
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Ba
ch

el
or

’s
th

es
is

Halvor Bergstøl Birkeland
Ovidijus Cironka
Maja Austin Fauske
Wilhelm Merkesvik

Distributed Optimization Based
Adaptive Underwater
Communication Schemes

Bachelor’s thesis in Electrical Engineering
Supervisor: Behdad Aminian
May 2023

Halvor Bergstøl Birkeland
Ovidijus Cironka
Maja Austin Fauske
Wilhelm Merkesvik

Distributed Optimization Based
Adaptive Underwater Communication
Schemes

Bachelor’s thesis in Electrical Engineering
Supervisor: Behdad Aminian
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

IELET2920 Bacheloroppgave Automatisering, Spring 2023

Title:
Distributed Optimization Based Adaptive Underwater Communication Schemes
Candidates: Projectnumber: E2308
Halvor Bergstøl Birkeland
Ovidijus Cironka
Maja Austin Fauske
Wilhelm Merkesvik

Submission
date:

28.05.2023

Study:
Field of study:

Electrical Engineering - BIELEKTRO
Automation and Robotics

Supervisor:
Institute:

Behdad Aminian
Department of Engineering Cybernetics (NTNU ITK)

Client:
Contact person:

NTNU ITK v/Damiano Varagnolo
damiano.varagnolo@ntnu.no

Keywords
EvoLogics, Subnero, Modem, Acoustic, Underwater Communication, Raspberry Pi, ROS
2, Convex Optimization, Consensus Algorithm, Interior Point Method, JANUS, ANEP-
87, SDMSH, Multiprocessing, Cost Function, UnetStack, Python, C++, OFDM, Dis-
tributed System

Preface

Preface
This final project represents the culmination of a three-year bachelor’s study in Electrical En-
gineering at the Norwegian University of Science and Technology (NTNU). These three years
have been an incredible journey of growth and learning for each member of our group, and we
are glad to be ending these years with a fun and challenging project.

We wish to thank our supervisor, Behdad Aminian, for his support and knowledge, and contin-
uous optimism. He has always been available for any question and has never said no whenever
the group needed assistance.

Throughout this project, our client Damiano Varagnolo has shown understanding and continu-
ous assistance with direction. We appreciate his time and dedication towards the success of this
project.

By providing assistance and answering many of our questions, Emil Wengle has shown his
interest and knowledge towards the progress and development of this project. His input in our
process and thesis guided us past a bumpy road.

We want to also give thanks to Federico Iadarola for teaching us theory about optimization and
showing us his own work which was an excellent head-start for this project.

I

Summary

Summary
This thesis presents the development of a communication mechanism for the EvoLogics modems
using the JANUS protocol, an underwater communication standard, and the integration of an
optimization algorithm with the Subnero modems using ROS 2 (Robot Operating System) as
the framework.

The optimization algorithm, based on a robust and asynchronous Newton-Raphson consen-
sus, ra-NRC, combined with underwater modems and ROS 2, aims to address the challenges
faced in underwater communication schemes, by improving the efficiency and accuracy of data
transmission by using convex optimization. The other key aspect lies within the development of
software, meant to establish the possibility of mixed subsea communication with the EvoLogics
and Subnero underwater modems. This communication is based on the ANEP-87 standard, the
standard for underwater communication for NATO, an international standard for subsea com-
munication using acoustic waves. Additionally, the use of SDMSH and JANUS for EvoLogics
modems has been simplified.

Finally, these aspects are integrated together to achieve optimized mixed-vendor modem com-
munication. The optimization of communication parameters to achieve efficient communica-
tion has yet to be applied. However, it has been tested through a UnetStack simulation that the
convex optimization works between two virtual modems. Various tools are used to achieve a
modular and comprehensive system, with the possibility to be built further for custom needs.

II

Summary

Sammendrag
Denne bacheloroppgaven presenterer utviklingen av et kommunikasjonssystem for EvoLog-
ics modemer som bruker standardprotokollen JANUS for undervannskommunikasjon. Det blir
også integrert en optimaliseringsalgoritme for Subnero modemer ved bruk av ROS 2 (Robot
Operating System) som rammeverk.

Algoritmen for optimalisering er basert på en robust og asynkron Newton-Raphson konsen-
sus (ra-NRC), som kombinert med undervannsmodemer og ROS 2 skal ta stilling til utfor-
dringer ved undervannskommunikasjon. Dette ønskes å oppnås ved å forbedre effektiviteten
og nøyaktigheten av sending av data ved bruk av konveks optimalisering. Et av hovedpunk-
tene i oppgaven ligger i utviklingen av programvare som etablerer mulighet for kommunikasjon
mellom undervannsmodem fra EvoLogics og Subnero. Denne kommunikasjonen er basert på
ANEP-87 standard, og er en standard brukt av NATO for undervannskommunikasjon ved bruk
av akustiske signaler. I tillegg er bruken av SDMSH og JANUS bibliotekene med EvoLog-
ics modemene forenklet. Til slutt ønskes disse aspektene å bli integrert sammen for å oppnå
optimalisert kommunikasjon mellom forskjellige typer undevannsmodem.

Optimaliseringen av parametre for effektiv undervannskommunikasjon har ikke blitt imple-
mentert enda. Imidlertid har det blitt testet at konveks optimalisering fungerer mellom virtuelle
modem ved bruk av simulering i UnetStack. Videre har diverse løsninger blitt brukt for å oppnå
et modulært og forståelig system, med en mulighet for en videreutvikling som kan tilpasses
spesifikke behov.

III

Table of Contents

Contents
Preface I

Summary II

Sammendrag III

List of Figures IX

List of Tables XIII

List of Abbreviations XIV

Concepts and expressions XVI

1 Introduction 1
1.1 Background for Thesis . 1

History . 1
Motivation . 1

1.2 Research Question . 2
1.3 Previous work . 2
1.4 Project Plan . 2
1.5 Structure of the Thesis . 3

2 Theory 4
2.1 Python and C++ . 4
2.2 Multithreading and Multiprocessing . 4

2.2.1 Issues Related to Multithreading and Multiprocessing 5
2.2.1.1 Race Conditions . 5
2.2.1.2 Deadlocks . 5

2.3 Common Multiprocessing Concepts . 6
2.3.1 Inter-Process Communication (IPC) 6
2.3.2 The Producer-Consumer Problem . 6
2.3.3 The Readers Writers Problem . 6
2.3.4 pipe() . 7
2.3.5 fork(): Parent and Child Process . 7
2.3.6 Zombies and Orphans . 8
2.3.7 execvp() . 8
2.3.8 popen() . 9
2.3.9 Double Fork to Avoid Zombie Process 9

2.4 Datatypes . 10
2.4.1 Integers, Unsigned Integers and int8 10
2.4.2 Floats, Float32 and Float16 . 11
2.4.3 Characters and Strings . 12

2.4.3.1 ASCII and UTF Encoding 12
2.5 Networking . 12
2.6 JANUS Communication Protocol . 12

IV

Table of Contents

2.6.1 ANEP-87 . 13
2.6.2 Janus-C Version 3.0.5 . 13
2.6.3 JANUS Packet . 13
2.6.4 JANUS Baseline Packet . 14
2.6.5 Transmission Sequence Generation in JANUS 15

2.7 Transmission Control Protocol . 17
2.8 Underwater Modems . 17

2.8.1 Optimization of The Underwater Modem Parameters 17
2.9 Unet, UnetStack . 17
2.10 Subnero WNC-M25MRS3 . 18
2.11 EvoLogics S2C R 18/34 USBL . 18

2.11.1 SDMSH . 18
2.11.2 EvoLogics AMA . 19
2.11.3 AT-Commands for Evologics Modem 19

2.12 Raspberry Pi 4 Model B . 19
2.13 Visual Studio Code . 20
2.14 ROS 2 . 20

2.14.1 ROS 2 and Multithreading . 20
2.14.2 Nodes, Topics, Publishers and Subscribers 21

2.15 Optimization Theory . 22
2.15.1 The Cost Function - Generalized . 22
2.15.2 Convexity - Assumption I . 22
2.15.3 The Cost Function - This Project . 23
2.15.4 Distributed and Centralized Systems 25
2.15.5 Network Connectivity - Assumption II 26
2.15.6 Building Block A - NR Consensus . 26
2.15.7 Building Block B - Push-Sum Consensus 28

2.15.7.1 Weight Matrix . 28
2.15.7.2 Classical Consensus Algorithm 29
2.15.7.3 Push-sum Consensus . 29
2.15.7.4 The Rule Update . 30

2.15.8 Building Block C - Robust Ratio Consensus 31
2.15.9 ra-NRC - Result of Building Blocks 32
2.15.10 Constrained Optimization . 32

2.15.10.1 Logarithmic Barrier Function 33
2.15.10.2 The Interior Point Method 34

2.15.11 Backtracking Line Search . 36

3 Methodology: Introduction 37
3.1 Equipment List . 37

3.1.1 Hardware . 37
3.1.2 The Physical Modem Setup . 38
3.1.3 Software . 39

3.2 Digital Workplace for Development . 40
3.2.1 Ubuntu OS . 40
3.2.2 Virtualization of the Ubuntu OS with VirtualBox 40

3.3 The General Idea of Communication and Data Processing Using Distributed
Modems . 41

V

Table of Contents

4 Methodology: Optimization Algorithm Code 42
4.1 Pseudocode . 42
4.2 Resources for Further Improvements . 44

5 Methodology: Implementation of ROS 2 & Subnero Communication 47
5.1 Installation and Usage of ROS 2 on Ubuntu OS with Python 3.0 47
5.2 Creating the ROS 2 Workspace . 47

5.2.1 Prerequisites . 47
5.2.1.1 Prerequisites: Folder Structure 48
5.2.1.2 Prerequisites: Colcon Build Again 48

5.2.2 Creating the ROS 2 package . 48
5.3 Creating the Basic ROS 2 Nodes . 49

5.3.1 Receiver Node . 49
5.3.2 Processing Node . 49
5.3.3 Transmitter Node . 50

5.4 UnetStack & Subnero Communication Setup with ROS 2 52
5.4.1 The UnetStack Interface . 53
5.4.2 Physical Subnero Modems . 54

5.4.2.1 Setting Up the Broadcasting/Reception Settings 55
5.4.2.2 For Testing in Air . 55

5.4.3 Simulated UnetStack Modems . 56
5.5 Using UnetPy to Establish Broadcasting and Reception in Python 56

5.5.0.1 The Float16 Converter . 57
5.5.0.2 The Final System with ROS 2, UnetPy, Float16 Converter

and the Optimization Algorithm 58

6 Methodology: Communication Mechanism for EvoLogics 59
6.1 Prerequisites for EvoLogics . 59

6.1.1 Installing Programs and Libraries for EvoLogics Communication De-
velopment . 59

6.1.2 Compilation . 60
6.2 Setting up the EvoLogics Modems . 61

6.2.1 Setting the PHY-mode . 61
6.2.2 Setting the Modem Configurations . 61
6.2.3 Setting the Reference Signal . 62

6.3 Preliminary Work for Evo_janusXsdm Implementation 63
6.3.1 Transmission Process - a Minor Zombie Problem 63
6.3.2 Receiving Process - a Major Zombie Problem 63
6.3.3 Transmission Process - Stops, But Does Not Terminate 64
6.3.4 Transmission Process - TCP DROP Error 64
6.3.5 The 100th Packet Problem . 65
6.3.6 Receiving Process - Cannot Detect Every Other Packet 65
6.3.7 Finding a Way to Stop JANUS and SDMSH 66
6.3.8 Issues With Receiving the First JANUS Packet 66

6.4 Building the Evo_janusXsdm Library . 68
6.4.1 Establishing a Framework for the Library 68
6.4.2 Explanation of the Transmission Process 68

6.4.2.1 Calculate the Number of Samples 68

VI

Table of Contents

6.4.2.2 Calculation of the Reservation Time 68
6.4.2.3 Starting the Transmission Process 69

6.4.3 Explanation of the Reception Possess 71
6.5 Communication Setup Between Evologics and Subnero 74

6.5.1 Edit Janus-c-3.0.5: Interleave . 74
6.5.2 Edit janus-c-3.0.5: Deinterleave . 74
6.5.3 Setting Sampling Frequency . 74
6.5.4 Acoustic Frequency Specifications . 75
6.5.5 Sending a Message/Cargo from EvoLogics to Subnero Using JANUS . 75
6.5.6 Sending a Message/Cargo from Subnero to EvoLogics Using JANUS . 76

6.6 Field Test in a Water Tank . 77
6.7 Testing In Air - Subnero and EvoLogics, With JANUS 78
6.8 Test to Find Reliable Termination of JANUS and SDMSH Processes 79
6.9 Setup for Raspberry Pi . 80

6.9.1 Setup SD-card for Raspberry Pi . 80
6.9.2 Get Pi Working with The Developed Code 80

7 Results 82
7.1 Optimization . 82

7.1.1 Simulation . 82
7.2 The Finished ROS 2 Package ’nodecomx’ . 84

7.2.1 Nodecomx Composition . 84
7.2.1.1 FP16_converter.py . 85
7.2.1.2 Consensus Results Using UnetStack Simulation in Conjunc-

tion With ROS 2 System . 86
7.3 The Finished "Evo_janusXsdm" Library . 87

7.3.1 Available Functions . 88
7.3.2 An Implementation of The "Evo_janusXsdm" Library 89

7.4 Result/Finding for EvoLogics Modem . 91
7.4.1 Highlighted Problems Presented by the Previous Bachelor’s Group . . . 91
7.4.2 Additional Results for EvoLogics . 91
7.4.3 Results From Field Test Conducted In A Water Tank 92
7.4.4 Results From Communication Between Subnero and EvoLogics Modems 92

8 Discussion 93
8.1 Optimization . 93

8.1.1 Constrained Optimization . 93
8.1.2 The Float16 Restriction . 93
8.1.3 Backtracking Line Search . 94
8.1.4 Optimal Values of the Different Optimization Parameters 94
8.1.5 Calculating the Gradient & Hessian 94
8.1.6 Stopping Criteria . 95
8.1.7 Cost Function . 95

8.2 ROS 2 . 95
8.2.1 ROS 2 From the Previous Project . 95
8.2.2 ROS 2 in the Current Project . 95
8.2.3 The Modularity of Nodecomx . 96

8.3 Python 3.11 . 97

VII

Table of Contents

8.4 Transmitting Floating-point Numbers . 97
8.4.1 Splitting The Float . 98
8.4.2 The Issue With Large Datatypes . 98
8.4.3 A Solution To Transmitting Fractions Using Fewer Bytes: Float16 . . . 98
8.4.4 Encoding of he Transmitted and Received Messages 98

8.5 Subnero Modems . 99
8.5.1 The Subnero Modem Availability . 99

8.6 EvoLogics Modems . 100
8.6.1 Recreation of Previous Results . 100
8.6.2 Evo_janusXsdm . 101
8.6.3 Handling New Processes . 101
8.6.4 Receiving Process - Lowering the Threshold in Configurations 101
8.6.5 Transmission Process - TCP Connection Error 102
8.6.6 100 Packet And Number of Samples 103
8.6.7 Field Testing Reflection . 104

8.7 Transmission between Subnero and EvoLogic 106
8.7.1 Non-standard Frequency Band . 107

8.8 General . 107
8.8.1 Time Lost Due To Starting with Raspberry Pi 107
8.8.2 Documentation . 107

8.9 Addressing Research Question . 108

9 Conclusion 109

References 110

Attachment 115

A Attachments 115

B Attachments 124

VIII

Table of Contents

List of Figures
1 Multithreading; concurrent execution. Threads have issues due to interruption

and need priority guidance. 5

2 Multiprocessing; parallel processing. No interruption due to isolated processes. 5

3 Illustration showcasing the the use of fork. Here will Process 1 use the fork
and create Process 2. The new process will get a new PID and inherit the PPID
equal to the PID of Process 1. 7

4 This illustration showcases the use of execvp. When the command is used in
"Process 1" it swaps the process image from C++ to a shell. The new pro-
cess image will inherit both the PID and PPID. If an argument is placed in the
execvp command an additional process, "Process 2", will open. 9

5 This illustration showcases the use of pipe, where both fork and an exec
command are used. 9

6 Top image demonstrates how the number 47 is represented by the binary code
in int8 00101111. When the Most Significant Bit (MSB) is high, 10101111,
the signed value of −27 is added to the calculation, resulting in −81. 10

7 1: float16 binary number split among MSB, the exponent, and the fraction. 2:
The decimal values from the exponent and fraction segments. 3: Converting bits
to decimal using excess − K, where the K for float16 is 15 [22]. 4: Computing
the exponent as 2 raised to the excess-K value, multiplying it with the decimal
divided by 1024. Add 1 to the decimal joint, if the exponent bit-sequence has a
high bit. In this figure, the number π is approximated through calculation with
this formula by hand. 11

8 An illustration of a JANUS packet, it will consist of a fixed preamble used as a
reference, then the JANUS baseline packet, and lastly optional cargo. 14

9 This illustrates the bits in the JANUS baseline packet, where some bits are high-
lighted. 14

10 This illustration shows how interleaving deals with a burst error. The sequence
is first interleaved. In the transmission, then a burst error occurs. When the
packet is deinterleaved after transmission, the packet will go back to its original
order. The corrupted bits are spread out and the packet can be decoded. 16

11 The Subnero WNC-M25MRS3 modem [40]. 18

12 EvoLogics S2C R 18/34 USBL modem [39]. 18

13 Raspberry Pi 4 Model B [41]. 20

IX

Table of Contents

14 Three nodes sharing a ’topic’ within a computer system. Node B is publishing
to a topic, while node A and node C are subscribed to the same topic. Node A
and C hold the subscriber module, while node B holds the publisher module; it
is not an exclusive configuration and a mix of both is achievable, and there can
be any amount of nodes as necessary. 21

15 Example of a convex function. The two points (x, f (x)) and (y, f (y)) make a
line above the graph. 23

16 An example of a bidirectional graph with 10 nodes. 26

17 Newton’s method used on a function with variables x, y and z. ε is set equal to
0.1 for smooth steps. 27

18 Example of a doubly-stochastic weight matrix W with nodes {0...3}. Here w02

is equal to 0.368 which represents the connection from node 0 to node 2. 28

19 Push-sum consensus versus normal consensus used on a simulated ten node sys-
tem with a column-stochastic weight matrix. Notice normal consensus breaks
since the weight matrix is not doubly-stochastic. 30

20 A plot of Î_(u) with t = 0.5, t = 1 and t = 30. The worst representation of I_(u)
being t = 0.5 (the line that starts the lowest) and t = 30 (line that starts at 0)
being what represents it the best. 33

21 The logic behind the interior point method. 35

22 The interior point method on an arbitrary function f (x1, x2) = x1 + x2, with unit
circle constraint x2

1 + x2
2 − 1 ≤ 0. Note the function is unbounded above/below,

but has an optimal value with the constraint. 35

23 Diagram of how the EvoLogics modems were set up for testing in air. Modems
were connected to a switch with an Ethernet cable. All of the modems were
connected to a 24v DC-power supply. Note that this also applies to the Subnero
modems. 38

24 Image of the setup for the communication test in air with EvoLogics modem. . 38

25 Basic overview of the data processing and communication between a node i and j 41

26 The basic folder structure of the ROS 2 workspace. 48

27 The logic flow of the ROS 2 system for the project. P and S stand for Publisher
and Subscriber. 50

28 The final structure of the skeleton of the ROS 2 system, is ready to be expanded
on. 51

X

Table of Contents

29 On an Ubuntu Debian machine, by going to the Network settings one can
change the address to access the Subnero modem web interfaces. 1: Creating a
new profile. 2: through IPv4 tab a new address is added. 52

30 The UnetStack web interface, which can be accessed by entering the respective
modem IP in a web browser. 1: The power level of the transducer. When testing
in air, the level should be at -40dB. 2: The physical channel layer, JANUS
channel. 3: The shell command window. The interfacing happens through here
with the use of commands. 4: A simple message transmission, it was not used
as much, however, it is useful to test whether the modems can communicate. 5:
The scripts section allows for logging of data and uploading of scripts, including
startup scripts which may be written to change the settings automatically. . . . 53

31 This is a printout of the phy[3] parameters in the shell. These are the available
parameters of the JANUS channel. 54

32 The float16 to bytes converter, and bytes to float16 merger flowchart. Notice
the quantization of the irrational number π; entering π into a float16 quantize its
value, and due to the half-precision of float16 the result ends up being 3.14 on
the receiving end. 57

33 This illustration provides an example of the generation of processes. First Gen 2
was created using fork(), then the process image is swapped to a shell. Finally,
the Gen3 process gets created through an argument executed from the shell.
Either ./janus or ./sdmsh. 63

34 The debugging process method by elimination. Functional parts are identified
with a green check mark, while areas with potential issues are marked with a
red "X" . 67

35 Here are the different processes that are initialized by startTX visualized. It
illustrates in what order one could expect the processes to run by looking at the
PID. First, the parent will fork twice and create SDMSH and JANUS processes.
In the upper left corner one can see what kind of process image is used. In the
bottom is the PPID and PID for the given process. 69

36 Illustration showcasing the redesigned process structure using the "double fork"
technique. The parent process achieves freedom to work by disconnecting itself
from the JANUS and SDMSH processes through the death of the Dummy pro-
cess. The init process assumes the role of the new parent process for SDMSH
and JANUS. It will then wait to reap them, and by that, preventing the creation
of zombies. 71

37 This illustration shows the different measurements used during the main tests.
The tank itself is depth: 175 cm, length: 302 cm, width: 202 cm. 77

38 Here is an image of the actual setup for the three main tests conducted. 77

XI

Table of Contents

39 This illustration depicts the setup of the two modems during the testing. The
Subnero modem is shown in a vertical orientation, while the EvoLogics modem
is shown in a horizontal orientation. 78

40 This illustration shows the setup of the two modems during the testing. Both
are shown in a horizontal orientation. 79

41 The ideal result of the ra-NRC without any float16 restrictions. The IPM param-
eter increases in value every 20th forced sequence with an initial IPM parameter
value set to 5. The result can be found in python file ra_nrc.py in Attachment
B, "Optimization-main-sims (code).zip". 82

42 The restricted result of the ra-NRC with float16 restrictions and a constant IPM
parameter = 1, using a forced sequence. The result can be found in python file
ra_nrc_rl.py in Attachment B, "Optimization-main-sims (code).zip". 83

43 The final setup of the ROS 2 system with UnetPy, optimization algorithm and
the float16 converter: Nodecomx. 1: A message from another modem is incom-
ing. 2: The UnetPy module acknowledges and receives the message. 3: The
message is published to the reception topic. 4: The subscribed data from the
reception topic is processed before being published to the transmitter topic. 5:
The subscribed message from the transmitter topic is broadcast. 84

44 The progression of N, M and m are similar to a simulation absent of UnetStack,
ROS 2, and float16 converter. After a 6-hour run, the algorithm crashes due to
value overflow as will be mentioned in section 8.1.2. 86

45 The image shows what the terminal looks like when the modem is configured,
the preamble is set and ready for receiving. 90

46 This is the terminal print from parts of the JANUS frame. It shows the quality
of the transmission, by printing peak and frssi to the terminal. In addition, it
shows the cargo, CRC, cargo size and the reservation time. 90

47 This is the printout from the JANUS library for a TX process. It shows the
information added to the JANUS frame . 91

48 This graph shows the difference between how the number of samples was cal-
culated in the previous Bachelor project (the orange line) and the new method
developed by us (the blue line). It is possible to see the reason behind the "100
packet problem", where packets got corrupted when exceeded 3 characters. You
can think about it as if some of the samples in a JANUS packet were "cut off". . 104

XII

Table of Contents

49 This graph shows the last year’s results. Blue lines are packets lost and red lines
are corrupted packets. Both tests are up to 154 transmissions. The upper one is
source level 2 and the one on the bottom is source level 1. The horizontal axes
are the number of packets sent and the vertical axes stops at 1 and is just for
visualization [65, t. 22:44]. 106

List of Tables
1 This table shows the different source levels for Evologic modems S2C. In the

SDMSH command: ’config 30 0 X 0’ where X is the placement of the "value"
[51]. 19

2 Glossary of variables in the protocol. 24

3 List of hardware utilities with description of the equipment. 37

4 List of software that has been used. 39

XIII

Abbreviations

List of Abbreviations

ASCII American Standard Code for Information Interchange

CPU . Central Processing Unit

CRC . Cyclic Redundancy Check

DC . Direct Current

Gen . Generation

IP . Internet Protocol

IPC . Inter-Process Communication

IPM . Interior Point Method

KKT . Karush–Kuhn–Tucker

MSB Most Significant Bit

MTU Maximum Transmission Unit

NR . Newton Raphson

OFDM Orhtogonal Frequency Division Multiplexing

OS . Operating System

PI . Raspberry Pi

PID . Process identifier

PPID Parent Process identifier

ROS . Robot Operating System

RX . Receive

SDM Software Defined Modems

SDMSH Shell for SDM

SSH . Secure Shell

XIV

Abbreviations

TCP . Transmission Control Protocol

TX . Transmit

UTF . Unicode Transformation Format

VS Code Visual Studio Code

XV

Concepts and expressions

Concepts and expressions

Bytecode A code which an interpreter, like CPython, can
read efficiently.

Cargo Extra data that can be added to a packet.

Colcon A program building tool made by ROS 2 devel-
opment team.

Compilation A computer program which translates human-
written code into machine code.

Convolution coding A type of error correction code, it is used to make
a more reliable communication.

Corrupt Damaged or altered data beyond repair.

CPython The underlying compiler-interpreter which
Python language uses.

Cyclic redundancy check It is a type of error correction code, it is used to
detect accidental changes in data transfer.

Daemon process A process that continuously runs in the back-
ground, will wake up to do a specific task.

Datatype A certain characteristic for values based on the
machine and programming language.

Execution An initialization of a program.

Float A number which has a floating point.

Integer A whole number.

JANUS frame In this thesis it is used for JANUS baseline
packet.

Machine code Zeroes and ones which only a machine can read
and understand.

XVI

Concepts and expressions

Modulo A way to calculate a number’s reminder when an
integer is divided with another integer.

Network switch A device to connect several Ethernet devices to-
gether. When the switch receives a packet, it will
forward it further to the correct device connected
to it.

Output stream Mechanism of sending data from one process to
an external location.

Preamble An introduction statement. In this thesis, a sound
sample is used as a reference for JANUS.

Shell A computer program which interprets com-
mands.

XVII

Introduction

1 Introduction

1.1 Background for Thesis

History

Transmission by underwater sound has been observed since ancient times, with Aristotle noting
its existence almost 2000 years ago. Later, Leonardo da Vinci, in the 1400s, further observed the
ability to hear ships through long tubes submerged in water, indicating that there was potential
for long-distance underwater communication.

The development accelerated during the world wars and the following cold war. Extensive
research at the time led to significant advancements in the underwater communication world.
One notable invention was the underwater telephone by the United States in 1945 [43].

Motivation

Acoustic communication has experienced significant improvements in modern times as a re-
sult of the expansion of commercial interests. The field has had breakthroughs in high-quality
video transmissions over large distances and allowed robots to preform challenging tasks. The
improvements are continuing to come, and more fields are making a use of acoustic communi-
cation. Since underwater schemes have had somewhat new development, there is no telling the
potential which may lie within [43].

The underwater realm is gathering increased attention in various industries and academic cir-
cles. The biggest challenge subsea devices face may be the use of underwater communication
systems (optical and acoustic) with the change in channels over time (turbidity, temperature,
etc.). Adapting the exchange of information based on current environmental conditions is an
intriguing and crucial challenge for underwater communication [43].

1

Introduction

1.2 Research Question

The task given to the team can be specified as follows:
Implement distributed optimization algorithms in ROS 2 based systems, and test them for
the case of optimizing the acoustic channel usage in underwater multi-agent scenarios by
means of the acoustic EvoLogics S2C and Subnero modems.

This project focuses on making a prototype adaptive communication mechanism to address the
challenges in real-life scenarios in underwater communication. Conceptually, the project could
be split into three phases:

The first phase of the project is about the understanding of the initially proposed real-time
adaptive communication mechanisms. In this phase, distributed optimization algorithms will
be used for the development of the optimization program.

The second phase is about the development and implementation of the algorithms into ROS 2,
and the development of a communication mechanism for the EvoLogics. The ROS 2 system
will be implemented with the Subnero & EvoLogics modems.

The third and last phase is the field test where the underwater devices will be tested in water.

1.3 Previous work

A part of the project is to further develop work that has been done in a previous bachelor’s
project. The project, "Development of Underwater Communication Rig", had the goal of de-
veloping a solution for underwater communication using acoustic modems. The system used
ROS 2 (Robot Operating System) for data exchange and communicates using the JANUS proto-
col. Additionally, the project included setting up the system, implementing the communication
protocol, and developing libraries and scripts in C++ for the communication mechanism [53].

At the beginning of this project, their bachelor’s thesis, the developed code, a presentation, and
other resources were handed over. In addition, a ROS 2 course was added. In the previous
thesis, two main problems were mentioned about the handed-over code. The project had issues
with transmissions over 100 JANUS packets with the EvoLogics modems and unwanted shell
processes.

1.4 Project Plan

The project plan was to get the transmission and reception working on both the Subnero and
the Evologics modems, in addition to implementing an optimization algorithm for parameter
optimization. Because the Subnero modems have a more user-friendly interface due to the Unet
framework, communication is easier to set up. While the communication is being worked out on
the Subnero and EvoLogics modems, a parallel plan will go towards looking at the optimization
and looking at setting up the ROS 2 structure.

If the EvoLogics communication is set up successfully, a communication test with both the

2

Introduction

Subnero and EvoLogics modems will be set up. Further, the optimization algorithm will be
tested between two Subnero modems, and possibly with the EvoLogics modem. Ideally, if
everything works, a field test will be scheduled so the modems could be tested underwater.

1.5 Structure of the Thesis

This document is structured in the following way:

The theory section consists of explanations of basic concepts surrounding computer science,
and necessary mathematical concepts for the optimization algorithm. This section is built from
the basics, up to a more detailed theory that is relevant for this thesis.

The method section is split into four parts: 1. The introduction to the methodology, 2. the
methodology of the optimization development, 3. the methodology of the ROS 2, Subnero,
and optimization code implementation, and lastly 4. the methodology of the development of
EvoLogics communication mechanism.

In the results, the findings from this project are shared and explained. The discussion section
contemplates different aspects, personal discoveries, and suggestions for future development.
Finally, the conclusion to the report.

The referenced literature and the attachments can be found at the end of this document. Ad-
ditional attachments will also be provided in a separate zip folder delivered along with this
thesis.

3

Theory

2 Theory

2.1 Python and C++

This project utilizes the programming language Python 3.11, C++23, and slightly C. The no-
table distinction between these languages is the way code is executed. Python is an interpreted
language, which means that the code goes through a process that allows direct execution without
the need for compilation directly. The Python code is read and executed from a source file with
an interpreter/compiler called CPython, which compiles the written Python code into bytecode.
Thereafter, it interprets the code when executing [34]. C++ code needs to be compiled into an
executable directly, which means that the executable code needs to be turned directly into ma-
chine code in order to run [35]. The distinction in the compilation is that CPython compiles the
code into a lower level code than the written Python code (bytecode), while C++ uses a com-
piler to compile to the lowest level possible (machine code). Due to the increased complexity
of compilation and syntax in C++, python is more suited for experimentation and continuous
development by different development teams. However, C++ is much faster and more efficient
due to direct contact with a CPU. This project utilizes C++ where there needs to be C++ due
to hardware requirements, while Python is used where it is easier to implement and experiment
with.

2.2 Multithreading and Multiprocessing

Multithreading is a way the Central Processing Unit (CPU) can run several tasks concurrently.
A CPU operates by calculating and executing machine code provided by the Operating System
(OS) and programs; concurrent execution is achieved with multithreading. The CPU creates
instances of dedicated (but shared) memory and gives each thread the necessary processing to
finish its workload. Each dedicated instance for a program is called a thread [25] [26].

Multiprocessing is a more heavy-duty variant of multithreading. Instead of shared memory,
in multiprocessing, there is a completely isolated instance. A feature with multithreading is
efficient switching between the thread instances, whereas in multiprocessing intensive tasks are
more efficient, but the switching is much slower. The benefit of multiprocessing, albeit more
CPU intensive, is that a true parallel execution is possible.

4

Theory

Figure 1: Multithreading; concurrent execution. Threads have issues due to interruption and
need priority guidance.

Figure 2: Multiprocessing; parallel processing. No interruption due to isolated processes.

2.2.1 Issues Related to Multithreading and Multiprocessing

2.2.1.1 Race Conditions

Race condition in software is the result of a timing-dependant algorithm that uses different
processes or threads at the same time; if the expected sequence of an arbitrary algorithm has
process A come first and then process B later, then a break in the consistency of timing, which
lets process B come first, locks the algorithm. Process B races ahead of A. This is known as the
race condition [32].

2.2.1.2 Deadlocks

Deadlock is a situation where process A is reserving a resource, which other processes like B
and C need to continue and process A can not release the resource because it is waiting for B
and C to complete their tasks [31].

5

Theory

2.3 Common Multiprocessing Concepts

In this section, specific scenarios related to C and C++ will be discussed. However, many con-
cepts covered here are universal and can be applied to other topics and programming languages.

2.3.1 Inter-Process Communication (IPC)

Inter-Process Communication (IPC) are solutions that enable communication between different
processes, ideally without any issues. There are two main types of processes: independent
processes that do not share data with other processes, and cooperating processes that share data
with other processes.

The advantages of IPC include information sharing, increased processing time (requires multi-
processing core), multithreading (optimization of resource utilization), and multitasking (han-
dling multiple processes simultaneously).

However, the use of IPC solutions can lead to problems like the "Producer-Consumer Problem",
the "Dining Philosophers Problem", the "Readers-Writers Problem", and the "Sleeping Barber
Problem".

2.3.2 The Producer-Consumer Problem

When there are two processes, one of which wants to write to a pipe and the other wants to
read from the same pipe, where the pipe has limited storage capacity, two rules will apply: If
the pipe is empty, the process that wants to read from the pipe must wait. If the pipe is full, the
process that wants to write must wait.

If proper handling of read/write operations is not implemented, it can lead to delays where
processes must wait. The worst case scenario occurs when a process is stuck in an infinite wait
[60].

2.3.3 The Readers Writers Problem

The Readers-Writers Problem is an unwanted process synchronization where multiple processes
need to access shared data by utilizing read/write commands. In this scenario, several processes
can read from the same data/buffer simultaneously, while only one process can write to that
data/buffer at a time. Not handling this correctly can lead to delays, race conditions or corrupted
data.

A race condition occurs when a system lacks proper sequence control, resulting in two or more
processes attempting to access the same resources simultaneously [60].

6

Theory

2.3.4 pipe()

The pipe() function enables communication between processes. In some cases, processes are
isolated and have their own private memory spaces, as mentioned in section 2.2. However,
a connection can be established between two processes, allowing them to communicate by
passing data to a buffer, called a pipe. Every process that has access to a pipe, receives both a
read-end and a write-end of the pipe. This means that there is an equal number of read/write
ends as the number of processes using the pipe. When a process writes to the pipe, it uses the
write end, and when reading, it uses the read end. A notable part when using pipes is handling
these read/write-ends correctly. This is done by closing the ends that are not being used or both
when the process using it has finished [16].

If the handling of pipes is not implemented properly, it could lead to the problem discussed in
section 2.3.2 "The Produce-Consumer Problem".

2.3.5 fork(): Parent and Child Process

The fork() function is used to create a new process that is an identical copy of the existing
process. This newly created process is referred to as the child process, while the original pro-
cess becomes the parent process. The child process receives its own unique PID (Process ID),
and it also has access to the PPID (Parent Process ID), which is the ID of its parent process.
Another characteristic is that it inherits all the attributes of the parent process, including access
to system resources such as pipes(). The parent process should always reap every child before
terminating itself, which is done by using the commands wait(0).

It is important to note that after the fork() operation, any subsequent changes made in the
parent process do not affect the child process. The child process operates as an independent
entity, maintaining a separate execution path from its parent and having its own memory [72]
[67].

Figure 3: Illustration showcasing the the use of fork. Here will Process 1 use the fork and
create Process 2. The new process will get a new PID and inherit the PPID equal to the PID of
Process 1.

7

Theory

2.3.6 Zombies and Orphans

In multiprocessing, a zombie process is a state of a child process after it finishes its execution,
and before it is reaped by the parent process. Until the parent reaps the zombie process, the
zombie lingers in an indefinite waiting state. The reaping of the child process is a standard part
of the fork() cycle.

In a scenario where a parent process terminates itself before a child process finishes execution,
the child process becomes an orphan. Orphaned processes are adopted by the system’s "init"
process, which is responsible for managing the processes of a system. The "init" process as-
sumes the role of the parent process to the orphan, it will be responsible for handling the reaping
of the child process when it exits [78].

Problems can arise if the child process is not properly reaped, where it could become a zombie
process and indefinitely occupy the system as a slot in the process window.

2.3.7 execvp()

The exec() family is a collection of functions that replace the existing process image with a
new one. There are different versions of exec() functions and they differ in how they are used.
execvp() is a variation of exec().

When execvp() is used, it replaces the existing process image with a new one. This means that
the running process, such as a C++ code, can be changed to a shell process. Certain arguments
are also passed to the execvp() function, enabling the new shell process to execute specific
commands. Note that when adding an argument in the execvp() where the function is used
to run a shell process, a completely new process might be initialized. Therefore, one could
potentially with the use of execvp(), swap processing and create a new additional process.

Be aware that when swapping process image, for example, C++ to a shell, all C++ code that
comes after the execvp() will never run. Another trait is that the shell automatically termi-
nates itself when the commands placed in the execvp() finish running. However, if the new
process initialized by the commands placed in the execvp() does not exist, the shell process
will continue to live indefinitely.

It is of significance when distinguishing between exec() and fork(), and defining the re-
lationship between a child process and a parent process. The new process image created by
execvp() inherits various properties from its old process image, where the Process ID and
Parent process ID are the most relevant [68].

8

Theory

Figure 4: This illustration showcases the use of execvp. When the command is used in "Process
1" it swaps the process image from C++ to a shell. The new process image will inherit both
the PID and PPID. If an argument is placed in the execvp command an additional process,
"Process 2", will open.

2.3.8 popen()

Simplified, popen() is a function that uses pipe, fork and exec. It is a solution that is the
same as creating a pipe, creating a fork, and then running an exec command. A more detailed
description is that popen() is a function that can be used to read from or write to a terminal.
It will create a stream with a connection to a pipe running the command given in the function
parameter[69].

Figure 5: This illustration showcases the use of pipe, where both fork and an exec command
are used.

2.3.9 Double Fork to Avoid Zombie Process

Double fork is a technique to disconnect the parent process from its child process. When doing
so, the child processes will get a parent that will be an INIT process. The INIT process is a
daemon process and is designed to wait for processes and reap them when they exit [66].

The advantage of using the double fork technique is to free the parent process from the respon-
sibilities of reaping its children. Also, it is used to prevent zombies by letting the INIT process
handle the reaping [71].

9

Theory

2.4 Datatypes

Datatypes are values in computers that have specialized representation, and utility based on the
operations that can be performed on them. All written values in a programming language have
a datatype, such as an integer or a float. This project treats specific datatypes with caution as
they present issues when used incorrectly. On the other hand, this project has utilized the ma-
nipulation of datatypes to its advantage to solve some issues when it comes to the compression
of data and their sizes in bits on a machine.

2.4.1 Integers, Unsigned Integers and int8

An integer is a discrete number stored in bits. This means that a whole number can be repre-
sented using binary code. Due to options for computer optimization, various sizes of integers
exist. Although large decimal numbers can be represented by something like an int32 (−231

to 231 − 1), the storage/memory space which an int32 occupies, has double the amount of bits
stored on a machine compared to an int16. Int16 can have a value from −32768 up to 32767,
however, one could change the range by using an unsigned integer, in this case, an int16 would
be an uint16, and have its range be from 0 to 65,535.

The int8 is prevalent throughout this project, due to its tiny size (range of -128 to 127) and the
prevalence of bytes in computer communication and storage. It is also known as a char.

Figure 6: Top image demonstrates how the number 47 is represented by the binary code in
int8 00101111. When the MSB is high, 10101111, the signed value of −27 is added to the
calculation, resulting in −81.

10

Theory

2.4.2 Floats, Float32 and Float16

Floating-point numbers, like float32 and float16 (half precision), are numbers that represent
whole numbers with the addition of a decimal point, meaning numbers like 0.42 are possible to
represent. Like int32 and int16, float32 takes up twice as much space as float16.

Although float16 uses half the memory space of float32, its precision is reduced, which leads
to imprecise rounding if a desired number is entered. In figure 7, an illustration of how a 16-bit
floating-point number of π is represented.

Figure 7: 1: float16 binary number split among MSB, the exponent, and the fraction. 2: The
decimal values from the exponent and fraction segments. 3: Converting bits to decimal using
excess − K, where the K for float16 is 15 [22]. 4: Computing the exponent as 2 raised to the
excess-K value, multiplying it with the decimal divided by 1024. Add 1 to the decimal joint, if
the exponent bit-sequence has a high bit. In this figure, the number π is approximated through
calculation with this formula by hand.

However, if one were to compute π using float16 arithmetic through a programming language,
the result would be rounded up to 3.14, as the precision of float16 is limited [4].

The range of the float16 data type spans from negative infinity (represented as −∞) when the
float16 value is set to 1111110000000000, to positive infinity (represented as ∞) when the
float16 value is 0111110000000000. The smallest and largest possible numbers within this
range are -65,504 and 65,504, respectively.

11

Theory

2.4.3 Characters and Strings

A character is a representation of a letter or a symbol, typically encoded using one or more
bytes. The specific representation depends on the character encoding, which can vary based
on factors such as localization and machine settings [24]. A string is a collection of these
characters, which can be either human language or used for storage of data in character repre-
sentations.

2.4.3.1 ASCII and UTF Encoding

There are many types of encoding, but the most prominent ones are in the American Standard
Code for Information Interchange (ASCII) family and in the Unicode Transformation Format
(UTF) family. Both ASCII and UTF have a byte encoding format, however, the basic ASCII
on its own is limited to 128 different characters due to it only using seven bits. Although there
is an extended version of ASCII; due to the way it has been implemented, it depends on the
language and localization in order to work correctly, for example, a Nordic extended ASCII
is different from an American extended ASCII. On the other hand, UTF is regarded as the
universal encoding type; all of ASCII can be found within UTF, but not the other way around.
Although the usage of ASCII was common before and can be found as the default encoding in
older hardware, UTF is the relatively new standard that can reliably be expected to be consistent
across software and hardware [21].

2.5 Networking

In both wired and wireless communication, bytes serve as the fundamental units for storing and
transmitting information. Data is encoded by dividing the information into byte sections and
subsequently transmitting them. For example, a simple message like ’hello’ consists of five
characters, which can be represented using five bytes. It is worth noting that nearly all network
communication relies on the use of bytes [23].

2.6 JANUS Communication Protocol

JANUS is an underwater communication protocol, which has become a NATO standard and a
leading protocol in underwater communication throughout the globe. It is the first digital under-
water communication protocol to be acknowledged at an international level, and it has opened
up a standardized "Internet of Underwater Things". The JANUS protocol encodes information
into simple acoustic waves, such that existing and new equipment can be used with the standard
with ease [44].

12

Theory

2.6.1 ANEP-87

ANEP-87 is a NATO document for the standardization of underwater communication. It is
primarily used for underwater communications. It serves roles including tactical operations,
safety measures, and distress signal transmission. It also has other areas of use like networks
of the nodes and node discovery. The protocol takes advantage of physical layer coding, with
JANUS serving as the standard protocol. The ANEP-87 defines the different configurations for
a JANUS packet.

A crucial note is that there exists a writing typo/error within ANEP-87 which affects the inter-
leave and deinterleave process. UnetStack has implemented a variant of ANEP-87 where this
specific error is present. This means that it will differ from the standard of the JANUS pro-
tocol, and any JANUS library will require modifications to communicate with systems using
ANEP-87.

2.6.2 Janus-C Version 3.0.5

Janus-c-3.0.5 is a library written in C made to use the JANUS protocol. It is found on JANUS
own wiki page. It uses the JANUS standard and not the ANEP-87 standard. The version found
here will not work with the ANEP-87 without modifications. Commands for the library can be
found in the document "README - JANUS Tool Kit 3.0.1" [56].

The library does not support the use of TCP from the get-go, but there are plugins that enable
the use of TCP.

2.6.3 JANUS Packet

A JANUS packet is composed of several audio samples or acoustic waves. Figure 8 illustrates
the different parts in a JANUS packet.

• The first part of the packet is a reference file, consisting of a fixed number of audio
samples. It makes it possible to identify that it is a JANUS packet. If a receiver gets this
reference, it will understand that what follows should be unpacked as a JANUS baseline
packet.

• The second part is the baseline packet, which contains different information. Including
information about a potential cargo, if there is one. For instance, a receiver can determine
what comes after the baseline packet by reading the data in the baseline packet.

• The last part is the cargo. If there is cargo, the baseline packet will instruct how the cargo
should be read. For example, Reservation time tells how long it will take to read the
cargo.

13

Theory

Figure 8: An illustration of a JANUS packet, it will consist of a fixed preamble used as a
reference, then the JANUS baseline packet, and lastly optional cargo.

2.6.4 JANUS Baseline Packet

The JANUS baseline packet consists of 64-bit. These bits are used to store information. Each bit
is defined from a bit allocation table, made for JANUS. Such a table can be found in ANEP-87
[57, pp. 2-3].

Some bits will be highlighted here:

• Bit 6, Schedule Flag: is used to determine how to read bits in the "Application Data
Block".

• Bit 9-16, Class User i.d: An user ID is mostly used for the identification of nations, but
also NATO has its own ID. A lookup table can be found in ANEP-87 [57, pp. A1-A3].

• Bit 23-56, Application data Block (ADB): If Schedule flag is set to 1, meaning ON, the
first bit will determine if reservation time or repeat interval is used. The time which is
used for those two is defined in the next eight bits. Table for reservation time can be
found in ANEP-87 [57, p. B-1].

Figure 9: This illustrates the bits in the JANUS baseline packet, where some bits are highlighted.

14

Theory

2.6.5 Transmission Sequence Generation in JANUS

When the JANUS protocol manages information, it wraps the information in something called a
JANUS packet. Before it can become a packet, the information needs to be handled in a specific
order. For transmissions, this sequence is used: CRC, 2:1 convolution encoder and interleave
encoding. For receiving, the opposite is used: deinterleave, 2:1 convolution decoder and CRC.
In this thesis, it will put emphasis on interleave and deinterleave.

When the transmission sequence generation is done, it will be sent to a waveform generator
where settings like bandwidth and sampling frequency are used to create sound samples. This
process needs to be done for the JANUS frame and the cargo, separately.

Interleaving

Interleaving uses the convolution coding from the encoder, and intend to prevent a burst error;
the error form when consecutive bits are corrupted. Interleaving prevents this by rearranging
the bit sequence. By spreading out the corrupted bits, it will still be manageable to decode the
packet as long as there are not too many corrupted bits [64].

If a JANUS baseline packet had a length of 144 symbols and the sequence were (b denotes bit):

b0 b1 b2 ... b143 (1)

Then this sequence interleaved in the JANUS library will have the order:

b0 b13 b26 ... b143 b12 b25...b142 b11 b24 ... (2)

The order of the permutation table is created by using this code:

perm[i] = (perm[i-1] + prime) % packet length (3)

The perm variable is the permutation table and decides the sequence the different bits are placed.
It works as a table with a number of elements equal to the length of the packet. The element
position in the permutation table is decided using a variable i. The prime variable from the
code is the lowest prime number that is not a factor of the length of the packet. In addition,
the prime must be greater than the square of the length of the packet. For the JANUS baseline
packet in this example, with length 144, the prime would be equal to 13. When calculating the
permutation element, the previous element in the permutation element will be added with the
prime. The first element in the permutation table is defined as zero. The modulo of the sum
and the length of the packet is then calculated. The reminder from the modulo calculation will
be added as an element in the permutation table.

15

Theory

When the permutation table is built, which is when all the 144 elements in the table are assigned
a number, the permutation will be performed. This is done by placing the bits in the sequence in
the permutation table. See figure 10 for an example of the interleave process with the sequence:
0 1 2 ... 7.

Figure 10: This illustration shows how interleaving deals with a burst error. The sequence is
first interleaved. In the transmission, then a burst error occurs. When the packet is deinter-
leaved after transmission, the packet will go back to its original order. The corrupted bits are
spread out and the packet can be decoded.

ANEP-87 contains an error that makes the interleave order different from the order mentioned
in sequence 2. This is also the implementation used by UnetStack. If the sequence were:

b0 b1 b2 ... b143 (4)

Then the interleaved sequence from the ANEP-87 would be [57]:

b0 b13 b26 ... b143 b1 b14 ... b131 b2 b15 ... (5)

The difference between the two interleaved sequences is what happens when the

perm[i-1] + prime >= packet length (6)

In sequence 5, the modulo will not be calculated, but will instead start on the lowest element
position available.

16

Theory

Interleaving will be done for the JANUS baseline packet and the cargo separately. This is so the
baseline packet can first be decoded to know the number of bytes in the cargo [57]. When the
packet is received, deinterleaving will be performed to get the same sequence that was before
interleaving.

2.7 Transmission Control Protocol

TCP stands for Transmission Control Protocol and is one of the most used Internet Protocols. It
determines how computers transmit packets of data. TCP uses acknowledges, which guarantees
data sent from one computer to the other is received in the correct order and accurately. This
means the TCP protocol essentially provides an error-free data transmission [58].

2.8 Underwater Modems

Wireless underwater communication is challenged by the properties of water; high attenuation
and limited bandwidth [18]. To overcome these obstacles, acoustic waves are utilized as a re-
liable form of data communication, replacing unreliable radio technology underwater. Sending
acoustic waves in the air, depending on pressure and humidity, may only reach about 331 me-
ters/second. However, sending acoustic waves underwater is much faster at 1540 meters/second
[19].

2.8.1 Optimization of The Underwater Modem Parameters

For optimal operation of modem communication, communication variables need to be changed
regularly. Due to different ranges between modems, different water pressure and salinity, an
adaptable modem can make sure that the best way to communicate is achieved. In this project,
the variables being optimized and changed regularly are the subcarriers N, modulation order M
and symbols per packet m.

2.9 Unet, UnetStack

Unet is an underwater communications framework developed by the National University of
Singapore. The goal of Unet is to provide a good and simple service for underwater communi-
cation due to the challenges underwater communication has. The UnetStack API is available in
several programming languages, including Python. UnetStack is the collection of technologies
and software components that complement the Unet framework. It includes various modules,
libraries, and tools that extend the capabilities of Unet for different projects and applications
[9].

17

Theory

2.10 Subnero WNC-M25MRS3

Figure 11: The Subnero WNC-M25MRS3 modem [40].

Subnero WNC-M25MRS3 is an underwater modem designed for academic research and enthu-
siasts. The modem is integrated with the Unet framework, which allows for a user-friendly
interaction with the modem by providing an interface on a web browser and direct access to the
shell. Subnero modems have an operating range of 3-5km and a max depth of 300m [17].

2.11 EvoLogics S2C R 18/34 USBL

EvoLogics S2C R 18/34 is an underwater acoustic modem made for industry and science alike.
It provides full-duplex digital communication, which makes it possible to have simultaneous
transmission between modems. The modem has an operational range of 3500m and can reach
a max depth of 2000m [14].

Figure 12: EvoLogics S2C R 18/34 USBL modem [39].

2.11.1 SDMSH

SDMSH or SDM Shell is a shell-based library developed by EvoLogics for their underwater
modems. It provides an easy-to-use interface for accessing and configuring the modems. It
enables the user to configure the API for the physical layer of the modems, also called PHY.

The SDMSH aims to simplify the process of sending and receiving data through the modems.
This is done by providing simple commands such as rx for reception and tx for transmission.
The ref command is used to set a reference on the modems, indicating when to initiate the
data reception. The config command makes it possible to set the modem parameters before

18

Theory

reception and transmission. It can be used for changing the threshold, gain, source level and
pre-amplifier gain of the modem. Where the threshold is used to detect the reference or pream-
ble and the source level sets the strength at which the message is transmitted. The content is
displayed within listing 1:

1 config <threshold > <gain> <source level> [<preamp_gain >]

Listing 1: The content within the config command.

In table 1, the different source levels possible is listed, where "3" is the lowest source value and
highly recommended when testing in air:

Value Source level
0 max, 0 dB
1 75%, -6dB
2 50%, -12 dB
3 min, -20 dB

Table 1: This table shows the different source levels for Evologic modems S2C. In the SDMSH
command: ’config 30 0 X 0’ where X is the placement of the "value" [51].

Description for different commands used in the SDMSH library can be found on their wiki page
[51].

2.11.2 EvoLogics AMA

The AMA software provided by EvoLogics has an interface that is easy to use for testing the
EvoLogics S2C modems. The software is free to download and can be found on the EvoLogics
website [59].

2.11.3 AT-Commands for Evologics Modem

AT-commands are commands that can be written to the EvoLogics modems. It makes it possible
to get information, set parameters or change configurations on the modems. Netcat is used to
connect to the modems to access the AT-commands. A command can be written by adding +++
before the command. These commands can be found in the modem’s manual [55].

2.12 Raspberry Pi 4 Model B

The Raspberry Pi is a single-board computer which is developed by Raspberry Pi Foundation
in association with Broadcom. The advantages are the small size, low cost and open design.
The Raspberry Pi has GPIO (General-Purpose Input Output) pins, which makes it so that it can

19

Theory

be connected to other circuits [46]. The Raspberry Pi computer has the goal of being the target
hardware for most developments for this project.

Raspberry Pi 4 Model B features a quad-CPU, a larger memory, and two micro-HDMI ports
port to connect to a screen. 4GB of RAM [79]

Figure 13: Raspberry Pi 4 Model B [41].

2.13 Visual Studio Code

Visual Studio Code (VS Code) is a lightweight source code editing and development program
with a user friendly interface. It is available for Windows and Linux machines, and supports
many different programming languages [20]. This project utilizes this editing software as its
main coding tool.

2.14 ROS 2

Robot Operating System (ROS) is an open-source development kit for robotics applications.
ROS provides an environment for rapid research and development of robotics software, and
interchangeable understanding by those who are familiar with ROS and those who are learning
about it. Rather than creating your own environments where you would need to handle threading
issues, logic, and documentation, ROS 2 provides a shortcut for that; with an addition of already
optimized packages and libraries for Python and C++. ROS 2 is the successor to ROS and is
available for Python and C++ [1]. This project uses Humble Hawksbill version of ROS 2
distribution. It was released May 23rd 2022 and has an end-of-life date May 2027 [27].

2.14.1 ROS 2 and Multithreading

An issue with multithreading is the increased complexity of a program, which is prone to errors
like race conditions and deadlocks 2.2.1. Maintaining or changing a complicated program can
take a lot of resources. With ROS, the necessary work has already been done and can be used
as a tool for the development of autonomous systems.

20

Theory

2.14.2 Nodes, Topics, Publishers and Subscribers

ROS 2 has several methods for sharing data between nodes. A node in ROS has a responsibility
to handle and do something with data that it acquires through several methods: topics, services,
actions and parameters. This project used topics as the solution to the data flow and processing.

• ROS 2 Nodes represent software modules; these nodes are modules that contain tasks
that one wishes to execute. They hold the sub-modules mentioned underneath.

• Topics are shared memory spaces for nodes. They hold the information one wishes to
grab/share and use in a node.

• Publishers are modules that ROS 2 uses to "publish" data to a topic. The datatype must
be declared beforehand, and can only hold that datatype at all times.

• Subscribers get data from declared topics. Subscribers and publishers are similar in
code, but they execute different tasks.

Due to the multithreading capabilities of ROS 2, each node can work concurrently and
create a modular system that can ease the work needed to achieve relatively complicated
autonomous systems.

Figure 14: Three nodes sharing a ’topic’ within a computer system. Node B is publishing
to a topic, while node A and node C are subscribed to the same topic. Node A and C hold the
subscriber module, while node B holds the publisher module; it is not an exclusive configuration
and a mix of both is achievable, and there can be any amount of nodes as necessary.

21

Theory

2.15 Optimization Theory

The optimization problem comes down to one problem. Finding the x that minimizes the cost
function, f (x):

x∗ := argmin
x

f (x) = argmin
x

N∑
i=1

fi(x) (7)

The optimization algorithm can be split into three building blocks [36]. To understand these,
some concepts are necessary to go through first. The main focus for the optimization in this
project will be on the Subnero modems using Orhtogonal Frequency Division Multiplexing
(OFDM), which is a particular method for transmitting data. However, the end goal is to include
the optimization algorithm for both the Evologics and Subnero modems.

2.15.1 The Cost Function - Generalized

The cost function is a function one wants to minimize to get the best results. For our project,
if the cost function is minimized, it will as a result maximize the data rate. A simpler example
of a cost function is when you are doing linear regression analysis. In this instance, you have a
function which is the measure of all the distances of your model compared to the data points.
To get the best possible line, you want to minimize these distances, hence you want to minimize
the cost function [30].

2.15.2 Convexity - Assumption I

There are two assumptions for the optimization algorithm to work. The first assumption is that
the cost functions used are convex. A function is mathematically called convex if any pair of
two distinct points (x, f (x)) and (y, f (y)), when making a connecting line, remains above the
graph between these two points (see figure 15) [38]. A less mathematical explanation is: if a
function is convex, it has a cup shape ∪. Further, the cost function has to be strongly convex,
which means that its Hessian is bounded from below, ∇2 fi(x) > cIn for all x, with c > 0. This
makes it so the cost function has a unique minimum point [36].

22

Theory

Figure 15: Example of a convex function. The two points (x, f (x)) and (y, f (y)) make a line
above the graph.

2.15.3 The Cost Function - This Project

The derivation of the cost function and the different variables will not be covered in full detail
because it is not this project’s priority. A list of all the variable glossaries can be found in table 2.
Full details on derivation can be found at "Multi-agent algorithms for adaptation of underwater
acoustic communication parameters" by Iadarola, F. [33].

The objective of our optimization is to maximize the data rate over one OFDM packet. The
function of the packet data rate, Rp, is a function one wants to maximize. By making use of
that the maximizer of log Rp is equivalent to finding the maximizer of Rp, and that one can turn
this into a minimizer problem by transforming log Rp into (− log Rp), the cost function for the
packet data rate can be expressed as follows [33]:

f (x) = − log Rp

= −(log m + logRc + log B + log Rn + log N + log(log2 M) − log(m(1 + pc)N + B(toh + td)))
(8)

23

Theory

Variable Meaning Type
m Symbols per packet Optimizable
N Subcarriers Optimizable
M Modulation order Optimizable
pc Cyclic prefix fraction Estimated
ν Doppler spread Estimated
r Range Estimated
toh Overhead (preamble, propagation...) Estimated
γ̄ Average SNR at the receiver Estimated, 0 < γ̄dB < 30
Rn Proportion of the carrier waves Estimated, 0 < Rn < 1
B Bandwidth Known
c Speed of sound Known
k Relative doppler margin Design
pt

l Target packet loss ratio Design
nx Non-data subcarriers Design
Rc Coding rate Design
td Transmission delay Calculated, td = r/c
Rp Packet data rate Calculated, f (x) = − log Rp

Table 2: Glossary of variables in the protocol.

The values N, M and m (x ∈ R3) are the variables that are going to be optimized.

x =

N
M
m


The cost function also contains some constraints [33]:

f (x), subject to



N ≥ nx + 1
M ≥ 2
m ≥ 1
N ≤ B

kν

log m + log Rn + log N + log(log2 M) + 1
Rc
· (log 0.2 − 3γ̄

2(M−1)) ≤ log pt
l

Such that the algorithm stays within realistic values, these constraints are going to be applied:

f (x), subject to


400 < N < 2000
2 < M < 64
1 < m < 40
log m + log Rn + log N + log(log2 M) + 1

Rc
· (log 0.2 − 3γ̄

2(M−1)) ≤ log pt
l

24

Theory

2.15.4 Distributed and Centralized Systems

It is important to distinguish between a distributed and a centralized system. In a centralized
system all the data is stored in a single computer. To access the information one has to access
the main computer, often called "the server". However, this project works with a distributed
network. In a distributed system the computations are distributed across multiple, separate
computation nodes (mobile, computers, etc.) and the system no longer has one main computer.
In this project, each node will figure out the best values for the cost function on its own and then
share that information only with its nearby nodes. From the available information they have
themselves and information coming from their neighbors, they will make appropriate changes
using a distributed algorithm. With this distributed algorithm they will all come to a consensus
(agreement), which means they will all eventually have the same values for the variables being
optimized [28].

25

Theory

2.15.5 Network Connectivity - Assumption II

The other assumption for our optimizing algorithm has something to do with how the network
is connected. Formally, the communication graph is represented as G = (V, E) where V =

{1,...,N}. V is short for vertices, also known as nodes. E is short for edges. Edges are the
connection between node i and node j written formally as E ⊆ V × V so that (i, j) ∈ E if and
only if node j can directly receive information from node i. Edges are represented as lines that
connect nodes in a graph. A graph has arrows as indications if the connection is directional and
only indicated as lines if the connection is bidirectional such as in figure 16.

Figure 16: An example of a bidirectional graph with 10 nodes.

Neighbor nodes are nodes that are directly connected to each other. For example in figure 16,
the neighbors of node 6 are node 0 and 5. More formally with the directions in mind, in-
neighbors of node i are denoted asN in

i := { j ∈ V | (j, i) ∈ E, i , j}, which are the set of nodes
connected to node i that can send messages to node i. Out-neighbors of node i are denoted as
Nout

i := { j ∈ V | (i, j) ∈ E, i , j}, which are the set of nodes connected to node i, receiving
messages from node i. The number of neighbor nodes in the sets is indicated with |Nout

i | and
|N in

i |, respectively [36].

2.15.6 Building Block A - NR Consensus

The Newton-Raphson consensus builds on Newton’s method in optimization. Newton’s method
in optimization, also called the Newton-Raphson method, is an iterative method for finding the
roots of a function. In other words, it finds the x that gives either the minimum or maximum of a
function f (x). In this project, its purpose is for finding the minimum point of the cost function.
Newton’s method in optimization is defined as follows [36]:

26

Theory

xk+1 = xk + εdk = xk − ε
∇ f (xk)
∇2 f (xk)

(9)

For k = 0,1,2,... and where dk acts as the direction, ε is the stepsize, ∇ f (xk) is the gradient and
∇2 f (xk) the hessian.

Figure 17: Newton’s method used on a function with variables x, y and z. ε is set equal to 0.1
for smooth steps.

With some algebra, (9) can be rewritten as:

xk+1 = (1 − ε)xk + ε(∇2 f (xk))−1(∇2 f (xk)xk − ∇ f (xk)) (10)

Note that depending on the programming language, it can make a small difference when cal-
culating (9) and (10). Since we want the x that minimizes some function with all the nodes in
mind, the function is set equal to the sums of all the local cost functions. (10) can be rewritten
as:

x+
i = (1 − ε)xi + ε(

∑
j

∇2 f j(x j))−1(
∑

j

(∇2 f j(x j)x j − ∇ f j(x j))) (11)

With the notation x+
i = xk+1 and xi = xk.

It is important to note this is for a standard centralized scenario and requires a main computer
that knows all the cost functions of all the nodes. However, the project works with a distributed

27

Theory

system and there is no way for each agent to compute the two sums instantaneously. The push-
sum consensus will help to solve this problem.

2.15.7 Building Block B - Push-Sum Consensus

To use Newton’s method in a distributed system, the push-sum consensus shall be used. The
push-sum consensus eventually allows every node in the network to come to a consensus (agree-
ment) for a variable. From the problems in (11), the push-sum consensus will be used twice on
two variables so the following can be achieved [36]:

yi −→ ηi

∑
j

(
∇2 f j(x j)x j − ∇ f j(x j)

)
zi −→ ηi

∑
j

(
∇2 f j(x j)

) (12)

Where ηi are possibly time-dependent nonzero scalars.

The push-sum consensus algorithm solves (12) in an asynchronous communication scenario. It
is an algorithm that builds further on the classical consensus algorithm. Before understanding
the consensus algorithm, one should know what a weight matrix is.

2.15.7.1 Weight Matrix

A weight matrix, also called the weighted adjacency matrix, is a matrix that represents the
strength of the connectivity between the nodes of a system. A connection between node i to
node j is represented as a number wi j > 0 in the weight matrix. That means if one knows the
weight matrix of the graph, one can draw the entire network and know how connected all the
nodes are to each other. Further, a doubly-stochastic matrix is a matrix where all columns sum
up to 1 and all the rows sum up to 1. This can be seen in figure 18 [42].


0.632 0 0.368 0

0 0.632 0 0.368
0.368 0 0.356 0.276

0 0.368 0.276 0.356


Figure 18: Example of a doubly-stochastic weight matrix W with nodes {0...3}. Here w02 is
equal to 0.368 which represents the connection from node 0 to node 2.

28

Theory

2.15.7.2 Classical Consensus Algorithm

The classical consensus algorithm is as follows:

xk+1
i =

N∑
j=1

wi jxk
j (13)

Where xk
i is the variables for node {1, 2, . . . ,N} that one wants to come to a consensus. For the

consensus algorithm, the weight matrix should be doubly-stochastic in order to converge to the
average of the local initial conditions. Otherwise, convergence is not guaranteed to the desired
point [29]. This means that if every node in a network runs this classical consensus algorithm,
and the weight matrix is doubly-stochastic, they will all eventually converge to the average of
all their starting values of xi.

2.15.7.3 Push-sum Consensus

Building on the classical consensus algorithm, we get the push-sum consensus. This algorithm
works exactly like the classical consensus algorithm, but instead of the weight matrix needing
to be doubly-stochastic, it only needs to be column-stochastic. This is more convenient but may
require extra computation.

The push-sum consensus algorithm is as follows:

xk+1
i =

N∑
j=1

wi jxk
j

qk+1
i =

N∑
j=1

wi jqk
j

rk+1
i =

xk+1
i

qk+1
i

(14)

The first part is exactly the same as the consensus algorithm. However, there is another consen-
sus on the value qk+1

i which is, roughly speaking, a value on how much node i has communicated
with the other nodes. If the initial values of qi are 1 and we take the ratio of these two consen-
suses, we get the values rk+1

i that acts as the average of the local initial conditions just like the
normal consensus algorithm [29].

29

Theory

Figure 19: Push-sum consensus versus normal consensus used on a simulated ten node sys-
tem with a column-stochastic weight matrix. Notice normal consensus breaks since the weight
matrix is not doubly-stochastic.

In this project, the nodes send equal weights distributed to the neighboring nodes and also
send the same weight to themselves. The algorithm uses the push-sum consensus on both the
sum of the hessians (zi) and what is essentially the sum of the gradients (yi). Since Newton’s
method take the ratio between these two values (11) and equal weight is distributed, qk+1

i can
be simplified away and there is no need to take the ratio between xi and qi like in the push-sum
consensus(14):

r−1
1 r2 =

x2
q
x1
q

=
x2

x1
= x−1

1 x2 (15)

With this in mind, the local updates of the push-sum consensus under synchronous communi-
cation, with initialization yi(0), for each i ∈ V are as follows [36]:

y+
i =

1
|Nout

i | + 1
yi +

∑
j∈N in

i

1
|Nout

j | + 1
y j (16)

2.15.7.4 The Rule Update

The push-sum consensus can be extended further to an asynchronous implementation with the
rule update (the structure is equal for zi and z j) [36]:

30

Theory

y+
i =

1
|Nout

i | + 1
yi (17)

y+
j = y j +

1
|Nout

i | + 1
yi = y j + y+

i , ∀ j ∈ Nout
i (18)

The rule update, (17) and (18), shows how the transmitter node i transmits and how the receiving
node j updates its local variables.

2.15.8 Building Block C - Robust Ratio Consensus

Even though the push-sum consensus can be implemented for asynchronous communication,
it loses its convergence properties in the case of lossy communication. For the consensus to
go to the desired value, the masses have to be preserved, even in the presence of lost packets.
Therefore, there is a need for another building block that handles packet loss in the push-sum
consensus.

Robust ratio consensus adds variables σi,y and ρ(j)
i,y , which act as "mass counters" that keep track

of the total mass sent and received. The mass counter variables accumulate for the mass lost,
and hence, the mass is still preserved. The same structure is applied to zi.

σi,y is defined as follows [36]:

σ+
i,y = σi,y + yi, ∀i ∈ V (19)

σi,y(k) acts as a measurement on how much y-mass node i has sent to its neighbors. Moreover,
ρ

(j)
i,y (k) is a measure on the total y-mass node i has received from neighbor node j. They are both

initialized to zero.

ρ
(j)
i,y is defined as [36]:

ρ
(j)+
i,y =

σ j,y, if σ j,y is received
ρ

(j)
i,y , otherwise

(20)

With the robust ratio consensus, the synchronous push-sum consensus (16) can be transformed
into a robust consensus and rewritten as:

y+
i =

1
|Nout

i | + 1
yi +

∑
j∈N in

j

(ρ(j)+
i,y − ρ

(j)
i,y) (21)

One can imagine there exists some fictitious virtual mass on the edge (j, i) ∈ E that is defined as

31

Theory

v(j)
i,y = σ j,y − ρ

(j)
i,y . Under a successful transmission, this value will be zero. However, if there is

packet loss, this variable will accumulate for the additional mass node j wants to send to node i
in the next successful transmission [36].

2.15.9 ra-NRC - Result of Building Blocks

Combining the robust ratio consensus with the update rule from the push-sum consensus, one
gets a robust asynchronous push-sum consensus. Combining this again with the Newton-
Raphson consensus, a robust and asynchronous Newton-Raphson consensus (ra-NRC) is achieved.
See Attachment A8.

2.15.10 Constrained Optimization

Since this project’s cost function (8) contains logarithmic elements which are unbounded above/-
below, the cost function will diverge as an unconstrained problem. Therefore, constraints are
needed and the original problem (7) is reformulated as:

minimize f (x)
s.t. gi(x) ≤ 0, i = 1, ...,m

(22)

where f (x) is the cost function and gi(x) are the constraints.

For unconstrained optimization problems, ∇ f (x) = 0 guarantees that x is an optimal solution.
However, this implication is not quite true for problems that have constraints. Constrained opti-
mization problems need some additional assumptions called the Karush–Kuhn–Tucker (KKT)
conditions. The method used to solve inequalities in this project is derived from these KKT
conditions. For simplicity’s sake, these conditions will not be covered in detail. More details
can be found at "Convex Optimization" by Boyd, S. P. & Vandenberghe, L. [30].

The general idea of how inequality constraints are handled is that the constraints are added
directly to the cost function as their own part of the function. These constraint functions will
increase vastly in value if a constraint is broken, such that the minimizing algorithm will know
that this is not the way to the optimal solution. With this in mind, problem (22) can be rewritten
as:

minimize f (x) +

m∑
i=1

I_(gi(x)) (23)

where

32

Theory

I_(u) =

0 u ≤ 0
∞ u > 0.

The problem with this approach is that I_(u) is discontinuous at u = 0. At this point, the
derivative does not exist and this is a problem for the optimization algorithm. This is why an
approximation of I_(u) is needed [30, pp. 562-563].

The term "objective function" will be used on the whole expression which is being mini-
mized. For example, in equation (23), the objective function is the whole expression f (x) +∑m

i=1 I_(gi(x)).

2.15.10.1 Logarithmic Barrier Function

I_(u) is approximated with a logarithmic barrier function (see figure 20). The approximation is
as follows:

Î_(u) = −
1
t

log(−u) (24)

−4 −3 −2 −1 0 1
−2

0

2

4

u

Figure 20: A plot of Î_(u) with t = 0.5, t = 1 and t = 30. The worst representation of I_(u) being
t = 0.5 (the line that starts the lowest) and t = 30 (line that starts at 0) being what represents it
the best.

33

Theory

The objective function becomes:

minimize f (x) +

m∑
i=1

−
1
t

log(−gi(x)) = f (x) −
1
t
φ(x) (25)

Where t > 0 is a parameter that sets the accuracy of the approximation. Since Î_(u) is convex,
the objective function stays convex. The more t increases the better of an approximation Î_(u)
becomes. If the parameter t is too large, the hessian rapidly varies near the boundaries of the
feasible set, and numerical difficulties occur.

2.15.10.2 The Interior Point Method

A solution to the t parameter problem is to start with a low value of t, then solve the minimiza-
tion problem (25) for that given t with Newton’s method until it converges. Then increase the
value of t with a multiplier of µ and do Newton’s method again, but this time using the last cal-
culated value from the previous Newton’s method as the starting point. These steps will repeat
until a stopping criterion stops it. This method is called the barrier method or the Interior Point
Method (IPM), and can be visualized in figure 21. A suggestion for a stopping criterion is when
m
t < ε, where m is the number of constraints, t is the parameter increased in sequences and ε
is the specified accuracy. It is important to note that this stopping criterion is not meant for a
distributed system [30, pp. 563-569].

34

Theory

Figure 21: The logic behind the interior point method.

Each point calculated with a certain t value (t > 0) is defined as x(t), and the set of points x(t)
will all be in the interior of the feasible region. Hence, the name the interior point method.

Figure 22: The interior point method on an arbitrary function f (x1, x2) = x1 + x2, with unit
circle constraint x2

1 + x2
2 − 1 ≤ 0. Note the function is unbounded above/below, but has an

optimal value with the constraint.

35

Theory

2.15.11 Backtracking Line Search

The backtracking line search algorithm can be used to determine the step size ε of Newton’s
method that appropriately reduces the objective function. This line search is inexact but is quite
effective and simple. It depends on two constants α and β with 0 < α < 0.5 and 0 < β < 1. It is
as follows [30, pp. 464-465]:

Algorithm 1 Backtracking line search for Newton’s method

given Newton direction dk = ∇2 f (x)−1∇ f (x), α ∈ (0, 0.5), β ∈ (0, 1).
1: ε := 1
2: while f (x + εdk) > f (x) + αε∇ f (x)T dk

3: ε := βε
4: return ε

Where the step size starts with unit size and is reduced by a factor of β until the stopping
condition f (x + εdk) ≤ f (x) + αε∇ f (x)T dk is met.

36

Methodology: Introduction

3 Methodology: Introduction
This section focuses on the hardware, software and physical workspace setup utilized in this
project. A general overview of what these methodologies are trying to accomplish is explained.

3.1 Equipment List

3.1.1 Hardware

Table 3: List of hardware utilities with description of the equipment.

Name Description Producer Amount
RPi Raspberry Pi 4, Model B,

8GB RAM
Raspberry Pi 1

SD-card micro SD 32GB 100 MB/s PNY 2
EvoLogics modem S2C R 18/34 USBL Under-

water Positioning and Com-
munication system

EvoLogics 3

Subnero modem M25MRS3 Subnero 2
Stationary PC’s Loaned PC’s from NTNU DELL 2
Monitors For the school PCs and the

RPi
DELL 3

DC-powersupply Supply of power to the acous-
tic modems

GWINSTEK 1

Gigabit Switch NETGEAR 2
Cat 5 cable 5
SubConn,Conductor
inline cable, 6 pin

Waterproof cable SubConn 5

37

Methodology: Introduction

3.1.2 The Physical Modem Setup

Figure 23: Diagram of how the EvoLogics modems were set up for testing in air. Modems
were connected to a switch with an Ethernet cable. All of the modems were connected to a 24v
DC-power supply. Note that this also applies to the Subnero modems.

The modems were connected to a switch with an Ethernet cable. All of the modems were
connected to a 24v DC-power supply as shown in Figure 24.

Figure 24: Image of the setup for the communication test in air with EvoLogics modem.

38

Methodology: Introduction

3.1.3 Software

Table 4 contains a list of software used during this project.

Table 4: List of software that has been used.

Software Description Producer Version
EvoLogics AMA Communication software for

EvoLogics modems
EvoLogics 2.0.5

Raspberry Pi Im-
ager

Used for setting up ubuntu
server on RPi

Raspberry Pi 1.7.5 for Win-
dows

Ubuntu Desktop Environment for working on
a Linux desktop

Canonical Ubuntu Debian
22.04.1 LTS

Overleaf Online Latex editor Overleaf 2020 (legacy)
Google Drive Project and file documenta-

tion
Google

Microsoft Teams Application for meetings and
communication

Microsoft

Visual Studio
Code

Programming environment Microsoft Linux x64.deb

GitHub Code documentation GitHub, Inc.
VirtualBox Virtualization Oracle VirtualBox 7.0.6

39

Methodology: Introduction

3.2 Digital Workplace for Development

This section is about some of the setups the team has used as the virtual workplace. Although
one could use alternative software, following this setup is the most reliable way of reproducing
this project.

3.2.1 Ubuntu OS

The project used hardware and software that was the most compatible with the Linux operating
system. The most recommended version of Linux was the Ubuntu OS, which is based on the
Debian OS (Linux OS -> Debian OS -> Ubuntu OS). Ubuntu is a user-friendly OS that builds
on top of Debian OS and has much of the needed ease of interaction and software available to
use for free [6]. For Ubuntu OS installation, the instructions from the official documentation
were used on desktop machines [7].

3.2.2 Virtualization of the Ubuntu OS with VirtualBox

Although two desktop PCs had Ubuntu OS installed as the main OS, some machines (both lap-
tops and desktops) kept Windows 10 as the main OS, and virtualization to emulate the Ubuntu
OS and work from there.

VirtualBox was used as software for virtualization, as it was available for free and met all the
demands of this project. The installation was done by following the instructions in the official
documentation for VirtualBox: [12, c. 1.5].

A new virtual workspace was created in combination with Ubuntu OS and VirtualBox by fol-
lowing the instructions from the official Ubuntu tutorials for installation of a virtual machine
[13]. The Ubuntu image used was also found on this webpage. The group ticked off the skip
unattended installation check box when the virtual machine was created. The setting
creates a premade user profile without sudo privileges, which is unwanted due to the require-
ment of having sudo privileges throughout the project. If one wishes to install with the premade
profile, it is possible to regain the sudo privileges by following many available guides found on
search engines.

40

Methodology: Optimization Algorithm Code

3.3 The General Idea of Communication and Data Processing Using Dis-
tributed Modems

Figure 25: Basic overview of the data processing and communication between a node i and j

The project has many different parts working together to accomplish a distributed communica-
tion scheme. Our general plan for a solution is illustrated in figure 25.

1. Receive Each node has a method of reception. The method of reception depends on the
modem in use, which in this project is either the EvoLogics or Subnero brand. While
Subnero has a premade method of communication, which is the UnetStack API, and has
its documentation available publicly; the EvoLogics modem has its reception module
created by this projects team, and works differently than the Subnero modem.

2. Reception Processing Due to the way the transmission and reception work, the received
data needs to be transformed into manageable data. This step is shared between this part
and part 3.

3. Algorithm Processing In this step the data is transformed into manageable numbers so
the algorithm module can work with the information. The algorithm updates the received
data and prepares it for part 5.

4. Broadcast Preparation The same as part 2, the data needs to be processed so it can be
transmitted.

5. Broadcast The same as part 1 except it is a method of transmission rather than reception.

41

Methodology: Optimization Algorithm Code

4 Methodology: Optimization Algorithm Code

4.1 Pseudocode

The algorithm structure comes from the pseudocode found in Attachment A8. This algorithm
merges the three building blocks together found in the theory section 2.15, into the ra-NRC
algorithm found in section 2.15.9:

Each block is assumed to be executed atomically and sequentially. This means if a node is
running the estimate update block and a new packet is on the way, the packet is either placed
in a buffer or dropped until estimate update is done running. It is assumed that when a node is
idle, it is ready for reception and that flagrecpetion,i is set to one when a packet is received. The
individual blocks are explained below.

ra-NRC for node i - Initialization block
1: procedure Initialization (atomic)
2: xi ← x0

3: yi ← 0, gi ← 0, gold
i ← 0

4: zi ← In, hi ← In, hold
i ← In

5: σi,y ← 0, σi,z ← 0
6: ρ

(j)
i,y ← 0, ρ(j)

i,z ← 0, ∀ j ∈ N in
i

7: f lagreception,i ← 0, f lagupdate,i ← 0
8: f lagtransmission,i ← 1
9: end procedure

The initialization block initializes variables used by the algorithm. Here the initial guess x0 is
set for the global optimization and values are set to either zero or the identity matrix. This block
will only run once at startup.

ra-NRC for node i - Data transmission block
10: procedure Data Transmission (atomic)
11: if f lagtransmission,i = 1 then
12: transmitterNodeID← i
13: yi ←

1
|Nout

i |+1 yi

14: zi ←
1

|Nout
i |+1 zi

15: σi,y ← σi,y + yi

16: σi,z ← σi,z + zi

17: Broadcast: transmitterNodeID, σi,y, σi,z

18: f lagtransmission,i ← 0
19: end if
20: end procedure

42

Methodology: Optimization Algorithm Code

The data transmission block is where node i prepares the values it is going to transmit to its
neighbors. The values it is sending are the weighted version of yi and zi, plus its node ID. The
weighted versions stem from the first part of the update rule (equation 17 in the theory section
2.15.7.4). yi is the sum of the expression ∇2 f j(x j)x j − ∇ f j(x j), but the value it sends can be
thought of like a little slice of the gradient. hi is the sum of the hessians (∇2 f j(x j)) and the value
it sends can be thought of as a little slice of the hessian. Before sending the slices of yi and
hi, they get added to σi,y and σi,z. The sigmas are counters on how much node i has sent of yi

and hi. The two sigmas are what is being broadcast instead of yi and hi. Since the algorithm
includes these sigmas, the receiving part can store the sigmas it receives and compare sigmas
when the next packet comes. With this, the algorithm preserves the masses, and the algorithm
will still work. The node returns to an idle state after transmitting and is then ready to receive a
new packet.

ra-NRC for node i - Data reception block
21: procedure Data Reception (atomic)
22: if f lagreception,i = 1 then
23: j← transmitterNodeID, (j ∈ N in

i)
24: yi ← yi + σ j,y − ρ

(j)
i,y

25: zi ← zi + σ j,z − ρ
(j)
i,z

26: ρ
(j)
i,y ← σ j,y

27: ρ
(j)
i,z ← σ j,z

28: f lagreception,i ← 0
29: f lagupdate,i ← 1 (optional)
30: end if
31: end procedure

The data reception block is where node i receives the sigmas and the node ID from its neighbors.
The receiving node is going to be noted as node j. Node j runs exactly the same algorithm
as node i but could use a different cost function. One can imagine node j just ran the data
transmission block and now node i has received the h j and y j slices from node j. Lines 24 and
25 in the pseudocode are where the second part of the rule update (equation 18 in the theory
section 2.15.7.4) comes to play. It is written a little differently because of the addition of the
sigmas in the robust ratio consensus, but when there is no packet loss it is exactly the same.
When a packet is lost, the term σ j,y − ρ

(j)
i,y in line 24 will as a result be zero because ρ(j)

i,y was
set equal to σ j,y in the last successful transmission. However, if there is no packet, σ j,y will be
equal to what it was in the last successful transmission. This ensures that the algorithm will not
add any false y-mass and that the average consensus will still converge to the desired value. The
same logic for z-mass is applied to line 25 with σ j,z and ρ(j)

i,z . Because this algorithm is robust to
packet losses, multiple nodes can transmit at the same time, since collision is already handled.

43

Methodology: Optimization Algorithm Code

ra-NRC for node i - Estimate Update block
32: procedure Estimate Update (atomic)
33: if f lagupdate,i = 1 then
34: xi ← (1 − ε)xi + εz−1

i yi

35: gold
i ← gi

36: hold
i ← hi

37: hi ← ∇
2 fi(xi)

38: gi ← hixi − ∇ fi(xi)
39: yi ← yi + gi − gold

i
40: zi ← zi + hi − hold

i
41: f lagupdate,i ← 0
42: f lagreception,i ← 1 (optional)
43: end if
44: end procedure

The estimate update block is where node i uses the values it has received from its neighbors and
updates its own variables accordingly. A Newton’s method step is used in line 34 to update the
local estimate xi of the global optimizer. xi will be more accurate the more nodes have commu-
nicated with each other because the push-sum consensus will make the network progressively
agree on the values of y and g. Additionally, more of the Newton’s steps will be executed. In
line 35, gold

i will be set equal to the last gi value. Later, in line 38, the new value will be cal-
culated and set to the variable gi. In line 39 yi get this difference added. If the old values and
new values are not the same, yi will change values accordingly, and the local estimate xi will
hopefully be sent in the right direction for the global optimal solution x∗. Same logic is applied
to zi, hold

i and hi.

4.2 Resources for Further Improvements

A more detailed explanation of the pseudocode can be found in the thesis "Multi-agent Newton-
Raphson Optimization Over Lossy Network" by Bof, N. et al. [36]. Considerable use was made
out of this thesis. Further, more intricacies about the interior point method, backtracking and
convexity can be found in the book "Convex Optimization" by Boyd, S. P. [30].

Since there are many different parts at play in the ra-NRC, the algorithm has been split into
different Python files for a more structured way of understanding the concepts. There will be
some brief overviews of the content in the different Python files (more details are commented in
the files). All files can be found in Attachment B as Optimization-main-sims (code).zip
or in the Github [62].

44

Methodology: Optimization Algorithm Code

newtons_method.py

In this Python code, Newton’s method is used on an arbitrary three-variable function. To change
the function one can just change the function variable. It has to be a three-variable function
because of the gradient/hessian setup, but one can change this manually if wanted.

backtracking.py

Here Newton’s method is used on a two-variable function. The backtracking line search algo-
rithm is used in the calculateHessianAndGradient() function. To "turn off" backtracking
and see the difference, one can manually set epsilon to 1. Backtracking did not get included
in the final ra-NRC algorithm.

interior_point_method.py

Very similar in style as the newtons_method.py. When Newton’s method makes xi converge,
the interior point method parameter t is increased by a factor of µ. This runs until the stopping
criterion m

t < tolerance is met. See figure 21 for visualization. There are two example functions
available. Note that the first function will require a lower starting t. When using the IPM it is
important to be cautious when picking t values and µ.

scipy_optimize.py

Scipy is a Python library that can be used as a way of finding the optimal point in a centralized
way. It can be useful to compare function values and see if your outputs make sense. Also
possible to add constraints to the optimization problem. Notice the answers can be somewhat
different because the code uses two different methods from the Newton’s method. In the file,
the cost function is used as an example function, with constraints.

ra_nrc.py

The structure of this code is very similar to the pseudocode. The pseudocode however does not
directly include the interior point method. The code does not include packet losses and is an
ideal situation with no float16 restrictions. It is set up such that two nodes, node i and node
j, communicate with each other in a forced sequence. The sequence goes: node i transmits a
packet and node j receives that packet and updates its values. Then node j transmits a packet
itself and node i receives it and updates its own values. After this, the sequences go in a loop.
Notice the interior point method parameter is called bb instead of t. The code is set up such
that bb will increase in value for every gamma iteration. In the first iteration, the step size ε is
initialized to a very small value because when doing the first Newton’s method iteration, the yi

45

Methodology: Optimization Algorithm Code

is 0 so line 34 in the pseudocode would essentially be xi = (1 − ε)xi + 0. This means when
initializing the ε with a low value in the first iteration, the first xi value will not drop heavily in
value. This code could be useful for simulating new ideas and trying new optimization values
to see how the system reacts.

ra_nrc_rl.py

Very similar in structure to the ra_nrc.py with the two node forced sequence. However, this
will represent the ra-NRC in real life, hence the rl suffix. One important difference is that
the sigmas received are float16, instead of the original float32. This causes problems using the
interior point method, so the code will now use a constant IPM parameter, bb = 1. Since this
value is constant, the code will converge towards what is essentially an approximation of the
objective function. If max iterations is modified larger, one will more clearly see the issues
caused by the float16 restriction.

46

Methodology: Implementation of ROS 2 & Subnero Communication

5 Methodology: Implementation of ROS 2 & Subnero Com-
munication

5.1 Installation and Usage of ROS 2 on Ubuntu OS with Python 3.0

Before ROS 2 was ready for development, modification and execution, a preliminary setup of a
ROS 2 workspace and package installation was required. The instructions were followed step-
by-step, which are available online at the official ROS 2 webpage for Debian OS [5]. As per the
documentation, repeated use of sudo apt update was used in order to make sure the system
was up to date when installing new packages.

5.2 Creating the ROS 2 Workspace

5.2.1 Prerequisites

Before creating the workspace some additional features were added for an easier implementa-
tion and continuation of development. A tool developed by the ROS 2 team called "colcon"
was installed for the ease of building each package using the following command in the Linux
terminal from the root folder.

1 sudo apt update
2 sudo apt install python3-colcon-common-extensions

Listing 2: Colcon extension.

Afterward, automatic sourcing of the auto-complete function was installed by running (from
the root folder)

1 gedit ~/.bashrc

Listing 3: Sourcing directory.

and inserting this at the bottom of the bashrc file:
1 '/usr/share/colcon_argcomplete/hook/colcon-argcomplete.bash'

Listing 4: colcon argument auto-complete.

This made sure that every time a terminal in Linux was opened, that bash file was executed in
every new terminal.

47

Methodology: Implementation of ROS 2 & Subnero Communication

5.2.1.1 Prerequisites: Folder Structure

The main folder where all of the ROS 2 utilization was executed, was created in the root folder
of the Ubuntu OS. The workspace folder was manually created through the Ubuntu folder menu.
The structure, as per documentation [2], should be as in figure 26.

Figure 26: The basic folder structure of the ROS 2 workspace.

5.2.1.2 Prerequisites: Colcon Build Again

To finalize the workspace, the build command was used to add the necessary folders (/src, /build,
/install, /log) automatically. The following command was used to finalize the prerequisites:

1 colcon build

Listing 5: The package build command.

5.2.2 Creating the ROS 2 package

After the necessary workspace was completed, a main package was created. The main package
was to be used with Python 3.11 and had to be specified by using ament_python. The name of
the package was chosen to be nodecomx. It is important that the terminal is located within the
/src folder when creating a package:

1 ros2 pkg create --build-type ament_python nodecomx

Listing 6: Package creation.

After the package creation, ROS 2 modules were created by creating python files within the
/ros2_ws/src/nodecomx/nodecomx folder, and writing the barebones ROS 2 code for the
main set-up for the project.

48

Methodology: Implementation of ROS 2 & Subnero Communication

5.3 Creating the Basic ROS 2 Nodes

After the workspace was complete it was ready for node and module implementation.

5.3.1 Receiver Node

The receiver node was meant to be used as a reception node for the UnetStack API and Evo-
Logics API. For all of the ROS 2 nodes, the necessary packages were included:

• import rclpy and from rclpy.node import Node are the imported modules for
Python implementation for interacting with ROS 2 using Python 3.11 [8].

• from std_msgsṁsg import String allowed for the usage of string formatted mes-
sages when publishing and subscribing between topics. The choice for using strings was
due to the changing of the datatype and formatting of the incoming messages through
reception. Using strings made the flow of data easier to handle as the published message
only needed to be turned into a string in order to work.

Due to how the entire system was to function, looking through a bird’s eye perspective, the
receiver node had the timing control of a chain reaction for data flow. This meant that the
receiver node required a timer for cycling itself. This was achieved by using ROS 2 timer
callbacks, however, it was later conceived that the cycling of this node was done automatically
by the receive timeout from the UnetStack API.

The rest of the node followed the basic instructions for ROS 2 Humble for a publisher node,
and the node was ready for further implementation of other modules like the UnetStack API for
Python, UnetPy.

5.3.2 Processing Node

The processing node was implemented with the intention of it being the middleman in the ROS
2 system. This node structure was implemented similarly to the receiving node, however, it is
without the addition of a timer callback and without any implementation of communication with
UnetStack; and instead of just a publisher it also contains a subscriber. Due to the interest of this
node to have the algorithm module for processing the incoming data, most of the development
of the ROS 2 system was done in this node.

49

Methodology: Implementation of ROS 2 & Subnero Communication

5.3.3 Transmitter Node

The last node in the system was the transmitter node and as its name implies, the node has the
task of handling the broadcasting of any message that comes through the topic. The structure is
similar to the receiver node with the exception of only using a subscriber.

The ROS 2 setup ended up having this logical software structure; the flow of data between three
nodes as illustrated in figure 27:

Figure 27: The logic flow of the ROS 2 system for the project. P and S stand for Publisher and
Subscriber.

Before the deployment for testing of the ROS 2 system, it was required to build using colcon
build �symlink-install in the Ubuntu terminal, from the root location of the workspace
(/ROS2_ws). The �symlink-install command to the colcon_build allowed modification
of each node’s code, without building each time after a minor change. The skeleton was ready
for further development and implementation of communication and algorithm processing.

50

Methodology: Implementation of ROS 2 & Subnero Communication

Figure 28: The final structure of the skeleton of the ROS 2 system, is ready to be expanded on.

51

Methodology: Implementation of ROS 2 & Subnero Communication

5.4 UnetStack & Subnero Communication Setup with ROS 2

Before utilizing the UnetStack interface by accessing the web interface, one has to be in the
same network. Two of the Subnero modems that were available to the project had the local
static IP addresses 192.168.42.195 and 192.168.42.86. By changing the address of the
interface machine (an external machine), one can access the modem’s information, settings and
storage through the Unet web interface. The modems and the interface machine were connected
to a network switch, and a new network profile was made in the Ubuntu machine so that the third
segment was the same. The new static local IP address on the machine is 192.168.42.100.
The host ID, which is the last element in the IP address, can be anything between 0 and 255
except 195 and 86, since they are reserved by the Subnero modems (but can be changed through
the use of commands).

Figure 29: On an Ubuntu Debian machine, by going to the Network settings one can change
the address to access the Subnero modem web interfaces. 1: Creating a new profile. 2: through
IPv4 tab a new address is added.

52

Methodology: Implementation of ROS 2 & Subnero Communication

5.4.1 The UnetStack Interface

Figure 30: The UnetStack web interface, which can be accessed by entering the respective mo-
dem IP in a web browser. 1: The power level of the transducer. When testing in air, the level
should be at -40dB. 2: The physical channel layer, JANUS channel. 3: The shell command
window. The interfacing happens through here with the use of commands. 4: A simple mes-
sage transmission, it was not used as much, however, it is useful to test whether the modems
can communicate. 5: The scripts section allows for logging of data and uploading of scripts,
including startup scripts which may be written to change the settings automatically.

For the project, a setup was required before possible communication between the two Subnero
modems. Through the shell, writing the command phy[3] would display the current settings
of the physical layer 3, JANUS; which is the number 2 in figure 30.

53

Methodology: Implementation of ROS 2 & Subnero Communication

Figure 31: This is a printout of the phy[3] parameters in the shell. These are the available
parameters of the JANUS channel.

5.4.2 Physical Subnero Modems

Physical Connection

Before interfacing with the Subnero modems, a physical setup as shown in 23 is required.

Depending on the use case, some settings need to be configured for proper communication.
Reliable communication in air was defined by setting the threshold value to 0.25. In order not
to damage the modems, the powerlevel was set to -42dB. These settings were set by using the
shell within the UnetStack web interface. These settings are not persistent through restart of the
modem, and need to be re-initiated by manual setting or using a startup script:

1 phy[3].threshold = 0.25
2 phy[3].powerLevel = -42

Listing 7: "Settings for the layer 3 channel JANUS".

54

Methodology: Implementation of ROS 2 & Subnero Communication

5.4.2.1 Setting Up the Broadcasting/Reception Settings

Using the JANUS protocol, the message length (amount of symbols) that could be sent is re-
stricted to the frameLength setting. A frameLength of 32 would mean that the entire trans-
mission was 32 bytes long, however only 24 bytes were available for transmission (Maximum
Transmission Unit (MTU)); the JANUS protocol reserves eight of the bytes for its frame. A
frameLength of 8 would mean that there are no available bytes for a cargo inside the frame.

5.4.2.2 For Testing in Air

The messages were broadcast using different methods: as a shell command; through the simpli-
fied message interface; Python with UnetStack API, UnetPy. Only the shell and UnetPy were
the focus.

Using the shell, a message was transmitted using the following command:
1 phy[3] << new TxJanusFrameReq(data: "This is 21 bytes long" as bytes[])

Listing 8: "The transmission command for JANUS".

However, if not specified, the default settings for the frame settings will be applied; appData,
classUserID, and appType will all be 0. In order to transmit correctly, a correct appData
setting must be used in conjunction with the requested frameLength and a classUserID of 16.
The available combinations of appData and frameLength can be found in the attachment A2.

Thereafter, a successful message can be transmitted by using these settings for a 21 byte long
message:

1 phy << new TxJanusFrameReq(classUserID:16, appData:6, data: "This is 21
bytes long" as byte[])

Listing 9: Command for transmission from Subner.

For the message to be received, a command had to be ran to enable reception mode. However,
it was also required to enable subscribe mode, by using the command phy subscribe. For
the Subnero modems that is enough to communicate between them.

However, if receiving from the EvoLogics modems, the following command was used to enable
reception for the Evologics:

1 phy << new RxJanusFrameNtf(classUserID:16, appData:6)

Listing 10: Command for reception.

The modem was able to receive a message transmitted by the other modem. In order to see
the message, one had to unpack it by using the following command right after the complete
message was received (and not the "reception incoming" message):

55

Methodology: Implementation of ROS 2 & Subnero Communication

1 new String(ntf)

Listing 11: "Unpacking the notification message".

The message then would be returned in decoded strings.

For a total list of available commands, one can write help phy in the shell.

5.4.3 Simulated UnetStack Modems

It was possible to simulate two modems using UnetStack simulation. This has been done by
downloading the UnetStack 3.4.0 Community Edition folder from the official website [10], and
opening a terminal on a Linux machine with a directory within the downloaded folder. Using
the following command would simulate two UnetStack modems (not specifically Subnero):

1 bin/unet samples/2-node-network.groov

Listing 12: The groovy files are run from the Unet download folder

For more information regarding simulated modems see the Unet documentation [11, c. II, 4].

5.5 Using UnetPy to Establish Broadcasting and Reception in Python

The usage of UnetPy was mandatory for the usage of the Subnero modems with Python code.
By using the documentation [11, c. III, 9], and with trial and error, a usable code was written
which allowed for basic communication. The transmission code is:

1 from unetpy import *
2

3 sock = UnetSocket(modem_ip , portnumber)
4 rx = sock.getGateway().receive(RxJanusFrameNtf , timeout=5000)
5 print(rx.data)

Listing 13: unetpy reception.

And the reception code is:
1 from unetpy import *
2

3 sock = UnetSocket(modem_ip , portnumber)
4 phy = sock.agentForService(Services.PHYSICAL)
5

6 phy << TxJanusFrameReq(classUserID = 16, appData = 6, data = "15 byte
message")

Listing 14: unetpy transmission.

This setup was all that was needed to establish a JANUS frame communication between the Sub-
nero modems using Python. However, the appData is interdependent with the frameLength,
which is shown in attachment A2.

56

Methodology: Implementation of ROS 2 & Subnero Communication

5.5.0.1 The Float16 Converter

It was essential that the transmitted and received message adhered to a byte format for wireless
communication. To fulfill that requirement a float-to-byte and byte-to-float converter module
was developed in Python.

The converter addressed the need for slicing and assembling a float16 with bytes in an efficient
manner. The module was designed with object-oriented programming principles, enabling ac-
cessibility for both internal and external groups. Within this module, a numerical value was
passed into the numpy.float16 module, subsequently quantized and then manipulated through
the process of slicing the 16 bits into two sets of 8-bit segments. These segments were treated as
int8 datatypes and utilized for transmission purposes. The recombination of the bytes followed
an opposite procedure. A simplified depiction of the data flow within the float16 converter is
presented in Figure 32.

Figure 32: The float16 to bytes converter, and bytes to float16 merger flowchart. Notice the
quantization of the irrational number π; entering π into a float16 quantize its value, and due to
the half-precision of float16 the result ends up being 3.14 on the receiving end.

57

Methodology: Implementation of ROS 2 & Subnero Communication

5.5.0.2 The Final System with ROS 2, UnetPy, Float16 Converter and the Optimization
Algorithm

The implementation of the ROS 2 modules, the UnetPy, the float16 converter and the algorithm
continued after each module was ready. These modules were combined into each of the ROS
2 nodes (receiver, processing, and transmitter). The complete system was then tested and ad-
justed accordingly until non-interrupted communication was achieved, and the processing of
information, was successful.

58

Methodology: Communication Mechanism for EvoLogics

6 Methodology: Communication Mechanism for EvoLogics

6.1 Prerequisites for EvoLogics

This section covers how the setup was done to run code for the EvoLogics modems and how
JANUS was utilized. It includes the necessary installations and preparations before any execu-
tion of the code.

Communication Verification

Before connectivity, a physical setup was required as shown in the introduction of the method-
ology, see section 3.1.2.

The AMA communication software was used the first time to check the connection to the Evo-
Logics modems with the ethernet cable and to test transmission between the modems.

6.1.1 Installing Programs and Libraries for EvoLogics Communication Development

The commands used for the necessary installations are described below. They were executed in
the terminal on the virtual machines. The following steps can also be found on the GitHub [48]
and in the previous bachelor group’s thesis [53, p. 13].

Make and Cmake

Make and Cmake were installed to be able to compile the code. The version used by the group
was: GNU Make 4.3.

1 make -version
2 sudo apt install make
3 sudo apt install build-essential
4 sudo snap install cmake --classic

Listing 15: Installing Make, Cmake and some essential packages for compiling. Build-essential
also includes Make [61].

FFTW3

The FFTW3 library is required to run JANUS and is described in the document "README
-JANUS Tool Kit 3.0.1" [56]. There was created a new folder in the "lib" folder called "fftw"
and the FFTW3 was installed in this folder.

59

Methodology: Communication Mechanism for EvoLogics

1 cd project/lib/fftw
2 wget https://fftw.org/fftw -3.3.10.tar.gz
3 tar -xzf fftw -3.3.10.tar.gz
4 cd fftw -3.3.10
5 ./configure
6 make
7 sudo make install
8 make check

Listing 16: Terminal commands for FFTW3 configurations: The "project" in line 1 must be
replaced with the current projects name.

Libreadline

libreadline needs to be installed to be able to run the SDMSH library [50].
1 sudo apt-get install libreadline -dev

Listing 17: Terminal command for installing libreadline.

6.1.2 Compilation

Compiling for SDMSH and JANUS

Compiling the SDMSH library:
1 cd project/lib/sdmsh
2 make

Listing 18: In the SDMSH library folder, run make to compile.

Setup and compile the Janus-c-3.0.5 library:
1 cd project/lib/janus-c-3.0.5/
2 cmake -S . -B bin/
3 cd bin
4 make
5 sudo make install

Listing 19: In the janus-c.3.0.5 library folder, create a bin folder using cmake. This bin folder
must be compiled using sudo make install.

The command make was used when modifications were made to either the SDMSH or the JANUS
library. Sometimes the group got an error after trying make in the janus-c-3.0.5. To fix this, the
bin was deleted and made again following the steps above.

60

Methodology: Communication Mechanism for EvoLogics

6.2 Setting up the EvoLogics Modems

In this section, the wiring and settings needed for both the Receive (RX) and Transmit (TX)
modems will be explained. The "Getting Started Guide" for the S2C EvoLogics modems was
read and reviewed before conducting any testing. This guide provides a detailed description of
what to be thoughtful about when using the modems. The guide is listed as a source; however,
it is not accessible on the internet [54].

6.2.1 Setting the PHY-mode

PHY mode is required to be able to use the SDMSH library [50]. The mode was set in two
different ways.

One way was using the AT command: Connect to the modem using Netcat, and use the AT
commands. This was done with the command:

1 nc MODEM_IP MODEM_SOCKET #Default socket is 9200
2 +++ATP

Listing 20: Setting the modem in PHY mode. To check if the modem is already in PHY mode
use the AT?S command instead of ATP.

When the modem was set in "PHY" using this method, a message was printed to the terminal
when successful:

1 +++ATP:14:INITIATION PHY

Listing 21: The modem is in PHY mode when receiving the message "INITIATION PHY".

Using stop; in the SDMSH commands is another way of setting the modem in PHY mode.
1 ./sdmsh mIP -e 'stop;config ...'

Listing 22: This is an example of how to use stop; in the config command to set PHY mode.

The AT command for the EvoLogics modems was used in early testing, later stop; was used
instead. It was implemented as a default setting for many "Evo_janusXsdm"-commands and is
a part of the final code.

6.2.2 Setting the Modem Configurations

The configurations for the modems were set before starting a transmission. Choosing the wrong
configuration can damage the modems. In air it is important to choose the lowest source setting.
Therefore the source value 3 was chosen [54, p. 22].

The code created by the previous bachelor group had two functions: one for configuring settings
and another for determining the source level. The group used both of the functions when testing
and they were implemented in the new library "Evo_janusXsdm".

61

Methodology: Communication Mechanism for EvoLogics

SdmConfig() was used for manual source level control. It gave an option for choosing a value
between zero and three in the terminal, where "3" was the lowest setting. This function used
the following command to set the source level:

1 ./sdmsh mIP -e 'stop;config 30 0 X 0'

Listing 23: The X is the placement of the source value.

SdmConfigAir() was used to set the source level automatically to the lowest level, which is
best suited for testing in air. This is done by the function running the command and changing
the third number representing the source level to three:

1 ./sdmsh mIP -e 'stop;config 30 0 3 0'

Listing 24: The source value is set to 3.

6.2.3 Setting the Reference Signal

Preamble is a reference file that helps the receiving modem understand and recognize that it
is detecting a JANUS packet. This enables the modem to pack out the message as a JANUS
packet and make sense out of it. It is important to note that other modems also need to use the
same preamble as reference.

Preamble is a file that was provided to the previous group by Emil Wengle, and it should resem-
ble the JANUS reference signal.

SetPreamble() was used to set the preamble by using the preamble.raw file in a SDMSH
command:

1 ./sdmsh mIP -e 'stop;ref preamble.raw'

Listing 25: Setting preamble.

62

Methodology: Communication Mechanism for EvoLogics

6.3 Preliminary Work for Evo_janusXsdm Implementation

This section is about different problems the group has encountered while working on this
project, and the solutions it resulted in. Not every little problem will be mentioned; the fo-
cus will be on the decisions which lead to the final product.

Two main problems described by the previous group were the "zombie problem" and the "100
Packet problem". It was decided to try to fix the zombie problem first.

6.3.1 Transmission Process - a Minor Zombie Problem

In the previous bachelor group’s presentation, it was explained that they were not able to close
some processes the right way [65, t. 20:15]. The first thing our group did was to run the pre-
viously developed code. To check if there were zombies, the command ps -ef was used in
the terminal. It was discovered that almost every time the commands for TX were executed, it
would create zombies.

The next step was to look at what caused the zombies and how the different processes were
handled. In the library, fork() and execvp() were used to create new processes which were
not done correctly. To fix this, the group had to implement the right amount of wait(0), and place
them in the correct place in the code. The ps -ef command was used to check, all zombies
were gone.

6.3.2 Receiving Process - a Major Zombie Problem

Zombie problems happened as well when executing the RX command. Here, the zombies were
generated at a significantly higher speed compared to the TX command. After reviewing the
code and conducting many tests there were uncovered two main problems. One, for the code
to work properly the parent process needed to be able to work individually while the child
processes did work on their own. Two, it was not implemented a way of closing the processes
for JANUS and SDMSH. In the code to the previous group, it was attempting to use kill()
commands.

Figure 33: This illustration provides an example of the generation of processes. First Gen 2 was
created using fork(), then the process image is swapped to a shell. Finally, the Gen3 process
gets created through an argument executed from the shell. Either ./janus or ./sdmsh.

63

Methodology: Communication Mechanism for EvoLogics

The first thing done was to map out the processes, figuring out the parent-child relations. It
was revealed that there were three generations of processes and not two, and it was the last
generations that was not reaped properly. This was due to using fork() once and using an
execvp() command to launch a new process. This excluded the use of kill() where there
was no access to the process identifier (PID) of the Gen 3 process, see figure 33.

Following this, a technique called "double forking" was implemented which would cut the
connection between the parent and the child processes. Now the parent and the children could
work individually.

6.3.3 Transmission Process - Stops, But Does Not Terminate

A new problem was identified when conducting more tests. When running the code for trans-
mitting JANUS packets it would stop without any warning and it did not exist. Before the fault
occurred, a short sound could be heard from the modem and a DROP message was printed
from the janus-c-3.0.5 library. The next packet was not sent and a TCP error was printed to the
terminal.

Since there was no way of knowing where and why the fault occurred in the code, there were
added printouts to files for different places in the code. After a while, it was possible to pin-
point where the fault was. Incorrect use of read() from a pipe() leads to a problem called
Producer-Consumer problem. The reason for this problem was the way the read() was imple-
mented to read from pipe. The code required a specific string in order to exit; the string would
be received from the pipe. In the case where the pipe did not receive this string and the pipe
was emptied, the process would go into a "wait to read state" that could last indefinitely if no
new data was written to the pipe. This would happen when the JANUS and SDMSH processes
had terminated.

Based on this, Poll() was implemented before reading from the pipe. It adds a timeout so that
the reading does not wait indefinitely. The code was now able to handle errors in a good way
without getting stuck.

6.3.4 Transmission Process - TCP DROP Error

Stemming from what was discovered in section 6.3.3, the underlying problem was still there;
where two packets got lost and a printout was printed to the terminal:

» rx cmd REPORT: DROP 2544

» ERROR: failed to open output stream ’tcp’ with argument ’connect:127.0.0.1:9914’:
connecting socket: Connection refused

» ERROR: failed to initialize transmitter.

64

Methodology: Communication Mechanism for EvoLogics

The first step to solving this problem was to run the ps -ef command and track the PID. This
made it possible to map in which order the JANUS and SDMSH processes were running. It
became clear that some processes did not exit properly, and this led to multiple processes trying
to use the same TCP port simultaneously. This made a chain of lost transmissions. The error
would occur approximately every 10th transmission between 2 to 4 packets in a row would be
lost.

A stop; command was added to the SDMSH command line [52]. This significantly improved
the TCP problem. When running the SDMSH and JANUS processes for transmission, the
problem would now only happen in approximately 1 of 100 transmissions. Also, only 2 packets
were lost now compared to the previous 2 to 4 packets in a row.

6.3.5 The 100th Packet Problem

The 100th packet problem was mentioned by the previous group. It was not documented how
the transmissions were done when it occurred. An email was sent to the previous group and
it was explained that they had transmitted a number starting from 0 and increased with +1
for every transmission. Once the number reached 100 or higher, every other message became
corrupted.

The group decided to redo some of the previous calculations of the number of samples. The
number of samples in the JANUS packet is needed to use the TCP connection between JANUS
and SDMSH. Having a sample value that is too low can lead to parts of the JANUS packet being
"cut short" and one would experience corrupt packets. It was uncovered that how the number
of samples were calculated in the previously developed code had this problem. The packet
would be corrupted if the cargo used 3 bytes or more. That meant the packet was corrupt when
the cargo was for example "100". Also, the calculation method did not consider that certain
characters used 2 bytes instead of 1 byte.

Therefore, a new method was developed for calculating the number of samples. After imple-
menting the new method no corruption would occur. The new method can be found in section
6.4.2.1.

6.3.6 Receiving Process - Cannot Detect Every Other Packet

The next problem was that almost every other packet received was lost when receiving. At
this point in the project, the RX commands would establish contact, setting up a new pipe
and closing it again when one packet was received. The underlying problem was that multiple
processes were trying to run at the same time.

A new solution was made where the SDMSH and JANUS processes were not closed and would
operate over multiple receptions. This was done by not closing the SDMSH and JANUS pro-
cesses and continuing to read from the same pipe over time. Now it was possible to listen over

65

Methodology: Communication Mechanism for EvoLogics

a longer period of time without faults. This new method was an early version of listenRX()
and can be found in section 6.4.3.

6.3.7 Finding a Way to Stop JANUS and SDMSH

There was a need for closing the JANUS and SDMSH processes for the receiving modem. This
was to be able to switch between receiving and transmitting on the same modem. The main
problem here was the use of the execvp() command to open JANUS and SDMSH. When
using the execvp() command, the process-image gets switched from C++ to a shell. The
consequence of this is that the control over the code will be "lost". It is no longer possible to
call an exit command within the shell process. However, the shell will close automatically if
the process initialized by the shell closes, this would be the JANUS and SDMSH process.

Knowing this, an attempt was done to find a way of closing both the SDMSH and the JANUS
process. In the documentation for the SDMSH and JANUS library, it was not found a closing
command. It is however mentioned a stop command in a TODO.txt in the SDMSH code. The
group concluded that this had not been implemented in the SDMSH library yet. There was
conducted a test to better understand how the JANUS and SDMSH processes worked together.
This was done by manually starting the JANUS and SDMSH processes in terminals, as de-
scribed in section 6.8. There was found a new method for closing both the JANUS and SDMSH
by crashing the processes, it was done by running an additional SDMSH process. This method
of stopping the processes is implemented in the final code.

6.3.8 Issues With Receiving the First JANUS Packet

After solving the problem "Cannot Detect Every Other Packet" in section 6.3.6, there was still
an issue with not always receiving the first packet after a new SDMSH and JANUS process was
created. The fault would then occur almost half of the time when receiving. It was also observed
that a sound sample was received by the modem, but not decoded by JANUS; meaning that the
preamble was not detected.

66

Methodology: Communication Mechanism for EvoLogics

Figure 34: The debugging
process method by elimina-
tion. Functional parts are
identified with a green check
mark, while areas with po-
tential issues are marked
with a red "X"

1. A test with three EvoLogics modems was done to figure out
if it was a problem with the receiving or transmitting part of the
communication. One of the modems would transmit a JANUS
packet and the other two modems would receive it. By doing
this test it was discovered that the transmission was not the issue.
This was concluded when two modems were set to receiving,
where one would receive a packet and one would not receive the
same packet.

2. Thereafter, a test where done to rule out if the use of the
stop; command in SDMSH was causing an issue since this also
sets PHY-mode. By testing with and without it, without any dif-
ference, it was ruled out.

3. Next test was to redirect the data from SDMSH to a .raw file,
where the data stored in the file should contain the error. Then,
the .raw file with the error could be sent into the JANUS library
and be decoded multiple times. The goal was to exclude the
JANUS library. This was done by checking if the error would
still occur the same way as before, when using the .raw file in-
stead of TCP. Since the error did not disappear, JANUS was ex-
cluded as the problem.

4. The problem had been narrowed down to either SDMSH pro-
cess or the modem itself. The hypothesis was that the issue had
something to do with the initialization of the receiving process
or an ACK-process that starts when receiving the first JANUS
packet.

5. The last test was changing the threshold level on the modems.
Changing the threshold was done by changing the first of four
variables in the SDMSH config command. The threshold value
was changed from 30 to 8. A change in the threshold value re-
sulted in solving the problem of not always receiving the first
packet.

67

Methodology: Communication Mechanism for EvoLogics

6.4 Building the Evo_janusXsdm Library

Adjustments were made to the code developed by the previous group; some parts have been
redesigned to work differently, and some parts are new. This section is about how the code was
built.

6.4.1 Establishing a Framework for the Library

A new library was built in the existing framework from the previous bachelor group’s library.
Three functions were kept as they were, but given new names: sdmConfigAir, sdmConfig and
setPreamble(). Also the use of a "Constructor" was kept and expanded upon.

6.4.2 Explanation of the Transmission Process

In order for a modem to send a message, two processes must be executed. First, an SDMSH
process, where a connection to the modem is established; then, the creation of a TCP socket.
The second process is a JANUS process that takes a message from the user as a string and packs
it into a JANUS packet as cargo. While the packet is being made, the process connects to the
TCP socket of the SDMSH process. The modem can now start a transmission and send the
packet.

6.4.2.1 Calculate the Number of Samples

A JANUS packet consists of a certain number of samples. This amount is needed for the TCP
connection between the JANUS and SDMSH. The reason behind creating this function can be
found in section 6.3.5.

The getNumberOfSamples function was developed to calculate the samples needed depending
on how many bytes the cargo consisted of. It packs the message string into a JANUS packet
and stores the data in a .wav file. It will then read the .wav file. The first 44 bits of this file
are skipped, since this is the header in a .wav file. Next, a loop will read the file and count the
samples by the size of 16-bit. The function will return the number of samples counted.

6.4.2.2 Calculation of the Reservation Time

The document ANEP-87 describes what the different bits in a particular JANUS frame mean.
When attaching a cargo to a JANUS packet, some bits need to be changed so that the receiving
modem knows how to read the contents of the cargo. In janus-c-3.0.5, when adding reservation
time, it also flips the bit for "Schedule Flag". Reservation time tells the receiver the duration
of the cargo; only the duration of the cargo, not the whole JANUS packet. A table for the

68

Methodology: Communication Mechanism for EvoLogics

reservation time can be found in ANEP-87 [57, p. B-1]. The command for adding reservation
time in janus-tx is as follows:

1 --packet-reserv-time <reserv_time >

getPacketReservTime() is a private function in the Evo_janusXsdm library. It takes in the
number of samples from the function getNumberOfSamples(), see section 6.4.2.1. It then
calculates the time it would take to read the cargo and returns this value as a float.

The reservation time is calculated by using this formula:

samples in cargo = samples total packet − samples no cargo (26)

Reservation time =
samples in cargo

samples total packet
(27)

Samples in cargo: samples only in the cargo of the packet.
Samples total packet: samples in whole packet.
Samples no cargo: samples in a whole packet without a cargo.

6.4.2.3 Starting the Transmission Process

startTX() is a public function that is used to start the transmission process and send a message.
A new function was created instead of building on top of the code from the previous bachelor’s
project. A decision was made to redesign the structure of the multiprocessing such that every
process would be reaped properly. The image below illustrates the new structure, indicating the
order of the processes through the "PID" label (Figure 35):

Figure 35: Here are the different processes that are initialized by startTX visualized. It il-
lustrates in what order one could expect the processes to run by looking at the PID. First, the
parent will fork twice and create SDMSH and JANUS processes. In the upper left corner one
can see what kind of process image is used. In the bottom is the PPID and PID for the given
process.

69

Methodology: Communication Mechanism for EvoLogics

It starts by running the two functions: getNumberOfSamples() describe in section 6.4.2.1 and
getPacketReservTime() in section 6.4.2.2, and stores the return values for later use. Then
fork() is used to create two new processes, one for SDMSH and one for JANUS.

The new SDMSH process will use the execvp() function which will swap out the current
process image, which is of the type C++, to the new process image type shell. The new shell
process will take in arguments and run those much like one would run an argument in the
terminal. The first part of the argument is the path to the folder where the ./sdmsh i placed.
Then an argument is used to run the ./sdmsh. Here a TCP socket is created which is used for
transferring data to the modem by utilizing the SDMSH library.

1 cd project/lib/sdmsh
2 ./sdmsh mIP -e 'stop; tx NumberOfSamples tcp:listen:127.0.0.1:TX_PORT;

Listing 26: In the SDMSH library, run the command to create a TCP socket. This is an example
from the developed code, and will not work copied in the terminal without changing Number
Of Samples and TX_PORT.

The JANUS process is delayed by 500 ms. This is because the SDMSH process needs time to
set up the TCP socket. The JANUS process uses the execvp() function the same way SDMSH
did.

1 cd project/lib/janus-c-3.0.5/bin
2 ./janus-tx --pset-file ../etc/parameter_sets.csv --pset-id 2 --stream-

driver tcp
3 --stream-driver-args connect:127.0.0.1: TX_PORT) --stream-fs stream_fs
4 --stream-format S16 --packet-reserv-time reserv_time
5 --verbose 9 --packet-cargo "message";

Listing 27: In the janus-c-3.0.5/bin folder, run the command to create a TCP connection to the
socket created in Listing 23. This command will send "message" as cargo in this JANUS packet.

• −−pset-file refers to the file parameter_sets.csv where the acoustic frequency
specifications is stored and −−pset-id decides which of these settings to use. The path
is from the folder of ./sdmsh, and not from where the main code is running.

• −−stream-driver and −−stream-driver-args sets up the TCP connection from
JANUS to SDMSH.

• −−stream-fs stream_fs sets the sampling frequency.

• −−packet-reserv-time adds the reservation time for JANUS. Use the time that has
been calculated in getPacketReservTime() as the argument.

• −−verbose 9 is the information we get in the terminal when creating a JANUS packet.
It can be arbitrary, but the "Evo_janusXsdm" library uses "9" to get the right information.

• −−packet-cargo are the messages written to the JANUS and needs to be a string.

70

Methodology: Communication Mechanism for EvoLogics

When the Parent process has made both forks, it will wait for the JANUS process to exit, with
PID 2 (Figure 35). This way, one knows when the transmissions has ended. The Parent uses
the wait(0) function to wait for the child processes to give an exit signal. When the Parent
gets the signal, the Child get reaped. When the Parent has closed both the JANUS and SDMSH
process, it exits and returns to where the startTX() was called from.

A flowchart has been made to demonstrate this process, see attachment A6.

6.4.3 Explanation of the Reception Possess

In order for a modem to receive a message, two processes must be executed. First, a JANUS
process where a TCP socket is created. It then waits for a data input to the socket. The second
process is an SDMSH which connects to the TCP socket created by JANUS and redirects its
output to it.

The structure of how these processes are executed has been redesigned. It was implemented as
a "double fork", mentioned in section 2.3.9. "Double fork" is a technique that helps to cut the
connection between a parent process and a child process. The thought behind this was to let the
parent process have the freedom to work without interruption. The children will now be reaped
by an init process and will not become zombies.

This is illustrated in figure 36 below, where the JANUS and the SDMSH processes are discon-
nected from the Parent by killing the Dummy process. When this happens, an init process will
become the new parent process of SDMSH and JANUS. Init is designed to reap processes and
therefore there will not be any zombies.

Figure 36: Illustration showcasing the redesigned process structure using the "double fork"
technique. The parent process achieves freedom to work by disconnecting itself from the JANUS
and SDMSH processes through the death of the Dummy process. The init process assumes the
role of the new parent process for SDMSH and JANUS. It will then wait to reap them, and by
that, preventing the creation of zombies.

In the library Evo_janusXsdm, four functions have been created that are categorized as part
of "RX_FAM". The startRX(), listenRX(), stopRX() and closePipeRX() functions all

71

Methodology: Communication Mechanism for EvoLogics

fall into this category. These functions are designed to be modular pieces, where each piece
initializes a part of the receiving process.

In the startRX() function, a similar approach is used to execute JANUS and SDMSH as in
the case of the startTX() function by using execvp(), with a small difference. The output
stream of the JANUS process is connected to a pipe, allowing the parent process to read the
output generated by JANUS. When the execution of the startRX() function is ending, this
pipe is returned. This enables the main program to have access to JANUS by handling the pipe.
startRX() will end as soon as the Dummy process dies.

The arguments in section 28, for the startTX() function are the same for the startRX(). The
big difference from TX is that the −−verbose is set to "1". This is to gain access to the right
amount of information from the JANUS process.

1 ./janus-rx --pset-file ../etc/parameter_sets.csv --pset-id 2
2 --stream-driver tcp --stream-driver-args listen:127.0.0.1:RX_PORT
3 --stream-fs 250000 --verbose 1

Listing 28: In the janus-c-3.0.5/bin folder, run the command to create a TCP socket.

1 ./sdmsh mIP -e 'stop;rx 0 tcp:connect:127.0.0.1: std::RX_PORT'

Listing 29: In the SDMSH library, run the command to create a TCP connection to the socket
created in Listing 25. The modem will be ready to receive JANUS packets when this command
has been ran.

To read the content of the pipe created, listenRX() is used. It takes the pipe and a message
string as an argument. It uses pointers for both the pipe and the message string. This enables the
listenRX() to write to variables outside of the function itself. To read the pipe, the pull()
function is used to prevent the costumer-producer problem. If there is something in the pipe, it
will read from it. When a cargo is found in the JANUS packet, the content of the cargo will be
added to the shared message string. If the pipe never gets data, the timeout in poll() will end
the function and return. In addition to the cargo, it is possible to retrieve more information from
the JANUS frame. This is done by returning an array.

Due to the nature of how the execvp() function works, it was no good way of closing the
JANUS and SDMSH processes, see section 6.3.2. An alternative method was developed, it in-
volved crashing the two processes, the SDMSH and JANUS process, by running a new SDMSH
process. A function was made for this called stopRX(). The command for this is:

1 ./sdmsh mIP -e 'stop;rx 0 tcp:connect:127.0.0.1:std::RX_PORT'

Listing 30: This is a command ran in the SDMSH library to create a TCP connection. If two of
these commands is ran right after each other, all receiving processes will be stopped.

The last function in the collection of receiving (RX) commands is closePipeRX(). It takes the
pipe connected to the JANUS process from earlier, as an argument and closes it.

The startRX, listenRX, stopRX and closePipeRX functions makes it possible to build many
different types of receiving processes. For instance, there was made a user-friendly function

72

Methodology: Communication Mechanism for EvoLogics

called listenOnceRXsimple, designed specifically to simplify the process for users where
they do not need to handle pipes directly. This is how it was built:

1 startRX();
2 listenRX(fd_pipe,message);
3 closePipeRX(fd_pipe);
4 stopRX();
5 return message

Listing 31: Shows how the different functions for the receiving process is used together to create
the listenOnceRXsimple() function.

A flowchart that describes the different uses of startRX, listenRX, stopRX and closePipeRX
can be found in Attachment A4. An additional flowchart has been made for the
listenOnceRXsimple, see attachment A6.

73

Methodology: Communication Mechanism for EvoLogics

6.5 Communication Setup Between Evologics and Subnero

To make the EvoLogics and Subnero modems able to encode and decode messages from each
other, the EvoLogics needed to be edited to the standard of ANEP-87 [57]. This included steps
like altering interleave.c and deinterleave.c, changing sampling frequency, bandwidth
and other settings so they could correspond to ANEP-87. Some settings need to be checked on
the Subnero modem as well.

A document with different settings between EvoLogics and Subnero was made and can be found
in Attachment A2.

6.5.1 Edit Janus-c-3.0.5: Interleave

The files interleave.c and deinterleave.c from the janus-c-3.0.5 library were altered.
The main function janus_interleave() in "janus-c-3.0.5/src/c/janus/interleave.c"
builds a permutation table, see Theory section 2.6.5 for more details. In order for the Subnero
modems to recognize the packet, the interleaved order in the JANUS library, used by EvoLogics,
needed to follow the ANEP-87 standard. This is due to an error in the ANEP-87 documentation
as explained in Theory section 2.6.1.

The interleaved sequence from ANEP-87 was achieved by adding an if-statement in the building
of the permutation table. The if-statement will check if the previous number in the permutation
table added with the “prime” is greater or equal to the length of the packet. When the if-
statement is true, it will give this position in the permutation table the number n. The variable n
starts on one and is increased by one every time the if-statement is true.

6.5.2 Edit janus-c-3.0.5: Deinterleave

The deinterleave.c code was altered similarly, however the permutation will also be per-
formed in the if-statement and not after. The janus_deinterleave function in the deinterleave.c
file will do the opposite of the interleave. It is coded such that it takes the interleave order from
the ANEP-87 and makes it go back to the order the sequence was before the interleaving.

The deinterleaved sequence is achieved by using an if-statement that works almost exactly the
same way as the one added to the interleave function. However, it is the index that will be
changed, which means that it will be decided by the placement in the permutation table.

6.5.3 Setting Sampling Frequency

The sampling frequency should be set to 250 kHz for the JANUS packet. On EvoLogics, this
is done by using the command −−stream-fs in the command line for ./janus. The same
should be done on Subnero.

74

Methodology: Communication Mechanism for EvoLogics

For EvoLogics, when altering the sampling frequency, the sampling count for the TCP con-
nection between JANUS and SDMSH will change. If this is not taken into account, it could
lead to corrupt packets. A sampling frequency of 250 kHz is implemented in the new library
Evo_janusXsdm as a default setting.

Sampling frequency needs to satisfy the Nyquist sampling theorem. A fs of 250kHz fulfills this
requirement by a good enough margin [56, p. 52].

6.5.4 Acoustic Frequency Specifications

Some of the settings used in this thesis might differ from the ANEP-87 document. It is discussed
in section 8.7.1. These settings should match the EvoLogics and Subnero modems.

The acoustic frequency band specifications which are used:
Fc = 23040 [Hz] or Fmin = 18880 [Hz]

Bw = 8329 [Hz]

Frequency slot, width and chip duration:
FS w = 320 [Hz]

Cd = 0.003125 [s]

On the Evologics, the settings were set in the file parameter_sets.csv. The FS w and Cd will
be calculated automatically by the JANUS library.

On the Subnero modem, this setting needs to be set to fmin = 18880, hops = 13 and fstep = 320.
The Bw will be calculated automatically.

6.5.5 Sending a Message/Cargo from EvoLogics to Subnero Using JANUS

On EvoLogics, one needs to set up the configuration and start the transmission process, see
section 6.2.2 and 6.4.2. Then write a message as a string and send it.

On Subnero one needs to use the same command as mentioned with Subnero communication
in section 5.4.2.2, command 10.

1 phy[3] << new RxJanusFrameNtf(classUserID:16, appData:6)

Listing 32: Command for reception.

In order to unpack and read the message, the same actions are required as mentioned in section
5.4.2.2, command 11.

1 new String(ntf)

Listing 33: Unpacking the notification message.

75

Methodology: Communication Mechanism for EvoLogics

6.5.6 Sending a Message/Cargo from Subnero to EvoLogics Using JANUS

On EvoLogics, one needs to set up the config, preamble and start the receiving process. See
section 6.2.2 for configurations and section 6.2.3 for setting the reference signal.

On Subnero, one needs to use the same command as with how transmission was done between
the two Subnero modems using the JANUS channel. From the section 5.4.2.2, listing: 9.

1 phy << new TxJanusFrameReq(classUserID:16, appData:6, data: "This is 21
bytes long" as bytes[])

Listing 34: Command for transmission from Subnero.

When using TX on Subnero, the reservation time and application data need to be chosen. Reser-
vation time will say how long the duration of the cargo will be. The "appData" tells how long it
is. These settings are parameters that belong in the JANUS frame and tell the RX how to read
the cargo [57]. If one has the wrong settings, the receiving modem will get no cargo or a corrupt
cargo. A guide/table for choosing these parameters has been made, see Attachment A2.

The size of the cargo in a JANUS packet is not linear. This is due to the use of bits in "appData"
in the JANUS frame. Those bits are used to inform the receiver about the expected cargo size
and therefore it increase in steps.

On the EvoLogics, the "appData" is automatically selected based on the cargo size (the message
sent as a string), but the reservation time needs to be calculated. This is implemented in the new
library Evo_janusXsdm, see section 6.4.2.2.

76

Methodology: Communication Mechanism for EvoLogics

6.6 Field Test in a Water Tank

Figure 37: This illustration
shows the different measure-
ments used during the main
tests. The tank itself is
depth: 175 cm, length: 302
cm, width: 202 cm.

The purpose of this test was to assess the performance of the
modems in underwater conditions. By conducting a series of
tests, where different variables were shifted. The goal was to
gain insights and better understand the EvoLogics modems.

The tests were done in a tank at Gløshaugen with the same di-
mensions as illustrated in figure 37 to the right. The modems
were connected and attached to a metal rod as shown on fig-
ure 38 below. The setup for cables and the PC was done like
in section 3.1.2, but without the switch. There were used two
computers where each computer was directly connected to one
modem. The code for the receiving modem used an early ver-
sion of the function listenRX(). This means that the code for
RX did not reset during the test. The code for TX was the same
as startTX().

There were three main tests where the source level would be al-
tered. For each test, printouts to .txt files were used. This was a
way of documenting what was sent and received. For every test
run, the TX modem would send a number, starting at zero and
increased by one for every transmission.

First, a test with source level 3 was conducted. The group waited
for the modem to successfully receive over 100 packets. The
same was done with level 2 and 1. However, the sound when
conducting the test with source level 1 was unpleasant to hear,
enough that the test was canceled after ten transmissions.

There were done some tests where the modems were closer to
the side of the tank. No measurements were taken, but it was
about 10 to 15 cm from the side of the tank.

Figure 38: Here is an image of the actual setup for the three main tests conducted.

77

Methodology: Communication Mechanism for EvoLogics

6.7 Testing In Air - Subnero and EvoLogics, With JANUS

The purpose of these tests was to assess the possibility to communicate with Subnero modems
and EvoLogics modems using JANUS. When communication was achieved, the team would
continue testing and documenting different settings that needed to be altered in order to send
different types of data. By conducting a series of tests where different variables were shifted, we
aimed to gain insights and gain a better understanding of the EvoLogics and Subnero modems.

The tests were done in air where the EvoLogics modem was placed between 40 cm to 100 cm
from the Subnero modems. The setup for the EvoLogics modem was done as in section 3.1.2.
The setup for Subnero modems was done as in section 5.4. Also, the EvoLogics modems were
lying on the table while the Subnero modems were standing as shown in figure 40 below.

There were done two tests. First, a much smaller test where the goal was to get one successful
transmission between the Subnero and EvoLogics modem. Since it was not done before, the
right settings needed to be figured out. The setup for a successful transmission is described in
section 6.5.

The second test was the main test. Here the team would test many different settings for the two
modems with a focus on JANUS. Many settings described in ANEP-87 were tested and written
down. A table was made where settings that worked between the EvoLogics modem and the
Subnero modem were noted. The code used for the EvoLogics modems for receiving was an
early version of litenRX(). This meant that the RX code did not reset during tests. The code
for TX was the same as startTX().

For the Subnero modem, commands were done with the browser interface. Commands for
JANUS were used as described in section 6.5.5 and 6.5.6.

Figure 39: This illustration depicts the setup of the two modems during the testing. The Subnero
modem is shown in a vertical orientation, while the EvoLogics modem is shown in a horizontal
orientation.

78

Methodology: Communication Mechanism for EvoLogics

6.8 Test to Find Reliable Termination of JANUS and SDMSH Processes

This test was conducted to find a new way of closing the JANUS and SDMSH processes. It was
observed that during the use of the EvoLogics modems, some processes would terminate as a
result of running multiple commands in a row. This realization was the reason for conducting
the test. The results were used to solve the problem outlined in section 6.3.7.

The tests were conducted in air with two EvoLogics modems, which were placed 10-20 cm
apart from each other. The setup for the modems was done as described in section 3.1.2.

Under the test, different commands were written directly to the terminal for both JANUS and
SDMSH. These commands are written at the top of this document, see the attachment A3.
The commands were for starting new processes for JANUS and SDMSH, where many different
combinations of such commands were tested to see if a reliable method of closing could be
found.

All results were documented. But, this document only contains the final sequence see attach-
ment A3.

Figure 40: This illustration shows the setup of the two modems during the testing. Both are
shown in a horizontal orientation.

79

Methodology: Communication Mechanism for EvoLogics

6.9 Setup for Raspberry Pi

The group got a Raspberry Pi 4 with the SD-card that the previous group used. The group
was not able to get the Pi working and was afraid of ruining the settings and existing code.
Therefore, a new SD-card was used and set up from scratch. This was done by following parts
of the 3. Implementation from the bachelor’s thesis from the previous project [53, pp. 13-17].

6.9.1 Setup SD-card for Raspberry Pi

When the group tried turning on the Pi and logging in to their user, the group was not able to
connect the Pi to internet and was not able to ping it from the laptops. Therefore, the group got a
new SD-card and flashed it with Ubuntu Server 22.04 LTS (64-bit) on Raspberry Pi (Headless)
with the use of the Raspberry Pi Imager. The SD-card was flashed to get Internet connection
from a phone.

The steps explained in the 3. Implementation section from the previous bachelor’s thesis was
followed for the network configurations [53, p. 14].

6.9.2 Get Pi Working with The Developed Code

ROS was installed on the Pi by following the same steps as for the virtual machines. Make,
Cmake and libreadline was also installed the same way as for the virtual machines, see section
6.1.1. After ROS was installed, the code from GitHub [63] got cloned to the Pi by using the
command git clone LINK. To make the code run successfully, some alterations had to be done.

FFTW3 Pi Configuration

Since the code cloned from GitHub already had the FFTW3 library installed, it just had to be
configured on the Pi.

1 cd lib/fftw/fftw -3.3.10
2 ./configure
3 make
4 sudo make install
5 make check

Listing 35: Configuration of the FFTW3 library.

Compiling for SDMSH and JANUS

Before compiling the SDMSH library on the Pi, the SDMSH folder in the project/lib/ had
to be deleted and cloned again.

80

Methodology: Communication Mechanism for EvoLogics

1 cd ../project/lib/
2 rm -r sdmsh/
3 git clone https://github.com/evologics/sdmsh.git
4 rm -r .git .gitignore .gitmodules
5 cd sdmsh/
6 make

Listing 36: Reinstalls and compiles the SDMSH library.

Then the Janus-c-3.0.5 library was set up and compiled:
1 cd ../project/lib/janus-c-3.0.5/
2 cmake -S . -B bin/
3 cd bin
4 make
5 sudo make install

Listing 37: In the janus-c.3.0.5 library folder, created a bin folder using Cmake. This bin folder
was compiled using sudo make install.

81

Results

7 Results

7.1 Optimization

7.1.1 Simulation

The gradient and hessian were calculated with the help of the Python library Sympy. The actual
derivatives were done automatically with Sympy and the different derivatives got placed in the
respected Numpy matrix. This was done for a 3x1 gradient matrix and a 3x3 hessian matrix
since three variables are being optimized. Packet loss will not be included in the simulations.

In the simulation with a two-node system, with no float16 restriction and a forced sequence, the
interior point method works fine. One forced sequence is as follows: node i transmits a packet
and node j receives that packet and updates its values; then node j transmits a packet itself and
node i receives it and updates its own values. By looking at figure 41, one can see the two nodes
first come to an agreement, then later converge together to an optimal point with the help of
Newton’s method. The jumps in the picture are when the interior point method parameter is
increased.

Figure 41: The ideal result of the ra-NRC without any float16 restrictions. The IPM parameter
increases in value every 20th forced sequence with an initial IPM parameter value set to 5.
The result can be found in python file ra_nrc.py in Attachment B, "Optimization-main-sims
(code).zip".

82

Results

With the same starting position as in figure 41, one can see the results of the restricted version
of the ra-NRC in figure 42. Notice since this has a constant interior point method parameter,
the values will converge towards an approximated version of the objective function and will
not converge towards the same values as in figure 41. From figure 42 one can see the algorithm
works fine for the first 100 sequences or so, then it will start to collapse. The higher the sequence
number is, the worse the result. Eventually, the algorithm will break because the σ values in
the robust ratio consensus (see section 2.15.8) will get so large, it will break the boundaries of
float16. It is also a problem that float16 makes rougher approximations of the σ values when
they are nearing the boundaries of float16. It is due to the quantization drawback of float16,
the nodes in the restricted ra-NRC never quite seem to come to a consensus. The σ values
will increase even more rapidly with a higher IPM parameter and that is why a constant value
(IPMparameter = 1) is used in the restricted ra-NRC version.

Figure 42: The restricted result of the ra-NRC with float16 restrictions and a constant IPM
parameter = 1, using a forced sequence. The result can be found in python file ra_nrc_rl.py
in Attachment B, "Optimization-main-sims (code).zip".

83

Results

7.2 The Finished ROS 2 Package ’nodecomx’

The resulting ROS 2 package, ’nodecomx’, has successfully tested an Unet simulation without
any issues. However, any real-world testing with the physical Subnero modems and EvoLogics
modems has not been conducted.

Figure 43: The final setup of the ROS 2 system with UnetPy, optimization algorithm and the
float16 converter: Nodecomx. 1: A message from another modem is incoming. 2: The UnetPy
module acknowledges and receives the message. 3: The message is published to the reception
topic. 4: The subscribed data from the reception topic is processed before being published to
the transmitter topic. 5: The subscribed message from the transmitter topic is broadcast.

For instance, after a message of bytes was received, it is converted to a string before being
published to the reception topic. In the processing node (which subscribes to the reception
topic), processes the message with the help of the byte merger into float16 datatype. The list
of floats is then used in the optimization algorithm where they are updated into new values.
These values are then processed by the float splitter into bytes, which are published as a string
list to the transmitter node. Within the transmitter node, the data is then broadcast, ready to be
received by another modem to repeat this process.

7.2.1 Nodecomx Composition

The finished product nodecomx is composed of the following python modules:

• receiver_node.py: A ROS 2 node with the UnetPy module, responsible for receiving
messages. The module can be found in:
Attachment B/ROS 2 Project/raw_files/receiver_node.py

• transmitter_node.py: A ROS 2 node with the UnetPy module, responsible for transmit-
ting messages. The module can be found in:
Attachment B/ROS 2 Project/raw_files/transmitter_node.py

• processing_node.py: A ROS 2 node that processes incoming messages. The module can
be found in:
Attachment B/ROS 2 Project/raw_files/processing_node.py

84

Results

• FP16_converter.py: A module created to facilitate conversion between float16 and bytes.
The module can be found in:
Attachment B/ROS 2 Project/raw_files/FP16_converter_node.py

• modem_info.py: A Python file containing information about the used modem. The con-
tents of this file need to match the modem’s IP address and port number, as the information
is imported by transmitter_node.py and processing_node.py. The file can be found in:
Attachment B/ROS 2 Project/raw_files/modem_info.py

• algo.py: A modified version of the ra_nrc.py file, implemented using an object-oriented
structure. Some nonessential functions have been disabled to focus on consensus. The
module can be found in:
Attachment B/ROS 2 Project/raw_files/algo.py

• gradient_hessian_calculator.py: A module for calculating hessian and gradient, ex-
tracted from the ra_nrc.py file. This module is imported into algo.py. The module
can be found in:
Attachment B/ROS 2 Project/raw_files/gradient_hessian_calculator.py

7.2.1.1 FP16_converter.py

This module is designed to create bytes from float32 and float16 values and can merge them
back into their respective floats. It also allows for potential further development by adding
features such as the mixed conversion of float16 and float32 from the same list. The module
provides the following callable methods:

• Converter.FP16_to_int8: Returns two int8 integers from a float16.

• Converter.int8_to_FP16: Returns a float16 from two int8 integers.

• Converter.FP32_to_int8: Returns four int8 integers from a float32.

• Converter.int8_to_FP32: Returns a float32 from four int8 integers.

• Converter.FP16_list_to_int8: Returns a list of int8 integers from a list of float16 floats.
The order of integers corresponds to pairs that can be combined into a single float16
value.

• Converter.int8_list_to_FP16: Returns a list of float16 floats from a list of int8 integers.

• Converter.FP32_list_to_int8: Same as float16 to int8, except there are four bytes for
each float element.

• Converter.int8_list_to_FP32: Same as int8 to float16, except there needs to be four bytes
for each float element.

The input integers or floats can be provided either as a string or a list.

85

Results

Although the individual files can be accessed, they will not function on their own outside the es-
tablished system inside ROS 2. The attachment "Attachment B/ROS 2 Project/ros2_ws.zip"
contains the ROS 2 workspace and needs to be prepared on a Linux machine before initializing.
A quick startup has been implemented for initializing all three nodes at the same time, and can
be done by running the following command:

1 ros2 launch nodecomx launch.nodecomx.py

Listing 38: Launching of all of the nodes in the nodecomx package.

If the modem_info.py file has the correct information; various packages have been installed
as mentioned in the methods section; and have been rebuilt in case of modification, then the
package should be working.

7.2.1.2 Consensus Results Using UnetStack Simulation in Conjunction With ROS 2 Sys-
tem

A 6-hour test has been conducted using the UnetStack simulation. The system, consisting
of the two simulated modems, demonstrated a high degree of similarity in the progression of
consensus, with the same initial starting conditions as the single-machine simulation in Figure
44.

It is observed that the quantization of data was only dependent on numpy’s float16 datatype,
and not the other implemented modules.

Figure 44: The progression of N, M and m are similar to a simulation absent of UnetStack,
ROS 2, and float16 converter. After a 6-hour run, the algorithm crashes due to value overflow
as will be mentioned in section 8.1.2.

86

Results

7.3 The Finished "Evo_janusXsdm" Library

One of the major results of this project is the library Evo_janusXsdm. The library contains files
and code for enabling an ease of use of the EvoLogics modems with a JANUS implementation.
One of the features is that it allows for an automatic transmission of data between multiple
modems, by simplifying the usage of SDMSH and JANUS libraries. Additionally, proper han-
dling of processes has been implemented, and there are no longer any zombies present in the
operation.

The program is flexible enough to be implemented into ROS 2 without any issues. In addition,
the program has also been tested on a Raspberry Pi.

The library class is defined with the name "connection". It has six arguments where fs-stream
is the newest:

1. modemIP: Contains the acoustic modem IPv4 address.

2. JANUSPATH: The path to the JANUS executable code location relative to where the
code using the library is placed.

3. SDMPATH: The path to the SDMSH executable code location relative to where the code
using the library is placed.

4. rxPort: The TCP port number for janus-rx and the SMDSH command.

5. txPort: The TCP port number for janus-tx and the SMDSH command.

6. stream_fs: The sampling frequency for the acoustic modem.

Here is an example on how the arguments can be declared in C++:
1 #include "../lib/janusxsdm/Evo_janusXsdm.cpp"
2 std::string JANUSPATH = "../lib/janus-c-3.0.5/bin/";
3 std::string SDMPATH = "../lib/sdmsh/";
4 int JANUS_RX_PORT = 9938;
5 int JANUS_TX_PORT = 9955;
6 string IP = "192.168.0.189";
7 float fsSTREAM = 250000.0;
8

9 Evo_janusXsdm::connection modem(IP, JANUSPATH , SDMPATH, JANUS_RX_PORT ,
10 JANUS_TX_PORT , fsSTREAM);

Listing 39: Declaring the "connection" class as the object "modem" with different arguments.

87

Results

7.3.1 Available Functions

Public Functions for Evo_janusXsdm

• sdmConfigAir(): Sets the threshold to 8, gain to 0, source level to value 3 (-20 dB) and
preamplifier gain to 0 for the acoustic modem.

• sdmConfig(): Sets the threshold to 8, gain to 0, source level to the value written in the
terminal and preamplifier gain to 0 for the acoustic modem.

• setPreamble(): Sets the preamble for JANUS.

• startTX(message): It starts the SDMSH and JANUS processes that belong to TX. The
message parameter will be the cargo added to the JANUS packet.

• startRX(): Starts the SDMSH and JANUS processes that belong to RX and creates a pipe
connected to the JANUS output stream. The function returns the read end of this pipe.

• listenRX(readJanusPipe, &message): Reads from the pipe returned by the startRX()
function when the pipe contains data. The function will return the data as an array of 4
string elements; cargo, cyclic redundancy check (CRC), cargo size and reservation time.
If no data is found in X amount of time, the function will return all elements as "NaN".
The cargo will be set in the function and is also available without a return from the mes-
sage string.

• stopRX(): Stops the JANUS and SDMSH processes that belong to RX. The modem will
stop listening for JANUS packets if it is placed after startRX() and listenRX(readpipe,
&message).

• closePipeRX(&pipe): Closes the pipe placed as the parameter of the function.

• listenOnceRXsimple(&message): Listens for one JANUS packet. When it receives a
JANUS packet, all reception processes stop running. The function will return the data
as an array of 4 string elements; cargo, cyclic redundancy check (CRC), cargo size and
reservation time. Cargo will be set in the function and is also available without a return
from the function.

• dummyFlushJanusTX(): Used for debugging. It will create a TX JANUS process that
makes an internal connection to an existing TCP socket, where the socket needs to be
created by running startRX(). It will then create a JANUS packet and send it.

• sdmshToRawFile(): Used for debugging. Starts a receiving process and redirects the
data stream to a .raw file.

• JanusFromRawFile(): Used for debugging. Reads from a .raw file and unpacks it as a
JANUS packet. Will read from the file generated by sdmshToRawFile.

88

Results

Private Functions for Evo_janusXsdm

• getNumberOfSamples(message): Take in a message as a string. Calculate the number
of samples of a JANUS packet with the message as cargo and return it.

• ToRawFileTX(message): Used for debugging. Possible to use inside startTX. It will
make a copy of the JANUS packet that is sent and store it in a .raw file.

• getPacketReservTime(samplesCount): Takes in the number of samples from a JANUS
packet and returns the reservation time for the packet’s cargo.

• findInJanusFrame(idStr, janusFrame): Takes in a string ID and the JANUS frame and
returns specific content from the JANUS frame.

The Evo_janusXsdm library can be found in attachment B Evo_JANUSxSDM(code).zip, in file
lib/Evo_janusXsdm/Evo_janusXsdm.cpp.

7.3.2 An Implementation of The "Evo_janusXsdm" Library

There are included example codes to how the Evo_janusXsdm library can be used. This code
can be found in the src folder in the project, found on the "Evo_janusXsdm" GitHub [63].

The RXandTX_example.cpp code shows an example on how the modem can switch between
receiving and transmitting the JANUS packets.

1 int main()
2 {
3 //Constructing a connection object
4 Evo_janusXsdm::connection modem(IP, JANUSPATH , SDMPATH, JANUS_RX_PORT ,

JANUS_TX_PORT , STREAMFS);
5

6 //Configures modem for air test and sets preamble
7 modem.sdmConfigAir();
8 std::this_thread::sleep_for(500ms); //TODO:Test if sleep is

needed
9 modem.setPreamble();

10 std::this_thread::sleep_for(500ms); //TODO:Test if sleep is
needed

11

12 while(true)
13 {
14 //listens for a JANUS packet for 30 seconds
15 std::array<std::string ,4> responsFromFrame = modem.

listenOnceRXsimple(responsOnce);
16 std::cout << "\n\nMessage: " << responsFromFrame[0] <<" \n" << "CRC

(8 bits): " <<responsFromFrame[1]
17 <<" \n" "Cargo size: " <<responsFromFrame[2] <<" \n" "Reservation

Time: " <<responsFromFrame[3]
18 <<"\n"<< std::endl;

89

Results

19 std::this_thread::sleep_for(500ms); //500ms break between
listening and sending

20

21 //sending a JANUS packet with myString as cargo
22 std::cout <<"Write a message: " <<std::endl;
23 std::getline(std::cin,myString);
24 modem.startTX(myString);
25 std::this_thread::sleep_for(500ms); //500ms break between

sending and listening
26

27 }
28 }

Listing 40: This code shows an example of how the library "Evo_janusXsdm" can be used for
switching between transmitting and receiving. It is done by using the listenOnceRXsimple()
and the startTX() function in a loop.

First, a connection object modem is created with the constructor parameters defined, as shown
in section 7.3. Then the modem gets configured for air test and the preamble will be set. The
terminal will print out this message:

Figure 45: The image shows what the terminal looks like when the modem is configured, the
preamble is set and ready for receiving.

After this, the modem waits for a JANUS packet for 30 seconds. When one is received, parts of
the packet will be printed to the terminal. The terminal receive the message "I am EVO - TX":

Figure 46: This is the terminal print from parts of the JANUS frame. It shows the quality of
the transmission, by printing peak and frssi to the terminal. In addition, it shows the cargo,
CRC, cargo size and the reservation time.

The terminal will wait for a message to be written before sending it. In this test "Hello TX" was
sent back.

90

Results

Figure 47: This is the printout from the JANUS library for a TX process. It shows the informa-
tion added to the JANUS frame

Then, the modem will begin listening for a JANUS packet again and continue this sequence
until the terminal is stopped.

7.4 Result/Finding for EvoLogics Modem

7.4.1 Highlighted Problems Presented by the Previous Bachelor’s Group

When the group got the project these problems were highlighted: 100 packets problem, lost
packets, and an excessive number of shell processes that run in the background.

The problem where an excessive number of shell processes is run in the background is solved.
Now there are no more zombie processes and only the right amount of shell processes running
in the background.

The problem where packets would get lost is solved. Now every packet is sent and received
without any issues. However, there is a minor issue with the transmitting process: 1 out of
100+ transmissions gets an error where two packets in a row are lost. The problem is a TCP
Connection Error, this will be further discussed in section 8.6.5.

The problem with corrupt packets after the 100th transmission is solved. Now every packet is
successfully sent and received without any corrupt data. Both when testing in water and in air.

7.4.2 Additional Results for EvoLogics

In section 6.3 a lot of problems related to the EvoLogics have been addressed. All of these have
now been fixed.

91

Results

New methods for closing JANUS and SDMSH have been developed and implemented as parts
of the new library Evo_janusXsdm. A series of tests were conducted and it appears to work
well. See the section 6.8 for the test and attachment for the final results A3.

The Evo_janusXsdm library was tested on Raspberry Pi. There was no problem when doing
so.

7.4.3 Results From Field Test Conducted In A Water Tank

In the previous group’s presentation, it was presented a diagram showing data lost and corrupted
packets while doing a field test in a water tank. This test was recreated as written in section 6.6,
"Field Test in a Water Tank". The results from the test are:

For the test with source level 1. The test was done from 0 up to 11 transmissions. It was regis-
tered 14 received packets, where every number up to 11 was delivered. In addition, duplicates
for numbers "0" and "2" were received twice.

For the test with source level 2. The test was done from 0 up to 109 transmissions. It registered
225 received packets, where every number up to 109 was delivered except "34" "35", "91" and
"92". These faults were registered as a TCP Connection Error that will be further discussed in
section 8.6.5. In addition, many duplicates were received.

For the test with source level 3. The test was done from 0 up to 179 transmissions. It was
registered 206 received packets, where every number up to 121 was delivered except "8", "71"
and "121". In addition, a lot of duplicates were received.

There were no corrupt packets during these three main tests. The entire text file with these
results can be found in attachment B.

7.4.4 Results From Communication Between Subnero and EvoLogics Modems

Communication between Subnero and Evologic using JANUS has been achieved. Both receiv-
ing and transmitting have been accomplished in both directions.

Tests were conducted while altering various settings such as appdata, reservationtime and
others. Settings that corresponded between EvoLogics and Subnero were documented. These
results can be found in the attached document A2.

Communication between Subnero and EvoLogics using JANUS is now possible without any
issues. JANUS packets can be sent with and without cargo, and tests have been carried out up
to "appData 7".

92

Discussion

8 Discussion

8.1 Optimization

There were some problems getting started because many different elements were unfamiliar to
us. Graph theory and optimization in a distributed system were difficult to comprehend. The
cost function we worked with was difficult to grasp since there was a considerable amount of
theory behind OFDM, and we were not sure what kind of results we should have expected.
However, with some help, we managed to get some results and insights for further research.

8.1.1 Constrained Optimization

Before this project, we did not have much knowledge about optimization and we did not know
that constraints were something we had to consider. In the beginning, a big challenge was
finding out why the optimization algorithm would make the values in the cost function diverge.
As we found out, we needed to add constraints to our cost function. We also found out this was
a topic with a lot of theory behind it and a much-talked-about topic in optimization. It proved to
be a challenging task getting the constraints implemented in the ra-NRC algorithm, due to the
float16 restriction.

8.1.2 The Float16 Restriction

We were aware early on in the project that a decrease in the packet size was going to be nec-
essary, but not quite aware of all of the problems this would result in. We thought that the
quantization of float16 would make the algorithm a little slower, or that the algorithm maybe
would have a small error because of the approximations of the σ values (σy and σz).

As we found out, because the sigmas increase in size with every transmission, the float16 restric-
tion will make rougher and rougher approximations of the sigmas. This problem is magnified
with the interior point method, because of how rapidly the sigmas will increase in size the larger
the IPM parameter gets. If a value is broadcast and goes over the float16 boundary, the value
will as a result be infinity and cause difficulties.

The inaccurate approximations could easily cause problems if the optimal point of the opti-
mization lay on the boundaries of the constraints of the function. Now, if an approximation is
a little inaccurate, the algorithm could break the constraint if the approximation goes slightly
in the wrong direction. The algorithm would essentially break since the algorithm would try to
calculate the logarithm of a negative number, which is not mathematically possible.

Because of the limited time frame, we have yet to test out how consistent and slow a packet
using 32 bit float would be. The reason for choosing float16 is that we think this would be
much faster and fewer packet losses would occur. If it was possible to reset the sigmas to fix the
problem of them getting too large, maybe it would be possible to use float16 in the transmission.

93

Discussion

However, with what we have for now, it would look like the transmission variables would have
to be sent as float32.

Originally, the plan for increasing the IPM parameter on all of the nodes was with the built-in
clocks of the nodes (either the modems themselves or the Raspberry pies). When a certain time
had gone, it was assumed the nodes had come to a consensus, and the IPM parameter would
then be increased. More details can be found at "A Randomized Linear Algorithm for Clock
Synchronization in Multi-Agent Systems" by Bolognani, S. [37].

Because of the problems with float16, we found out we could not get good results using the
interior point method. We believe this would work with float32 since it did work to increase the
IPM parameter in the simulations every 20th sequence.

8.1.3 Backtracking Line Search

With a limited time frame for testing and other problems that took more priority, the backtrack-
ing line search algorithm did not get included in the ra-NRC algorithm. We do not think it is
a necessity for the algorithm, but that maybe it would make it better, depending on the cost
functions. It was originally implemented for the IPM because we thought this would be a fix
for a problem we were having at the time, but as we found out, the method for calculating the
hessian/gradient was the cause of the problem. The backtracking line search is something to
consider for future work.

8.1.4 Optimal Values of the Different Optimization Parameters

Because of limited testing, no parameter values were set in stone. We do not know the optimal
values of ε, the IPM parameter and the IPM parameter multiplier µ. The values used can
be considered for future work, but more testing will probably give different results. ε will
probably have different optimal values used for different local cost functions, and therefore the
backtracking line search could be considered.

A suggestion in the source "Convex Optimization" by Boyd, S. P [30, pp. 570-571], is the value
10− 20 for µ, but it seems like it should be smaller in a distributed environment. The suggested
starting value for t is not so straightforward and requires some deeper understanding. We have
chosen the t values based on trial and error in simulations.

8.1.5 Calculating the Gradient & Hessian

At the start of the project, we used the Python library numdifftools to calculate the gradient
and hessian. When trying to implement the IPM, we found out the code kept crashing at the
boundaries of the constraints. It would look like it converged towards the value as expected, but
at the end of the algorithm, it would barely break a constraint. When testing with an arbitrary

94

Discussion

function, we calculated the gradient and hessian by hand to check if this was the cause of the
problem. As we discovered, this made the IPM work. This is why our method for calculating
the gradient and hessian is done by calculating the derivatives with the python library Sympy,
and then manually added in the Numpy matrices afterward. It has not entirely been concluded
why the other library did not work, since it seems to work until the very end. One of the reasons
for this could be that the library did not cooperate well with the Numpy library, which was used
to calculate Newton’s method. Another explanation could be that numdifftools did some
small approximations which sent the algorithm over the boundaries.

8.1.6 Stopping Criteria

We have not implemented a certain stopping criterion in the ra-NRC algorithm because of other
priorities. In practice, one can stop the algorithm after it has run a certain amount of time
or after a certain amount of transmissions. Another possible solution could be to check the
difference between the local sigmas and the sigmas received from the neighbors. If the IPM
is implemented in the ra-NRC algorithm, the stopping criterion probably has to take the IPM
parameter into account and stop it after a certain t value. These ideas have not been tested but
could be taken into consideration for future work.

8.1.7 Cost Function

The constraints used with the cost function are not final. They were simplified down because
the theory behind the cost function was not our priority. For further research, more details
can be found at "Multi-agent algorithms for adaptation of underwater acoustic communication
parameters" by Iadarola, F. [33]. Values used in the cost function were starting suggestions
from Emil Wengle, but they were not decisive since we did not get to test the Subnero modems
with the ra-NRC algorithm.

8.2 ROS 2

8.2.1 ROS 2 From the Previous Project

The team decided not to continue using the existing ROS 2 environment set up by the previous
group. The reason behind this was that a new environment needed to be built to accomplish
the implementation and use of the algorithms and different modems. Therefore, it was easier to
build a new environment from the ground up.

8.2.2 ROS 2 in the Current Project

Initially, it was difficult to grasp the purpose and usage of ROS 2 for this project. However, its
benefits became clear after the scope of the project was more defined. The initial resistance to

95

Discussion

using ROS 2 stemmed from a lack of understanding regarding its capabilities as a tool. Could
the project team achieve the same result without using ROS 2 and rather create their own multi-
threaded system for managing communication and algorithm implementation? The answer to
this question can only be known if such an alternative approach was attempted. However, it
is reasonable to assume that the development time and complexity would have significantly
increased, leading to a higher amount of bugs and inefficiencies in the system.

Once there was a solid understanding of ROS 2, working on other tasks became much easier,
which is one of the features of ROS 2. However, it is important to acknowledge that there is a
learning curve that must be overcome (which can be said about most tools). It is recommended
that any future developers invest in a solid understanding of ROS 2 development in order to uti-
lize it to a further extent if required. The recommended approach to learning ROS is by reading
the documentation and experimenting/playing with it. While utilizing secondary sources can be
helpful, relying solely on them may lead to challenges that are difficult to overcome due to a
lack of thorough understanding or inadequate documentation for specific solutions.

8.2.3 The Modularity of Nodecomx

The composition of the nodecomx was developed after some initial foresight for flexibility. In
this project, the usage of Python is not universal, and the use of C++ language is necessary for
the final result with EvoLogics. Even though the complete development and implementation
of the optimization algorithm was successful with the UnetStack simulation (and potentially
the Subnero modems), the implementation with the EvoLogics was and still is a huge part of
this project. Due to the EvoLogics library being written in C++, compatibility was required
with the Python-developed optimization algorithm and ROS 2 code. Although there are several
solutions for implementing a C++ library into Python, it is of most interest to do that through
the use of different ROS 2 nodes; a C++ ROS 2 node.

The benefit of creating a C++ ROS 2 node and using it in combination with Python ROS 2
nodes, is that one can skip using modules like Ctypes [76] or Boost.Python [77] (although,
one may if wished so). The benefits are for usability and readability of code: the ROS 2 pack-
age becomes easier to handle due to the interchangeability of nodes. Being able to externally
develop the C++ libraries and test them in a C++ ROS 2 node directly, is also a benefit. Using
the mentioned modules for C++ implementation to Python may increase the complexity of the
package, and that can be avoided by using mixed-language nodes.

Such a setup is achievable because ROS 2 is agnostic in its language when it comes to the in-
tercommunication of nodes [73]. A topic is itself agnostic, and not a "C++ topic" or "Python
topic". There are many resources available through user-made contributions to such develop-
ment online [74] [75]. It is recommended to continue development through these techniques if
C++ is to be used for a particular reason.

96

Discussion

8.3 Python 3.11

The project has given a fruitful outcome in terms of a deeper understanding of Python and
object-oriented programming. The adoption of an object-oriented approach in Python has
proven to be enhancing the project’s manageability and efficiency. This approach offered sev-
eral benefits, such as facilitating the creation of isolated modules that maintain a clean code
workspace, and providing a straightforward way of structuring different tasks into separate com-
ponents.

For instance, "objectification" of the developed optimization algorithm allowed for easier navi-
gation and method calling in the processing_node.py file. By structuring each method into
a class, and moving the initialization variables inside a __init__ method, allowed the project
team to think more clearly about how the program worked; the reduction of clutter allowed for
better readability. If something was wrong, a single line of code could be commented out for
debugging, if the printed error was not helpful.

In addition to a friendlier development workplace, a crucial benefit is that the handling of these
modules by future developers would be much more fluent. It is expected that an understanding
of the system will be relatively easier to understand due to the isolation of tasks in their own
modules; one module can be developed at a time while maintaining the functionality of the rest
of the system, giving the developers an opportunity to grasp the wholeness of the project easier
while working.

For any future development, learning of object-oriented programming is crucial for further de-
velopment of this project. Learning how to design proper classes in Python would leave future
development more comfortable in extending or managing the current work.

8.4 Transmitting Floating-point Numbers

One of the goals of the ROS 2 ’nodecomx’ package was the transmission of a list containing
data from and for the optimization algorithm. Transmission of such data was at first attempted
with strings, as in a float "42.1984" with UTF8 encoding, however, it was soon found out that this
was not an appropriate formatting due to how many elements were required for the algorithm.
The transmitted message, 42.1984, contained in total of seven bytes, even though much longer
floats were expected. This was not feasible as there are hard limitations on how much a modem
can transmit, since the contents of a message can get very easily corrupted due to noise and
interference from other nodes while traversing water.

For this project, the optimization algorithm required a hessian, a gradient and an ID number. In
total that is 13 elements, but with the symmetry of the hessian it was reduced to 11; 10 if the ID
number is treated as an int8. Due to the optimization algorithm using a float32, a transmission
by treating each number as a string would lead to a very large data transfer (as each digit in each
number, in each element in a list, would add a byte). This was not a desired preference and a
different approach was required, as the expected amount of bytes for a transmission was under
30.

97

Discussion

8.4.1 Splitting The Float

In order to address the challenge of transmitting floats with the cargo limitations, the solution
involved breaking down the binary representation of a float into four sections and transmitting
each section as an 8-bit character. The concept behind this approach is explained in detail in
section 5.5.0.1, figure 32.

For example, consider the number 32.42145 represented as a float32, which requires 32 bits of
data to be handled by a computer. Instead of attempting to transmit 8 bytes (the . is a byte) of
data by treating the float as a string and converting each element into a character (1 byte), the
float is instead divided into four bytes.

By splitting the float32 into four sections and transmitting them as 8-bit characters, the overall
data size required for transmission is reduced. This approach allows for the successful transmis-
sion of the float data within the constraints of around a 30 byte packet, without compromising
the accuracy or integrity of the original float value.

8.4.2 The Issue With Large Datatypes

The algorithm required the use of a 32 bit datatype, float32, for the precision. The implementa-
tion of the algorithm as it was, made the transmission messages larger than what was expected.
As mentioned earlier, there has to be a transmission of 10 elements. Even with the float split-
ting, the resulting size of the cargo would still end up too large, 11 · 4 = 44 bytes; or rather
10 · 4 + 1 = 41 bytes if the ID is treated as a single byte. Even though an increase in the
frameLength on the modems was possible, it was most unwanted due to the increased trans-
mission time that followed along. There was an interest in a further reduction of the transmitted
data size.

8.4.3 A Solution To Transmitting Fractions Using Fewer Bytes: Float16

As a continued solution to the size of the cargo, the datatype float16 was introduced into the
project. Float16 allowed to halve the cargo of 41 bytes to 21 bytes (the ID as a byte). This
reduction of 50% had a drastic effect on the transmission length, which our aim was to reduce.
However, float16 did not come without drawbacks, and other issues followed. The discussion
on consequences of using float16 has been discussed in the section 8.1.2 "Float16 restriction".

8.4.4 Encoding of he Transmitted and Received Messages

The usage of different computers and modems could have issues regarding encoding. If a mo-
dem is not configured to the same encoding as the other modems, then a received or transmitted
message could be encoded/decoded improperly by another modem or machine. The same ap-

98

Discussion

plies to different projects with developed libraries and modules. Inconsistencies in encoding
type could be problematic.

In this project the interaction between different modems, different computers, different libraries
and different modules is widespread. Due to a late discovery of a potential issue, a manual
choice of encoding in the project files has been ignored, due to not having any issues so far.
The reasoning for why it might cause issues is due to unknown hardware and software which
may interact with the modems and/or the software. As mentioned in the theory section 2.4.3.1
"ASCII and UTF encoding", if the encoding is not specified within a code, then the compiler or
programming language will use the default encoding on the machine.

If the hardware is old or not from the same region as the project code was created (Norway),
then using the work from this project with such hardware might cause incompatibilities in com-
munication. That is due to ASCII/ANSI encoding. Certain symbols would either have different
placements, or some symbols may not exist at all [3]. It is generally an untested area of this
project. However, it is mostly a safe assumption that the hardware and software which will be
used in conjunction with this project uses the UTF family. It is recommended to make sure that
the machine does in fact use the UTF family as its default encoding by checking what the OS is
using.

In general, all systems should have UTF-8 encoding installed and available when dealing with
this project.

8.5 Subnero Modems

The Subnero modems were available from the beginning, however, their usage was limited by
the group’s understanding of hardware interaction from an engineering point of view. A lot of
assistance has been provided for the utilization of the Subnero modems, and the documentation
provided is most useful.

However, the UnetStack API, UnetPy, was difficult to comprehend due to the use of Groovy
programming language rather than Python. Almost all of the examples were demonstrated in
Groovy, which the project team had no experience or interest in learning in a short amount of
time, since the main work was planned to be in Python for both ease of use for the current team
and any future teams.

8.5.1 The Subnero Modem Availability

The Subnero modems were crucial for live-testing of the optimization algorithm and ROS 2
’nodecomx’ package. However, due to real-life circumstances, these modems were unavailable
towards the end of the project when the modules were ready for end-of-development testing,
resulting in unverifiable results due to only being able to use the simulated modems.

Although the UnetStack simulation can represent real-life modems well enough for commu-
nication testing, it does not provide the necessary JANUS channel in the simulation. In order

99

Discussion

to implement the optimization algorithm with the possibility of changing the parameters, we
needed real modems. However if a future development were to continue with the work, one
should look into changing these parameters within the ’nodecomx’ package for each iteration
of the receive/process/transmit cycle. A method of importing the variables after each iteration
would be the first step toward implementation.

1 phy[x].nc = N
2 phy[x].psk = M
3 phy[x].blks = m // blks is read-only*

Listing 41: "Setting the parameters in python".

Due to the unavailability of testing, it cannot be verified how often or how effective it is to
change these parameters. However, it is known that these parameters shall not be setting the
JANUS channel, phy[3], but rather either the control channel phy[1], or data channel phy[2].
Although the changing of N and M can be done directly, the changing of m is only changeable by
setting the frameLength of the JANUS channel to a correct value.

8.6 EvoLogics Modems

8.6.1 Recreation of Previous Results

At the start of the project, the group received a task to fix the problems of the previous project’s
code. After that was done, the next step was to further develop the communication mechanism.
However, the group was not able to get the previously developed code to work well. The group
experienced problems that were not well documented or not documented at all. This led the
group unsure if the problems our team experienced were problems that had happened in the
previous bachelor’s project also.

It could have been a possibility that we did not implement the code the same way the previous
group had, but this is not likely. The code environment was set up and tested as explained in
the "3. Implementation" section and the user guide from the previous group [53, pp. 13-17].
The setup guide from the previous project proved to be confusing, as the explanations for all the
steps were not sufficiently clear, and there were typos in some of the command lines. However,
we were informed that the previous group did not have much time to write the thesis and that
they had limited access to the modems during the project period. This could explain why some
problems were poorly documented, and several others were not mentioned. As a consequence,
the group had to spend time troubleshooting a lot of different problems that were not mentioned
in the previous project’s report.

It was a challenge to read the developed code from the previous project since the code was not
commented as thoroughly as our group would have liked. The use of some key aspects was not
talked about in the report at all and was not correctly implemented. Additionally, the results,
such as those from the tank test, were not provided to us, except for being discussed in their
presentation.

Considering all this, it was difficult to recreate the previous bachelor’s project, and what the

100

Discussion

end product was supposed to be. However, an email was sent to the previous team with some
questions, and their reply helped us to understand some of their work better.

8.6.2 Evo_janusXsdm

We creating a new library, as described in section 6.4. We decided to continue using mul-
tiprocessing instead of multithreading in the library. This decision was based on our gained
understanding of multiprocessing, acquired through the time we spent troubleshooting the pre-
vious library. Additionally, since SDMSH is designed to utilize commands like popen() for
command execution [51], it made sense to stick with multiprocessing. Furthermore, we had
ideas on how this approach could help resolve some of the existing issues.

Since the code was developed on top of the existing folders from the previous project, there
might still be some fragments of unused code in the new project. Given the extensive trou-
bleshooting process, multiple #include files have been added at the beginning of the library.
Some of these might no longer be in use and should be deleted.

8.6.3 Handling New Processes

A big part of the task that needed to be done for the EvoLogics was to manage multiple pro-
cesses and pipes well and finding a way of closing them. It was implemented proper code and
techniques for handling pipes and forks, and it seems to work well. It was also implemented a
new way of closing JANUS and SDMSH, this also seems to work well. However, there should
be done more testing since there might be bugs that need to be sorted out. We suggest checking
the process window after every test using this command in the terminal: ps -ef. Observe how
many processes there are running at once, and if there are any zombie processes. There has not
been a lot of testing specifically on the Raspberry Pi.

A suggestion for future work is to try to "stress test" the new library. This could be done
by opening and closing different processes over a time period. Start by running code on the
computer and later, when potential bugs have been sorted out, try the same on Raspberry Pi.

8.6.4 Receiving Process - Lowering the Threshold in Configurations

A potential problem was observed one week before the deadline. After lowering the threshold
in the modem configurations, which was the solution to the problem described in section 6.3.8,
the receiving modem started behaving strangely and stopped receiving. Several tests were con-
ducted where the threshold was set between "0" and "30". It appeared that setting the threshold
between "8" and "12" worked well in the air. However, at a threshold of "8" there was one fault
after 100+ transmissions.

It was observed that the problem with the first packet reception did not occur when testing in

101

Discussion

the tank. The threshold was then set to 30. In all of the three main tests, the first packet was
always received. This can be because the modems could be better calibrated for transmission
in water and the threshold used was one suited for those conditions. Also, the use of a lower
source level could also make a difference.

To summarize, for future testing it is recommended to test if there is a difference in water
and in air. Also if the source level can play a factor. If more tests were to be done in air, it is
recommended to find the balance point between the problems in section 6.3.8 and in this section,
where the threshold should be placed between 8 and 30. Use the listenOnceRXsimple() to
conduct these tests, because it will restart the RX processes every time it receives something.

This is not a major problem though. The threshold should be set to a higher value when testing
in water, and a different source level should be used. Also, the problem should rarely occur
when testing in air with a threshold below 8.

The listenOnceRXsimple() function was made later in the project. This function was af-
fected a lot by the problem talked about in section 6.3.8, "Issues with Receiving the First JANUS
Packet", where the threshold was too high. The group was able to get it to work without faults
a week before the deadline. Therefore, this function has not been tested much. But it will most
likely work fine.

8.6.5 Transmission Process - TCP Connection Error

The TCP connection error is a problem on the transmitting modem and was easy to detect be-
cause when this error occurred, it was always two packets in a row that were lost. In addition,
these errors were printed to the terminal; a "DROP" error on the first packet and a "TCP" error
on the second packet. The TCP connection error would rarely occur; we believe that the prob-
ability of encountering this issues is approximately 1 in 100 or more transmissions. The reason
for this issue was not completely solved.

We have a couple of leads to what could be wrong for the TCP connection error:

1. A similar issue is the TCP DROP error from section 6.3.4, which had the same symptoms
and printouts. It was eliminated by implementing the stop command in the SDMSH
command line. This was done due to a suspicion that there were still running processes
or some buffer that was not emptied on the modem. When the first message got lost, the
"DROP" error was printed. Then, the second message got lost, and the "TCP" error was
printed. It is worth checking if there are any processes that fail to exit when they are
supposed to.

2. It is possible to trigger the same "TCP" error (not the "DROP" error) by running commands
manually in the terminal for JANUS and SDMSH. If we do not open a socket for the TCP
(for TX it is the SDMSH that creates the socket), and only run the command to connect
(the JANUS), the same fault would be printed to the terminal.

102

Discussion

3. It might have something to do with the PC used, being too slow. It was observed that
different computers would have a different frequency of the TCP connection error. This
could mean that the creation of the TCP socket takes too long to setup.

We recommended checking if the socket has been created for the second TX process when the
TCP connection error occur. If the first TX processes lets one of its processes live until the next
transmission, this could lead to crashing the second process, which is the SDMSH (the socket).
A big test has been done to map out how the different processes act in different sequences, found
in section 6.8. It is also worth doing the same test again and having a focus on documenting the
different errors.

8.6.6 100 Packet And Number of Samples

The previous bachelor’s project calculated the samples with a function that increased linearly
with the number of characters. The function was developed to work only with a sampling
frequency of 96kHz [53, p. 18], and did not take into account that some characters are counted
as 2 bytes. It was discovered that the number of samples did not increase linearly by the increase
of characters, but rather in steps by the size of cargo (1 byte per cargo). The solution is a
new method for calculating the number of samples, as explained in the section "Calculate the
Number of Samples" 6.4.2.1. The new way of calculating the number of samples increases
in steps, works with every character and is not hard-coded, and therefore works with multiple
sampling frequencies.

A comparison is added in table 48. When using the old method, data would be lost when it
exceeded 3 characters or 3 bytes. Therefore, the cause of the "100 packet problem", see section
6.3.5 for the problem description.

103

Discussion

Figure 48: This graph shows the difference between how the number of samples was calculated
in the previous Bachelor project (the orange line) and the new method developed by us (the
blue line). It is possible to see the reason behind the "100 packet problem", where packets got
corrupted when exceeded 3 characters. You can think about it as if some of the samples in a
JANUS packet were "cut off".

8.6.7 Field Testing Reflection

When doing the field test it was discovered that if the modems were too close to the walls of the
tank, all the packets would be corrupt or lost. There were also too many trigger warnings, due
to reflections of the sound from the wall of the tank. When moving the modems to the center of
the tank it was possible to do some testing.

When conducting the tests, there were a lot of reflections where a packet could be received
multiple times. This is most likely because of the size of the tank. In EvoLogics "Getting
Started Guide" [54, p. 20], it is recommended to place the modems in a pool that is 3 x 2 x 2
meters and 1 meter from the surface and the walls. It was not possible to achieve this in the test
tank we had access to for executing the tests.

• For the test with source level 1, it was not registered one packet lost or corrupted. It was
decided to end it after only 11 transitions because the sound could be heard outside the
tank and it was not a pleasant sound.

• For the test with source level 2, there were only two pairs of packets that were not re-
ceived. This fault was registered as a known TCP error on the transmissions modem, see
section 8.6.5. It stops two transmissions before sending, therefore the message was never

104

Discussion

received on the RX modem. To summarize, all packets that were sent were also received.
There were no packets lost during testing. Also, there were a lot of duplicates.

• For the test with source level 3, three packets were lost out of 179 transmissions. The
reason for this occurrence is unknown, but when comparing it to level 2, where no losses
were observed, it suggests that setting it to level 3 is on the border of being too weak for
transmissions in water. It is also plausible that if two packets were read at the same time
it could lead to only one being registered lost.

It is recommended to test in a larger tank in the future.

105

Discussion

The diagram below is taken from last year’s presentation and illustrates the results of the tank
test.

Figure 49: This graph shows the last year’s results. Blue lines are packets lost and red lines are
corrupted packets. Both tests are up to 154 transmissions. The upper one is source level 2 and
the one on the bottom is source level 1. The horizontal axes are the number of packets sent and
the vertical axes stops at 1 and is just for visualization [65, t. 22:44].

When comparing the last bachelor’s project results with our results it is a big improvement.
This is because there are no longer corrupt packets and almost no packets are lost. For source
level 2, no packets are lost on the receiving modem.

8.7 Transmission between Subnero and EvoLogic

The group managed to achieve successful communication between the Subnero and EvoLogics
modems using JANUS. This communication setup was figured out and tested only one day
prior to the Subnero modems being sent away, making them inaccessible for future testing.
Therefore, the communication is not tested with the newest version of the code.

While conducting the test with Subnero and EvoLogics, we were not able to send a payload
with an appData larger than 7. Since the test, improvements have been made to the code for
EvoLogics, which enables them to use a larger appData. This means that a bigger cargo can be
added to the JANUS packet. We have not been able to test this between EvoLogics and Subnero,

106

Discussion

because not having the Subnero modem back before the deadline of this thesis. However, some
tests were done between two EvoLogics modems and it worked.

8.7.1 Non-standard Frequency Band

For Subnero and EvoLogics, it was used a bandwidth that differ from the document of ANEP-
87, where the bandwidth was set to a higher value. We are unsure if it is defined as a non-
standard frequency band or not. It is stated in the standard documentation for ANEP-87 that
additional bands may be added to this standard [57, pp. 2-10]. Therefore the bandwidth used in
this project might fall under the ANEP-87 standard. It is worth noting that the bandwidth will
vary based on the choice of the center frequency, meaning that doubling the center frequency
would result in a doubling of the bandwidth as well. If the bandwidth used in this project is
divided by 2, it would be the same as in the ANEP-87 standard.

8.8 General

8.8.1 Time Lost Due To Starting with Raspberry Pi

The group spent the beginning part of the project figuring out how to set up the Pi, since it was
implied that the setup on the Pi should be ready as it was. A major issue with the Pi was that
the internet connection did not work. Given that the team did not have much prior experience
with Pi, it was a challenging task.

One of the first steps described in the previous bachelor’s projects was the implementation
guide to set up the Pi [53, pp. 13-17]. Following these instructions, the group thought it would
be easier than what it ended up being setting up the Pi, given the SD card had already the
necessary implementations from the previous project. The main issue the group encountered in
getting the Raspberry Pi to function was that the code on the Pi was not working. There were
several issues, including problems with paths to different libraries.

In the end, the group was able to get a Pi working with a new SD card, and with the new code
developed during this bachelor project. It was easier to set up a new one from scratch because
the group had a better overview of what was done. That way the group was able to follow most
of the same steps as the previous group had written in their thesis to set up the Pi.

Instead of starting out with the Pi, it could have been better to focus mainly on the code itself
and making it run on the laptops. This could have spared us a lot of time.

8.8.2 Documentation

There was a focus on writing a detailed description of what was done in this project’s thesis.
The assumption was that it would be easier to continue working on this project for future devel-
opers. Also, make it easier to solve potential problems by using what is written in the section

107

Discussion

"Preliminary Work for Evo_janusXsdm Implementation" 6.3 as a history for the EvoLogics
modems. Our group recognized the significance of understanding the library, SDMSH and the
JANUS processes for the project’s progress.

There have also been many tests conducted, and they have all been documented. Some of the
test results have been added as attachments. Additionally, throughout the project, a folder called
"PA" has been filled with a lot of information, tests, debugging, and other documents that could
be useful for future work. This folder will be delivered after the deadline to our supervisor.

8.9 Addressing Research Question

We have implemented a distributed optimization algorithm in a simulation and it should be
realizable with the physical modems. The algorithm is only implemented with the Subnero
modems. However, Emil Wengle has proposed that it should be possible to use EvoLogics as
well.

The algorithm has been successfully tested and implemented on ROS 2. The communication
mechanism for EvoLogic has been developed and successfully tested. ROS 2 has been suc-
cessfully tested in a simulation with Subnero. The Subnero modem has also undergone partial
physical testing and should function correctly. ROS 2 has yet to be tested with EvoLogics.
However, a solution to solve the implementation of ROS 2 with EvoLogics is in development.

Field testing with EvoLogics has been successfully conducted in a water tank. The entire project
in its entirety has yet to be implemented together and tested.

108

Conclusion

9 Conclusion
We have implemented a distributed optimization algorithm in an Unet simulation, however, it
should be realizable with the physical Subnero modems and has been proposed that it should be
possible to use the EvoLogics modems as well. The algorithm is based on previous work of the
provided pseudocode, and modified for constrained optimization.

A new environment in ROS 2 has been developed for underwater nodes for automated data pro-
cessing and communication tasks. The ROS 2 package has been created using Python and called
nodecomx. The optimization algorithm has been implemented with the ROS 2 environment and
has been proven to be working with the UnetStack communication mechanism and ROS 2.
However, problems were discovered when using the float16 datatype due to quantization.

A notable amount of issues were found in a previous communication mechanism for the Evo-
Logics modems, and a new solution was developed. The Evo_janusXsdms library provides an
efficient integration between JANUS and the EvoLogics modems, by a collection of convenient
functions for transmitting and receiving. Field testing with EvoLogics has been successfully
conducted in a water tank. The communication proved to be effective in water, it was not ob-
served packet loss with a source level stronger than 3.

Communication between the EvoLogics modems and the Subnero modems has been accom-
plished by using the ANEP-87 standard. A document has been developed that outlines the
specific settings for communication between these modems.

The entire project in its entirety has yet to be implemented together and tested thoroughly. It is
suggested to adapt the ROS 2 environment for the use of the Evo_janusXsdms library. A further
look into the use of float16 is a strong recommendation for the optimization algorithm, due to
the reduction of cargo sizes which reduces the transmission time.

Overall, the project has proved to give us valuable insights into the domain of underwater com-
munication, something we have not been exposed to before. We are confident this work will
be a stepping stone for the further development of underwater communication and multi-agent
systems.

109

References

References
[1] Robot Operating System. (n.d.) ROS 2 Documentation, docs.ros.org Retrieved: April 14, 2023, from

https://docs.ros.org/en/humble/Releases.html

[2] Robot Operating System. (n.d.) Creating a package, docs.ros.org Retrieved: May 20,
2023, from https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/
Creating-Your-First-ROS2-Package.html

[3] Parr, Kealan (March 1, 2021) everything you need to know about encoding. freecodecamp https:
//www.freecodecamp.org/news/everything-you-need-to-know-about-encoding/

[4] The MathWorks, Inc. (n.d.) What is Half Precision?. mathworks, Retrieved: May 15, 2023, from
https://www.mathworks.com/help/coder/ug/what-is-half-precision.html

[5] Open Robotics. (n.d.) Ubuntu (Debian). docs.ros.org, Retrieved: May 12, 2023, from https://docs.
ros.org/en/humble/Installation/Ubuntu-Install-Debians.html

[6] Canonical Ltd. (n.d.) Debian: Debian is the rock on which Ubuntu is built, https://ubuntu.com/
community/governance/debian

[7] Canonical Ltd. (2023) Install Ubuntu desktop Retrieved: February 4, 2023, from https://ubuntu.
com/tutorials/install-ubuntu-desktop#1-overview

[8] Open Robotics. (n.d.) The rclpy Package Retrieved: May 20, 2023, from https://docs.ros.org/
en/humble/Concepts/About-ROS-2-Client-Libraries.html#the-rclpy-package

[9] Underwater Networks Handbook. (08.04.2021) What is a Unet? https://unetstack.net/
handbook/unet-handbook_introduction.html

[10] National University of Singapore (2022). Downloads: Download UnetStack community edition Re-
trieved: April 22, 2023, from https://unetstack.net/#downloads

[11] Chitre, Mandar. (n.d.) Underwater Networks Handbook Retrieved: April 20, 2023, from https:
//unetstack.net/handbook/

[12] VirtualBox, (n.d.) Chapter 1. First Steps Retrieved: April 20, 2023, from https://www.
virtualbox.org/manual/ch01.html#intro-installing

[13] Canonical, (n.d.) Chapter 1. First Steps Retrieved: April 20, 2023, from https:
//ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-
virtualbox#1-overview

[14] EvoLogics GmbH (2020) UNDERWATER ACOUSTIC MODEMS https://evologics.de/
product/attachments/s2c-modems-brochure-49

[15] Sercan, Sari. (04.11.2022), The Sleeping Barber Problem https://www.baeldung.com/cs/
sleeping-barber-problem

[16] Shovon, Shahriar, (2019). Pipe System Call in C https://linuxhint.com/pipe_system_call_
c/

[17] SUBNERO UNDERWATER MODEMS.(July 08, 2022)Appendix A: Technical Specifications https:
//subnero.com/brochures/modem-manual.pdf

110

https://docs.ros.org/en/humble/Releases.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Creating-Your-First-ROS2-Package.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Creating-Your-First-ROS2-Package.html
https://www.freecodecamp.org/news/everything-you-need-to-know-about-encoding/
https://www.freecodecamp.org/news/everything-you-need-to-know-about-encoding/
https://www.mathworks.com/help/coder/ug/what-is-half-precision.html
https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html
https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html
https://ubuntu.com/community/governance/debian
https://ubuntu.com/community/governance/debian
https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview
https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview
https://docs.ros.org/en/humble/Concepts/About-ROS-2-Client-Libraries.html#the-rclpy-package
https://docs.ros.org/en/humble/Concepts/About-ROS-2-Client-Libraries.html#the-rclpy-package
https://unetstack.net/handbook/unet-handbook_introduction.html
https://unetstack.net/handbook/unet-handbook_introduction.html
https://unetstack.net/#downloads
https://unetstack.net/handbook/
https://unetstack.net/handbook/
https://www.virtualbox.org/manual/ch01.html#intro-installing
https://www.virtualbox.org/manual/ch01.html#intro-installing
https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox#1-overview
https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox#1-overview
https://ubuntu.com/tutorials/how-to-run-ubuntu-desktop-on-a-virtual-machine-using-virtualbox#1-overview
https://evologics.de/product/attachments/s2c-modems-brochure-49
https://evologics.de/product/attachments/s2c-modems-brochure-49
https://www.baeldung.com/cs/sleeping-barber-problem
https://www.baeldung.com/cs/sleeping-barber-problem
https://linuxhint.com/pipe_system_call_c/
https://linuxhint.com/pipe_system_call_c/
https://subnero.com/brochures/modem-manual.pdf
https://subnero.com/brochures/modem-manual.pdf

References

[18] Butler, Lloyd. (n.d.) Underwater radio communication Retrieved: April 2, 2023, from
https://www.robkalmeijer.nl/techniek/electronica/radiotechniek/hambladen/
ar/1987/04/page05/index.html

[19] Libretexts, (n.d.) 17.3: Speed of Sound Retrieved: April 17, 2023, from https://phys.
libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_
(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_
Waves_(OpenStax)/17%3A_Sound/17.03%3A_Speed_of_Sound

[20] Heller, Martin (08.07.2022). (n.d.) What is Visual Studio Code? Microsoft’s extensi-
ble code editor https://www.infoworld.com/article/3666488/what-is-visual-studio-
code-microsofts-extensible-code-editor.html

[21] Unicode.org (n.d.) UT8, UTF16, UTF32 & BOM: General questions, relating to UTF or Encoding
Form Retrieved: April 12, 2023, from https://unicode.org/faq/utf_bom.html#gen7

[22] Delmas, Patrice (03.07.2006) Offset Binary representation (ExcessK) https://www.cs.auckland.
ac.nz/~patrice/210-2006/210%20LN04_2.pdf

[23] broadbandsearch.net (n.d.) Role of Bytes in Network Data Transmission Retrieved: April 19, 2023,
from https://www.broadbandsearch.net/definitions/byte

[24] Character Encodnig. (n.d.) ROS 2 Documentation Obtained: Retrieved: April 12, 2023,
from https://studyrocket.co.uk/revision/gcse-computer-science-aqa/written-
assessment/character-encoding

[25] Intel, (n.d.) What Is Hyper-Threading? Retrieved: April 20, 2023, from https://www.intel.com/
content/www/us/en/gaming/resources/hyper-threading.html

[26] Wong, Kay Jan. (Mar 24, 2022) Multithreading and Multiprocessing in 10 Minutes
https://towardsdatascience.com/multithreading-and-multiprocessing-in-10-
minutes-20d9b3c6a867

[27] Open Robotics. (n.d.) Distributions. Retrieved: April 15, 2023, from https://docs.ros.org/en/
humble/Releases.html

[28] Steen, M. v. & Tanenbaum, A. S. (2018). Distributed systems http://www.dgma.donetsk.ua/
docs/kafedry/avp/metod/van%20Steen%20-%20Distributed%20Systems.pdf

[29] Farina, F., Camisa, A., Testa A., Notarnicola I. & Notarstefano G. (2020) Consensus Algorithms,
Disropt documentation. https://disropt.readthedocs.io/en/latest/api_documentation/
disropt.algorithms.consensus.html#

[30] Boyd, S. P. & Vandenberghe, L. (2004) Convex Optimization. Cambridge University Press. https:
//web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

[31] JavaTPoint, (n.d.) What is Deadlock in Operating System (OS)?. Retrieved: April 10, 2023, from
https://www.javatpoint.com/os-deadlocks-introduction

[32] JavaTPoint, (n.d.) Race Condition in Operating Systems (OS). Retrieved: April 10, 2023, from
https://www.javatpoint.com/race-condition-in-operating-system

[33] Iadarola, F. (2023) Multi-agent algorithms for adaptation of underwater acoustic communication pa-
rameters, University of Bologna. https://amslaurea.unibo.it/28412/

[34] Shaw, Anthony, Your Guide to the CPython Source Code https://realpython.com/cpython-
source-code-guide/#whats-in-the-source-code

111

https://www.robkalmeijer.nl/techniek/electronica/radiotechniek/hambladen/ar/1987/04/page05/index.html
https://www.robkalmeijer.nl/techniek/electronica/radiotechniek/hambladen/ar/1987/04/page05/index.html
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/17%3A_Sound/17.03%3A_Speed_of_Sound
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/17%3A_Sound/17.03%3A_Speed_of_Sound
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/17%3A_Sound/17.03%3A_Speed_of_Sound
https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(OpenStax)/Book%3A_University_Physics_I_-_Mechanics_Sound_Oscillations_and_Waves_(OpenStax)/17%3A_Sound/17.03%3A_Speed_of_Sound
https://www.infoworld.com/article/3666488/what-is-visual-studio-code-microsofts-extensible-code-editor.html
https://www.infoworld.com/article/3666488/what-is-visual-studio-code-microsofts-extensible-code-editor.html
https://unicode.org/faq/utf_bom.html#gen7
https://www.cs.auckland.ac.nz/~patrice/210-2006/210%20LN04_2.pdf
https://www.cs.auckland.ac.nz/~patrice/210-2006/210%20LN04_2.pdf
https://www.broadbandsearch.net/definitions/byte
https://studyrocket.co.uk/revision/gcse-computer-science-aqa/written-assessment/character-encoding
https://studyrocket.co.uk/revision/gcse-computer-science-aqa/written-assessment/character-encoding
https://www.intel.com/content/www/us/en/gaming/resources/hyper-threading.html
https://www.intel.com/content/www/us/en/gaming/resources/hyper-threading.html
https://towardsdatascience.com/multithreading-and-multiprocessing-in-10-minutes-20d9b3c6a867
https://towardsdatascience.com/multithreading-and-multiprocessing-in-10-minutes-20d9b3c6a867
https://docs.ros.org/en/humble/Releases.html
https://docs.ros.org/en/humble/Releases.html
http://www.dgma.donetsk.ua/docs/kafedry/avp/metod/van%20Steen%20-%20Distributed%20Systems.pdf
http://www.dgma.donetsk.ua/docs/kafedry/avp/metod/van%20Steen%20-%20Distributed%20Systems.pdf
https://disropt.readthedocs.io/en/latest/api_documentation/disropt.algorithms.consensus.html#
https://disropt.readthedocs.io/en/latest/api_documentation/disropt.algorithms.consensus.html#
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://www.javatpoint.com/os-deadlocks-introduction
https://www.javatpoint.com/race-condition-in-operating-system
https://amslaurea.unibo.it/28412/
https://realpython.com/cpython-source-code-guide/#whats-in-the-source-code
https://realpython.com/cpython-source-code-guide/#whats-in-the-source-code

References

[35] freeCodeCamp, (FEBRUARY 10, 2020) C++ Compiler Explained: What is the Compiler and How
Do You Use it? https://www.freecodecamp.org/news/c-compiler-explained-what-is-
the-compiler-and-how-do-you-use-it/

[36] Bof N., Carli R., Notarstefano G., Schenato L. & Varagnolo D. (2019) “Multiagent Newton-Raphson
Optimization Over Lossy Network”, IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2983-2990.
https://ieeexplore.ieee.org/document/8485728

[37] Bolognani S., Carli R., Lovisari E. & Zampieri S., (July 2016) "A Randomized Linear Algorithm
for Clock Synchronization in Multi-Agent Systems", in IEEE Transactions on Automatic Control,
vol. 61, no. 7, pp. 1711-1726, doi: 10.1109/TAC.2015.2479136. Obtained: 14.05.2023 https:
//ieeexplore.ieee.org/abstract/document/7270258?casa_token=C44btocuvOEAAAAA:
Fsth_bsF0Y8PFhA3tt1vU_daSrI2voaGl--pTDOPMJh6_IfK7sFKkdcOMmaKdOURHJPS2uJpFFg

[38] Grasmair, M. (2016) Basic properties of convex functions, NTNU. https://wiki.math.ntnu.no/
_media/tma4180/2016v/note2.pdf

[39] HS Devices | EvoLogics [Image]. (n.d). Retrieved: 10.04.2023, from https://evologics.de/
acoustic-modem/hs

[40] Underwater Modems - ROMOR [Image]. (n.d). Retrieved: 10.04.2023, from https://romor.ca/
underwater-modems/

[41] Raspberry Pi 4 [Image]. (n.d). Retrieved: 10.05.202, from https://www.raspberrypi.com/
products/raspberry-pi-4-model-b/

[42] Ermagun, A. & Levinson, D. (2017) An Introduction to the Network Weight Ma-
trix: Introduction to the Network Weight Matrix, The University of Sydney. https:
//www.researchgate.net/publication/318231876_An_Introduction_to_the_Network_
Weight_Matrix_Introduction_to_the_Network_Weight_Matrix

[43] University of Rhode Island & Inner Space Center, History of Underwater Acoustics Re-
trieved: 20.05.202, from https://dosits.org/people-and-sound/history-of-underwater-
acoustics/

[44] CMRE PAO, (2017) JANUS, the CMRE underwater communication procol becomes a NATO Stan-
dard, NATO https://www.cmre.nato.int/rockstories-blog-display/398-janus-the-
cmre-underwater-communication-protocol-becomes-a-nato-standard

[45] P. Loshin & M. Cobb, (2021) Secure Shell (SSH) https://www.techtarget.com/
searchsecurity/definition/Secure-Shell

[46] J. Kalasniemi, (2019) Introduction to the Raspberry Pi, CERN IdeaSquare https://indico.cern.
ch/event/788273/attachments/1777934/3174908/RaspberryPi_Workshop_EPSTIG.pdf

[47] K. Jamieson, (2020) COS 461 Computer Networks Lecture 4: Hubs, Switches, and Routers, Princeton
University https://www.cs.princeton.edu/courses/archive/fall20/cos461/lectures/
lec04-routers.pdf

[48] Ervik et al. (2022, June 3). NTNU_ROV_COM. GitHub. Retrieved: 20.05.2023, from https:
//github.com/markerv/NTNU_ROV_COM.

[49] EvoLogics GmbH. (2021, April 22). sdmsh. GitHub. Retrieved: 20.05.2023, from https://github.
com/EvoLogics/sdmsh.

[50] EvoLogics Gmbh. (2020, January 9). sdmsh Wiki, SDM: SDMShell Compile and Run. GitHub. Re-
trieved: 20.05.2023, from https://github.com/EvoLogics/sdmsh/wiki/SDM-:-SDMShell---
Compile-and-Run.

112

https://www.freecodecamp.org/news/c-compiler-explained-what-is-the-compiler-and-how-do-you-use-it/
https://www.freecodecamp.org/news/c-compiler-explained-what-is-the-compiler-and-how-do-you-use-it/
https://ieeexplore.ieee.org/document/8485728
https://ieeexplore.ieee.org/abstract/document/7270258?casa_token=C44btocuvOEAAAAA:Fsth_bsF0Y8PFhA3tt1vU_daSrI2voaGl--pTDOPMJh6_IfK7sFKkdcOMmaKdOURHJPS2uJpFFg
https://ieeexplore.ieee.org/abstract/document/7270258?casa_token=C44btocuvOEAAAAA:Fsth_bsF0Y8PFhA3tt1vU_daSrI2voaGl--pTDOPMJh6_IfK7sFKkdcOMmaKdOURHJPS2uJpFFg
https://ieeexplore.ieee.org/abstract/document/7270258?casa_token=C44btocuvOEAAAAA:Fsth_bsF0Y8PFhA3tt1vU_daSrI2voaGl--pTDOPMJh6_IfK7sFKkdcOMmaKdOURHJPS2uJpFFg
https://wiki.math.ntnu.no/_media/tma4180/2016v/note2.pdf
https://wiki.math.ntnu.no/_media/tma4180/2016v/note2.pdf
https://evologics.de/acoustic-modem/hs
https://evologics.de/acoustic-modem/hs
https://romor.ca/underwater-modems/
https://romor.ca/underwater-modems/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.researchgate.net/publication/318231876_An_Introduction_to_the_Network_Weight_Matrix_Introduction_to_the_Network_Weight_Matrix
https://www.researchgate.net/publication/318231876_An_Introduction_to_the_Network_Weight_Matrix_Introduction_to_the_Network_Weight_Matrix
https://www.researchgate.net/publication/318231876_An_Introduction_to_the_Network_Weight_Matrix_Introduction_to_the_Network_Weight_Matrix
https://dosits.org/people-and-sound/history-of-underwater-acoustics/
https://dosits.org/people-and-sound/history-of-underwater-acoustics/
https://www.cmre.nato.int/rockstories-blog-display/398-janus-the-cmre-underwater-communication-protocol-becomes-a-nato-standard
https://www.cmre.nato.int/rockstories-blog-display/398-janus-the-cmre-underwater-communication-protocol-becomes-a-nato-standard
https://www.techtarget.com/searchsecurity/definition/Secure-Shell
https://www.techtarget.com/searchsecurity/definition/Secure-Shell
https://indico.cern.ch/event/788273/attachments/1777934/3174908/RaspberryPi_Workshop_EPSTIG.pdf
https://indico.cern.ch/event/788273/attachments/1777934/3174908/RaspberryPi_Workshop_EPSTIG.pdf
https://www.cs.princeton.edu/courses/archive/fall20/cos461/lectures/lec04-routers.pdf
https://www.cs.princeton.edu/courses/archive/fall20/cos461/lectures/lec04-routers.pdf
https://github.com/markerv/NTNU_ROV_COM
https://github.com/markerv/NTNU_ROV_COM
https://github.com/EvoLogics/sdmsh
https://github.com/EvoLogics/sdmsh
https://github.com/EvoLogics/sdmsh/wiki/SDM-:-SDMShell---Compile-and-Run
https://github.com/EvoLogics/sdmsh/wiki/SDM-:-SDMShell---Compile-and-Run

References

[51] EvoLogics Gmbh. (2021, May 9). sdmsh Wiki, sdmsh: Commands and Parameters. GitHub. Re-
trieved: 20.05.2023, from https://github.com/EvoLogics/sdmsh/wiki/sdmsh-:-Commands-
and-Parameters.

[52] EvoLogics Gmbh. (2020, Jan 9). sdmsh Wiki, SDM: Protocol Description. GitHub. Re-
trieved: 20.05.2023, from https://github.com/EvoLogics/sdmsh/wiki/SDM-:-Protocol-
Description.

[53] Eriksen et al. (2022). Development of Underwater Communication Rig [Bachelor thesis, Norwe-
gian University of Science and Technology]. https://ntnuopen.ntnu.no/ntnu-xmlui/handle/
11250/3002917

[54] EvoLogics. (2021, February). Getting Started Guide: S2C R 18/34 USBL Underwater Positioning and
Communication system. Obtained from: Supervisor.

[55] EvoLogics. (2020, March). S2C Reference Manual (Edition: Standard). Obtained from: Supervisor.

[56] Zappa, G. (2013, 25. March). README - JANUS Tool Kit 3.0.1. Retrieved: 20.05.2023, from https:
//www.januswiki.com/tiki-index.php after making an account on the website.

[57] NATO SANDARDIZATION OFFICE (NSO). (2017). DIGITAL UNDERWATER SIGNALLING
STANDARD FOR NETWORK NODE DISCOVERY & INTEROPERABILITY (Edition A Version 1).
Obtained from: https://nso.nato.int/nso/nsdd/main/standards?search=ANEP-87

[58] Zarki, M. E, (2002) Introduction to TCP/IP, Donald Bren School of Information and Computer Sci-
ences. https://www.ics.uci.edu/~magda/ics_x33/ch0.pdf

[59] EvoLogics. (n.d) EvoLogics AMA. Retrieved: 21.05.2023, from https://evologics.de/
software/ama.

[60] Kendall. G. (2002, 13. January). Inter-Process Communication Problems https://www.cs.nott.
ac.uk/~pszgxk/courses/g53ops/Processes/proc13-processcommunication.html

[61] Prakash, A. (n.d.) What is Build Essential Package in Ubuntu? How to Install it? Retrieved:
22.05.2023, from https://itsfoss.com/build-essential-ubuntu/.

[62] Birkeland, H. B. (n.d.) Github repository. Retrieved: 23.05.2023, from https://github.com/
HaIvor/Optimization

[63] Fauske, M. F. & Merkesvik, W. B. NTNU_COM_JANUSxSDM. Retrieved: 23.05.2023, from https:
//github.com/Majaafa/NTNU_COM_JANUSxSDM.git.

[64] Shi et al. (2004). Interleaving for Combating Bursts of Errors.IEEE Circuits and Systems Magazine.
https://web.njit.edu/anl/papers/04CASMag.pdf

[65] NTNU. (2022). Final meeting_20220602_104053.mp4 (sharepoint.com)IEEE Circuits and
Systems Magazine.[Video]. Teams. https://studntnu-my.sharepoint.com/personal/
behdada_ntnu_no/_layouts/15/stream.aspx?id=%2Fpersonal%2Fbehdada%5Fntnu%5Fno%
2FDocuments%2FRecordings%2FFinal%20meeting%5F20220602%5F104053%2Emp4&ga=1.
(accessed: 24.05.2023)

[66] Chakraborty Arnab (2019, Oct 11). Init process on UNIX and Linux systems. tutorialspoint. https:
//www.tutorialspoint.com/init-process-on-unix-and-linux-systems

[67] Academic tutorials. (2008). Process Creation. http://www.academictutorials.com/ipc/ipc-
process-creation.asp

113

https://github.com/EvoLogics/sdmsh/wiki/sdmsh-:-Commands-and-Parameters
https://github.com/EvoLogics/sdmsh/wiki/sdmsh-:-Commands-and-Parameters
https://github.com/EvoLogics/sdmsh/wiki/SDM-:-Protocol-Description
https://github.com/EvoLogics/sdmsh/wiki/SDM-:-Protocol-Description
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3002917
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3002917
https://www.januswiki.com/tiki-index.php
https://www.januswiki.com/tiki-index.php
https://nso.nato.int/nso/nsdd/main/standards?search=ANEP-87
https://www.ics.uci.edu/~magda/ics_x33/ch0.pdf
https://evologics.de/software/ama
https://evologics.de/software/ama
https://www.cs.nott.ac.uk/~pszgxk/courses/g53ops/Processes/proc13-processcommunication.html
https://www.cs.nott.ac.uk/~pszgxk/courses/g53ops/Processes/proc13-processcommunication.html
https://itsfoss.com/build-essential-ubuntu/
https://github.com/HaIvor/Optimization
https://github.com/HaIvor/Optimization
https://github.com/Majaafa/NTNU_COM_JANUSxSDM.git
https://github.com/Majaafa/NTNU_COM_JANUSxSDM.git
https://web.njit.edu/anl/papers/04CASMag.pdf
https://studntnu-my.sharepoint.com/personal/behdada_ntnu_no/_layouts/15/stream.aspx?id=%2Fpersonal%2Fbehdada%5Fntnu%5Fno%2FDocuments%2FRecordings%2FFinal%20meeting%5F20220602%5F104053%2Emp4&ga=1
https://studntnu-my.sharepoint.com/personal/behdada_ntnu_no/_layouts/15/stream.aspx?id=%2Fpersonal%2Fbehdada%5Fntnu%5Fno%2FDocuments%2FRecordings%2FFinal%20meeting%5F20220602%5F104053%2Emp4&ga=1
https://studntnu-my.sharepoint.com/personal/behdada_ntnu_no/_layouts/15/stream.aspx?id=%2Fpersonal%2Fbehdada%5Fntnu%5Fno%2FDocuments%2FRecordings%2FFinal%20meeting%5F20220602%5F104053%2Emp4&ga=1
https://www.tutorialspoint.com/init-process-on-unix-and-linux-systems
https://www.tutorialspoint.com/init-process-on-unix-and-linux-systems
http://www.academictutorials.com/ipc/ipc-process-creation.asp
http://www.academictutorials.com/ipc/ipc-process-creation.asp

References

[68] ibm. (2021-03-03). exec functions. https://www.ibm.com/docs/en/zos/2.3.0?topic=
functions-exec#rtexe

[69] The Regents of the University of California. (2021-03-22). popen(3) Linux manual page. https:
//man7.org/linux/man-pages/man3/popen.3.html

[70] The Regents of the University of California. (2021-03-22). pipe(2) — Linux manual page. https:
//man7.org/linux/man-pages/man2/pipe.2.html.

[71] Chen, Miles MH Chen (2009). double fork to avoid zombie process. http://thinkiii.blogspot.
com/2009/12/double-fork-to-avoid-zombie-process.html.

[72] JavaTPoint, (n.d.) Difference between fork() and exec(). Retrieved: 05.19.2023 , from https://www.
javatpoint.com/fork-vs-exec

[73] The Robotics Back-End, (n.d.), When to use Python vs Cpp with ROS. Retrieved: 05.26.2023, from
https://roboticsbackend.com/python-vs-cpp-with-ros/

[74] The Robotics Back-End, (n.d.) How to Add a Python ROS2 Node to a C++ ROS 2 Package.
Retrieved: 05.26.2023, from https://automaticaddison.com/how-to-add-a-python-ros2-
node-to-a-c-ros-2-package/

[75] JavaTPoint, (2015) Boost.Python. Retrieved: 05.26.2023, from https://roboticsbackend.com/
ros2-package-for-both-python-and-cpp-nodes/

[76] Kravets, Alexey. (Nov 28, 2021) Calling C++ code from Python with ctypes module. Retrieved:
05.26.2023, from https://towardsdatascience.com/calling-c-code-from-python-with-
ctypes-module-58404b9b3929

[77] JavaTPoint, (2015) Boost.Python. Retrieved: 05.26.2023, from https://www.boost.org/doc/
libs/1_80_0/libs/python/doc/html/index.html

[78] JavaTPoint, (n.d.) What is zombie process Retrieved: 05.19.2023. From https://www.javatpoint.
com/what-is-zombie-process

[79] Raspberry Pi Trading Ltd, (June 2019) Boost.Python. Retrieved: 05.26.2023, from https://
static.raspberrypi.org/files/product-briefs/Raspberry-Pi-4-Product-Brief.pdf

114

https://www.ibm.com/docs/en/zos/2.3.0?topic=functions-exec#rtexe
https://www.ibm.com/docs/en/zos/2.3.0?topic=functions-exec#rtexe
https://man7.org/linux/man-pages/man3/popen.3.html
https://man7.org/linux/man-pages/man3/popen.3.html
https://man7.org/linux/man-pages/man2/pipe.2.html
https://man7.org/linux/man-pages/man2/pipe.2.html
http://thinkiii.blogspot.com/2009/12/double-fork-to-avoid-zombie-process.html
http://thinkiii.blogspot.com/2009/12/double-fork-to-avoid-zombie-process.html
https://www.javatpoint.com/fork-vs-exec
https://www.javatpoint.com/fork-vs-exec
https://roboticsbackend.com/python-vs-cpp-with-ros/
https://automaticaddison.com/how-to-add-a-python-ros2-node-to-a-c-ros-2-package/
https://automaticaddison.com/how-to-add-a-python-ros2-node-to-a-c-ros-2-package/
https://roboticsbackend.com/ros2-package-for-both-python-and-cpp-nodes/
https://roboticsbackend.com/ros2-package-for-both-python-and-cpp-nodes/
https://towardsdatascience.com/calling-c-code-from-python-with-ctypes-module-58404b9b3929
https://towardsdatascience.com/calling-c-code-from-python-with-ctypes-module-58404b9b3929
https://www.boost.org/doc/libs/1_80_0/libs/python/doc/html/index.html
https://www.boost.org/doc/libs/1_80_0/libs/python/doc/html/index.html
https://www.javatpoint.com/what-is-zombie-process
https://www.javatpoint.com/what-is-zombie-process
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-4-Product-Brief.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-4-Product-Brief.pdf

A1 Attachments

Attachment

A Attachments

115

Communication Schemes
Adaptive Underwater
Distributed Optimization-Based

Underwater communication is about sending and receiving infor-
mation through water. However, underwater communication faces
challenges due to water's properties. With its high density com-
pared to air, underwater communication demands smart solutions.
Enter acoustic communication, a reliable method of using sound
waves to send and receive messages under water.

This project focuses on making a prototype of
an adaptive communication mechanism to
address the challenges in real-life scenarios. The
optimization of the adaption of underwater
modems consists of several key-aspects.

Halvor Bergstøl Birkeland
Ovidijus Cironka
Maja Austin Fauske
Wilhelm Merkesvik

The ra-NRC optimization algorithm has been
realized for real-world usage. This algorithm cal-
culates incoming values based on the knowledge
of multiple, distant, nodes. The constant talking
between these distant nodes leads them to agree
on the best values that fits for every node.

Evo_janusXsdm is a program for managing
communication with EvoLogics modems. The
program integrates with JANUS, the standard for
underwater communication defined by NATO,
enabling communication between various sys-
tems, including the Subnero modems.

Nodecomx, a program which aims to combine
the algorithm and the communication programs,
allowing a smooth transition of information
coming in and out of each node.

These two underwater communication devices
talk to eachother using the JANUS protocol. This
protocol can be thought of as a languge they
use to communicate.

This project is part of a
larger project, which
can be viewed through
this QR code.

25.05.2023

Our efforts have resulted in the im-
plementation of a significant amount
of useful software tools that can
greatly benefit further development
in the field of underwater communi-
cation.

Overall, this project has provided us
with valuable insights and exposure
to new learning topics. We are confi-
dent that it will serve as a stepping
stone for the development of real-life
underwater communication.

EvoLogicsSubnero

BSc 2023 Maja A. Fauske, Wilhelm Merkesvik Ovidius Cironka, Halvor B. Birkeland

Subnero TX:
EvoLog RX:

Sub
Appdata:

Sub
FrameLenght MTU Reservation time (leser

av på evo) INDEX
R.T read from

Evo
Evo

Cargo size
Evo

 CRC
Evo

Samling count Ok? Comment: Evo TX
CRC

Test av tall: 0 0 MTU-Maximum Transmission Unit on the sub

1 0 ANEP-87
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 1

2 10 2 40 0.15031051 2 14 182810 ok 209
11 3

3 12 4 47 0.29291267 4 134 207810 ok 89
13 5
14 6
15 7

4 16 8 53 0.51891266 8 118 257810 ok 169
17 9
18 10
19 11
20 12
21 13
22 14
23 15

5 24 16 60 1 16 231 357810 ok 56
25 17
26 18
27 19
28 20
29 21
30 22
31 23

6 32 24 64 1.48051838 24 143 457810 ok 80
33 25
34 26
35 27
36 28
37 29
38 30
39 31

7 40 32 66 1.79142724 32 56 557810 ok 231
41 33
42 34
43 35
44 36
45 37
46 38

8 47 39
8,9 8 48 40 (67) (1.97056996) 40 Nei På Evo er 33 ch her maks, mulig dette er pga det er

brukt 16 bit int i Evo code 146

8 49 41 also cant send a appdata: "8" from sub to evo.

8 50 42 Need to check settings for evo.?

8 51 43
8 52 44
8 53 45
8 54 46
8 55 47

8,9 9 56 48 54 0.570803 48 Nei

<- dette er fra evo der vi tetstet å sende en økende
melding med flere ch. og lese av direkte i

januspakken. Men dette ser feil ut.
-Vi ser også at det blir feil når vi ser på res.tid.

-Vi prøvde å sende fra sub til evo, men fikk korrupt.

98

8 57 49
8 58 50
8 59 51
8 60 52
8 61 53
8 62 54
8 63 55
8 64 56

A2 Attachments: Settings between Subnero and EvoLogics modem

117

Test for TCP connection between Janus and SDMSH.
EvoLogic S2C R 18/34 USBL

created by:
Maja A. Fauske

Wilhelm Merkesvik
Halvor B. Birkeland

Ovidius Cironka

janus-rx... ./janus-rx --pset-file ../etc/parameter_sets.csv --pset-id 2 --stream-driver tcp --stream-driver-args listen:127.0.0.1:9988 --stream-fs 25000 -stream-format S16 --verbose 1

janus-tx... ./janus-tx --pset-file ../etc/parameter_sets.csv --pset-id 2 --stream-driver tcp --stream-driver-args connect:127.0.0.1:9977 --stream-fs 250000 --stream-format S16 --verbose 1 --packet-cargo "123456789123"

sdmsh-rx... ./sdmsh 192.168.0.189 -e "rx 0 tcp:connect:127.0.0.1:9988"

sdmsh-tx... ./sdmsh 192.168.0.199 -e "tx 357810 tcp:listen:127.0.0.1:9977"

stop;sdmsh-rx... ./sdmsh 192.168.0.189 -e "stop;rx 0 tcp:connect:127.0.0.1:9988"

stop;sdmsh-tx... ./sdmsh 192.168.0.199 -e "stop;tx 357810 tcp:listen:127.0.0.1:9977"

Settings 1: ./sdmsh 192.168.0.189 -e "stop;config 30 0 3 0"

Settings 2: ./sdmsh 192.168.0.189 -e "stop;preamble.raw"

div: TCP port and the --stream-fs have been alter in this test. --stream-fs 250000 deafault

Test of: Nr. Command Event Error message/Comment

... alot more testing over

...

...
29.30.2023 The Final RX Stop Cammand

TX/RX SRX stop;sdmsh rx... Opens RX and TX have different TCP port, We want to try
these simultaneous.

SRX stop;sdmsh rx... Opens, but stops RX

- stop;sdmsh rx exit
29.30.2023 The Final Sequence

TX/RX *10 JRX janus-rx... Opens RX and TX has different TCP port, We want to try
running these simultaneous.

SRX stop;sdmsh rx... Opens

STX stop;sdmsh tx... Opens, but stops JRX and SRX

- - SDMSH TX is ok, but JRX and SRX is dead.

JTX janus-Tx... Opens

Tid - Sending ok

ok - Janus tx exit, ok

ok - Sdmsh tx exit, ok

JRX janus-rx... Opens

SRX stop;sdmsh rx... Opens

STX stop;sdmsh tx... Opens, but stops JRX and SRX

- - STX is ok, but JRX og SRX is dead.

JTX janus-Tx... Opens
Tid - Sending ok
ok - Janus tx exit, ok

ok - Sdmsh tx exit, ok

A3 Attachments: Final sequence reliable termination of JANUS & SDMSH

118

T
he

 P
ip

e(
) w

e
re

ad
 fr

om
 h

av
e

a
lim

ite
d

bu
ff

er
.

in
t

fd
_l

is
te

n
=

mo
de

m.
st

ar
tR

X(
);

St
ar

t t
he

 R
X

pr
oc

es
se

s

St
ar

t J
an

us

St
ar

t S
D

M
SH

R
et

ur
n

pi
pe

 "f
d_

lis
te

n"
Th

e
m

od
em

 is
 s

et
t t

o
re

ce
iv

in
g

 m
od

e

Th
e

m
od

em
 is

 s
et

t t
o

re
ce

iv
in

g
 m

od
e

mo
de

m.
li

st
en

RX
(f

d_
li

st
en

,
re

sp
on

s)
;

W
ai

t i
n

po
ll(

)

If(
 n

o
da

ta
 in

 p
ip

e
)

If(
 d

at
a

in
 p

ip
e

)

Ti
m

eo
ut

 in
 p

ol
l()

Ex
it

lis
te

nR
X

w
ha

t
no

w
?

R
ea

d
da

ta

Ja
nu

s
fra

m
e

fo
un

d?

So
rt

ou
t a

nd
 re

tu
rn

 d
at

a
D

o
w

ha
t y

ou
 li

ke
 w

ith
th

e
da

ta
.

K
ee

p
re

ad
in

g?

St
op

 re
ad

in
g?

N
o

Ye
s

St
ar

t T
X?

Lo
op

 A

Pr
oc

es
si

ng
:

1
+

da
ta

 =
 3

Ye
s

Ye
s

O
r

O
r

cl
os

e
R

X
pr

oc
es

se
s

St
ar

t T
X

mo
de

m.
st

op
RX

(f
d_

li
st

en
);

St
ar

t D
um

m
y

SD
M

SH

C
ra

sh
in

g
or

 "
st

op
;"

 :
SD

M
SH

 p
ro

ce
ss

Ja
nu

s
pr

oc
es

s
N

ew
 S

D
M

SH
 p

ro
ce

ss

Al
l p

ro
ce

ss
es

 a
re

 n
ow

 d
ea

d

cl
os

e
pi

pe
mo

de
m.

cl
os

eP
ip

eR
X(

fd
_l

is
te

n)
;

pi
pe

 is
 c

lo
se

d
Al

l p
ro

ce
ss

es
 a

re
 n

ow
 d

ea
d

D
O

N
E

mo
de

m.
st

ar
tT

X(
me

ss
ag

e)
;

St
ar

t T
X

SD
M

SH

St
ar

t T
X

Ja
nu

s

Tr
an

sm
itt

in
g

m
es

sa
ge

D
on

e
Tr

an
sm

itt
in

g

Ja
nu

s
an

d
SD

M
SH

 T
X

pr
oc

es
se

s
ex

it
Al

l p
ro

ce
ss

es
 a

re
 n

ow
 d

ea
d

St
ar

t R
X

ag
ai

n?

D
O

N
E

N
o

Ye
s

If
 th

e
da

ta
 p

ro
ce

ss
in

g
is

 e
xp

ec
te

d
to

ta
ke

 a
 si

gn
ifi

ca
nt

 a
m

ou
nt

 o
f t

im
e,

 it
w

ou
ld

 b
e

w
is

e
to

 c
on

si
de

r
cl

os
in

g
th

e
R

X
 p

ro
ce

ss
W

hy
?

cl
os

e
pi

pe
mo

de
m.

cl
os

eP
ip

eR
X(

fd
_l

is
te

n)
;

pi
pe

 is
 c

lo
se

d
Al

l p
ro

ce
ss

es
 a

re
 n

ow
 d

ea
d

Ye
s

C
ra

sh
in

g
or

 "
st

op
;"

 :
SD

M
SH

 p
ro

ce
ss

Ja
nu

s
pr

oc
es

s
N

ew
 S

D
M

SH
 p

ro
ce

ss

mo
de

m.
sd

mC
on

fi
gA

ir
()

;
Se

tti
ng

 c
on

fig

Se
tti

ng
 re

f s
ig

na
l

mo
de

m.
se

tP
re

am
bl

e(
);

1.

2.

4.

M
ak

e
st

rin
g

fo
r r

es
po

ns
3.

st

d:
:s

tr
in

g
re

sp
on

s;

A
.

B
. B
2.

C
.

C
2.

St
ep

 1
 to

 4
:

-S
ho

ul
d

al
w

ay
s

be
 d

on
e.

St
ep

 A
:

-W
ill

 k
ee

p
th

e
R

X
pr

oc
es

se
s

al
iv

e
an

d
re

ad
fr

om
 th

e
sa

m
e

pi
pe

 o
ve

r
tim

e.

St
ep

 B
:

-W
ill

 c
lo

se
 e

xi
st

in
g

R
X

pr
oc

es
se

s
an

d
th

e
pi

pe
.

St
ep

 C
:

-W
ill

 c
lo

se
 e

xi
st

in
g

R
X

pr
oc

es
se

s
an

d
th

e
pi

pe
-W

ill
 s

en
d

a
TX

 a
nd

 th
en

R
X

ag
ai

n
or

 e
xi

t.

 O
ur

 R
X_

Fa
m

 fu
nc

tio
ns

 s
er

ve
 a

s
th

e
co

rn
er

st
on

e
fo

r s
et

tin
g

up
 th

e
re

ce
pt

io
n,

 p
ro

vi
di

ng
 a

 fl
ex

ib
le

fo
un

da
tio

n
fo

r b
ui

ld
in

g
yo

ur
 c

od
e

fo
r

an
y

sc
en

ar
io

.

R
X

_F
A

M

A4 Attachments: RX_ Family

119

modem.sdmConfigAir();

int fd_listen = modem.startRX();

Setting config

Setting ref signal modem.setPreamble();

Start the RX processes

Start Janus

Start SDMSH

modem.listenRX(fd_listen, respons);

Will return to were
"listenOnceRXSimple"

was called from

Sort out and return data

No

Yes

modem.stopRX(fd_listen);

Start Dummy SDMSH

Crashing or "stop;" :
SDMSH process
Janus process

New SDMSH process

modem.closePipeRX(fd_listen);

pipe is closed

ListenOnceRXSimple

DONE

modem.listenOnceRXSimple(respons);

In
si

de
 th

e
"E

vo
_j

an
us

X
sd

m
"

lib

The modem is sett to receiving mode

Stopping RX process

All processes are now dead

Close pipe

Done
Will return to were

"listenOnceRXSimple"
was called from

DONE

U
se

r

...
.

...
.

Data is returnedData is not returned

Unlock the user-friendly version, tailored for
effortless mastery!

Start Janus

Start SDMSH

The modem is sett to receiving mode

Wait in poll()

If(no data in pipe) If(data in pipe)

Read dataTimeout in poll()

Janus frame found?

Sort out and return data

Stopping RX process

Start Dummy SDMSH

All processes are now dead

1.

2.

4.

Make string for respons3. std::string respons;

U
se

r

U
se

r
ha

s t
o

ha
nd

le

A5 Attachments: ListenOnceRXsimple

120

modem.sdmConfigAir();Setting config

Setting ref signal modem.setPreamble();

Start the TX processes

Start Janus

Start SDMSH

Start SDMSH TX

Wait in poll()

startTX

modem.startTX(message);

U
se

r
ha

s t
o

ha
nd

le

In
si

de
 th

e
"E

vo
_j

an
us

X
sd

m
"

lib

The modem is sett to receiving mode

Packet is transmitted

Seamless transmission made
effortlessly simple!

Calculate samples in JANUS package

Calculate reservation time for cargo in JANUS pack

Start JANUS TX

reserv_time = getPacketReservTime(message);

samples = getNumberOfSamples(message);

Will return to were "startTX"
was called from

DONEU
se

r

...
.

Transmitting done

All processes close

Write message as string message = "Hello sir"

1.

2.

3.

4.

A6 Attachments: startTX

121

RX

EvoLogic
Modem

Preamble

JANUSbasepkt

Cargo

IP: 192.168.0.189

Sdmsh

Janus-c-3.0.1

From TX modem

TCP

Pipe()
Write

Read

Evo_janusXsdm

listenRX() Read from pipe
Loop(

)

JanusFrame found
If(

)

Output data to user

TX

EvoLogic
Modem

Preamble

JANUSbasepkt

Cargo

IP: 192.168.0.199

Sdmsh

Janus-c-3.0.1

To RX modem

TCP

Evo_janusXsdm

startTX() String message;

Message from use as string

A7 Attachments: Illustration of data flow for Evologics

122

ra-NRC for node i
1: procedure Initialization (atomic)
2: xi ← x0

3: yi ← 0, gi ← 0, goldi ← 0
4: zi ← In, hi ← In, h

old
i ← In

5: σi,y ← 0, σi,z ← 0

6: ρ
(j)
i,y ← 0, ρ

(j)
i,z ← 0, ∀j ∈ N in

i

7: flagreception,i ← 0, flagupdate,i ← 0
8: flagtransmission,i ← 1
9: end procedure
10: procedure Data Transmission (atomic)
11: if flagtransmission,i = 1 then
12: transmitterNodeID ← i
13: yi ← 1

|N out
i |+1

yi

14: zi ← 1
|N out

i |+1
zi

15: σi,y ← σi,y + yi
16: σi,z ← σi,z + zi
17: Broadcast: transmitterNodeID, σi,y, σi,z
18: flagtransmission,i ← 0
19: end if
20: end procedure
21: procedure Data Reception (atomic)
22: if flagreception,i = 1 then
23: j ← transmitterNodeID, (j ∈ N in

i)

24: yi ← yi + σj,y − ρ
(j)
i,y

25: zi ← zi + σj,z − ρ
(j)
i,z

26: ρ
(j)
i,y ← σj,y

27: ρ
(j)
i,z ← σj,z

28: flagreception,i ← 0
29: flagupdate,i ← 1 (optional)
30: end if
31: end procedure
32: procedure Estimate Update (atomic)
33: if flagupdate,i = 1 then
34: xi ← (1− ε)xi + εz−1

i yi
35: goldi ← gi
36: holdi ← hi
37: hi ← ∇2fi(xi)
38: gi ← hixi −∇fi(xi)
39: yi ← yi + gi − goldi

40: zi ← zi + hi − holdi

41: flagupdate,i ← 0
42: flagreception,i ← 1 (optional)
43: end if
44: end procedure

A8 Attachments: Pseudocode of the ra-NRC algorithm for node i

123

Attachments

B Attachments
1. ROS 2 Project (code).zip

2. Optimization-main-sims (code).zip

3. Evo_JANUSxSDM(code).zip

4. Assignment text.pdf

5. poster_w_QR.pdf

6. tank_testRX.txt

124

	Preface
	Summary
	Sammendrag
	List of Figures
	List of Tables
	List of Abbreviations
	Concepts and expressions
	Introduction
	Background for Thesis
	History
	Motivation

	Research Question
	Previous work
	Project Plan
	Structure of the Thesis

	Theory
	Python and C++
	Multithreading and Multiprocessing
	Issues Related to Multithreading and Multiprocessing
	Race Conditions
	Deadlocks

	Common Multiprocessing Concepts
	Inter-Process Communication (IPC)
	The Producer-Consumer Problem
	The Readers Writers Problem
	pipe()
	fork(): Parent and Child Process
	Zombies and Orphans
	execvp()
	popen()
	Double Fork to Avoid Zombie Process

	Datatypes
	Integers, Unsigned Integers and int8
	Floats, Float32 and Float16
	Characters and Strings
	ASCII and UTF Encoding

	Networking
	JANUS Communication Protocol
	ANEP-87
	Janus-C Version 3.0.5
	JANUS Packet
	JANUS Baseline Packet
	Transmission Sequence Generation in JANUS

	Transmission Control Protocol
	Underwater Modems
	Optimization of The Underwater Modem Parameters

	Unet, UnetStack
	Subnero WNC-M25MRS3
	EvoLogics S2C R 18/34 USBL
	SDMSH
	EvoLogics AMA
	AT-Commands for Evologics Modem

	Raspberry Pi 4 Model B
	Visual Studio Code
	ROS 2
	ROS 2 and Multithreading
	Nodes, Topics, Publishers and Subscribers

	Optimization Theory
	The Cost Function - Generalized
	Convexity - Assumption I
	The Cost Function - This Project
	Distributed and Centralized Systems
	Network Connectivity - Assumption II
	Building Block A - NR Consensus
	Building Block B - Push-Sum Consensus
	Weight Matrix
	Classical Consensus Algorithm
	Push-sum Consensus
	The Rule Update

	Building Block C - Robust Ratio Consensus
	ra-NRC - Result of Building Blocks
	Constrained Optimization
	Logarithmic Barrier Function
	The Interior Point Method

	Backtracking Line Search

	Methodology: Introduction
	Equipment List
	Hardware
	The Physical Modem Setup
	Software

	Digital Workplace for Development
	Ubuntu OS
	Virtualization of the Ubuntu OS with VirtualBox

	The General Idea of Communication and Data Processing Using Distributed Modems

	Methodology: Optimization Algorithm Code
	Pseudocode
	Resources for Further Improvements

	Methodology: Implementation of ROS 2 & Subnero Communication
	Installation and Usage of ROS 2 on Ubuntu OS with Python 3.0
	Creating the ROS 2 Workspace
	Prerequisites
	Prerequisites: Folder Structure
	Prerequisites: Colcon Build Again

	Creating the ROS 2 package

	Creating the Basic ROS 2 Nodes
	Receiver Node
	Processing Node
	Transmitter Node

	UnetStack & Subnero Communication Setup with ROS 2
	The UnetStack Interface
	Physical Subnero Modems
	Setting Up the Broadcasting/Reception Settings
	For Testing in Air

	Simulated UnetStack Modems

	Using UnetPy to Establish Broadcasting and Reception in Python
	The Float16 Converter
	The Final System with ROS 2, UnetPy, Float16 Converter and the Optimization Algorithm

	Methodology: Communication Mechanism for EvoLogics
	Prerequisites for EvoLogics
	Installing Programs and Libraries for EvoLogics Communication Development
	Compilation

	Setting up the EvoLogics Modems
	Setting the PHY-mode
	Setting the Modem Configurations
	Setting the Reference Signal

	Preliminary Work for Evo_janusXsdm Implementation
	Transmission Process - a Minor Zombie Problem
	Receiving Process - a Major Zombie Problem
	Transmission Process - Stops, But Does Not Terminate
	Transmission Process - TCP DROP Error
	The 100th Packet Problem
	Receiving Process - Cannot Detect Every Other Packet
	Finding a Way to Stop JANUS and SDMSH
	Issues With Receiving the First JANUS Packet

	Building the Evo_janusXsdm Library
	Establishing a Framework for the Library
	Explanation of the Transmission Process
	Calculate the Number of Samples
	Calculation of the Reservation Time
	Starting the Transmission Process

	Explanation of the Reception Possess

	Communication Setup Between Evologics and Subnero
	Edit Janus-c-3.0.5: Interleave
	Edit janus-c-3.0.5: Deinterleave
	Setting Sampling Frequency
	Acoustic Frequency Specifications
	Sending a Message/Cargo from EvoLogics to Subnero Using JANUS
	Sending a Message/Cargo from Subnero to EvoLogics Using JANUS

	Field Test in a Water Tank
	Testing In Air - Subnero and EvoLogics, With JANUS
	Test to Find Reliable Termination of JANUS and SDMSH Processes
	Setup for Raspberry Pi
	Setup SD-card for Raspberry Pi
	Get Pi Working with The Developed Code

	Results
	Optimization
	Simulation

	The Finished ROS 2 Package 'nodecomx'
	Nodecomx Composition
	FP16_converter.py
	Consensus Results Using UnetStack Simulation in Conjunction With ROS 2 System

	The Finished "Evo_janusXsdm" Library
	Available Functions
	An Implementation of The "Evo_janusXsdm" Library

	Result/Finding for EvoLogics Modem
	Highlighted Problems Presented by the Previous Bachelor's Group
	Additional Results for EvoLogics
	Results From Field Test Conducted In A Water Tank
	Results From Communication Between Subnero and EvoLogics Modems

	Discussion
	Optimization
	Constrained Optimization
	The Float16 Restriction
	Backtracking Line Search
	Optimal Values of the Different Optimization Parameters
	Calculating the Gradient & Hessian
	Stopping Criteria
	Cost Function

	ROS 2
	ROS 2 From the Previous Project
	ROS 2 in the Current Project
	The Modularity of Nodecomx

	Python 3.11
	Transmitting Floating-point Numbers
	Splitting The Float
	The Issue With Large Datatypes
	A Solution To Transmitting Fractions Using Fewer Bytes: Float16
	Encoding of he Transmitted and Received Messages

	Subnero Modems
	The Subnero Modem Availability

	EvoLogics Modems
	Recreation of Previous Results
	Evo_janusXsdm
	Handling New Processes
	Receiving Process - Lowering the Threshold in Configurations
	Transmission Process - TCP Connection Error
	100 Packet And Number of Samples
	Field Testing Reflection

	Transmission between Subnero and EvoLogic
	Non-standard Frequency Band

	General
	Time Lost Due To Starting with Raspberry Pi
	Documentation

	Addressing Research Question

	Conclusion
	References
	Attachment
	Attachments
	Attachments

