 - EXPANDED SECTION (TEXT) ___ 67

FIGURE 41 - CONTENTLIBRARY.VUE __ 69

FIGURE 42 - MEDIALIBRARY.VUE __ 71

FIGURE 43 - MEDIALIBRARY.VUE, VIDEO TAB __ 72

FIGURE 44 - APICLIENT.TS - MEDIACLIENT CLASS ____________________________________ 73

FIGURE 45 - MEDIALIBRARY.VUE - SCRIPT SETUP _____________________________________ 74

FIGURE 46 - MEDIALIBRARYCONTENTUPLOADER.VUE ___________________________________ 75

FIGURE 47 - USERMANAGEMENT.VUE ___ 76

FIGURE 48 - USERMANAGEMENTEDITUSERMODAL.VUE _________________________________ 77

FIGURE 49 - RAILWAY SERVICE OVERVIEW __ 79

TABLE LIST

 94

9 Table list

TABLE 1 - USER PROFILES THAT EXPLAIN THE DIFFERENT FEATURES OF PRIMARY, SECONDARY, AND TERTIARY

USERS IN OUR STUDY. EACH PROFILE IS DESCRIBED IN MORE DETAIL, HELPING US BETTER UNDERSTAND

THE PEOPLE INVOLVED. ___ 11

APPENDIX

 95

10 Appendix

APPENDIX 1 – PERSONAS ___ 96

APPENDIX 2 - COMPETITOR ANALYSIS ___ 99

APPENDIX 3 - DATABASE SCHEMAS __ 100

APPENDIX 4 - CMS FILE STRUCTURE ___ 102

APPENDIX 5 - ARTICLE-STORE.TS ___ 103

APPENDIX 6 - CONFIGUREMAINCONTENTSECTIONADDBUTTONS.VUE _______________________ 104

APPENDIX 7 - CONFIGUREMAINCONTENT.VUE ______________________________________ 105

APPENDIX 8 - CONFIGUREMAINCONTENTSECTION.VUE_________________________________ 106

APPENDIX 9 - CONFIGUREMAINCONTENTSECTIONBUTTONS.VUE __________________________ 110

APPENDIX 10 - GANTT CHART ___ 112

APPENDIX 11 - APICLIENT.TS ___ 113

APPENDIX 12 - CLIENT FOLDER STRUCTURE __ 115

APPENDIX 13 - TECHNOLOGY EVALUATION ___ 116

APPENDIX 14 - USER TESTING FINAL PRODUCT ______________________________________ 117

APPENDIX 15 - NOTES FROM INTERVIEWS ___ 118

APPENDIX 16 - AFFINITY DIAGRAM __ 119

APPENDIX 17 - LOW FIDELITY USER TESTING _______________________________________ 120

APPENDIX

 96

Appendix 1 – Personas

Primary

APPENDIX

 97

Secondary

APPENDIX

 98

Secondary

APPENDIX

 99

Appendix 2 - Competitor analysis

APPENDIX

 100

Appendix 3 - Database schemas

Schema Fields Requirements

User username String, required, trim, unique

password String, required, trim

email String, required, trim, unique, lowercase

babyBorn Number, required: function () {

 return this.role === User
 },

role String, required, enum: ["superadmin", "admin",

"user"], defaulf: "user"
pinnedArticles Array of strings

Refreshtoken user ObjectID, ref: "User"

token String

expires Date

created String

createdByIp String

revoked Date

revokedByIp String

replacedByToken String

Article title String, required

slug String, required, unique

coverMedia altText: String, required; fileName: String,

required; mediaType: String, enum: ["image",
"video"], default: "image",

excerpt String, required, trim

content Array of objects

content.id Number, required

content.contentType String, required, enum: ["media", "text",

"media_and_text"], default: "text"
content.body Object

body.text String, trim

body.media Object

media.mediaPositionL

eft

Boolean

media.fileName String, trim

media.altText String, trim

media.mediaType String, required, enum: ["image", "video"],

default: "image",
date Date, required, default: Date.now

APPENDIX

 101

updatedAt Date, required, default: Date.now

weeks Array of numbers

afterBirth String, required, enum:["early-

intensive","stabilization","transition","homecare","

all",], default: "all"
sources Array of objects

sources.id Number, required

sources.title String, required

category title: String required; slug: String, required

Media mediaType String, required, enum: ["video", "image"],
default: "image",

name String, required

Category title String, required

slug String, required, unique

articles Array of ObjectId, ref: "Article"

APPENDIX

 102

Appendix 4 - CMS file structure

APPENDIX

 103

Appendix 5 - article-store.ts

APPENDIX

 104

Appendix 6 - ConfigureMainContentSectionAddButtons.vue

APPENDIX

 105

Appendix 7 - ConfigureMainContent.vue

APPENDIX

 106

Appendix 8 - ConfigureMainContentSection.vue

APPENDIX

 107

APPENDIX

 108

APPENDIX

 109

APPENDIX

 110

Appendix 9 - ConfigureMainContentSectionButtons.vue

APPENDIX

 111

APPENDIX

 112

Appendix 10 - Gantt chart

APPENDIX

 113

Appendix 11 - ApiClient.ts

APPENDIX

 114

APPENDIX

 115

Appendix 12 - Client folder structure

APPENDIX

 116

Appendix 13 - Technology evaluation

APPENDIX

 117

Appendix 14 - User testing final product

APPENDIX

 118

Appendix 15 - Notes from interviews

APPENDIX

 119

Appendix 16 - Affinity Diagram

APPENDIX

 120

Appendix 17 - Low Fidelity User Testing

