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A B S T R A C T

The real-time provision of high-quality estimates of the ocean wave parameters at appropriate spatial resolu-
tions are essential for the sustainable operations of marine structures. Machine learning affords considerable
opportunity for providing additional value from sensor networks, fusing metocean data collected by various
platforms. Exploiting the ship-as-a-wave-buoy concept, this article proposes the integration of vessel-based
observations into a wave-nowcasting framework. Surrogate models are trained using a high-fidelity physics-
based nearshore wave model to learn the spatial correlations between grid points within a computational
domain. The performance of these different models are evaluated in a case study to assess how well wave
parameters estimated through the spectral analysis of ship motions can perform as inputs to the surrogate
system, to replace or complement traditional wave buoy measurements. The benchmark study identifies the
advantages and limitations inherent in the methodology incorporating ship-based wave estimates to improve
the reliability and availability of regional sea state information.
1. Introduction

1.1. Motivation

Ocean wave conditions affect human activities, both near the coasts
and at sea. Conducting these activities requires broad access to reliable
wave datasets (e.g. hindcast, nowcast, and forecast), which form a
fundamental basis of the meteorological and oceanographic (metocean)
characterisation of these environments (and associated hazards). In
particular, this information is crucial for the safe and energy-efficient
design, construction, and operation of marine assets. Among the many
applications of high-resolution regional wave datasets, assessments of
the wave environment are made in connection with initial resource
assessments for marine renewable energy harvesting systems, as well as
for the planning of installation, inspection, operation, and maintenance
of nearshore and offshore infrastructures. Furthermore, the spatial
and temporal variability of sea state conditions considerably impacts
ship operations, including those of offshore service vessels. ‘Go/no-
go’ decision-making requires accurate spatial wave information from
shore to site to guarantee the safety of the crew, ship, and equipment
throughout the operation window, while keeping the financial cost of
weather delays to a minimum. Consequently, it is essential to achieve
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a reliable characterisation of the sea state, either from high-resolution
statistical descriptions, e.g. long-term hourly hindcast databases of the
wave variables, or from short- to medium-term forecast strategies, in
which the metocean data are expected to be available on a daily basis
and provided within a timely manner (typically just minutes or hours
after their production) (Alvarez Fanjul et al., 2022).

Modelling the local and regional wave environment often relies on
the support of third-generation, physics-based wave models, such as
WAM (WAve Modelling) (Günther et al., 1992; Komen et al., 1996),
WAVEWATCH-III (Tolman et al., 2002, 2009), or Simulating Waves
Nearshore (SWAN) (Booij et al., 1999; Ris et al., 1999). Over the
years, the performance of nearshore models has progressed enormously
in terms of resolution refinement (e.g. through downscaling), param-
eterisation of physical processes (e.g. model source terms for wave
growth and dissipation), and spatial extents. However, the increasingly
sophisticated mathematical formulations – involving coupled nonlinear
partial differential equations (PDEs) to simulate physical processes with
high fidelity – tend to increase the dimensions of the computational
scheme and, consequently, increase the computational time. Moreover,
modern models are highly sensitive to the quality of the input wind
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fields, seen as the dominant forcing process for wave generation, with
the application of wind data from different reanalysis datasets affecting
the accuracy of results obtained (Lavidas et al., 2017). Meteorological
institutes have improved the quality of their wave estimations and
predictions by calibrating and validating physics-based models (as well
as post-processing their outputs), through the assimilation of global-
scale remotely sensed data from satellites and aircraft, complemented
with in-situ measurements from wave buoys. The latter are known to
be excellent instruments for measuring sea state parameters (Krogstad
et al., 1999). Yet, the scarcity of offshore buoys, as most are deployed
in nearshore areas, and the high cost of remote sensing systems, in
addition to the sparse temporal and geographical coverage from such
instruments, pose an additional technical constraint in the assembly of
high-quality hindcast and forecast products.

In recent years, with the rapid development of artificial intelli-
gence (AI) applications, research has increasingly considered ways to
integrate AI algorithms into traditional physics-based models (Browne
et al., 2007; James et al., 2018; Chen et al., 2021, 2022). Surrogate
models for spatial wave hindcasting/forecasting have shown promis-
ing results in capturing the spatial patterns derived by physics-based
models, providing spatial wave information in good agreement with
the physics-based model outputs, while using significantly less compu-
tational power. James et al. (2018) generated a SWAN-based machine
learning framework in which the same inputs as the numerical model
were used to estimate the spatial wave height and period by training
a multi-layer perceptron model. Their surrogate model showed good
agreement with the numerical model and with a five-thousand-fold
improvement in computational speed. More recently, Chen et al. (2021)
proposed a machine-learning framework in which a random forest
algorithm successfully learned the nonlinear correlations between fixed
points and spatially distributed wave data across a region using a
physics-based model (SWAN). In that case, the surrogate model demon-
strated mostly equivalent accuracy for nowcasts when compared to
leading numerical models, but run using wave buoy data at a fraction
of the computational cost. The work by Chen et al. (2021) showed
significant potential for the wider integration of metocean sensors
to improve the accuracy and availability of wave data for marine
applications.

With this in mind, and given the sheer number of vessels in tran-
sit across the oceans, the ship-as-a-wave-buoy concept is appealing
as a mature technology for ship response-based sea state estima-
tion (SSE) (Iseki and Ohtsu, 2000; Pascoal and Guedes Soares, 2009;
Nielsen, 2006, 2017; Brodtkorb et al., 2018a,b; Chen et al., 2020;
Zago et al., 2023). The underlying idea of the so-called wave-buoy
analogy (WBA) consists of the onboard processing of measurements of
the wave-induced responses from a ship in order to facilitate a real-time
identification of the sea state at the ship’s location. The motions of mod-
ern vessels are typically monitored by sensors, therefore constituting a
dataset which can potentially be used in real-time in a fundamentally
similar way to traditional wave rider buoys, albeit with several further
challenges (e.g. due to the more complicated hydrodynamics of a ship).
Following the extensive research efforts conducted over the last two
decades, various model-based WBA methods (Tannuri et al., 2003;
Nielsen and Stredulinsky, 2012; Brodtkorb and Nielsen, 2022) have
been validated, as well as for machine learning-based approaches —
a rigorous comparison of which was made by Mittendorf et al. (2022)
in terms of accuracy, robustness and computational cost. Combined
with data from the more conventional observation platforms, ship-
based measurements could be the input to a networked procedure to
estimate – with greater confidence – the wave systems encountered.
Research was recently initiated in this direction (Nielsen et al., 2019;
Mounet et al., 2022), considering a network of several ships operating
in the same geographical area, thus experiencing the same sea state.
However, the fusion of wave data from multiple vessels positioned far
2

apart from each other in the oceans has so-far been unexplored.
1.2. Content and novelty of study

The proposed concept combines research into the use of ships
as wave buoys and the machine learning-driven spatial nowcasting
framework established in Chen et al. (2021). In short, this framework
relies on a machine learning algorithm which is trained over twenty
years of historical wave hindcast data from a physics-based model. The
resultant surrogate model learns the spatial relationship between input
data at a few (two to three) point locations within a predefined domain
to the full spatially distributed wave conditions across the domain.
Real-time in-situ observations can then be used as a replacement for the
input hindcast data in order to produce immediate, accurate estimates
of the wave conditions across a large-extent spatial domain.

While the original study (Chen et al., 2021) was limited to obser-
vations from wave buoys, the present paper proposes the inclusion of
ship-based measurements as in-situ observations. To evaluate this, a
ship-as-a-wave-buoy technique is used to derive theoretical estimates
of the wave parameters from the simulated motions of a ship. The
reliability of the sea state estimates from the ship is analysed by
intercomparison with available buoy data. Subsequently, a surrogate
model is developed and operated with the buoy and ship data as in-situ
inputs. The model performs the task of nowcasting wave conditions at
any point in the domain without running a full spectral wave model.
A range of scenarios are presented, analysing the effect of including
in-situ data from vessels on the accuracy of the surrogate system. The
performance of these surrogate models are benchmarked against the
results of the physics-based hindcast model, comparing the output from
the models with further buoy measurements at different validation
points within the domain.

The remaining part of this paper is organised as follows. After
presenting the theoretical background of in-situ SSE techniques (Sec-
tion 2), the methodology for combining wave buoy and ship-based
data is described (Section 3). In Section 4, the results from a hybrid
case study – i.e. making use of historical buoy data and numeri-
cally simulated records of ship motions – are presented and discussed.
Conclusions are included in Section 5.

2. Underlying theory of in-situ sea state estimation techniques

Various techniques exist to analyse the spectral and directional
characteristics of a wave field from in-situ sensors, characterising and
describing the way the energy (or equivalently the variance) of the
wave field spreads over both circular frequencies 𝜔 and directions of
propagation 𝜇. The underlying theory is well established and reported
in several textbooks (e.g. Tucker and Pitt, 2001). As such, the direc-
tional wave spectrum 𝐸(𝜔, 𝜇), or 2-D wave spectrum, is considered the
fundamental quantity of wave modelling and the quantity that allows
the calculation of the consequences of interactions between waves and
other phenomena or marine structures (Hauser et al., 2005).

The waves are assumed to be a stationary, ergodic, Gaussian pro-
cess, as a prerequisite for a description of the wave system in the
frequency-direction domain. This ensures that the wave statistics, i.e.
the probability density function of the random wave process, are con-
stant. Due to the natural variation of ocean waves, this assumption can
only hold over a limited time period, which in practice requires the
spectral computations to be performed over consecutive time windows
of, say, twenty to thirty minutes (Hauser et al., 2005).

A classical decomposition of the directional wave spectrum is:

𝐸(𝜔, 𝜇) = 𝐸(𝜔) ⋅𝐷(𝜔, 𝜇) (1)

here 𝐸(𝜔) is the (omnidirectional) wave variance spectrum, labelled
-D wave spectrum in the present paper. The directional spreading
ensity function (DSF) 𝐷(𝜔, 𝜇) may be expressed as a Fourier series,
n general dependent on frequency:

(𝜔, 𝜇) = 1 + 1
∞
∑

{

𝑎𝑛(𝜔) cos(𝑛𝜇) + 𝑏𝑛(𝜔) sin(𝑛𝜇)
}

(2)

2𝜋 𝜋 𝑛=1
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The DSF satisfies two important properties at any frequency 𝜔 > 0:

𝜇 ∈ [0, 2𝜋], 𝐷(𝜔, 𝜇) ≥ 0, (3)

nd ∫

2𝜋

0
𝐷(𝜔, 𝜇) d𝜇 = 1. (4)

From Eq. (4), it follows that the 1-D wave spectrum can be derived
rom integration of the 2-D spectrum over the directions:

(𝜔) = ∫

2𝜋

0
𝐸(𝜔, 𝜇) d𝜇 (5)

.1. Spectral processing of wave buoy measurements

For estimating the full directional spectrum, the maximum entropy
rinciple method (MEP) may be applied when three-quantity (triplet)
oint measurements from a single buoy are available. The MEP was
riginally developed by Kobune and Hashimoto (1986) but is still con-
idered a powerful means for estimating the full directional spectrum.
t is based on the Shannon definition for the entropy function 𝐻(�̂�),
iven in Eq. (6), which has to be maximised at any frequency under the
arious constraints given by the buoy measurements for the estimated
SF �̂�:

(�̂�) = −∫

2𝜋

0
�̂�(𝜇) ln �̂�(𝜇) d𝜇 (6)

First, the cross-spectra are computed between each pair of recorded
signals using Welch’s method of time-averaging over short, modified
periodograms (Welch, 1967). The complex-valued cross-spectra for the
buoy displacements are denoted 𝐺𝑖𝑗 (𝜔). Since this study uses moored
buoys recording the heave, East, and North displacements, the indices
𝑖 and 𝑗 are 1 for heave, 2 for East, and 3 for North. The coincident
and quadrature spectral density functions 𝐶𝑖𝑗 (𝜔) and 𝑄𝑖𝑗 (𝜔) are defined
as the real and imaginary parts of 𝐺𝑖𝑗 (𝜔), respectively. Assuming an
ideal buoy for which the heave displacement follows perfectly the wave
surface elevation, the 1-D wave spectrum 𝐸(𝜔) equals the heave–heave
spectrum, which is a real-valued function:

𝐸(𝜔) = 𝐺11(𝜔) = 𝐶11(𝜔) (7)

Following Benoit et al. (1997), the first four frequency-dependent
Fourier coefficients of the DSF can be computed from the cross-spectral
components, as reproduced in Eq. (8):

𝑎1 = −𝑄12∕
√

𝐶11 ⋅ (𝐶22 + 𝐶33)

𝑏1 = −𝑄13∕
√

𝐶11 ⋅ (𝐶22 + 𝐶33)

2 = (𝐶22 − 𝐶33)∕(𝐶22 + 𝐶33)

𝑏2 = 2𝐶23∕(𝐶22 + 𝐶33)

(8)

Kobune and Hashimoto (1986) demonstrated that a solution to the
minimisation problem for the DSF 𝐷(𝜔, 𝜇) has the following shape:

𝐷 = exp
(

−𝐿0 − 𝐋⊤𝐪
)

(9)

where 𝐋 =
[

𝐿1 𝐿2 𝐿3 𝐿4
]⊤ are unknown functions, called La-

grange multipliers, to be found to satisfy the constraints on the Fourier
coefficients given in Eq. (8). The vector 𝐪 contains sine and cosine
functions of the wave direction 𝜇:

𝐪 =
[

cos𝜇 sin𝜇 cos 2𝜇 sin 2𝜇
]⊤ (10)

The Lagrange multipliers can be computed using the Newton
method of local linearisation, as described in Hashimoto (1997). Al-
ternatively, Kim et al. (1995) proposed an approximated solution for
the Lagrange multipliers:

𝐿1 = 2𝑎1𝑎2 + 2𝑏1𝑏2 − 2𝑎1(1 + 𝑎21 + 𝑏
2
1 + 𝑎

2
2 + 𝑏

2
2)

𝐿2 = 2𝑎1𝑏2 − 2𝑏1𝑎2 − 2𝑏1(1 + 𝑎21 + 𝑏
2
1 + 𝑎

2
2 + 𝑏

2
2)

𝐿3 = 𝑎21 − 𝑏
2
1 − 2𝑎2(1 + 𝑎21 + 𝑏

2
1 + 𝑎

2
2 + 𝑏

2
2)

2 2 2 2

(11)
3

𝐿4 = 2𝑎1𝑏1 − 2𝑏2(1 + 𝑎1 + 𝑏1 + 𝑎2 + 𝑏2) v
where it is emphasised that all quantities are frequency-dependent. This
approximation scheme removes the convergence problems that may
occur with the full MEP implementation in some cases with real sea
state data.

𝐿0 is a normalisation term ensuring that condition of unit integral
given in Eq. (4) is verified. It is found to be:

𝐿0 = ln

(

∫

2𝜋

0
exp

(

−𝐋⊤𝐪
)

d𝜇

)

(12)

2.2. The wave-buoy analogy for shipboard estimation of wave spectra

Just like a buoy, a ship responds as a result of the incident waves.
The WBA aims to use a ship’s wave-induced motions for SSE. The
standard instrumentation for navigation systems onboard modern ships
includes inertial measurement units (IMUs) and global positioning
system (GPS) sensors, recording the linear and angular motions (alter-
natively, accelerations), as well as the course, speed, and geographical
position. The surge, sway, and yaw motions can be influenced by
the control system (or mooring), if in operation, and these motion
components are therefore not necessarily suitable for estimating the
incident wave system (Brodtkorb et al., 2018a). The remaining three
rigid-body motion components – i.e. heave, roll, and pitch – can be
exploited to estimate the sea state, in a similar manner to a moored
pitch-roll-heave buoy. One of the main advantages of the WBA lies
in that it does not require any additional instrumentation or sensor
placement.

In the following, we assume stationary environmental and oper-
ational conditions. The heave 𝑧, roll 𝜙 and pitch 𝜃 time histories
are assumed to be available, sampled at an appropriate frequency 𝑓𝑠,
typically around 5–20 Hz. The Welch’s method, already introduced in
Section 2.1, can be exploited to compute the so-called measured cross-
spectra �̃�𝑅𝑅′ between two responses 𝑅,𝑅′ ∈ {𝑧, 𝜙, 𝜃}, where the tilde
indicates that the data is of observational nature.

We further assume that the waves have small steepness, which char-
acterises a low to moderate sea state. This allows modelling the ship as
a linear system with respect to the wave excitation (i.e. input) and the
motion response (i.e. output). In this framework, a theoretical estimate
�̂�𝑅𝑅′ (𝜔) of the ship cross-spectrum between two arbitrary wave-induced
responses 𝑅 and 𝑅′ is mathematically obtained in Eq. (13). It is related
to the 2-D wave spectrum by use of the complex-valued wave-to-
response transfer functions 𝛷𝑅(𝜔, 𝛽) for the concerned responses:

�̂�𝑅𝑅′ (𝜔) = ∫

2𝜋

0
𝛷𝑅(𝜔, 𝛽)𝛷𝑅′ (𝜔, 𝛽)𝐸(𝜔, 𝜇) d𝜇 (13)

here the bar (⋅̄) indicates the conjugate of a complex quantity and the
aret symbol (⋅̂) implies the estimate is associated with some (model)
ncertainty. The relative wave heading 𝛽 = 180◦+𝜇−𝜓 is defined as the
ngular difference between the direction 𝜇 where the waves are coming
rom and the orientation 𝜓 of the ship’s bow in a North-East-Down
eference frame; as sketched in Fig. 1.

Several difficulties arise when considering a vessel as a buoy; the
ain challenges being (1) the increased complexity of the ship transfer

unctions with respect to the hull geometry, compared to those of a
uoy having a simple underwater geometrical shape (semi-sphere, etc.);
2) the wave filtering effect, which limits the range of frequencies at
hich ships have a significant response; and (3) the Doppler shift in

he encountered waves in the case of advancing vessels with forward
peed. The latter problem was addressed by Iseki and Ohtsu (2000)
nd Nielsen (2006).

It is interesting to note that the MEP method for spectral analysis of
uoy motions cannot be applied directly to the analysis of the triplet
otion records from a single ship, because the 1-D wave spectrum
(𝜔) is unknown a priori, contrary to a buoy for which this quantity

an accurately be derived from one of the measured signals (e.g. buoy

ertical displacement), since wave filtering is insignificant due to the
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Fig. 1. Definition of the heading angles. The wavelength is denoted 𝜆, and 𝐤 is the wavenumber vector. The direction the waves come from is defined by an angle 𝜇 relative to
North. The ship’s bow orientation has an angle 𝜓 with North. The angle of encounter of the waves with the ship’s centre-line is labelled 𝛽, with clockwise positive orientation, in
accordance with the North-East-Down reference frame.
w
small relative dimensions of a buoy. Nonetheless, there exist many
different SSE methods based on measured vessel responses; a compre-
hensive account is given in Nielsen (2017). The fundamental reasoning
behind these mathematical inverse formulations is that the error must
be minimised between the measured and theoretical response spectra,
i.e. �̃�𝑅𝑅′ and �̂�𝑅𝑅′ , respectively, the latter being obtained from Eq. (13)
and evaluated with the estimated wave spectrum as input:

𝑒𝑅𝑅′ (𝜔) = �̃�𝑅𝑅′ (𝜔) − �̂�𝑅𝑅′ (𝜔) (14)

This problem involves a number of nonlinear equations to be solved.
In the present paper, we employ a model-based spectral-residual calcu-
lation method formulated in Brodtkorb and Nielsen (2022), which will
be summarised in Section 3. Unlike machine learning-based sea state
estimation approaches (Mittendorf et al., 2022), the method does not
require a large amount of ship response data to be collected prior to
actual operation to constitute a training set for a single ship. This is
an advantage for the applicability of the proposed framework, because
one wants to make ad hoc use of ships where/when data is needed.

2.3. Wave system characterisation

In many contexts, including some industrial applications like the
planning of offshore operations, full knowledge of the 2-D matrix
constituting the directional wave spectrum is not needed. It can instead
be more practical to work with a lower number of scalar quantities,
namely the integrated sea state parameters, which provide sufficient
information to evaluate the associated risk levels of the particular
activity to be conducted at sea. Most of these sea state parameters
are determined from the spectral moments 𝑚𝑛 of the wave spectrum
𝐸(𝜔), which are defined as the integral 𝑚𝑛 = ∫ ∞

0 𝜔𝑛𝐸(𝜔) d𝜔, and 𝑛 ∈
{−1, 0, 1, 2} leads to the following parameters, with the mathematical
definitions given by Eqs. (15)–(21) (e.g., DNV, 2010): the significant
wave height 𝐻𝑠, peak wave period 𝑇𝑝, mean wave period 𝑇𝑚01, mean
zero up-crossing period 𝑇𝑧, mean energy period 𝑇𝐸 , peak wave direction
𝜇𝑃 , and mean overall wave direction 𝜇𝑚.

𝐻𝑠 = 4
√

𝑚0 (15)

𝑝 = 2𝜋∕(argmax𝜔 [𝐸(𝜔)]) (16)

𝑚01 = 2𝜋 (𝑚0∕𝑚1) (17)

𝑧 = 2𝜋
√

𝑚0∕𝑚2 (18)

𝐸 = 2𝜋 (𝑚−1∕𝑚0) (19)

𝑃 = argmax𝜇 [𝐸(𝜔, 𝜇)] (20)
4

𝑚 = arctan(𝑑∕𝑐) (21)
ith 𝑑 and 𝑐 in Eq. (21) defined respectively as:

𝑑 = ∫

2𝜋

0 ∫

∞

0
𝐸(𝜔, 𝜇) sin(𝜇) d𝜔 d𝜇; 𝑐 = ∫

2𝜋

0 ∫

∞

0
𝐸(𝜔, 𝜇) cos(𝜇) d𝜔 d𝜇.

2.4. Machine learning-based surrogate wave spatial model

The surrogate nowcasting model maps wave data from discrete
buoy locations to the sea state conditions of an entire domain; see
details in Chen et al. (2021). This surrogate modelling method provides
a low-cost hybrid model relying on limited observation data and a
physics-based numerical model. It is based on the assumption that a
numerical wave model can capture the physics-based spatial correla-
tions within the model domain, in effect employing this high-fidelity
numerical modelling as the data generator.

In the design of the surrogate model, machine learning (ML) algo-
rithms are used to learn the relationship between the wave conditions
at specific buoy locations and the spatially distributed wave conditions
across the entire domain using the outputs of a physics-based numerical
model. Once trained, the model predictions generate spatial distribu-
tions of the sea state parameters using in-situ measurements as input.
The surrogate model diagram is shown in Fig. 2.

As a supervised machine learning model, it is key to select an
appropriate input–output formulation. The inputs when training the
surrogate model are the physics-based numerical model results ex-
tracted at the input buoy locations. As the spatial outputs of the
physics-based numerical model contain many output grid points, it is
too computationally expensive to work with these directly. Therefore,
the surrogate model is trained on a reduced-dimension dataset for com-
putational efficiency. The original high-resolution numerical results
were transformed into a reduced-order dataset, satisfying a number of
conditions, which include: (1) the approximation error is small; (2) the
spatial distribution is preserved as much as possible; and (3) the reduc-
tion procedure is computationally efficient. In this work, the bi-linear
interpolation method was used to achieve dimension reduction. After
prediction, a dimension ascension returns the predictions to the original
resolution of the physics-based numerical model. This is described and
assessed in greater depth in Chen et al. (2021).

The machine learning algorithm implemented in the surrogate
model training is replaceable, meaning that any algorithm that can
learn the relationship between input and output can be adopted. In this
work, a multivariate Random Forest (RF) (Breiman, 2001) regression
method was implemented to train the surrogate model, following the
work by Chen et al. (2021). RF is one of the most effective machine
learning methods that can achieve nonlinear regression by ensemble
multiple parallel decision tree models. The ensemble and random
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Fig. 2. Overview of the surrogate wave modelling approach. The black arrows represent the processes of surrogate model training, while the green arrows show the processes of
the surrogate model prediction. To validate the surrogate model, the outputs are compared against independent buoy measurements.
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concepts in RF can greatly reduce overfitting and increase diversity in
tree models, and thus make the prediction more robust (Hastie et al.,
2009).

2.5. Evaluation criteria

The model outputs were extracted at a set of validation locations
and compared with complementary in-situ buoy observations to assess
the performance. The assessment of the different models in this study
over the validation period utilises four error metrics; the root-mean-
squared error (RMSE), mean absolute error (MAE), mean absolute error
percentage (MAPE) and coefficient of determination (𝑅2). RMSE and
MAE are scale-dependent, while MAPE and 𝑅2 are dimensionless and
cale-independent. The four error metrics (Wilks, 2011) were calculated
y Eqs. (22) to (25), respectively.

MSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

diff(𝑦𝑖, 𝑦𝑖)
)2 (22)

MAE = 1
𝑁

𝑁
∑

𝑖=1

|

|

diff(𝑦𝑖, 𝑦𝑖)|| (23)

MAPE = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

|

diff(𝑦𝑖, 𝑦𝑖)
𝑦𝑖

|

|

|

|

× 100 (24)

𝑅2 = 1 −
∑𝑁
𝑖=1

(

diff(𝑦𝑖, 𝑦𝑖)
)2

∑𝑁
𝑖=1

(

diff(�̄�, 𝑦𝑖)
)2

(25)

here 𝑁 denotes the number of predicted samples, �̂�, 𝑦 and �̄� represent
he model prediction, the buoy observation, and the mean of buoy
bservation, respectively. For non-directional data, such as significant
ave height and wave periods, the function diff is defined as the direct
ifference diff(𝑥, 𝑦) = 𝑥 − 𝑦. However, for directional data, such as
ean wave direction and peak direction, the function is defined as
iff(𝑥, 𝑦) = arctan(sin(𝑥 − 𝑦)∕ cos(𝑥 − 𝑦)), which computes the minimum
ngular difference in the range [−𝜋, 𝜋] rad, taking into account how
ngles wrap around with a modulo of 2𝜋. Moreover, in the com-
utation of 𝑅2, the mean of observed directions is defined as �̄� =
rctan(

∑

sin(𝑦𝑖)∕
∑

cos(𝑦𝑖)). Note that the MAPE metric is not used for
ngular data, because zero (or close-to-zero) angles would yield values
f MAPE tending to infinity.

. Methods and data

This section introduces the proposed methodology and presents a
ase study that was designed as a proof of concept and validation of
he implementation.
5

.1. Scope of the case study

The case study is focused on a regional area which was selected to
e the same as in the previous work by Chen et al. (2021), namely the
ater off the southwest coast surrounding Cornwall, UK, as mapped

n Fig. 3. This region sits at the easterly extent of the North Atlantic
ith significant fetch into this active, highly seasonal ocean region.
s such, the wave climate is a mix of locally-generated wind waves
nd incoming swell which is dominated by storms that form in the
orth Atlantic and propagate through the region. The map in Fig. 3

ndicates the location of six wave observation sites, named Penzance,
ooe Bay, WaveHub, Perranporth, FabTest, and Porthleven, for all of
hich historical buoy data is made available by the Channel Coast
bservatory1 (CCO).

In this study, three different topologies of the observation network
corresponding to various surrogate models – are compared, varying

he number and nature of the observation platforms. The investigation
xamines the hypothesis that using the WBA on a vessel within the
omain can improve the accuracy of the surrogate model output when
suitable input (buoy) measurement is not available. The overarching

im of this case study is to assess the effectiveness of the WBA when
sed within the observation network. For that purpose, three different
urrogate models are designed: ‘Model 1’ uses buoy data exclusively,
omprising a network of three buoys, and therefore expected to be
he best-performing setup; ‘Model 2’ uses a network of two buoys, in
onjunction with observations from one vessel, which replace the actual
uoy data collected at one site, for a complete three-point input set;
nd ‘Model 3’ uses a network with only two buoys, omitting the site
reviously used for the observations from the vessel, and expected to
e the worst-performing setup. The WaveHub site, located near the
orth coast of Cornwall, was the chosen location for the vessel-based
bservations used as a substitute for the buoy data in Model 2, and
lso the data omitted in Model 3. The two buoys at Penzanze and
ooe Bay, both located near the south coast of Cornwall, constitute the
ommon part of the input for all three surrogate models. An additional
ase, ‘Model 4’, is the physics-based numerical wave model, which
ill be used as a reference in the comparison of the spatial results

rom the three surrogate models. This will enable us to finely assess
here the performance of Model 2 stands, relative to those of Models
and 3. Finally, the remaining three buoys at Perranporth, FabTest,

nd Porthleven, will be used for local validation of the output results
rom all four models.

1 https://coastalmonitoring.org/.

https://coastalmonitoring.org/
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Fig. 3. The area of study is around Cornwall in the UK ranging from 4◦W to 7◦W in longitude, and 49◦N to 51◦N in latitude. The three red points (Penzance, Looe Bay, and
WaveHub) represent buoys or the proposed ‘ship-as-a-buoy’ used as inputs for the spatio-temporal model, and the three orange points (Perranporth, FabTest, and Porthleven)
represent the buoy locations used for validating the model outputs and benchmarking the proposed model framework.
Fig. 4. Scope of the case study flowchart. Black lines refer to the surrogate model training which utilises the UKMO hindcast model results in 1989–2009. Green lines represent
the model prediction and validation which focus on the data in 2016. Three surrogate models correspond to three observation scenarios; Model 1: 3 buoys as input; Model 2: 2
buoys + 1 vessel; Model 3: 2 buoys; Model 4: UKMO hindcast. See Fig. 2 for methodological details on the surrogate model training, prediction, and validation steps.
The scope of the case study is illustrated in a flowchart in Fig. 4, and
the flowchart serves as a reference for the remainder of this section.

3.1.1. Physics-based numerical wave model
Although the surrogate wave spatial model trained on a SWAN

model as presented by Chen et al. (2021) has demonstrated satisfactory
results at WaveHub, analysis by Ashton and Johanning (2014) has
shown that the SWAN model failed to represent wave systems arriv-
ing from the East which can be explained by the underestimation of
the wave spectra energy in the low-frequency domain in the SWAN
model boundary input. This SWAN model used ERA-Interim bound-
ary input provided by ECMWF (van Nieuwkoop et al., 2013). This
misrepresentation of the Eastern boundary can potentially cause in-
model errors related to wave period and thus limit the surrogate spatial
model’s ability to learn the correlations across the domain. Ashton and
Johanning (2014) also identified that using a United Kingdom Met
Office (UKMO) wave model product at the boundaries could reduce
these errors. Therefore, in this study, the UKMO regional wave hindcast
product was used to train the surrogate spatial model in place of the
SWAN model used in Chen et al. (2021).
6

The UKMO regional wave hindcast product was generated using a
WAVEWATCH III 1.5 km Atlantic Margin Model (Graham et al., 2018)
for the Copernicus Marine Environment Monitoring Service,2 whose
spatial domain covers the seas on the North-West European continental
shelf from 16◦W to 13◦E with the resolution of 1.9 ± 0.4 km (1∕33◦) in
longitude and from 46◦N to 63◦N with the resolution of 1.5 km (1∕74◦)
in latitude. Data are available from 1 January 1980 up until the present
with a temporal resolution of 3 h. The model was nested with lateral
boundary conditions supplied from a Met Office global wave model
hindcast, driven by the ECMWF ERA5 wind fields.

The UKMO wave hindcast model provides integrated wave parame-
ters computed from the directional wave spectrum. This work considers
𝐻𝑠, 𝑇𝑝, 𝑇𝑧, 𝑇𝐸 , and 𝜇𝑚, all mathematically defined in Section 2.3. The
accuracy of UKMO model results against observations varies from open
waters to regional areas. The correlation coefficient of 𝐻𝑠 ranges from
0.95 or better to 0.90–0.95, 𝑇𝑧 ranges from 0.86–0.95 to 0.71–0.89, 𝑇𝑝
ranges from 0.71–0.86 to 0.66–0.82. And due to the lack of directional
wave data from open waters, the model biases of 𝜇𝑚 are within +/−

2 http://marine.copernicus.eu/.

http://marine.copernicus.eu/
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Table 1
Location of the buoys used in this study.
No. Buoy Lat [◦N] Lon [◦W] Depth [m] (Approx.) Distance from the nearest

UKMO numerical model
grid point [km]

1 Penzance 50.1 5.5 10 1.09
2 Looe Bay 50.3 4.4 10 0.95
3 WaveHub 50.3 5.6 50 0.76
4 Perranporth 50.4 5.2 14 5.50
5 FabTest 50.1 5.0 30 0.85
6 Porthleven 50.1 5.3 15 1.95
Fig. 5. 1-D (left) and 2-D (right) post-processed wave spectra from the buoy measurements on January 1st, 2016 (midnight), at WaveHub. For the 2-D spectrum: radial divisions
every 0.1 Hz, circular divisions every 30 degrees, and direction of waves ‘coming from’ in the North-East-Down reference frame.
10 degrees with a standard deviation equivalent to around 33%–55%
of the observation standard deviation (Saulter, 2021).

3.1.2. In-situ observations
Wave data used in this study were recorded in the year 2016 at

different buoy locations using Datawell Directional WaveRider MkIII
buoys3; see locations on the map in Fig. 3 and Table 1.

The buoy at WaveHub was owned by Wave Hub Ltd and operated
by CCO, who provided historical data for the year 2016. The dataset in-
cludes time series of the heave, East, and North displacements, obtained
after filtering and double-integrating the accelerations measured by ac-
celerometers onboard the Datawell buoy at a sampling rate of 3.84 Hz
over segments of 30 min. The data is subsequently filtered and down-
sampled to 1.28 Hz, resulting in 2304 samples per segment (Datawell,
2020). The segments are timestamped at the start of the measurement
burst. To construct the buoy cross-spectra, Fourier analysis is performed
on 18 consecutive blocks of 100 s worth of wave displacements (i.e. 128
samples for each block), on which a Hanning window is applied for
tapering. The resulting 18 spectra are then averaged to compute the
post-processed half-hourly spectra. The MEP procedure detailed in Sec-
tion 2.1 is followed to compute the directional spreading function, with
the approximated scheme for the Lagrange multipliers, as presented
in Eq. (11), used. The resultant directional wave spectrum comes in
a discretised form with 128 frequency bins ranging from 0 to 0.64 Hz,
and 36 direction bins from 0 to 350 degrees. In order to remove some
of the noise that alters the directional spectra, the spectro-angular
matrix 𝐸(𝜔𝑖, 𝜇𝑗 ) is filtered by 2D discrete convolution with a 3 × 3 cell
rectangular smoothing window that averages all immediate neighbours
of a central bin, as described in Portilla et al. (2009). This operation
is realised in Python 3 with the convolve function, which is part of
the multidimensional image processing library of SciPy (Virtanen et al.,
2020). Fig. 5 shows an example plot of the 1-D and 2-D wave spectra,
with associated sea state parameters calculated from Eqs. (15) to (21).

3 https://datawell.nl/products/directional-waverider-mkiii/.
7

Fig. 6. NTNU’s research vessel, Gunnerus.

3.1.3. Ship of study
In the present paper, time-domain simulations are performed for a

multipurpose research vessel, Gunnerus (labelled ‘RV’ onwards), which
is owned by the Norwegian University of Science and Technology
(NTNU). A photograph of this vessel is shown in Fig. 6 and its main
dimensions are given in Table 2. For the specific case study, the RV
is assumed to be conducting DP (dynamic positioning) operations and
the forward speed is thus taken to be zero. The first-order heave, roll,
and pitch motions of the ship are simulated in short-crested wave
conditions as given by the (post-processed) 2-D wave spectra at the
WaveHub location. The linear wave-to-motion transfer functions have
been computed using a strip theory code (ShipX; Fathi, 2018). The
amplitude information of the transfer functions is plotted for various
relative wave headings in Fig. 7. Note that the ship is port-starboard
symmetrical.

The ship heading is constant, set to 𝜓 = 0, meaning that the bow
is pointing North. A large number of wave components – namely 500
components for each of the 36 discretised directions – is extracted from

https://datawell.nl/products/directional-waverider-mkiii/
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Table 2
Principal particulars of the considered vessel for simulations.

RV

Length overall, 𝐿𝑜𝑎 [m] 31.25
Length between perpendiculars, 𝐿𝑝𝑝 [m] 28.90
Breadth middle, 𝐵 [m] 9.60
Draught moulded, 𝑇 [m] 2.63
Displacement, 𝛥 [t] 418.06
Block coefficient, 𝐶𝐵 [–] 0.559

Fig. 7. Amplitude of the wave-to-motion transfer functions for the heave, roll, and
itch motions of RV at various relative wave headings 𝛽 and zero forward speed 𝑈 = 0.

he buoy 2-D wave spectra, via linear interpolation of the power spec-
ral density (PSD). The component frequencies are randomly picked in
he range [0, 0.64] Hz to avoid any repetition in the simulated time se-
ies. The phase of the individual components are uniformly distributed
n the range [0, 2𝜋] rad. Different random seeds are utilised to generate
total of ten 30-min time series of the vessel motions, noticing that the
se of different random seeds partly ensures statistically representative
esults. The Python package that was developed for the ship motion
imulations is publicly available.4

4 https://gitlab.gbar.dtu.dk/regmo/NetSSE.git.
8

3.2. Sea state estimation method from ship motions

As indicated in Section 2.2, the method developed by Brodtkorb
and Nielsen (2022) is employed to derive sea state estimates from the
simulated ship motions. It assumes that the waves are long-crested,
meaning that the response spectra are treated as though they were
the result of wave excitation coming from one single direction. This
assumption represents a limitation in itself because the method is only
able to return a point-wise (or 1-D) estimate of the wave spectrum,
together with an estimate of the wave direction. In other words, no
information on directional spreading can be derived. However, it is
emphasised that the proposed networked estimation framework focuses
on nowcasting the sea state parameters for the total wave system as
defined in Eqs. (15) to (20), excluding the mean directional spreading
and disregarding any partitioning between wind sea and swell systems.
The chosen SSE algorithm is therefore well suited for the particular
application.

An illustration of the SSE algorithm is given in Fig. 8. The input con-
sists of the ship transfer functions 𝛷𝑅(𝜔, 𝛽) and the recorded response
time series for the heave 𝑧, roll 𝜙, and pitch 𝜃 motion components.
First, the motion cross-spectra �̃�𝑅𝑅′ (𝜔) are computed. Then, an iterative
procedure is run to produce candidates of the wave spectrum for each
possible (relative) wave heading 𝛽. In each iteration, the error 𝑒𝑅𝑅′ (𝜔)
between the response spectra – as defined in Eq. (14) – is evaluated
and a portion of it (determined by the gains ℎ𝑅𝑅′ ) is re-injected into the
wave spectrum estimate for updating. When the error becomes lower
than a given tolerance threshold 𝜖𝑅𝑅′ , or if the set maximum number
of iterations is exceeded, the loop stops and returns the spectrum
candidates �̂�𝑅𝑅′ (𝜔; 𝛽). A wave direction candidate is selected as the one
direction in the range [0, 90◦] that minimises the energy discrepancy
between spectrum estimates over the set of considered responses 𝑅𝑅′ ∈
{𝑧𝑧, 𝑧𝜙, 𝑧𝜃, 𝜙𝜙, 𝜙𝜃, 𝜃𝜃}. Port/starboard and following/head waves are
distinguished by analysis of the sign of the imaginary part of the
heave-roll and heave-pitch cross-spectra, respectively. The wave spec-
tra corresponding to the estimated relative wave heading 𝛽 are fused
together for the six different response pairs 𝑅𝑅′ by averaging with
equal weight, which finally forms the 1-D wave spectrum estimate
�̂�(𝜔). The integral sea state parameters are derived from the latter
as described in Section 2.3. The reader is referred to the original
studies for further details on the implementation of the algorithm.
In the present study, the maximum number of iterations was set to
200. The gains are automatically adjusted to 50% of the maximum
value ensuring stability, as explained in Brodtkorb and Nielsen (2022),
and the tolerances are specified as 10% of the peak amplitude in the
response cross-spectra.

The sea state estimation methodology is generic and applicable to
any ship as long as accurate wave-to-motion transfer functions are
available for the given ship and operational conditions. In this study,
the uncertainty of the vessel model is circumvented by using the very
same set of transfer functions for the simulations of vessel motions, on
the one hand, and for the sea state estimation algorithm, on the other
hand.

3.3. Implementation of the surrogate model

Following the work by Chen et al. (2021), the multivariate Random
Forest regression algorithm with the same hyper-parameter was used
to train the surrogate model for the present paper. To be consistent
with the surrogate model trained by SWAN model results (Chen et al.,
2021), the UKMO hindcast data were trimmed to the same target
region as the SWAN model but with UKMO model spatial resolution
(Fig. 3), resulting in 99 × 148 cells in the grid, and the years from
1989 to 2009 were selected as the training dataset. To keep a similar
dimension of surrogate model output as in the previous work, 1/3
scaling was selected. The dimension change (reduction and ascension)
through bi-linear interpolation can be seen in Fig. 9.

https://gitlab.gbar.dtu.dk/regmo/NetSSE.git
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Fig. 8. Illustration of the sea state estimation algorithm proposed in Brodtkorb and Nielsen (2022). There are three main steps: firstly, cross-spectra and algorithm gains and
tolerances are calculated; then, the wave spectrum candidates are calculated in the main estimation step; finally, the energy-averaged wave spectrum, direction, and sea state
parameters are calculated. The symbol ℑ{...} denotes the imaginary part of a complex quantity.
Fig. 9. Resolution comparison between Original grid (left; with a resolution of latitude segments × longitude segments = 148 × 99), Dimension Reduction (centre;
49 × 33) and Dimension Ascension (right; 148 × 99) for surrogate model. The ML-based model was trained on the reduced resolution data, and the spatial results at low resolution
were ascended to high resolution for comparison. The plot here is an example of the comparison representing 𝐻𝑠 at a specific time.
The details of the three surrogate models are shown in Table 3.
In Model 2, the wave parameters at WaveHub location are observed
by the ship, following the methodology described in Section 3.2. The
UKMO hindcast model (Model 4) was included in the comparison as a
benchmark.

When generating the input and output of the surrogate model, five
wave parameters consisting of 𝐻𝑠, 𝑇𝑝, 𝑇𝑧, 𝑇𝐸 , and 𝜇𝑝 were consid-
ered. Each output wave parameter was modelled in a separate model,
i.e. each spatially distributed parameter was predicted simultaneously
at all grid points, while all five wave parameters were always con-
sidered as inputs. In the surrogate models, wave parameters from the
9

buoys were obtained by spectral processing of the buoy measurements
as described in Section 2.1, and the wave parameters from the vessel
were estimated by the WBA as introduced in Section 2.2.

4. Results and discussion

4.1. Uncertainty of the spectral estimates from the ship

Ocean waves have properties of a random process, therefore a
certain sampling variability of the estimated spectra and sea state
parameters is unavoidable (Krogstad et al., 1999). It is essential to
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Table 3
Experiment model list. Models 1 to 3 are surrogate models using different buoys as inputs. Both the input and output include the same five wave parameters, i.e. 𝐻𝑠, 𝑇𝑝, 𝑇𝑧, 𝑇𝐸 ,
nd 𝜇𝑝. Model 4 represents the UKMO hindcast model which works as a benchmark of the surrogate models.

Model 1 Model 2 Model 3 Model 4
(3 buoys input) (2 buoys + 1 vessel input) (2 buoys input)

Model description Surrogate spatial wave model trained on UKMO hindcast results (1989–2009) UKMO hindcast model
Model training input Hindcast wave parameters at 3 buoy locations: Penzance, Looe Bay, WaveHub Hindcast wave parameters

at 2 buoy locations:
Penzance, Looe Bay

Model training output Hindcast spatial wave data, i.e. wave parameters at all grid points within the study area

Model validation input
(observations in 2016)

Penzance (buoy),
Looe Bay (buoy),
WaveHub (buoy)

Penzance (buoy),
Looe Bay (buoy),
WaveHub (vessel)

Penzance (buoy),
Looe Bay (buoy)

Model output - Spatial wave data in 2016;
- Validation at buoy observations from Perranporth, FabTest, and Porthleven
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p
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quantify this variability for assessing whether observed differences
between the ship and buoy estimates at the WaveHub location are
statistically significant or not.

The simulation results enable comparisons between three spectral
quantities: (1) the target (or, observed) 1-D buoy spectrum 𝐸buoy(𝜔); (2)
he simulated wave spectrum �̂�simul(𝜔) computed from one time-domain
ealisation of the surface elevation for the target spectrum; (3) and
he ship-estimated spectrum �̂�RV(𝜔) produced from the SSE algorithm
n which the (simulated) ship motion cross-spectra are used as input. It
s demonstrated in Chapter 8 of Bendat and Piersol (2011) that, for

given frequency 𝜔, the auto-spectral density estimate obtained by
he Welch’s averaging method of modified periodograms is a (scaled)
hi-square variable with 𝜈𝑒 degrees of freedom. The parameter 𝜈𝑒 cor-
esponds to the equivalent number of independent periodograms (or,
egments) used in the averaging process to obtain a smooth spectrum.
f (for example) a Hanning window is applied to 50%-overlapping
egments, then the segments are partially correlated and 𝜈𝑒 reaches 𝜈𝑒 ≈
.89𝜈𝑑 , where 𝜈𝑑 is the number of disjoint (i.e. non-overlapping) seg-
ents of the same size that would fit in the record’s duration (Chapter
0 in Brandt, 2011).

We define the random variable 𝜉𝜔 as the logarithmic ratio 𝜉𝜔 =
n
(

�̂�(𝜔)∕𝐸buoy(𝜔)
)

of the estimated spectral ordinates over the buoy-
bserved ones for a fixed frequency 𝜔. The use of the logarithm in
𝜔 makes the probability density more symmetric about its mean,
hich, according to Krogstad et al. (1999), facilitates a first-order
pproximation of 𝜉𝜔 as a Gaussian variable with mean E[𝜉𝜔] = (−1∕�̂�𝑒)+
1∕𝜈𝑒,buoy) and variance Var[𝜉𝜔] = (2∕�̂�𝑒) + (2∕𝜈𝑒,buoy), where �̂�𝑒 is the
umber of degrees of freedom for the estimated spectral ordinates,
nd similarly, 𝜈𝑒,buoy is the counterpart for the buoy-observed spectra.
his approach therefore also accounts for the statistical uncertainty

n the buoy spectra. In this study, the buoy spectra estimates were
btained using a Hanning window over 18 non-overlapping segments,
.e. 𝜈𝑒,buoy = 𝜈𝑑,buoy = 18, while the simulated spectra used 15 segments
ith a 50% overlap and a Hanning window too, i.e. �̂�𝑒 = 1.89 ⋅ (15 +
)∕2 = 15.12.

Fig. 10 shows the statistics of the log-ratios for the simulated
‘simul.’) spectra and for the ship-estimated (‘RV’) ones, both of them
elative to the buoy spectra. It is important to note that, at low
requencies, the log-ratio is not a meaningful measure since there is
ow energy in the buoy spectra, i.e., we divide by a small number.
herefore, only the frequencies that lie on the right-hand side of the
pectral peak frequency in a given buoy spectrum are accounted for
n the frequency-wise statistical analysis of the log-ratio. In the studied
uoy data, it appears that all peak frequencies are greater than 0.05 Hz,
ence no data is considered at frequencies under this threshold.

The lighter area in Fig. 10 represents the theoretical 95%-confidence
nterval inside of which one would expect 95% of the samples to have
heir value of 𝜉𝜔, assuming the above-mentioned Gaussian distribution.
t can be seen that the percentiles and mean of 𝜉𝜔 for the simulated
pectra (in blue) match the theoretical values throughout the frequency
10
Fig. 10. Statistics of the log-ratio 𝜉𝑓 of the ship-estimated spectral ordinates over the
buoy-observed ones, as a function of wave frequency, for the month of December
2016 at the WaveHub location, Cornwall, UK. The theoretical confidence interval and
systematic bias due to sampling uncertainty is displayed with the light area and black
solid lines, assuming a Gaussian distribution of the log-ratio. The 2.5-percentile, mean,
and 97.5-percentile of the log-ratio are shown for both the purely simulated wave
spectra (‘simul.’, blue curves) and for the ship-estimated ones (‘RV’, red curves) in the
numerator of 𝜉𝑓 . In both cases, the buoy-observed spectral ordinates are used in the
denominator. All ten seeds are included in the dataset, but only at those frequencies
that lie on the right-hand side of the spectral peak frequency.

range 0.05–0.60 Hz reasonably well. The discrepancies, and especially
the slight asymmetry of the actual distribution about the mean, could
be explained by the first-order approximation of 𝜉𝜔 as a Gaussian-
istributed variable. Moreover, the small fluctuations are due to the
nherent randomness and would be expected to disappear asymptoti-
ally with an infinite number of samples. It can be concluded that the
imulated wave spectra are statistically equivalent to the target buoy
pectra, in the sense that there is no significant bias introduced at this
oint and the variance levels can be entirely explained by the sampling
ariability predicted from theory.

Considering the ship estimates (cf. red-coloured items in Fig. 10),
negative bias appears throughout the frequency range, but more

ignificantly at the wave frequencies under 0.1 Hz and above 0.2 Hz.
his means that at such frequencies, the ship-estimated wave spectra
end to have lower PSD levels than the buoy spectra. Since the SSE
lgorithm was run using the same vessel transfer functions as for simu-
ating the motions, the model uncertainty can be attributed entirely to
he wave filtering effect of the ship – modelled as a linear system – at
he designated frequencies; this will be further discussed in Section 4.2.
he frequency bandwidth is also confirmed from Fig. 11, where it is
een that the proportion of spectral ordinates having 𝜉𝜔 values within
he 95%-confidence interval only reaches approximately 95% in the
requency range 0.12–0.20 Hz. The proportion decreases significantly
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Fig. 11. Proportion (in percent) of the spectral ordinate samples that lie within the
theoretical 95% confidence interval of the log-ratio 𝜉𝑓 as a function of wave frequency,
over the month of December 2016 at the WaveHub location, Cornwall, UK. This
percentage is computed for the log-ratios involving the purely simulated wave spectra
(‘Simul.’), as well as for those concerning the ship-estimated spectra (‘RV’). All ten seeds
are included in the dataset, but only at those frequencies that lie on the right-hand
side of the spectral peak frequency.

when it is evaluated away from this frequency range. In comparison,
the proportion for the simulated wave spectra remains mostly stable at
a level of 95% within the range 0.05–0.60 Hz. Although all the above
comments stem from an analysis of the December 2016 data, the data
for the other months (not shown) had similar trends.

4.2. Uncertainty of the sea state parameters from the ship

The sea state parameters estimated from the research vessel at the
WaveHub location are now assessed by comparison with the buoy
observations, referred to by ‘MEP’, at the same location. Fig. 12 shows
the time histories of the integral parameters defined in Section 2.3. A
large variety of sea states – in terms of wave heights and periods – are
experienced during the observation period (2016), although the (mean)
wave direction is mostly centred around 𝜇 = 270◦ (meteorological
convention – direction waves coming from). The latter corresponds to
beam sea conditions for the ship, with waves coming from the port
side, i.e. with a relative wave heading 𝛽 = 90◦. At such a heading, the
amplitude of the ship transfer functions, Fig. 7, shows that energy is
passed from the waves to the ship motions at frequencies up to 0.5 Hz,
with substantial response amplification in heave and roll around 0.2 Hz,
but overall low response levels in pitch.

The simulations can, again, be used to compute the expected sam-
pling variability in the estimates. The wave parameters were derived
using Eqs. (15) to (19) for the simulated wave spectra �̂�simul(𝜔), for
all seeds. For a given sea state, the sampling variabilities of a wave
parameter 𝑋 derived from two different seeds 𝑖 and 𝑗 are assumed to be
equal but independent, with a same expectation E[𝑋𝑖] = E[𝑋𝑗 ] = E[𝑋],
and a standard deviation that increases linearly with the expectation,
i.e. std(𝑋𝑖) = std(𝑋𝑗 ) = COV(𝑋) ⋅ E[𝑋]. The coefficient of variation
COV(𝑋) was estimated for each sea state as the sample standard devi-
ation divided by the sample mean over ten seeds. The COV had values
of 5%–6% for the significant wave height, 8%–9% for the peak wave
period, and 3%–4% for the other period parameters. Considering the
buoy parameters 𝑋buoy as a reference, it is expected that approximately
95% of the simulated sea state parameters lie within the confidence
region delimited by the two straight lines defined as:

𝑦± = tan(𝜋∕4 ± 𝛿) 𝑥buoy,

sin(𝛿) = 𝛾0.95 ⋅ COV∕21∕2,
𝛷(𝛾0.95) = (0.95 + 1)∕2,
11

m

where 𝛷 is the cumulative standard normal distribution function
Krogstad et al., 1999).

Fig. 13 shows the correlation between the ship estimates and the
uoy observations. The confidence region is delimited by the two thin
lack lines for each parameter — except for the wave direction 𝜇,

for which the sampling variability model does not apply. It is seen
that the significant wave height and all four period parameters have
additional variability that cannot be accounted for by the sampling
variability. The mean energy period appears to be the one parameter
with the least bias and least scatter. The mean wave period and zero
up-crossing period have a positive bias that increases towards lower pe-
riods (corresponding to higher wave frequencies). This can be explained
by the fact that 𝑇𝑚01 and 𝑇𝑧 rely on the 𝑚1 and 𝑚2 spectral moments,

hich, compared to 𝑚−1 and 𝑚0 for 𝑇𝐸 , give more weight to the PSD at
igher frequencies, where inaccuracies are observed in the ship spectral
stimates due to wave filtering, as discussed in the previous section.

It is clear that the significant wave height estimate is biased, also as
consequence of wave filtering, with a negative proportional bias of

round 21.6% of the 𝐻𝑠-value calculated by linear regression. This is a
ajor inconvenience in connection with the provision of wave forecasts

or the offshore and maritime industries because it could lead to an
nder-evaluation of the risks. On the other hand, this systematic bias
ould be corrected by re-calibrating the 𝐻𝑠-estimate from the ship, with
ny more elaborate consideration therefore an area for future work.
ave filtering is a well-studied phenomenon (Anderson et al., 2016),

lbeit able to be overcome by adding additional sensors (Nielsen, 2007;
e Souza et al., 2017). Previous work on weight-averaging the spectral
stimates derived from multiple ships sailing in the same immediate
rea has shown great potential in attenuating the impact of filtering on
he combined output (Nielsen et al., 2019; Mounet et al., 2022).

The randomness introduced in the time-domain simulations can
esult in a predominant wave system that irregularly switches between
oexisting wind sea and swell systems, depending on the seed, which
an cause a mismatch in the 𝜇 and 𝑇𝑝 values between the simulated
ata and the target sea state. Although a large proportion of the peak
eriod estimates from the ship lies within the confidence region due to
his sampling variability, it is observed that many data points signifi-
antly underpredict the peak period. The mean absolute proportional
eviation (MAPE) between the 𝑇𝑝 values of the simulated waves and
he target sea state was found to be 11.44%, compared to the 12.61%
or the MAPE of the ship estimates. This increase in the error cannot
e explained by the spectral moments, because 𝑇𝑝 only depends on
he location of the peak in the frequency range, independently of the
pectral shape. Instead, this could be related to the chosen SSE method,
specially because it assumes long-crested waves. It is clear from the
hip transfer functions that some wave directions result in larger re-
ponse amplitudes than others. Therefore, the wave direction5 and
eak wave frequency estimates from the chosen ship-as-a-wave-buoy
echnique will not necessarily match the predominant wave direction
nd frequency in the target sea state, and could instead match another
ave system (with different peak direction and frequency) that induces

esponses with similar amplitude levels. In other terms, some scenarios
ay lead to ambiguous estimates due to the assumption of long-crested
aves, which makes it impossible for the SSE algorithm to identify and

eparate the joint effects that the multiple peaks of a multi-modal wave
pectrum have on the induced spectral responses. This supposition
ould be verified by comparison with results from other ship-as-a-
ave buoy techniques that do not assume long-crested waves (Iseki
nd Ohtsu, 2000; Tannuri et al., 2003; Nielsen, 2006). All related
onsiderations are out of the scope of the present paper and are left
or future work.

5 Due to the assumption of long-crested waves in the SSE algorithm, the
ave direction estimated from the ship can be considered as either a mean
irection or a peak direction. This choice for the intercomparison with buoy
easurements was seen to have very little importance on the results.
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Fig. 12. Ship (blue) and buoy (black) observation data during the year 2016 at the wave buoy location close to WaveHub, Cornwall, UK. The ship-estimated parameters are
epresented for one seed.
.3. Spatial results from the network-based sea state estimates compared
ith UKMO hindcast

The fidelity of the surrogate model is now evaluated with respect to
he physics-based model. A point-wise comparison of the spatial output
esults between the different surrogate models and the UKMO hindcast
ata is presented here. At each grid point in the computational domain,
he annual-averaged RMSE of the 𝐻𝑠 and 𝑇𝐸 parameters between the

surrogate models (i.e. Models 1 to 3, defined in Table 3) and the
UKMO model (Model 4) is calculated, and the resulting distributions
are visualised by heatmaps in Fig. 14. Note that, for Model 2, the
vessel-based input uses data from only one seed.

First, the performances of Models 1 and 2 are compared to evaluate
how accurate the WBA system is when integrated into the surrogate
model, i.e. how well the input from the vessel in Model 2 replicates
the wave buoy of Model 1. The comparison of the spatial distributions
of the 𝐻𝑠-error from Figs. 14(a) and 14(c) indicates that Model 1, with
nputs from three buoys deployed on both the north and south coasts,
eatures a smaller overall deviation with the UKMO hindcast model,
ompared to Model 2. Model 1 also shows a more uniform spatial
istribution, with the RMSE of 𝐻𝑠 remaining at evenly low levels across
he domain. In comparison, Model 2, which does not have buoy input
n the northern coast, but instead uses the WBA at WaveHub, is charac-
erised by substantial variations of the error for 𝐻𝑠. The accuracy varies

notably between the northern and southern coastal areas. It can be said
that the 𝐻 -estimates from Model 2 present a significant error across
12

𝑠

the northern part of the domain, especially nearer to the vessel input
where the RMSE reaches almost 0.6 m. This is due to the wave filtering
effect inherent to the application of the WBA, which, as mentioned,
tends to underestimate the variance of the wave spectrum estimated
from ship responses. On the other hand, regarding the estimation of
𝑇𝐸 , Model 2 performs almost as well as Model 1, with very similar
patterns and levels of the 𝑇𝐸 -error for the two models. Referring back
to the WBA results from the previous Section 4.2, the parameter 𝑇𝐸 ,
which is less influenced by the wave filtering effect than the other wave
parameters, was identified as the most reliable parameter derived from
the ship. The spatial result displayed in Fig. 14(d) is promising because
it shows evidence that input from a ship can be used in substitution of
a ‘‘sophisticated’’ wave buoy in the observation network to estimate –
among other parameters – the wave energy period across an extended
spatial domain with an analogous level of accuracy.

Next, a comparison of the results from Models 2 and 3 is made to
see how much benefit having a vessel in the right place offers to the
surrogate system, noting here that Model 3 receives no input at all from
the north coast. Overall, it can be said that the spatial results from
Model 2 are better than those from Model 3. Regarding the estimation
of 𝐻𝑠, it is interesting to notice on Figs. 14(c) and 14(e) that both
Models 2 and 3 seem to perform better near the south coast, compared
to the north coast. Similar observations can be made on the lee-side
of the Isles of Scilly, the westerly archipelago off the Cornish coast,
where the RMSE for 𝐻𝑠 approaches zero. Generally, it seems that the
two models that do not involve buoy observations at WaveHub produce
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Fig. 13. Two-dimensional hexagonal binning plots between the buoy-estimated (𝑥-axes) and the ship-estimated (𝑦-axes) sea state parameters. The represented data includes ten
seeds of the ship estimates at the WaveHub location during the year 2016. The colour intensity is mapped with the density of 30-min samples (in logarithmic scale) within
hexagonal cells in the (𝑥, 𝑦) plane. The thin black lines indicate approximate 95% confidence limits due to sampling variability only (not applicable for 𝜇).
more reliable 𝐻𝑠-estimates in the more sheltered areas of the domain,
which could be explained by a weaker spatial correlation between the
wave conditions in these areas and those at the WaveHub location. The
latter hypothesis is also supported by Fig. 14(f), where it can be noticed
for Model 3 that the sheltered areas have lower RMSE values for the 𝑇𝐸
variable than in the remaining of the domain, where the model clearly
has poorer performance than Model 2. Therefore, it is fair to say that
vessel-based sea state estimates collected at well-chosen positions can
advantageously complete a network of buoys to increase the accuracy
of spatial estimates in locations where buoy data is scarce.

Ultimately, it is inferred that, although buoy data remains a pre-
ferred method for wave estimation, vessel-based data incorporated into
the observation network can either serve as an adequate substitute for
buoy data when the latter is unavailable, or as an additional source of
wave information at a suitable location, for instance where the buoy
coverage is sparse.

4.4. Validation results against buoy observations

The model output results of all five wave parameters are now
analysed by intercomparison with actual buoy observations at three
validation points, namely Perranporth, Porthleven, and FabTest. The
closest grid points to the buoy locations were used for the comparison.
The error metrics defined in Section 2.4 are computed for the four mod-
els and gathered in Table 4. In order to better visualise the comparative
performance trends of the four models, quantile–quantile (Q-Q) plots
are given in Fig. 15 to show the correlation between the individual
model outputs and the buoy observations at Perranporth. Additional
validation results are provided for Porthleven and FabTest locations in
Appendix.
13
Generally, for all five wave parameters, Model 1 has lower error
values than Model 2 at Perranporth and Porthleven validation points.
In fact, Model 1 achieves similar levels of accuracy and precision to the
UKMO hindcast model at those two locations. The differences between
Models 1 and 2 are most significant for 𝐻𝑠, 𝑇𝑧, and 𝑇𝑝 parameters at
Perranporth, and for 𝐻𝑠 at Porthleven, with increases in the MAPE
values of factors of 1.4–1.8 from Model 1 to Model 2. The Q-Q plots
(cf. Fig. 15) at Perranporth – which is the closest validation point to
the WaveHub site, where the WBA is applied – reveal that 𝐻𝑠 and 𝑇𝑝
parameters are most often estimated with a negative bias by Model 2,
and the 𝑇𝑧 estimate is overpredicted with a positive systematic bias,
while the estimates from Model 1 are in relatively better alignment with
the buoy data. Similar trends had already been identified in Section 4.2
in the comparison of the ship and buoy estimates at WaveHub, which
suggests that the uncertainties in the input at WaveHub propagate into
the output at Perranporth. On the contrary, at FabTest, which is the
furthest validation point away from WaveHub, Model 1 and Model 2
have very similar error levels, so it seems like the output at FabTest
is more influenced by the other two input points (Penzance and Looe
Bay). Another important point to notice from the Q-Q plots in Figs. 15c
and e is that the correlation between the 𝑇𝐸 - and 𝜇𝑃 -quantiles from
the buoy data, on the one hand, and the estimates from the surrogate
models, on the other hand, is equally good for Models 1 and 2 at
Perranporth. The greater discrepancy inferred from the error values
reported in Table 4 for those two parameters can instead be attributed
to more scattered estimates (i.e. precision, rather than accuracy) in the
case of Model 2. To summarise the above results, it is demonstrated
that, at all validation points, Model 2, which incorporates a WBA
system, compares fairly well with Model 1, which uses only wave buoy
data; some (limited) losses in accuracy and precision were identified
for certain wave parameters.
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Fig. 14. Surrogate model annual spatial difference between three surrogate models and UKMO model in terms of 𝐻𝑠 and 𝑇𝐸 estimation in 2016. Sub-figures (a), (c) and (e) are
annual-averaged RMSE distribution for 𝐻𝑠 estimation from Model 1, Model 2 and Model 3, respectively; Sub-figures (b), (d) and (f) are annual-averaged RMSE distribution for 𝑇𝐸
estimation from the three models.
Focusing now on the performances of Model 3 with respect to those
of Model 2, the error metrics have substantially larger values for the
former (with a factor of 1.5–2.0 increase in the MAPE values for 𝐻𝑠,
𝑇𝐸 , and 𝑇𝑝 from Model 2 to Model 3) at Perranporth near the north
coast of Cornwall, where Model 3 does not have any neighbouring
observation input. In Fig. 15, the quantiles of estimates from Model
3 are those that deviate the most from the buoy data among all four
models for all wave parameters, featuring remarkably irregular bias
patterns. Comparatively, the Q-Q lines for Model 2 are more parallel
to the lines of identity (𝑦 = 𝑥), showing more regular patterns. All this
confirms the previous finding from Section 4.3 that the network with
an incorporated WBA system at WaveHub performs better than the one
having no measurement in that location. At Porthleven and FabTest,
both located near the south coast of Cornwall close to the Penzance and
14
Looe Bay inputs, the discrepancies in accuracy and precision between
the surrogate models become insignificant.

Interestingly, from Table 4, the period estimates (𝑇𝐸 , 𝑇𝑧, 𝑇𝑝) by the
three surrogate models tend to outperform the UKMO hindcast model
at FabTest. At that location, the wave direction estimates from all four
models have relatively large errors compared to the other two valida-
tion locations (with a factor of 2.0–2.9 increase in the RMSE of 𝜇𝑃 from
Porthleven to FabTest sites). This could be caused by some weakness
of the UKMO physics-based model to capture the wave properties at
the specific location; however, a more detailed investigation would be
needed to verify such a hypothesis and identify the real cause of the
problem, which is out of the scope of the present paper. For now, it
suffices to say that any dysfunction of the physics-based model at a
grid point in the domain is likely to yield unavoidable deviations of
the surrogate model outputs from the buoy data. These deviations are
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Table 4
Model validation results. For each column, the best performances in terms of the highest R2 values are highlighted in bold.

Model Error metrics Perranporth Porthleven FabTest

𝐻𝑠 𝜇𝑝 𝑇𝐸 𝑇𝑧 𝑇𝑝 𝐻𝑠 𝜇𝑝 𝑇𝐸 𝑇𝑧 𝑇𝑝 𝐻𝑠 𝜇𝑝 𝑇𝐸 𝑇𝑧 𝑇𝑝

Model 1
(3 buoys input)

RMSE 0.277 27.712 0.954 0.924 1.730 0.235 16.234 0.973 0.861 2.322 0.329 39.789 0.876 0.790 2.742
MAE 0.198 13.994 0.638 0.709 1.104 0.163 11.711 0.671 0.622 1.613 0.235 24.391 0.688 0.613 1.984
MAPE 0.172 N/A 0.077 0.120 0.115 0.164 N/A 0.084 0.115 0.169 0.342 N/A 0.113 0.160 0.393
𝑅2 0.921 −0.056 0.789 0.539 0.662 0.912 −0.868 0.685 0.528 0.393 0.723 −0.717 0.301 0.262 0.100

Model 2 (2 buoys +
vessel-as-a-buoy input)

RMSE 0.589 32.816 1.131 1.364 2.410 0.400 18.969 1.009 0.950 2.451 0.348 41.313 0.905 0.814 2.705
MAE 0.375 20.645 0.787 1.182 1.699 0.251 15.071 0.703 0.740 1.758 0.239 25.182 0.715 0.633 1.989
MAPE 0.254 N/A 0.097 0.216 0.160 0.247 N/A 0.090 0.145 0.180 0.350 N/A 0.117 0.167 0.390
𝑅2 0.643 −0.216 0.702 −0.012 0.343 0.743 −0.975 0.662 0.425 0.323 0.690 −0.963 0.253 0.214 0.121

Model 3
(2 buoys input)

RMSE 0.656 27.766 1.879 1.422 2.724 0.293 19.303 1.205 1.056 2.436 0.323 40.518 0.815 0.829 2.694
MAE 0.487 16.761 1.491 1.117 2.148 0.210 15.217 0.884 0.783 1.818 0.236 24.574 0.613 0.641 1.951
MAPE 0.420 N/A 0.198 0.208 0.239 0.198 N/A 0.119 0.153 0.194 0.359 N/A 0.101 0.174 0.385
𝑅2 0.557 −0.759 0.177 −0.100 0.161 0.862 −1.499 0.518 0.289 0.330 0.732 −0.753 0.395 0.184 0.128

Model 4
UKMO hindcast

RMSE 0.272 16.526 0.919 0.976 1.750 0.205 15.839 0.869 1.130 2.429 0.320 45.723 1.444 1.272 4.094
MAE 0.205 10.425 0.677 0.694 1.097 0.145 10.678 0.619 0.767 1.489 0.216 29.116 1.033 0.856 2.689
MAPE 0.175 N/A 0.085 0.115 0.124 0.140 N/A 0.078 0.139 0.166 0.291 N/A 0.172 0.221 0.555
𝑅2 0.923 0.252 0.805 0.477 0.662 0.934 −0.220 0.742 0.192 0.324 0.740 0.039 −0.925 −0.894 −1.016
Fig. 15. Quantile–quantile (Q-Q) plot of the wave parameters between buoy observation (𝑥-axes) and estimation (𝑦-axes) by different models (Model 1, Model 2, Model 3 are
urrogate spatial models with different inputs, Model 4 is the UKMO hindcast model) for Perranporth site in 2016: (a) Significant wave height 𝐻𝑠; (b) Peak period 𝑇𝑝; (c) Energy

period 𝑇𝐸 ; (d) Zero-crossing period 𝑇𝑧; (e) Peak direction 𝜇𝑝. The data corresponds to the 1st- to 99th-percentiles of the observations and model estimates.
15
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Fig. A.1. Q-Q plot of the wave parameters between buoy observation and estimation by different models for Porthleven site in 2016. More information in the caption of Fig. 15.
f

due to a lack of fidelity of the surrogate models to the (true) physical
phenomena, inherited from the physics-based model during the training
step. This is, for instance, what seems to be happening in Fig. 15e,
where the UKMO model is not able to correctly capture the wave
directions observed between 120◦ to 250◦, and in consequence, the
urrogate models all fail to accurately estimate the directions in this
ange as well.

.5. Further discussion on the limitations of the proposed wave observation
etwork

The study emphasised the main complications inherent to the wave-
uoy analogy in connection with Model 2, especially the wave-filtering
ffect that tends to underestimate the energy levels in the wave spec-
rum, yielding negative biases in the estimated values of 𝐻𝑠, as well as
ositive biases in the 𝑇𝑚01 and 𝑇𝑧 parameters. To mitigate this effect,
he correction of the ship-based estimates could be made possible by,
or example combining the ship-as-a-wave-buoy results with estimates
rom other shipborne instruments such as wave radars. This idea could
e further explored and adapted for use with the surrogate model.

The present work disregarded any uncertainty in the vessel model,
16

sing the same set of first-order transfer functions for simulating the p
wave-induced motions as for producing sea state estimates. In practice,
the latter procedure will be impacted by various sources of uncer-
tainties, especially possible higher-order nonlinear effects and data
inaccuracies – due to e.g. sensor malfunction, misalignment of the axes,
bias, misplacement6, noise, etc. – which will appear in the measured
ship motions but cannot be captured by the theoretical calculations
in the SSE algorithm. This motivates extended studies dedicated to
the incorporation of actual measurements from several in-service ves-
sels in the established framework. Real-time wave estimation based
on such observations within large-scale geographical areas could be
investigated over spatial domains that extend further away from the
shore, even where buoy data become scarcer, with the aim to pro-
vide complementary hindcast and forecast datasets. Refinements of the
method – e.g. by means of a benchmark against various surrogate
model architectures, different input/output parameter sets, and other
machine learning algorithms – are expected to help improve the overall

6 The inertial sensor is never mounted exactly at the centre of gravity. In
act, the ideal placement would be at the centres of rotation of both roll and
itch motions, which in practice for a ship are not located at a single point.



Ocean Engineering 281 (2023) 114892R.E.G. Mounet et al.

p
a

c
N
a
i
c
a
t
w
a

5

m
m
w

s

Fig. A.2. Q-Q plot of the wave parameters between buoy observation and estimation by different models for FabTest site in 2016. More information in the caption of Fig. 15.
erformance, and especially needed when more vessel-based estimates
re incorporated.

As a final remark, the scope was limited to the analysis of the now-
asting performance of a hybrid ship–buoy wave observation network.
onetheless, the ultimate goal of the project is the forecast of offshore
nd near-shore wave conditions ahead of time. Research was initiated
n this direction, with interesting results in Chen et al. (2022). One
ould imagine in the near future the possibility to deploy a fleet of small
utonomous vessels in the area of interest to collect spatial wave data,
o be used for wave predictions in the planning of offshore operations,
ith the goal of better evaluating the weather-related risks for people
nd structures.

. Conclusions

In this paper, the authors have proposed the use of direct wave
easurement from vessels as inputs to an existing surrogate wave
odelling framework in order to derive spatial wave data across a
hole regional domain from a network of buoys and ships.

The method relies on a machine learning model that learns the
patial correlations of ocean wave parameters between grid points from
17
a wave hindcast database. Once trained, the model acts as a surrogate of
the physics-based model and a very limited number of triplet point ob-
servations suffices to estimate the sea state parameters at all grid points
with similar accuracy. Ship response-based estimates are incorporated
into the observational network and results show promising nowcasting
capabilities in substituting buoy records with available vessel-based
data. In particular, the main findings are highlighted here:

• The output sea state estimates from a WBA sensor system can
be integrated into a broader surrogate modelling system that
combines input from buoys and ships;

• Integrating a vessel within the observation network at a location
where buoy data is missing improves the accuracy and preci-
sion of the output spatial wave data over a large extent of the
computational domain;

• The hybrid ship–buoy observation system can provide accuracy
similar to an advanced nearshore wave modelling system, with a
fraction of the computational cost;

• The system has significant potential for expansion into a net-
work of available vessels to further improve the reliability and
availability of wave data, especially in locations where the more
traditional observation platforms are scarce.
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ppendix. Complementary validation results

Additional Q-Q plots are given in Figs. A.1 and A.2 showing the
orrelation between the model outputs and the buoy observations at
orthleven and FabTest, respectively.
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