Kristian Wobbes, Jonas Lillebg Haugen, Adrian
Nysted Riise

Navigating Preterm Parenthood

A web-based solution for supporting parents of
premature infants

Bachelor’s thesis in Web Development
Supervisor: Eleftherios Papachristos

May 2023

2
2
=
2

8 & &
S nn
[P]
cnOonN
£2%
Eoe
'gw
&3 E
_
Yo
cE2a
=]
AUD
wn
Y
s}
2
%]
—
o
=
c
)
c
.©
[N
:
s}
Pz

C
.50
[}
[
[a]
el
c
©
]
o
=]
fra}
O
]
=
c
(o)
o
<
[
o
S
[}
©
[N

@ NTNU

Norwegian University of
Science and Technology

Kristian Wobbes, Jonas Lillebg Haugen, Adrian Nysted
Riise

Navigating Preterm Parenthood

A web-based solution for supporting parents of
premature infants

Bachelor’s thesis in Web Development
Supervisor: Eleftherios Papachristos
May 2023

Norwegian University of Science and Technology
Faculty of Architecture and Design
Department of Design

@ NTNU

Norwegian University of
Science and Technology

NAVIGATING PRETERM
PARENTHOOD

A web-based solution for supporting parents of
premature infants

Kristian Wobbes, Adrian Nysted Riise, Jonas Lillebg Haugen

NTNU Gjovik | Institute for Design

Foreword

In our journey towards obtaining our bachelor's degree, we explored the field of
web development. This thesis represents our combined efforts, dedication, and

enthusiasm for user-focused solutions.

We express our gratitude to our advisor, Eleftherios Papachristos, and extend our
appreciation to Oslo Universitetssykehus, Kenneth Stremmen, and Tom Stiris for

providing us with this opportunity.

This thesis presents the exploration, design, and development processes behind our
web application. Our group aimed to develop a solution meeting the needs and

expectations of the target audiences.

/ﬂém // @;;e (015 }j‘am \fobbes

Adrian Nysted Riise :) L H Kristian Wobbes
No 6 . Ouﬁen

Jonas Lillebg Haugen

Abstract

Title: Navigating Preterm Parenthood: A Web-Based Solution for Supporting

Parents of Premature Infants

Date: 15.05.2023

Participants: Adrian Nysted Riise, Jonas Lillebg Haugen, Kristian Wobbes
Supervisor: Eleftherios Papachristos

Employer: Oslo University Hospital

Subject: Web development

Keywords: Web development, web application, design, development
Number of pages: 80 + 40

Number of words: 14 641

Number of attachments: 17

This bachelor thesis investigates the challenge of providing up-to-date, customized,
and accurate information about premature infancy to support parents of premature
infants. We developed an online platform using a user-centered design approach,
incorporating relevant web development techniques, and creating a custom Content
Management System (CMS) for healthcare providers. By incorporating user
research and leveraging modern web technologies, we addressed the challenges
faced by parents and providers in accessing and managing information about
premature infancy. Our user-centered approach aims to ensure a seamless user
experience and the custom CMS allows for efficient content management. Upon
evaluation, we identified areas for improvement and provided recommendations for

further development.

Abstract (Norwegian)

Tittel: Veiledning for foreldre til for tidlig fadte: En nettbasert Igsning for statte til

foreldre av premature spedbarn

Dato: 15.05.2023

Deltagere: Adrian Nysted Riise, Jonas Lillebg Haugen, Kristian Wobbes
Veileder: Eleftherios Papachristos

Oppdragsgiver: Oslo Universitetssykehus

Fag: Webutvikling

Stikkord: Webutvikling, webapplikasjon, design, utvikling

Antall sider: 80 + 40

Antall ord: 14 641

Antall vedlegg: 17

Denne bacheloroppgaven undersgker utfordringen med a tilby oppdatert, tilpasset
og ngyaktig informasjon om for tidlig fedte barn for 3 stgtte foreldre til premature
barn. Vi utviklet en nettbasert plattform ved & bruke brukersentrerte
designmetoder, relevante webutviklingsteknikker og et innholdsstyringssystem
(CMS) for helsepersonell. Ved & inkludere brukerundersgkelser og utnytte moderne
webteknologier, hdndterte vi utfordringene foreldre og tilbydere star overfor nar det
gjelder a fa tilgang til og administrere informasjon om for tidlig fedte barn. Var
brukersentrerte tilneerming sikter mot a sikre en sgmlgs brukeropplevelse, og det
tilpassede CMS-et tillot effektiv innholdsadministrasjon. Etter evaluering

identifiserte vi omrdder for forbedring og ga anbefalinger for videreutvikling.

Table of contents

FOREWORD 1
ABSTRACT 2
ABSTRACT (NORWEGIAN) 3
TABLE OF CONTENTS 4
1 INTRODUCTION 6
1.1 CURRENT SOLUTIONS 6
1.1.1 Oslo Universitetssykehus 6
1.1.2 Norsk helseinformatikk 6
1.1.3 Project owner concerns about today’s solutions 7
1.2 PROBLEM STATEMENT 7
1.3 PROJECT SCOPE 8
2 EXPLORATION 9
2.1 USER RESEARCH
2.1.1 Product owner’s needs
2.1.2 User profiles 10
2.1.3 Interviews 11
2.1.4 Affinity diagram 13
2.1.5 Personas 14
2.1.6 Priority matrix 15
2.2 COMPETITOR ANALYSIS 16
2.3 SUMMARY 18
3 DESIGN 19
3.1 METHODS 19
3.1.1 Crazy 8’s 19
3.1.2 Low-fidelity prototyping 21
3.2 CONDUCTING USER TESTS 21
3.2.1 Creating the tasks 22
3.2.2 Feedback and results 22
3.3 SUMMARY 23
4 DEVELOPMENT 24

5

10

4.1 CHOOSING TECHNOLOGIES

4.1.1 CSRvs. SSR

4.1.2 Deciding on an approach

4.2 FRONTEND

4.2.1 Frontend technologies

4.2.2 Setting up the frontend

4.2.3 The finished design

4.2.4 Frontend summary

4.3 BACKEND

4.3.1 Backend technologies

4.3.2 Setting up the backend

4.4 CONTENT MANAGEMENT SYSTEM (CMS)

4.4.1 Technologies

4.4.2 |Initial setup

4.4.3 ContentManager.vue / “Innholdsbehandler”

4.4.4 ContentLibrary.vue / “Eksisterende innhold”

4.4.5 MedialLibrary.vue / “Mediebibliotek”

4.4.6 UserManagement.vue / “Administrer brukere”

4.4.7 File structure and naming conventions

4.5 DEPLOYING THE APPLICATION

4.6 APPLICATION EVALUATION

4.6.1 Conducting the test

4.6.2 Results

4.6.3 Summary

REFLECTION

5.1 ALIGNING THE FINAL DELIVERABLE WITH THE PROBLEM STATEMENT

5.2 LEARNING OUTCOMES

5.3 CHALLENGES DURING DEVELOPMENT

54 RECOMMENDATIONS TO THE PRODUCT OWNER

CONCLUSION

REFERENCE LIST

FIGURE LIST

TABLE LIST

APPENDIX

24
24
26
28
28
29
36
45
46
46
47
51
52
54
60
68
70
76
78
79
80
80
81
81

82

82
83
85
86

87

88

92

94

95

INTRODUCTION

1 Introduction

This thesis is a closing bachelor project in web development at the Institute for
Design at NTNU Gjgvik. The main contributions to this thesis are two web
applications aiming to provide information about prematurely born children. We
developed a user-facing MERN application along with a headless MEVN Content
Management System to support medical professionals in maintaining the

application.

1.1 Current solutions

The challenges faced by premature infants and their families are addressed by a
combination of efforts from healthcare institutions and informational resources.
Oslo Universitetssykehus and Norsk Helseinformatikk are two key players in

providing information and resources in this domain.

1.1.1 Oslo Universitetssykehus

Oslo Universitetssykehus provides comprehensive information on premature babies
on their website, covering aspects such as diagnosis, treatment, follow-up care, and
practical guidance for parents. The hospital emphasizes a family-centered care
approach and offers details about interdisciplinary collaboration to support

premature infants and their families (Oslo Universitetssykehus, 2020).

1.1.2 Norsk helseinformatikk

Norsk helseinformatikk offers general information about premature babies,
including causes, treatments, and support organizations. The website discusses
potential consequences of prematurity, treatment strategies, long-term
complications, and patient organizations like Prematurforeningen (Norsk
Helseinformatikk, 2021).

Both Oslo Universitetssykehus and Norsk Helseinformatikk contribute to addressing

the challenges faced by premature infants and their families by providing valuable

INTRODUCTION

information and resources. Oslo Universitetssykehus focuses on medical care and
support, while Norsk helseinformatikk offers a broader overview of prematurity,

including causes, treatments, and potential long-term consequences.

1.1.3 Project owner concerns about today’s solutions

As per today, the information available to parents of prematurely born children is
limited and difficult to find. Information displayed at Oslo Universitetssykehus (Oslo
Universitetssykehus, 2020) own webpage lacks content and interactivity. To find
information, the user will have to navigate through various pages and dropdown

menus, making it difficult to reach information related to the user.

1.2 Problem statement

This thesis addresses the problem of:

“How can we develop an online platform to provide up to date,
customized, and accurate information about premature infancy to

support parents of premature infants?”,

and presents a solution through the research and development of a web application
that leverages modern technologies and practices. To tackle this issue, the research

is guided by the following questions:

1. How can web development techniques be applied to create a user-friendly
interface that addresses the specific needs of parents during these critical
stages of their parenting journey?

2. How can we use web technologies to develop a solution that both answers
the client's request and fits the user's needs?

3. How can we allow the healthcare providers to efficiently update and
disseminate! information relevant to parents during the hospital stay and

homecare period?

1 Spread (information) widely.

INTRODUCTION

1.3 Project scope

1.

Minimum Viable Product: The final product in this thesis will be developed
to meet the criteria as a Minimum Viable Product (MVP).

WCAG: The Web Content Accessibility Guidelines (WCAG) are a vital part of
developing a web application. They were followed during the development of

this project; however, this thesis will not cover them in detail.

. Deployment: The product will be deployed only for user testing and to

showcase the product to the product owner, further deployment and
performance testing will have to be conducted by the product owner.
Provide an application according to product owner wishes: Our
objective is to create an application that effectively addresses the product
owner’s requirements. To achieve this, we will conduct comprehensive user
research and user testing to not only validate but also refine the product
owner’s suggestions. This approach will guarantee a high level of usability,
ultimately resulting in a well-received application.

Content creation: The thesis will focus on the structure and navigation
within the main website rather than the content itself within the articles.

Example content will be generated for user testing and showcasing purposes.

EXPLORATION

2 Exploration

In the Exploration chapter, we investigate the current landscape of the problem
domain, focusing on understanding the needs and preferences of the target
audience. By conducting user research, such as interviews, affinity mapping, and
personas development, we establish a foundation for our design decisions.
Additionally, we perform a competitor analysis to obtain inspiration from other
websites and uncover opportunities for our solution to stand out. The insights

gained in this chapter serve as a crucial starting point for the Design phase.

2.1 Userresearch

To ensure the development of a quality product, it is crucial to identify users early,
enabling the collection of meaningful and relevant information through user

research (Baxter, Courage, & Caine, 2015, pp. 32-40).

To gain a thorough understanding of our objectives, we held discussions with the
project owner to obtain valuable insights into their vision for our project. During
these sessions, we discovered that, over the past two years, multiple teams had
been working towards creating content for a website targeting parents of premature

children.

At the beginning of this phase, we faced numerous possibilities, prompting us to
develop a structured project plan. This plan involved reviewing the existing website
content and conducting further user research through semi-structured interviews.
Our aim for this phase was to better understand the needs and pain points of

parents of premature infants and other stakeholders.

2.1.1 Product owner’s needs

The healthcare project team that the product owner belongs to aims to create a

website for expectant parents, current parents, and others seeking information

EXPLORATION

about various aspects related to premature babies. The websites offered by Oslo

University Hospital are unsuitable due to their limitations.

The healthcare project team requires assistance and came with the following

suggestions:

1. An X-axis displaying a timeline from before and after birth, as well as before
and after admission to the neonatal intensive care unit.

2. A Y-axis with an interactive image of a body, where users can "click" on
various body parts, such as the heart, to be directed to a separate page
containing information about relevant medical conditions.

3. An interactive service for parents, allowing them to receive tailored
information based on their child's progress. For instance, if their child was
born three months early and is now in their sixth week of life, the service
would provide insights into what parents can expect during the current week

and the following week.

2.1.2 User profiles

In our efforts to understand our target audience, we created user profiles that
categorize users into primary, secondary, and tertiary segments (Table 1 - User
Profiles that explain the different features of primary, secondary, and tertiary users
in our study. Each profile is described in more detail, helping us better understand
the people involved.). This process was iterative, meaning that as we gained further
insights through user research, we were able to refine and update our user profiles

accordingly.

Following discussions with our product owner, the team recognized significant data
points including age, location, and potential disabilities. Through our interviews
detailed in section 2.1.3, we managed to collect valuable data points such as

education level, technology proficiency, and the specific devices being utilized.

10

EXPLORATION

Parents of premature infants (Primary) - Charachteristic Ranges
Age: 18-45 years (Average: ~32 years)
Gender: Both
Education: |All (Predominantly higher education)
Location: |Norway (Predominantly South-East, around Oslo)
Technology: [Some computer experience, high-speed internet
Devices: |Smariphone, Tablet, Laptop (Predominantly smartphone)
Disabilities: |No limitations, might be in a bad mental state
Relatives of the parents of premature infants (Secondary) - Characteristic Ranges
Age: Al
Gender: Both
Education: |All
Location: |Norway (Predominantly South-East, around Oslo)
Technology: |From no experience to expert
Devices Smartphone, Tablet, Laptop (Predominantly smartphone)
Disabilities: |No limitations
Healthcare workers (Tertiary) - Characteristic Ranges
Age: 18-70
Gender: Both (Predominantly women)
Education: [Higher education
Location. |Norway (Predominantly South-East, around Oslo)
Technology: [Some computer experience, high-speed internet
Devices: Smartphone, Tablet, Laptop (Predominantly smartphone)
Disabilities: |No disabilities which would prevent them from being a healthcare worker
Table 1 - User Profiles that explain the different features of primary, secondary, and

tertiary users in our study. Each profile is described in more detail, helping us better

understand the people involved.

2.1.3 Interviews

“In the broadest sense, an interview is a guided conversation in which one person

seeks information from another” (Baxter, Courage, & Caine, 2015, p. 220).

Interviews are a design method used to gather information and insights from

various stakeholders involved in a project or problem. They can be conducted in

various formats, including structured, semi-structured, or completely unstructured

interviews,

depending on the goals and needs of the research. Interviews are

11

EXPLORATION

flexible and can be used in conjunction with other design methods, such as
personas, to gain a deeper understanding of users' needs, preferences, and

motivations.

Since the nature of the interview was to gain a deeper understanding of what the
underlying problems were, the group opted for semi-structured interviews. These
interviews were conducted with one couple admitted to the neonatal intensive care
unit at Rikshospitalet, a group of parents from Prematurforeningen, and three

different nurses from Oslo University Hospital.
Interview guides

The group created two different interview guides, one for parents and one for
nurses. For the parents, the goal was to identify challenges in the current solutions
and better understand the experiences of parents before, during, and after the birth
of their premature babies. Questions addressed topics such as information-seeking
behavior, the type of information they found, and their thoughts on the quality of

information.

The guide aimed at nurses gathered insights from nurses working with premature
babies and their parents. The goal was to identify challenges with current solutions
and understand how nurses contribute to creating a sense of security among
parents of premature infants. Questions addressed the type of information parents
lack, what information they ask for, and how nurses provide information. The
interview also explored how parents respond to the information provided, the level

of detail given, and the most common questions asked.

During the interviews, one group member led the conversation and asked
questions, while the two others took notes of the answers given. The notes were

written down in Miro as shown in Appendix 15 - Notes from interviews.
Results

The interviews revealed that both parents and nurses emphasize the importance of
communication, trust, and support. Parents are primarily concerned about the level

and quality of information provided and the potential long-term impacts on their

12

EXPLORATION

child's development and health. They seek detailed information about their baby's
condition, treatment, and future prognosis. They also value communication and
support from healthcare professionals, highlighting the importance of trust and

confidence in these relationships.

On the other hand, nurses focus on providing appropriate, individualized
information and support to parents. They acknowledge the importance of a strong
nurse-parent relationship for trust and confidence-building. Nurses understand that
different parents may require different levels of information and support and
prioritize empowering parents through education and involvement in their child's
care. They also recognize the need to address parents' mental health and well-

being, as well as their child's condition.

2.1.4 Affinity diagram

An affinity diagram is a collection of large amounts of data that is organized into
groups or themes based on their relationships. Post-it notes are used, either
physical or digital notes, to sort based on similarities. This makes it easier to
extract important findings and themes that are vital to the further process of the
project (Dam & Siang, 2022).

To begin, the group utilized digital post-it notes containing key findings from
interviews and existing content reviews. Initially, the notes were sorted into distinct
categories such as hospital stay information, improvement ideas, reassuring
knowledge, experiences, and child communication. The purpose of this
categorization was to make the information more comprehensible. Next, the group
selected the most relevant categories and identified the critical findings within each

one.

The three main categories, as shown in Figure 1 - Affinity diagram priorities, were:
information regarding hospital stay, suggested improvements, and reassuring
knowledge. As shown in Appendix 16 - Affinity Diagram, the group then determined
which priorities were essential for the project within each of these categories, some

of those priorities were that it must be easy to update the information and easy to

13

EXPLORATION

navigate. By using these categories, the group was able to gain a better
understanding of the underlying problems, and the most significant issues were

used to create the personas.

Figure 1 - Affinity diagram priorities

2.1.5 Personas

Personas is a tool that takes a user profile and then fills in details to create a
“typical” user. A persona is simply a fictional individual created to describe a
specific user. It can be difficult to relate to an abstract description of a problem or a
user. Therefore, it would be easier to identify with a persona that gives life to a user
(Baxter, Courage, & Caine, 2015, p. 41).

In a project, it is recommended that multiple personas are developed to represent
each user profile, as this approach facilitates the creation of a diverse set of traits
for each user category. Focusing solely on a single persona runs the risk of
excluding crucial data from end users who do not conform to the parameters of the

chosen persona (Baxter, Courage, & Caine, 2015, p. 41). Due to time constraints

14

EXPLORATION

the group focused primarily on the personas for the primary user group, the
parents of premature infants, as shown in Table 1 - User Profiles that explain the
different features of primary, secondary, and tertiary users in our study. Each
profile is described in more detail, helping us better understand the people

involved.

As part of the project, the group devised three personas to embody the primary
user profile, drawing upon insights accumulated from interviews and conversations
with the product owner. Among these personas, a single primary persona and two
secondary personas were created, shown in Appendix 1 - Personas, with the latter
primarily shaped by the needs of the former, yet with additional requirements that
could be accommodated without impeding the product's capacity to satisfy the
primary persona. These personas were vital to the task of safeguarding the user’s

genuine needs.

2.1.6 Priority matrix

A priority matrix is a visual representation that organizes tasks according to their

impact and effort. The chart is divided into categories, including:

e High effort, high impact
e High effort, low impact
e Low effort, high impact

e Low effort, low impact

The objective is to prioritize tasks based on their significance and manageability
(Team Asana, 2022).

The group extracted crucial points from the interviews and arranged them in a
priority matrix. The matrix featured a Y-axis representing the user value from low

to high and an X-axis illustrating feasibility from low to high.

Key points with the highest user value and feasibility included "preparing parents
for changes", "using simple language", and "providing information about hospital
stays". Points with high value but low feasibility were "offering multiple languages”,

"utilizing explanatory animations", and "incorporating video illustrations". This

15

EXPLORATION

information assisted the group in determining which tasks to prioritize and address

first.

High

Value to
the user

Low|

Priority Matrix of Main Points From Interviews

Caplanalary Video IAfermatia ¥ Prepare
animations lustrations baut parents for
aspital sLay U changes
— —
Experiences Informatio nformation
Sekefelt rom olher suitable lor abou
| Lol k i
Ay 1o 2o
Multiple o T Ll
CONTMTRINICALS
languages Bl 01y Cavegorized wiLh the chil
.
— - — e
Easy to
update
Ability o ; .
ain content
infarmation
Feasability High

Figure 2 - Priority Matrix created in Figma.

2.2 Competitor analysis

Conducting a competitor analysis can help to gain a better understanding of

competitor solutions and differentiate a product in a particular industry. It allows for

identifying unique features and characteristics that set a product apart from its

competitors, as well as evaluating competitor strengths and weaknesses to enhance

and improve a product.

The group analyzed several webpages in the healthcare domain to conduct a

competitor analysis on existing solutions. Figure 3 - Extract from competitive

16

EXPLORATION

analysis shows an excerpt of our competitive analysis, for a full overview see

Appendix 2 - Competitor analysis.

Helsenorge: https://www.helsenorge.no/fodsel/prematur-fod:

Name Strengths Weaknesses Improvements

Figure 3 - Extract from competitive analysis

During the competitor analysis, our primary focus was the following aspects:

Structure of content: By analyzing the content structure of competitor
solutions, we aimed to identify industry standards and best practices in
organizing and presenting information. This knowledge assisted in creating a
user-friendly and easily navigable product, ensuring alignment with user

expectations in the target market.

Visual profile: Assessing the visual elements of competitor solutions, such
as color schemes, fonts, and imagery, provided insights into what is visually
appealing and effective within the industry. This information aided in the
development of a distinctive and memorable brand identity and an engaging

user experience.

Language: By examining the language and tone used by competitors, we
gained insights into the most effective communication style for our target
audience. This understanding allowed us to create clear, concise, and
persuasive messaging that resonates with users and sets our product apart

from the competition.

Categories: Understanding how competitors group information enabled us
to design a product that better meets user needs and provides a more

comprehensive solution.

To summarize their findings, the group created a table in Miro that outlined the

strengths, weaknesses, and potential areas of improvement for each website. Each

17

EXPLORATION

group member was assigned two to three solutions to analyze and input data into

Appendix 2 - Competitor analysis.

2.3 Summary

In the Exploration chapter, the team delved into the problem domain, focusing on
understanding the target audience's needs and preferences. User research, affinity
mapping, and persona development provided a solid foundation for design
decisions. Additionally, a competitor analysis identified opportunities for the

proposed solution to stand out.

User research was conducted through interviews with parents and nurses to gather
relevant information. Based on these insights, user profiles were established and
iteratively refined. A priority matrix was used to identify and prioritize the most

impactful and feasible tasks to tackle.

The group also analyzed competitor websites to assess their strengths, weaknesses,
and areas that could be improved. The insights gained from the Exploration chapter

served as a foundation for the subsequent Design phase.

18

DESIGN

3 Design

The Design chapter explores the process of creating a user-centric interface for the
web application. Various ideation and prototyping techniques, such as Crazy 8s and
Lo-Fi/Hi-Fi prototypes, are employed to iterate and refine design concepts. User
tests are conducted to ensure the design meets user needs and expectations,
providing valuable feedback for further improvements. This chapter emphasizes the
importance of a user-centered approach in developing an effective and engaging

web application.

3.1 Methods

3.1.1 Crazy 8’s

Crazy 8's, a core Design Sprint method, was employed in our design process to
generate diverse ideas and encourage creativity (Google, 2023). We performed this
exercise by sketching eight distinct concepts in eight minutes, focusing on
communicating the ideas rather than artistic perfection. As shown in Figure 4 -
Crazy 8's, the generated sketches enabled us to explore unconventional solutions
and identify potential directions for our web application design. This method was
instrumental in overcoming initial design constraints and fostering innovative

thinking within the team.

19

DESIGN

Figure 4 - Crazy 8's

20

DESIGN

3.1.2 Low-fidelity prototyping

Low-fidelity (Lo-Fi) prototyping was employed in the design process to create
simple, interactive representations of the web application. Figma, a collaborative

design tool, was utilized to create and iterate on Lo-Fi prototypes.

The initial low-fidelity prototype (Figure 5) was developed based on insights from
the Crazy 8's exercise and discoveries mentioned in the exploration phase. This
prototype allowed for a focus on the core structure and functionality of the web

application, without distraction from visual design elements.

c- @
Velkommen bruker

Bamet ditt

Ditt sykehus

Opphold

~~~ B e—

Foreldrerollen
£t o e e o b

Footer

Figure 5 - Initial low-fidelity prototype

3.2 Conducting user tests

Following the initial prototype development, a series of user tests were conducted
with eight students on campus to gather feedback and identify improvements.
Based on this input, four iterations of the low-fidelity prototype were completed,

refining the design to better meet user needs.

21



DESIGN

3.2.1 Creating the tasks
Four tasks were assigned to each participant using the low-fidelity prototype:

Find information about the most common complications for your child.
Find the packing list for your stay.

From the packing list, navigate to the facilities the hospital has.

s o=

From the facilities, navigate to your partners.

Task data, including participant number, task number, time, mistakes, and notes,
was documented in an Excel table as shown in Appendix 17 - Low Fidelity User

Testing.

3.2.2 Feedback and results

For each test iteration, mistakes and feedback were used to improve the prototype.
Feedback included:

e Thumbnail description should have a length limit.
¢ Navigation buttons should have better descriptions.
e Breadcrumbs should be implemented.

e Unsure about results in search bar.

Based on feedback from participants, a last version of the low fidelity prototype was
created.

22



DESIGN

emc- afienc- oflesc- coflenc- coflesc- coflenc- afjesc- coflecsc- cafjlemc- o3

Velkommen bruker remature barn Komplikasjoner Barnets lop Rikshospitalet Rikshospitalet's fasiliteter Kontaktpersoner Foreldrerolien

ke o ot
T LU

Premature barn
Foreldrerollen

Ditt sykehus

Kontaktpersoner

-

Figure 6 - Fourth iteration of low-fidelity prototype

3.3 Summary

This chapter focuses on creating a user-centric web application interface using
ideation techniques like Crazy 8s and Lo-Fi/Hi-Fi prototypes. User tests validate the
design and offer valuable feedback for improvements, emphasizing a user-centered
approach. The design process involved Crazy 8's exercises, low-fidelity prototyping,
and user tests, leading to four prototype iterations based on participant feedback. A
final low-fidelity prototype was created accordingly. The group was ready to move

on to developing the solution.

23



DEVELOPMENT

4 Development

The Develop chapter focuses on the technical aspects of building web applications.
We begin by discussing the selection of appropriate technologies, considering
factors such as client-side rendering (CSR) versus server-side rendering (SSR) and
the choice of backend and frontend frameworks. We then outline the process of
setting up the backend and creating a custom content management system (CMS)
tailored to the project's requirements. The chapter also covers frontend
development using React and SASS?, as well as the deployment of the application.
This section demonstrates the practical application of web development

technologies in bringing the design to life.

4.1 Choosing technologies

Choosing the appropriate technologies for an application is a critical decision in its
development process. Making the wrong choice could lead to user dissatisfaction

and low performance scores.

41.1 CSRvs. SSR

When considering the appropriate technologies for a website, it is crucial to
introduce the two main approaches for modern website rendering: client-side and

server-side.
Client-Side Rendering

In Client-Side Rendering (CSR), web pages are rendered directly in the user's
browser using JavaScript, where all the processing of logic, data retrieval, template
rendering, and routing is done on the client-side instead of the server (Miller &
Osmani, 2022).

2 Syntactically Awesome Style Sheets: https://sass-lang.com/

24



DEVELOPMENT

A Single-page Application (SPA) is a web application design that initially loads a
single web document and dynamically updates its body content using JavaScript
APIs such as XMLHttpRequest and Fetch when displaying different content. This
approach offers users a more dynamic experience and potential performance
improvements by not reloading entire pages from the server. However, it also
presents drawbacks, including SEO challenges, increased effort required to manage
state and navigation, and complexities in performance monitoring (mdn web docs,
2023).

The advantage of utilizing Client-Side Rendering (CSR) to render web pages is that
it allows for faster initial loading times, as the server only sends the necessary
HTML, CSS, and JavaScript files required for rendering the page. CSR is an excellent
option for Single-Page Applications (SPAs) that load a considerable amount of
dynamic content as it can enhance the overall user experience and application
performance. However, a drawback of using CSR with SPAs is that subsequent
loading of data and dynamic content may be slower, as the client-side needs to

fetch data and render the content after the initial page load.
Server-Side Rendering

Server-Side Rendering (SSR) involves the generation of HTML pages from the
server in response to webpage navigation, eliminating the need for extra roundtrips
for data retrieval and template rendering on the client-side as it is processed before

the browser receives a response (Miller & Osmani, 2022).

Using Server-Side Rendering (SSR) for a webpage offers advantages, including
improved Search Engine Optimization (SEQO) as the fully rendered HTML file is sent
from the server. This enables search engines to efficiently index the content,
potentially enhancing the page's search engine ranking. However, this approach
also has some drawbacks, including increased server load and slower initial loading
times as the server needs to process data retrieval and template rendering before

sending the fully rendered page to the client.

25



DEVELOPMENT

Summary

To summarize, Client-Side Rendering (CSR) involves rendering webpages directly in
the user’s browser using JavaScript, allowing for faster initial loading times and
enhanced user experience for Single-Page Applications (SPA). However, it presents
some drawbacks, including SEO challenges and slower subsequent loading of data

and dynamic content.

On the other hand, Server-Side Rendering (SSR) generates HTML pages from the
server in response to webpage navigation, eliminating the need for extra roundtrips
for data retrieval and template rendering on the client. This approach offers
improved SEO and potentially better search engine rankings but can also result in

slower initial loading times and increased server load.

4.1.2 Deciding on an approach

As described in section 4.1.1 CSR vs. SSR, there are two primary approaches when
it comes to rendering webpages. To choose the right approach for our project, the
group needs to consider factors such as the project requirements, user experience,

and development resources.
Factors when choosing technologies

When it comes to selecting a technology for rendering webpages, the group

identified factors to consider. These include:

o Features
e Ease of use/learning curve
e Tradeoffs

e Costs

Considering these factors can help the group make an informed decision when

selecting the appropriate technology for the project.

26



DEVELOPMENT

Evaluating Technology Stacks

To evaluate different technology stacks, it's important to consider the factors
mentioned in the previous section. The group created a spreadsheet that compares

the options based on these factors.

Figure 7 shows an excerpt of the spreadsheet used to evaluate the different
technologies. See, Appendix 13 - Technology evaluation for the complete version of

the evaluation.

Technology Description Features Ease of use/learning curve Tradeoffs Costs

JavaScript library for creating user interfaces. ~ Very popular, Intermediate More package installs. Client Free
Uses a declarative syntax and is component JSX syntax, unidirectional data flow, rendered

based Virtual DOM, extensions
React

Figure 7 - Extract from the technology evaluation

Choosing the MERN / MEVN stack

Based on the factors discussed above, the group decided that a Client-Side
Rendered approach was the optimal choice for the project due to its fast initial

render, user-friendliness, and decreased server load.

The MERN stack is a full-stack JavaScript framework for developing web
applications. MERN is an acronym for MongoDB, Express, React.js and Node.js.
These are the four technologies that make up the layers of the stack. The MEVN
stack is a variation of MERN, that uses Vue.js instead of React.js for the frontend
(MongoDB, Inc, 2023).

The group opted for a mix of MERN and MEVN stacks to meet the project's
demands for efficiency, scalability, and time constraints. Vue 3's exceptional
performance and Quasar's extensive component library allowed for a rapid setup
and swift application development. This enabled the group to swiftly develop the
CMS with a familiar user interface and customize the frontend of the application

with React.js.

27



DEVELOPMENT

In the upcoming sections, we will explore these technologies in greater depth,

including their usage in the frontend, backend and CMS of the application.

4.2 Frontend

The frontend application is designed to be used by the end-users, primarily parents
of prematurely born babies. It serves as the software system's visual and

interactive layer, rendering and displaying content, and processing user inputs.

The frontend application was developed using React as the main JavaScript library.
It was styled using SCSS and communicates with the backend using Axios3. React
Router (React Router, 2023) allowed the application to operate with client-side
routing, enabling our application to update the URL upon clicking a link without the

need to request an additional document from the server.

4.2.1 Frontend technologies
React

React is an open-source JavaScript library developed by Facebook for building user
interfaces and has gained widespread popularity due to its emphasis on
component-based architecture, which promotes reusability and modularity in web

applications (Arancio, 2021). React’s main concepts include components, state, and
props.

Components are self-contained, reusable pieces of UI that can manage their own
state, while props are used to pass data between components. React applications
have improved performance through a virtual DOM, which optimizes the updating of
the actual DOM, resulting in faster rendering (Arancio, 2021). The library also
integrates seamlessly with other tools, libraries, and frameworks, making it an ideal

choice for modern web application development.

3 Axios: https://axios-http.com/docs/intro

28



DEVELOPMENT

SCSS/SASS

SCSS (Sass) is a CSS preprocessor that extends the capabilities of CSS, making it
more maintainable, modular, and scalable than normal CSS (Richards, 2020). SCSS
introduces features such as variables, nesting, mixins, and inheritance, which
streamline the development process and help manage large-scale projects more
effectively. By utilizing SCSS, developers can create organized, reusable, and easily
maintainable stylesheets, improving the overall development experience
(Fileformat, 2023).

4.2.2 Setting up the frontend

The frontend was set up using Vite with the command “yarn create vite client”.
“client” was the name of the folder which was located inside the main project folder
alongside the backend and the CMS.

Vite

Vite was used to create our application because it significantly improves
development experience by addressing performance bottlenecks commonly
encountered with traditional JavaScript tooling. Vite leverages native ES modules in
the browser and benefits from the rise of JavaScript tools written in compile-to-
native languages. It optimizes the dev server start time by categorizing modules

into dependencies and source code (Vite, 2023).

Dependencies are pre-bundled using esbuild, a faster tool written in Go, while
source code is served over native ESM, allowing the browser to manage part of the
bundling process. This results in quicker server starts, more efficient file processing,
and an overall better development experience, ultimately boosting developers'

productivity and satisfaction (Vite, 2023).
Installing Dependencies
Key dependencies include:

axios (v1.3.4): Enables browser XMLHttpRequests.
jwt-decode (v3.1.2): Decodes JWT tokens.

29



- moment (v2.29.4): Parses JavaScript time formats.

- react-router-dom (v6.10.1): Provides React Router bindings.

- sass (v1.58.3): JavaScript-compiled Dart Sass distribution.

1
2
3
a
5
6
7
8
9

10
11
12
13
14
15
16
17

"dependencies": {
"axios"

¢ "r1.3.40,

"hamburger-react": "22.5.0",
"history": "~5.3.0",
"html-react-parser": "73.0.15",
"jwt-decode": "~3.1.2",
"lucide-react": ""0.129.0",
"moment": "72.29.4",

"react”
"react-
"react-
"react-
"react-
"react-
"react-

"sass":

: "~18.2.0",
accessible-accordion”: "~5.0.0",
dom": "~18.2.0",
helmet-async": "~1.3.0",
router-dom": ""6.10.0",
router-dom-last-location™: "*0.2.1",
toastify": "~9.1.2",

"~1.58.3"

Figure 8 - Frontend dependencies in “package.json”.

Folder Structure (Appendix 12 - Client folder structure)

DEVELOPMENT

The client’s folder structure is built upon Vite’s default structure. Most of the folders

and code lives within the “src” folder, and the group tried to separate content into

meaningful folders to better organize code and maintain separation of concerns.

e public: Favicon

e src: Contains the primary source code for the application.

o api: Files such as APIcalls using axios.

30



DEVELOPMENT

o assets: Client-side assets such as icons.

o components: Custom built React components.

o pages: React components used as elements in React Router.

o routes: Private and public routes based on AuthContext.

o scss: Color and spacing variables, and a global “index.scss” file.

o utils: AuthContext and helper functions.
Routing

React Router was utilized to implement client-side routing. In contrast to
conventional websites that require server requests for each page load, client-side
routing updates the URL without fetching new documents. This approach allows for
immediate rendering of new UI elements and data retrieval, leading to quicker and

more engaging user experiences, including animations (React Router, 2023).

The App component is a functional component that sets up the application's
routing. It uses createBrowserRouter to define an array of route objects, each
containing a path and an associated element. Nested within these routes are child

routes with their own paths and elements.

The top-level route contains the RootPage element, an ErrorNotFound element for
handling errors, and an array of child routes. These child routes include the home
page, public routes for login, registration, and user validation, a “forgot” route for
password reset, a private route for logout, and several other routes with different

paths.

When a user navigates to a specific path, the corresponding element for that route
is rendered. The RouterProvider component wraps the entire routing structure,

allowing the defined routes to be used throughout the application.

31



DEVELOPMENT

1 const App = () => {

21 const router = createBrowserRouter([

3 {

4 path: "/",

5 element: <RootPage />,

6 errorElement: <ErrorNotFound />,
7 children: [

8

9

path: "",
element: (
<>
<HomePage />
<ShortcutsWithArticles />
</>
)

element: <PublicRoute />,
children: [
{
path: "login",
element: <Login />,

path: "register",
element: <Register />,

path: "validate-user”,
element: <ValidateUser />,

1

element: <ForgotRoute />,
children: [
{
path: "password-reset”,
element: <ForgotPassword />,
b
L

element: <PrivateRoute />,
children: [
{
path: "logout",
element: <Logout />,
b
1

path: "ditt-sykehus/*",
element: <DittSykehusWithArticles />,

path: "foreldrerollen/*",
element: <ForeldreRollenWithArticles />,

path: "kontaktpersoner”,
element: <KontaktPersonerWithArticles />,

path: "premature-barn/*",
element: <PrematureBarnWithArticles />,

path: "artikkel/:slug",
element: <ArticlePage />,

b
i)

return <RouterProvider router={router} />

Figure 9 - React router in “App.jsx”

32



DEVELOPME

(..l
Hjem
\
('..
Premature barn
.

|

Foreldrerollen

(I e
Barnets lop
L
(t e
Komplikasjoner
o
r‘..
Kommunikasjon
.
(l (L]
Ernaering
\

(...
Andres erfaringer
\_
(-...
Rettigheter
\_
(...
Kontaktpersoner
\_
(..I
For opphold
\
r...
Under opphold
\_
r'..
Etter opphold
\_

NT

LLL
Kontaktpersoner

Ditt sykehus
(...
Fasiliteter
\_
r‘..
Pakkeliste
\_
(...
Kart over sykehus
.
(..I
Fer opphold
\
f...
Under opphold
\_
r...
Etter opphold
\

Figure 10 - Sitemap of the website

33



DEVELOPMENT

Setting up SCSS

Each component resides in its own folder, accompanied by a respective SCSS file.
To prevent global styling conflicts, styles are nested under the component's

className. A global SCSS file manages overarching styles throughout the app.

Separate files store color and spacing variables, enabling easy access by importing
them when necessary. The color variables encompass the entire color palette for

the platform, while spacing variables define pixel-based distances.

v & components
“ @ ArticleCard

@ ArticleCard.jsx
? ArticleCard.scss

Figure 11 - The ArticleCard folder contains the "ArticleCard.jsx" and "ArticleCard.scss"

[ N

1 @use "../../scss/colors" as *;
2 @use "../../scss/spacing" as ¥;

.ArticleCard {
background-color: $white;
overflow: hidden;
margin: © auto;
transition: all 150ms ease-in;

&:hover,

&:focus {
box-shadow: @px 2px 2px Opx rgba(e, 92, 138, 0.25);
transform: translateY(-2px);

Figure 12 - Example of how a component is styled: Every element is styled and nested

inside ".ArticleCard" className, and color and spacing variables are imported in the file

34



DEVELOPMENT

Connecting to the backend

Axios enables browser XMLHttpRequests. XHR objects facilitate server interaction,
allowing data retrieval from a URL without requiring a complete page refresh. This
capability enables web pages to update specific sections without interrupting the

user's experience (mdn web docs, 2023). Axios was used to create API calls to the

backend API to retrieve and store data in MongoDB.

[ N
import axios from "./axios"
let prefix = “"/api/v1"

export const getArticles = (category = "") =>
{
if (category !== "") {
return axios.get (" ${prefix
}/articles/2?category=${category} )
}
return axios.get( ${prefix}/articles’)

}

export const getArticle = (slug) => {
return axios.get( ${prefix}/articles/${
slug}’)

export const getCategories = () => {
return axios.get( ${prefix}/categories’)

}

export const pinArticle = (slug, token) => {
return axios.patch(
“${prefix}/users/pin/${slug} ,
{ token },
{ headers: { Authorization: "Bearer ${
token}™ } }
)
3

export const unpinArticle = (slug, token) => {
return axios.patch(
“${prefix}/users/unpin/${slug}",
{ token },
{ headers: { Authorization: "Bearer ${
token}™ } }
)

}

export const getPinnedArticles = (token) => {
return axios.get( ${prefix}/users/pinned”
o f
headers: { Authorization: “Bearer ${
token}™ },
b
}

Figure 13 - API calls to interact with the backend using Axios

35



DEVELOPMENT

Context & Authentication

The authentication context is established for the React application utilizing a class
component called AuthProvider. This context offers various authentication-related
functionalities, such as user login, logout, registration, validation, password reset,

and the generation of headers containing tokens for authorized API requests.

AuthProvider is responsible for maintaining the authentication state, which includes
user authentication status, fetch loading state, user token, user details, and any

potential errors. The component state is initialized with a predefined initial state.

When the component is mounted, a token refresh method is called to refresh the
token if necessary. The class component provides several methods for handling
authentication, such as user login, logout, registration, validation, and password
reset. These methods initiate the corresponding API functions and update the

component state based on the received API response.

A method is implemented to set a timer to refresh the token one minute before its
expiration, while another method is responsible for terminating the timer. The JWT

token is decoded to ascertain the token's expiration time.

In conclusion, the authentication context is provided to the children components,
delivering the authentication state and methods as the context's value. A consumer
component is exported as well, enabling its use in other components to access the

authentication context. In the following section, we will discuss the finished design.

4.2.3 The finished design

The finished application features a homepage with general information about
premature babies. From the homepage, users can navigate through the website

using React Router links.

36



@ OSLO UNIVERSITETSSYKEHUS ‘ \\
o s

(@)
Il

Velkommen superadmin

Premature barn er barn som blir fadt fer 37 fullgatte svangerskapsuker. Dette betyr atde blir fadt for de har

hatt tilstrekke!

d til & fullt utvikle seg i mors liv. Premature barn kan ha ulike helseutfordringer pa

deres tidlige fad;el, og kan trenge spesiell behandling og omsorg for &vokse og utvikle seg pa best mulig mate.

| Norge blir rundt 6% av alle barn
fodt for 37. svangerskapsuke, og
disse barna kalles premature.
Ifolge tall fra Folkehelseinstituttet
fodes det hvert &r omtrent 1200
premature barn i Norge.

Premature barn

Ditt sykehus

Premature barn har en gkt risiko
for a utvikle en rekke
helseproblemer, inkludert
pusteproblemer, hjerneskader og
infeksjoner. De kan ogsd ha
utfordringer med & spise og legge
pa seg nok vekt.

Foreldrerollen

Heldigvis har det veert en betydelig
forbedring i overlevelsesraten for
premature barn i Norge de siste
tidrene, takket veere bedre
behandlingsmuligheter og
avansert teknologi pa
nyfedtintensivavdelinger.

Kontaktpersoner

Aktuelle artikler

Ernzering av premature barn

Premature barn har redusert seke-, suge- og
svelgfunksjon med begrenset toleranse og opptak

av naeringsstoffer fra tarmen.

superadmin

Logg ut

Forebygge soppinfeksjon

Barn som er fadt far uke 27 og veier under 750 g,
samt de som veier under 1000 g og er kritisk syke,

har heyere risiko for alvorlig soppinfeksjon.

Les mer

Kontakt oss

Oslo Universitetssykehus

Les mer

Folg oss
Facebook
Instagram
Twitter
Linkedin

YouTube

Figure 14 - The finished design of the website

DEVELOPMENT

37



DEVELOPMENT

Articles

Users can access CMS-authored articles across the site, with each featuring a
thumbnail including an image, title, and description. Clicking the thumbnail directs
to the article page, displaying the update date, title, description, text, media
(images/videos), and sources, based on CMS input.

. —
OSLO UNIVERSITETSSYKEHUS | —
. G Q =

<= Hjem Oppdatert: 04/12/2023 O

Nekrotiserende EnteroColitt (NEC)

Utforsk drsaker, symptomer og behandlingsmuligheter for Nekrotiserende EnteroColitt, en livstruende tilstand som
pavirker premature spedbarn.

Figure 15 - The article page

38



DEVELOPMENT

Search

A user can search for articles via the search bar found in the navigation bar at the
top of the page. Upon entering letters, a list dynamically updates results based on

category, title, excerpt.

L J —
LO UNIVERSITETSSYKEH —
+ s e OsLO UNIVERsITETssvkeHus | (O Q

kom

Forebygge soppinfeksjon

Barn som er fadt fer uke 27 og veier under 750 g, samt de som veier under 1000 g og er kritisk syke, har hgyere
risiko for alvorlig soppinfeksjon.

Komplikasjoner

Nekrotiserende EnteroColitt (NEC)

Utforsk arsaker, symptomer og behandlingsmuligheter for Nekrotiserende EnteroColitt, en livstruende tilstand
som pavirker premature spedbarn.

Komplikasjoner

Hvordan styrke bandet mellom foreldre og baby

Utforsk hvordan foreldre kan etablere og styrke kommunikasjonen med premature barn og lzere om metoder
for & stette tidlig interaksjon og bandskapning.

Kommunikasjon

Figure 16 - The search bar, users can search for excerpt, title and category

Navigation

Each page, except for the lowest level ones, include links to deeper nested pages.
Breadcrumbs facilitate navigation back and visually represent hierarchy, while a

hamburger menu enables site-wide access.

39



DEVELOPMENT

o
» s @ OsLO UNIVERSITETssvkeHUs | () Q | X
[ ]
Premature barn Foreldrerollen Ditt sykehus Kontaktpersoner
Barnets lop Andres erfaringer Fasiliteter
Komplikasjoner Rettigheter Pakkeliste
Kommunikasjon Kontaktpersoner Kart over sykehus
Ernaering Fer opphold Fer opphold
Under opphold Under opphold
Etter opphold Etter opphold

Figure 17 - The "Hamburger" menu provides easy navigation across the website

Premature barn / Barnets lep

Figure 18 - Breadcrumbs are present on every page

Premature barn Foreldrerollen

Ditt sykehus Kontaktpersoner

Figure 19 - Links to nested pages

40



DEVELOPMENT

Aktuelle artikler (relevant articles)

All but the lowest-level pages feature an "aktuelle artikler" section, displaying two
random, location-relevant articles. For instance, if a user is on the "foreldrerollen"

(parent role) page, only related articles will be shown.

Aktuelle artikler

Forebygge soppinfeksjon Nekrotiserende EnteroColitt (NEC)

Barn som er fadt for uke 27 og veier under 750 g, Utforsk arsaker, symptomer og

samt de som veier under 1000 g og er kritisk syke, behandlingsmuligheter for Nekrotiserende

har hayere risiko for alvorlig soppinfeksjon. EnteroColitt, en livstruende tilstand som pavirker

premature spedbarn.

Les mer Les mer

Figure 20 - A section with relevant articles

Barnets lgp (Child’s journey)

“Barnets Igp” is a page that offers a personalized experience for parents of
prematurely born children. It features every article from the categories
“komplikasjoner”(complications), “ernaering”(nutrition), and
“kommunikasjon”(communication). Users can filter these articles based on the
current period and the week their baby was born. For instance, a user can set the
period to “Early Intensive” and indicate that the baby was born in the 24th week.
Consequently, the user will only see articles relevant to these filters. When a user
creates an account on the website, they are prompted to specify the week of their
baby's birth. This information automatically sets the “Fgdt I uke”(born in week)

filter to the registered week by default.

41



DEVELOPMENT

Barnets lgp

Premature barn / Barnets lep

Periode Fadtiuke

Tidlig intensiv v 24

Forebygge soppinfeksjon Ernaering av premature barn
Barn som er fadt for uke 27 og veier under 750 g, Premature barn har redusert sgke-, suge- og
samt de som veier under 1000 g og er kritisk syke, svelgfunksjon med begrenset toleranse og opptak
har hgyere risiko for alvorlig soppinfeksjon. av nzeringsstoffer fra tarmen.
Les mer Les mer

Figure 21 - Barnets lgp (Child's journey)

Responsiveness

The fully responsive website adapts to devices from 320px wide and up, offering
smooth functionality on different screens. CSS media queries adjust elements like
buttons and article thumbnails at 768px wide, while CSS grid organizes content into

dynamic columns based on screen size.

42



DEVELOPMENT

©
OSLO UNIVERSITETSSYKEHUS e
5 |G Q

Premature barn

Foreldrerollen

Ditt sykehus

Kontaktpersoner

Aktuelle artikler

Hvordan styrke bandet mellom foreldre og baby

Utforsk hvordan foreldre kan etablere og styrke kommunikasjonen med
premature barn og laere om metoder for a statte tidlig interaksjon og
bandskapning.

Les mer

Figure 22 - Homepage, Mobile view

Footer

A footer is present across every page. This section includes user management links
(login, log out, register), contact info for Oslo Universitetssykehus, and its social

media connections.

Brukerkonto Kontakt oss Folg oss

Login Oslo Universitetssykehus Facebook

Registrer bruker Instagram
Twitter
LinkedIn
YouTube

Figure 23 - Footer

43



DEVELOPMENT

User registration and login

Upon registering, users can input their premature baby's birth week. This is saved
in AuthContext, enabling the "barnets lgp" page to set the default filter. Users can
also save articles as favorites, which are associated with their document in the

database, though favorites display on the webpage is not yet available.

o —
LO UNIVERSITETSSYKEH =
@ OSLO UNIVERSITETSS us| G Q

Register
Allerede en bruker? Logg inn her

Brukernavn
Email
Passord

Barn fadt i uke

23 N

Brukerkonto Kontakt oss Falg oss
Login Oslo Universitetssykehus Facebook
Registrer bruker Instagram

Twitter
LinkedIn
YouTube

Figure 24 - User registration

44



DEVELOPMENT

4.2.4 Frontend summary

The frontend of the web application was built using React, SCSS, and Vite. Key
dependencies include axios, jwt-decode, moment, react-router-dom, and sass. The
frontend is organized with Vite's default folder structure, while React Router enables

client-side routing for seamless navigation.

SCSS is used to manage styles, with separate files for color and spacing variables.
Axios connects the frontend to the backend, handling data retrieval and storage in
MongoDB. An authentication context, provided by AuthProvider, offers various

functionalities like login, logout, registration, and validation.

The finished design includes a homepage, articles, search functionality, navigation,
an "aktuelle artikler" section, responsiveness, a footer, and user registration/login

capabilities, catering to end-users like parents of premature babies.

45



DEVELOPMENT

4.3 Backend

The backend of the application refers to the server-side of the application, which is
responsible for managing the logic and data of the application. It is built using

Node.js, which is a server-side JavaScript runtime environment (Node, 2023).

4.3.1 Backend technologies

Node.js is an asynchronous event-driven JavaScript runtime, Node.js is designed to
build scalable network applications (Node, 2023). Simplified, Node.js is JavaScript
that runs outside the browser (Subramanian, 2019, p. 7).

Express is a minimal and flexible Node.js web application framework that provides a
robust set of features for web and mobile applications (Express, 2023). To
summarize, the framework is a web server framework specifically for Node.js and it
is not vastly different from other server-side frameworks (Subramanian, 2019, p.
9).

MongoDB is a non-relational document-oriented database that uses a JSON Object
for CRUD (Create, Read, Update and Delete) operations (Subramanian, 2019, p.
10).

Database

The data structure of a web application is complex since it requires balancing the
needs of the application, the performance characteristics of the database engine

and the data retrieval patterns (MongoDB, Inc, 2023).

A key decision in designing data models for MongoDB applications is how the
application represents relationships between data and the structure of documents.
The data can be embedded. Embedded database structure store data relationships
in a single document. The data can also be manually referenced in other
documents, collections, and databases. The application then runs a second query to

resolve the referenced fields (MongoDB, Inc, 2023).

46



DEVELOPMENT

4.3.2 Setting up the backend
Defining a database structure

As described in Database, the task of structuring a database is acknowledged to be
challenging due to the need to simultaneously address the performance demands of
the application and ensure a balance with its usage. Five of MongoDB’s rules have

been followed to structure the database (Karlsson, 2022).

The database structure is divided into five schemas. The schemas were created
using Mongoose*, a popular Object Data Modeling (ODM) library for Node.js that
provides a straightforward way to interact with MongoDB databases. Each collection
in the database defines the structure of each document stored within that

collection. Below is a list of the schemas:

. users
. refreshtokens

1
2
3. media
4. categories
5

. articles

Appendix 3 - Database schemas provide a detailed overview of the database’s
documents, fields, and data types. To summarize, the user-schema contains user
specific information. The refreshToken schema contains information about the
refresh token and is used for authentication; IP addresses are recorded against the
token to help identify any anomalous or malicious activities. The article schema
contains article-specific information. The category schema contains the various
categories the article can have, and the media schema contains media-specific
information. See Figure 25 - DB-schema visualization for a visualization of the

database structure.

4 Mongoose Documentation: https://mongoosejs.com/docs/

47



Collection ‘articles’

articles

2 _id
title
[Uslug

coverMedia

excerpt

Collection 'refreshtokens’

refreshtokens /

P _id
user Pa
token t
expires d
created d

content createdBylp ¢
weeks v #
afterBirth revoked d
sources revokedBylp ¢t
category
date \Vx,
updatedAt >
Embedded wV Embedded g
S Referenced
Embedded 23
a) >I 2 Y el
o < <! o
:(- H V) 1 eyl i %)
coverMedia content sources category " Collection ‘users’
altText t id # id # title ¢ — V4
fileName t contentType t title ¢t slug t
mediaType t body vd _id ~_id W
_id [Yusername t
U password t
.| [Uemail t
38 babyBorn #
: " role t
body > pinnedArticles [}
Y #
text t
media
]
© '
media
mediaType t
fileName t
altText t

Figure 25 - DB-schema visualization

DEVELOPMENT

Collection 'media’

media
~_id
mediaType t
name t
\2 #

-V
categories

- _id
title t
(uslug t
articles []

The following database structure choices were made following the five guidelines
advocated by MongoDB (Karlsson, 2022):

Favor embedding

The content of each article is embedded inside the article schema. When accessing

an article, the content is also needed - the same applies to sources where it is

embedded also in the article schema.

Limit embedding

The need for accessing each category without accessing the list of articles under

each category necessitated the extraction of the category from the article schema.

48



DEVELOPMENT

No JOIN or $lookup
With the current database structure, there is no need to utilize JOIN or $lookup.
Limit arrays

The only array that grows without bound is the articles inside the category, since

there is no limit to the amounts of articles can have one category.
Defining a file structure

The file structure, see Figure 26 - Backend file structure, has been divided into 7

folders:

assets
controllers
helpers
middlewares
models

routes

N o s W=

utils

The “assets” folder contains the images from the image uploads from the CMS. The
“controllers”- folder contains five controller files that control the logic for handling

route requests and has matching files for each of the endpoints.

49



DEVELOPMENT

server/

I assets/

I controllers/

F helpers/

F middlewares/
F models/

F routes/

F utils/

F .env

|- .gitignore

I categories.json
I package.json
I package-lock.json
F serverjs

L yarn.lock

Figure 26 - Backend file structure

The “helpers”- folder contains a single file, “functions.js”. This file exports various
helper functions that are utilized throughout the project. The “middlewares”- folder
contains five middleware files: “authorize.middleware.js”, “authUser.js”,
“hasCategoryQuery.middleware.js”, “hasMediaTypeQuery.middleware.js"” and
“role.middleware.js”. The first file is used to authorize a single route endpoint. The
second file is used to authorize a user when updating/changing their password. The
third and fourth files are used to check if a route has a query in the URL, and if it
does not it adds a default query. Lastly, the fifth file is used only to enable users

with a specific role to access an endpoint.

The "models”- folder contains all the schemas that define the structure and content
of the database, further described in Defining a database structure. The “routes”-
folder contains all the route specific information. The “utils”- folder contains three

n u

helper/utility function files: “connectDB.js,” “roles.js” and “upload.js”. The first
utility function is used to connect to a MongoDB database. The second helper/utility
function operates as an enumeration of each of the available roles used for
authorization. The third utility function is used to upload the images/videos to the

file system.

50



DEVELOPMENT

4.4 Content Management System (CMS)

A custom Content Management System (CMS) has been developed for this project
to facilitate efficient management, organization, and publishing of content on the
web application. The CMS enables non-technical users to create, edit, and maintain
content without requiring extensive knowledge of web development (Barker, 2016).
It is designed as a Single Page Application (SPA) using the Quasar framework,

resulting in a Minimum Viable Product (MVP) that meets the project's requirements.
The custom CMS consists of six pages:

e Login: The login page enables users to authenticate themselves to access
the CMS. It is the only public route in the application.

e Oversikt: This page provides an overview of the available pages, offering
easy navigation for users.

e Innholdsbehandler: This page allows editors to create new articles for the
main application through a four-step process: configuring settings, uploading
the main picture, and adding title and description, adding sections (text,
media, or text & media), and adding sources and publishing the article.

e Eksisterende innhold: This page displays previously created articles, with
options to edit or delete them.

e Maediebibliotek: This page serves as a media library, displaying all
previously uploaded images and videos, with an option to upload new media.

e Administrer brukere: Accessible only to users with the "superadmin" role,

this page enables the creation, editing, and deletion of editor accounts.

A headless CMS is a modern approach to web development that separates the
presentation layer (frontend) from the content management layer (backend),
allowing developers to build custom frontend applications that access a database
through APIs. This decoupling provides increased flexibility, scalability, and
performance by enabling developers to choose their preferred frontend frameworks
and tools (Oracle, 2023).

51



DEVELOPMENT

4.4.1 Technologies

This section will provide a brief explanation of the technologies used within

development of the CMS, and the reason for using these technologies.

Vue 3: Vue 3 is one of the most performant mainstream frontend
frameworks, outperforming Angular and React in the js-framework-
benchmark (js-framework-benchmark, 2023). By utilizing the Composition
API, Vue 3 allows for TypeScript integration ensuring scaling capabilities
(Vue.js, 2023).

Quasar Framework: Quasar is an enterprise-ready cross-platform Vuels
framework, containing a library of more than 70 Material Design web
components which allows for quickly creating responsive web applications
(Quasar, 2023).

Pinia Store: Incorporating Pinia, the recommended state management
library for Vue applications, provides essential features such as stronger
conventions for team collaboration, Vue DevTools integration, Hot Module
Replacement, and Server-Side Rendering support, while offering a simpler
API and superior type inference support when used with TypeScript as
compared to its predecessor, Vuex (Vue.js, 2023).

TypeScript: TypeScript, a strongly typed programming language that builds
upon JavaScript, provides enhanced tooling for better development at any
scale by adding additional syntax for types, enabling early error detection,
and ensuring compatibility with JavaScript environments such as browsers or
Node.js (TypeScript, 2023).

The rationale for the chosen technologies can be summarized into the following key

points:

Custom CMS: While existing CMS solutions were considered, the decision to
develop a custom CMS aimed to enhance the learning outcomes of this
bachelor thesis and provide a tailored solution specific to the project’s

requirements.

52



DEVELOPMENT

e Vue 3: Vue 3 with the Composition API was selected over React.js to gain
experience with an alternative syntax, as well as to leverage its modern and
performant nature, making it more comparable to Angular and Svelte.

¢ Quasar Framework: The choice of a component library was motivated by
the desire to simulate a professional working environment. Quasar was
chosen over Vuetify®, another popular Material Design based library for Vue
(Vue Community, 2023), due to its comprehensive set of components,

including those required for text editing, which Vuetify lacked.

The technology choices were also driven by efficiency, scalability, and time
constraints. Vue 3’s performance and Quasar’s component library enabled fast
development. Pinia Store managed state effectively, and TypeScript ensured type
safety, contributing to a maintainable and stable codebase. These technologies
offered a solid foundation for the CMS, fulfilling project requirements and

supporting future maintenance and growth.

5 https://vuetifyjs.com/en/

53


https://vuetifyjs.com/en/

DEVELOPMENT

4.4.2 Initial setup

The initial configuration process was carried out through the Quasar Command Line

Interface (CLI) by executing the following commands:

$ yarn global add @quasar/cli

$ yarn create quasar

OUTPUT TERMINAL DEBUG

dgspP" "Y88b
888 888
888 888 888 888 8888b. .d8888b 8888b. 888d888
888 888 838 888 ''88b 88K ''88b 888P"
888 Y8b 888 888 888 .d888888 "Y8888b. .d888888 888
Y88b.Y8h88P Y88b 888 888 888 X88 883 888 888
''Y888888"  'Y88888 "Y888888 88888P' "YB888888 888

Y8b

What would you like to build? > App with Quasar CLI, let's go!

Project folder:

Current directory is not empty. Remove existing files and continue? .. yes

Pick Quasar version: Quasar v2 (Vue 3 | latest and greatest)

Pick script type: > Typescript

Pick Quasar App CLI variant: > Quasar App CLI with Vite

Package name: cms-for-premature

Project product name: (must start with letter if building mobile apps) .. Innholdsbehandler for premature barn
Project description: Skap, administrer og rediger innhold

Author: Misthalin <72019688+Misthalin@users.noreply.github.com>

Pick a Vue component style: Composition API with <script setup>

Pick your CSS preprocessor: Sass with SCSS syntax

Check the features needed for your project: > ESLint, State Management (Pinia), Axios
Pick an ESLint preset: Prettier

Generating files...

Figure 27 - CMS Setup, Quasar CLI configuration

During the Quasar CLI configuration (as shown in Figure 27), the project was set up
to utilize Vue 3 with the Composition API, TypeScript, Pinia for state management,
Axios for API calls, and Sass with SCSS syntax. Upon completing the project
installation, additional configurations for “.editorconfig”, ESLint, and Prettier were
implemented to ensure consistent coding style and automatic formatting upon

saving changes.

With the project installation and configuration completed, the development phase
began. The initial step involved creating all essential pages, along with establishing
the corresponding routing setup. Following this, the integration of “user-store.ts”,
“axios.ts”, and “ApiClient.ts” facilitated user login and communication with the
backend. The “user-store.ts” file (Figure 28) manages user authentication and
state, the “axios.ts” file (Figure 29) handles HTTP requests, and the “ApiClient.ts”

file (Figure 30) serves as an interface to interact with the backend API.

54



oW N e

Wooo o~

1a
11
12
13
14
15
16
17
13
19
28
21
22
23
24
25
26
27
28
29
3e
31
32
33
34
35
36
37
38
39
48
41
42
43

DEVELOPMENT

import { defineStore } from "pinia’;

impert { startRefreshTokenTimer } from '@/utils/helpers’;

import { UserLoginCredentials, UserResponse } from '@/interfaces/user’;
impert { UserClient } from '@/api/fpiclient’;

import { MNotify } from 'quasar’;

const userClient = new UserClient();

interface UserState {
user?: UserResponse;
isloading: boolean;
token: string | undefined;

}

const INITIAL_STATE: UserState = {
user: undafined,
isloading: false,
token: undefined,

i

export const usellserStore = defineStore('user’, {
state: (): UserState => ({
... INITIAL_STATE,
I
actions: {
async generateRefreshToken(): Promise<void» {
this.isleoading = true;
try {
const response = await userClient.refreshToken();
const user = response;
const token = response?.token;
if (user && token) {
this.$state = { ...INITIAL_STATE, isloading: false, token, user };

localstorage.setItem('isloggedIn', 'true'); // Avoid unecessary refresh token calls

startRefreshTokenTimer(token);
} else {
this.$state = { ...INITIAL STATE, isloading: false };
}
} catch (error) {
this.isloading = false;
}
T

async login{credentials: UserlLoginCredentials): Promise<void» {

Figure 28 - user-store.ts excerpt. Global state managing user authentication.

55



DEVELOPMENT

1 import { boot } from "quasar/wrappers’;

2 import axios, { AxiosInstance } from 'axios’;
3  import { storeToRefs } from "pinia‘;

4  import { useUserStore } from "@/stores/user-store’;
=

& declare module '@vue/runtime-core’ {

7 interface ComponentCustomProperties {

8 Laxios: AxiosInstance;

9 ¥

18 1}

11

12 const apl = axios.create(]

13 baseURL: process.env.API,

14 withCredentials: true,

15 1);

16

17 export default boot(({ app }) => {

18 app.config.globalProperties.$axios = axios;
19 app.config.globalProperties.$apl = api;

28

21 const userStore = uselserStore();

22 const { token } = storeToRefs{userStore);
23

24 api.interceptors.request.use(({config) =» {
25 if (token.value) {

26 config.headers.Authorization = "Bearer ${token.value} ;
27 !

28 return config;

29 1)

3@ 1);

31

32 export { axios, api };

Figure 29 - axios.ts: Facilitates communication with the backend, ensuring the users

authorization token gets sent as Authorization header for each request.

56



DEVELOPMENT

1 export class UserClient {

2 async login(

3 credentials: UserlLoginCredentials

4 }: Promise<UserResponse | undefined» {

5 try {

6 const response = awalt api.post('/login', credentials);
7 if (response.data && response.data.token) {

8 return response.data as UserResponse;

9

}
18 } catch (error) {
11 if (axios.isaAxiosError(error)) {
12 // throw new Error( Failed to log in: ${error.message}” );
13 } else {
14 /f console.log(error);
15 3
16 3
17 }
18
19 async revokeToken(token: string | undefined): Promisec<veoids {
28 try {
21 awalt api.post('/revoke-token', { token });
22 } catch (error) {
23 if (axios.ishAxicsError(error)) {
24 f// throw new Error( Failed to revoke token: %{error.message}’ );
25 1 else {
26 /f console.log(error);
27 I
28 3
29 }
38
31 async refreshToken(): Promise<UserResponse | undefined> {
32 {/f Avoid unecessary refresh token calls
33 if (localstorage.getItem('isLoggedIn’) !== "true') {
34 return undefined;
35 3
36
37 try {
38 const response = awalt api.post('/refresh-token'};
39 if (response.data &% response.data.token) {
48 return response.data as UserResponse;
41 1
42 } catch (error) {
43 if (axios.ishAxiosError(error)) {
44 /f throw new Error( Failed to refresh token: ${error.message}’);
45 } else {
46 /! console.log(error);
47 }
48 1
42 1

Figure 30 - ApiClient.ts, interface to communicate with the backend

57



DEVELOPMENT

Upon integrating the login functionality, route protection was implemented to
ensure proper access control. This was achieved by adding a “meta: {
requiresAuth: true }” property to each route that necessitated authentication and
an “onlySuperAdmin: true” property to routes restricted to the super admin role.
For public routes, “requiresAuth” was set to false. A function was then created to
check the “user-store” for authentication and role information, redirecting users

accordingly based on their status.

The code snippets below demonstrate the three different types of routes: one that
requires authentication (Figure 31), one that is restricted to the super admin role

(Figure 32), and a public route (Figure 33).

path: '/foversikt',

name: 'dashboard’,

meta: { requiresfAuth: trus },

component: () =» import('src/pages/DashboardPage.vue’),

IS

= BN B R

Figure 31 - Route protection, requiresAuth

path: "/administrer-brukere’,

name: "administrerBrukere’,

meta: { requiresfuth: true, onlySuperfAdmin: true },
component: () =» Import{'@/pages/UserManagemsnt.vue'),

L= S A

9]

511
ot
-

Figure 32 - Route protection, onlySuperAdmin

path: "/,

name: 'login’,

meta: { requiresiuth: false 1},

component: () = impeori(’'src/pages/LoginPags.vue'},

[ T ¥y B S W S R Y

Figure 33 - Route protection, public route

58



DEVELOPMENT

In addition to the route configurations, a “beforeEach” function was added to the

router, as shown in Figure 34. This function checks the “user-store” for

authentication and role information before allowing access to a route, ensuring

proper access control is maintained.

32

Router.beforekach(async (to, from, next) => {

const store = uselserStore();
if (!store.token) {
await store.generateRefreshToken();
}
const isfAuthenticated = store.isduthenticated;
const hasRole = hasReguiredRole(store.user);
const isSuperfdmin = hasSuperAdminRole(store.user);

it (to.meta.requireshuth && !ishuthenticated) {
next({ name: 'login’ });
} else if (!to.meta.requiresAuth && isAuthenticated && hasRole) |
next({ name: 'dashboard' }};
} else if (isfAuthenticated && !hasRole && to.name !== "login') {
await store.logout();
Motify.create({
position: 'top’,
type: 'negative’,
message:
'Din brukerrolle har ikke tilgang til denne siden. Du er blitt logget ut.',
F
next({ name: 'login’ });
} else {
it (to.meta.onlySuperfdmin && !isSuperfdmin) {
next{{ name: ‘dashboard’ }});
1 else {
next({};

¥

3N

return Router;

Figure 34 - Route protection, before each route

59



DEVELOPMENT

4.4.3 ContentManager.vue / “Innholdsbehandler”

@ Innholdsbehandler

IFPB A KATEGORI

Innholdsbehandler for ue lkke valgt

premature barn o

PERIODE | LAPET TEMASIDEN ER
RELEVANT
Oversikt Ikke valgt / Generell informasjon og stette
i A
1. Velg kategori Y RELEVANT FOR BARN FODT |

[ SVANGERSKAPSUKE:

<¥]  Innholdsbehandler Alle

Velg kategor -

Eksisterende innhold

Mediebibliotek

Figure 35 - ContentManager.vue initial view

Upon successful implementation of routing and login functionality, the development
of the “ContentManager.vue” page, referred to as “Innholdsbehandler” in

Norwegian, was initiated.
Keeping track of changes

The first objective was to make a store to keep track of the articles during their
creation process. To achieve this, an article-store, “article-store.ts” was created and
later iterated using Pinia store. The default state contains an empty article, which is

updated as the creation progresses (see Appendix 5 - article-store.ts).

The “article-store.ts” contains the implementation of the Pinia store for managing
articles in progress. It starts with importing the required modules and defining the
default empty article object (EMPTY_ARTICLE). Following that, the

60



DEVELOPMENT

“ExpandedSections” type is defined, which is an object containing Boolean values

for different sections.

The “useArticleStore” function is then defined, setting up the store’s state, actions,
and getters. The state holds information about the current step, editing status, the
current article, the original article, and expanded sections. Actions include functions
for toggling and setting section expansion, as well as resetting the store to its initial
state. The store also includes a getter to check if there are any unsaved changes in

the current article.

Lastly, a “deepCopy” function is implemented to create deep copies of the objects,
as the spread operator (...) does not suffice for deep cloning in this context. This

function serves as a simplified version of the lodash® “_.cloneDeep()” method.
QSplitter with Configuration and Preview

In the “ContentManager.vue” page, the QSplitter’ component is used to enable the
user to interactively adjust the size of the configuration and preview sections. By
default, the configuration section is displayed on the left side and the preview

section on the right side, as shown in Figure 36.

6 https://lodash.com/
7 https://quasar.dev/vue-components/splitter#qgsplitter-api

61


https://lodash.com/
https://quasar.dev/vue-components/splitter#qsplitter-api

DEVELOPMENT

¥ Innholdsbehandler
A KATEGORI

e Ernaering

° ° ° o = PERIODE | LBPET TEMASIDEN ER RELEVANT
= Overgangsperiode
4. Legg inn hovedbilde/video E - RELEVANT FOR BARN F@DT | SVANGERSKAPSUKE:
Alle
Beskrivelse: N L.
ENDRE MEDIE Forhandsvisning
Bilde

5. Legg inn tittel T

Tittel
En tilfeldig tittel

19 / 60 tegn

6. Legg inn beskrivelse T.r

En tilfeldig tittel

Beskrivelse

Beskrivelse om temasiden Beskrivelse om temasiden

24 /150 tegn

NESTE > TILBAKE TILBAKESTILL Les mer

Figure 36 - QSplitter with Configuration and Preview

The QSplitter component is part of the Quasar Framework and allows for the
creation of resizable and flexible layouts by dividing a container into separate,
adjustable sections (Quasar, 2023). The primary purpose of implementing QSplitter
is to provide an intuitive user interface, allowing users to easily adjust the
configuration and preview sections based on their preferences and observe the
article's responsiveness across various screen widths while creating or editing
content in the CMS.

62



DEVELOPMENT

1 «=g-splitter
ref="splitter"
v-model="splitterModel”

4 slimits="[48, 781"

class="window-height"

=!— ARTICLE EDITOR —>

E =template Fbefores

L] =ConfigureEditorStepper f>
e =ftemplate=

<!-— DRAG HANDLE —>
13 <template ¥Fseparator>
14 <q-avatar

18 icon="drag_indicator"
X =
=ftemplate=

«=!— ARTICLE PREVIEW —>
<template Fafter=
<Previewbetalllist />
«div
v-if="showPreviewHeader"
27 class="text-h5 text-secondary bg-white text-hg"
B style="padding: 15px"

29 =
k1] Forhdndsvisning
1 =fdiv>

!— FRONTPAGE / EXCERPT ——>
=template v-if="showExcerptPreview'=
=PreviewExcerpt /=
=ftemplate>

<!— MAIN PAGE / CONTENT ——>

=template v-if="showMainContentPreview"s
39 <PreviewMainContent />

ae =ftemplate>

41 =ftemplate=

42 =/q-splitters

Figure 37 - QSplitter code snippet

The code above creates a QSplitter component, which is bound to a “splitterModel"
reference that holds the current percentage value of the splitter. The limits prop
sets the minimum and maximum limits for the splitter's adjustment, ensuring the

sections do not become too small or too large.

Inside the QSplitter component, three slots are defined: before, separator, and
after. The before slot contains the configuration section “ConfigureEditorStepper”,
the separator slot contains the drag handle for resizing the sections, and the after
slot contains the preview section “PreviewDetailList”, “PreviewExcerpt”, and
“PreviewMainContent”. The drag handle is styled using the QAvatar® component

with an appropriate icon to indicate its purpose.

In conclusion, the QSplitter component is aimed at enhancing the user experience
in the “ContentManager.vue” page by providing a flexible and adjustable layout for

the configuration and preview sections.

8 https://quasar.dev/vue-components/avatar/

63


https://quasar.dev/vue-components/avatar/

DEVELOPMENT

QStepper

The QStepper component, a part of the Quasar Framework, is utilized to guide
users through the process of creating or editing articles by dividing the process into
multiple, sequential steps (Quasar, 2023). It offers a clear and organized approach
to content creation, with the goal of allowing users to easily navigate through the

required steps while maintaining a clear understanding of the process.

© © @ e

Figure 38 - QStepper example

As illustrated in Figure 38, the QStepper component is integrated into the
configuration section of the “ContentManager.vue” page. Each step represents a
distinct stage in the content creation process, and users are guided through the

following four steps:

e Settings: In this step, users configure the basic settings of the article, such
as its category, which period after birth the article is relevant, and relevancy
based on the gestational week a child is born.

¢ Main Content: Users upload the main image for the article and provide a
title and description.

e Sections: Users add various sections to the article, which may include text,
media, or a combination of text and media.

e Sources and Publishing: Users input the sources for the article and
publishing the article.

Creating and organizing article sections

The creation and organization of article sections are essential components of the
content creation process in the “ContentManager.vue” page. Users can add, edit,
and delete sections, as well as reorder them as needed, providing a flexible

approach to content creation.

64



DEVELOPMENT

IFPB 2 Innholdsbehandler

Innheoldsbehandler for
premature barn

Oversikt

<l Innholdsbehandler =,

2: Beskrivelse V4

Eksisterende innhold

7. Legg til seksjoner:

Mediebibliotek

l <+ TEKST l l + MEDIE l l + TEKST OG MEDIE

3: Tekst ™ N 7/ []
4: Tekst ™ N2 / [ ]

N
<«
N,
)

NESTE > TILBAKE TILBAKESTILL

Figure 39 - Article section management

Add sections: Users can add new sections using three distinct buttons - "Text",
"Media", and "Text & Media". (See Appendix 6 -

ConfigureMainContentSectionAddButtons.vue).

e "Text": Clicking this button introduces a new section with a QEditor®,

providing a text editing interface for content input.

9 https://quasar.dev/vue-components/editor/

65


https://quasar.dev/vue-components/editor/

DEVELOPMENT

e "Maedia": Selecting this option triggers a modal, enabling users to choose
their preferred media type (e.g., image or video) and input alternative text

for accessibility purposes.

e "Text & Media": This choice unveils a modal that permits users to specify
the media type, provide alternative text, and utilize a QEditor for text editing.
Furthermore, users can personalize the layout by aligning the media to the
right or left of the text.

Edit and delete sections: Users can edit or delete existing sections using the
appropriate buttons displayed within each section. The edit button expands the
section with its current content, facilitating any necessary modifications, or
contracts the section if already open. The delete button opens a confirm dialog with

the option to remove the section from the article.

66



DEVELOPMENT

7. Leggq til seksjoner:

‘ 4+ TEKST ‘ ‘ + MEDIE ‘ ‘ + TEKST OG MEDIE ‘

Tr erootexsT [ overskriFT1 [ overskriFTz [ overskriFTz B FeT T wkursiv U UNDERSTREK

= LEMEKE

Creating and organizing
article sections

The creation and organization of article sections are essential components of the content creation
process in the ContentManager. vue page. Users can add, edit, and delete sections, as well as reorder
them as needed, providing a flexible and user-friendly approach to content creation.

NESTE > TILBAKE TILBAKESTILL

Figure 40 - Expanded section (Text)

67



DEVELOPMENT

Reorder sections: Users can reorder sections by using the arrow buttons. The

main components involved in this reordering process are:

“article-store.ts”: This is the store that holds the state and actions related
to the articles. It maintains a record of expanded sections using an object
called “expandedSections”. Each key in this object represents a section id,
and the corresponding Boolean value indicates whether the section is

expanded or not. (Code preview in Appendix 5).

“ConfigureMainContentSectionButtons.vue”: This component defines the
buttons responsible for reordering the sections. The “moveUp” and
“moveDown” functions handle the movement of sections by swapping their
positions in either the “content” or “sources” array, depending on the section
type. The “swapltems” function is responsible for performing the actual

swap. (Code preview in Appendix 9).

“ConfigureMainContentSection.vue”: This component renders the
individual sections and handles their expansion state. It sets the expansion
state of a section using the “setSectionExpanded” action from the store when
the model value of the expansion item is updated. (Code preview in Appendix
8).

“ConfigureMainContent.vue”: This component renders all the sections and
is responsible for organizing the layout of the sections. (Code preview in
Appendix 7).

The combination of these functionalities allows users to create, edit, and organize

article sections efficiently, contributing to an intuitive and streamlined content

creation process within the custom CMS.

4.4.4 ContentlLibrary.vue / “Eksisterende innhold”

The “ContentLibrary.vue” component, referred to as “Eksisterende innhold” in

Norwegian, is responsible for displaying a list of previously created articles in the

68



DEVELOPMENT

custom CMS. The component provides users with the ability to search for articles,
edit, and delete them. Additionally, it contains a button to create a new article that

redirects the user to the “ContentManager.vue” component for article creation.

IFPB B Eksisterende innhold

Innholdsbehandler for
premature barn

+ OPPRETT NY TEMASIDE

Oversikt

Sek i innhold Q
Innholdsbehandler

[E Eksisterende innhold ‘
]
Mediebibliotek
}
Ernzering av premature barn Forebygge soppinfeksjon
Premature barn har redusert sgke-, suge- og svelgfunksjon Barn som er fodt for uke 27 og veier under 750 g, samt de som
med begrenset toleranse og opptak av neeringsstoffer fra veier under 1000 g og er kritisk syke, har hoyere risiko for
tarmen. alvorlig soppinfeksjon.
Administrer brukere
/' REDIGER B SLETT /' REDIGER W SLETT
OPPRETTET OPPDATERT OPPRETTET OPPDATERT
12. april 2023 kl. 10:46 12. april 2023 kl. 13:16 12. april 2023 kl. 10:56 12. april 2023 k. 13:17

W e¥ RN

Figure 41 - ContentLibrary.vue

The component uses the Quasar QTable!® component to display articles in a grid
format, with pagination hidden. The QTable component is designed to be
responsive, with configuration options to display the table as cards, providing an

optimal viewing experience across various devices.

A search input field is provided at the top-left corner of the table, allowing users to
filter the displayed articles based on their search query. This functionality is
achieved by binding the “filter” property of the QTable component to a Vue ref
named “filter”. The search input field uses a debounce value of 300 milliseconds to

10 https://quasar.dev/vue-components/table#qtable-api

69


https://quasar.dev/vue-components/table#qtable-api

DEVELOPMENT

ensure a smooth user experience and reduce the strain on the browser during rapid

input changes.

The component fetches the list of articles from the API using the “ArticleClient”
class when the component is mounted. The list of articles is stored in a Vue ref
named “articles”. A “loading” ref is used to indicate whether the component is
fetching data from the API. When the “/loading” ref is set to true, the QTable

component will display a loading spinner.

The table columns are configured to display the following information for each

article:

e Cover media (image or video)
o Title

e Excerpt

e Creation date

e Last update date

Each article row in the table contains two action buttons: one to edit the article and
another to delete it. When a user clicks the edit button, they are redirected to the
“ContentManager.vue” component, where the selected article’s data is preloaded
for editing. If the user has unsaved changes in the “ContentManager.vue”
component, a confirmation dialog will appear, warning the user that they will lose

their unsaved changes if they proceed.

When a user clicks the delete button, a confirmation dialog is shown, asking the
user to confirm the deletion. If the user confirms, the article is deleted, and the list

of articles is updated.

In summary, the “ContentLibrary.vue” component serves as an interface for
managing previously created articles, where users can search, edit, and delete

articles.

4.4.5 MediaLibrary.vue / “Mediebibliotek”

The “MediaLibrary.vue” page, referred to as “Mediebibliotek” in Norwegian, is

responsible for managing and displaying the uploaded media files in the CMS, such

70



DEVELOPMENT

as images and videos. It provides an interface to view and manage the uploaded
media files. The implementation of this page consists of two main components:

“MediaLibrary.vue” and “MediaLibraryContentUploader.vue”.

IFPB B Mediebibliotek

Innholdsbehandler for
premature barn

Last opp medier
0.0B / 0.00%

Oversikt

Innholdsbehandler 6

Last opp medier

Eksisterende innhold Max 20 filer
Max filstgrrelse: 100MB

- Filtyper: .jpeg, .jpg, .png, .gif, .svg, .mp4, .webm, .webp :
B8 Mediebibliotek

Administrer brukere

Logg ut

Figure 42 - MedialLibrary.vue

The “MediaLibrary.vue” component contains a tabbed interface to separate images
and videos, making it easy for users to navigate between different media types. It

utilizes the Quasar's QInfiniteScroll!! component to display a grid of media items,

11 https://quasar.dev/vue-components/infinite-scroll/

71


https://quasar.dev/vue-components/infinite-scroll/

DEVELOPMENT

providing a smooth browsing experience for users. The media items are filtered

based on the selected tab, either showing images or videos accordingly.

(B8 Mediebibliotek

Last opp medier

0.0B / 0.00%

O

Last opp medier
Max 20 filer
Max filstgrrelse: T00MB
Filtyper: .jpeg, .jpg, .png, .gif, .svg, .mp4, .webm, .webp

................................................................................................................................................................

Figure 43 - MedialLibrary.vue, Video tab

72



207
208
209
216
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

DEVELOPMENT

export class MediaClient {
async uploadMedia(file: readonly File[]) {

try {
const response = await api.post('media', { images: file });
if (response.data) {
return response.data;
}
} catch (error) {
if (axios.isAxiosError(error)) {
// throw new Error('Failed to post media: ${error.message}’);
} else {
// console.logl(error);
}
}

async getMedialist(query?: mediaQuery) {

let apilLink;

if (query) {
apiLink = “media/7type=${query}’;
} else {
apiLink = 'media’';
}
try {

const response = await api.get(apiLink);
if (response.data) {
return response.data;
}
} catch (error) {
if (axios.isAxiosError(error)) {
// throw new Error(°Failed to post media: ${error.message}’);
} else {
// console.log(error);
}
}

export type mediaQuery = 'image' | 'video' | 'all';

Figure 44 - ApiClient.ts - MediaClient class

73



56
57
58
29
00
ol
62
63
o4
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

DEVELOPMENT

<script setup lang="ts">

import { MediaClient } from '@/api/ApiClient';
import { getMediaUrl } from '@/utils/helpers';
import TheHeader from '@/components/TheHeader.vue';
import { computed, onMounted, ref } from 'vue';

import ContentUploader from '../components/MedialLibraryContentUploader.vue";

const tab = ref<string>('images');
const mediaClient = new MediaClient();
const medialist = ref<Medialtem[]1>([]1):

onMounted(() => {
getMedialist();
1)

async function getMedialList() {
try {
const response = await mediaClient.getMedialist();
medialList.value = response.reverse();
} catch {
medialList.value = [];
}

const filteredMedialist = computed(() => {
return medialList.value.filter(
(media) => media.mediaType === (tab.value === 'images' ? 'image'
)i
Ik

interface MediaItem {

name: string;

mediaType: 'image' | 'video';
}

</script>

Figure 45 - MedialLibrary.vue - script setup

'video')

On the mounted lifecycle hook, the “getMediaList” function is called to retrieve the

list of media items from the backend using the “MediaClient” class from the

“ApiClient.ts"” file. The response is then assigned to the “medialList” reactive

variable, which is used to render the media items on the page.

74



DEVELOPMENT

The “MediaLibraryContentUploader.vue” component (Figure 46) allows users to
upload new media files to the CMS. It uses the Quasar QUploader!? component to
handle file uploads, providing a comprehensive interface with support for drag-and-
drop, multiple file uploads, and file type validation. The uploader is configured to
send the media files to the backend API using the “uploadFactory” function, which

sets the appropriate URL, method, and headers for the HTTP request.

1 <template> 52 <script setup lang="ts">
e o ) 53 import { ref } from 'vue';
3 ref="uploaderRef" . , ,
4 tfactary="uploadFactory" 54 import { useUserStore } from '@/stores/user-store';
5 style="min-width: 100%" 55 import {
6 max-file-size="100000000" 56 Notify,
; accept=' .igeg. tlng. ...png, .gif, .svg, .mpd, .webm, .webp 57 QRejectedEntry,
@rejected="onRejected
9 label="Last opp medier" 58 QUploader,
10 multiple 59 QUploaderFactoryObject,
n square 60 } from 'quasar';
12 flat
13 @uploaded="onUploaded" 61
14 @click="uploaderRef ? uploaderRef.pickFiles(sevent) : ''* 62 const uploaderRef = ref<QUploader | null={(null);
15 max—files="20" 63 const userStore = uselUserStore();
14 tield-names"nedias™ 64 const emit = defineEmits(['updateMedialist']);
17 auto-upload
1B > 65
19 <template #list="scope"> 66 async function uploadFactory(): Promise<QUploaderFactoryObject> {
2" “";‘5‘ BepUENtOY=: 67 return new Promise((resolve) => {
1 <div N
22 v-if="scope.files.length === " 68 setTimeout(() => {
23 class="text-primary text-center g-pa-sm" 69 resolve({
24 > 70 url: "${process.env.API}/media/",
25 <g-icon name="cloud_upload" size="Srem" /> 71 method: 'POST',
26 <div class="text-h6">Last opp medier</div>
27 <divsMax 20 filer</div> 72 headers: [
28 <div>Max filsterrelse: 100MB</div> 73 { name: 'Authorization', value: Bearer ${userStore.token} 1},
29 <div>Filtyper: .jpeg, .jpg, .png, .gif, .svg, .mp4, .webm, .webp</div> 74 1,
30 </div> 75 b
31 <q-item v-for="file in scope.files" :key="file.__key">
2 <q-item-section v-if="file.__img" thumbnail class="gt-xs"> 76 }, 10e0);
33 <img :src="file.__img.src" /> 77 1N
34 </q-item-section> 78 ¥
35 <q-item-section>
36 <q-item-label class="full-width ellipsis"> 7
37 {{ file.name }} 80 function onRejected(rejectedEntries: QRejectedEntry[]) {
38 </q-item-label> 81 Notify.create({
B 82 position: 'top',
40 <g-item-label caption> Status: {{ file.__status }} </q-item-label>
a 83 type: 'negative',
42 <q-item-label caption> 84 message: "${rejectedEntries.length} filer mislykket validering.',
43 {{ file.__sizeLabel }} / {{ file.__progressLabel }} 85 b
44 </q-iten-label> 8% }
a5 </q-item-section>
46 </q-item> 87
a7 </gq-list> 88 function onUploaded() {
48 </template> 89 emit('updateMedialist');
49 </q-uploader>
50 </template> 9} .
51 91 </script>

Figure 46 - MediaLibraryContentUploader.vue

When a file upload is completed, the “onUploaded” function is called to emit an
“updateMedialList” event, which is listened for in the parent “MediaLibrary.vue”
component. This event triggers the “getMedialList” function to update the displayed

media list with the newly uploaded media files.

12 https://quasar.dev/vue-components/uploader

75


https://quasar.dev/vue-components/uploader

DEVELOPMENT

4.4.6 UserManagement.vue / “Administrer brukere”

The “UserManagement.vue” component, referred to as “Administrer brukere” in
Norwegian, is a dedicated interface for managing user accounts. Accessible only to
users with the “superadmin” role, this component provides functionality for

creating, editing, and deleting editor accounts.

“UserManagement.vue” consists of a search input field, an "Opprett bruker" (Create
User) button, and a table displaying a list of user accounts. Each account is
represented by a card containing the username, email, and user role. Additionally,

there are two action buttons within the card: "rediger" (edit) and "slett" (delete).

2 Administrer brukere

+ OPPRETT BRUKER

Sgk i brukere Q

Innholdsbehandler

Eksisterende innhold Brukernavn Brukernavn
superadmin adrian

E-post E-post
Mediebibliotek super@admin.com fakeepost@veldigfake.no

Brukerrolle Brukerrolle
Systemadministrator Redaktor

e =

p- Administrer brukere

Figure 47 - UserManagement.vue

The component retrieves user information from the backend API using the
“UserClient” class provided in the ApiClient.ts file (Appendix 11 - ApiClient.ts). This
class contains methods to handle actions like logging in, revoking and refreshing

tokens, registering users, updating users, and deleting users.

76



DEVELOPMENT

When the "Opprett bruker" button is clicked, the “openUserModal” function is
called, which triggers the display of the “UserManagementEditUserModal.vue”
component. This modal allows users to input the new account's username, email,

role, and password.

2 Rediger bruker

Brukernavn
superadmir|

E-post
super@admin.com

Brukerrolle
Systemadministrator

Figure 48 - UserManagementEditUserModal.vue

The edit and delete buttons on each user account card also utilize the
“openUserModal” and “deleteUser” functions, respectively. When the edit button is
clicked, the “UserManagementEditUserModal.vue” component is displayed with pre-
filled fields corresponding to the existing account information. On the other hand,
clicking the delete button prompts a confirmation dialog, and upon confirmation,

the “deleteUser” function is called to remove the account.

77



DEVELOPMENT

4.4.7 File structure and naming conventions

In this project, we have tried to follow the naming conventions outlined in the
Vue.js Style Guide?!3. The file structure and naming conventions for this project are

as follows:
Directory structure (Appendix 4 - CMS file structure)

e src: Contains the primary source code for the application.
o api: API related files.
o boot: Boot files which run before the root Vue instance is instantiated.
o components: Vue components used in the application.
o c¢ss: Global SCSS styling and variables.
o interfaces: TypeScript interfaces.
o pages: The primary view files, which are made up of components.
o router: Router configuration files for the application.
o stores: Pinia store configuration files for managing the application’s
state.
o utils: Utility files and helper functions.

e public: Static files, such as the favicon
Naming conventions

¢ Components: Vue components are nhamed using PascalCase (e.g.,
“AppDialogConfirm.vue”). Single-instance components should be prefixed
with “The” (e.g., “TheSidebar.vue”).

¢ Filenames: All file names should be in kebab-case (e.g., “article-store.ts"”).

e JavaScript Variables: Variables should be named in camelCase (e.g.,
“handleClick™).

e Event names: Custom event names should use kebab-case (e.g., “toggle-
edit”).

13 https://v2.vuejs.org/v2/style-guide/

78



DEVELOPMENT

e HTML Attributes: Attributes should be written in kebab-case (e.g.,
“content-type”).
¢ Pinia Store: Modules, actions, mutations, and getters should be named

using camelCase (e.g., “useUserStore”, “generateRefreshToken”,

“isAuthenticated”).

4.5 Deploying the application

The application was deployed through Railway, a comprehensive platform that
facilitates the development, deployment, and scaling of applications. Railway’s
built-in support for Node.js and MongoDB made it a suitable choice for the project

(Railway Corporation, 2023).

Due to the mono-repo structure of the project, which houses all applications in a
single repository, a deployment solution was required that could link the repository

and deploy it on each folder. Railway enables this process.

Railway services are deployment destinations for the application. These services
connect with GitHub and deploy automatically on each commit. The Railway
dashboard displays the services created, as depicted in Figure 49 - Railway service

overview.

# MongoDB (& 12 days ago via GitHub

Created 2023-04-11

Figure 49 - Railway service overview

In the following section we will evaluate the final product and the results of the final

user test.

79



REFLECTION

4.6 Application evaluation

In this section, we will evaluate the outcomes of our user testing after discussing
the design techniques, development procedures, and results of our project. Our
evaluation will be divided into two main sections: the Content Management System
(CMS) and the frontend of the application. We will examine the strengths and
weaknesses that were uncovered by the test results in each section, referring to the
data documented in the Excel spreadsheet (see Appendix 14 - User testing final

product) as appropriate.

4.6.1 Conducting the test

Following the development process of the project the group conducted a final user
test to gather feedback and an insight into what could be a further improvement of
the product. The test participants consisted of two healthcare workers who are also
the product owners, experienced men aged 50-67, and two student men aged 23-
25. The mix of ages and backgrounds provided a valuable perspective for

evaluating the product’s usability and potential improvements.

Four tasks were created for both the Content Management System and the

frontend, concluding in 8 tasks in total:
Content Management System

1. Log in with username “superadmin” and password
2. Create a new article

3. Edit the same article you created

4. Add a new user

Frontend
1. Log in with username “superadmin” and password
2. Navigate to “barnets Igp” and filter to period “tidlig intensive” and born in
week 30
3. Search for an article and add to your favorites

4. Navigate to «Hvordan styrke bandet mellom foreldre og baby» without using
the search field and, hamburger menu or “aktuelle artikler”.

Throughout the testing, task data like time used, errors, and notes were

documented in an Excel spreadsheet (see Appendix 14 - User testing final product).

80



REFLECTION

4.6.2 Results
Content Management System:

The test results for the CMS (see Appendix 14 - User testing final product) showed
that users were able to complete the tasks with minimal errors and within a
reasonable amount of time. The step-by-step process and the ability to preview the
article while it's being made were well-received, and users appreciated the intuitive
interface. However, some suggestions for improvement include reversing the article
array for easier access to newer content, changing the color of the “Create User”
button for better differentiation, ability to filter media library content by category,

and using more descriptive button labels like “Save” or “Create” instead of “OK”".
Frontend:

For the frontend, users encountered some difficulties in navigating to specific
content without using the search bar or hamburger menu. There were also some
inconsistencies in the placement and visibility of certain elements, such as the
favorites icon, which could be improved for a better user experience. However, the
overall design and aesthetics were praised, and users found the website visually

appealing and easy to use.

4.6.3 Summary

In conclusion, the user testing provided valuable feedback for improving the
usability and functionality of the application. Both the CMS and the frontend
demonstrated strengths in their design and implementation. By addressing the
identified weaknesses and incorporating user suggestions, the application can be
further refined and enhanced to provide an even better user experience. This
process of evaluation and iteration is crucial for the successful development of any
application, and our bachelor thesis has shown the importance of incorporating user

feedback in the design process.

81



REFLECTION

5 Reflection

In this chapter, we reflect upon how our solution aligns with the problem statement,
the learning outcomes, and challenges encountered during the development of the
web application. We discuss the knowledge and skills acquired throughout the

project and analyze the impact of our assumptions on the final product.

5.1 Aligning the Final Deliverable with the Problem Statement

The problem statement, “How can we develop an online platform to provide up to
date, customized, and accurate information about premature infancy to support

parents of premature infants?”, was answered through the research questions:

1. How can web development techniques be applied to create a user-friendly
interface that addresses the specific needs of parents during these critical
stages of their parenting journey?

2. How can we use web technologies to develop a solution that both answers
the client’s request and fits the user’s needs?

3. How can we allow the healthcare providers to efficiently update and
disseminate information relevant to parents during the hospital stay and

homecare period?

To address the first research question, we focused our efforts into developing a
usable website. The extent to which we achieved delivering a user-friendly website
was assessed in the final evaluation. By conducting user research, we were able to
identify the most relevant features and information that parents needed, which
were then incorporated into the application’s design. This approach ensured that
the platform was both easy to navigate and provided customized information
tailored to individual needs. Feedback was positive and only minor suggestions for

improvement have been raised.

For the second research question, we utilized various web technologies such as
MERN/MEVN stack, React, Vue, Quasar, SCSS/SASS, and backend technologies to

82



REFLECTION

develop a solution that not only addressed the client’s request but also met the
user’s needs. By combining these technologies, we were able to create a seamless
user experience that efficiently delivered up-to-date information to parents of

premature infants.

To tackle the third research question, we developed a custom content management
system (CMS) that allowed healthcare providers to efficiently update and
disseminate information relevant to parents during the hospital stay and homecare
period. This CMS featured an intuitive interface and user roles for easy content
management, ensuring that information was always current and accessible for

parents.

In conclusion, the final deliverable successfully aligns with the problem statement
by providing an online platform that offers customized, accurate, and up-to-date
information about premature infancy to support parents of premature infants.
Through careful consideration of user needs, application of appropriate web
development techniques, and development of a custom CMS for healthcare
providers, we have created a solution that addresses the challenges identified in the

problem statement and meets the needs of both parents and healthcare providers.

5.2 Learning outcomes

The completion of this web development bachelor’s project has led to several key

learning outcomes, which are discussed below:

1. Comprehensive understanding of the web development process:
Through the various stages of research, design, development, and
deployment, the group gained a thorough understanding of the web
development process. This includes the importance of user research,
competitor analysis, and the use of design methodologies in creating an
effective web application.

2. Proficiency in web development technologies:

The project provided an opportunity to gain hands-on experience with web

development technologies such as MERN/MEVN stack, React, Vue, Quasar,

83



REFLECTION

SCSS/SASS, and backend technologies. This experience has not only
improved the technical skills of the group, but also contributed to a deeper
understanding of how these technologies work together to create a seamless
user experience.

. User research and user-centered design:

The group’s engagement in user research, including product owner’s needs,
interviews, affinity mapping, personas, and priority matrix, has emphasized
the importance of incorporating user needs and preferences in the design and
development process. This approach fosters a user-centered design, ensuring
that the final product is tailored to the target audience.

. Competitor analysis:

By conducting a competitor analysis, the group learned how to identify
strengths and weaknesses in existing websites and use this information to
create a more competitive and effective product. This analytical skill is crucial
for future web development projects and for staying ahead in the industry.

. Custom content management systems:

The development of a custom CMS using the Quasar framework and Vue 3
allowed the group to learn how to design and implement a custom solution
tailored to the project’s requirements. The experience of creating a custom
CMS has provided valuable insights into the intricacies of content
management, user roles, and the underlying technologies, such as Vue 3,
Quasar, Pinia Store, and TypeScript.

. Deployment and project management:

The group learned the importance of effective project management in
ensuring that the web application was deployed successfully. This experience
has demonstrated the need for proper planning, communication, and time
management in the development process.

. Evaluation and reflection:

By evaluating the final product and reflecting on the learning outcomes and
challenges, the group has gained a deeper understanding of the web

development process and the impact of assumptions on the final product.

84



REFLECTION

This insight will be valuable for future projects, as it highlights areas for

improvement and growth.

5.3 Challenges during development

Throughout the web development project, several challenges were encountered,
which provided valuable learning experiences and opportunities for growth. This
section discusses some of the key challenges faced during the development process

and the solutions adopted to overcome them.

1. Understanding and integrating new technologies:
One of the challenges was familiarizing oneself with the Quasar framework, Vue
3, Pinia Store, and TypeScript, as these technologies were new for the group. To
overcome this, the group spent time researching and learning these technologies
through online resources, documentation, and hands-on practice.

2. Balancing functionality and usability:
Creating a custom CMS that provides necessary features while maintaining a
user-friendly interface was a challenge. To address this, the group conducted
user tests and sought feedback from the product owner and other stakeholders
to ensure that the CMS was intuitive and easy to use.

3. Managing project scope and time constraints:
Ensuring that the project remained within its scope and was completed on time
proved to be a challenge, especially considering the complexity of creating a
custom CMS. To tackle this issue, the group employed effective project
management techniques, such as setting clear objectives through a Gantt chart
(Appendix 10), prioritizing tasks, and maintaining regular communication with
the supervisor and other stakeholders.

4. Dealing with unanticipated technical issues:
During development, the group encountered unexpected technical issues, such
as bugs or compatibility problems between different technologies. To resolve
these issues, the group relied on problem-solving skills, online resources, and

sought guidance from the supervisor and peers when necessary.

85



REFLECTION

5. Maintaining code quality and organization:

As the project progressed, maintaining clean and organized code became

increasingly challenging. The group addressed this issue by adopting best

practices for code organization, implementing proper naming conventions, and

using version control systems such as Git for tracking changes and collaborating

effectively.

6. Adapting to changing requirements:

Throughout the project, the group faced changes in requirements or priorities

due to user feedback or new insights gained during the development process.

Adapting to these changes required flexibility, effective communication with

stakeholders, and the ability to reevaluate and adjust the development plan.

5.4 Recommendations to the product owner

In conclusion, the project group wishes to make some concrete recommendations

to the product owner. Through this study, the group has documented our path to a

solution. Although our final product is fully usable as is, we have still found areas

which can be considered for further improvements. The list follows:

1.

If the product is to be further developed, it should be tested in a real
environment with real users. Meaning parents of premature infants at a
hospital and after hospital stay.

If the solution is to be developed further, it is also recommended to ensure
the product is performant and scalable. This can be addressed by conducting

performance tests and optimizing the code wherever possible.

. Implement feedback from final evaluation. This includes changing the

background image on the homepage, improving naming conventions, minor
changes on the sitemap, and adding links to various resources.
Implement a data trafficker to check if the product is being used by parents

at all.

. If the project is to be continued, it is recommended to implement a full set of

articles through the Headless CMS.

86



CONCLUSION

6 Conclusion

In this bachelor thesis, we have explored the problem of providing up-to-date,
customized, and accurate information about premature infancy to support parents
of premature infants. We have addressed this problem by developing an online
platform through a user-centered design approach, applying relevant web
development techniques, and creating a custom Content Management System

(CMS) for healthcare providers.

The application evaluation, as discussed in Chapter 4.6, revealed that our solution
has several strengths in terms of design and functionality. Both the CMS and the
frontend demonstrated positive user experiences, while the feedback obtained from
user testing indicated areas for further improvement. By addressing these issues,
the application can be refined and enhanced to better serve the needs of parents

and healthcare providers.

In our reflection (Chapter 5), we discussed how the final deliverable aligns with the
problem statement and the various learning outcomes achieved throughout the
project. We also examined the challenges encountered during the development

process, which provided valuable insights and opportunities for growth.

In conclusion, this bachelor thesis has successfully demonstrated the importance of
a user-centered approach in web development and the value of incorporating user
feedback in the design process. Our solution, which combines a user-friendly
interface with a custom CMS, effectively addresses the needs of both parents of
premature infants and healthcare providers. By continuing to refine and enhance
the application based on user feedback and emerging technologies, this platform
has the potential to become an invaluable resource for parents navigating the

challenges of premature infancy.

87



REFERENCE LIST

7 Reference list

Arancio, S. (2021, August 5). Medium. Retrieved from React]S: A brief history. A
peak into the evolution of one of the world’s most popular programming
libraries. | by Stephen Arancio | Medium:

https://medium.com/@sjarancio/reactjs-a-brief-history-3c1e969a477f

Barker, D. (2016). Web Content Management: Systems, Features, and Best
Practices. In D. Barker, Web Content Management: Systems, Features, and

Best Practices (pp. 1-13). Sebastopol: O'Reilly Media, Inc.

Baxter, K., Courage, C., & Caine, K. (2015). Understanding your users: A practical

guide to user research methods (2 ed.). Morgan Kaufmann.

Dam, R. F., & Siang, T. Y. (2022). Interaction Design Foundation. Retrieved Februar
13, 2023, from https://www.interaction-design.org/literature/article/affinity-

diagrams-learn-how-to-cluster-and-bundle-ideas-and-facts

Design Council. (2019). Framework for Innovation: Design Council's evolved Double
Diamond - Design Council. Retrieved April 14, 2023, from
https://www.designcouncil.org.uk/our-work/skills-learning/tools-
frameworks/framework-for-innovation-design-councils-evolved-double-

diamond/
Express. (2023). Express. Retrieved April 11, 2023, from https://expressjs.com/

Fileformat. (2023, April 17). Fileformat. Retrieved from SCSS File Format - Sass
Cascading Style Sheet: https://docs.fileformat.com/web/scss/

Google. (2023, April 21). Design Sprints. Retrieved from Phase 3: Sketch, Crazy
8's: https://designsprintkit.withgoogle.com/methodology/phase3-
sketch/crazy-8s

88



REFERENCE LIST

js-framework-benchmark. (2023). Js Framework Benchmark. Retrieved April 12,
2023, from https://rawgit.com/krausest/js-framework-

benchmark/master/webdriver-ts-results/table.html

Karlsen, J. T. (2021). Prosjektledelse - fra initiering til gevinstrealisering (5. utgave

ed.). Oslo: Universitetsforlaget.

Karlsson, J. (2022). MongoDB Schema Design Best Practices. Retrieved April 12,
2023, from
https://www.mongodb.com/developer/products/mongodb/mongodb-schema-

design-best-practices/

mdn web docs. (2023, February 18). mdn web docs. Retrieved from
XMLHttpRequest - Web APIs | MDN: https://developer.mozilla.org/en-
US/docs/Web/API/XMLHttpRequest

mdn web docs. (2023, April 14). SPA (Single-page application) - MDN Web Docs
Glossary: Definitions of Web-related terms | MDN. Retrieved from mdn web

docs: https://developer.mozilla.org/en-US/docs/Glossary/SPA

Miller, J., & Osmani, A. (2022). Rendering on the Web. Retrieved April 19, 2023,

from https://web.dev/rendering-on-the-web

MongoDB, Inc. (2023). Data Modeling Introduction. Retrieved April 12, 2023, from
https://www.mongodb.com/docs/v5.3/core/data-modeling-

introduction/#data-modeling-introduction

MongoDB, Inc. (2023, April 21). MERN Stack Explained. Retrieved from MongoDB:

https://www.mongodb.com/mern-stack

Node. (2023). About Node.js. Retrieved April 11, 2023, from
https://nodejs.org/en/about

Norsk Helseinformatikk. (2021, April 15). Norsk Helseinformatikk. Retrieved from
For tidlig fadsel (prematuritet) - NHI.no:

89



REFERENCE LIST

https://nhi.no/sykdommer/barn/nyfodtmedisin/for-tidlig-fodsel-
prematuritet/?page=1
Oracle. (2023). What is a Content Management System. Retrieved April 12, 2023,

from https://www.oracle.com/content-management/what-is-cms/

Oslo Universitetssykehus. (2020, September 20). Oslo Universitetssykehus.
Retrieved from For tidlig fgdte barn (prematur) pa Ulleval sykehus - Oslo
universitetssykehus: https://oslo-universitetssykehus.no/behandlinger/for-

tidlig-fodte-barn-prematur?sted=nyfodtintensiv-pa-ulleval-sykehus

Quasar. (2023). Introduction to Quasar. Retrieved April 12, 2023, from

https://quasar.dev/introduction-to-quasar

Quasar. (2023). QSplitter. Retrieved April 18, 2023, from https://quasar.dev/vue-

components/splitter#qsplitter-api

Quasar. (2023). Stepper | Quasar. Retrieved April 18, 2023, from

https://quasar.dev/vue-components/stepper#qstepper-api

Railway Corporation. (2023, April 26). Railway Documentation. Retrieved from

Getting Started: https://docs.railway.app/getting-started

React Router. (2023, April 14). Feature Overview v6.10.0 | React Router. Retrieved
from React Router: https://reactrouter.com/en/main/start/overview#client-

side-routing

Richards, A. (2020, October 2). Medium. Retrieved from Learn the SCSS (Sass)
Basics in 5 Minutes | by Andrew Richards | The Startup | Medium:
https://medium.com/swlh/learn-the-scss-sass-basics-in-5-minutes-
73002653b443

Subramanian, V. (2019). Pro MERN Stack (2nd edition ed.). Bangalore, Karnataka,
India: Apress Media LLC.

90



REFERENCE LIST

Team Asana. (2022, October 24). asana. Retrieved from Priority Matrix: Identify
What Matters and Get More Done [2023] [2022] ¢ Asana:

https://asana.com/resources/priority-matrix

TypeScript. (2023, April 13). TypeScript: JavaScript With Syntax For Types.
Retrieved from TypeScript: https://www.typescriptlang.org/

Vite. (2023, April 18). Vite. Retrieved from Why Vite:
https://vitejs.dev/guide/why.html

Vue Community. (2023, April 26). UI Libraries | Vue Community. Retrieved from
Vue Community: https://vue-community.org/guide/ecosystem/ui-

libraries.html

Vue.js. (2023). Frequently Asked Questions | Vue.js. Retrieved April 12, 2023, from
https://vuejs.org/about/faq.html

Vue.js. (2023, April 13). State Management | Vue.js. Retrieved from Vue.js:
https://vuejs.org/guide/scaling-up/state-management.html#ssr-

considerations

91



FIGURE LIST

8 Figure list

FIGURE 1 - AFFINITY DIAGRAM PRIORITIES

FIGURE 2 - PRIORITY MATRIX CREATED IN FIGMA.

FIGURE 3 - EXTRACT FROM COMPETITIVE ANALYSIS

FIGURE 4 - CRAZY 8's

FIGURE 5 - INITIAL LOW-FIDELITY PROTOTYPE

FIGURE 6 - FOURTH ITERATION OF LOW-FIDELITY PROTOTYPE

FIGURE 7 - EXTRACT FROM THE TECHNOLOGY EVALUATION

FIGURE 8 - FRONTEND DEPENDENCIES IN “PACKAGE.JSON".

FIGURE 9 - REACT ROUTER IN “APP.JSX”

FIGURE 10 - SITEMAP OF THE WEBSITE

FIGURE 11 - THE ARTICLECARD FOLDER CONTAINS THE "ARTICLECARD.JSX" AND "ARTICLECARD.SCSS"
FIGURE 12 — EXAMPLE OF HOW A COMPONENT IS STYLED: EVERY ELEMENT IS STYLED AND NESTED INSIDE
" ARTICLECARD" CLASSNAME, AND COLOR AND SPACING VARIABLES ARE IMPORTED IN THE FILE

FIGURE 13 — API CALLS TO INTERACT WITH THE BACKEND USING AXIOS

FIGURE 14 - THE FINISHED DESIGN OF THE WEBSITE

FIGURE 15 - THE ARTICLE PAGE

FIGURE 16 - THE SEARCH BAR, USERS CAN SEARCH FOR EXCERPT, TITLE AND CATEGORY
FIGURE 17 - THE "HAMBURGER" MENU PROVIDES EASY NAVIGATION ACROSS THE WEBSITE

FIGURE 18 - BREADCRUMBS ARE PRESENT ON EVERY PAGE

FIGURE 19 — LINKS TO NESTED PAGES

FIGURE 20 - A SECTION WITH RELEVANT ARTICLES

FIGURE 21 - BARNETS L@P (CHILD'S JOURNEY)

FIGURE 22 - HOMEPAGE, MOBILE VIEW

FIGURE 23 - FOOTER

FIGURE 24 — USER REGISTRATION

FIGURE 25 - DB-SCHEMA VISUALIZATION

FIGURE 26 - BACKEND FILE STRUCTURE

FIGURE 27 - CMS SETUP, QUASAR CLI CONFIGURATION

14
16
17
20
21
23
27
30
32
33

34
35
37
38
39
40
40
40
41
42
43
43
44
48
50
54

92



FIGURE LIST

FIGURE 28 - USER-STORE.TS EXCERPT. GLOBAL STATE MANAGING USER AUTHENTICATION. 55

FIGURE 29 - AXIOS.TS: FACILITATES COMMUNICATION WITH THE BACKEND, ENSURING THE USERS

AUTHORIZATION TOKEN GETS SENT AS AUTHORIZATION HEADER FOR EACH REQUEST. 56
FIGURE 30 - APICLIENT.TS, INTERFACE TO COMMUNICATE WITH THE BACKEND 57
FIGURE 31 - ROUTE PROTECTION, REQUIRESAUTH 58
FIGURE 32 - ROUTE PROTECTION, ONLYSUPERADMIN 58
FIGURE 33 - ROUTE PROTECTION, PUBLIC ROUTE 58
FIGURE 34 - ROUTE PROTECTION, BEFORE EACH ROUTE 59
FIGURE 35 - CONTENTMANAGER.VUE INITIAL VIEW 60
FIGURE 36 - QSPLITTER WITH CONFIGURATION AND PREVIEW 62
FIGURE 37 - QSPLITTER CODE SNIPPET 63
FIGURE 38 - QSTEPPER EXAMPLE 64
FIGURE 39 - ARTICLE SECTION MANAGEMENT 65
FIGURE 40 - EXPANDED SECTION (TEXT) 67
FIGURE 41 - CONTENTLIBRARY.VUE 69
FIGURE 42 - MEDIALIBRARY.VUE 71
FIGURE 43 - MEDIALIBRARY.VUE, VIDEO TAB 72
FIGURE 44 - APICLIENT.TS - MEDIACLIENT CLASS 73
FIGURE 45 - MEDIALIBRARY.VUE - SCRIPT SETUP 74
FIGURE 46 - MEDIALIBRARYCONTENTUPLOADER.VUE 75
FIGURE 47 - USERMANAGEMENT.VUE 76
FIGURE 48 - USERMANAGEMENTEDITUSERMODAL.VUE 77
FIGURE 49 - RAILWAY SERVICE OVERVIEW 79

93



TABLE LIST

9 Table list

TABLE 1 - USER PROFILES THAT EXPLAIN THE DIFFERENT FEATURES OF PRIMARY, SECONDARY, AND TERTIARY
USERS IN OUR STUDY. EACH PROFILE IS DESCRIBED IN MORE DETAIL, HELPING US BETTER UNDERSTAND

THE PEOPLE INVOLVED. 11

94



10 Appendix

APPENDIX 1 — PERSONAS

APPENDIX

96

APPENDIX 2 - COMPETITOR ANALYSIS

99

APPENDIX 3 - DATABASE SCHEMAS

100

APPENDIX 4 - CMS FILE STRUCTURE

102

APPENDIX 5 - ARTICLE-STORE.TS

103

APPENDIX 6 - CONFIGUREMAINCONTENTSECTIONADDBUTTONS.VUE
APPENDIX 7 - CONFIGUREMAINCONTENT.VUE

104

105

APPENDIX 8 - CONFIGUREMAINCONTENTSECTION.VUE

106

APPENDIX 9 - CONFIGUREMAINCONTENTSECTIONBUTTONS.VUE

110

APPENDIX 10 - GANTT CHART

112

APPENDIX 11 - APICLIENT.TS

113

APPENDIX 12 - CLIENT FOLDER STRUCTURE

115

APPENDIX 13 - TECHNOLOGY EVALUATION

116

APPENDIX 14 - USER TESTING FINAL PRODUCT

117

APPENDIX 15 - NOTES FROM INTERVIEWS

118

APPENDIX 16 - AFFINITY DIAGRAM

119

APPENDIX 17 - LOw FIDELITY USER TESTING

120

95



Appendix 1 — Personas

Primary

29 years old

Role

Mother

Hospital

Oslo Universitetssykehus

Work

Chief Marketing Officer

Preferred devices

Tablet, Phone

Description

One day, Jenny received the shock of her life
when she gave birth to a premature baby. She
was immediately admitted to Oslo
Universitetssykehus with her baby and her life
changed overnight. Jenny was now a full-time
mother, with her baby receiving round-the-clock
care in the neonatal intensive care unit (NICU).

Jenny's days were filled with hospital visits,
doctor appointments, and constantly seeking
information about her baby's health. She was
determined to be there for her child, but she
couldn't help feeling overwhelmed and
exhausted. Her friends and family could see the
stress and exhaustion written all over her face.

Jenny found solace in connecting with other
mothers of premature babies through social
media. She created a support group on
Facebook, where she could share her
experiences and receive advice and
encouragement from others who had been in
her shoes.

Needs

As a highly educated woman with a doctorate
degree, Jenny was used to having access to
information and being able to understand
complex concepts. However, when it came to
her premature baby, she found herself
struggling to find the information she needed.
The medical jargon and technical terms were
overwhelming, and she often felt like she was in
over her head.

Despite this, Jenny was determined to
understand everything she could about her
baby's condition and care. She spent hours
researching online, reading medical journals,
and talking to doctors and nurses. She also took
notes on everything she learned, so she could
refer back to them later.

Jenny's determination to learn was not only
driven by her love for her child but also by her
professional background. As a marketing
expert, she was used to using data and research
to make informed decisions. Now, she applied
those same skills to her baby's health, analyzing
every piece of information she could find and
trying to understand what it all meant.

APPEND

Frustations

+ Despite her extensive education, she
found the medical jargon and
technical terms confusing and
overwhelming

- Lack of information available to her,
leaving her feeling powerless.

Skills

Technology
00 00
Parent experience
0 0 00

Communication skills

Goals

Gain a better understanding of her
baby's condition and care.

Share good resources with other
parents

Provide the best possible care for
her child

Being a great parent

IX

96



Secondary

Description

Rolf Hermansen just became
a first time father. He and his
wife currently lives at
Rikshospitalet with their baby
in a incubator. Both Rolf and
his wife are very unsure
Name about what's going to

Rolf Hermansen happen the next period.

Age Skills

21 years old Technoiogy

Role Parent experience

First time father (BN BN BN BN )

Communication skills

Hospital O 0 00O

Rikshospitalet

Frustations
Work

+ Hard to navigate
information

-+ Poor search
functionalities

+ Untrustwothy

Phone, Laptop information

IT support

Preferred devices

APPENDIX

Needs

+ Clear information about

being a first time parent

« Is the baby safe?
« Information about the

stay at Rikshospitalet

+ What happens when

they leave?

Goals

- Easily find answers
+ A detailed description of

the whole course
Attention from doctors
and nurses

Third parties

- Wife
+ Grandparents
+ Therapist

97



APPENDIX

Secondary

Description Needs

Karianne is a mother of four. Information about
Her newborn baby is common complications
premature, and together with How to communicate
the father, they just left OUS. with child
They now live at home with Detailed information
support form home about home healthcare
Name healthcare.

Karianne Larsen

Age Skills Goals

35 years old o
y Technology Good communication

O © © © © with home healtchare

Easy to navigate

webpage

Mother of four O 00 00O Kriow how to desiwith
Communication skills common complications

Hospital ® e 000

Role Parent experience

Oslo Universitetssykehus

Frustations Third parties
Work

Find it difficult to adapt Children

to technologies Husband
Poor communication Grandparents
Struggle to read through

long paragraphs of text

Childcare teacher

Preferred devices

Phone

98



Appendix 2 - Competitor analysis

Laneral mfarmatacn e it

APPENDIX

Far b

PR ———
- Comne

B ¥
[ —

v
Shuzws when cortent was s semewed

[
i the dipartment

Lint o infor st alsost Lacibties and sarve

el infmatie » bnlude mere for
A S —— Y . 1 bt vl oy ot
afre buth
[ ———— O S p——
S ke chs et mcebrage e deulopanit + Better structure
[ —— [ —— ——
i e L .
s —— b Virdative et infirtion b
e ¢ s

[y

ey
uring
e
D & hurt?
Qus: o g?
s +v-pa-lleval-ovkahs
o Larveralinfarmaticr st premature brth
itps:/

Sty better search funeliun Bun OUS
Sttty better Hter

Slghily better rivuis for examls wesk
Sail roams fse imprcvement

Pragnancy birth baby

fE——
Shuzms ehans conters s et semewesd
v @ ssmmany by ot

S
b nfamation b what happers alte e

RS S PP S ———————
Lk ernrs wondadtopics hurve o lok o explanations
v, memtal bt ol parents

Mayo Clinic
hitps/ v magoclinic

T el ard g fwem seera eakveare
"

e Lt wa st e
e aticn v recunily seviewsdupelated faugess 2022

[ —
Prp———
[riv—

Karolinska

mps: v, Saroiinska, e for-par och
o o

o caral

St Olav

Shows what happerts at the hosgilal
Laven gudanca Lo wh yess my sk the rsrees

Lot st st te stay bl and afber.

Lars s hoervs which: ek the Sty 5 b
Irages ol the diferent stages of rth.

[ T —————
[ —

S ifficl words and expresicn
Ly Metnupathy, Echorardaygrapty, ducius anesion,
[ S ——

oars, the st the e,

S onmatian e s wery Wil masning.
Vel i tar b Rzt s s o e avipcst.
Fes wewrch funetian

Lannot suarch within th themne of prematuriy

L T p————

st o sarch for compheatns

Lirstand ity
Lty v s Sy, but there was & problem,” withaut furtter xplanaticn:
Beburs L pages s sheveluen
e e b, g, i sl
N infamation atacut what huppens alies brth - Provid bam
[T —r—— » More mage s anmalion.
[T — [ v——

Lo
Premalure brth
iram i tha

the . o of parisity

Lars purchae 4 PO for 148ks
R ——
Lithe prarsasnahsatasn, s wifironation i wury gernssal

Ths infrsatian i waly abas the chid, nal the course for the gt

demateses it svvemd s 2070 .
Doasarl et s for tha e ant sombe st

T ——— » terorene th cuabisty ol the wutrte
s s e o st b g amed v very it active & Provide Sustrain,

[ m—— © Lather .
Mgt [P " within Do youwant 1| pe

+ e sortigriting of mfrmation

[ ——
Lart purssaion whish nfsrmation i dssa.

R g
Sl peage sk s wlftive

Cmfuurng infisreralian abst e eveslgalion. miro

v
Lixb he s s 15 and Wik hesspitalet

99



APPENDIX

Appendix 3 - Database schemas

Schema Fields Requirements
User username String, required, trim, unique
password String, required, trim
email String, required, trim, unique, lowercase
babyBorn Number, required: function () {
return this.role === User
3
role String, required, enum: ["superadmin"”, "admin",
"user"], defaulf: "user"
pinnedArticles Array of strings
Refreshtoken user ObjectID, ref: "User"
token String
expires Date
created String
createdBylp String
revoked Date
revokedByIp String
replacedByToken String
Article title String, required
slug String, required, unique
coverMedia altText: String, required; fileName: String,

required; mediaType: String, enum: ["image",
"video"], default: "image",

excerpt String, required, trim
content Array of objects
content.id Number, required

content.contentType String, required, enum: ["media", "text",
"media_and_text"], default: "text"

content.body Object

body.text String, trim

body.media Object

media.mediaPositionL Boolean

eft

media.fileName String, trim

media.altText String, trim

media.mediaType String, required, enum: ["image", "video"],
default: "image",

date Date, required, default: Date.now

100



Media

Category

updatedAt
weeks
afterBirth

sources
sources.id
sources.title
category
mediaType

name
title
slug
articles

APPENDIX

Date, required, default: Date.now
Array of humbers
String, required, enum:["early-

intensive","stabilization","transition","homecare",
all",], default: "all"

Array of objects

Number, required

String, required

title: String required; slug: String, required
String, required, enum: ["video", "image"],
default: "image",

String, required

String, required

String, required, unique

Array of Objectld, ref: "Article"

101



Appendix 4 - CMS file structure

cMSs/

.quasar/
.vscode/
|- extensions.json
- settings.json
public/
src/
— api/
- ApiClient.ts
|- boot/
|- axios.ts
L notify-defaults.ts
— components/
- (various .vue files)
— css/
I app.scss
- quasar.variables.scss
— interfaces/
| | article.ts
L user.ts
- pages/
|- ContentManagerComponents/
| L (various .vue files)
- (various .vue files)

— router/
I index.ts
- routes.ts
— stores/

|- article-store.ts
|- index.ts
|- store—flag.d.ts
L user-store.ts
— utils/
- helpers.ts
- App.vue
.editorconfig
.eslintignore
.eslintrc.js
.gitignore
.npmrc
.prettierrc
index.html
package.json
postcss.config.js
quasar.config. js
README.md
tsconfig. json
yarn. lock

APPENDIX

102



APPENDIX

Appendix 5 - article-store.ts

1 import { ArticleItem } from '@/interfaces/article';
2 import { defineStore } from 'pinia';
3

4  const EMPTY_ARTICLE: Articleltem = {
5 title: '',

6 coverMedia: {

7 altText: '',

8 fileName: '',

9 mediaType: 'image®,

10 h

11 excerpt: '',

12 content: [],

13 sources: [],

14 weeks: null,

15 afterBirth: null,

16 category: null,

17 slug: "',

18 X

19

20 type ExpandedSections = {
21 [key: stringl: boolean;

22 )

23

24 export const useArticleStore = defineStore('article’, {
25 state: () => ({

26 step: 1,

27 isediting: false,

28 currentArticle: deepCopy(EMPTY_ARTICLE),

29 originalArticle: deepCopy(EMPTY_ARTICLE),

30 expandedSections: {} as ExpandedSections,

31 1),

32 actions: {

33 toggleSectionExpanded(sectionId: string) {

34 this.expandedSections = {

35 ...this.expandedSections,

36 [sectionId]: !this.expandedSections[sectionId],
37 +

38 Y,

39 setSectionExpanded(sectionId: string, expanded: boolean) {
40 this.expandedSections = {

41 ...this.expandedSections,

42 [sectionId]: expanded,

43 h

44 +

45 reset() {

46 this.step = 1;

47 this.isEditing = false;

48 this.currentArticle = deepCopy(EMPTY_ARTICLE);
49 this.expandedSections = {};

50 +

51 +

52 getters: {

53 hasUnsavedChanges(): boolean {

54 return (

55 JSON.stringify(this.currentArticle) !==

56 JSON.stringify(this.originalArticle)

57 )i

58 },

59 +

60 1});

61

62 // function since spread operator(...) doesn't go deep enough
63 // very simplified version of lodash _.cloneDeep()

64 function deepCopy<T>(obj: T): T {

65 return JSON.parse(JSON.stringify(obj));

66}

103



APPENDIX

Appendix 6 - ConfigureMainContentSectionAddButtons.vue

<template:
«div class="flex-row-gap-15":
<q-btn
v-for="{button, index) in buttons"
they="index"
:color="button.color™
:icon="button.icon"
zoutline="button.outline”
:label="button.label”
@click="button.action"
FE
<fdiv>
< /templates>

<script setup lang="ts":»

import { ref } from "wue';

import { useQuasar } from “guasar'j

import { useArticleStore } from '@fstoresfarticle-store’;

import MedialibraryModal from '@/ components/MedialibraryModal.vue’;

const %q = useQuasar();
const store = usedrticleStore();

const buttons = ref([
{
label: "Tekst',
icon: 'add",
color: "primary’,
outline: true,
action: addTextSection,

label: "Medie',

icon: ‘add",

color: ‘primary’,
outline: true,

action: addMediaSection,

label: 'Tekst og medie”,

icon: 'add",

color: "primary’,

outline: true,

action: addTextAndMediasection,

a7
a8
a8
58
51
52
23
24
33

57
58
59
2]
&8l
62
63
64
65
66
¥
o8
69
]
1
72
73
4
75
-]
e
78
79
a8
a1
¥
83
a4
85
86
a7
BE
89
9a
91
92
93
94
a5
98

function addTextSection() {

const newIndex = store.currentfArticle.content.length;
store.currentaArticle. content. push({

id: newIndex,

contentType: "text',

body: {

text: "7,

b

i

store.setSectionExpanded(” section-${newlndex} , true);

function addMediasection() {

}

%g.dialogl{
component: MedialibraryModal,
}).onDk(async (image) = {

const newlndex = store.currentérticle.content.length;

store.currentArticle. content. pushi{
id: newIndex,
contentType: 'media’,
body: {
media: {
...image,
bs
}.l
I H

store.settectionExpanded( section-%{newlndex} , true);

i

function addTextAndMediaSection(} {

body: {
mediar {
... image,
b
text: "7,
b
i
store.setSectionExpanded(” section-${newIndex} , true);
s
i
</script>

$q.dialog({
component: MedialibraryModal,

}).ondk(async (image) =» {

const newlndex = store.currentarticle.content.length;

store.currentArticle. content. pushi{
id: newIndex,
contentType: 'media_and_text ',

104



APPENDIX

Appendix 7 - ConfigureMainContent.vue

1 <template>

2 <div class="flex column gap-24">

3 <div class="flex column gap-8">

4 <ConfigureMainContentSection :index="-2" content-type="title" />
5 <ConfigureMainContentSection :index="-1" content-type="description" />
6 </div>

7 <p class="text-primary text-bold">7. Legg til seksjoner:</p>
8 <ConfigureMainContentSectionAddButtons />

9 <div class="flex column gap-8">

10 <template

11 v-for="(section, index) in store.currentArticle.content"
12 :key="section.id"

13 >

14 <ConfigureMainContentSection

15 1 index="1index"

16 :content—type="section.contentType"

17 />

18 </template>

19 </div>

20 </div>

21  </template>

22

23 <script setup lang="ts'">

24 import { useArticleStore } from '@/stores/article-store';

25 import ConfigureMainContentSection from '@/pages/ContentManagerComponents/ConfigureMainContentSection.vue';

26 import ConfigureMainContentSectionAddButtons from '@/pages/ContentManagerComponents/ConfigureMainContentSectionAddButtons.vue';

28 const store = useArticleStore();
29  </script>

31 <style scoped></style>

105



APPENDIX

Appendix 8 - ConfigureMainContentSection.vue

1 <template>

2 <div class="expansion-item-container">
3 <g-expansion-item

4 :model-value="expanded"

5 @update:model-value="

6 expanded = $event;

7 store.setSectionExpanded|(

8

9

contentType === 'source' ? ‘source-${index}’ : ‘section-${index}",
$event

10 );

11 "

12 :label=""${labelIndexComputed}: ${labelComputed}" "

13 expand-icon-class="text-white"

14 header-class="header"

15 style="width: 100%"

16 >

17 <template #default>

18 <!— CONTENT WHEN OPEN —>

19 <g-card class="card-border">

20 <!—— TITLE ——>

21 <template v-if="contentType === 'title'"><Titlekdit /></template>

22

23 <!—— DESCRIPTION ——>

24 <template v-if="contentType === 'description'">

25 <DescriptionEdit />

26 </template>

27

28 <!—— TEXT ——>

29 <template v-if="contentType === 'text'">

30 <TextEdit

31 :model-value="

32 store.currentArticle.content[index]?.body.text 77 '’

33 "

34 rindex="1index"

35 @update:model-value="updateTextSectionBody(index, $event)"

36 />

37 </template>

38

39 <!-— MEDIA ——>

40 <template v-if="contentType === 'media'">

41 <MediaEdit

42 rindex="index"

43 :model-value="

44 store.currentArticle.content[index]?.body.media ?7 emptyMedia

45 "

46 @update:model-value="updateMediaSectionBody(index, $event)"

47 />

48 </template>

49

106



50
51
52
33
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

APPENDIX

<!—— MEDIA AND TEXT ——>
<template v-if="contentType === 'media_and_text'">
<TextEdit
:model-value="
store.currentArticle.content [index] 7.body.text 77 ''
tindex="1index"
@update:model-value="updateTextSectionBody(index, $event)"
/>
<MediaEdit
:index="index"
:model-value="
store.currentArticle.content [index]?.body.media ?? emptyMedia
@update:model-value="updateMediaSectionBody(index, $event)"
/>
<div class="border-top padding-15">
<span class="text-bold text-primary" style="padding-right: 15px"
>Velg medieposisjon:</span
>
<g-btn-toggle
:model-value="
store.currentArticle.content[index]?.body.media
?.mediaPositionLeft 7?7 true
@update:model-value="updateMediaPositionLeft(index, $event)"
toggle-color="primary"
color="white"
text-color="primary"
toptions="[
{ label: 'Venstre', value: true },
{ label: 'Heyre', value: false },
]Il
/=
</div>
</template>

<!—— SOURCE -—>
<template v-if="contentType === 'source'">
<SourceEdit
:model-value="store.currentArticle.sources[index]?.title 77
rindex="1index"
@update:model-value="updateSourceTitle(index, $event)"
/=
</template>
</g-card>
</template>
</q-expansion-item=

<!—— BUTTONS ——>

<SectionButtons
:index="index"
:content-type="contentType"
class="section-buttons-absolute"
@toggle-edit="toggleSectionExpanded"

/=

</div>
</template>

107



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

APPENDIX

<script setup lang="ts">

import { computed, ref } from 'vue';

import { MediaItem } from '@/interfaces/article’;

import { useArticleStore } from '@/stores/article-store';

import TextEdit from '@/pages/ContentManagerComponents/EditText.vue';

import MediaEdit from '@/pages/ContentManagerComponents/EditMedia.vue';

import TitleEdit from '@/pages/ContentManagerComponents/EditTitle.vue';

import SourceEdit from '@/pages/ContentManagerComponents/EditSource.vue'’;

import DescriptionEdit from '@/pages/ContentManagerComponents/EditDescription.vue’;

import SectionButtons from '@/pages/ContentManagerComponents/ConfigureMainContentSectionButtons.vue';

const store = useArticleStore();

const props = defineProps({
index: {
type: Number,
required: true,
H
contentType: {
type: String,
required: true,
hy
b

const expanded = ref(
store.expandedSections [
props.contentType === 'source'
? “source-${props.index}’
“section-${props.index}’
1 || false
)

function toggleSectionExpanded() {
expanded.value = !expanded.value;
store.setSectionExpanded(
props.contentType === 'source'
? ‘source-${props.index}’
“section—-${props.index}",

expanded.value
):
}
const labelComputed = computed(() => {
return props.contentType === 'source’
? 'Kilde'
: props.contentType === 'text'
? 'Tekst'
: props.contentType === 'media’
? 'Medie’
: props.contentType === 'media_and_text"'
? 'Tekst og medie'
: props.contentType === 'title’
? 'Tittel'
'"Beskrivelse';
i
const labelIndexComputed = computed(() => {
return props.contentType !== 'source' ? props.index + 3 : props.index + 1;
3

const emptyMedia = { fileName: '', altText: '' };

function updateSourceTitle(index: number, newValue: string) {
store.currentArticle.sources[index].title = newValue;

function updateTextSectionBody(index: number, newValue: string) {
store.currentArticle.content[index].body.text = newValue;
}

function updateMediaSectionBody(index: number, newValue: MediaItem) {

store.currentArticle.content[index].body.media = newValue;

}
108



181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

function updateMediaPositionLeft(index: number, newValue: boolean) {

if |
!store.currentArticle.content[index] ||
!store.currentArticle.content[index].body ||
!store.currentArticle. content[index].body.media

return;
// @ts-expect-error It will not be undefined. I promise!

store.currentArticle.content[index].body.media.mediaPositionLeft = newValue;

}

</script>

<style lang="scss">

.header {
color: white;
font-weight: 500;
background-color: $primary;

}

.border-top {
border-top: 1px solid $secondary;

}

.card-border {
border-left: 1px solid $secondary;
border-right: 1px solid $secondary;
border-bottom: 3px solid $secondary;

}

.section-buttons—absolute {
position: absolute;
right: @;
z-index: 99999;

}

.expansion-item-container {
display: flex;
flex-direction: row;
align-items: flex-start;
position: relative;

}

</style>

APPENDIX

109



Appendix 9 - ConfigureMainContentSectionButtons.vue

<template>
<div :class="buttonClass" v-if="buttonComputed">
<q-btn

v-for="(action, idx) in actions"
tkey="1idx"
flat
sicon="action.icon"
class="height-46"

color="primary"
@click="action.onClick"
:disabled="action.isDisabled?. ()"

/>
</div>
<div v-else class="edit-button">
<q-btn
flat
icon="edit"
class="height-46"
color="primary"
@click="emit('toggle-edit")"
/>
</div>
</template>

<script setup lang="ts">

import { computed } from ‘vue';

import { useQuasar } from 'quasar';

import { useArticleStore } from '@/stores/article-store';

import AppDialogConfirm frem '@/components/AppDialegConfirm.vue’;

const $q = useQuasar();
const store = useArticleStore();

const props = defineProps({
index: {
type: Number,
required: true,
+
contentType: {
type: String,
required: true,
hH
});

const emit = defineEmits(['toggle-edit']);

const buttonComputed = computed(() =>
['text', 'media', 'media_and_text', 'source'l.includes(props.contentType)
H

const actions = [
{
icon: 'arrow_upward',
onClick: moveUp,
isDisabled: isMoveUpDisabled,
h
{
icon: 'arrow_downward',
onClick: moveDown,
isDisabled: isMoveDownDisabled,
hH
{
icon: 'edit',
onClick: () => emit('toggle-edit'),
}
{
icon: 'delete',
onClick: deleteSection,
h

APPENDIX

110



76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
185
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

function deleteSection() {
$q.dialeg({
component: AppDialogConfirm,
componentProps: {
title: 'Slett seksjon',
message: 'Er du sikker pd at du vil slette denne seksjonen?',
}
F)oonOk(() => {
if (props.contentType === 'source') {
store.currentArticle.sources.splice(props.index, 1);
} else store.currentArticle.content.splice(props.index, 1);
b;

function isMoveUpDisabled() {
return props.index === @;

function isMoveDownDisabled() {
return props.index === lastIndex0fContentType();

function lastIndexOfContentType() {
if (props.contentType === 'source') {
return store.currentArticle.sources.length - 1;
} else {
return store.currentArticle.content.length - 1;
}

function moveUp() {
if (props.contentType === 'source') {
swapItems(store.currentArticle.sources, props.index, props.index
} else {
‘ swapIltems(store.currentArticle.content, props.index, props.index

i

function moveDown() {
if (props.contentType === 'source') {
swapItems(store.currentArticle.sources, props.index, props.index
} else {
swapltems(store.currentArticle.content, props.index, props.index
+

function swapItems(arr: object[], index1: number, index2: number) {
if (
indexl >= @ &&
index2 >= @ &&
indexl < arr.length &&
index2 < arr.length
) A

larrlindex1], arr[index2]] = [arr[index2], arr[index1]];

¥
</script>

+

+

1);

1);

1);

1);

APPENDIX

111



APPENDIX

Appendix 10 - Gantt chart

Month January February March April May
MILESTONE HOURS Week 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20|

o

Identify all relevant stakeholders of the project, including
but not limited to parents of premature infants,
healthcare professionals, and any other parties who will
be affected by the website's implementation.
Conduct user research to understand the needs and pain

b paints of the parents of premature infants and other 30
stakeholders.
Analyze pre-existing content and resources to

€ understand what information is available to be 10
presented.

L2 Explore and define | ]

Research existing websites or digital resources that

a provide information to parents of premature infants and 5
analyze their strengths and weaknesses.
Synthesize and analyze the data collected from the user

b research and competitor analysis to identify patterns and 75
insights.
Use the insights from the research to define the problem 75
c A

that the website needs to solve.
Create a user persona that represents the target user of
the website including their needs, pain points and goals.
Use the problem statement and the user persona to
e define the scope of the project and what the website 5
needs to achieve.
1 and develop

Create a user-centric design by making wireframes and
a prototypes based on the insights from the discovery 20
phase along with the persona.

b Conduct user testing on the wireframes and mockups to 10
gather feedback and iterate on the design.
Choose suitable technologies for the web application
based on the prototypes and project scope
Develop a functional prototype using modern web
d technologies based on the design phase, including user 120
testing and iterating
L4 Deliver
Conduct user tests, accessiblity tests, performance tests,
gather feedback, and reiterate
Deliver thesis 15.05.23
Estimated time
I citical activity: delay may affect end date
"Some delay accepted"”

15

112



Appendix 11 - ApiClient.ts

30
31

42

62

import axios from 'axios';
impart {

-~

UpdateUserItem,
UserCredentials,
UserLoginCredentials,
UserRegisterCredentials,
UserResponse,

from '@/interfaces/user’;

import { api } from '@/boot/axios';

import { ArticleItem, CategoryResponseltem } from '@/interfaces/article’';

export class UserClient {

async login(
credentials: UserLoginCredentials
): Promise<UserResponse | undefined> {
try {
const response = await api.post('/login', credentials);
if (response.data && response.data.token) {
return response.data as UserResponse;
}
} catch (error) {
if (axies.isAxiosError{error)) {
// throw new Error( Failed to log in: ${error.message}’);
} else {
// console.log(error);

}

async revokeToken(token: string | undefined): Promise<void> {
try {
await api.post('/revoke-token', { token });
} catch (error) {
if (axies.isAxiosError(error)) {
// throw new Error(’Failed to revoke token: ${error.message}’);
} else {
// console.log{error);

}

async refreshToken(): Promise<UserResponse | undefined> {

// Avoid unecessary refresh token calls

if (localStorage.getItem('isLoggedIn')
return undefined;

t=="true') {
}

try {
const response = await api.post('/refresh-token');
if (response.data && response.data.token) {
return response.data as UserResponse;

} catch (error) {
if (axies.isAxiosError{error)) {
// throw new Error( Failed to refresh token: ${error.message}’);
} else {
// console.loglerror);

}

async register(
credentials: UserRegisterCredentials
): Promise<UserResponse | undefined> {
try {
const response = await api.post('/users', credentials);
if (response.data) {
return response.data as UserResponse;
}
} catch (error) {
if (axies.isAxiosError({error)) {
// throw new Error('Failed to register user: ${error.message} );
} else {
// console.log(error);

}

79
80
81
82
83
84
85
86
87
88

90
91
92
93

95
96

98

99
100
161
1lez
183
184
185
106
187
1les
189
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

APPENDIX

async getAllsers(): Promise<UserCredentials[]
try {
const response = await api.get('/users');
if (response.data) {
return response.data as UserCredentials[];
¥
} catch (error) {
if (axios.isAxiosError(error)) {
// throw new Error('Failed to get users: ${error.message}’);
} else {
// console.loglerror);

}

| undefined> {

}
¥

async updateUser(
username: string,
updatedUserCredentials: UpdateUserItem
): Promise<UserResponse | undefined> {
try {
const response = await api.put(
" /users/${username} ",
updatedUserCredentials
)i
if (response.data) {
return response.data as UserResponse;
}
} catch (error) {
if (axios.isAxiosError(error)) {
// throw new Error( ' Failed to update user: ${error.message}’);
} else {
// console.log(error);
}
}
B

async deleteUser(username: string): Promise<UserResponse | undefined> {
try {

const response = await api.delete<UserResponse>("/users/${username});

if (response.data) {
return response.data;
}
} catch (error) {
if (axios.isAxiosError(error)) {
// throw new Error('Failed to delete user: ${error.message}’);
}else {
// console.log(error);
}
}
¥

export class ArticleClient {
async getCategories(): Promise<CategoryResponseItem[]
try {
const response = await api.get('/categories');
if (response.data) {
return response.data;
¥
} catch (error) {
if (axios.isAxiosError(error)) {
// throw new Error( ' Failed to get categories: §{error.message}');
} else {
// console.log(error);

| undefined> {

async getArticles(): Promise<ArticleItem[] | undefined> {
try {
const response = await api.get('/articles');
if (response.data) {
return response.data;
}
} catch (error) {
if (axios.isAxiosError(error)) {
// throw new Error('Failed to get articles: ${error.message}');
} else {
// console.log(error);
}
}
H

113



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

async postArticle(article: ArticleItem) {

try {

const response = await api.post('/articles', article);

if (response.data) {
return response.data;
}
} catch (error) {

if (axios.isAxiosError{error)) {

// throw new Error(’Failed to post article: ${error.message}’ ):

}else {
// console.loglerror);
b
+
}

async putArticle(slug: string, article: ArticleItem) {

try {

const response = await api.put( /articles/${slug}’, article);

if (response.data) {
return response.data;
}

} catch (error) {

if (axios.isAxiosError(error)) {

// throw new Error( Failed to update article: ${error.message}’);

} else {
//console. log(error);

}

async deleteArticle(slug: string) {

try {

const response = await api.delete(’/articles/${slug} );

if (response.data) {
return response.data;
b

} catch (error) {

if (axios.isAxiosError(error)) {

// throw new Error(’Failed to delete article: ${error.message}’);

}else {
// console.log(error);
b
H

export class MediaClient {

async uploadMedia(file: readonly File[]) {

try {

const response = await api.post('media', { images: file });

if (response.data) {
return response.data;
}

} catch (error) {

if (axios.isAxiosError{error)) {

// throw new Error( Failed to post media: ${error.message}');

} else {
// console.loglerror);
b
}

async getMedialList(query?: mediaQuery) {

let apiLink;

if (query) {
apilink = “media/?type=${query}";
} else {
apiLink = 'media';
H
try {

const response = await api.get(apilink);

if (response.data) {
return response.data;
b

} catch (error) {

if (axios.isAxiosError{error)) {

// throw new Error( Failed to post media: ${error.message}');

} else {
// console.loglerror);
b
+
}
¥
export type mediaQuery = 'image'

‘video'

tall';

APPENDIX

114



Appendix 12 - Client folder structure

client/

[

— public/

vite.svg

— src/

api/

b articlecalls.qs
- authcalls.js

L axios.js
assets/

F— backgrounds/

L icons/
components/

L (various component folders containing component file and .scss)

pages/

APPENDIX

L (various component folders containing component file and .scss used as elements in React Router)

routes/

F— ForgotRoute.jsx
- privateroute.jsx
L publicRoute.jsx
scss/

- colors.scss

b index.scss

L spacing.scss
utils/

- Authcontext.jsx
L helpers.js
App.jsx

main.jsx

.env
.gitignore

index.html
package.json
vite.config.js
yarn.lock

115



Appendix 13 - Technology evaluation

Technology Description
JavaScript library for creating user interfaces.
Uses a declarative syntax and is component
React hased
Next.js is a flexible JavaScript framework used
for cresting fast web applications.
Next.js
Additional syntax to JavaScript. Helps catch
errors early,
TypeScript
Framework for creating HTTP servers with
Node.js
Express
Schema database, JSON objects
MongoDB
Precise server-side PHP framework
Laravel
Is a database management system for SQL
MysQL databases.
Sass (short for Syntactically Awesome Style
Sheets) is a preprocessor scripting language
SASS that is interpreted or compiled into Cascading

Style Sheets (CSS). Sass extends CSS with
features like variables, nested rules, mixins,

functions, and more.

Web Components is a suite of different
technologies allowing you to create reusable
custom elements, with their functionality
encapsulated away from the rest of your code,

Web components

and utilize them in your web apps.

A set of hosting services for any type of

application.
Firebase

Features Ease of use/learning curve

Very popular, Intermediate
JSX syntax, unidirectional data flow,
Virtual DOM, extensions

Built on React, native support for  Intermediate
custom fonts and images, file-based

routing.

Server components makes the page
server-rendered. Provides an easier
way to break down your application
into pages and prerender on the
server by generating HTML.

Allows for less errors when working Beginner / Intermediate
in teams.

Same programming language Easy
frontend and backend. Good for
proof-of-concepts, quick and easy.

Store data in BSON format, similar  Intermediate
to JSON, easy to implement, queries
are self contained,

Very secure, popular, well tested,  Intermediate
open source, unit testing

Storage efficiency, structured data, Easy
scalability, less risk of corrupting
data when multiple users(locking
mechanisms)

Reusable code, Modular code,
Variables, Better readability,
Advanced features

Easy (if you already know css)

Native JavaScript, no code bloat, Intermediate/hard

smaller package sizes,

NoSQL and real-time hosting of Intermediate
databases, content, social
authentication and notifications or

services.

APPENDIX

Tradeoffs

More package installs. Client
rendered

Not always necessary in smaller
projects.

Not mandatory, have to always
think about when to use, can be
confusing for beginners

Bug-prone when using vanilla
JavaScript

Sometimes harder to query than
SQL, performance,

Not the easiest, vendor lock-in

Larger overhead with more
complex data structure, limited
flexibility,

Compilation time, Debugging,
Overuse of nesting, Compatibility

Develop an entire build-
environment from scratch.

Free

Free

Free

Free

Free

Free

Free

Everything is under Google. Cannot Free (open-

customize

source)

116



APPENDIX

Appendix 14 - User testing final product

Frontend
Oppgave Tid brukt Feil Notater
gar via hamburgermenyen fgrst, ingen login der, finner login i footer
Logg inn med brukernavn superadmin og passord passord 40s 2|senere, feiler pga. case sensitive brukernavn
Naviger til barnets lgp og filtrer etter periode "tidlig intensiv" og fadt i
uke 30 26s 0|gar via hamburgermenyen
oversa hjertet fgrst, scrollet litt langt, fant den pa scroll opp, faler
Spk etter en artikkel og legg den til i favoritter 265 0|kanskje hjertet ikke hgrer til artikkelen, siden den er i en egen blokk
Naviger til "Hvordan styrke bandet mellom foreldre og baby", uten Gar fgrst til foreldrerollen. Kanskje en mer spesifikk sann "Oss og barnet,
bruk av spkefelt, hamburgermeny eller "Aktuelle artikler" 28s 4|meg og barnet"
CMS
Oppgave Tid brukt Feil Notater
Logg inn med brukernavn superadmin og passord passord 5s 0
Liker segmenterte steg, tydelig hvor i prosessen man er, "tilbakestill"
venstre, neste hgyre, nice med preview og seksjoner, kanskje
tydeliggjore at den ene er forhandsvisning av kortet og forhandsvisning
Opprett en falsk temaside 4m30s 0|av artikkelen
Rediger den samme temasiden 19s 0|Reverser array, nyeste fgrst, endre til oppdater under rediger
Liker at den er adskilt i sidemenyen, kanskje endre fargen pa opprett
bruker knappen for a skille mer fra resten (accent orange), lagre/opprett
Legg til en ny bruker 53s 0li stedenfor OK(?)
Frontend
Oppgave Tid brukt Feil Notater
Logg inn med brukernavn superadmin og passord passord 55s 2|Finner ikke logg inn knappen, tror den er i hamburgermenyen
Naviger til barnets lgp og filtrer etter periode "tidlig intensiv" og fadt i
uke 30 1m 50s 1|Litt trgbbel med teknologi
Spk etter en artikkel og legg den til i favoritter 1m 30s 1|Sgke etter, temasider var trgblete
Naviger til "Hvordan styrke bandet mellom foreldre og baby", uten
bruk av spkefelt, hamburgermeny eller "Aktuelle artikler" 1m 32s 1|Fgrst foreldrerollen, barnets Igp, deretter kommunikasjon
CMS
Oppgave Tid brukt Feil Notater
Logg inn med brukernavn superadmin og passord passord 8s 0
Forsidebilde, sliter litt med stegene, kanskje noen beskrivelser av
Opprett en falsk temaside 8m 20s 3|hvordan man lager en artikkel
Rediger den samme temasiden 8m 30s 0
Legg til en ny bruker 10s 0
Frontend
Oppgave Tid brukt Feil Notater
Logg inn med brukernavn superadmin og passord passord 16s 1|gar via hamburgermenyen
Naviger til barnets |gp og filtrer etter periode "tidlig intensiv" og fadt i
uke 30 19s 0|gar via hamburgermenyen, finner fort, pil er for naert design
Spk etter en artikkel og legg den til i favoritter 65 0lfant fort
gar til foreldrerollen farst, leter litt inne der, andres erfaringer, gar hjem,
prgver foreldrerollen igjen, etter opphold, andres erfaringer,
kontaktpersoner, fgr opphold, premature barn, barnets lgp. Litt vag
forskjell mellom ordlyden pa kategoriene. Det er mye som kan veere
Naviger til "Hvordan styrke bandet mellom foreldre og baby", uten under samme. Les mer forsvinner nedenfor kortet. Liker
bruk av sgkefelt, hamburgermeny eller "Aktuelle artikler" 40s 12 |varslinger/toasters
CMS
Oppgave Tid brukt Feil Notater
Logg inn med brukernavn superadmin og passord passord 3s 0
Fin og naturlig gjennomgang av opprettelsesstegene. Faler han alltid har
Opprett en falsk temaside 4m 39s 0|kontroll, siden det ligger forhandsvisning.
Rediger den samme temasiden 40s 0|Sa farst pa toppen av listen over eksisterende innhold, redigerer fort,
Legg til en ny bruker 325 0

117



APPENDIX

Appendix 15 - Notes from interviews

118



APPENDIX

Appendix 16 - Affinity Diagram

119



APPENDIX

Appendix 17 - Low Fidelity User Testing

Brukertesting
Deltager Oppgave Tid brukt Feil Notater 1 Finn informasjon om hva som er de vanligste komplikasjonene for barnet ditt,
e asek 0/Scrollet farst hele siden for 4 se 2 Finn pakkeliste for opphold
L |m ssek 0 Scrollet forst hele siden for 4 se, deretter opp til hjem knapp 3 Fra pakkeliste, naviger til hvilke fasiliteter sykehuset har.
3 16sek 0 Scrollet forst hele siden, deretter opp til hjem. 4 Fra fasiliteter, naviger til dine samarbeidspartnere,
4 1min 4sek 6 Prpvde frst foreldrerollen, deretter bruker, deretter barnet ditt, og deretter opphold. Likte ikke siste oppgave
e 11sek 0 scrollet ned forst
, 7 155 0 scrollet ned forst
3 Ssek 0 scrollet ned forst
4 2min 16 Pravde farst foreldrerollen, deretter bruker, deretter barnet ditt, og deretter opphold. Likte ikke siste oppgave
e 225k 0/kan seke, velger 3 klikke barnet ditt
3 #2 30sek 0 stusser |itt over at det
£ 17sek 0 leter fgrst i siden hun er, far hun gar hjem
5 275k 1 Kikket forst pa bruker
#1
. |7
#3
#4
#1
s |2
#3
#4
ITERASION

min. klikk
2

3
3
3

120



@ NTNU

Norwegian University of
Science and Technology



