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A B S T R A C T   

Flow of non-Newtonian fluids in rock fractures is ubiquitous in engineering practice and involves e.g. cement 
flow in tunnel grouting, drilling fluid flow when a fracture is met during drilling, and flow of fracturing fluids in 
hydraulic fracturing. In this review article, basic information about rheological behavior of non-Newtonian fluids 
is provided in Section 1. In Section 2, a summary of equations for the flow of non-Newtonian fluids between 
smooth parallel plates is provided, and knowledge gaps are identified, including those in two-phase flow. In 
Section 3, non-Newtonian fluid flow in fracture networks is reviewed, and outstanding research tasks are 
identified. The article concludes with a summary of current challenges in Section 4. Amongst the main knowl
edge gaps and challenges identified in the review and relevant for engineering geological practice are fracture 
flow of thixotropic fluids; two-phase flow regimes and instabilities associated with it; flow of non-Newtonian 
fluids through (and their mixing with Newtonian fluids at) fracture intersections; efficient algorithms for 
network flow at arbitrary pressure gradients; leak-off of non-Newtonian fluids through fracture walls; modelling 
of non-Newtonian fluids that include environmental effects and the resulting multiple couplings and 
multiphysics.   

1. Introduction: Non-Newtonian fluids 

A non-Newtonian fluid is a fluid that has a nonlinear relationship 
between shear stress and shear rate in a simple shear flow. Non- 
Newtonian fluids are ubiquitous in everyday life and in industrial ap
plications. Examples are ketchup, blood, cosmetics, toothpaste, foams, 
cement slurries, drilling fluids, some types of oil, hydraulic fracturing 
fluids, and partially crystallized magmas. In particular, in hydraulic 
fracturing, fluids with complex rheological properties are designed in 
order to satisfy multiple, often contradictory process requirements. For 
instance, creating a wide fracture requires high viscosity. On the other 
hand, preventing proppant settling to the bottom of the fracture neces
sitates rapid leak-off and fracture closure, which calls for lower fluid 
viscosity (Barbati et al., 2016). Drilling fluids present another example 
of complex non-Newtonian fluids often showing yield stress and mem
ory about shearing history (Ren et al., 2021). Yield stress is required, in 
particular, in order to prevent settling of cuttings when the pumps are 
stopped. Non-Newtonian bentonite suspensions are used for seepage 
control in engineering geological applications [for instance, in order to 
prevent levee failures (Yoon and El Mohtar, 2014)]. 

Moreover, non-Newtonian rheology is exhibited by fluidized soil 
masses in flow-like landslides (Dai et al., 2014) and by some shales 
(Wüst and McLane, 2000). Examples from geological engineering where 
knowledge and understanding of non-Newtonian fluid flow in fractures 
are of paramount importance include grouting projects in underground 
construction, oil well stimulation jobs, and drilling of offshore wells. The 
importance of understanding the subsurface movement of non- 
Newtonian fluids in hazardous site remediation was realized already 
two decades ago (Hatheway and Reeves, 1999). Clays and clay-sand 
mixtures used to construct buffers (emplaced barriers) in radioactive- 
waste and spent-fuel disposal sites have non-Newtonian rheology that 
eventually determines their ability to hydrologically seal fractures (Baik 
et al., 2007; Grindrod et al., 1999). Our ability to predict the outcome of 
all these projects and to improve their design depends on our detailed 
information about how non-Newtonian fluids behave in different flow 
environments, both single-phase and multiphase. 

The most commonly used models of non-Newtonian fluids belong to 
a subclass called generalized Newtonian fluids. For these fluids, the 
shear stress tensor, S, is related to the shear rate tensor, D, as follows 
(Irgens, 2008): 
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S = 2μa(Γ)D (1)  

where Γ is the shear rate measure, given by Γ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2D : D

√
; μa is the 

apparent viscosity. For generalized Newtonian fluids, the apparent vis
cosity is thus only a function of the shear rate. Unlike a Newtonian fluid, 
for which the apparent viscosity is a constant (the dynamic viscosity), 
the apparent viscosity for a generalized Newtonian fluid is a function of 
the shear rate measure, and of that only. Only generalized Newtonian 
fluids will be discussed in this article. There are two reasons for this: (1) 
these are the models most frequently used in engineering geological 
applications (e.g. in hydraulic fracturing models) and (2) these are the 
models for which most of experimental and theoretical work has been 
done. For the sake of brevity, these will further be called non-Newtonian 
fluids here. 

The behavior of non-Newtonian fluids can be illustrated by means of 
a unidirectional, simple shear flow (Fig. 1). Fig. 2 shows three examples 
of the shear stress vs. shear rate relationship (“flow curve”) frequently 
used to describe the rheological behavior of non-Newtonian fluids. 
Amongst these models, Bingham fluid and Herschel-Bulkley fluids are 
yield-stress fluids: the shear stress must overcome a certain threshold 
level, the so-called yield stress, in order for the fluid to start flowing. 
Power-law fluid is an example of non-Newtonian fluid without yield 
stress. 

For a power-law fluid, the apparent viscosity is given by (Irgens, 
2008): 

μa = CΓn− 1 (2)  

where n is the flow index; C is the consistency index. For n < 1, the fluid 
is shear-thinning; for n > 1, the fluid is shear-thickening. In a simple 
shear flow (Fig. 1), the relationship between the shear stress, τ, and the 
shear rate, γ̇, is thereby given by 

τ = C|γ̇|n (3) 

The power-law model is frequently employed to describe the rheo
logical behavior of fluids (gels) used in hydraulic fracturing (Lakh
tychkin et al., 2012; Perkowska et al., 2016). Magmas with a volume 
fraction of crystals from 25 to 40% to 50% exhibit power-law rheology 
(Lejeune and Richet, 1995; Ryerson et al., 1988). 

Bingham fluid is defined as follows (Chin, 2012): 

μa = μpl +
τY

Γ
if

̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

S : S
√

> τY

D = 0 if
̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

S : S
√

< τY

(4) 

The relationship between the shear stress and the shear rate in a 
simple shear flow is thereby given by 

τ = τY + μpl|γ̇| (5)  

where τY is the yield stress; μpl is the plastic viscosity. The Bingham 
model is often employed to describe the rheology of drilling fluids 
(Caenn et al., 2011), cement grouts (Fidelibus and Lenti, 2012; Funehag 
and Thörn, 2018; Zou et al., 2018; Öge, 2017) and polymer gels used in 
improved oil recovery (Rossen and Kumar, 1992). Nonzero yield stress is 

a required property of drilling fluids used to prevent settling of drill 
cuttings when the pumps are off. Magmas with a volume fraction of 
crystals in excess of 50% are known to have yield-stress rheology (Hallot 
et al., 1996). 

Using the Bingham model in numerical calculations can be chal
lenging since there is a discontinuity in the shear stress at γ̇ = 0. In order 
to facilitate the use of the Bingham rheology in numerical models, Eq. 
(4) is usually regularized, e.g. (Freitas et al., 2013; Frigaard and Nouar, 
2005; Lavrov, 2005). Moreover, the concept of yield stress and the ex
istence of a “true” yield stress have been debated in rheological litera
ture for several decades (Barnes and Walters, 1985). Namely, finite yield 
stress implies infinite apparent viscosity at zero shear rate. Regulariza
tions circumvent this issue by offering an approximation to the flow 
curve that has zero yield stress but otherwise closely follows the Bing
ham model. 

Two types of regularization are particularly common: the bi-viscous 
model and the Papanastasiou regularization. In the bi-viscous model, the 
flow curve is piecewise linear (Fig. 3) (O’Donovan and Tanner, 1984). In 
the Papanastasiou regularization, the Bingham model is approximated 
with a smooth continuous function given by (Papanastasiou, 1987) 

μa = μpl +
τY [1 − exp( − mΓ) ]

Γ
(6)  

where m is a dimensionless regularization parameter. Increasing m 
brings the regularized stress-strain rate curve as closely to the Bingham 

Fig. 1. Simple shear flow.  

Fig. 2. Examples of non-Newtonian rheological models: power law with n < 1 
(solid line), Bingham (dotted line) and Herschel-Bulkley with n < 1 
(dashed line). 

Fig. 3. Bi-viscous regularization (solid line) of the Bingham model 
(dotted line). 
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as necessary (Fig. 4). 
Herschel-Bulkley fluid is defined as follows (Chin, 2012): 

μa = CΓn− 1 +
τY

Γ
if

̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

S : S
√

> τY

D = 0 if
̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

S : S
√

< τY

(7) 

The relationship between the shear stress and the shear rate in a 
simple shear flow is thereby given by 

τ = τY +C|γ̇|n (8) 

The Herschel-Bulkley model for a shear-thinning fluid (n < 1) is 
schematically shown in Fig. 2 (dashed line). The Herschel-Bulkley model 
is often employed to describe the rheology of drilling fluids (Cayeux, 
2020; Majidi et al., 2008; Ofei et al., 2021; Russian et al., 2019) and 
cement grouts (Zou et al., 2020). In rock grouting applications, when a 
Herschel-Bulkley fluid is injected into a fracture system under a constant 
injection pressure, the yield stress controls the ultimate penetration 
distance while the consistency, C, affects the rate of the grout front 
propagation (Zou et al., 2020). 

One of the issues with the Bingham model as well as with shear- 
thinning power-law and Herschel-Bulkley models is infinite apparent 
viscosity, τ/|γ̇|, at |γ̇| = 0. To avoid this issue, the Carreau model can be 
used for shear-thinning fluids. The shear-thinning Carreau model (n < 1) 
is given by (Irgens, 2008) 

μa =
{

μ∞ +(μ0 − μ∞)
[
1 + (λΓ)2 ]n− 1

2
}

(9)  

where μ0 is the viscosity at zero shear rate; μ∞ is the limiting viscosity at 
γ̇→∞; n and λ are fitting parameters. 

A reasonable approximation of the Carreau model is provided by the 
truncated power-law model given by 

μa =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ0, if Γ < γ̇1
CΓn− 1 if γ̇1 < Γ < γ̇2

μ∞ if Γ > γ̇2

(10)  

where γ̇1 = (C/μ0)
1/(1− n) and γ̇2 = (C/μ∞)

1/(1− n) represent cut-off values 
of the shear rate. At Γ < γ̇1, the truncated power-law fluid behaves like a 
Newtonian fluid with viscosity μ0. At Γ > γ̇2, the truncated power-law 
fluid behaves like a Newtonian fluid with viscosity μ∞. At intermedi
ate shear rates, γ̇1 < Γ < γ̇2, the truncated power-law fluid behaves like a 
power-law fluid. Truncated power-law rheology has been employed to 
model hydraulic fracturing (Wrobel et al., 2021). 

To illustrate the values of the parameters used to describe non- 
Newtonian fluids, a few examples are provided in Table 1. 

It should be remembered that properties of non-Newtonian fluids 
depend on the environmental conditions, in particular temperature 
(Cayeux, 2020; Metwally et al., 2022) and salinity (Ren et al., 2021). 
This may become important, for instance, when injecting these fluids 
into rock masses that have elevated temperature. Adding solid particles 
(e.g. lost-circulation materials) to a non-Newtonian fluid alters its 
rheological properties, too. 

In addition to nonlinear flow curves, some non-Newtonian fluids 
demonstrate thixotropic behavior: their rheological properties depend 
on the shear history experienced by the fluid. Shearing may either 
destroy the network structures of particles in the fluid (positive thixot
ropy) or build up a new particle arrangement due to particle aggregation 
(negative thixotropy). The former scenario reduces the fluid viscosity; 
the latter increases it (Ren et al., 2021). Thixotropy introduces a wide 
spectrum of additional complications in the fluid behavior. For instance, 
cyclic increase-decrease of the shear rate results in a hysteresis of the 
flow curve. An example for a fluid with positive thixotropy is schemat
ically shown in Fig. 5. Discussion of time-dependent effects in geological 
applications is continued in Section 2. 

The behavior of non-Newtonian fluids is by far more diverse than 
what a brief overview can cover. For instance, some fluids used in hy
draulic fracturing may show viscoelastic behavior, normal stress dif
ferences, extensional viscosity, material memory, strain dependence etc. 
(Barbati et al., 2016). In this paper, I choose to focus on generalized non- 
Newtonian fluids (for which shear stress only depends on the shear rate) 
as the most common non-Newtonian fluids used in engineering 
geological applications. 

The focus of this review article is on fracture flow of non-Newtonian 
fluids. Fracture flow of Newtonian fluids is not covered in this article. 

Fig. 4. Example of the Papanastasiou regularization (dashed line) of the 
Bingham model (solid line). τY = 1 Pa, μpl = 0.1 Pa•s, m = 300. 

Table 1 
Examples of measured parameters for different rheological models.  

Fluid Model Parameters Reference 

Portland cement grout Power law C = 1.4278 
Pa•s0.616, 
n = 0.616 

(Liu et al., 2018) 

Portland cement grout Bingham τY = 3.032 Pa, 
μpl = 0.018 
Pa•s 

(Liu et al., 2018) 

Oil-based drilling fluid Herschel- 
Bulkley 

τY = 1.73 Pa, 
C = 0.062 
Pa•s0.876, 
n = 0.876 

(Sayindla et al., 
2019) 

KCl/polymer (xanthan 
gum) water-based 
drilling fluid 

Herschel- 
Bulkley 

τY = 2.23 Pa, 
C = 1.009 
Pa•s0.379, 
n = 0.379 

(Cayeux and 
Leulseged, 2019)  

Fig. 5. Flow curve for a thixotropic fluid subjected to cyclic increase/decrease 
in the share rate. Solid line: first cycle; dashed line: second cycle. Based on 
(Billingham and Ferguson, 1993). 
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Comprehensive research has been conducted on Newtonian fluid flow in 
fractures and fracture networks over the past three decades. This 
research is covered in numerous publications starting from e.g. (Brown, 
1987) and onwards. 

2. Flow of non-Newtonian fluids in a single fracture 

2.1. Single-phase flow between smooth parallel walls 

Real fractures have rough walls. However, in numerical models, 
fractures are often assumed to be smooth, with the distance between the 
fracture faces being equal to the so-called hydraulic aperture of the 
fracture (Selvadurai and Nguyen, 1999). Hydraulic aperture is defined 
as the aperture of a smooth-walled fracture that, under a given pressure 
difference, produces the same flow rate as the real rough-walled fracture 
(Békri et al., 1997; Brown, 1987). For the above reason, we begin our 
exposition of fracture flow with single-phase flow between two smooth 
parallel walls. 

Laminar flow of a Newtonian fluid in a smooth-walled conduit of 
constant aperture w is described by the so-called “cubic law”. According 
to this law, the average fluid velocity, v, in a one-dimensional fracture is 
given by 

v = −
w2

12μ
dP
dx

(11)  

where x is directed along the fracture; P is the fluid pressure; μ is the 
dynamic viscosity of the fluid. Eq. (11) is used e.g. to describe the 
Newtonian fluid flow in two-dimensional discrete fracture networks 
(DFNs) where each fracture is represented by a line segment (Fig. 6). 
“Average fluid velocity” here means that the fluid velocity is averaged 
across the aperture. Flow rate per unit length in the direction normal to 
the drawing in Fig. 6 is given by the product of v and w and is thus 
proportional to w3; thus, the name “cubic law”. 

In a planar, two-dimensional fracture located in plane x, y, the vector 
of average fluid velocity is given by 

v = −
w2

12μ∇P = −
w2

12μ

(
∂P
∂x
,

∂P
∂y

)

(12)  

where ∇P is the pressure gradient in the fracture plane. 
Eq. (12) and similar equations for non-Newtonian fluids quoted later 

in this Section are obtained by solving the momentum conservation 
equation for laminar flow, with the shear rate tensor given by 

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
1
2

∂ux

∂z

0 0
1
2

∂uy

∂z
1
2

∂ux

∂z
1
2

∂uy

∂z
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)  

the shear stress tensor given by 

S =

⎡

⎣
0 0 τxz
0 0 τyz
τxz τyz 0

⎤

⎦, (14)  

and the constitutive law given by Eq. (1). 

2.1.1. Power-law fluid 
For non-Newtonian fluids, closed-form solutions for the average fluid 

velocity can be obtained for only few rheological models. In particular, 
for a power-law fluid flowing in a 1D, linear fracture (Chhabra and 
Richardson, 1999): 

v = −
n

2n + 1
1

C1/n

(w
2

)(n+1)/n
⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒

(1− n)/ndP
dx

(15) 

For a Newtonian fluid, Eq. (15) becomes Eq. (11) if we substitute C =
μ, n = 1. 

For a power-law fluid flowing in a 2D, planar fracture, the vector of 
average velocity is given by 

v = −
n

2n + 1
1

C1/n

(w
2

)(n+1)/n
|∇P|(1− n)/n

∇P (16) 

For a Newtonian fluid, Eq. (16) becomes Eq. (12) if we substitute C =
μ, n = 1. 

2.1.2. Bingham fluid 
For a Bingham fluid flowing in a linear, 1D fracture the average fluid 

velocity is given by 

v =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if
⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒

〈
2τY

w
(

−
w2

12μpl
+

1
4

wτY

μpl|dP/dx|
−

1
3

τ3
Y

μplw|dP/dx|3

)
dP
dx

if
⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒>

2τY

w

(17) 

Eq. (17) becomes Eq. (11) if we substitute μpl = μ, τY = 0 (Newtonian 
fluid). 

For a Bingham fluid flowing in a 2D planar fracture, the vector of 
average velocity is given by 

v =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if |∇P|〈
2τY

w
(

−
w2

12μpl
+

1
4

wτY

μpl|∇P|
−

1
3

τ3
Y

μplw|∇P|3

)

∇P if |∇P|〉
2τY

w

(18) 

If w|∇P|/τY≫1, the last term in the parentheses on the right-hand 
side of Eq. (182) is negligible compared to the first two terms. Neglect
ing the last term then leads to a linearized form of this equation that was 
employed e.g. in (Liu et al., 2021). 

When Bingham fluid flows in a fracture of constant aperture, a solid 
core exists in the region of low shear rate, i.e. around the mid-plane of 
the fracture (the xy-plane located at an equal distance from the fracture 

Fig. 6. Two-dimensional discrete fracture network (DFN) consisting of one- 
dimensional, linear fractures. 
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faces) (Amadei and Savage, 2001). The thickness of this solid, unyielded 
core is given by 2τY/|∇P|. Eqs. (17) and (18) imply that there is no flow 
when the pressure gradient is below a critical value, 2τY/w. Under this 
condition, the solid core occupies the entire fracture aperture, and the 
flow stops (the fluid becomes immobile, v = 0). This usually creates 
convergence problems when Eq. (18) is used to model fracture flow of a 
Bingham fluid numerically. In order to circumvent this problem, regu
larized Bingham models are used. The Papanastasiou regularization 
discussed in Section 1 prevents the formation of solid core and thus of 
immobile fluid regions. It turns out, however, that a closed-form solu
tion for the fluid velocity as a function of pressure gradient requires in 
this case solving a transcendental differential equation, and thus cannot 
be obtained. Nevertheless, there are at least two ways how closed-form 
solutions approximating the Bingham fluid flow in a fracture can be 
obtained. The first one is the use of bi-viscous regularization (Section 1). 
This results in a closed-form solution for the average fluid velocity (Lenci 
and Di Federico, 2020): 

where μ0is the slope of the flow curve at low shear rates, i.e. at shear 
rates below τY/(μ0 − μ1); μ1 is the slope of the flow curve at high shear 
rates, i.e. at shear rates above τY/(μ0 − μ1) (Fig. 3); μ0 > μ1. A different 
arrangement of Eq. (19) is provided in (Lavrov, 2005). 

For a bi-viscous fluid flowing in a 2D planar fracture, the vector of 
average velocity is given by: 

v=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
w2

12μ0
∇P if |∇P|〈

2τY μ0

w(μ0 − μ1)
(

−
w2

12μ1
−

τ3
Y μ2

0

3wμ1(μ0 − μ1)
2
|∇P|3

+
τYw

4μ1|∇P|

)

∇P if |∇P|〉
2τYμ0

w(μ0 − μ1)

(20) 

Another regularization for Bingham fluid flow in fractures, the 
“SINTEF model”, was developed in (Bao et al., 2017). It was obtained by 
regularizing directly Eqs. (17) and (18) rather than the Bingham model, 
i.e. Eqs. (4)–(5). This approach results in the following equation for 1D 
fracture flow: 

v = −
wτY

μpl|dP/dx|
dP
dx

⎧
⎨

⎩

[(
1
4

)λ

+

(
|dP/dx|w

12τY

)λ
]1/λ

−
1
4

⎫
⎬

⎭
for all dP/dx.

(21)  

where λ is a dimensionless regularization parameter. In 2D fractures the 
following equation can be used: 

v = −
wτY

μpl

⎧
⎨

⎩

[(
1
4

)λ

+

(
|∇P|w
12τY

)λ
]1/λ

−
1
4

⎫
⎬

⎭

∇P
|∇P|

for all |∇P|. (22) 

From numerical viewpoint, an important advantage of Eq. (21) 
compared to both the Bingham model Eq. (17) and the bi-viscous 
regularized model Eq. (19) is that it is valid for all values of the pres
sure gradient. However, at small pressure gradients, Eq. (21) involves 
subtraction of two close numbers. This is known to increase the 
computational error (Ralston and Rabinowitz, 2016). As shown in (Bao 
et al., 2017), Taylor expansion of the right-hand side of Eq. (21) yields 
the following approximation of Eq. (21): 

v ≈ −
1
4λ

(
|dP/dx|w

3τY

)λ dP/dx
|dP/dx|

for
|dP/dx|w

2τY
<< 1 (23)  

and similarly for 2D flow: 

v ≈ −
1
4λ

(
|∇P|w

3τY

)λ
∇P
|∇P|

for
|∇P|w

2τY
<< 1 (24) 

Accuracy of approximations with regularized models depends on the 
regularization parameters, i.e. the ratio μ0/μ1 in Eq. (19) and λ in Eq. 
(21). This is illustrated in Fig. 7a where three 1D flow models are plotted 
for a fracture of aperture w = 1 mm: Bingham model [Eq. (17)], bi- 
viscous model [Eq. (19)] and SINTEF model [Eq. (21)]. The following 
values were used in the Bingham model: τY = 10 Pa, μpl = 0.01 Pa•s. In 
the bi-viscous model, μ1 = μpl and μ0/μ1 = 10. In the SINTEF model, λ =
4. The approximations are quite good at higher pressure gradient values 
and become somewhat worse at lower pressure gradients. 

According to (Lenci and Di Federico, 2020), bi-viscous model pro
vides a good approximation of the Bingham model when μ0/μ1 =

100...1000. When bi-viscous model is used in flow simulations with 
rough-walled fractures, the accuracy of approximation decreases with 
the roughness and improves with the pressure gradient (Lenci and Di 
Federico, 2020). 

Accuracy of approximation at lower pressure gradients is improved 
in Fig. 7b by changing the regularization parameters to μ0/μ1 = 100 in 
the bi-viscous model and λ = 6 in the SINTEF model. The rest of the 
parameters are the same as in Fig. 7a. 

2.1.3. Herschel-Bulkley fluid 
For a Herschel-Bulkley fluid flowing in a linear, 1D fracture the 

average fluid velocity is given by (Morris et al., 2015)  

v =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
w2

12μ0

dP
dx

if
⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒

〈
2τYμ0

w(μ0 − μ1)
(

−
w2

12μ1
−

τ3
Y μ2

0

3wμ1(μ0 − μ1)
2
|dP/dx|3

+
τYw

4μ1|dP/dx|

)
dP
dx

if
⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒

〉
2τYμ0

w(μ0 − μ1)

(19)   

v =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if
⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒

〈
2τY

w

2n
n + 1

1
C1/nw|dP/dx|2

dP
dx

[
n

2n + 1
1

|dP/dx|

(
w|dP/dx|

2
− τY

)(2n+1)/n

−
w
2

(
w|dP/dx|

2
− τY

)(n+1)/n
]

if
⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒

〉
2τY

w

(25)   
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Eq. (25) becomes Eq. (17) for n = 1.0 (Bingham fluid). 
For a Herschel-Bulkley fluid flowing in a 2D planar fracture, the 

vector of average velocity is given by 

2.1.4. Truncated power-law fluid 
For a truncated power-law fluid flowing in a linear, 1D fracture the 

average fluid velocity is given by (Lavrov, 2015; Wrobel, 2020) 

For a truncated power-law fluid flowing in a 2D planar fracture, the 
vector of average velocity is given by:   

a                                                                       b
Fig. 7. Bingham model (solid line), bi-viscous model (dotted line) and SINTEF model (dashed line) obtained with the following regularization parameters: 
(a) μ0/μ1 = 10 in the bi-viscous model, λ = 4 in the SINTEF model. 
(b) μ0/μ1 = 100 in the bi-viscous model, λ = 6 in the SINTEF model. 
The rest of parameters are quoted in the bulk text. 

v =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if |∇P|〈
2τY

w

2n
n + 1

∇P
C1/nw|∇P|2

[
n

2n + 1
1

|∇P|

(
w|∇P|

2
− τY

)(2n+1)/n

−
w
2

(
w|∇P|

2
− τY

)(n+1)/n
]

if |∇P|〉
2τY

w

(26)   

v =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
w2

12μ0

dP
dx

if
⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒

〈
2μ0 γ̇1

w
[

−
2
3

1 − n
1 + 2n

C3/(1− n)

wμ(1+2n)/(1− n)
0 |dP/dx|3

−
2n

1 + 2n
(w/2)(1+2n)/n

wC1/n

⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒

(1− n)/n
]

dP
dx

if
2μ0γ̇1

w
<

⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒

〈
2Cγ̇n

2

w
{

−
w2

12μ0
+

2
3

1 − n
1 + 2n

C3/(1− n)

w|dP/dx|3

[
1

μ(1+2n)/(1− n)
∞

−
1

μ(1+2n)/(1− n)
0

]}
dP
dx

if
⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒

〉
2Cγ̇n

2

w

(27)   

v =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
w2

12μ0
∇P if |∇P|〈

2μ0 γ̇1

w
[

−
2
3

1 − n
1 + 2n

C3/(1− n)

wμ(1+2n)/(1− n)
0 |dP/dx|3

−
2n

1 + 2n
(w/2)(1+2n)/n

wC1/n

⃒
⃒
⃒
⃒
dP
dx

⃒
⃒
⃒
⃒

(1− n)/n
]

∇P if
2μ0γ̇1

w
< |∇P|〈

2Cγ̇n
2

w
{

−
w2

12μ0
+

2
3

1 − n
1 + 2n

C3/(1− n)

w|dP/dx|3

[
1

μ(1+2n)/(1− n)
∞

−
1

μ(1+2n)/(1− n)
0

]}

∇P if |∇P|〉
2Cγ̇n

2

w

(28)   
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As pointed out in (Rodríguez de Castro and Radilla, 2017), truncated 
power-law model is not adequate for fracture flow of real complex shear- 
thinning fluids when shear rates reach transition from the power-law 
range to the upper Newtonian plateau. 

2.1.5. Other models 
Exact closed-form solutions for flow between parallel walls exist only 

for a limited number of rheological models. A novel method of deriving 
an approximate relation between pressure gradient and flow rate for a 
smooth-walled fracture, for any generalized Newtonian rheology, was 
proposed in (Wrobel, 2020). According to this method, first, a piecewise 
approximation of the apparent viscosity is made in different shear rate 
intervals. This approximation is continuous and is achieved with power- 
law functions. The resulting approximate flow curve can be viewed as a 
generalization of truncated power-law model, with several power-law 
intervals instead of just one, as in Eq. (10). The approximation can be 
made as accurate as desired by increasing the number of power-law 
intervals. It turns out that such piecewise-power-law fluid allows an 
analytical, closed-form solution for the flow rate (or average velocity) 
vs. pressure gradient in a smooth-walled fracture. Thus, the average 
velocity can be analytically computed for any type of generalized 
Newtonian rheology, with any required accuracy. 

The above-discussed rheological models are generalized Newtonian 
models. Thus, none of them take time-dependent properties into ac
count. One example of time-dependency is thixotropy. Thixotropy is 
known e.g. in drilling fluids (Cayeux, 2020). Experiments show that 
shear history may affect the behavior of thixotropic fluids over long 
transport distances. For instance, when a drilling fluid or cement enter a 
fracture intersected by the borehole, the shear rate undergoes a sudden 
change. The effect of such a change on fracture flow of a thixotropic fluid 
has apparently never been properly investigated (theoretically or 
experimentally). Since performing such an experiment might be quite 
challenging, a first step could be a numerical model. Building such a 
numerical model is, however, a challenge, too, since thixotropic models 
that could describe the real behavior of e.g. drilling fluids contain many 
parameters; for instance, the thixotropic model developed in (Cayeux, 
2020) has 18 parameters (instead of just three for a non-thixotropic 
Herschel-Bulkley fluid). In addition, using such models in fluid dy
namics simulations of fracture flow would necessitate tracing the shear 
history of individual fluid volumes — a task formidable indeed, also in 
terms of computational time. 

Thixotropic properties may be particularly relevant when fluid flow 
is cyclic, for instance, during the so-called borehole ballooning events in 
drilling (Lavrov and Tronvoll, 2005). During ballooning, the drilling 
fluid flows into and out of a fracture in cycles due to the variations in the 
downhole pressure. The fluid movement into and out of the fracture is 
due to the opening/closing of the fracture, without the fracture neces
sarily propagating further into the formation. Thixotropic effects are 
likely to influence especially the beginning phase of each inflow or 
outflow cycle. 

Another example of time-dependent behavior of non-Newtonian 
fluids is represented by hardening. An example would be hardening 
(aging) of cement as it is being pumped into the subsurface during a 
grouting or well cementing job. In particular, if Bingham model is 
assumed for cement, both the plastic viscosity and the yield stress in
crease over time (Hässler et al., 1992). As an example, plastic viscosity 
vs time t was approximated with an exponential function in (Fidelibus 
and Lenti, 2012): μpl = μpl0exp(αt) where μpl0 is the initial plastic vis
cosity; α is a time constant. A similar, exponential approximation was 
used also for the yield stress vs time in (Zou et al., 2018): τY = τY0exp(βt)
where τY0 is the initial yield stress; β is a time constant. Exponential 
approximations of time-dependent rheological properties may result in 
their excessively large growth over time. Therefore, alternatively, linear 
time-dependency may be assumed. Exponential approximations work 
well for a limited time, which is usually the case of interest in rock 

grouting applications (Zou et al., 2018). Rheological properties vs time 
curves measured in the experiments (Eriksson et al., 2000) follow a 
trend schematically shown in Fig. 8. This trend is neither linear nor is it 
given by the above exponential equations. It should rather be described 
by y = y∞ −

(
y∞ − y0

)
exp( − γt) where y = μpl or y = τY, γ is a time 

constant (possibly different for μpl and τY). Numerical modelling has 
shown a significant effect of hardening on the results of grouting jobs. In 
particular, the propagation distance of grout is affected (Hässler et al., 
1992). 

Time-dependent behavior is also characteristic of gel flow in frac
tures. When water originally present in gel leaks through the fracture 
wall, a concentrated immobile gel is left in the fracture (Seright, 2001). 

Properly accounting for time-dependent behavior in fracture flow 
requires that the history of the fluid elements is traced. This can be 
achieved by using Lagrangian description of flow problems, whereby the 
equations of fluid mechanics are solved in a moving (Lagrangian) co
ordinate framework. Accounting for time-dependent effects in a fixed 
(Eulerian) coordinate framework is more challenging, and the accuracy 
is typically lower. A simplified Eulerian approach was employed in 
(Fidelibus and Lenti, 2012): instead of fluid elements, time-dependent 
properties were attributed to fixed grid points. 

An important, for practical applications, class of non-Newtonian 
fluids is represented by suspensions of relatively large particles in a 
(Newtonian or non-Newtonian) carrier fluid. An examples would be a 
proppant-laden slurry pumped during hydraulic fracturing in order to 
maintain the fracture open after the injection is finished. As pointed out 
in (Tomac and Tartakovsky, 2018), flow of such fluids in long rough 
narrow fractures is not completely understood yet. Depending on the 
particle collision rate, flow can be dilute or collision-dominated. In a 
dilute regime, particles collide seldom, and their motion is dominated by 
the fluid drag force. In a collision-dominated regime, particle collisions 
affect their motion significantly. Another factor in particle suspensions is 
the lubrication force. It is a viscous dissipation force that prevents par
ticles from approaching each other (or the fracture walls) and from 
moving away from each other (Lavrov and Laux, 2007). Lubrication 
force leads to particle agglomeration and may eventually lead to parti
cles clogging the fracture aperture (Tomac and Gutierrez, 2015). 
Agglomeration is promoted by higher particle concentration and carrier 
fluid viscosity. All this complicates flow of particle suspensions in 
fractures even further. 

The fracture flow models summarized in this Subsection have been 
derived for Stokes flow. An attempt to account for inertial effects in 
fracture flow of shear-thinning fluids (Carreau and Herschel-Bulkley) 
can be found in (Rodríguez de Castro and Radilla, 2017). Examples of 
advanced, fully 3D numerical simulations of inertial flows of shear- 
thinning fluids (Cross rheology) in a fracture digitized from a micro- 
CT image can be found in (Zhang et al., 2019). 

Fig. 8. Plastic viscosity (dashed line) and yield stress (solid line) vs shear time 
for a cement grout. Based on the experiments (Eriksson et al., 2000). 
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2.2. Single-phase flow in a rough-walled fracture 

So far, we have been concerned with flow between smooth, parallel 
plates. Roughness of real fracture surfaces introduces tortuosity in the 
fluid flow and, thus, additional complexity. Fluid flow in a fracture of 
variable local aperture is a three-dimensional process. A fully 3D 
modelling of such flows is time-consuming and only a few fully-3D 
computational fluid dynamics (CFD) studies of fracture flow of Newto
nian (Brush and Thomson, 2003) and non-Newtonian (Zhang et al., 
2019) fluids can be found. Therefore, two-dimensional models using the 
lubrication theory approximation (see below) are usually employed 
whereby the flow is averaged across the local aperture by means of the 
laws presented in Subsection 2.1. This reduces the compute time by two 
orders of magnitude, according to (Morris et al., 2015). The discrepancy 
in the hydraulic aperture obtained by lubrication theory approximation 
and by more accurate 3D CFD analysis is on the order of a few percent 
only (Lenci et al., 2022a). 

To characterize the overall hydraulic conductance of rough-walled 
fractures, the concept of hydraulic aperture is used (Brown, 1987). For 
non-Newtonian fluids, hydraulic aperture can be defined as the aperture 
of a smooth-walled fracture that, under the same pressure gradient and 
with the same non-Newtonian fluid, produces the same flow rate as the 
rough-walled fracture does. 

Fluid flow in rough-walled factures often occurs through few pref
erential flow paths of least flow resistance, a phenomenon known as 
channeling. Because of the fracture roughness and flow tortuosity, the 
hydraulic aperture is, in general, not equal to the mean aperture, i.e. the 
arithmetic average of the local fracture apertures (Wang et al., 2018). 

A vast amount of literature is available on hydraulic conductivity of 
rough-walled fractures when the fluid is Newtonian. Analytical expres
sions for hydraulic aperture can be obtained only in some specific cases, 
e.g. when the aperture map has some sort of periodicity. In general, 
numerical modelling and experiments are invoked to investigate flow 
properties and hydraulic conductivity of rough-walled rock fractures. 
Numerical modelling boils down to solving the continuity equation 

∇⋅(wv) = 0 (29)  

by means of finite-difference, finite-element or finite-volume methods. 
The so-called lubrication theory approximation is used for v by 
assuming that the cubic law holds locally. The lubrication theory has 
several underlying assumptions. In particular, it is assumed that the 
Reynolds number, Re, is small (Re << 1), so that the flow is Stokes flow, 
and there are no recirculation zones between asperities. It is also 
assumed that the fracture faces are sufficiently smooth (∇w≪1). The 
latter implies that the ratio between the aperture variation and the 
shortest wavelength of the aperture profile is below a certain threshold 
value (Lenci and Chiapponi, 2020; Zimmerman et al., 1991). According 
to (Boronin et al., 2015), the lubrication approximation is valid as long 
as the product εRe is small (smaller than 1). Here, ε = w/L where L is the 
in-plane length scale of the fracture. Under these conditions, Eq. (12) 
can be used for v for a Newtonian fluid. 

Similarly to Newtonian fluids, in the case of non-Newtonian fluids, 
hydraulic aperture can be computed in closed form only for some 
simplest aperture maps. For instance, (Di Federico, 1997) analyzed flow 
of a power-law fluid in a fracture with sinusoidal variation of aperture 
along one direction. For such fractures, it was possible to obtain semi- 
analytical expressions for hydraulic aperture in two cases: when the 
flow is parallel or perpendicular to the aperture variation direction. 
Along the same lines, in (Lenci and Di Federico, 2020), semi-analytical 
expressions were obtained for a bi-viscous fluid in a fracture that has 
random variation of aperture in only one direction. In the general case of 
pressure gradient applied in an arbitrary direction, semi-analytical ex
pressions cannot be obtained even for such oversimplified aperture 
maps. Also for more realistic, e.g. self-affine, aperture maps, the 
analytical approach does not work, and numerical modelling must be 

used (Lavrov, 2013a). Here, again, Eq. (29) is solved by any available 
numerical method. The local velocity, v, has in this case more compli
cated form than for Newtonian fluids, resulting in a nonlinear partial 
differential equation for the fluid pressure. 

Experimental verification of the numerical solutions for non- 
Newtonian fluid flow in a single fracture is of great interest because 
there are a number of assumptions underlying the numerical models. In 
particular, the applicability range for the lubrication approximation, 
still debated even for Newtonian fluids, has not been analyzed for non- 
Newtonian fluids at all. Experiments could validate or invalidate the use 
of this approximation and numerical models based thereon. Such ex
periments require bespoke equipment and are rare. Typical equipment 
for such experiments is a Hele-Shaw cell. A Hele-Shaw cell consists of 
two transparent plates parallel to each other. The distance between the 
plates can be changed and roughness or undulation can be introduced to 
the plates’ inner sides. The distance between the plates (the aperture) is 
much smaller than the in-plane dimensions of the plates. An experiment 
of this type was reported in (Lenci and Chiapponi, 2020). A Hele-Shaw 
cell with one of the plates having random undulations in the direction of 
flow represented effectively a one-dimensional aperture profile. The 
flow rate through the cell was calculated numerically for Newtonian and 
power-law fluids whereby the rheological parameters for the latter were 
obtained with a rheometer. Flow experiments were performed with both 
Newtonian and power-law fluids. The numerical model with lubrication 
approximation agreed well with the experiment for Newtonian fluid but, 
in all but one cases, underestimated the flow rate by a factor up to 2 for 
non-Newtonian fluids. The discrepancy between experiment and theory 
in the latter case was attributed to two possible reasons: (i) the limited 
range of shear rates allowed by the rheometer and (ii) slip at the walls 
(no-slip boundary conditions are used at the fracture faces in numerical 
models, just as they were assumed in the theoretical models summarized 
in Section 2.1). In addition, the power-law model might not be valid for 
non-Newtonian fluids used in the experiments: the only experiment 
where the flow rate of non-Newtonian fluid was predicted correctly was 
the one where the fluid was likely to have a nonzero yield stress (Lenci 
and Chiapponi, 2020). Experiments with fracture flow of non- 
Newtonian fluids require that the distance between the plates (i.e. the 
fracture aperture) be controlled precisely since the aperture has a sig
nificant effect on the flow rate, due to the cubic law. One of the chal
lenges here is that, if the plates are not sufficiently stiff, the aperture 
varies with the fluid pressure which introduces a parasitic component 
into the aperture profile along the flow direction (Majidi et al., 2010a). 
Experiments with radial flow of non-Newtonian fluids into a Hele-Shaw 
cell (representing radial flow of drilling mud or cement grout into a 
fracture) have been reported in (Funehag and Thörn, 2018; Majidi et al., 
2010a). 

2.2.1. Hydraulic aperture is a function of rheological properties for non- 
Newtonian fluids 

Even for the simplest non-Newtonian rheology, a power-law fluid, 
the hydraulic aperture depends not only on the aperture distribution of 
the fracture but also on the fluid properties (Lenci et al., 2022b). This is 
remarkably different from Newtonian fluids where the hydraulic aper
ture is independent of the fluid viscosity and is, thus, a intrinsic property 
of the fracture. 

To illustrate the dependency of hydraulic aperture on fluid rheology, 
I will use a model of power-law fluid flowing in the x-direction, along a 
sinusoidal one-dimensional aperture profile given by: 

wh = wm

(

1+ δsin
2πx
λ

)

(30)  

where wm is the mean aperture; δ is a dimensionless parameter charac
terizing the magnitude of the aperture variation. The hydraulic aperture 
can in this case be evaluated semi-analytically as follows (Di Federico, 
1997): 
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wh = wm

⎡

⎢
⎢
⎢
⎣

1
λ

∫λ

0

dx
(
1 + δsin2πx

λ

)2n+1

⎤

⎥
⎥
⎥
⎦

− 1/(2n+1)

(31)  

where n is the flow index of the power-law fluid. According to Eq. (31), 
hydraulic aperture should depend on the flow index, n. This is illustrated 
in Fig. 9 for δ = 0.5. 

Also for other types of non-Newtonian rheology the hydraulic aper
ture can be shown to depend on the rheological parameters of the fluid 
and not just be a function of the aperture map. 

Numerical modelling suggests that, as the fluid becomes more shear- 
thinning, the fracture becomes more permeable compared to the case 
when the fluid is Newtonian (Lenci et al., 2022b). This is also illustrated 
by the above simple one-dimensional model (Fig. 9) when n is smaller 
than 1.0. In a two-dimensional, rough-walled fracture, this increase is 
even more pronounced and is attributed to the fact that shear-thinning 
rheology enhances the flow channeling which, in turn, reduces viscous 
dissipation in the fluid (Lenci et al., 2022b). Enhancement of flow 
channeling is the subject of the next Subsection. 

2.2.2. Shear-thinning enhances flow channeling 
Channeling is commonly observed when Newtonian fluids flow in 

rough-walled fractures. The phenomenon is due to the fact that flow 
often occurs through a few preferential paths of lowest resistance. 
Preferential flow paths, flow anisotropy and channeling are especially 
pronounced in fractures that have experienced shear displacement 
(Koyama et al., 2006). Shear-thinning rheology enhances flow chan
neling (Lavrov, 2013b; Lenci et al., 2022a; Zhang et al., 2019) and the 
development of preferential pathways (Lenci et al., 2022b; Rodríguez de 
Castro and Radilla, 2017). The enhanced channeling has been observed 
in experiments with shear-thinning solutions flowing in rough-walled 
artificial fractures (Auradou et al., 2008). 

The observed enhancement of channelization in shear-thinning 
fluids can be explained as follows (Zhang et al., 2019): In a rough- 
walled fracture, a fluid (Newtonian or non-Newtonian) flows through 
preferential flow paths, i.e. “channels”. For any fluid, Newtonian or not, 
the fluid velocity is larger at locations with a larger aperture. Larger 
velocity induces larger shear rate. For a shear-thinning fluid, this results 
in a reduced apparent viscosity, which, in turn, will additionally increase 
the fluid velocity in these large-aperture channels (additionally as 
compared to a Newtonian fluid for which the apparent viscosity does not 
depend on the shear rate). Therefore, channelization is enhanced for 
shear-thinning fluids (Rossen and Kumar, 1992). It should be noted that, 
in inertial flows, this effect is counteracted by an increase in tortuosity at 
high Reynolds numbers, and a shear-thinning fluid might in fact show 
the same degree of channelization as a Newtonian fluid at the same high 
Re (Zhang et al., 2019). 

In numerical simulations, channeling can be quantified by 
computing the flow tortuosity. Tortuosity, T, is usually defined as the 
ratio of the mean fluid velocity magnitude to the mean value of the 
velocity component parallel to the general flow direction (Koponen 
et al., 1996; Lavrov, 2021b; Zhang et al., 2019). For a Newtonian or non- 
Newtonian fluid flowing between smooth parallel walls, T = 1. For flow 
in a rough-walled fracture, T > 1. If the flow were channeled through a 
few straight pathways, tortuosity would be equal to 1. Thus, channeling 
can be quantified by a decrease in tortuosity. 

For a Newtonian fluid and non-inertial flow, tortuosity does not 
depend on the magnitude of the applied pressure differential and could 
be considered a fracture property (though it might depend on the di
rection in which the pressure differential is applied, i.e. on the general 
direction of flow). The situation is different for non-Newtonian fluids: 
tortuosity in this case depends on the magnitude of the applied pressure 
differential or, equivalently, on the magnitude of the Reynolds number 
(Zhang et al., 2019). For instance, for a Bingham fluid, as the applied 
pressure differential is increased, tortuosity increases, i.e. the flow be
comes less channeled (Fig. 10a). This happens because, as the pressure 
differential increases, the effect of the yield stress is reduced, and the 

a

b
Fig. 10. Flow tortuosity as a function of pressure differential for Bingham fluid 
(a), shear-thinning truncated power-law fluid (b, solid line) and shear- 
thickening truncated power-law fluid (b, dashed line). Based on (Bao 
et al., 2017). 

Fig. 9. Hydraulic aperture normalized by the mean aperture, wh/wm, vs. the 
flow index of a power-law fluid. Flow along a one-dimensional sinusoidal 
profile given by Eq. (30) with δ = 0.5. 
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fluid behaves more and more like a Newtonian fluid. 
A direct impact of rheology on flow channeling was observed in 

numerical simulations of Bingham fluids having different yield stress 
values. It was obtained that increasing yield stress increases channeling 
(Hanssen, 2013). This is consistent with the behavior shown in Fig. 10a. 

Another example of tortuosity being enhanced by shear-thinning 
rheology is obtained with a shear-thinning truncated power-law fluid 
(Fig. 10b, solid line). In this case, the tortuosity is higher at very low and 
very high pressure differentials, when the fluid behaves like a Newto
nian fluid. In the middle range of pressure differential, when the fluid 
behaves like a power-law fluid, tortuosity is lower, i.e. the flow is more 
channelized. 

The situation is opposite for a shear-thickening truncated power-law 
fluid (Fig. 10b, dashed line). In this case, tortuosity is highest at inter
mediate pressure differential values. Accordingly, flow becomes more 
channeled at very low and very high pressure differentials, where the 
fluid behaves like a Newtonian fluid (which is “thinner” than the shear- 
thickening fluid obtained at intermediate pressure differentials). 

2.2.3. Yield stress creates immobile-fluid zones (trapped fluid) 
Non-Newtonian rheology with yield stress may lead to a peculiar 

phenomenon in fracture flow, namely trapped (immobile) fluid. This 
happens where the local pressure gradient drops below 2τY/w. In such 
zones, the unyielded core occupies the entire fracture aperture, and the 
flow locally stops. In a numerical simulation, this introduces a new 
boundary. One way to circumvent this problem in a numerical simula
tion is to introduce a negligible nonzero conductivity at the location 
where the flow condition, |∇P|〉2τY/w, is not met (Morris et al., 2015). 
Another solution to the problem is to use regularized fluid rheology, as 
discussed above. 

When a yield-stress fluid is injected from a borehole into a horizontal 
fracture while keeping the borehole pressure constant, the flow will 
eventually stop. This happens because, in a radial flow, the average fluid 
velocity decreases with the distance from the injection point (i.e. the 
borehole), due to mass conservation. As a result, the unyielded plug 
occupies a greater fraction of the aperture as the distance from the in
jection point increases. Eventually, the plug will occupy the entire 
fracture aperture at the front of the invading yield-stress fluid, and the 
flow will stop. This effect was analyzed theoretically and observed 
experimentally (Majidi et al., 2010a). 

As mentioned above, a yield-stress fluid stops flowing in a fracture 
when the local pressure gradient becomes smaller than 2τY/w (Grindrod 
et al., 1999). This may happen even if the fluid does not contain any 
suspended solid particles. When the fluid contains solids, there is an 
additional mechanism that can stop the flow, namely build-up of a filter 
cake (a plug) upstream of a flow constriction. Experiments show that, 
when a yield-stress fluid flows through a constriction (a narrowing in the 
aperture), solid particles gradually build up both upstream and down
stream the location of the constriction (Draganović and Stille, 2014). 
Solid particles are deposited in the fracture because they cannot freely 
pass the constriction. The carrier fluid can still be filtered through the 
filtercake but the rheological properties of the filtrate (the diluted sus
pension) will be different from the original suspension (Eriksson et al., 
2000). One way to conceptualize the process of filtercake buildup in this 
setting is to introduce two threshold values for the fracture aperture: 
wcritical and wmin. When w > wcritical, the suspension can pass without 
filtercake deposition. When wmin < w < wcritical, filtercake is deposited. 
When w < wmin, there is no flow (Eriksson et al., 2000; Mohajerani et al., 
2015). 

It is not uncommon that a narrow channel may remain through the 
filtercake, and the fluid containing solid particles could still continue 
flowing through the channel, a process known as “pinholing” (Cerasi 
et al., 2001). Channels may get blocked and new channels may appear. 
In any event, conductivity of the fracture is reduced compared to the 
case without filter cake deposition. 

Both processes contributing to immobile fluid, i.e. nonzero yield 

stress and particle deposition, are controlled by the fracture aperture. 
One commonly used rule of thumb says that particles can bridge a 
fracture when the fracture aperture is smaller than 2.5 times particle 
diameters. A broader particle size distribution facilitates bridging 
(Lavrov, 2016, 2017b; Lohne et al., 2010). 

Completely plugging a fracture by immobile (trapped) yield-stress 
fluid becomes more difficult when the aperture distribution becomes 
wider, i.e. when the standard deviation of the aperture distribution in
creases (Rossen and Kumar, 1992). This is due to the presence of wider 
channels in a fracture of a wider aperture distribution. As a result, the 
penetration distance of a yield-stress fluid pumped into a rough-waled 
fracture is greater when the standard deviation of the fracture aper
ture is larger (Gustafson and Stille, 1996). 

2.3. Two-phase flow and displacement 

In applications, a situation is common where a non-Newtonian fluid 
displaces a Newtonian formation fluid or another non-Newtonian fluid. 
For instance, in tunnel grouting, cement (a yield-stress fluid) displaces 
water. Similar process takes place in drilling, with a drilling fluid (a 
yield-stress fluid) displacing a Newtonian formation fluid. In hydraulic 
fracturing, several non-Newtonian fluids may be pumped one after 
another into the fracture. 

Even when both, displacing and displaced, fluids have Newtonian 
rheology, the process is quite complex. Theoretical analysis of such 
flows in a Hele-Shaw cell with smooth parallel walls was first carried out 
by Saffman and Taylor in 1958 (Saffman and Taylor, 1958). Conditions 
for stable and unstable displacements were derived using linear stability 
analysis. In particular, it was shown that, in a horizontal cell, the 
displacement is stable when the dynamic viscosity of the displacing fluid 
is larger than that of the fluid being displaced. In the opposite case, 
instability of the displacement front in form of fingering occurs. 

Similar to the seminal work of Saffman and Taylor, most analytical 
studies of two-phase flows in Hele-Shaw cells, including those that 
involve non-Newtonian fluids, are based on a number of simplifying 
assumptions. Namely, the aperture is much smaller than the other two 
dimensions in the system (along and normal to flow); the fluid velocity 
component normal to the cell walls is negligible; the rate of variation of 
the velocity in the direction normal to walls is much larger than in the 
other two directions. In addition, the fluids are typically assumed 
incompressible, and inertia is assumed negligible. An example of work 
done using the above assumptions for Hele-Shaw cell flow involving two 
Herschel-Bulkley fluids can be found in (Coussot, 1999). It was, in 
particular, obtained that, when gravity effects are negligible, unstable 
displacement occurs when the wall shear stress is smaller in the dis
placing fluid, i.e. when the displacing fluid is less viscous. Further dis
cussion of stable vs. unstable displacement involving non-Newtonian 
fluids follows below in this Subsection. 

Some theoretical insights into non-Newtonian two-phase flow in 
fractures can be gained from similar studies performed for porous 
media. For instance, in (Pascal, 1984), displacement of a Bingham fluid 
by another Bingham fluid in porous media was considered. The flow 
equation for a Bingham fluid in porous media was assumed to have the 
same form as the linearized equation for the Bingham fluid [see text 
after Eq. (18)]. Stability criteria were derived. It should be noted, 
however, that direct applicability of porous media theory to fracture 
flow might be questionable since, in the case of non-Newtonian fluids, 
the flow rate vs. pressure gradient law has a slightly different form for 
the two. 

Experiments on two-phase flows in fractures involving non- 
Newtonian fluids are rare. An example is a recent work of (Taheri 
et al., 2021) where 16 tests were performed in a large, 1 m × 0.6 m, 
Hele-Shaw cell with smooth parallel plates. Various combinations of 
displaced and displacing fluids were used, with either one or both fluids 
being yield-stress fluids (in addition to Newtonian-Newtonian 
displacement tests). Another example of experimental work is the 
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thorough study by Boronin et al. (Boronin et al., 2015). 
Numerical studies of two-phase flows involving non-Newtonian 

fluids in rough-walled fractures are rare as well. An example of such 
modelling study is (Morris et al., 2015). Here, the authors used a 
Lagrangian method to track interfaces as several fluid of various 
rheology (Newtonian and non-Newtonian) were injected into the 
fracture. 

Often, when modelling displacement of the formation fluid (e.g. 
water) by a non-Newtonian yield-stress fluid (e.g. cement grout), mod
elers assume that the viscosity of the former is negligible. This reduces 
the problem to a single-phase flow with a moving front, as e.g. in (Liu 
et al., 2021). It was shown in (Zou et al., 2018) that this approach is 
viable only when the viscosity contrast between the two fluids is large, i. 
e. the grout viscosity is relatively high. Otherwise, replacing two-phase 
flow with a single phase may introduce errors in excess of 20% into the 
grout penetration distance. In the mudloss model of (Dokhani et al., 
2020), replacing two-phase flow by single-phase was found to affect 
especially the initial stages of a mudloss event. 

It should, finally, be noted that analytical, numerical, and experi
mental studies of non-Newtonian two-phase flow in fractures have 
typically been conducted under restrictive assumptions of lubrication 
approximation and non-inertial flow. It has been speculated that he 
same flow regimes should be relevant for fracture flow as for pipe flows, 
including stratified flow, annular flow, intermittent flow etc. (Ma et al., 
2017). Experimental and theoretical verification of this hypothesis is an 
outstanding research task. 

2.3.1. Displacement regimes in low-Re two-phase flows with non- 
Newtonian fluids 

Experiments of (Taheri et al., 2021) revealed three displacement 
regimes in two-phase fracture flows involving non-Newtonian fluids:  

• stable, piston-like displacement;  
• viscous fingering;  
• bubble-flow displacement. 

They are schematically illustrated in Fig. 11. 
Stable, piston-like displacement in a vertical Hele-Shaw cell takes 

place when the displacing fluid injected into the bottom of the cell is 
both heavier and has a higher apparent viscosity than the fluid in place. 
In this case, the interface remains flat and stable during displacement, 
and the injected fluid replaces the original fluid uniformly across the 
entire cell (Fig. 11a). This regime ensures the most effective displace
ment, with very few pockets of trapped original fluid left in the cell (the 
pockets are due to wettability conditions on the walls of the cell, see 
further in this Subsection). This regime is often assumed in numerical 
models when one is primarily interested in displacement of a Newtonian 
fluid by a yield-stress fluid. For instance, piston-like displacement was 

assumed in a numerical models of mud losses into a horizontal fracture 
initially filled with a Newtonian formation fluid (Lavrov, 2022; Majidi 
et al., 2010b). This assumption enabled treatment of the problem as a 
one-dimensional, radial flow problem. Another example is a two- 
dimensional DFN model of grouting where a Bingham cement dis
places the formation fluid (Fidelibus and Lenti, 2012). As long as more 
complicated local scenarios are not allowed, e.g. displacement of cement 
by water, the piston-displacement model can be a good approximation. 

Viscous fingering (Saffman-Taylor instability) was observed in a 
horizontal Hele-Shaw cell when a Newtonian fluid was displacing a 
yield-stress fluid (Boronin et al., 2015). The undisplaced yield-stress 
fluid may remain immobile during the displacement and thus be trap
ped behind the displacement front. Fingering in a vertical, upward 
displacement in a vertical Hele-Shaw cell is observed e.g. when a slightly 
heavier Newtonian fluid displaces a yield-stress fluid with a sufficiently 
higher apparent viscosity. Depending on the flow rate, viscous fingering 
in this case can assume a shape of a single wide finger (at lower flow 
rates, Fig. 11b) or several narrow fingers (at higher flow rates, Fig. 11c) 
(Taheri et al., 2021). Fingering is also observed when a slightly heavier 
yield-stress fluid displaces a slightly lighter yield-stress fluid of a suffi
ciently higher apparent viscosity. Fingers are less pronounced in this 
case than in the case of Newtonian displacing fluid (Taheri et al., 2021). 
In (Boronin et al., 2015), both experiments and numerical simulations 
demonstrated that, when a Newtonian fluid is injected into a yield-stress 
fluid filling the cell, the displacement may look like a single narrow 
finger (a channel) penetrating through the unyielded yield-stress fluid. A 
shielding effect is observed: longer fingers are favored; shorter fingers 
are stopped. This segregation of fingers is more pronounced at higher 
Bingham numbers, Bn. The Bingham number in fracture flow is defined 
as follows: Bn = τYw/vμa where v is a characteristic velocity; μa is 
apparent viscosity that corresponds to v. 

Viscous fingering may occur even when the flow originally was 
single-phase. For instance, dehydration of a gel as it flows through a 
fracture results in formation of a concentrated, immobile gel. Non- 
dehydrated gel being injected into the fracture may then develop 
wormholes through the concentrated gel (Seright, 2001). 

In addition to fingering in the plane of the fracture, illustrated in 
Fig. 11b, c, fingering in these scenarios is observed also across the 
fracture aperture. For instance, when a yield-stress fluid displaces 
another yield-stress fluid in a horizontal fracture, and the apparent 
viscosity of the displacing fluid is lower, a finger develops across the 
aperture (Fig. 12). As a result, layers of undisplaced yield-stress fluid are 
left near the walls. The fraction of the fluid left on the walls depends on 
the yield stress of the displaced and displacing fluids, and decreases with 
either (Freitas et al., 2013). Similarly, when the displacing fluid is 
Newtonian and the fluid in place is a shear-thinning non-Newtonian 
fluid with a higher apparent viscosity, or a yield-stress fluid, fingering 
similar to the one shown in Fig. 12 is predicted (Morris et al., 2015). In 

 a  b c d
Fig. 11. Three types of fluid displacement in a Hele-Shaw cell in two-phase flow of Newtonian/non-Newtonian fluids: stable, piston displacement (a), viscous 
fingering (b, c) and bubble flow displacement (d). Dashed line shows the interface between the two fluids. Arrow shows the predominant flow direction. 
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the case of a yield-stress fluid in place, a static layer (a film) of this fluid 
remains on the walls after the injected Newtonian fluid has traversed the 
fracture (Boronin et al., 2015). Fingering shown in Fig. 12 creates 
effectively a “mixing zone” where the two fluids coexist in the same 
vertical cross-section (Mehr et al., 2020). 

Bubble-flow displacement can be observed in a vertical, upward 
Hele-Shaw flow when a yield-stress fluid displaces a slightly heavier 
Newtonian fluid (Fig. 11d). The displacement in this case happens in 
form of droplets of the displacing yield-stress fluid rising through the 
heavier Newtonian fluid in place (Taheri et al., 2021). 

Further experiments are needed in order to investigate whether the 
above three flow regimes – piston-like, fingering, and bubble flow – are 
the only regimes that can be observed in Hele-Shaw cell experiments 
involving non-Newtonian fluids, even at low Reynolds numbers. 
Furthermore, robust quantitative criteria for prediction of the flow re
gimes need to be established, by using either experiments or numerical 
(or analytical) models. It should be noted that for flows involving only 
Newtonian fluids elaborate instability models are already available that 
enable quantitative prediction of the interface evolution (Foroushan 
et al., 2018). 

Viscous fingering in experiments with non-Newtonian fluids 
described above is, in some ways, similar to viscous fingering observed 
when a Newtonian fluid displaces another, more viscous, Newtonian 
fluid (cf. the original Saffman-Taylor work). There are, however, some 
differences. In particular, when the fluid being displaced is a shear- 
thinning non-Newtonian fluid, the apparent viscosity at the finger tip 
(where the shear rate is largest) is lower than in the body of the finger. 
Numerical modelling shows that this suppresses the splitting at the 
finger tips and produces narrow fingers (Kondic et al., 1998). These 
narrow fingers are consistent with those found in the experiments where 
shear-thinning polymer solutions were displaced by air (Lindner et al., 

2002). Numerical modelling of (Kondic et al., 1998) also showed that 
side branching and oscillations of the interface are enhanced when the 
fluid being displaced is shear-thinning. 

Experiments in Hele-Shaw cells with a Newtonian fluid displacing a 
shear-thinning fluid corroborated the above modelling results and 
confirmed that non-Newtonian rheology introduces extra complexity in 
the flow instabilities (Hallot et al., 1996). To characterize the flow 
regime, a non-dimensional number given by B− 1 = 12L2μav/Tw2 can be 
used. Here, L is the width of the cell; T is the surface tension; μa is the 
apparent viscosity of the non-Newtonian fluid in place. At relatively 
small B− 1 (B− 1 < 104), usual Saffman-Taylor instabilities were observed. 
At higher values of B− 1 (B− 1 about 106), fingers gave rise to dendritic 
structures, with a fractal dimension of 1.7. It was noticed that dendritic 
structures only developed in Hele-Shaw cells with sufficiently small 
gaps. Increasing B− 1 above 106 resulted in cracks with sharp tips prop
agating in the non-Newtonian fluid. This displacement regime is unique 
for non-Newtonian fluids. Thus, flow regimes vary from viscous flow 
through viscous fingering through dendritic structures to crack propa
gation when a shear-thinning fluid is displaced by a Newtonian one 
(Hallot et al., 1996). 

Recent experiments of (Mehr et al., 2020) revealed additional 
complexity in miscible displacement involving a shear-thinning fluid. In 
those experiments, a shear-thinning solution (xanthan gum) was dis
placing Newtonain saltwater in radial flow in a Hele-Shaw cell. Such 
displacement is expected to be stable, i.e. piston-like. Experiments 
demonstrated, however, that an irregular, wavy interface developed 
between the two fluids. This effect was enhanced in cells of smaller 
aperture and in experiments with a higher flow rate. 

Numerical models of two-phase flow and displacement in fractures 
are rare. One example is (Boronin et al., 2015) where both the theo
retical model and the numerical algorithm used to solve it are described 
in great detail. 

2.3.2. Trapped fluid 
Even when the displacement is piston-like, pockets of the original 

fluid may be left in place behind the displacement front. Such pockets of 
bypassed trapped fluid were observed in Hele-Shaw experiments where 
both fluids were Herschel-Bulkley fluids with the same flow index and 
consistency index but different yield stress and density: the displaced 
fluid was slightly lighter and had a lower yield stress, 0.16 Pa vs. 0.39 Pa 
of the displacing fluid (Taheri et al., 2021). Despite the displacing fluid 
being heavier and more viscous, pockets of the displaced fluid were left 
after the displacement front had passed through the cell. The entrap
ment was reduced by wetting the plate surfaces with the displacing fluid 
before the experiment started. 

Fluid bypass and entrapment are enhanced when the displacement 
regime is unstable, i.e. when fingering occurs (Fig. 11b, c). Particularly 
low displacement efficiency is observed in bubble-flow displacement 
(Fig. 11d). 

3. Flow of non-Newtonian fluids in fracture networks 

In a two-dimensional DFN, each fracture is represented by a line 
segment, typically a straight line. In a three-dimensional DFN, each 
fracture is usually represented as a polygon or an ellipse. A compre
hensive review of using DFN for fracture modelling is outside the scope 
of this paper. The interested reader is referred to e.g. (Hyman et al., 
2016; Lei et al., 2017). 

Flow of Newtonian fluids in fracture networks has been studied 
extensively for the past 50 years. These studies, mostly by numerical 
modelling, revealed, in particular, that, depending on the properties of 
the network, flow can be more or less uniform, be channeled through a 
few fracture paths, or be channeled through a single fracture path (de 
Dreuzy et al., 2002). 

Fracture network flows involving non-Newtonian fluids present 
similar challenges as fracture network flows involving only Newtonian 

Fig. 13. Non-Newtonian fluid and Newtonian fluid flowing into a Y-junction 
simultaneously. 

Fig. 12. Fingering in the plane spanned by the fracture aperture and the flow 
direction. Both displaced and displacing fluids are yield-stress fluids. Apparent 
viscosity of the displacing fluid is lower than that of the displaced fluid. Dashed 
line shows the interface between the two fluids. Arrow shows the predominant 
flow direction. 
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fluids (Berre et al., 2019). Some additional issues are due to non- 
Newtonian rheology. 

3.1. Flow at fracture intersections 

Modelling flow at fracture intersections is complicated even in the 
case of single-phase Newtonian fluid flow in a 2D network (Boon et al., 
2018). In the case of two-phase flow (in either 2D or 3D network) and 
non-Newtonian rheology, problems are exacerbated. Firstly, in the case 
of even 2D network, it is not clear how to model the flow when two 
fluids with different rheologies meet at an intersection (Fig. 13). In the 
case when both incoming fluids are Newtonian, some simple mixing 
rules could be assumed. For instance, in (Ma et al., 2018), viscosity and 
density of the mixed fluid were computed as weighted averages of the 
properties of the incoming fluids: 

ρm = λ1ρ1 + λ2ρ2 (32)  

μm = λ1μ1 + λ2μ2 (33)  

where subscripts “1” and “2” refer to the fluids flowing towards the Y- 
junction; subscript “m” refers to the mixed fluid leaving the Y-junction; ρ 
is density; μ is viscosity; λ is the ratio of the flux of fluid “1” or “2” to the 
total flux. 

When one of the fluids, “1” or “2”, is non-Newtonian, Eq. (33) can no 
longer be used, and the mixing law for rheological properties of the 
“mixed fluid” should be developed. Literature review reveals no at
tempts to derive such mixing laws. An averaging approach similar to the 
above approach of (Ma et al., 2018) was used when modelling two-phase 
non-Newtonian/Newtonian flows in (Morris et al., 2015): local fracture 
conductivity was assumed to be a weighted average (by the volume 
fraction) of the conductivities that would be obtained with each of the 
phases occupying the entire fracture aperture. 

In a situation shown in Fig. 13, mixing would be taking place 
continuously at the intersection. It means that a new interface should be 
introduced at each timestep. This would effectively increase the number 
of interfaces (and thus the number of degrees of freedom) ad infinitum if 
interfaces were not leaving the fracture downstream. In order to simplify 
the mixing algorithm, different roads have been taken in numerical 
models. For instance, in (Hässler et al., 1992), only 10 dilution levels 
were allowed when non-Newtonian grout was mixed with water at an 
intersection in a 2D DFN. To simplify the treatment of mixing even 
further, some DFN models neglect the effect of mixing on the density. 
For instance, in a displacement of water by non-Newtonian cement 
grout, the mixture density was assumed to be equal to the density of the 
grout (Fidelibus and Lenti, 2012). 

Two-phase flow at fracture intersections is considerably more 
complicated in three-dimensional fracture networks. Firstly, flow along 
the intersection becomes possible. Secondly, due to viscous fingering 
and flow channeling in each fracture, the displacing fluid may reach 
different parts of an intersection at different times, i.e. breakthrough at 
different locations happens at different times. Thirdly, mixing laws 
involving non-Newtonian fluids are not available. The first issue, flow 
along an intersection, can be treated as a pipe flow, just as it is done for 
Newtonian fluids (Berre et al., 2019). The second issue, due to possible 
viscous fingering and channeling inside each fracture, may introduce a 
considerable complexity in the flow pattern at an intersection, such as an 
early breakthrough illustrated in Fig. 14. In addition to viscous fingering 
in the plane of the fracture, shown in Fig. 14, early breakthrough may be 
due to viscous fingering in the plane normal to the fracture plane. 
Viscous fingering, either in the fracture plane or in the plane normal to 
it, happens e.g. when water is injected into a fracture containing a more 
viscous shear-thinning fluid (Fig. 12). Numerical simulations show that 
water in this case penetrates along the middle plane of the fracture 
aperture, between the layers of the non-Newtonian fluid (Morris et al., 
2015). Another factor contributing to early breakthrough shown in 

Fig. 14 is flow channeling caused by fracture roughness (Subsection 
2.2). A shear-thinning fluid travelling through the channels is likely to 
arrive at the intersection earlier than the rest of the fluid, which will 
result in a pattern similar to the one shown in Fig. 14. In addition to 
viscous fingering and roughness-related channeling, another factor that 
enhances flow complexity in a fracture network is irregular geometry of 
the intersections caused by variation in the local aperture of the inter
secting fractures (Zou et al., 2017). 

Experimental study of flow patterns developing at fracture in
tersections in three-dimensional networks is complicated. A notable 
example of such experiments is the recent work by (Ma and Tomac, 
2021) where flow of a proppant-laden slurry through a fracture junction 
was investigated. It seems to be a general consensus in the research 
community that numerical modelling is a viable research avenue here. 
However, even numerical studies with Newtonian fluids are rare and 
usually involve considerable simplifications. For instance, finite- 
element simulations of steady incompressible single-phase laminar 
flow of a Newtonian fluid in a 3D fracture network composed of five 
intersecting fractures was performed in (Aghajannezhad et al., 2021). It 
was found that increasing the length of the intersections increases the 
flow rate through the network. 

Knowledge gaps related to flow at intersections need to be addressed 
in order to perform meaningful simulations of non-Newtonian (and 
Newtonian) fluid flows in 3D DFNs. Three-dimensional DFN models are 
essential because, in 3D, fluids can flow along intersections, and there 
are more low-resistance pathways through the network than in 2D (Zou 
et al., 2019). As a consequence, a 2D model is likely to underestimate the 
hydraulic conductivity of a fractured rock mass. 

3.2. Tracking the displacement front in two-phase flow 

In a two-phase flow, the interface between the invading fluid and the 
fluid in place must be tracked throughout the simulation. This is espe
cially difficult in 3D because of fingering and channeling, as illustrated 

Fig. 14. Front of displacing fluid reaching an intersection in a 3D DFN at 
different times at different locations. Dashed and dotted lines show position of 
the displacement front at an earlier and later time, respectively. 

Fig. 15. Flow in a fracture embedded in a two-dimensional DFN.  
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in Fig. 14. But even in 2D fracture networks, interface tracking is a 
challenge. The interface is usually assumed to be sharp in 2D DFN 
models (Hässler et al., 1992). But even under this assumption, interface 
tracking is still challenging. Numerical manifold method was used in 
(Ma et al., 2018) to handle interface movement in a two-phase flow 
involving two Newtonian fluids in a 2D DFN. Each interface introduces 
an additional degree of freedom. New interfaces constantly appear at 
intersections as fluids get mixed into mixtures having different proper
ties. As a result, the number of degrees of freedom in the simulation may 
increase throughout the simulation. Properly handling this scenario may 
require prohibitively small timesteps if accuracy is to be maintained 
(Lavrov, 2021a). The issue of increasing number of degrees of freedom 
can be addressed by introducing extra simplifications in the model. For 
instance, in (Zou et al., 2019), at most one interface was allowed in each 
fracture. 

3.3. Computational extra cost due to nonlinearity 

Nonlinear behavior of non-Newtonian fluids, with the flow rate 
being a nonlinear function of the pressure gradient, increases the 
computational cost of a network flow simulation. Consider, for instance, 
a fracture embedded in a two-dimensional DFN model (Fig. 15). 
Consider first the case where two Newtonian fluids are present in the 
fracture, e.g. fluid 1 from node A (end of the fracture) to point M, and 
fluid 2 from point M to node B (the other end of the fracture). In this 
case, an analytical solution exists for the pressure at point M, given the 
pressure values at the fracture ends A and B. Moreover, the break
through time (the time needed for the interface to move from A to B), 
can be calculated analytically in closed form (Lavrov, 2021a). 

All this changes when fluid 2 is non-Newtonian. In this case, the 
displacement should still be piston-like. However, there is no closed- 
form solution for the pressure at the interface in this case. An iterative 
procedure must be used to obtain pressure at point M (Fidelibus and 
Lenti, 2012). Iterations required to obtain the interface pressures slow 
down the DFN simulation. Moreover, the breakthrough time cannot be 
calculated in closed form (Lavrov, 2021a) which makes it difficult to 
adjust the timestep in a DFN simulation. 

3.4. Fracture-matrix fluid exchange 

The description of fracture-matrix fluid exchange is not trivial even 
for Newtonian fluids, and several different models are in use (Unsal 
et al., 2010). For instance, in (Berre et al., 2019; Martin et al., 2005), the 
use of the following equation for flow through the fracture wall was 
advocated: 

vn =
kn

μ
P − Pm

w/2
(34)  

where vn is the fluid leak-off velocity (superficial fluid velocity) normal 
to the fracture wall; Pm is the fluid pressure in the rock matrix near the 
fracture wall; kn is the “permeability in the normal direction” (Martin 
et al., 2005). The latter represents “the equivalent resistivity across the 
fracture”. 

Equations similar to Eq. (34) could, in principle, be constructed for 
non-Newtonian fluids as well. In practice, however, simple empirical 
models of the leak-off rate are often employed for non-Newtonian fluids. 
An example is Carter’s law widely used in hydraulic fracturing and mud 
loss models (Dokhani et al., 2020; Valkó and Economides, 1995). Ac
cording to Carter’s law, the leak-off rate has two components: a “spurt 
loss” that takes place instantaneously as the incoming fluid reaches a 
given location in the fracture, and a gradually decaying time-dependent 
component (Adachi et al., 2007; Valkó and Economides, 1995): 

vn = 2Qδ(t − t0)+
2CL
̅̅̅̅̅̅̅̅̅̅̅
t − t0

√ (35)  

where Q is the spurt loss through the fracture wall; δ is the delta- 
function; t0 is the time when the fluid reaches a given location in the 
fracture, and the leak-off commences; CL is an empirical leak-off coef
ficient. The factor of two is used in both terms on the right-hand side of 
Eq. (35) because the fracture has two permeable faces. 

Validity of Eq. (35), and in particular the value of the exponent in the 
time-dependent term (− 1/2), near the tip of a propagating hydraulic 
fracture was disputed in (Wrobel and Mishuris, 2015). 

Leak-off is a complicated process that results in the formation of 
external and internal filtercake on the rock face (Caenn et al., 2011). The 
filtercake makes the fracture-rock interface less permeable, which leads 
to the inverse square root dependence in Eq. (35). Different particles 
present in non-Newtonian fluids (e.g. solids and polymer molecules) are 
deposited according to different laws, which makes a detailed modelling 
of the leak-off process a formidable challenge only partially resolved and 
only for some specific types of fluids, e.g. a water-based mud with a 
polymer in ref. (Lohne et al., 2010). 

4. Discussion and conclusions 

In addition to the issues specific for non-Newtonian fluids, there are 
some generic issues common to flow modelling of both Newtonian and 
non-Newtonian fluids. For instance, there is evidence that representative 
elementary volume exists neither for single fractures (Lavrov, 2021b; 
Méheust and Schmittbuhl, 2000) nor for fracture networks (Berre et al., 
2019). This might challenge the utility of numerical flow modelling in 
fractured rock altogether. 

Another challenge common to all types of network flow simulations 
and all types of fluids is the quality of fracture characterization. For 
instance, there is evidence suggesting that a correlation between frac
ture aperture and length may significantly affect the propagation of a 
non-Newtonian fluid displacing a Newtonian fluid in place (Zou et al., 
2019). Therefore, meaningful prediction from numerical models can be 
made only if the fracture network has been characterized quantitatively 
in sufficient detail. 

Another challenging issue in modelling non-Newtonian fluid flow in 
fracture networks appears when one or more of the fluids have a nonzero 
yield stress. When the pressure gradient in a given fracture is sufficiently 
small, the flow rate becomes zero, and the fracture needs effectively to 
be excluded from the model. Two common ways to deal with this issue 
are (i) by considering only the flow problems where every fracture flows, 
i.e. the pressure gradients are all above the zero-flow threshold or (b) by 
introducing a regularization into the rheological model so that there is 
always nonzero flow rate at arbitrary small pressure gradients (Zou 
et al., 2019). Approach (a) only works well when the injection pressure 
is sufficiently high to ensure flow in the entire connected network. 
Approach (b) can be used at arbitrarily small pressure gradients but 
creates a false impression that the entire network always flows. Devel
oping an effective numerical algorithm that would solve the fracture 
exclusion problem caused by nonzero yield stress is an outstanding task. 

The following challenges and knowledge gaps have been identified 
in the realm of non-Newtonian fluid flow in fractures and fracture 
networks:  

• Effect of hardening and thixotropy on fracture flow, especially in 
cyclic flow regimes (cyclic injection, borehole ballooning), has not 
been properly addressed. Modelling of cement hardening is usually 
oversimplified in numerical models of grouting.  

• The validity of the lubrication theory approximation for non- 
Newtonian fluid flow in rough-walled fractures has not been 
analyzed. The criteria for using/not using the lubrication theory are 
not established.  

• It is not clear whether the three flow regimes (piston, fingering, 
bubble flow) experimentally observed in low-Re two-phase flows 
involving non-Newtonian fluids in Hele-Shaw cells are the only 
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regimes possible. Flow regimes at higher Reynolds numbers have not 
been studied.  

• Quantitative criteria that would allow prediction of the flow regimes 
in two-phase fracture flow need to be established by means of ex
periments, numerical and analytical modelling in a wide range of 
rheological parameters and flow rates. Currently, this is largely an 
outstanding task.  

• Effects of different flow regimes (high/low Re, pressure pulsations) 
on fluid displacement and grouting efficiency require clarification 
(Draganović and Stille, 2014).  

• Flow of non-Newtonian fluids with leak-off through the fracture wall 
needs to be studied further (Zhang et al., 2019). This is important e.g. 
for hydraulic fracturing applications.  

• Fracture opening/closing is usually assumed negligible in DFN 
models (Hässler et al., 1992), or is included in a very simplified way, 
e.g. by making the local fracture aperture a linear function of the 
local pressure (Dokhani et al., 2020; Lavrov and Tronvoll, 2004). 
While this assumption might be justified in some applications, its 
significance and validity should be properly investigated.  

• Some non-Newtonian fluids are suspensions of solid particles in a 
carrier fluid. Flow of such fluids in fractures is additionally compli
cated by particle transport, settling and deposition as well as by 
dehydration of suspension due to leakoff through the fracture walls. 
In numerical modelling of suspension flows in fractures, it is usually 
assumed that there is no slip between the solids and the carrier fluid. 
This simplifies the solution substantially by effectively reducing the 
flow problem to single-phase (Adachi et al., 2007).  

• A number of assumptions are commonly made when modelling 
single-phase flow in fractures and fracture networks. The flow is 
usually assumed to be incompressible non-inertial laminar 
isothermal. In some works, fluids are treated as compressible though 
(Liu et al., 2021).  

• In multiphase flow, the flow is often, in addition, assumed to be 
miscible (zero interfacial tension) but miscibility is assumed negli
gible at the time scale of the problem in hand (Boronin et al., 2015).  

• In DFN models, mixing laws for non-Newtonian and Newtonian 
fluids meeting at a fracture intersection should be derived from 
dedicated, detailed numerical modelling. Current practice is based 
on assuming some oversimplified phenomenological mixing rules. 
What really happens at an intersection, even in a two-dimensional 
DFN, is unclear. 

• In today’s engineering practice, non-Newtonian fluid flows in frac
tures often represent coupled multiphysics problems where several 
physical processes affect each other. An example is hydraulic frac
turing, where a non-Newtonian fracturing fluid interacts with the 
deformable rock mass, contributes to the heat transfer, and deposits 
solids on the fracture walls. These processes, in turn, affect the fluid 
flow (Lavrov, 2017a). Numerical modelling of such coupled phe
nomena is still a challenge. 
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