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Abstract

How does one best explain the learned knowledge of chess-playing neural network
models? With strong neural network models quickly becoming the state of the art
within the domain of chess, it has become increasingly interesting to investigate
what such models have learned. This thesis aims at presenting a less computation-
ally expensive alternative to training strong neural network models for chess, by
training chess-playing agents through self-play using reinforcement learning. The
thesis also presents the application of existing explanation methods to the resulting
models, and the development of specialised methods for explaining chess-playing
neural network models.

While there are existing implementations of standard 8x8 chess environments
and large open-source versions of chess-playing agents available, most explanatory
methods are quite computationally expensive to perform on large models. Addi-
tionally, having access to all parts of a complete training pipeline greatly facilitates
creating explanatory methods that require training any given model from scratch.
The required computational savings presented in this work are mainly achieved
by operating on smaller variants of chess, which is made possible by implement-
ing a customisable and high-performance chess environment. This environment is
then coupled with an effective procedure for deep reinforcement learning (DRL)
through Monte Carlo Tree Search. The resulting pipeline is then used for training
of strong neural network models for 4x5 and 6x6 variants of chess.

Models produced by the custom training pipeline are then explained using various
modern methods from the field of Explainable Artificial Intelligence (XAI). This
includes searching for domain knowledge accrued by the models through concept
detection probing, the results of which can be compared to other established results
for larger models.

This work also presents novel explanatory methods for neural network based chess
agents. Firstly, a method for visualising the model’s comprehension of a given con-
cept through concept maximisation is presented. Secondly, a method for providing
global explanations for a given model through observing the correlations between
probed concepts and predicted game outcome is described. This also allows for
analysis of the selected 4x5 and 6x6 chess variants. Thirdly, the work presents an
approach for gauging the information content in intermediary layers using bina-
rised neural networks. Finally, alternative adaptations of the well-studied method
groups of counterfactual explanations and saliency maps to the game of chess are
presented.
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Sammendrag

Hvordan kan man forklare kunnskapen som sjakkspillende nevrale nettverk oppar-
beider seg? Dominansen av sterke nevrale nettverksmodeller innenfor sjakk har
gjort det stadig mer interessant å undersøke hva slags sjakkmessig forst̊aelse slike
modeller fremstiller. Denne oppgaven legger derfor frem et mindre beregningstungt
alternativ for å produsere kompetente sjakkspillende nevrale nettverkmodeller, ved
å trene slike modeller gjennom “reinforcement learning” ved selvspill. Oppgaven
presenterer ogs̊a bruk av eksisterende forklaringsmetoder p̊a de resulterende mod-
ellene, samt utvikling av spesialiserte metoder til bruk for å forklare sjakkspillende
nevrale nettverk.

Selv om det finnes tilgjengelige implementasjoner av standard 8x8-sjakkmiljø og
sjakkspillende nevrale nettverksmodeller, s̊a er eksisterende forklaringsmetoder rel-
ativt beregningstunge ved bruk p̊a store modeller. Dessuten vil det å ha tilgang
til den fullstendige treningsprosedyren gjøre det mulig å skape forklaringsmetoder
som krever opptrening av de aktuelle modellene fra bunnen av. Den nødvendige
reduksjonen av beregningskrav blir hovedsakelig oppn̊add ved å produsere et tilpas-
ningsdyktig sjakkmiljø med høy simuleringsytelse. Dette miljøet kobles sammen
med en effektiv treningsprosedyre som trenes ved “deep reinforcement learning”
ved Monte Carlo tresøk. Den implementerte treningsprosedyren brukes deretter for
å trene kompetente nevrale nettverksmodeller p̊a 4x5- og 6x6-varianter av sjakk.

Modeller produsert av den nevnte treningsprosedyren kan deretter forklares ved
hjelp av moderne forklaringsmetoder fra forklarbar kunstig intelligens som fagfelt.
Dette innebærer blant annet å søke etter modellenes opparbeidede domenekunnskap
gjennom konseptdeteksjon, der resultatene fra denne metoden kan sammenlignes
med etablerte resultater for større modeller.

Denne oppgaven presenterer ogs̊a nye forklaringsmetoder for sjakkspillende nevrale
nettverksmodeller. For det første presenteres det en metode som visualiserer mod-
ellenes forst̊aelse av et gitt konsept gjennom konseptmaksimering. For det andre
presenteres det en fremgangsm̊ate som kan gi globale forklaringer for en gitt mod-
ell ved å se p̊a korrelasjoner mellom oppdagede konsepter og predikert partiutfall,
noe som ogs̊a tillater en analyse av de valgte 4x5- og 6x6-sjakkvariantene. For
det tredje viser denne oppgaven en strategi for hvordan man kan observere infor-
masjonsinnholdet i mellomlag i en gitt modell ved å bytte ut et antall av disse
lagene med binære mellomlag. Til slutt presenteres det prosedyrer spesielt tilpas-
set sjakkmodeller som kan brukes til å fremlegge kontrafaktiske forklaringer og
viktighetskart over vilk̊arlige stillinger.
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Chapter 1

Introduction

1.1 Motivation

Historically, chess has been used as a domain for testing and developing methods
within Artificial Intelligence (AI). This is evidenced through the development of
leading chess engines, such as Stockfish (Romstad et al., 2022), and through general
AI methods that learn through self-play, such as AlphaZero (Silver et al., 2018).
Chess is also an example of a game where top programs consistently outperform
leading human players. Many would claim that this fact was first made evident
through the match between IBM’s Deep Blue and current world champion Garry
Kasparov, as documented in Campbell et al. (2002). As chess programs, Stockfish
and Deep Blue are functionally quite similar, as they are both based on human
defined heuristics and extensive tree search. During the last years, however, other
approaches with particularly different points of departure have been presented.
Among the most prominent of these is AlphaZero (Silver et al., 2018), which is
trained using deep reinforcement learning (DRL) and self-play, meaning that the
model improves by playing against itself.

While traditional chess engines are strong players, the playing style of DRL-based
chess programs might be considered more interesting to humans: It can be argued
that DRL-based programs such as AlphaZero have a more human approach to the
gameplay, in the sense that the model is intended to learn heuristics by explo-
ration and experimentation. Since AlphaZero reaches superhuman performance,
examining and explaining these heuristics could therefore give human-like insights
into the game of chess. These might include novel approaches to certain aspects
of the game, or reimaginations of already established domain knowledge.

Strategies for explaining learned heuristics in DRL chess models, such as those

1
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presented in McGrath et al. (2021), often carry a significant computational cost.
Additionally, the models themselves are exceedingly difficult to produce, requiring
vast amounts of self-play games to be performed. This leaves both the meth-
ods for creating the agents themselves, and the methods explaining them, out of
reach for many research groups. In order to be able to explore new ways of ex-
plaining these heuristics, as well as reproducing those shown in McGrath et al.
(2021), lower-complexity alternatives must be made available. This would include
the ability to create agents that play lower-complexity variants of chess, while re-
maining adequately complex to inhibit advanced heuristics for play. This thesis
therefore presents an alternative for training DRL-based chess agents on smaller
chess variants, and an open-source implementation of the concept detection strat-
egy as described in Silver et al. (2018). The thesis also intends to explore and
show alternative explanatory methods for extracting learned domain knowledge
from trained chess models. Here, the proposed chess environment is essential for
being able to create and train the models which these methods are to be applied
to.

1.2 Research questions

Goal To explore methods from Explainable Artifical Intelligence (XAI) with
regards to how DRL-based state-of-the-art chess models reason when playing chess.

As presented in Sec. 1.1, RL-based chess models are quickly becoming strong
adversaries. It would therefore be very interesting to gain insight as to what such
models have learned in order to achieve their playing strength.

Research question 1 Is it possible to create an environment with adequate
tooling as to recreate AlphaZero (Silver et al., 2018), and their presented XAI-
methods (McGrath et al., 2021) with smaller computational requirements?

Since most of the work presented in Silver et al. (2018) and McGrath et al. (2021)
is closed-source, and exceedingly computationally demanding, a viable alternative
must be presented. While there are some open-source implementations of the
pipelines presented in Silver et al. (2018), it is still preferable to create a custom
pipeline for this work. This is mainly because creates a possibility to work with
smaller chess variants, which in turn makes it possible to re-train models from
scratch in the cases where this might be necessary. Additionally, applying existing
explanatory methods to very large models, such as AlphaZero, also has a non-
trivial computational cost, which is heavily reduced by being able to use smaller
models.
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Research question 2 Do there exist alternative methods to those presented in
McGrath et al. (2021) in order to explain DRL-based chess models?

If one is able to train DRL-based chess models from scratch, and has access to
relevant tooling in order to interface with these, this opens up several interesting
possibilities with regards to providing novel explanatory methods for the given
model. Ideally, this could lead to novel explanation methods beyond those de-
scribed in McGrath et al. (2021).

1.3 Thesis structure

This thesis is divided into six chapters. Chapter 1 presents an introduction to the
point of intersection between chess and AI.

Chapter 2 presents relevant background information and motivates the work and
results in this thesis. This includes a brief overview of chess as a game in Sec. 2.1,
algorithms used in traditional chess engines in Sec. 2.2 and Monte Carlo Meth-
ods and Monte Carlo Tree Search in Sec. 2.3. Additionally, this section provides
an introduction to relevant deep learning methodology and neural networks in
Sec. 2.4, and how these are applied to MCTS in Sec. 2.5. Chapter 2 also provides
an introduction into relevant XAI methods, such as feature importance attribu-
tions (Sec. 2.6.1), saliency maps (Sec. 2.6.2), concept detection (Sec. 2.6.3), and
counterfactual explanations (Sec. 2.6.4).

Chapter 3 presents the methodology used to answer the research questions posed
in Sec. 1.2. Secs. 3.1 and 3.2 include descriptions of the implemented high-
performance chess environment, and training AlphaZero-like models using it, and
Secs. 3.4 to 3.8 present the proposed explanatory strategies used in this thesis.

The results for each proposed explanatory method are shown in Chapter 4, and
discussed in Chapter 5. Chapter 5 also discusses various aspects of each of the
proposed methods.

Chapter 6 concludes the thesis, evaluates the proposed research questions, and
suggests future work.
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Chapter 2

Background

2.1 Chess

Chess is a well-studied turn-based game for two players. Canonical chess takes
place on an 8x8 board, where both players possess an identical set of pieces. The
goal of the game is to trap the opposing player’s king, and the game is won by
simultaneously trapping and attacking it – resulting in checkmate. All pieces have
discrete movement rules, and the game is always commenced from a standard
starting position, see Fig. 2.1.

As a subject of study for computerised game-playing methods, chess has several
practical properties. It is a game of perfect information, meaning that no part of
the game state is hidden from any of the players during play. Secondly, both its
state space and action space are discrete, deterministic, and finite, meaning that it
is possible to enumerate all legal actions in any given state. For conventional search
methods, this means that it is possible to use the complete enumeration of all child-
states to evaluate any given state. This also means that, given infinite computing
power, it is in theory possible to provide an optimal strategy by evaluating all
possible states, and calculating how these relate to one another. This is however
far out of reach by current computational facilities.

Chess has also accrued a vast amount of expert knowledge, with many facets of the
game having been studied in great detail. This has resulted in some aspects of the
game being accepted as empirical truths, even if no theoretical proofs are available.
Among such truths is the notion of the relative evaluation of each piece. These
evaluations are shown in Table 2.1. The notion of such knowledge has proven to
be quite relevant for computerised chess playing methods. While it can be used
and implemented directly, it can also serve as a benchmark for methods that do

5
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Figure 2.1: The starting position for standard chess on an 8x8 board.

not rely on any knowledge a priori.

2.2 Minimax

Minimax is a decision algorithm that can be applied to any zero-sum game with
finite action and state spaces (von Neumann et al., 1944). It can be used to provide
a game-value for a given state s by constructing a game tree based on the child
nodes of s. For a two-player game with alternating turns, the value of s wrt. the
player to move can be expressed as

v(s | p) = max
{a}

v(si | p∗), (2.1)

where a is the action that leads from state s to si, p is the player to move, and p∗

is the opposing player. Additionally,

v(s | p) = C,C ∈ R (2.2)

for terminal states. Since the game is zero-sum, it is assumed that

v(s | p) = −v(s | p∗). (2.3)
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Table 2.1: A list of the available pieces in chess, and their established
material evaluation. The evaluation is given in the units of “pawns”,
where the value of a singular pawn is used as the baseline.

Piece name Piece graphics Evaluation

King kK -

Queen qQ 9.0

Rook rR 5.0

Bishop bB 3.0

Knight nN 3.0

Pawn pP 1.0

Eqs. 2.1, 2.2, and 2.3 provide an exhaustive strategy in order to provide an
evaluation of any state s. The practical interpretation of these equations is that
a player p wishing to play optimally, will choose the action a from s that results
in the highest value. Assuming that the opposing player p∗ also wishes to play
optimally, the value of each child-state si is then decided by p∗ choosing its action
to achieve the highest value from each possible si. This continues until the game
is terminated, and assigned a value based on the result of the game, as described
in Eq. 2.2.

For chess, however, a naive implementation of the minimax algorithm would not
be sufficient. This is because it is currently unfeasible to continue this evalua-
tion until reaching all terminal child-states for a given state s. To remedy this,
Eq. 2.3 is altered to also apply to select non-terminal states. The constant C for
a non-terminal state s is then estimated by applying a heuristic to the state. For
chess, common heuristics include for example a weighted sum of the difference in
the pieces held by each player, or more abstract concepts, such as the notion of
piece mobility. There also exist several extensions to the standard minimax algo-
rithm, such as Alpha-Beta pruning (Knuth and Moore, 1975), and the killer-move
heuristic (Akl and Newborn, 1977), all used in state-of-the-art chess engines.

2.3 Monte Carlo Tree Search

For tree search contexts where it is computationally difficult to evaluate all pos-
sible child-states from a given state, it is useful to consider alternative strategies.
One such strategy is Monte Carlo Tree Search (MCTS), first described in Coulom
(2007). Given a state s, this tree search variant seeks to approximate the exhaus-
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tive enumeration of the child-states of s with a procedure of gathering a repre-
sentative sample of these child-states. MCTS is derived from the more general
concept of Monte Carlo methods, which concern themselves with approximating
results for a given process through large amounts of random sampling (Metropolis
and Ulam, 1949). Such methods are useful when working with infinite or contin-
uous action spaces, or in cases where the combined action and state space is so
large that it is computationally difficult to work with.

Given a state s, and a set of possible actions A = {a1, a2, ..., an} leading to other
child-states {s1, s2, ...sn}, a general Monte Carlo method repeatedly samples ac-
tions from A, applies these to s, and regards the aggregate of the evaluations of
the resulting states as an estimate of the true value of s. For MCTS, this sampling
strategy is combined with a standard tree search procedure. Here, the tree search
is guided by information gathered through the Monte Carlo sampling strategy.

For standard MCTS, for a given state s, the sampling is done by iteratively building
a search-tree from the node representing s by maximising

Q(s) + U(s, a) , (2.4)

where Q(s) is the expected value of the state s found incrementally through the
MCTS-process, and U(s, a) is a bias towards exploring action a in the state s.
U can be any function wrt. s and a, but the polynomial upper confidence bound
applied to trees (PUCT), first described in Rosin (2011), is commonly used. This
is defined as

U(s, a) = c · P (s, a) ·
√∑

a∗ N(s, a∗)

1 +N(s, a)
, (2.5)

where N(s, a) is a tally of how often the action a has been traversed from s in
previous MCTS-iterations, a∗ is a possible action from the state s, c is a tunable
constant, and P (s, a) is a function designating a prior probability towards per-
forming action a in the state s.1 In the cases where no such probability is known,
this can be set to 1 for all pairs (s, a).

The tree search method is performed iteratively. At the start of the routine,
a search-tree with a single root node is created. Then, for each iteration, one
traverses from the root node by maximising Eq. 2.4 until a leaf node is reached.
An evaluation is then performed on the leaf node. One can think of this as being
equal to “sampling” an outcome from the leaf node. The way this sampling is
performed can vary, and it is common to perform a random playout from each
such leaf node. This involves creating a copy of the state represented by the leaf-
node, and then performing random actions from it until it represents a terminal

1This can be seen as a way of incorporating expert knowledge into systems using MCTS.
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state. This sampled outcome is then used to update Q(si) for each state si on
the path between the root node and the leaf node. The intention of using Q(·)
is that Q(s) should return the expected game-outcome of traversing to s. This
sampling strategy then ensures that Q(s) reflects the average sampled outcomes
from all leaf-nodes which are reached by traversing through s. This path is also
used to update N(s, a), by incrementing the tally for all state-action pairs used to
traverse from the root node to the leaf node. A concrete implementation of this is
discussed in Sec. 2.5.

2.4 Neural networks

Neural networks are a general means for approximating any mapping from an
input space I to an output space O. Given an adequately large set of samples of
input-output pairs from the function defining the given map, F : I → O, and a
loss function E(·, ·) that quantifies some notion of “difference” between two output
pairs (On, Om), a neural network model M aims to minimise the E(On,M(In)) for
all such corresponding pairs. That is, it aims to approximate the mapping F ,
without access to any direct representation of F itself.

A neural network is comprised of layered mathematical structures. Each layer of a
neural network serves as a mapping from some n-dimensional space, to some other
m-dimensional space, where each such mapping is dependent on a large amount
of parameters. One can define each such layer as a mapping

Fi : (Li−1,wi−1)→ Li (2.6)

where each mapping from Li−1 to Li is dependent on a set of parameters wi−1.
In practice, these parameters are often implemented as n-dimensional, real-valued
tensors.

When chaining these layers together, the output space of layer i−1 is equivalent to
the input space of layer i. In order to serve as universal function approximators,
it has been shown that these mappings need to be non-linear (Hornik, 1991).
Empirical evidence for this can be seen in Fig. 2.2, and a more formal proof is
outlined in Appendix C.

Finding a weight tensor wi for each layer Li in a given neural network can be
done using gradient descent. For a given sample-pair (In, On), a model M , and
a loss function comparing two sample-outputs E(·, ·), one computes the gradients
of change for the last weight tensor with regards to the outputs. This represents
how the elements in wn should be modified in order to minimise the loss for the
given sample. This calculation is performed for each layer, where the gradients of
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wi depends on the gradients of wi+1. Small increments of change are then applied
for each sample pair, which in turn should produce weight tensors that minimise
the given loss function. This is often done stochastically in mini-batches, where
these calculations are performed simultaneously over a randomly sampled batch
of input-output pairs. The process of backpropagation in order to approximately
determine all wi is described in Algorithm 1.

Algorithm 1 Backpropagation for neural networks by gradient descent for a set
of input-output pairs I, O, loss function E(·, ·), model M with intermediate layers
L1, L2, ..., Ln with corresponding parameters w1,w2, ...wn, learning rate (hyperpa-
rameter) η and some performance measure P (·) to be applied to the given model
with accompanying cutoff-threshold T .

while P (M) < T do
for pair (Ii, Oi) in shuffle(I, O) do ▷ Randomise pair ordering

e← E(M(Ii), Oi)
for layer Li in M do

G← δwi

δe
▷ Find the gradient of the parameters of Li wrt. the error

wi ← wi + η ·G ▷ Nudge the parameters to minimise the error
end for

end for
end while

2.4.1 Fully connected neural networks

The structure of each layer in a given neural net can be adapted to best fit to the
task at hand. The most basic structure is the fully connected, feed-forward neural
network, first described in Rosenblatt (1963), which works well for mappings with
relatively small input-dimensionalites. In this case, each layer-mapping for an
input vector x is defined as

Fi(x) = f(wix+ bi), (2.7)

where f is a chosen non-linear function (often referred to as the activation-function
of the given layer), and wi and bi are two-dimensional weight matrices. The row-
size of bi and wi determines the output-dimensionality of Fi.

Fully connected neural networks can be applied to various learning tasks. For
simpler cases, this can be done through adapting the last layer of the neural
network, in conjunction with choosing a relevant error function. For single-variable
regression, for example, this is done by choosing a row size of 1 for wn−1 and
bn−1. For classification tasks, specific activation functions are commonly used, for
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(a)

(b)

Figure 2.2: Fully connected, 3-layered neural net models with randomly initialised
weights and biases, describing a mapping from [−1, 1] to R1. (a) shows such models
with a linear activation function, while (b) shows such models with the nonlinear
gelu-activation function, f(x) = x · 1

2
[1 + erf(x/

√
2)] (Hendrycks and Gimpel,

2016b). Observe that the networks with linear activation functions (Fig. 2.2a)
only produce linear mappings, even when multi-layered.
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instance the Softmax-function

S(x)i =
exi∑n
j=0 e

xj
, (2.8)

where S(x)i and xi are respectively the i-th elements of the output vector and x.
This function is used to normalise the n-dimensional output vector, so that S(·)
can be interpreted as a probability distribution over n outcomes. In practice, this
is used to allow the neural network to predict a probability distribution over the
n classes.

2.4.2 Convolutional neural networks

There also exist layer structures that are specifically tailored for high-dimensional
structured data, such as images, or game boards. One example of such layer struc-
tures are convolutional layers, and networks comprising such layers are colloquially
called convolutional neural networks (CNNs) (LeCun et al., 1989). Here, each layer
structure is defined as a convolution with a variable, fixed-size kernel over its input
x. Mathematically, for a single kernel of size (W,W ), the convolutional operation
from layer n to n+ 1 with no activation function can be defined as

Ci,j
n =

 ⌊W/2⌋∑
k=−⌊W/2⌋

⌊W/2⌋∑
l=−⌊W/2⌋

wi
i,j · Ci+k,j+l

n−1

+ bi
i,j, (2.9)

with the additional constraint that

Ci+k,j+l
n−1 = 0 (2.10)

for all instances of Ci+k,j+l
n where (i+ k) or (j + l) is outside the bounds of Cn.

In practical terms, CNNs allow for layer structures where the number of trainable
parameters is not directly dependent on the size of the input. For fully connected
layers, as described by Eq. 2.7, their setup quickly becomes infeasible when working
with larger input sizes. CNNs do however assume some spatial relation between
adjacent elements, meaning that it needs to make sense to group adjacent elements
together. Therefore, CNNs are often used when dealing with images, or grid-like
data, since they benefit from both reducing the computational complexity, and
from being able to link bordering elements.

2.4.3 Residual neural networks

While advances in computing allows training of neural networks with great com-
putational capacity and a high number of layers, the training procedure for such
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models has often proved difficult. Various layer architectures have been proposed
to remedy this, such as the residual network, or “ResNet”, architecture proposed
by He et al. (2015). Here, the main proposal is adding skip-connections in parallel
to each layer. In mathematical terms, this means introducing a direct dependency
between the outputs of two layers i and i − 1, which adds an additional transfer
of information from the output of layer i− 1, to the output of layer i. This can be
described as

Fi(x) = P (f(wix+ bi), Fi−1(x)), (2.11)

where P (·, ·) is a function that defines how to merge the outputs of layers i and
i − 1. A standard choice for this function is to define P as being element-wise
addition. For cases in which the dimensionalities of layers i and i − 1 do not
match, P must be tailored to account for this.

The ResNet-architecture has empirically been proven to be effective for large and
deep neural network models. It has been utilised in former state-of-the-art image
classifier models (as described in He et al. (2015); Szegedy et al. (2016); Mahajan
et al. (2018)), in addition to being used in many instances of the AlphaZero-family
of models.

2.4.4 Binarized neural networks

Binarized neural networks, described in Courbariaux and Bengio (2016), are a
proposed method for neural network layers that utilise both binary activation
functions and binary weight matrices. This encompasses activation functions on
the form

f(x) =

{
1 if condition

0 otherwise.
(2.12)

An example of such a function is the standard Heaviside function.

In practice, binarized layers can be thought of as a special case of of normal neural
network layers. However, extra care needs to be taken in order to make sure they
are applicable under the backpropagation procedure described in Algorithm 1.
This is because the derivative of any function on the form of Eq. 2.12 is 0 for
most values (as seen in Fig. 2.3), thus making it unsuited for use within the
backpropagation method. This is remedied by using a gradient estimation strategy,
that replaces the direct reliance on the gradient of the layer with the given binary
activation function. A standard candidate for gradient estimation is the straight-
through estimator, first described in Bengio et al. (2013). The described gradient
estimation strategy is here to ignore the activation function when calculating the
gradient wrt. a given layer. That is, for a fully connected, standard neural network
layer on the form Fi(x) = f(wi−1x + b) with f being some threshold function as
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(a) (b)

Figure 2.3: The Heaviside step function (a), and its derivative (b).

described in Eq. 2.12, the gradients of wi−1 wrt. the given error are calculated as
f(a) = a. Even though this does not necessarily reflect the exact behaviour of Fi

during backpropagation, it has been shown with strong empirical evidence that
this is an adequate estimate (Courbariaux and Bengio, 2016).

Binarized neural networks are often used for their benefits when considering com-
putational cost reduction. Such layers are able to substitute most required floating
point operations required for calculating Fi(x) with bitwise operations, which have
faster implementations on most systems. Using binary weights also means that
one is able to reduce the memory footprint of each trained model, drastically
decreasing the system requirements for running such models.2

2.5 Applying deep learning to tree search

The chess-playing agent described in Silver et al. (2018) uses a variant of MCTS
to achieve superhuman performance in a various set of two-player games. After
each set of MCTS-iterations for a given root state s, it uses the tally provided by
N(s, a), see Eq. 2.5, to choose its candidate moves. Here, the main idea is that
if a node is visited frequently on subsequent traversals, it is likely to represent a
favourable state. The practical interpretation of this is that a given move a∗ is
favourable if it is repeatedly chosen in the search procedure, and if it has a high

2This can be viewed as an extension of the many quantisation strategies employed for being
able to run large generative diffusion models (Shang et al., 2023) or large language models
(Dettmers et al., 2022) on consumer hardware. In these cases, int8-quantisation is often used,
usually applied after the model has been trained.
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Q(·)-value. Here, a large Q(·)-value for a given state, having been sampled N(s, a)
times, means that s is valuable with a high certainty.

One of the main contributions presented in Silver et al. (2018) is a neural network
model used to estimate many of the functions upon which the MCTS-setup relies.
Firstly, it provides the expert probabilities for P (·, ·), as described in Eq. 2.5.
Secondly, it replaces the outcome sampling by learning to directly estimate Q(s)
for any given state s.

The network is trained to produce P (s, a) by approximating N(si, a) over all state-
action child pairs for a given state s with children s1, s2, ...sn. In the same vein,
the network is also trained to approximate Q(s) by observing the outcomes of
entire games played using the MCTS-procedure. In practice, for a given game-
outcome O, one stores samples (s,N(s, ·), O) after each complete cycle of the
MCTS-algorithm, with the intention of predicting (N(s, ·), O) from s. After a
fixed number of self-play games, the neural network is then partially trained on
the set of gathered samples, essentially creating a partial supervised learning task.
The entire MCTS-training procedure is detailed in Algorithm 2.

While MCTS coupled with a neural network estimator has been proven supe-
rior to a similar system without a neural network approximator, it is also much
more computationally demanding. Therefore, several improvements have been
presented for MCTS that make larger computational setups more viable. One
of these improvements is being able to benefit from root-parallelized MCTS, first
described in Chaslot et al. (2008). This amounts to being able to play several
games as described in Algorithm 2 in parallel. Additionally, larger amounts of
graphical/tensor processing unit (GPU/TPU) computational resources can be ef-
ficiently utilised by implementing a strategy for virtual loss (Chaslot et al., 2008).
Virtual loss is a traversal strategy that allows for queries to the Q(·)-function to
be deferred. This is important in cases where one uses large neural network ap-
proximators, since each evaluation of Q(·) is provided by the given approximator.
The virtual loss strategy is realised by replacing and propagating a placeholder
value in all cases where the Q(·)-function is utilised. These deferred states are
then evaluated in bulk when a sufficient number of states are gathered, replacing
the placeholder values upon completion. This yields a higher GPU perfomance
ratio than on-demand evaluation. However, the additional infrastructure required
for deferring certain evaluations also incurs a significant overhead, and is therefore
is only relevant when the amount of GPU/TPU resources is considerable.
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Algorithm 2 Full training procedure for a MCTS-based game agent, with n
search-iterations per move.

B ← {}
while training should continue do

Es ← s0 ▷ Start a new self-play game
Bt ← {} ▷ Episode training buffer
while Es not terminal state do

T ← tree(Es) ▷ Empty search-tree rooted in Es

for i in 1, 2, ..., n do
c← root(T )
while c is not leaf do ▷ Traverse to preferred child in T

c← argmaxQ(ci) + U(ci) over all children ci of c
end while
O ← Q(c) ▷ Evaluate leaf using neural network approximator
T ← T∪ all children of c
for cp along path from c to root(T ) do

Q(cp)← update(Q(cp), O)
N(cp, ·)← N(cp, ·) + 1

end for
end for
B ← B ∪ (Ei, N(Ei, ·))
E

′ ← argmaxN(Ei, ·) over all children Ei of root(T )
Es ← E

′

end while
Og ← outcome(Es)
Bt ← Bt

⊔
Og ▷ Add the outcome to all instances in episode-buffer

B ← Bt ∪B
Train NN-approx, Q(·), P (·, ·) on subset of B ▷ Can be skipped for most

iterations
end while
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2.6 Explainable AI

Explainable AI is a subfield of AI that seeks to “provide transparency to predictions
made by machine learning models”, as formulated by (Miller, 2017). Explainability
is desirable when considering neural network models: While neural network models
are very strong learners, their learned function mappings are opaque, requiring
auxiliary techniques in order to explain their inner workings, or the outputs for
a given input. In the following, a relevant selection of explanation methods is
presented.

2.6.1 Feature importance attributions

The Shapley value, first described in Shapley (1951), is a solution concept from
cooperative game theory. For a given cooperative game, with N distinct partic-
ipants, S denoting any sub-collection, or subcoalition, of these players, and v(S)
denoting a characteristic function describing the value of a coalition, the Shapley
value for the i-th player can be calculated as

φi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)). (2.13)

The practical interpretation of Eq. 2.13 is that one quantizes the contribution of
the i-th player to the total game, by investigating the marginal contribution the
player makes to all possible combinations that do not include the i-th player.

Even though the concept of the Shapley Value operates on marginal contributions
for cooperative games, it can also be used to describe the contribution of features
for a given predictive model. In this case, one interprets the model’s mapping
f(x) : I → O from its input space I to its output space O as a cooperative game
played by each feature in x. The outcome of the game, f(x) is then treated as
the “outcome” of the given game, and the i-th Shapley Value φi(v) is then the
marginal contribution of the i-th feature in x wrt. the predictive output f(x).

While Eq. 2.13 allows for an adequate description of the contribution of each
feature in a coalition, it has a number of practical challenges that limit its appli-
cability in a machine learning context. Firstly, it is infeasible to enumerate over
all coalitions of N for large N . This can be interpreted as requiring to include
all possible combinations of N in the measure of the “contributional value” of a
single feature. To mitigate this, one can impose various sampling strategies as to
estimate the information gained by looking at all such combinations. One of the
most straightforward of such strategies is using a Monte Carlo sampling strategy,
such as presented in Mann and Shapley (1960), and later used in Štrumbelj and
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Figure 2.4: A histogram of a bimodally distributed variable. Observe that the
mean falls between the two sharp peaks of the distribution.

Kononenko (2014), where one samples a set number of the coalitions inferred from
Eq. 2.13, instead of using an exhaustive enumeration.

Additionally, it is not immediately obvious how to define a coalition of an input
space for models with fixed input sizes. As an example, for a neural network of
input-size n, it is not possible to exclude some of the input features in order to
evaluate v(·), in this case the neural network model, on the given subcoalition.
Thus, one needs to define a substitute operation that adequately represents the
model’s output in the absence of a given feature. A naive approach might be to
replace the value of absent features with their sampled mean, with the assumption
that this value serves as a default for the given feature. While this might work
for some features, this can for example be problematic for features that are bi-
modally distributed, as illustrated in Fig. 2.4. Neural network models have proven
vulnerable to out-of-distribution feature values, as discussed in Goodfellow et al.
(2015); Hendrycks and Gimpel (2016a), meaning that such an approach can be
sub-optimal. A more apt approach is sampling values from the feature’s observed
distribution, as this could provide more likely instances of the given feature. How-
ever, this sampling strategy also needs to consider the correlation between each
sampled feature feature. This is because one might sample an instance of a feature
that only occurs within a range of a certain subset of other features, which creates
the same problems wrt. out-of-distribution samples. There exist many other exten-
sions and related methods for predicting Shapley-like values, often adapted to be
more applicable for specific model classes. Among these methods are KernelShap
(Lundberg and Lee, 2017), DeepLift (Shrikumar et al., 2017), and Quantitative
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Input Influence metrics (Datta et al., 2016). Several of these methods are coupled
and packaged into the widely used SHAP-package (Lundberg and Lee, 2017).

2.6.2 Saliency maps

Saliency maps are a category of explanations that are well suited for models op-
erating on highly structured data. This category encompasses a wide range of
methods, but such methods commonly provide a visual metric of relevance as to
how each section of a given sample is relevant for producing the given prediction.
For visual data, such as images, this depiction is often presented as an overlying
mask on the original image, which in turn constitutes an visual explanation as to
what the model is “looking at” when making its inferences. For a three-channel
(RGB) (n, n)-sized image I, consisting of (n, n, 3) values between 0 and 255, and
a heatmap H with (n, n) values between 0 and 1, each element of the visualisation
mask can be defined as

Si,j = 255−Hi,j · (255− Ii,j). (2.14)

Practically, this equation describes calculating the resulting colour of Ii,j by ap-
plying the corresponding opacity-value defined by Hi,j.

Feature importance attributions, presented in Sec. 2.6.1, can also be thought of
as providing saliency maps for sufficiently structured data, and for images can be
thought of as operating on the basis of “superpixels”. That is, given an image,
it regards collections of pixels as a single feature, and uses this to discern the
importance of each such region for the given prediction.

For neural networks, there also exist many methods that can be used to provide
saliency-based explanations. Methods specific to neural network models often
leverage the gradients of each layer of the network wrt. the predicted output O,
for a given input-output pair (I, O). Such methods often leverage this information
in order to avoid having to mask features when calculating the corresponding
output for a given permutation, which is often beneficial when considering that
neural network models are not reliably robust to inputs not present during training
(Hendrycks and Gimpel, 2016a).

There exist many gradient-based saliency map methods for neural networks. Among
these is GradCAM (Selvaraju et al., 2016), which provides a class activation map
as a heatmap over the given input state. It operates on CNN-classifier models, and
is originally intended for image-like data. Its procedure is described in Algorithm
3.
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Algorithm 3 GradCAM for a CNN-based classifier M taking s as input, with
last convolutional layer L with filter dimensions (m,n), and l filters

c← argmax(M(s)) ▷ Get the predicted class
G← δyc

δL
▷ The gradients of the output correspond-
ing to c, yc

M ← 1
m·n ·

∑n
i=1

∑m
j=1

∑l
k=1G

k
i,j ▷ Mean of gradients over each filter in L

H ←
∑k

l=1G
l ·M l ▷ Weighted sum of the gradients of each filter

H ← upscale(H) ▷ Transform the dimensions of H to match the dimensions of
the input space
H ← clip(H,0)

max(H)
▷ Normalize between 0 and 1

Figure 2.5: The main architecture of concept detection, operating on an arbitrary
model. Here, the linear probe is inserted at layer L3.

2.6.3 Concept detection

It can be desirable to know which representations of established domain knowledge
a given neural network model M internalises. This is particularly relevant in the
context of chess, since it would make it possible to probe the model using the
vast amount of accrued domain knowledge, described in Sec. 2.1. This goal is
achieved by utilising a method for detecting so-called concepts, first described in
Kim et al. (2018), and later utilised by McGrath et al. (2021) for searching for
internal representations of domain knowledge in AlphaZero. For a concept function
C(s), where s is a given state, and the output of C(·) is a Boolean value stating
the presence of a given concept in s, the method trains logistic probes to predict
C(·) given the activation outputs from an intermediary layer of the model M . This
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structure is illustrated in Fig. 2.5.

For a given model M , and a partial model function Mn(S) : I → On where I is the
input space of the model, and On is the activation space of the n-th intermediary
layer, a concept dataset is constructed. This dataset consists of a set of pairs
(Mn(s), C(s)), where s is sampled from the state space of the model. These can
often be gathered through self-play, or through known datasets, as described in
McGrath et al. (2021). Then, one wishes to train a logistic probe to approximate
the mapping P (Mn(si)) : On → C(si) for each si in the dataset. That is, one
wishes to find some weight matrix w and bias b so that

∥σ (w ·Mn(si) + b)− C(si)∥22 (2.15)

is minimised for all (si), where σ is the sigmoid function. Additionally, to confirm
that the concept is, in fact, sparsely represented, an L1-penalty is applied to w
and b. This yields the final minimisation objective

∥σ (w ·Mn(Si) + b)− C(Si)∥22 + λ∥w∥1 + λ |b| , (2.16)

where λ controls the strength of the applied L1-penalty.

The presence of a concept given the logistic probe L (·) with weight matrix w
and bias b is then defined to be the binary accuracy of L (·) when applied to
a validation portion of the aforementioned data set, while correcting for random
guessing. This is then defined to be

2

N

(
N∑
i

H (L (Oi)− T )− Pi

)
− 1 , (2.17)

where H is the Heaviside step function, and T is the binary predictive threshold
for the probe. Usually, T is set to 0.5.

The information described in this section has been adapted for use, and presented
in Hammersborg and Strümke (2022).

2.6.4 Counterfactuals

It is also interesting to consider the applicability producing counterfactual expla-
nations for a given predictive model M . Given an input sample In, a model that
produces an output M(·), a corresponding prediction On = M(In), and a desired
prediction O∗

n, a valid counterfactual explanation would be a perturbation Ip, so
that M(In + Ip) = O∗

n. It is desirable that the perturbation Ip is small, so that
In + Ip is semantically similar to In. In practical terms, one wishes to find a small
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change to the given input sample so that the prediction of the model changes from
On to O∗

n.

A standard method for generating counterfactuals, presented in Wachter et al.
(2017), expresses these requirements by aiming to minimise the given loss function

L(In, Ip, O
∗
n, λ) = λ · (M((In + Ip)−O∗

n))
2 + d(In, In + Ip) (2.18)

Here, the term λ·(M((In+Ip)−O∗
n))

2 expresses the λ-weighted mean squared error
between the prediction found by the counterfactual sample In+ Ip and the desired
prediction O∗

n. d(·, ·) is a distance function expressing the distance between two
input samples, here being used to measure the distance between In and In+Ip. The
distance function can be adapted to the given problem at hand. The mean squared
error aims to minimise the error of the desired prediction, while the distance metric
aims to minimise the perturbation.

Another method for generating counterfactuals is presented in Dandl et al. (2020),
where a minimisation-objective for guiding a search procedure for counterfactual
explanations is presented. Semantically, the method is similar to the one expressed
through Eq. 2.18. However, the method presented in Dandl et al. (2020) includes
an additional term that aims to capture the plausibility of the found perturbation.
That is, given a perturbation In + Ip, the objective also represents how the likeli-
hood of the sample In+Ip appearing as a sample from the given input space. This
can be a very useful addition. For chess, for example, such a restriction might
indirectly impose that the found position is legal within the rules of the game,
which is imperative in most use cases.

Overall, most methods for identifying counterfactual instances aim to provide some
mathematical heuristic guiding a search for a viable perturbation to the given input
sample. Although the minimisation objectives used might vary, most intend to
minimise the distance from the initial sample and the perturbed sample, in addition
to making sure that the corresponding model output for the given perturbation
closely matches the desired output.

Counterfactual explanations have been shown to be easily interpretable, while not
requiring technical knowledge of the given model (Miller, 2017). Additionally, it
is very practical to create counterfactual explanations from tree-like structures,
which might lend itself well to a MCTS-like model setup, described in Sec. 2.3.



Chapter 3

Methods

3.1 High performance chess environment

For a training process as descibed in Sec. 2.5, it is imperative to have an envi-
ronment with adequate performance. For chess, this mainly hinges on being able
to rapidly generate the legal moves for a given position, since this sub-routine
is used repeatedly while enumerating the children of any given leaf node in the
MCTS-process. This task is difficult to perform quickly, due to the complexity
of calculating these moves. The difficulty presented by this task is discussed in
Sec. 3.1.1, and complemented in Appendix A.

3.1.1 Bitboards

Although most of the game state in chess can be adequately represented by stan-
dard array-like structures, one can achieve a significant gain of performance by
switching to bitboard representations. This approach was described in Atkin and
Slate (1988), and has since become a standard game-state representation utilised
by most competitive chess playing programs. The main idea is that each combina-
tion of unique piece and colour type is given its own binary input plane, where each
element represents the presence or absence of each combination of piece-type and
color on the given square. This is illustrated in Fig. 3.1. For all chess-variants with
board sizes up to 8x8, this then means that each input plane fits within a single
64-bit integer, which in turn means every possible piece permutation in chess can
be represented by twelve 64-bit integers.1 Each such plane is called a bitboard.

1For the game in its entirety, some additional information is also required. This includes the
current player to move, the castling rights of each player, the total move count thus far in the
game, and the current en passant status.

23
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Figure 3.1: An illustration of representing parts of a chess state using bitboards.
This also shows how board sizes smaller than 8x8 (equaling 64 bits in total) fit
into an unsigned 64-bit integer.

Figure 3.2: The possible moves for a rook in the lower-right corner, which can only
move in a straight line.

Altering any given piece state is done by defining relevant bitwise-operations be-
tween the given bitboards and Boolean masks. Examples of this include removing
or adding a certain piece from the bitboard, but also more complicated endeav-
ours, such as calculating pinned pieces (see Appendix A), or calculating the legal
attacks for a given piece.

3.1.2 Precomputing possible attacks

An integral part of the procedure for calculating the legal moves of a state, is being
able to find the possible movement vectors for any given piece on the board. If this
is performed in a naive way, the computation can be quite slow. While most pieces
have a somewhat simple movement pattern, their movement might be restricted
by other pieces on the board. An example of this is shown in Fig. 3.2.

In order to avoid having to consider blocked squares for each piece when calcu-
lating the legal moves of a position, a strategy for precalculating all such possible



25

(a) (b) (c)

Figure 3.3: The possible moves, highlighted in blue, for (a) the pawn, (b) the
knight, and (c) the king.

(a) (b) (c)

Figure 3.4: The possible moves for (a) the bishop, (b) the rook, and (c) the queen.
Diagonal moves are highlighted in red, and straight-line moves in blue. The main
observation is that the queen has the movement of a combined rook and bishop.

movement vectors is devised. In this way, one can use a sub-optimal routine for
finding all possible moves before runtime, and substitute that operation with a
simple lookup when the chess-environment is being utilised.

First, it is observed that the movement patterns for the pawns, king, and knight are
easy to define. These are shown in Fig. 3.3. For these pieces, it suffices to provide
a static lookup for each square, designating the possible moves for any piece of the
given type on that square. The movement patterns for the queen, rook, and bishop
can be decomposed into diagonal and straight-line moves, as shown in Fig. 3.4.
These two types of movement can then be considered separately. In these cases,
the movement map also needs to consider all other pieces that potentially hinder
movement.
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Let B be a bitboard that indicates which squares of the board that are occu-
pied. Additionally, let Fm(S,B) be some function that produces a bitboard of
legal moves of movement type m from a square S, given the blockers B. The
results of Fm are then cached as a array-like lookup table depending on S and the
integer interpretation of B. However, since B is stored as a 64-bit integer, it is
impractical to have a lookup table depend on a 64-bit value. In practice, since
it is desired to cache Fm using a regular array-like lookup, it is also necessary to
create some reduction of B for use with Fm. The first step is to observe that all
pieces that do not fall within the movement path of the movement type m are
irrelevant for blocking movement of type m. In practice, this means that one only
needs to consider pieces that can hinder its movement. This is done by reducing
B by instead looking at Bm = B ∗ path(S,m), where path(S,m) is a function
providing a bitboard containing all squares which are on the movement path with
movement of type m starting from the square S, and the ∗-operator is regular
binary multiplication. This is then used in conjunction with a hash-mapping of
Bm from 64-bit, to n-bits:

Fm(S,H(Bm, n)) (3.1)

where n is the bit-length of the output of H(·, n). The choice of H is set to be
something that is very quick to compute. In this case, H is defined as:

H(Bm, S, n) = (Bm ∗MS)≫ (64− n) (3.2)

Here the ∗-operator is regular binary multiplication, and the ≫ -operator is the
binary-right-shift operator. The main task here is finding an M for each S so that
H is unique for all possible values of Bm. This is usually done by brute force.
n is chosen heuristically, as it dictates how much storage space is needed for the
produced lookup table, but also how long the brute-force search will take. The
values for MS are then stored along with the main lookup table for Fm.

3.2 Training models

In order to develop game-playing models that reach superhuman performance with-
out the use of pre-instilled knowledge, the DRL-based neural network models are
trained as described in Silver et al. (2018). The main training procedure is based on
deep reinforcement learning through MCTS and self play, as described in Sec. 2.5,
and directly follows Algorithm 2. The procedure is discussed further in throughout
following section.

In this thesis, two models are trained on smaller variants of chess. One model is
trained on Silverman 4x5 chess, shown in Fig. 3.5a, and the other is trained on
Los Alamos 6x6 chess, shown in Fig. 3.5b.



27

(a) (b)

Figure 3.5: The two chess-variants used: (a) Silverman 4x5 and (b) Los Alamos
6x6.

Figure 3.6: The architecture of the 6x6-ResNet model. The structure of the 4x5
model is similar, but without skip-connections and only three initial convolution
layers.
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Table 3.1: Description of each input channel of a chess-representation
adapted for neural networks.

Channel number Description

0− 5
One plane for each piece-type for the player to move.
(in the order of pawn, knight, bishop, rook, queen, king)

6− 11
One plane for each piece-type for the opposing player.
(in the order of pawn, knight, bishop, rook, queen, king)

12− 15
Kingside, queenside castling rights for both players
(not used in the presented variants)

16
En passant move availability
(designating the square that is able to be captured)

17
Counter of the amount of turns taken
(not including the current position)

18 If the player to move has the white pieces.

3.2.1 Model architecture

Both models developed and used in this thesis are feed forward convolutional
neural networks (CNNs), discussed in Sec. 2.4.2. The 6x6 model has added residual
connections, similar to the architecture of AlphaZero Silver et al. (2018). This is
based on a standard ResNet-architecture, described in Sec. 2.4.3. For a given state,
both models are tasked with predicting a policy vector over all possible moves, in
addition to an evaluation of the state. An overview of the model architecture is
shown in Fig. 3.6.

3.2.2 Input/output structure

A chess position with board size (m,n) is represented as a single tensor with
dimensions (m,n, 19). The content of each channel is described in Table 3.1.
Additionally, the input is always kept player-invariant. This means that if the
player to move is playing as White, the entire board is rotated 180 degrees before
being passed to the network.

The size of the unflattened policy output varies with board size. For a board of
size (m,n), the policy output is of size

(m,n, 4 · (m− 1) + 4 · (n− 1) + 8 + 3 · 3) (3.3)

For each square (i, j), this encodes m − 1 moves vertically upward and m − 1
moves vertically downward, n − 1 moves horizontally leftward and n − 1 moves
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horizontally rightward, 8 knight moves, and 3 · 3 moves for each underpromotion.2

This means that each policy vector might include moves that are not possible to
make in the given position, but such moves are masked away before the policy
output is utilised elsewhere.

3.2.3 Training architecture

Both models are trained according to the setup described in Sec. 2.5. In lieu of
large GPU-resources, as required by many state-of-the-art MCTS-strategies, a fast
and lightweight CPU-only procedure for generating model predictions was used as
a part of the custom MCTS training loop used for this work. The training loop
utilises TensorFlow-lite models (Abadi et al., 2015), which leverage fast, single-
thread model inference on the CPU. This is highly relevant in this use-case, as
having fast single-thread inference means that the whole training loop can be
parallelized with negligible overhead. For larger models, however, such as those
described in Silver et al. (2018), a robust implementation allowing more efficient
use of GPU resources would most likely be necessary for productive training. The
implementation of the described pipeline was optimised for efficiency on medium-
level consumer-grade hardware. This means that it was intended for systems with
relatively few, but fast CPU cores, and a single, lower-range GPU.

3.2.4 Availability

The described environment in Sec. 3.1, the framework for the entire training loop
described in Sec. 3.2, and models trained on 4x5 and 6x6-variants of chess are
publicly available3 as a viable alternative for training smaller chess models in the
same manner as described in Silver et al. (2018). In order to make it as broadly
applicable as possible, the described chess environment is completely detachable
from all other training infrastructure, in addition to being entirely customisable.
This includes custom starting-positions, board-size, and castling rules.4

2When a pawn reaches the final rank (meaning that it has traversed the entire board), it is
promoted. The standard rules of chess state that his promotion can be to either a bishop, rook,
knight, or (most commonly) a queen.

3This is available at https://github.com/patrik-ha/explainable-minichess.
4Castling is a special move-type in chess, which involves moving the king and one of the

player’s rooks at the same time. This can only be done once per player, and has special require-
ments as to what squares have to be vacant and non-attacked.

https://github.com/patrik-ha/explainable-minichess
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Table 3.2: Concept functions used in Sec. 2.6.3.

Name Description

has mate threat Checkmate is available
in check Is in check
material advantage Has more pieces than opponent
threat opp queen Opponent’s queen can be captured
has own double pawn Has two pawns on the same file
has opp double pawn Opponent has two pawns on the same file
has contested open file Both players have rooks in an open file
threat my queen Own queen can be captured
random Data set with random labels

3.3 Concept detection

The concept detection procedure described in Sec. 2.6.3 is performed on both
models described in Sec. 3.2.1. The concept functions used are described in Table
3.2. The concept probing data sets for a given board size are created through large
amounts of self-play using trained model checkpoints. A small batch of positions
is then randomly sampled from these games, and assigned labels corresponding to
the concepts present in each position. This process is repeated until a complete
concept dataset has been formed. Additionally, noise is added to the move selection
process, in order to mitigate any potential bias of the produced concept dataset in
favour of the models being tested. This also makes sure that the concept datasets
contain a large variety of games.

3.4 Backpropagating concepts

While the concept detection method presented in Sec. 2.6.3 can be used to iden-
tify what kinds of domain knowledge a given chess-playing model has internalised,
the method does not give any indication as to how this knowledge is used and
represented internally. Essentially, one cannot know if the internalised version
of the given concept matches how the concept is canonically represented in rel-
evant domain knowledge. However, since a successfully trained probe indicates
what elements in activation space that correspond with the model’s internal rep-
resentation of the concept, the probe can provide information as to what kinds
of activation patterns correlate with the given concept. One could then consider
searching through the input space of the main chess-playing model, trying to find
perturbations of a given state that successfully match these found activation pat-
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Figure 3.7: An illustration of the binary masks described in Sec. 3.4. In the shown
figure, s− is represented as a 6x6x1 matrix, meaning that it masks over all pieces
on the board, while both s and s+ are represented as 6x6x12-matrices. This means
that each combination of piece color and type is given its own plane in s−.

terns. This can be thought of as trying to maximise the output of the linear probe,
by only being allowed to perturb the input space of the main chess-playing model.
Since the probe itself is a linear neural network, it can be used to provide gradients
for this search. This creates a minimisation-problem – what is the smallest per-
turbation for a given state s that successfully causes the concept C to be detected
by the probe P?

The aim of the method presented in Sec. 2.6.3 is to find a sparse weight matrix w
that indicates which of the elements in a given output activation layer Oi linearly
correlate with a predefined concept. Subsequently, it is possible to maximise the
perceived detection of the given concept by altering the elements with correspond-
ing non-zero weights in w. In practice, given a composite of a pre-trained model
and a trained probe as a map from an input space I, through an activation space
M(s) : I → Oi → C, where s is a given state, and C is the corresponding probe-
output, one wishes to find a perturbation M(s − s− + s+) that maximises C. It
is desirable that |s−|+ |s+| is as small as possible, and it is required that both s−

and s+ are binary.

The requirement of s− and s+ being binary is satisfied by representing s− and s+ as
binary masks. These are then attached as preprocessing-layers to the main model
M , while “simulating” that each element in s− and s+ are trainable variables.
These masks are made trainable by implementing them as binarized layers, as
described in Sec. 2.4.4. A visual representation s− s− + s+ is shown in Fig. 3.7.

At a higher level, it is also desirable that s − s− + s+ is semantically similar
to other legal positions from I. This is implemented by attaching a pre-trained a
submodule that predicts the “legality” of s−s−+s+, which provides an additional
objective to maximise along with C. This submodule is trained on a dataset of
300 000 positions sampled through self-play of the given model M , where 50% of
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the positions are altered as to become illegal.5 In practice, this means that this
submodule is tasked with performing a binary classification task, where the class
in question is the “legality” of a given position.

Algorithm 4 Concept backpropagation for a single input sample s, partial model
MI(·) as a map from the input space of s to the activation space of an inter-
mediate layer I in M , pre-trained concept probe P on the activation space I,
pre-trained legality-checker C(·) that evaluates the legality of any given position,
and a threshold T as to define adequate maximisation of the given concept.

s+ ← 0
s− ← 0 ▷ Binary masks over input, i.e. same dimensions as input
I∗ ←MI(s+ s+ − s−)
while P (I∗) < T do ▷ Until concept is sufficiently maximized

lp = bce(P (I∗), 1) ▷ bce is the standard binary crossentropy loss function
lc = bce(C(I∗), 1)
lL1 = c1 ·

∑
i,j |s

+
i,j|+ c2 ·

∑
i,j |s

−
i,j| ▷ c1, c2 tunable hyperparameters

s− ← s− + δ(lp+lc+lL1)

δs−

s+ ← s+ + δ(lp+lc+lL1)

δs+
▷ Take gradient step for masks to minimise loss

I∗ ←MI(s+ s+ − s−)
end while

A full description of the procedure is provided in Algorithm 4.

3.5 Binarized intermediate layers

When considering explanatory methods for chess models, it is also interesting to
consider the consequences of having intermediary layers with activation spaces
that resemble the input space itself. As described in Sec. 3.2, the dimensionality
of the input is in this case approximately equal to the dimensionality of most of
the intermediate layers in the models. However, this is not true for the data type
output by these layers. The part of the input space that describes the board state
is strictly binary, while normal activation spaces usually span real-valued numbers,
with value ranges determined by the activation functions used. However, it could
be interesting to force some of these activation spaces to also be binary, to examine
whether it is possible to relate activation patterns to features that appear in the

5For most standard chess variants, there exist some categories of positions that cannot be
reached by normal play. This is what is meant when referring to “illegal positions”. Such
positions can be subtle, as they are often unreachable due to restrictions posed on certain pieces,
or certain moves at some stages in a given game.
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input positions. Examples of such features could for example be attack masks,
such as those shown in Fig. 3.2.

Algorithm 5 Search strategy for finding specified binary masks Ci in the binary
activation channels Bi with n activation channels in total, for a given input sample
Ii, and for a given model M that produces Bi given Ii. This finds the indices of
all channels that always match the given binary mask.

L← {0, 1, ..., n}
for each pair (Ii, Ci) do

Bi ←M(Ii)
for j in {0, 1, ..., n} do

if Bi,j ̸= Ci then
L← L \ {j} ▷ Bi is no longer a viable candidate for representing Ci

end if
end for
if L = ∅ then

exit
end if

end for

The middle layer of the 4x5 model described in Sec. 3.2 is replaced by a binary
layer. The layer is implemented using the method described in Sec. 2.4.4. In order
to account for the reduced information throughput of binary layers, the number of
convolutional filters is increased by a multiple of 16. The “observation strategy”
is performed by pre-defining a set of binary masks for each position that indicates
the activation pattern that could potentially be found. This strategy then checks
each channel of the convolutional activation space for a match to the given binary
mask. The algorithm is described in Algorithm 5. Here, the main intention is to
investigate if there are any channels that inhibit some sort of “specialisation”, for
example if a single channel always represents the available moves for one player’s
king. The results of this approach are presented and discussed in in Sec. 4.3.

3.6 Output correlations

It is also possible to observe the direct correlation between detected concepts and
their detected presence for any position s. Given a vector C(s) where the i-th
element in C(s) is a binary value indicating the presence or absence of the i-th
concept in the position s, one can consider the correlation of each of the elements
in C(s) with the predicted value of the state Q(s), given by the trained model,
described in Sec. 3.2. Although the various concepts have no guarantee of affecting
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Q(s), overarching themes can be identified by looking at these correlations in the
aggregate.

This was done by gathering 300 000 self-play positions by the trained model, and
then having the same model produce C(s) and Q(s) for a select set of concepts.
Different correlation measures were then applied to a random subset of 10% of these
samples. This process was repeated 30 times for each correlation measure. The
correlation measures used in these methods are the R2 coefficient of determination,
the Hilbert-Schmidt independence criterion (hsic) (Gretton et al., 2005), and the
measure of distance correlation (dcor) (Székely et al., 2007).

3.7 Counterfactual explanations

Much of the playing strength of the chess models described in Sec. 3.2 comes
from being utilised as a guide in an effective tree search. With this as a starting
point, it is also possible to utilise the tree-structure to generate counterfactual
explanations as introduced in Sec. 3.7. Given a state s and a produced policy
vector p(s) representing a probability distribution over all moves from the state
s, one can define a strategy for producing counterfactual explanations by looking
at the highest valued actions in p(s). If a1, a2 are the highest and second-highest
valued elements in p(s) respectively, s1, s2 are the states reached from applying
these actions to s, and a∗ is the action with the highest valued element in p(s2),
one can aim at using this to explain why a1 is preferred over a2. This is done in the
form of a “if-this-then-that”-explanation. The explanation follows the following
template: “The player p performs a1 in a given state s to arrive at s1, since if p
performs a2, the opponent has the rebuttal a∗ in the state s2”.

While somewhat dissimilar to a standard counterfactual explanation, this formu-
lation can be described as a relaxed version of the method described in Sec. 3.7.
Here, the desired prediction is set to be argmax p(s1) ̸= argmax p(s2), and the dis-
tance function for minimisation is set to be in terms of edges between nodes in the
game tree. An additional similarity constraint is added, which encompasses that
s1 and s2 are respectively the highest and second-highest valued child-states of s.
The proposed search is thus replaced by a more guided tree traversal. For the given
state s, and its highest-scoring child-state s1, one can assign a counterfactual state
s2 as the second-highest child-state s2, such that argmax p(s1) ̸= argmax p(s2).
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(a) (b)

Figure 3.8: GradCAM applied to two positions of 4x5 chess. Observe that the
explanation method only highlights a single piece, which is the piece to be moved
for the preferred move.

3.8 Heatmap-based explanations

Heatmap-based explanations, such as GradCAM for image-like data, have proven
to be very popular. From an explanatory point of view, they provide a high-
level, easy-to-understand explanation that visualises which part(s) of the input is
relevant for the model when making a given prediction. Such qualities would also
be beneficial when producing explanations for chess-playing models. GradCAM
can be trivially adapted to chess models, following the procedure described in
Algorithm 3. However, such an implementation has empirically been shown to
give poor results for chess models. This can be seen in Figs. 3.8. One could think
that this is mainly because he method does not account for the presence of a
piece being represented in a binary fashion. Practically, if this is thought of as a
means of “allocating gradient” to each square for a given move, one can think that
the method would sink most of its available gradient into the square that makes
the move possible in the first place, without any regard to the binary nature of
the input space. Because of this, it is necessary to consider different heatmap
generating methods in the case of chess playing models.

The proposed method adds an additional module to each of the models described
in Sec. 3.2. The intended effect is to make the model learn an importance map
for any given input board. That is, given an input state s, a model M with
corresponding loss function L, and predicted outputs O = M(s) with loss L(O),
the goal is to add a trainable masking step R(s) while training the model M , so
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(a) An illustration of the module stochastically producing a mask H(x) for a
given position, and the process of binarizing it.

(b) An illustration of how the binary mask produced by the masking module is
applied to a given position.

Figure 3.9: A set of illustrations showing the masking module produces a reductive
mask during training (a), and how that reductive mask is applied to the given
training sample (b).

that the training procedure operates on M(R(s)) instead of directly on M(s). In
practice, this means that R(s) should reduce the amount of information in s, while
still retaining enough relevant information in order to produce the right prediction.
R(·) should be trainable, and trained as a part of M(·), so that it can learn which
parts of s is relevant for the model.

This method is realised by implementing R(s) as a module that learns to predict
a mask of probabilities P over each square on the board during training. That
is, for a board with dimensions (m,n), each element assigns a probability to its
corresponding square on the board. Mathematically, this can be expressed as

Pi,j = R(s)i,j, Pi,j ∈ [0, 1] , (3.4)
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for any given square given by the matrix indices (i, j).

This probability matrix is then used as the input for a process that stochastically
masks away the information in the corresponding squares. Given an input state
s, R(s) is evaluated against a random sample X ∼ U (0, 1) . This evaluation is
then thresholded by the Heaviside function, which produces a binary mask. This
operation can be expressed as

Mbin(s) = H(R(s)−X) , (3.5)

where Mbin(s) is the binarized mask for the state s, and H is the Heaviside-
function. This process can be thought of as sampling each element in Mbin(s) as a
binary variable with the probability of success equal to the corresponding element
in P . This process is illustrated in Fig. 3.9a.

The binarized masks are implemented with the strategy proposed in Sec. 2.4.4.
Similar to the masks described in Sec. 3.4, the binary masks are applied to each
plane of the input that contains information about the pieces. This procedure is
shown in Fig. 3.9b. Additionally, the produced binary mask is concatenated to
the masked input state itself, and passed to the main model. This is done in order
to provide the model with information about which parts of the input might have
been removed during masking. The model can then be trained as a standard neural
network, with R(s) being added as a preprocessing step with trainable weights.

After training, the produced probability matrix P can then be used to provide
heatmap-based explanations for any state s. Here, these matrices have the inter-
pretable property that the magnitude of any non-zero valued element in P directly
corresponds to the perceived importance by the model for the corresponding square
in the input.
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Chapter 4

Results

4.1 Concept detection

The concept detection strategy described in Sec. 3.3 is applied to the trained 4x5
and 6x6 models described in Sec. 3.2. The majority of the concepts for detection
were chosen to align with the main concepts highlighted in McGrath et al. (2021).
All probed concepts are listed and described in Table 3.2.

For the 4x5 model, Fig. 4.1 shows that most concept detection curves follow a
similar trend, namely quickly flattening out during training. It is also observed
that some concepts are somewhat regressable from the input layer, namely that
it is possible to linearly deduce the concept using the relevant information in the
input state itself. Examples of this can be seen in Figs. 4.1e and 4.1f. The concept
material advantage, shown in Fig. 4.1a, stands out for being highly detectable
during large parts of the training process.

In the case of the concepts detected in the 6x6 model, shown in Fig. 4.2, one
observes a starker difference in how concepts manifest themselves in different parts
of the model. This can be seen in Figs. 4.2d, 4.2e and 4.2f. It is also observed
that some concepts continue to develop throughout the entire training process, in
contrast to the case of the 4x5 model.

The results for the concepts shown in Figs. 4.1a to 4.1d and 4.2a, to 4.2d form the
basis for Hammersborg and Strümke (2022), which as been accepted as a publica-
tion for the 22nd World Congress of the International Federation for Automation
and Control. Therefore, Hammersborg and Strümke (2022) also contains an anal-
ysis and discussion of these results.

39



40

4.2 Concept backpropagation

The method described in Sec. 3.4 was applied to the last checkpoint of the 6x6
model, while considering the concepts opponent double pawn, threat my queen,
threat opponent queen, in check. The probe is inserted at the layer with the
best detection result shown in Fig. 4.2. The results are presented in Fig. 4.3.

In most of the cases shown in Fig. 4.3, the proposed method has found a state
that achieves maximisation of the given concept. Additionally, all found states
except one (shown in Fig. 4.3f) are legal within the rules of chess. Some positions
also have some degree of introduced noise in the found perturbations, as seen in
Figs. 4.3g, and 4.3d. This phenomenon is discussed further in Sec. 5.2.

4.3 Binary intermediate layers

The strategy described in Sec. 3.5 was applied to a copy of the 4x5 model described
in Sec. 3.2. The model was then trained from scratch. The purpose of the described
search was to find a binary mask of the legal moves of either player’s king. A
selection of the binary activation patterns for an arbitrary position are shown in
Fig. 4.4, and it is apparent that the search yielded no positive findings. This was
also the case for all probed positions.

4.4 Correlations

The method described in Sec. 3.6 was applied to 300 000 randomly sampled posi-
tions for the 4x5 and 6x6 models. The results for the described distance measures
are presented in Fig. 4.5.

For the 4x5 model, all three distance measures show high correlations with the
concept has mate threat, as shown in Figs. 4.5a, 4.5c, and 4.5e. This also applies
to the 6x6 model, as seen in Figs. 4.5b, 4.5d, and 4.5f.

4.5 Heatmap

The method presented in Sec. 3.8 is evaluated empirically on a selection of posi-
tions, and produces sensible results for most of these. The model architecture for
producing R(·) is a duplicate of the architecture for the main model, but without
the corresponding value and policy heads (described in Sec. 3.2). Results for the
4x5 model are shown in Fig. 4.6. Saliency maps generated by GradCAM for the
same positions are shown in Appendix D.
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4.6 Counterfactual explanations

Three counterfactual explanations are generated by use of the method described
in Sec. 3.7. The positions shown are sampled sequentially from the same game,
and are shown in Fig. 4.7. Fig. 4.7a shows a position where the second-best move
results in the game being a definite loss, while Figs. 4.7b and 4.7c show positions
where the result of the game is not immediately obvious.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.1: Concepts modelled by the 4x5 chess agent, showing the model’s ability
to detect (a) whether the player to move has a material advantage, (b) whether
the opponent is currently presenting a mate-threat, (c) whether the opponent’s
queen is under threat, (d) whether the player to move is in check, (e) whether
it has a double-pawn, (f) whether the opponent has a double-pawn, (g) whether
both players contest an open file on the board, and (h) whether the player to
move’s queen is threatened, and (i) being a sanity check performed on a data set
of random labels.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Concepts modelled by the 6x6 chess agent, showing the model’s ability
to detect (a) whether the player to move has a material advantage, (b) whether
the opponent is currently presenting a mate-threat, (c) whether the opponent’s
queen is under threat, (d) whether the player to move is in check, (e) whether
it has a double-pawn, (f) whether the opponent has a double-pawn, (g) whether
both players contest an open file on the board, and (h) whether the player to
move’s queen is threatened, and (i) being a sanity check performed on a data set
of random labels.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Backpropagation of concepts performed on the concepts (a), (b)
has own double pawn, (c), (d) in check, (e), (f) threat my queen, and (g), (h)
threat opponent queen.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: The first six channels of binary activation patterns for a given position.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Correlation results between concept probes and Q-output using the
(a), (b) dcor, (c), (d) r2, and (e), (f) hsic-correlation metric for the 4x5 and the
6x6 model.
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(a) (b)

(c) (d)

Figure 4.6: Positions with an applied heatmap. The opacity of each piece shows
the learned importance per piece for the given position.
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(a)

(b)

(c)

Figure 4.7: Generated counterfactuals for a game of 4x5 chess. All positions are
sampled sequentially from the same game, with a random move selection process
up to the first position shown in (a).



Chapter 5

Discussion

5.1 Concept detection

When considering the results shown in Figs. 4.1 and Figs. 4.2, the first concepts to
emerge are highly connected with “accidentally” winning the game. This happens
because untrained agents in a MCTS-training loop usually only provide highly ran-
dom actions. For both discussed chess variants, this means that concepts relating
to material advantage (Figs. 4.1a and 4.2a), or concepts relating to threats on own
and the opposing player’s queen (Figs. 4.1c, 4.1h, 4.2c, and 4.2h) are among the
first to appear. In any case, it makes sense that these appear early, as highly im-
balanced positions have a higher probability of leading to decisive outcomes with
random play.

The results shown in Figs. 4.1 and Figs. 4.2 also point to several interesting dif-
ferences between the chess variants used in this work: For the 4x5 model, one
surprising observation is that the model seems to have found that this variant has
an optimal opportunity leading to a draw for White given optimal play.1 This is
likely the reason for the concept-graphs flattening out during training for the 4x5
model, as seen in Fig. 4.1. This also illustrates how the concept detection method
can be used to supervise the training process of the model.

The pawn-centric concepts, seen in Figs. 4.1e, 4.1f, 4.2e and 4.2f, also show a
distinct example regarding the role pawn structures play for the presented chess
variants. Pawn structures are an important part of standard 8x8 chess, and are
often a key decider as to what aspects of the position become crucial. It is observed
that these concepts are detected strongly in the 4x5 model, while not being as

1This was empirically verified using FairyStockfish 14, up to a game-tree depth of 90.
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Figure 5.1: A typical position occurring under optimal play in the presented 4x5
chess variant. Observe that none of the pawns for either player have any legal
moves.

clearly detectable in the 6x6 model. This might be due to the closedness of 4x5
chess: For the 4x5 chess variant, the observed optimal solution occurs by locking
most of the central squares with one’s own and the opposing pawns (shown in
Fig. 5.1). This means that any model wishing to capitalise on positions that are
not locked off, could use the notion of “doubled pawns” to identify such positions.

It is also worth noting that this method implicitly assumes that there is a direct
correlation between concepts being “detectable”, and concepts being represented
linearly. This has been empirically observed as likely, as described in Alain and
Bengio (2017), but is not something that can be guaranteed. If one were to think
of “detected concepts” as being metrics of information content, a detected concept
can only serve to confirm the presence of the information required to deduce the
concept in the given layer. However, if a concept is not detectable, that could mean
that the required information is present, but not represented linearly. However, as
additional empirical evidence, this linear-concept phenomenon can be observed to
happen with the incheck-concept for the 6x6 model, as seen in Fig. 4.2d. Here,
the detectability increases in the later layers of the model, meaning that these
layers can be thought of as “distilling” the information required for detecting the
concept.

In this vein, one can also consider the effect of sparsity on the weight matrix
w for the given trained probe. Even though the probe is restricted to only find
linearly-represented concepts, the L1-penalty discussed in Sec. 3.3 also ensures
that the probe picks up on concepts that are sparsely represented. The weight of
the applied L1-penalty then indirectly decides how sparsely the concepts need to
be represented in order to be detectable. At first glance, it is not obvious if this
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feature of the method is desirable. In McGrath et al. (2021), this requirement for
sparsity is justified by claiming that this is required from keeping the probes from
learning complex representation of their own. This claim is also used to warrant not
using more capable probes. In this case, not allowing for complex representations
means that the probes are more likely to only detect concepts when they are in
fact distilled by the model itself, and not just when enough information is present
to create the mapping in the probe. This means that a weak probe is more likely
to only detect the concepts when the model itself has “learned” to extract them,
which is the intention of the method. However, this again hinges on the main
assumption that the models need to represent the given concepts linearly for them
to be detectable.

5.2 Concept maximisation

The method described in Sec. 3.4 aims to provide a method for visualising how
select concepts in Table 3.2 are represented by the given model. This is done by
searching for which parts of the input need to be changed in order to maximise the
given concept. In general, this seems to work well. However, the method seems
to struggle in some cases where the learned probe is trained to detect concepts
that appear symmetrically. An example of this can be seen in Figs. 4.3g and 4.3h.
Even though the method in both cases produce states where a queen is threatened,
in Fig. 4.3e the new threat is on the wrong player’s queen(s). Intuitively, this
makes some degree of sense. In the presented position, White has a large material
advantage, and is by much more likely to win given adequate play. Black has lost
its queen, meaning that maximising the threat on Black’s queen would require
inserting a new queen on their side. This would drastically change the nature of
the position. One could therefore think that inserting more pieces for White is
likely less of an internal shift for the model, since the position is already drastically
in White’s favour. It would therefore be logical that an incomplete representation
of the concept threat opp queen would result in the position shown in Fig. 4.3e,
while not strictly maximising the given concept.

The utilisation of this method also requires suitable weights to be found for the
L1-penalties applied to s+ and s−, as described in Algorithm 4. These weights
define how important it is to remove or add information to s, respectively, and
as such also affect how difficult it is to find a perturbed state that maximises the
given concept. In some cases, this might make it challenging to find the correct
balance between the difficulty in finding a relevant perturbation, and the relevancy
of the maximised states themselves. This is exemplified through the case shown in
Fig. 4.3b: Here, the perturbed state seems to display the correct representation for



52

the concept has own double pawn, but it also introduces a non-negligible amount
of noise, meaning that many of the added pieces should not be relevant for the
given concept. This makes it somewhat harder to determine which parts of the
perturbed states represent what the model has learned about the given concept.

It is also worth highlighting that generating semantically similar positions is in
many cases orthogonal to maximising a given concept. This aligns with the main
intention of the method, namely being able to visualise the internal representation
of a given concept. Since it is sometimes difficult to find sparse s+ and s−, this
might result in cases where valid representations of a concept are generated at
the cost of the “sensicalness” of the position. An example of this is shown in
Fig. 4.3h, where the generated perturbed state has no Black king. This is in reality
something that should be prevented by the additional “legality loss” introduced
as an additional maximisation-objective. In technical terms, this is due to the
method being unable to minimise both lp and lc at the same time, as described in
Algorithm 4.

The method described in Sec. 3.4 is also envisioned to be easily applied on other
problem cases where concept detection is relevant. This is especially true for
cases with continuous input spaces, and especially when there are no requirements
wrt. semantic similarity or “sensibleness” to the generated positions.

5.3 Shapley values in concept space

Given a model M with inputs Im and outputs Om, the Shapley value φi for input
component i assigns the share of the total contribution the input feature has on
the outputs Om. In the original formulation of the Shapley value, this is calculated
through the definition shown in Eq. 2.13. Through this equation, the Shapley value
represents the contribution of each feature by considering all possible combinations
of the involved features.

Applying such a method to the domain of chess involves numerous challenges.
Firstly, the input space of chess is ill-suited: It is discrete, with all input-components
being highly interdependent, meaning that the value of a piece on a given square
might depend on almost all other pieces present the board. These dependencies
are almost always also decided on a position-by-position basis, meaning that is is
near-impossible to define a static characteristic function for all such subcoalitions
of pieces.

For an explanation based on the Shapley value to be valuable, one needs to redefine
the input space with regard to which these values are calculated. From Sec. 2.6.3,
one could expect that an interesting prospect would be to create a mapping from



53

the inputs Im to an n-dimensional concept vector C, where each element in C
designates the presence of a specified concept given by pre-trained linear probes
for some intermediary layer L in the model. Being able to operate on this as an
assumed representation of the input of the actual model, would mean that the
Shapley values could now be calculated on the concept vector, instead of the chess
positions. Since the probes which construct C are logistic models, this would
mean that C ∈ Rn, which is necessary for generating valid perturbations of the
now defacto input space. This would also create useful explanations, being able
to attribute changes in the evaluation of the position to higher-level concepts.

Such an approach, however, has a major issue. While it is easy to find the mapping
L→ C, it is not as feasible to find an inverse mapping C → L. Using the concept
backpropagation method from Sec. 3.4 is a theoretical possibility, but it is too slow
in practice. A simplified version of this method, only incorporating the movement
towards the steepest gradient, also often fails to converge to the desired concept
output, especially when each concept vector in C has many elements. However,
with a given state sn, for any pair of output and concept vectors Ln and Cn, it is
possible to create a set of equations to be solved in order to generate a state L∗

n

that gives the desired concept vector Ci when passed through the trained probes.

Let Pi be the trained probe that has learned to identify the i-th concept. Addi-
tionally, let C be the desired output vector so that the i-th element is the output
of i-th probe when provided with the desired state L∗

n. Since Pi is a logistic probe,
this can be written as

σ(wi · (L∗
n) + bi) = Ci , (5.1)

where wi and bi are the weight and bias matrices, respectively, for Pi. The deriva-
tion of this equation can be found in Appendix B. Eq. 5.1 can then be rewritten
to provide a solution for finding L∗

n that satisfies the equation for the combined
weight matrices, biases, and concept vector w, b, and C

w−1(σ−1(C)− b) = L∗
n . (5.2)

Here, σ−1 is the inverse sigmoid function, and w−1 is the left-inverse of w. The
left inverse (Moore, 1920) is computed as

w−1 = (wTw)−1wT . (5.3)

The operation described in Eq. 5.2 can then be performed in order to generate a
valid L∗

n for any given concept vector C. The derivation of Eq. 5.2 can be found
in Appendix B.

Although Eq. 5.2 can provide a quick, exact solution, there is no guarantee that
L∗
n will resemble other states from the activation space L. In many ways, this
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renders the perturbations meaningless, since they are not samples that any use of
the model M would sensibly generate. A possible solution to this could be to solve
Eq. 5.2 while minimising the distance to a sample of other vectors in L. However,
any such solver is too slow when combined with the rest of the routine.

Additionally, for this method to be viable one would need C to be an exhaustive
description of the input position. If not, this means that the outputs of the model
for a given position might be adversely affected by information not available in C,
thus rendering the generated explanations useless. Ensuring that C is exhaustive
is almost impossible, since this would mean a priori knowing what information the
model represents in its intermediary layer L. While Shapley values are a popular
part of the XAI literature, and the described method seems promising at first
glance, it is therefore concluded that it is not likely to produce promising results.

5.4 Correlations

The results presented in Sec. 4.4 are interesting for the selected chess variants used
in this work. Most notably, it is observed that has mate threat has a significantly
high correlation with the predicted outcome for the 4x5 model. This means that
a high amount of threats made in all observed games lead to situations where the
threat can be carried out. This is hypothesized to be due to the closedness of 4x5
chess, as previously discussed in Sec. 5.2. Practically, this can be thought of as
the king very often being blocked by pieces of the same colour, which is induced
by the size of the board. However, for all variants of chess, it is undoubtably true
that making threats is beneficial to winning. This is because the notion of threats
is interlinked with the game being over – one loses when one is not able to defend
against all presented threats on the board.

For the presented method, the correlations were calculated based on the predicted
outcome for a given set of models. However, using these correlations to explain
the chess variant itself means that one implicitly assumes that the models are ca-
pable of providing unbiased evaluations of any given position. For smaller problem
spaces, such as the chess variants presented in this work, this can reasonably as-
sumed to be true. While the methodology continues to be viable for larger problem
spaces, it does not necessarily lend itself to the same interpretation. In this case,
the arising problem can be thought of as an alignment problem. The true goal of
a chess model is to win chess games, and the evaluations for an unbiased model
for any such position should reflect this. But for imperfect models, the calculated
correlations between detected concepts and game outcome might say more about
how the models themselves have learned to approach any given position, instead
of directly representing the true nature of the given chess variant.



55

5.5 The viability of counterfactual explanations

for chess

While the notion of counterfactual explanations for chess seems enticing, these are
difficult to generate adequately. Finding some small perturbation s∗ to produce a
desired policy vector p(s+s∗) is difficult for discrete input spaces, including chess.
Any perturbation strategy aiming at producing a viable alternative state also needs
to impose some restrictions on how these perturbations can be chosen. Although
one is in theory free to find any perturbation that generates the desired p(s+ s∗),
the usefulness of counterfactual explanations hinges on the perturbed states being
likely to represent regular game-play. Additionally, one could also argue that it
is necessary for the perturbed states to be related to the original state s. This
is because the generated states might need to have some relevance to the original
state in order for them to serve as adequate counterfactual explanations. This also
raises the question as to how such a similarity measure should be defined, as it is
hard to quantify what constitutes “similarity” between positions in chess.

The methodology described in Sec. 3.7 tries to circumvent some of the proposed
problems wrt. counterfactual explanations for chess. The produced game tree
is implicitly used to address the question of similarity, where states that share
common parent states are regarded as similar. The specificity the desired policy
vector p(s+ s∗) is also simplified, in this case to consider only the first and second
highest policy elements of the original policy vector p(s). The counterfactual
explanation is then presented in the form of a rebuttal a∗ to the state s2 reached
by the second highest policy element in p(s). However, this method has some
shortcomings: The most obvious problem is that it is not guaranteed that a∗

presents enough information as to effectively rule out the viability of traversing to
s2. It is difficult to know whether the expected value loss of allowing a∗ is evident
directly after a∗, or instead only becomes evident after later moves. This in turn
would require being able to enumerate and explain more states after performing
a∗, which quickly becomes unmanageable.

Despite the discussed shortcomings, the method produces some successful results.
In Fig. 4.7a, it is observed that the highlighted “second best move” and “refu-
tation” show a pattern that results in immediate loss for the opponent, and the
presented “if-this-then-that”-statement therefore constitutes a valid counterfac-
tual explanation, given the requirements described in Sec. 3.7. However, both.
Figs. 4.7b and 4.7c show situations where it is not immediately obvious how the
game state is affected by the suggested moves, which in turn means that the ex-
planation loses most of its usefulness.

The proposed method additionally fails to be relevant in situations where the given
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position does not warrant a “refutation” given optimal play. Common examples
of this in the chess terminology are known as “quiet moves” (Akl and Newborn,
1977). This failure case is also relevant where two moves are both in some senses
optimal, and it would be incorrect to present one of them as the best move.

5.6 Do methods need to be model agnostic?

When considering any proposed explanatory method for chess playing models, it
is also worth discussing whether such methods need to be model agnostic. Many
XAI methods have wide applicability due to their model agnostic nature, and is
therefore something to be investigated for the methods presented in this work as
well. The methods proposed in Secs. 3.3 to 3.8, excluding Sec. 3.6, all benefit
from information inherent to the structures provided by neural networks. How-
ever, some methods present a greater reliance on this than others: The concept
detection method presented in Sec. 2.6.3 largely relies on the model having some
internal structure, which does not explicitly exclude other types of models. Both
the concept backpropagation (Sec. 3.4), and the heatmap methods (Sec. 3.8), on
the other hand, rely on being able to access gradients that inform training of
added structures, and are as such highly specialised for neural networks. Lastly,
neither the correlation measures based method nor the counterfactual method have
requirements regarding model type.

Even though the most powerful methods discussed are made specifically for neural
network models, this might not be as limiting in the case of explaining chess models
as for applications of XAI methods in general: One can expect that neural-network-
based models will continue to be relevant for MCTS-based chess engines, implying
that methods tailored for these will continue to be useful. Additionally, both the
input and output spaces of chess are difficult to work with, requiring methods to
be specifically adapted, which makes it difficult to develop generalisable methods.

5.7 Information content

While the methods presented in Secs. 3.8 and 2.6.3 are both adept at answering
partial questions regarding what information the model utilises, it is still rele-
vant to assess the information content of what is actually being presented. The
two methods are similar in this regard, as they both indicate what information
the model is using, but not necessarily how the information is used. For concept
detection, the method communicates what aspects (i.e. concepts) are important
when evaluating a chess position. It does not, however, guarantee that the degree
to which a concept is detected directly correlates with the importance of the con-
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(a) (b)

Figure 5.2: An example position simplified with a heatmap (a), and the same
position (b), with no simplifying heatmap.

cept. Similarly, for the heatmap method, it can in fact be guaranteed that the
model is trained to not have access to the parts of the position not highlighted by
the heatmap. This can, in many cases, greatly simplify the process of deducing
what the model deems important. However, in the edge case where the heatmap
highlights all the available pieces on the board, it does not act as a reductive
model, and says nothing about what parts of the position are actually important.
However, this might mean that the position as a whole is non-reductive - i.e. that
removing even a single piece from the position would leave the model unable to
accurately assess it.

There is also something to be said when considering the information content in
the binary activation patterns, such as those presented in Sec. 4.3. Although
the amount of information per channel is significantly reduced, the information
content in aggregate is most likely unaffected. In many ways, this highlights an
interesting idea when trying to assess what information is present in a given layer.
In the present case, the idea was to sparsely distribute the information of the given
layer, while simultaneously forcing it to operate with the same dimensionality
and data type as the input. Ideally, this would create a map between the given
binary intermediate layer and the input space. Nevertheless, this did not happen
in practice. It might however still be promising to sparsify the informational
content in this manner, where such a strategy might for example open up for
novel strategies using binary activation patterns to produce explanations (such as
facilitating concept detection).
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5.8 What makes for a good explanation?

The assessed value of an explanatory method depends on the purpose of the pro-
duced explanation, i.e. what kind of knowledge one wants to extract from the
model. In an imagined teacher-student scenario, where a chess player wants to
query the model for its evaluation of a given position, one could think that the
heatmap method would be very relevant. It does not necessarily state how the
evaluation is calculated from the given position, but might help in knowing where
to look in the given position as to make a correct judgement. An example of this
in practice can be seen in Fig. 5.2. Here, the proposed method has been used to
greatly simplify the given position in order to aptly communicate which parts of
the position are relevant.

In cases where more global explanations are required, one might consider the
concept related methods presented in Sec. 2.6.3 and 3.4, and the correlation-based
method presented in Sec. 3.6. These methods might aid in making judgements
about both the models and the chess variants they play, as a whole. Under the
assumption that the models reach an adequate playing strength, their behaviour
can be used as a proxy for what is deemed to be close-to-optimal play. This
means that they can provide useful heuristics for what makes positions and moves
viable. An example of this can be seen by considering the correlation between
the game outcome and the concept has mate threat for the 4x5 model, shown
in Figs. 4.5a, 4.5c and 4.5e, and discussed in Sec. 5.4. Knowing that threats are
disproportionately advantageous in 4x5 chess, might for example lead to a more
aggressive playing style than what is fruitful for other chess variants.

Another point that should be considered when evaluating the presented explana-
tory methods is the various guarantees that each method makes wrt. verification.
The presented heatmap method is interesting in this context, as it makes strong
guarantees regarding what information actually reaches the model. Conversely,
the proposed concept detection method can only make weaker guarantees in this
area, as discussed in Sec. 5.1. However, one could imagine combining this method
with the proposed concept maximisation method, in order to verify the internal
representation of each concept in the model.



Chapter 6

Conclusion

6.1 Contributions

This thesis makes several contributions. Addressing the first research question
posed in Sec. 1.2, the work presents a chess environment which serves as a viable
alternative for training AlphaZero-like chess models on smaller chess variants. Ad-
ditionally, the produced chess environment provides adequate functionality allow-
ing it to be easily extendable, meaning that it is possible to use it as a testing
ground for new explanatory techniques for chess. This is shown by being able to
produce similar results and metrics for detecting concepts from DRL-based chess
models, as described in McGrath et al. (2021).

With regards to the second research question posed in Sec. 1.2, the thesis presents
several novel explanatory methods which can be applied to DRL-based chess mod-
els. The concept backpropagation method, described in Sec. 3.4, builds on the
existing concept detection method, and allows for effective visualisation of which
aspects of a given concept are represented in the model. The notion of effective
visualisation is also relevant for the presented heatmap method (Sec. 3.8), which
illustrates the possibility of providing a novel importance-based heatmap for any
given chess position. The work also presents model agnostic methods, exemplified
through the correlation-measure-based method (Sec. 3.6). This shows how it is
possible to use outputs from a given model, in aggregate, to see how the con-
cepts it learns to represent are correlated with the predicted outcome of the game.
This then provides a global explanation of the chess variant itself, indicating what
concepts are likely to be important for optimal play.
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6.2 Future work

6.2.1 Architectures for linear probing

Even though the methodology presented in Sec. 2.6.3 can be applied to any neural
network architecture, it is also relevant to examine how the architecture of the
model might facilitate the detection of concepts. As discussed in Sec. 5.1, the
proposed method implicitly assumes that any concept that is sufficiently utilised
in the model should also be linearly detectable. That is, if a model sufficiently
distills a concept, the assumption is that it is represented linearly. However, it is
reasonable to assume that some architectures might be better suited to meet this
assumption. In this vein, one possible avenue to explore is the relation between
the sparsity of the activation space, and the linear representation of concepts.
Additionally, it would be interesting to consider crafting custom layer structures
facilitating linear concept representation.

6.2.2 Methodologies for concept backpropagation

While the results presented in Sec. 4.2 show that the concept backpropagation
method is adequate for visualising the model’s understanding of a given concept,
it is not obvious how to best incorporate information from all layers of the model.
As described in Sec. 3.4, the probe due to be maximised is inserted at the layer
of the model where the given concept was most likely to be detected, but one
might achieve better results by simultaneously maximising the given concept in
all layers of the model instead. While this seems promising, it turns the problem
into a multi-objective optimisation problem. It is hypothesised that the viability
of the method in part is due to the simplicity of maximising a single linear probe
(and the accompanying legality module), and maximising multiple such probes
at once might make the method unfeasible. This might of course vary based on
the given model architecture, but it would nevertheless be interesting to consider
more complex probing methodologies that could utilise information across multiple
layers of the model.

6.2.3 Extending the alternative heatmap explanation

The method for generating heatmap-based explanations, described in Sec. 3.8, was
created to specifically accommodate many of the difficulties involved in generating
explanations for chess. However, the method is also applicable to other domains,
as an alternative to saliency-based explanation methods. In this case, it could
be used to provide saliency maps for image models, or create relevancy maps for
regression in cases where the Shapley values on tabular data are traditionally used.
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Appendices

A A selection of edge-cases for calculating legal

moves for a given chess position

While all pieces in chess have discrete movement rules, as discussed in Secs. 2.1
and 3.1, the notion of calculating the legal moves in a given position can still be
quite complex. Rules regarding piece movement cannot be applied blindly, as the
legality of any given chess position takes precedent in such cases. An example
of this can be shown in Fig. A.1. Here, blindly allowing the highlighted move
would lead to an illegal position, as this would uncover a threat on the player to
move’s own king. In this case, this example can be thought of as an extension of
the blocker-type movement rules discussed in Sec. 3.1.2, but it is nevertheless an
example of the considerations that need to be made when creating a procedure for
calculating legal moves quickly.

B Equation for maximising single probe-output

P (L∗
n) = Ci

σ(wi · L∗
n + bi) = Ci | Inserting Pi(L

∗
n) = σ(wi · L∗

n + bi)

σ−1(σ(wi · L∗
n + bi)) = σ−1(Ci) | Solving for L∗

n

wi · L∗
n + bi = σ−1(Ci)

wi · L∗
n = σ−1(Ci)− bi

w−1
i ·wi · L∗

n = w−1
i · (σ

−1(Ci)− bi) | w−1 = (wTw)−1wT (Moore, 1920)

L∗
n = w−1

i · (σ
−1(Ci)− bi)
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Figure A.1: A position where White’s rook (highlighted in red) is pinned to its own
king. The moves highlighted in blue are not legal, even though they correspond
to the rook’s standard pattern of movement.

C Collapsing a n-layered feed-forward, fully con-

nected neural network with linear layers into

a single layer

Let the i-th layer with weights wi and bias bi of a n-layered neural network be
denoted by the mapping

Fi(x) = L(wi · x+ bi)

where L(·) is a linear function on the form L(x) = a ·x+c and let the entire model
be written as a chain of such layers, so that

F (x) = F0 ◦ F1 ◦ ... ◦ Fn(x)

where ◦ is the standard function-composition operator.

First, it is to be shown that a linear activation function for a layer Li can be
written as a single operation, incorporating a and c into wi and bi. In other
words, if wi · x+ bi is linear, and L is linear, then L(wi · x+ bi) must be linear.

Fi(x) = L(wi · x+ bi)

Fi(x) = a · (wi · x+ bi) + c

Fi(x) = awi · x+ abi + c

Fi(x) = w∗
i · x+ abi + c | awi = w∗

i

Fi(x) = w∗
i · x+ b∗

i | abi + c = b∗
i
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Then, one can continue by collapsing the first and second layer. Let F ∗
i (x) denote

the composition
F ∗
i (x) = Fi ◦ Fi+1 ◦ ... ◦ Fn(x)

This means that one can write

F (x) = F0(F1(F
∗
2 (x)))

Expanding this yields:

F (x) = F0(F1(F
∗
2 (x)))

F (x) = w∗
0 · F1(F

∗
2 (x)) + b∗

0

F (x) = w∗
0 · (w∗

1 · F ∗
2 (x) + b∗

1) + b∗
0

F (x) = w∗
0w

∗
1 · F ∗

2 (x) +w∗
0b

∗
1 + b∗

0

F (x) = (w∗
0w

∗
1) · F ∗

2 (x) + (w∗
0b

∗
1 + b∗

0)

Since all wi and bi are trainable constants wrt. x, this means that this process
can be continued until the entire model is represented as a single linear function.
This is also indirectly shown from all Fi being linear.
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D GradCAM applied to positions used for vali-

dating the proposed heatmap method

(a) (b)

(c) (d)

Figure D.1: Positions with an applied saliency map generated by applying the
GradCAM method described in Sec. 2.6.2. The opacity of each piece shows the
learned importance for each piece for the given position.
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