
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Ba
ch

el
or

’s
th

es
is

Lauritz Rismark Fosso
Kristian Aasmundstad Johannesen
Pål Kristoffer Kjærem
Tor Harald Staurnes

Decentralized Model Predictive
Control for Increased Autonomy in
Fleets of ROVs

Bachelor’s thesis in Electrical Engineering
Supervisor: Josef Matous
May 2023

Lauritz Rismark Fosso
Kristian Aasmundstad Johannesen
Pål Kristoffer Kjærem
Tor Harald Staurnes

Decentralized Model Predictive Control
for Increased Autonomy in Fleets of
ROVs

Bachelor’s thesis in Electrical Engineering
Supervisor: Josef Matous
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Acknowledgement

This thesis marks the culmination of a three-year journey, filled with valuable experiences and
exciting challenges.

We would like to show gratitude to Damiano Varagnolo for challenging us along the way and
inspiring us with his ambitious ideas and broad experience.

We would also like to thank Josef Matous for his guidance throughout this project, and for giving
us sound advice and inspiring us.

A special thanks is in order to Mikael Medina, for giving us access to his Gazebo simulator envir-
onment and setting aside time to assist us. His help has been invaluable to this thesis.

And for our friends and family who have been supporting us along the way. Thank you.

iii

Abstract

This thesis aims to document the design and implementation of a decentralized model predictive
control architecture in a set of BlueROV2 Heavys. The thesis covers the mathematical modelling of
the ROV, the design of the MPC, its implementation in ROS 2, and simulations of the final product.

The mathematical model is in the form of Fossen’s robot-inspired matrix-vector model for marine
craft. The model is described matrix by matrix, and parametrized using both quaternions and
Euler angles. An alternative model that accounts for irrotational ocean currents is also presented.

The ROVs communicate through optical sensors, and therefore the line of sight between the ROVs
is a prerequisite for communication. In that context, a model predictive controller is designed that
achieves this by knowing the other ROV’s position. An alternative cost function, that locates all
ROVs at the edge of a circle, defined by a radius and a point is also derived.

Collision avoidance and precise trajectory following are also a necessity to enable cooperation
in multi-agent systems, where several agents are in close proximity to one another. The controller
was designed to handle this, in addition to maintaining line of sight.

The implementation was done in ROS 2 and a graphical user interface was developed with two
main control modes, one for trajectory planning and one for joystick control. A mode for running
standardised tests was also developed.

The simulations were performed both for Python and ROS 2 with Gazebo, and a set of four tests
were designed to evaluate the controllers’ performance. These tests were run under different con-
ditions, such as ocean currents, packet loss, and modifications of system parameters. Each test
was conducted 100 times with two agents in Gazebo.

The test results proved the controller capable. With less than 1% failure rate in collision avoid-
ance, and path-following capabilities. However the results show that the controller did experience
challenges with maintaining line of sight, and thus complete robustness in was not achieved. The
Python simulator, however, did not experience any violation of the constraints, with the trajectory
of the ROVs closely following the reference.

iv

Sammendrag

Denne oppgaven dokumenterer design og implementering av en desentralisert modellprediktiv
reguleringsarkitektur i et sett med BlueROV2 Heavy. Oppgaven dekker matematisk modellering
av undervannsfarkosten, design av MPC, implementering i ROS 2 og simulering av sluttproduktet.

Den matematiske modellen er uttrykt på form av Fossens robotinspirerte matrise-vektormodell
for marinefartøy. Modellen blir gjennomgått matrise for matrise, og er parametrisert både med
kvaternioner og Euler vinkler. En alternativ modell som tar hensyn til ikke roterende havstrømmer
presenteres også.

De fjernstyrte undervannsfarkostene kommuniserer gjennom optiske sensorer, og derfor er sikt-
linje mellom farkostene en forutsetning for kommunikasjon. I den sammenhengen er en mod-
ellprediktiv regulator utformet som oppnår dette kun ved å ha tilgang til den andre farkostens
posisjon. En alternativ kostfunksjon, som plasserer alle farkostene ved randen av en sirkel, definert
av en radius rundt ett punkt, utledes også.

Antikollisjonssystem og presis banefølging er også en nødvendighet i fleragentsystemer, der flere
enheter er i umiddelbar nærhet av hverandre. Regulatoren var designet for å håndtere dette, i
tillegg til å holde siktlinjen mellom undervannsfarkostene.

Systemet ble implementert i ROS 2, og det ble utviklet en grafisk brukergrensesnitt med to hov-
edkontrollmoduser, én for baneplanlegging og én for joystick-kontroll. I tillegg ble det satt opp
en modus for diverse standard tester.

Simuleringene ble utført i både Python og ROS 2 med Gazebo, og fire tester ble designet for å
evaluere regulatoren ytelse. Disse testene ble kjørt under forskjellige forhold, som for eksempel
med havstrømmer, pakketap, og modifikasjoner av systemparametere. Hver test ble utført 100
ganger med to agenter i Gazebo.

Resultatene viste at regulatoren fungerte. Antikollisjonssystemet sviktet i mindre enn 1% av testene,
og regulatoren fulgte banene gitt. Likevel viste resultatene at regulatoren strevde med å op-
prettholde siktlinje, og fullstendig robusthet ble dermed ikke oppnådd. Python-simulatoren opplevde
imidlertid ingen brudd på begrensningene som ble satt, og banen til undervannsfarkostene fulgte
referansen.

v

Contents

Acknowledgement . iii
Abstract . iv
Sammendrag . v
Contents . vi
Terminology and Glossary . ix
Figures . xi
Tables . xiii
1 Introduction . 1

1.1 Background . 1
1.2 Problem Statement . 2
1.3 Report structure . 3
1.4 Source Code . 3

2 Project Development . 4
3 Remotely Operated Underwater Vehicles . 6

3.1 Introduction . 6
3.2 ROVs in General . 6

3.2.1 Size-Classification . 6
3.2.2 Communication . 6
3.2.3 Propulsion . 7
3.2.4 Buoyancy . 7

3.3 BlueROV2 . 7
3.3.1 Thruster Configuration and DoF . 8
3.3.2 Components and Sensors . 9

4 Mathematical Model . 10
4.1 Introduction . 10
4.2 Euler Angles . 10
4.3 Quaternions . 11

4.3.1 Unit Quaternions . 11
4.3.2 Hamilton Product . 11
4.3.3 Quaternion Inverse . 12
4.3.4 Quaternion Rotations . 12
4.3.5 Attitude Control Using Quaternions . 12

4.4 Skew-symmetric Operator . 12
4.5 Reference Frames . 13
4.6 Notation . 14
4.7 Equations of Motion . 15

4.7.1 Rigid-body Kinetics . 15
4.7.2 Hydrostatics . 17
4.7.3 Hydrodynamics . 17
4.7.4 Control Forces and Moments . 18
4.7.5 Tranformation From BODY To NED . 19

vi

Contents E2310: BSc. Thesis

4.7.6 Complete Model . 20
4.7.7 Ocean Currents . 21
4.7.8 Alternative Parametrisation using Euler Angles 21

4.8 Discussion . 22
4.8.1 Issues With the Original Model . 22
4.8.2 Parameter Uncertainties . 22
4.8.3 Implementation of Relative Velocity . 23

4.9 Conclusion . 23
5 Model Predictive Control . 24

5.1 Theoretical Framework . 25
5.1.1 Notation . 25
5.1.2 Optimal Control . 25
5.1.3 Why MPC? . 25
5.1.4 MPC Structure . 26
5.1.5 Decentralized Control . 26
5.1.6 Cost Function . 27
5.1.7 Constraints . 28
5.1.8 Function . 29
5.1.9 Modelling Optical Communication . 31
5.1.10 Do-mpc . 32

5.2 Design . 32
5.2.1 Cost Function . 32
5.2.2 Constraints . 34

5.3 Results . 37
5.3.1 Cost Function . 37

5.4 Discussion . 40
5.4.1 Cost Function . 40
5.4.2 Non-linear Constraints . 41
5.4.3 Disadvantages and Alternative Methods of Control 42
5.4.4 Do-mpc . 42
5.4.5 Model Implementation in do-mpc . 43

6 The Robot Operating System (ROS) . 44
6.1 Software . 44
6.2 Theoretical Framework . 45

6.2.1 A Look Into the ROS 2 Structure . 45
6.2.2 Communication in ROS . 47
6.2.3 Gazebo Garden & BlueROV2 Garden . 48

6.3 Mathematical Framework . 49
6.3.1 Polynomial Trajectories . 49

6.4 Implementation . 50
6.4.1 Package for MPC . 51
6.4.2 Launch and Parameters . 51
6.4.3 MPC Node . 53
6.4.4 GUI . 55
6.4.5 Trajectory Node . 56
6.4.6 Package for Joystick Controller . 56

6.5 Results and Findings . 57
6.5.1 Filesystem . 57
6.5.2 Launch of Packages w/ BlueROV2 Garden - Desktop Interface 58
6.5.3 System Topology . 58

vii

E2310: BSc. Thesis Contents

6.6 Discussion and Analysis . 59
6.6.1 Communication . 59
6.6.2 Parameters . 59
6.6.3 Reuse of Code . 60

7 Simulation . 61
7.1 Design and Implementation . 61

7.1.1 Python Simulator . 61
7.1.2 Gazebo Simulator . 62
7.1.3 Standard Tests . 64
7.1.4 Controller Parameters . 66
7.1.5 Test Scenarios . 67
7.1.6 Statistical Analysis . 68

7.2 Results and Findings . 69
7.3 Discussion . 75

7.3.1 Python Simulator . 75
7.3.2 Gazebo Simulator . 75
7.3.3 Robustness of Controller . 76

8 Conclusion . 81
8.1 Further Work . 81

Bibliography . 83
Appendix .
A Derivation of FOV Formula .
B Derivation of Formula for Attitude Control Using Quaternions
C RQt-graph .
D Computer Specifications .
E List of tests done .
F Complete Collection of Results from the Python Simulator
G Complete Collection of Results from the Gazebo Simulator
H Showcase of Median Values from Tests With Disturbances
I Comparison Between Gazebo and Python .
J Poster .

viii

Terminology and Glossary

Glossary

BlueROV2 ROV produced by Blue Robotics.

BlueROV2 Heavy BlueROV2 with extra thrusters.

do-mpc An open-sourced python package used for model predictive control.

Gazebo An third-party application used for simulation in robotics.

Raspberry Pi 4 A small Linux-based computer.

Acronyms

CB Center of Buoyancy.

CG Center of Gravity.

DoF Degrees of Freedom.

ECEF Earth-Centered Earth-Fixed.

ECI Earth-Centered Inertial.

FOV Field of view.

GUI Graphical User Interface.

ITK Department of Engineering Cybernetics (Institutt for Teknisk Kybernetikk).

LED Light Emitting Diode.

MPC Model Predictive Control.

MSROV Mid-sized Remote Operated underwater Vehicle.

NED North-East-Down.

NTNU Norwegian University of Science and Technology (Norges teknisk-naturvitenskapelige uni-
versitet).

ix

E2310: BSc. Thesis Terminology and Glossary

OCROV Observational Class Remote Operated underwater Vehicle.

ROS Robot Operating System.

ROV Remotely Operated underwater Vehicle.

UUV Unmanned Underwater Vehicle.

WCROV Working Class Remote Operated underwater Vehicle.

x

Figures

3.1 BlueROV2 Heavy [10] 6 DoF coordinate system . 8
3.2 2D drawings of the BlueROV2 Heavy configuration [11] 8

4.1 Illustration of NED and BODY reference frames [19] 13

5.1 MPC Block Diagram . 26
5.2 Signal flow in decentralized control . 27
5.3 MPC State prediction at time t . 29
5.4 MPC system input prediction at time t . 30
5.5 MPC State prediction at time t+1 . 30
5.6 MPC system input prediction at time t+1 . 31
5.7 Optical communication concept . 31
5.8 Positioning in the xy-plane . 33
5.9 Field of view (FOV) concept . 34
5.10 Cost. Comparison of circle setpoint and squared error 38
5.11 Cost. Implemented Circular Setpoint Around the Desired Position 39
5.12 Derivative of cost. Comparison of circle setpoint and squared error 39
5.13 Derivative of cost. Discontinuity in comparison of circle setpoint and squared error 40

6.1 A simple representation of how ROS filesystem is set up. 45
6.2 Example of how a topic is used in a ROS environment. 47
6.3 Example of how services are used in a ROS environment. 48
6.4 Example of how actions are used in a ROS environment. 48
6.5 Three cubic polynomial splines showing discontinuity in the acceleration in the

via-points . 50
6.6 Overview of ROS 2 filesystem and connections . 50
6.7 Simple flowchart showing how launch-file handles multi-agent 52
6.8 Overview of the node structure for mpc_controller.py 53
6.9 Flowchart - Trajectory node when getting setpoint from user 56
6.10 Folder structure of BlueROV2 Garden with the filesystem of Joystick and MPC pack-

ages . 57
6.11 Launching BlueROV2 Garden (upper) and launch file from mpc_controller (below)

together . 58

7.1 Block diagram of do-mpc simulator . 61
7.2 Screenshot from the do-mpc simulator animation . 62
7.3 Initial sketch of layout for the GUI . 63
7.4 Final version of GUI . 64
7.5 3D-plots of the standard tests . 65
7.6 Comparison between Gazebo and Python (median) . 71
7.7 Showcase of disturbances, circle test . 71

xi

E2310: BSc. Thesis Figures

7.8 Torus test Python simulator . 72
7.9 Breakdown case and failed test . 72
7.10 Spiral test under default conditions . 73
7.11 Torus test with doubled mass . 73
7.12 Torus test with circular setpoint . 74
7.13 Line test with halved added mass . 74

xii

Tables

4.1 SNAME naming convention for marine craft [13, p. 18] 14
4.2 Notation . 14
4.3 Constants [14] . 15
4.4 Overview of vectors and matrices used in (4.49). 20

5.1 Symbol list for MPC chapter . 25
5.2 FOV penalty steps . 35
5.3 Distancing penalty steps . 36

6.1 Table of Software . 44
6.2 Table of YAML Parameters . 52
6.3 Table of Topics used in MPC node . 55

7.1 Controller parameters . 67
7.2 Overview of test run on each computer . 68
7.3 Table of the percentage of tests where constraints failed 70
7.4 Table of time shift from the reference to the median linear positions 70

xiii

Chapter 1

Introduction

1.1 Background

The ocean covers over 70% of the Earth‘s surface, yet more than 80% of the ocean remains unob-
served, unmapped, and unexplored [1]. Exploring the ocean will bring about increased knowledge
of its ecosystem, and can lead to new discoveries, that can be the basis for new inventions within
a wide range of areas, such as medicine and technology that mimic adaptations of deep-sea anim-
als. The use of underwater drones, known as Unmanned Underwater Vehicles (UUVs) play a vital
role in tackling this challenging and dangerous environment. For example, the immense pressures
at the ocean floor in and of itself render it unreachable by humans alone.

A popular class of Unmanned Underwater Vehicles are Remotely Operated underwater Vehicles,
or ROVs. These are used in a variety of industries such as oil and gas, fishing, exploration and sci-
entific research [2, p. 16-19]. ROVs perform tasks such as inspecting underwater infrastructure,
photographing and recording underwater life, ship wreckages etc.

Many ROVs currently on the market are operated by a pilot that controls the vehicle manually. The
next step in their evolution is to achieve a greater degree of autonomy and to enable intelligent
cooperation to handle more complicated tasks, for example picking up larger objects, like loose
fishing nets or other items drifting with the current.

This thesis explores a method for increasing autonomy and cooperation between ROVs and is
part of a larger research project currently running at the Department of Engineering Cybernetics
(Institutt for Teknisk Kybernetikk), NTNU, with the goal of obtaining increased knowledge and
developing methods for increasing the autonomy of ROVs.

1

E2310: BSc. Thesis Chapter 1: Introduction

1.2 Problem Statement

In order to achieve increased autonomy in fleets of ROVs and effectively handle complex assign-
ments, it is crucial for the units to operate as a cohesive whole. With this objective in mind, the
controller was assigned the following tasks:

1. Communication between ROVs
2. Collision avoidance between ROVs
3. Path following

Communication between ROVs: The ROVs associated with the research project was planned
to communicate through optical communication, which requires a line of sight to exchange data.
Line of sight is therefore a prerequisite for communication.

Collision avoidance between ROVs: To ensure that the ROVs do not collide when operating
as a multi-agent unit, collision avoidance is a necessity for the ROVs to be able to safely operate
in proximity to one another.

Path following: The ROVs should be able to follow a predetermined path and generate traject-
ories from waypoints given by the operator.

The controller proposed in this thesis will perform the aforementioned tasks on a set of two ROVs
in a decentralized control system.

The performance of the controller is then assessed by running numerous simulations under vari-
ous conditions, to analyse its robustness.

2

Chapter 1: Introduction E2310: BSc. Thesis

1.3 Report structure

This report is divided into chapters, each focusing on a distinct area of the project. They are
designed to be readable independently for easier reference in the future.

Chapter 2 Describes the work process, different challenges encountered, and solutions to said
challenges.

Chapter 3 Introduces ROVs, first explaining what they are and the different classifications, and
then presenting the specific vehicle that this project is utilising.

Chapter 4 Contains the mathematical framework necessary to create a model of the ROV’s dy-
namics. The Mathematical prerequisites required are presented before the ROV’s equations of
motion are derived. Lastly, uncertainties surrounding the model are discussed.

Chapter 5 Introduces the applied method of control, Model Predictive Control, describes the
design of the MPC and concludes with discussion of the design choices

Chapter 6 Describes the project’s implementation in ROS 2. First, some necessary concepts re-
garding the use of ROS 2 are explained. Then, the project architecture is presented with results,
before analysing and discussing about its implementation.

Chapter 7 Details the simulators used in this thesis and a set of standardised tests then used to
analyse the robustness of the simulators.

Chapter 8 Concludes the thesis with the group’s final thoughts and gives recommendations for
future work.

1.4 Source Code

The code and data connected to this thesis are available on GitHub[3].
BlueROV2 Garden [4], a Gazebo workspace used in this thesis, is not available to the public as it
is used in research at ITK.

3

https://github.com/lrfosso/TowardsUnderwaterAutonomousFleets/tree/main

Chapter 2

Project Development

To acquire fundamental knowledge on ROVs and underwater robotics, the project began with
literary research of the relevant topics. Additionally, the group intended to replicate the results
of the previous year’s Bachelor thesis titled Implementation of a quaternion-based PD controller
in ROS2 for a generic underwater vehicle with six degrees of freedom [5] using a ROV in a testing
pool. This would have provided a starting point for the current project and insight into the larger
ongoing research project. In preparation to reproduce the result, the group read the thesis and
held a meeting with one of the authors. However, access to a ROV was not granted at this point,
resulting in the re-creation not taking place.

The next step was selecting a specific theme for the project. The group was presented with two
options: either replace the single-agent controller used in the previous year’s project [5], or ex-
pand the control to a multi-agent system. Following consultations with the supervisor and client
and internal group discussions, the latter option was chosen.

After deciding on the direction for the project, the group began literary research on multi-agent
control to find a possible solution for the problem. During this phase, with a recommendation
from the client, it was decided to create a Model Predictive Controller (MPC) with the do-mpc
toolbox. The group was not familiar with MPC, so in-depth research on MPC was needed.

At this stage, the end objective was to evaluate the system using physical ROVs. However, the
availability of the vehicles was uncertain, posing a significant challenge to the system’s devel-
opment and result collection. To address this issue, the group reached out to Mikael Andreas
Medina. Medina had, at the time of writing, been developing an environment for Gazebo to sim-
ulate BlueROV2 Heavy submerged in water [4]. By gaining access to this environment, alongside
a do-mpc-based Python simulator created by the group, the system could get tested during the
development phase and a contingency plan for result collection was in place.

To optimise the development process, the group was divided into two teams and assigned each
team specific tasks, allowing each team to focus on one or two aspects of the project at a time.
Additionally, the group held weekly meetings with the supervisor and client to review progress
and discuss potential solutions to any issues that surfaced. If needed, the group held additional
meetings with the supervisor or other members of ITK for specific issues and possibilities.

Towards the end of the project, the group started the design of various tests, which were then
tested with the Gazebo simulation. However, an attempt was made to facilitate a test of the system
with physical ROVs. The initial proposal was to test the system with two vehicles, but it became
clear that gaining access to even one vehicle was uncertain, and certainly not two. If access to a

4

Chapter 2: Project Development E2310: BSc. Thesis

single vehicle were granted, the group acknowledged one vehicle would not adequately test the
multi-agent part of the project. To solve this issue the group proposed to test the system with one
physical vehicle and one virtual vehicle in the simulator. The primary obstacle for accessing the
ROVs is that the department’s vehicles have incomplete hardware modifications. These challenges
and a recommendation from the supervisor and client led to the decision to continue testing the
system with the simulation and only focus on that.

To test the system the group developed a GUI and finished the design of multiple test conditions
for the simulation. Each test condition was conducted numerous times to collect enough data to
adequately represent the system developed. This data was processed and the resulting graphs are
presented in this thesis.

5

Chapter 3

Remotely Operated Underwater Vehicles

3.1 Introduction

Remotely Operated underwater Vehicles (ROVs) are a type of Unmanned Underwater Vehicle
(UUV), more specifically they are highly manoeuvrable, remotely controlled, tethered underwater
robots [2, p. 3-5]. The ROVs are used in many different fields such as scientific research, the fishing
industry and the oil and gas industry [2, p. 17-18], to mention a few. This chapter introduces the
important aspects of how ROVs are built and how they function. Following the general description
of ROVs, the BlueROV2 and its’ capabilities are presented. The vehicle this thesis is based on is
the BlueROV2.

3.2 ROVs in General

3.2.1 Size-Classification

ROVs come in a variety of different sizes and specifications that can be grouped into four main
classes according to The ROV Manual, A User Guide for Remotely Operated Vehicles [2, p. 5-8].
These classes are:

• Observational Class Remote Operated underwater Vehicle (OCROV): Contains the smallest
micro-ROVs to vehicles weighing up to 100kg.

• Mid-sized Remote Operated underwater Vehicle (MSROV): Contains vehicles weighing between
100 kg and 1000 kg.

• Working Class Remote Operated underwater Vehicle (WCROV): These vehicles generally are
connected to high-voltage AC power supplies from the surface.

• Special-use vehicles: This group contains vehicles that do not fall under the three aforemen-
tioned classes.

3.2.2 Communication

The vast majority of ROVs use a tether for communication and data flow. The main reason for
this is that only lower-frequency waves penetrate water, and the decreased frequency negatively
affects the data rate [2, p. 66]. ROVs are dependent on a high data rate to get a high-resolution
live video feed to the operator. However, it is worth mentioning that there are options to get teth-
erless ROVs such as acoustic and optical modems [6].

6

Chapter 3: Remotely Operated Underwater Vehicles E2310: BSc. Thesis

Optical modems function by emitting light from a light emitter, usually a laser diode or LED,
to a light receiver [7]. For bidirectional communication between ROVs each vehicle must have an
emitter and a receiver [7]. Since the communication is through light, the modems must be in the
line of sight. This is the bases of this project’s FOV constraint which will be explored further in
Chapter 5.1.9 and 5.2.2.

3.2.3 Propulsion

The propulsion is a significant part of the ROV. The most common form of propulsion is electric-
ally or hydraulically driven propellers, but there are other types as well such as jets [2, p. 122-124]
and belts for crawling on the seafloor [2, p. 7] [8]. The type of thruster used depends on the ROVs
use case. For example, ROVs with heavy-duty tooling, hydraulically driven propellers might be ad-
vantageous [2, p. 123], but smaller observational vehicles have electrically driven propellers. The
number of thrusters also varies, where more thrusters generally lead to higher manoeuvrability.

3.2.4 Buoyancy

Since the ROVs are submerged in water, the vehicles’ buoyancy becomes an important factor.
Archimedes’ principle states that An object immersed in a fluid experiences a buoyant force that is
equal in magnitude to the force of gravity on the displaced fluid [2, p. 109]. It is common for the
ROV to be slightly positively buoyant to ensure the vehicle returns to the surface if a power failure
occurs. Positive buoyancy also allows for near-bottom operation because the ROV does not need
to thrust upwards, forcing water down and stirring up sediment that can cover the camera [2, p.
119].

The buoyant force has a Center of Buoyancy (CB) which it acts upon, the same way gravity acts
upon Center of Gravity (CG). ROVs are designed with positively buoyant material on top and
negatively buoyant material on the bottom. This puts the CB high and CG low to make the vehicle
stable [2, p. 74 and 116-117].

3.3 BlueROV2

The BlueROV2 is a highly customizable and manoeuvrable OCROV. The vehicle is available with
two possible thruster configurations, the base model with six thrusters and the heavy configuration
with eight [9]. This project uses the version with heavy configuration therefore the rest of the
information given is based on that configuration.

7

E2310: BSc. Thesis Chapter 3: Remotely Operated Underwater Vehicles

3.3.1 Thruster Configuration and DoF

Figure 3.1: BlueROV2 Heavy [10] 6 DoF coordinate system

The BlueROV2 Heavy configuration has eight thrusters, four vectored thrusters and four vertical
thrusters [9, 11]. The vectored thrusters are installed in the xy-plane of the vehicle allowing for
linear movement in the surge and sway direction as well as yaw rotation. The vertical thrusters
allow linear movement in the heave direction, and roll and pitch rotation. This configuration gives
the vehicle 6 DoF as seen in Figure 3.1. [9, 11]. The thrusters produce a maximum forward thrust
of 88.3 N, which allows the vehicles to reach a maximum velocity of 1.5 m/s [9]. The maximum
vertical velocity is not listed, however, in this project it is assumed the same velocity vertically as
horizontally. This assumption is based on the higher vertical thrust of 137.3 N [9] counteracting
the drag from the larger surface area.

Figure 3.2: 2D drawings of the BlueROV2 Heavy configuration [11]

8

Chapter 3: Remotely Operated Underwater Vehicles E2310: BSc. Thesis

3.3.2 Components and Sensors

The BlueROV2 has a 1080p HD camera with 110◦ Field of view and ± 90◦ tilt for live video
streaming to the operator. The ROV is equipped with a gyroscope, accelerometer and magne-
tometer where each sensor has 3 DoF, totalling 9 DoF for positioning [12]. All processing and
computing are done by a Raspberry Pi 4 which runs on the open-source software BlueOS. The
ROV uses a tether with ethernet communication between the vehicle and the operator [9]. It is
worth mentioning that the BlueROV2 Heavy belonging to ITK is modified, however, this does not
affect this project since all tests are done in a simulator.

9

Chapter 4

Mathematical Model

4.1 Introduction

The mathematical model is essential to the implementation of model-based controllers such as
MPC, and its accuracy is a critical factor in the performance of the controller. This chapter presents
the mathematical framework needed to model ROVs.

Firstly, some mathematical prerequisites are introduced, namely Euler angles, quaternions and
skew-symmetry. Then the relevant reference frames, and a list of the notation used throughout.
Lastly, the equations of motion, which are in the form of Fossen’s robot-inspired model for marine
craft are introduced [13, p. 15]. The equations of motion are presented and explained matrix by
matrix, and relevant assumptions and simplifications are made. The uncertainties associated with
the constants used will also be discussed.

The model implemented is a modified version of the one presented by Wu [14]. The details sur-
rounding the modifications are described in 4.8 and 4.7.4.

4.2 Euler Angles

Euler angles are used to parametrize a 3D rotation with three distinct rotations performed in a
sequence. There are two main categories of Euler angles: Proper Euler angles, and Tait-Bryan
angles. These two methods differ in the number of distinct axes used. Proper Euler angles are
only parametrized around two distinct axes, whereas Tait-Bryan angles are parametrized around
three. Equation (4.1) displays a Tait-Bryan Z-Y-X parametrization. That is, first a rotationψ around
the z-axis, then a rotation θ around the y-axis and finally, a rotation φ around the x-axis. These
rotations define the roll φ, pitch θ , and yaw ψ [15, p. 56].

ZψYθXφ =

cψcθ cψsθ sφ − cφsψ sψsφ + cψcφsθ
cθ sψ cψcφ + sψsθ sφ cφsψsθ − cψsφ
−sθ cθ sφ cθ cφ

 (4.1)

Here, s and c are shorthand for sine and cosine.

10

Chapter 4: Mathematical Model E2310: BSc. Thesis

4.3 Quaternions

Quaternions, first described in 1843 by the Irish mathematician William Rowan Hamilton, are an
expansion of two-dimensional complex numbers into four dimensions. Quaternions are widely
used in applications such as 3D graphics rendering [16] and attitude tracking since, unlike Euler
angles, they do not contain singularities, which cause a phenomenon known as “gimbal lock”
when the ROV is oriented at certain angles [13, p. 32]. Gimbal lock causes the craft to lose a
degree of freedom, or in 3D graphics can cause peculiar rotations. Another distinct advantage
quaternions have over Euler angles is that they are computationally more efficient.

A quaternion is described by a real number, and three imaginary numbers referred to as a vector.
A quaternion can be written on the form:

q = η+ ε1i + ε2 j + ε3k (4.2)

Or, alternatively on vector form:
q =
�

η ε1 ε2 ε3

�⊤
(4.3)

Through this, it is possible to describe a 3D rotation by letting the vector describe the axis of
rotation and the real part describe the angle of rotation.

4.3.1 Unit Quaternions

Unit quaternions, by definition, satisfy Equations (4.4), (4.5) and (4.6)

η2 + ε2
1 + ε

2
2 + ε

2
3 =
∆ 1 (4.4)

η=∆ cos

�

β

2

�

(4.5)

ε=∆ λ sin

�

β

2

�

(4.6)

where λ is a unit vector, and β is the angle of rotation [17].

4.3.2 Hamilton Product

Quaternion multiplication, also called the Hamilton product is defined in (4.7).

q1 ⊗ q2 =
�

η1η2 − ε1,1ε2,1 − ε1,2ε2,2 − ε1,3ε2,3

�

+
�

η1ε2,1 + ε1,1η2 + ε1,2ε2,3 − ε1,3ε2,2

�

i

+
�

η1ε2,2 − ε1,1ε2,3 + ε1,2η2 + ε1,3ε2,1

�

j

+
�

η1ε2,3 + ε1,1ε2,2 − ε1,2ε2,1 + ε1,3η2

�

k

(4.7)

Where qi =
�

ηi εi,1 εi,2 εi,3

�

. Alternatively, if q1 and q2 are unit quaternions, on the vector
form (4.8)

q1 ⊗ q2 =

�

η1η2 − ε1
⊤ε2

η1ε2 +η2ε1 + S
�

ε1

�

ε2

�

(4.8)

where ε1, and ε2 are respectively the vector part of q1 and q2 [13, p. 33].

11

https://www.reddit.com/r/GamePhysics/comments/r05yas/fifa_this_years_fifa_will_be_the_most_realistic/

E2310: BSc. Thesis Chapter 4: Mathematical Model

4.3.3 Quaternion Inverse

The inverse of a quaternion, q−1 = q̄, is defined as

q−1 =
q∗

||q||2
(4.9)

where q∗ is the conjugate of q defined as q∗ =
�

η −ε1 −ε2 −ε3

�⊤
and ||q||2 =
Æ

η2 + ε2
1 + ε

2
2 + ε

2
3

For unit quaternions ||q||2 = 1⇒ q−1 = q∗

4.3.4 Quaternion Rotations

Quaternion rotations are written in the form of Equation (4.10), where q̃ is the rotated quaternion,
v is a pure quaternion (its real part equals zero) that one wishes to rotate, q is the rotation, and
q̄ = q−1.

q̃ = qvq̄ (4.10)

4.3.5 Attitude Control Using Quaternions

Controlling attitude1 using quaternions requires a different, perhaps less intuitive approach than
one would employ when using Euler angles. Equations (4.11) and (4.12) display the approach to
quaternion attitude control, where q is the attitude and qd is the desired attitude. Equation (4.11)
expresses the error between qd and q. Perfect setpoint regulation is expressed in Equation (4.12),
when the vector of q̃ = 03×1 [18].

q̃ = q̄dq (4.11)

q = qd ⇐⇒ q̃ =

�

±1
0

�

(4.12)

4.4 Skew-symmetric Operator

Skew symmetric matrices are matrices in which

A= −A⊤ (4.13)

holds. An alternative method to compute the cross-product of two vectors is to use the skew-
symmetric operator, S(a), S ∈ SS(3) [13, p. 24].

a× b =∆ S(a)b (4.14)

S(a) = −S(a)⊤ =

0 −a3 a2

a3 0 −a1

−a2 a1 0

 (4.15)

Skew-symmetric matrices can also be used in the context of expressing the derivative of a rotation
matrix, Ṙ(Θ)

Ṙ(Θ) = R(Θ)S(ω) (4.16)

where ω are the angular velocities and Θ are the Euler angles .
1Here, attitude carries the same meaning as orientation, which includes roll, pitch and yaw.

12

Chapter 4: Mathematical Model E2310: BSc. Thesis

4.5 Reference Frames

It is necessary to define two reference frames in order to describe the ROV’s dynamics, and more
are needed to track its position and attitude in space. In this project, the BODY and NED frames
are utilised, but the reader is introduced to the ECEF and ECI frames in order to get a broader
picture of the hierarchy of reference frames.

BODY Frame The equations of motion describe the ROV’s dynamics in its BODY frame. Which
is a local frame that is fixed to the geometrical centre of the ROV, with its x-, y- and z-axis always
pointing in the surge, sway and heave direction respectively [13, p. 20], as shown in Figure 4.1

NED Frame The NED frame or the North-East-Down, which, as its naming would suggest, is a
Geographic reference frame located tangential to the surface of the earth, with its x-axis pointing
true North, y-axis pointing East, and z-axis pointing down towards the centre of the earth [13, p.
20].

ECEF Frame The Earth-Centered Earth-Fixed frame has its origin at the centre of the Earth and
follows the Earth’s rotation. Through the ECEF frame, the NED frame’s origin is expressed with
longitude and latitude [13, p. 19].

ECI Frame The Earth-Centered Inertial frame has, like the ECEF frame, its origin at the centre
of the Earth, but it does not follow the Earth’s rotation, it is rather fixed in space [13, p. 19].

Figure 4.1: Illustration of NED and BODY reference frames [19]

13

E2310: BSc. Thesis Chapter 4: Mathematical Model

4.6 Notation

The notation used to describe the ROV’s dynamics in this report follows the SNAME convention,
shown in Table 4.1

Table 4.1: SNAME naming convention for marine craft [13, p. 18]

BODY NED

DoF
Forces and
moments

Linear and
angular velocities

Position and
Euler angles

Surge X u x
Sway Y v y
Heave Z w z
Roll K p φ
Pitch M q θ
Yaw N r ψ

Table 4.2: Notation

Description Parameter

NED frame position p =
�

x y z
�⊤

NED frame Euler angles Θ =
�

φ θ ψ
�⊤

NED frame quaternion orientation q =
�

η ε1 ε2 ε3

�⊤

NED frame position and orientation η=
�

p q
�⊤

BODY frame linear velocity v =
�

u v w
�⊤

BODY frame angular velocity ω=
�

p q r
�⊤

BODY frame velocity vector ν=
�

v ω
�⊤

Gravitational force W
Buoyancy force B

Origin of the body frame CO

Center of Gravity relative to CO CG = rg =
�

x g yg zg

�⊤

Center of Buoyancy relative to CO CB = rb =
�

xb yb zb

�⊤

14

Chapter 4: Mathematical Model E2310: BSc. Thesis

Table 4.3: Constants [14]

Linear damping
Parameter Value Unit

Xu -4.03 Ns
m

Yv -6.22 Ns
m

Zw -5.18 Ns
m

Kp -0.07 Ns
rad

Mq -0.07 Ns
rad

Nr -0.07 Ns
rad

Quadratic damping
Parameter Value Unit

Xu|u| -18.18 Ns2

m2

Yv|v| -21.66 Ns2

m2

Zw|w| -36.99 Ns2

m2

Kp|p| -1.55 Ns2

rad2

Mq|q| -1.55 Ns2

rad2

Nr|r| -1.55 Ns2

rad2

Misc.
Parameter Value Unit

m 11.5 kg
W 112.8 N
B 114.8 N
Ix 0.16 kgm2

I y 0.16 kgm2

Iz 0.16 kgm2

rg

�

0 0 0.02
�⊤

m

rb

�

0 0 0
�⊤

m
Added mass

Parameter Value Unit
X u̇ -5.5 Kg
Yv̇ -12.7 Kg
Zẇ -14.57 Kg

Kṗ -0.12 Kgm2

rad

Mq̇ -0.12 Kgm2

rad

Nṙ -0.12 Kgm2

rad

4.7 Equations of Motion

To derive the equations of motion, one must study the ROV’s rigid-body kinetics, hydrodynamics
and hydrostatics. The goal is to write the equations of motion on the form:

MRBν̇+MAν̇+ CRB(ν)ν+ CA(ν)ν+ DL(ν)ν+ DN L(ν)ν+ g(η) = τ (4.17)

where MRB is the rigid-body system inertia matrix, CRB(v) is the rigid-body Coriolis-centripetal
matrix, MA and CA are, respectively, the added mass and Coriolis-centripetal matrices. DL(v) and
DN L(v) are the matrices that describe the linear and the nonlinear damping. Finally, τ is the vector
forces and moments acting upon the ROV [13, p. 15]. Equation (4.17) is in the form of Fossen’s
robot-inspired matrix-vector model for marine craft, based on the robot model

M(q)q̈+ C(q, q̇)q̇ = τ (4.18)

to create a compact form to describe the dynamics of a 6-DoF marine craft. Here, q denotes the
joint angles of the robot[13, p. 15].

4.7.1 Rigid-body Kinetics

The rigid-body system inertia matrix, MRB, is shown in (4.19) [13, p. 64]. Refer to Chapter 3 of
Fossen’s Marine Craft Hydrodynamics and Motion Control for the derivation of MRB.

MRB =

�

mI3 −mS(rb)
mS(rb) Ib

�

(4.19)

Where Ib is the inertia dyadic

Ib =

Ix −Ix y −Ixz

−I y x I y −I yz

−Izx −Iz y Iz

 (4.20)

15

E2310: BSc. Thesis Chapter 4: Mathematical Model

with Iab =
∫

V
abρm dV , where ρm is the density. Ia is the moment of inertia about the axis a [13,

p. 59]. Expanding (4.19) yields (4.21).

MRB =

m 0 0 0 mzg −myg

0 m 0 −mzg 0 mx g

0 0 m myg −mx g 0
0 −mzg myg Ix −Ix y −Ixz

mzg 0 −mx g −I y x I y −I yz

−myg mx g 0 −Izx −Iz y Iz

(4.21)

The ROV can be considered symmetric along both the xz-plane and xy-plane. Furthermore, the CO
is placed at the geometrical centre of the ROV. The products of inertia Ix y , Ixz and I yz, will become

zero because of these symmetries [14], [13, p. 201]. Then rg =
�

x g yg zg

�⊤
=
�

0 0 zg

�⊤
as

a result of these symmetries. MRB can be simplified accordingly, as shown in Equation (4.22) [13,
p. 201] [14].

MRB =

m 0 0 0 mzg 0
0 m 0 −mzg 0 0
0 0 m 0 0 0
0 −mzg 0 Ix 0 0

mzg 0 0 0 I y 0
0 0 0 0 0 Iz

(4.22)

The Coriolis-centripetal matrix, CRB, as its name suggests, expresses how the Coriolis and cent-
ripetal forces affect the ROV’s kinetics. Deriving this matrix can be done using an energy-based
approach: T = 1

2ν
⊤Mν, where T is the kinetic energy, ν=

�

ν1 ν2

�⊤
. Differentiating with respect

to ν1 and ν2, and finally using Kirchoff’s equation [13, p. 66] gives:

M =

�

M11 M12

M21 M22

�

(4.23)

C(ν) =

�

03×3 −S(M11ν1 +M12ν2)
−S(M11ν1 +M12ν2) −S(M21ν1 +M22ν2)

�

(4.24)

Using the Lagrangian parametrization shown in Equation (4.24), CRB is computed from MRB,
resulting in Equation (4.25)

CRB(ν) =

0 0 0 0 mw mpzg −mv
0 0 0 −mw 0 mu+mqzg

0 0 0 mv −mpzg −mu−mqzg 0
0 mw mpzg −mv 0 Iz r −I yq−muzg

−mw 0 mu+mqzg −Iz r 0 Ix p−mvzg

mv −mpzg −mu−mqzg 0 I yq+muzg mvzg − Ix p 0

(4.25)
It should be mentioned that this parametrization is not unique, there are other matrices, C(ν)
that will yield the same product C(ν)ν [13, p. 67]. Alternatively, it is also possible to parametrize
CRB such that it is independent of the linear velocities of the ROV. This is particularly useful when
representing the equations of motion in terms of the relative velocities νr . This is elaborated
further upon in 4.7.7.

CRB(ν) =

�

mS(ν2) −mS(ν2)S(rg)
mS(rg)S(ν2) −S(Ibν2)

�

(4.26)

16

Chapter 4: Mathematical Model E2310: BSc. Thesis

Here, ν2 = ω. Expanding (4.26) and using the same symmetry assumptions as in (4.22), yields
(4.27)

CRB(ν) =

0 −m r m q m r zg 0 0
m r 0 −m p 0 m r zg 0
−m q m p 0 −m p zg −mq zg 0
−m r zg 0 m p zg 0 Iz r −I y q

0 −m r zg mq zg −Iz r 0 Ix p
0 0 0 I y q −Ix p 0

(4.27)

Both (4.25) and (4.27) result in the same product CRB(ν)ν and as such, either of these paramet-
rizations can be utilised.

4.7.2 Hydrostatics

The generalised restoring force vector g(η) expresses how the gravitational force, W and buoy-
ancy force, B affect the craft. It is, as such, dependent on η: the vector for position and attitude.
g(η) for a submerged vehicle can be expressed as shown in Equation [13, p. 72].

g(η) = −
�

R⊤(q) (fg + fn)
rg × R⊤(q) fg + rb × R⊤(q) fb

�

(4.28)

Where

fg =
�

0 0 W
�⊤

, fb = −
�

0 0 B
�⊤

(4.29)

Expanding this expression yields 4.30.

g(η) =

(B −W)σ2

(B −W)σ3

−(B −W)σ1

W yg σ1 − B zbσ3 − B ybσ1 +W zg σ3

B xbσ1 + B zbσ2 −W x g σ1 −W zg σ2

B xbσ3 − B ybσ2 −W x g σ3 +W yg σ2

(4.30)

where σ1 = 2ε1
2 + 2ε2

2 − 1, σ2 = 2ε1 ε3 − 2ε2η, σ3 = 2ε2 ε3 + 2ε1η,

Since rb =
�

0 0 0
�⊤

and rg =
�

0 0 zg

�⊤
Equation (4.30) can be simplified, as expressed in

Equation (4.31).

g(η) =

(B −W)
�

2ε1 ε3 − 2ε2η
�

(B −W)
�

2ε2 ε3 + 2ε1η
�

−(B −W)
�

2ε1
2 + 2ε2

2 − 1
�

W zg

�

2ε2 ε3 + 2ε1η
�

−W zg

�

2ε1 ε3 − 2ε2η
�

0

(4.31)

4.7.3 Hydrodynamics

As the ROV moves, its dynamics are affected by the fluid it moves through. The motion of the
ROV will induce a motion in the fluid, as it has to move aside for the ROV to pass and fill the
vacuum left behind it. The fluid, as a consequence, possesses kinetic energy that affects the ROV’s
dynamics [13, p. 143 - 144] The relationship between the kinetic fluid energy TA is expressed in

17

E2310: BSc. Thesis Chapter 4: Mathematical Model

(4.32), where MA is the added mass matrix. Deriving MA can be done by inserting (4.32) into
Kirchoff’s equation [13, p. 145-146]

TA =
1
2
ν⊤MAν (4.32)

MA = −

X u̇ X v̇ X ẇ X ṗ X q̇ X ṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

(4.33)

The added mass terms are highly coupled and non-linear, especially when the ROV moves at high
velocities. However, when the ROV moves at lower velocities, combined with the symmetries of the
ROV, the off-diagonal elements of MA can be neglected. In practice, the diagonal approximation
is found to be reasonably accurate [13, p. 148]. The elements in (4.34) can be read as Yu̇: the
change in added mass force Y in direction y , with respect to the change of velocity u (velocity in
the x direction) [13, p. 144].

MA = −diag(X u̇, Yv̇, Zẇ, Kṗ, Mq̇, Nṙ) (4.34)

Similarly to CRB, CA, the hydrodynamic Coriolis-centripetal matrix can be computed through MA,
using the Lagrangian parametrization shown in (4.24) [13, p. 146].

CA(v) =

0 0 0 0 −Zẇw Yv̇ v
0 0 0 Zẇw 0 −X u̇u
0 0 0 −Yv̇ v X u̇u 0
0 −Zẇw Yv̇ v 0 −Nṙ r Mq̇q

Zẇw 0 −X u̇u Nṙ r 0 −Kṗp
−Yv̇ v X u̇u 0 −Mq̇q Kṗp 0

(4.35)

Linear hydrodynamic damping for underwater vehicles is mainly caused by skin friction. Similarly
to MA, the off-diagonal elements of the linear damping matrix, DL can be neglected for craft
moving at low speeds [13, p. 151].

DL(v) = −diag(Xu, Yv, Zw, Kp, Mq, Nr) (4.36)

Non-linear damping is caused by phenomena such as vortex-shedding. Equation (4.37) is a rough
approximation of the non-linear damping matrix for an ROV, neglecting the off-diagonal elements
[13, p. 196].

DN L(v) = −diag(Xu|u| |u| , Yv|v| |v| , Zw|w| |w| , Kp|p|
�

�p
�

� , Mq|q|
�

�q
�

� , Nr|r| |r|) (4.37)

4.7.4 Control Forces and Moments

The control input vector τ represents the forces and moments acting upon the ROV from its
thrusters [13, p. 233]. For a craft with 6 DoF, τ for one thruster can be expressed as shown in
(4.38).

τ=

�

ft

rt × ft

�

=

Fx

Fy

Fz

l y Fz − lz Fy

lz Fx − lx Fz

lx Fy − l y Fx

(4.38)

18

Chapter 4: Mathematical Model E2310: BSc. Thesis

Where ft =
�

Fx Fy Fz

�⊤
is the thrust vector, and rt =

�

lx l y lz
�⊤

is the vector of thruster
arms, the distance from the thrusters, to the CO along the x-, y- and z-axes. The approach used
and parameters chosen are taken from Wu [14], with the only modification being the positive
thruster direction for thrusters 3 and 4. This was done so that the positive thruster direction
would correspond with the Gazebo simulator. The control input vector, τ can be further broken
down into (4.39)

τ= Bue, B = TeKe (4.39)

where Te is the extended thrust configuration matrix, Ke is the extended thrust coefficient matrix
and ue is the vector of inputs. Te is found by using vector decomposition for each thruster. Thrusters
1 and 4 are angled at π4 rad, while Thrusters 2 and 3 are angled at −π4 rad. Thrusters 5, through
8 are mounted orthogonally to the xy-plane, with thrusters 6 and 7’s positive direction defined
along the positive z-axis, while thrusters 5 and 8 have defined positive direction along the negative
z-axis.

Te =

0.7071 0.7071 0.7071 0.7071 0 0 0 0
−0.7071 0.7071 0.7071 −0.7071 0 0 0 0

0 0 0 0 −1 1 1 −1
0.0601 −0.0601 −0.0601 0.0601 −0.2180 −0.2180 0.2180 0.2180
0.0601 0.0601 0.0601 0.0601 0.1200 −0.1200 0.1200 −0.1200
−0.1888 0.1888 −0.1888 0.1888 0 0 0 0

(4.40)
Ke ∈ R8×8 is a diagonal matrix that contains the gain of each input. For simulation purposes using
MPC, this matrix is less critical, as the purpose of this matrix is to map the thruster input signal
to the thruster output force. When simulating, there are no physical restrictions to ue. Thus, the
identity matrix Ke = I8×8 was chosen, with saturation ue,sat ±6.2 as this resulted in a top speed of
1.5 m/s. This corresponds with the information in the datasheet for the ROV. For real systems, Ke

should be mapped such that Ki ue,max = Fi,max , where Fi,max is the maximum force thruster i can
produce.

4.7.5 Tranformation From BODY To NED

Currently, the dynamics of the ROV are expressed in its own BODY frame, and it is necessary to
express the dynamics in the NED frame, two matrices are required to accomplish this.

Linear Velocity Transformation

The linear velocity transformation from the BODY frame to the NED frame is expressed in (4.41),
where ṗ is the change in position in the NED frame, R(q) is the quaternion derived rotation matrix,
(4.43) [13, p. 34], and v is the linear velocity vector in the BODY frame.

ṗ = R(q)v (4.41)

R(q) = I3 + 2ηS(ε) + 2S(ε)2 (4.42)

R(q) =

1− 2(ε2
2 + ε

2
3) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)

2(ε1ε2 + ε3η) 1− 2(ε2
1 + ε

2
3) 2(ε2ε3 − ε1η)

2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε2
1 + ε

2
2)

 (4.43)

19

E2310: BSc. Thesis Chapter 4: Mathematical Model

Angular Velocity Transformation

The angular velocity rotation matrix, T (q) is used to transform the angular velocity from BODY
to NED. ω is the angular velocity vector. A definition for T (q) is given in 4.44 [13, p. 35].

T (q) =
1
2

�

−ε⊤
ηI3 + S(ε)

�

(4.44)

Expanding (4.44) yields (4.45)

T (q) =
1
2

−ε1 −ε2 −ε3

η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η

(4.45)

Finally, q̇, the change in attitude in the NED frame, is expressed in (4.46)

q̇ = T (q)ω (4.46)

Linear and Angular Transformation

The linear and angular transformation matrix, Jq, which combines (4.43) and (4.45) is expressed
in Equation (4.47).

Jq(η) =

�

R(q) 03×3

04×3 T (q)

�

(4.47)

η̇=

�

ṗ
q̇

�

= Jq(η)ν (4.48)

4.7.6 Complete Model

The end result becomes (4.49)

�

η̇
ν̇

�

=

ṗ
q̇
v̇
ω̇

=

�

Jq(η)ν
−(MRB +MA)−1(CRB(ν)ν+ CA(ν)ν+ DL(ν)ν+ DN L(ν)ν+ g(η)−τ)

�

(4.49)

The vectors and matrices in (4.49) are specified in Table 4.4

Table 4.4: Overview of vectors and matrices used in (4.49).

Vector/Matrix Equation
MRB (4.22)
MA (4.34)

CRB(ν) (4.25)
CA(ν) (4.35)
DL(ν) (4.36)
DN L(ν) (4.37)
g(η) (4.31)
τ (4.39)

Jq(η) (4.47)

20

Chapter 4: Mathematical Model E2310: BSc. Thesis

4.7.7 Ocean Currents

Underwater marine crafts, like ROVs will often be exposed to currents, and it is, therefore, useful
to include this in the mathematical model. For an irrotational constant ocean current (no angular
component), the relative velocity vector is expressed in Equation (4.50)

νr =

�

v − vc

ω

�

(4.50)

where vc is the current velocity vector expressed in the BODY frame. Finding the ocean current
expressed in the Body frame, from the NED frame can be done as follows:

vc = R(q)⊤vn
c (4.51)

or, if the current velocity vector is defined from another frame such as the ENU (East North Up)
frame, as it is in the Gazebo simulator.

vc = R(q)⊤Re
nve

c , Re
n =

0 1 0
1 0 0
0 0 −1

 (4.52)

Where ve
c is the current velocity vector expressed in the ENU frame and Re

n is the rotation matrix
from ENU to the NED frame.

If CRB is parametrized using a linear velocity-independent parametrization, the equations of mo-
tion can be expressed in terms of vr , as shown in Equation (4.53) [13, p. 301-302].

η̇= Jq(η)(νr + νc)

ν̇r = (MRB +MA)
−1(τ− CRB(νr)νr − CA(νr)νr − DL(νr)νr − DN L(νr)νr − g(η))

(4.53)

By applying the result v̇c = −S(ω)νc [13, p. 301], it is possible to express the equations of motion
with respect to the absolute velocity-vector ν.

η̇= Jq(η)ν

ν̇=

�

−S(ω)vc

03×1

�

(4.54)

+ (MRB +MA)
−1(τ− CRB(νr)νr − CA(νr)νr − DL(νr)νr − DN L(νr)νr − g(η))

4.7.8 Alternative Parametrisation using Euler Angles

The model derived in this chapter is parameterised using quaternions. An alternative paramet-
erisation is to use Euler angles, presented in 4.2. To do so requires modifications to three com-
ponents of the finalised model (4.49):

• The position and orientation states, η.

• The transformation matrix Jq, that transforms the angular and linear velocities from BODY
to NED.

• The generalised restoring force vector, g(η).

η is re-defined to η=
�

p Θ
�⊤
=
�

p φ θ ψ
�⊤

, to include roll, φ, pitch, θ and yaw,ψ, instead

of the quaternions, q =
�

η ε1 ε2 ε3

�⊤
.

21

E2310: BSc. Thesis Chapter 4: Mathematical Model

Jq is re-parameterised to JΘ,

JΘ =

�

R(Θ) 03×3

03×3 T (Θ)

�

(4.55)

where R(Θ) and T (Θ) are respectively, the linear and angular transformation matrices expressed
in terms of Euler angles. R(Θ) is defined as the Tait-Bryan Z-Y-X parametrization, (4.1). The an-
gular velocity transformation, T (Θ), is defined in (4.56) [13, p. 29].

T (Θ) =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ) / cos(θ) cos(φ) / cos(θ)

 (4.56)

The generalised restoring force is calculated by replacing the rotation matrix R(q), with R(Θ).

g(η) = −
�

R⊤(Θ) (fg + fn)
rg × R⊤(Θ) fg + rb × R⊤(Θ) fb

�

(4.57)

Where

fg =
�

0 0 W
�⊤

, fb = −
�

0 0 B
�⊤

Expanding (4.57) and using the same symmetry assumptions as previously described in 4.7.1,
yields (4.58)

g(η) =

(W − B) sin(θ)
−(W − B) cos(θ) sin(φ)
−(W − B) cos(θ) cos(φ)

zgW cos(θ) sin(φ)
zgW sin(θ)

0

(4.58)

4.8 Discussion

4.8.1 Issues With the Original Model

The initial model that was implemented, was taken from another Master’s thesis from Flinders
University [14]. However, after encountering problems with stability when implementing the con-
troller in the Gazebo simulation, numerous errors in the model were discovered. Specifically in the
rotation matrices that transform the equations of motion from the BODY frame to the NED frame,
R(q) and T (q), The Coriolis and Centripetal matrices, CRB(ν) and CA(ν), and the gravitational
vector, g(η). As a consequence of this, it was deemed necessary to re-work the model.

4.8.2 Parameter Uncertainties

Finding appropriate parameters for the mathematical model of the ROV is a time-consuming
process of system identification, and is outside the scope of this project. Therefore, the parameters
listed in Table 4.3 were also taken from Wu [14]. These values carry a level of uncertainty since
these parameters for the BlueROV2 Heavy were approximated from the parameters of another,
similar ROV, the BlueROV, whose parameters were estimated in a Master’s thesis by Sandøy [20]. It
is therefore reasonable to conclude that the parameters are a considerable element of uncertainty
in the mathematical model.

22

Chapter 4: Mathematical Model E2310: BSc. Thesis

4.8.3 Implementation of Relative Velocity

As previously described, in the Gazebo simulator ocean currents are expressed in the ENU frame.
These need to be described in the vehicles’ BODY frame. This can be accomplished in two distinct
ways. It is possible to describe this transformation in the mathematical model, by introducing
additional states. The advantage to this method is that the MPC is able to simulate how a change
in orientation will affect the dynamics of the ROV. The disadvantage to this method is that new
states have to be introduced, and as a consequence the MPC’s calculation time increased, and as
such was not deemed feasible. An alternative method is to perform the rotation from the ENU
to the BODY frame in the node. This has the advantage that one avoids implementing additional
states in the model. However, this solution has the distinct disadvantage that the MPC cannot
predict how a change in orientation will affect the ROV’s dynamics and is instead fed the current
velocity vector vc from the node. The result however did not improve, therefore it was decided not
to implement it in the Gazebo simulator when running the standard tests, to avoid unnecessary
complexity that can be the source of new errors.

4.9 Conclusion

The mathematical model of the ROV is realised in the form of Fossen‘s robot robot-inspired model
for marine craft. The model is an altered version of the one presented by Wu [14], as errors
were discovered in this model. The model is parametrized using both unit quaternions and Euler
angles. An alternate parametrization of CRB was computed to allow for the equations of motion
to be expressed in terms of the relative velocity, which increases the accuracy of the model in
environments with irrotational ocean currents (assuming the current is known). An area of signi-
ficant uncertainty in the model is the parameters used, as the parameters are estimated from the
original BlueROV.

23

Chapter 5

Model Predictive Control

Model Predictive Control, or MPC, is an optimal control technique that uses a model of the system
to solve an optimisation problem [21, 22].

Firstly, the theoretical framework of the MPC is presented with the necessary mathematical back-
ground for the optimisation problem and constraints. Then the basic structure of the controller
will be described, with its key parts, followed by a simplified example of functionality. The theor-
etical framework is concluded with a description of do-mpc which is a Python package used in the
implementation of the MPC. After this, the design of the controller will be presented, describing
the cost function and how the FOV problem and collision avoidance problem was solved. The
chapter is concluded with a presentation of the results of the design of the MPC, followed by a
discussion of results, alternative solutions, and the MPC in general.

24

Chapter 5: Model Predictive Control E2310: BSc. Thesis

5.1 Theoretical Framework

5.1.1 Notation

A table of the symbols used in this chapter:

Table 5.1: Symbol list for MPC chapter

Symbol Description
J Cost function
K Gain constant
x Dynamic state
u Controller output
z Algebraic state in do-mpc
p Static variable
pt v Time-varying variable
R Penalty factor in cost function R-term
l Lagrange term
m Mayer term
b Bounds
ε Slack variable
−→u Standard vector notation
−→v Standard vector notation
∆ Difference between the actual value and desired value
r Radius
η Real part in quaternion
ε1,2,3 Imaginary part in quaternion
φ Roll
θ Pitch
ψ Yaw
α Angle between directional vector of ROV and vector to other ROV
γ FOV angle
d Distance between ROVs

5.1.2 Optimal Control

Optimal control theory is a branch of mathematics developed to find optimal ways to control a dy-
namic system [23]. MPC utilizes optimal control theory to optimise the control of a constrained
system. The objective of an optimal control system is to select appropriate control actions to op-
timise a cost function, where the cost function symbolises the desired states- and dynamics for
the system.

5.1.3 Why MPC?

MPC is a reliable and robust control method. It is an active controller that can predict the beha-
viour of the system, and take action preventively to stabilise the system. In this system, this can
counteract dynamics such as the drift that is present when controlling submerged systems.

The possibility of using constraints in MPC is also a good method of defining undesirable and
unfeasible states for the system, as the controller discards or punishes solutions that break the

25

E2310: BSc. Thesis Chapter 5: Model Predictive Control

aforementioned constraints, while having no impact on solutions that do not.

MPC is also capable of handling advanced multi-input multi-output (MIMO) non-linear systems
such as the case with the ROVs used in this thesis [24].

5.1.4 MPC Structure

The MPC consists of a prediction model and an optimiser. The prediction model is based on the
mathematical model of the system. The optimiser contains the cost functions and constraints that
describe the desired behaviour for the system [21]. The MPC combines the reference, measured
output (current state), and measured disturbances and uses this data to calculate the system
input, as shown in Figure 5.1.

Figure 5.1: MPC Block Diagram

5.1.5 Decentralized Control

A decentralized control system is a system where control decisions are made by multiple inde-
pendent agents or subsystems rather than a single central controller. In this type of system, each
agent or subsystem is responsible for controlling a specific function or process, and communica-
tion between agents or subsystems is used to coordinate their actions and achieve the overall goal
of the system.

26

Chapter 5: Model Predictive Control E2310: BSc. Thesis

Figure 5.2: Signal flow in decentralized control

Figure 5.2 visualises the signal flow of the implemented system. The operator controls the overall
goal of the decentralized system, which is sent to the agents, which in this system are the con-
trollers. The controllers control the associated subsystem and use the states of both subsystems
to determine control actions to achieve the overall goal. An example of an overall goal from this
thesis is positional control of the ROVs, which is the subsystems while avoiding collisions.

5.1.6 Cost Function

The cost function in the controller is the main definition of the optimisation problem. In model
predictive control, the controller’s task is to optimise the value of the cost function over time while
not violating the constraints.

Generally, when designing the cost function the terms should all be convex. Convex functions
have a global minimum point about which they are symmetric. This makes them applicable in
cost functions as this characteristic enables the optimisation problem to be solved both reliably
and efficiently [25, p. 7-8].

When designing a cost function, the goal is most often to express the difference between the cur-
rent states and the desired states while penalising unwanted outcomes.

The following equation is an example of what a simple cost function, denoted by J , could look
like

J(x , u) = K1(xd − x)2 + K2 · u2 (5.1)

where (xd− x)2 is a convex expression that creates a cost corresponding to the difference between
the desired value of x , referred to as xd , and the actual value of x. The term u2 is an example
of a convex function that penalises unwanted outcomes as it puts a cost on the controller output
diverging from zero. By introducing the strictly positive gain values K1 and K2 to this cost function
we could modify the impact of the different terms in the cost function.

Exemplifying the Impact of Gains

The following is an illustrative example of a control system that could use the cost function (5.1),
and how one could use the gains to change the characteristics of the control system. In the ex-
ample, x is the amount of liquid in a water tank, and u is the power supplied to the pump that
fills the said tank.

27

E2310: BSc. Thesis Chapter 5: Model Predictive Control

1. If K1≫ K2, the difference between desired and actual amount of liquid has a big impact on
the cost function, and the MPC would use the pump to fulfil x = xdesired as fast as possible.

2. If K2≫ K1, the power supplied to the pump would cause a big cost, which would likely lead
to a slower regression of the difference between xd and x , but could also reduce the usage
of power, and could lead to a more stable regulation.

Depending on the system, both of these scenarios could be the desired control characteristics.

Cost Function in do-mpc

In the do-mpc API reference [26] the cost function found under the function
do_mpc.controller.MPC.set_objective, and is expressed as

J(x , u, z) =
N
∑

k=0

(l(xk, zk, uk, pk, pt v,k) +∆uT
k R∆uk) +m(xN+1) (5.2)

where

• l(xk, zk, uk, pk, pt v,k) is the Lagrangian term and measures the running cost at every time
step over the time horizon N .

• m(xN+1) is the Mayer term1 [27], and it represents the desired state at the end of the time
horizon N.

• ∆uT
k R∆uk is the R-term and it is a factor that penalizes the changes in the output vector of

the controller.

5.1.7 Constraints

A constraint on a control system is a way of limiting the dynamics of the system. This usually
decreases the efficiency and flexibility of the controller, and should therefore only be used when
necessary. One normal usage of constraints is to use a constraint to express the physical limitations
of the system. If the output of the controller u controls the power supplied to an electric motor,
constraints could be set on u to ensure that the motor is not supplied with power greater or less
than it is designed to be supplied with, as this could damage the motor. This type of constraint is
referred to as bounds.

Bounds

The following equation is an inequality constraint that exemplifies how bounds could be imple-
mented in the MPC-controller.

bl b ≤ x , u, z ≤ bub (5.3)

where x , u, z is the system variable that is to be bounded, bl b is the lower bound and bub is the
upper bound for the system variable. If (5.3) does not hold for every step in the projected time
horizon N, the solution breaks the constraint and is infeasible.

1In the do-mpc API reference [26] the m-term is referred to as the meyer term. But this appears to be a misprint
in the documentation. In this report, it is assumed to be the Mayer term.

28

Chapter 5: Model Predictive Control E2310: BSc. Thesis

Non-linear Constraint

A constraint on the system can also be a more complex and non-linear function, and this is referred
to as a non-linear constraint. The non-linear constraint in do-mpc is an inequality constraint that
could be configured both as a soft- and hard constraint. Setting the non-linear constraint to be a
hard constraint means that any solution from the MPC optimiser that breaks the inequality con-
straint, is infeasible and will be discarded. Setting the non-linear constraint as a soft constraint
introduces slack variables to the cost function, where any violation of the inequality constraint is
feasible, but penalised in terms of cost. The cost of violating the soft constraint is determined by
multiplying the slack variable with an associated penalty term.

The equation implemented for the hard constraint in do-mpc is:

m(x , u, z, pt v, p)≤ mub (5.4)

and the equation implemented for the soft constraint is:

m(x , u, z, pt v, p)− ε≤ mub (5.5)

where m(x , u, z, pt v, p) is the non-linear function, mub is the upper bound and ε is the slack
variable. These equations could be found in the do-mpc API reference [26] under the function
do_mpc.controller.MPC.set_nl_cons.

5.1.8 Function

The system input is computed through a series of calculations that predicts future states and the
required input to achieve these states. These calculations are done at every time step for a finite
time interval called the horizon. In Figure 5.3 one can see the previous states from t − 1 to t
where t is the present time. The dotted line inside the highlighted horizon is predicted states the
MPC calculates at time t to achieve the reference. Figure 5.4 shows the required output the MPC
calculates for the system to achieve the predicted states within the horizon. After the calculations,
the MPC applies the input for the first time-step and disregards the rest [22].

Figure 5.3: MPC State prediction at time t

29

E2310: BSc. Thesis Chapter 5: Model Predictive Control

Figure 5.4: MPC system input prediction at time t

The prediction calculation might differ from the actual results. This is because the calculations
rely on the accuracy of the prediction model [28, pp. 414–415]. In Figure 5.5 the result at t+1 is
slightly lower than the prediction. At the time t +1 the MPC repeats the calculations for the new
state predictions as seen in Figure 5.5 and the new output as seen in Figure 5.6 [22].

Figure 5.5: MPC State prediction at time t+1

30

Chapter 5: Model Predictive Control E2310: BSc. Thesis

Figure 5.6: MPC system input prediction at time t+1

5.1.9 Modelling Optical Communication

As the ROVs in the research project was planned to communicate through wireless optical com-
munication, an objective for the MPC was that it should ensure line of sight.

Figure 5.7: Optical communication concept

The line of sight is modelled as a cone in the surge direction in the body frame of the vehicles.
The concept is visualised in Figure 5.7, where the two objects represents the ROVs, while γ1 and
γ2 represents the maximal angle of the cone. If both agents are localised in each other’s cones,
line of sight is ensured.

31

E2310: BSc. Thesis Chapter 5: Model Predictive Control

5.1.10 Do-mpc

Do-mpc is explained in their webpage as "..a comprehensive open-source toolbox for robust model
predictive control (MPC) and moving horizon estimation (MHE)." [26, 29]. This free open-source
toolbox is a Python library made at the Technical University of Dortmund (TU Dortmund), used
to design control systems. It contains a flexible and modular structure for simulation, estimation
and control, which in this thesis do-mpc was used in the implementation of the Model Predictive
Control (MPC)-controller, and the Python simulator.

By using do-mpc in this thesis there was no need for the design of numerical solvers and op-
timisers in the thesis, which would have been time-consuming. Instead, more time could be spent
implementing the system model and designing the control characteristics and functionality in the
controller and the peripheral system.

5.2 Design

For the MPC-controller designed in this thesis, the system model and the controller were split into
two modules.

• The model module implemented the system model described in Chapter 4 in a do-mpc
format and initialised the system’s parameters and variables.

• The controller module contains the cost function, constraints and controller parameters, the
controller also implements the system model, which is used as the prediction model for the
controller.

This section will focus on the design and implementation of the controller module, as the model
is described in Chapter 4, and the parameters and variables can be found in the code on GitHub
[3].

5.2.1 Cost Function

The cost function was designed with two main tasks in mind. Positional control, meaning the
xyz-coordinates and attitude control, meaning the quaternion-coordinates.

Positioning

In this thesis, two approaches for positional control are proposed, circular setpoints and squared
error.

Circular Setpoint positioning splits the x-, y- and z-positioning into two problems in the cost
function. Firstly there is the positioning in the z-direction (the depth), secondly, there is the pos-
itioning in the xy-plane. In this solution, when the ROVs are at their desired position they are all
at the same depth and a set distance d from the desired point.

32

Chapter 5: Model Predictive Control E2310: BSc. Thesis

Figure 5.8: Positioning in the xy-plane

If one draws a vector of a set length in every direction from the desired position in the xy-plane

the terminal points would make a circle, as seen in 5.8, where

−→u

 is the distance r.

The ROV has reached its desired position when (5.6) is fulfilled.

−→v

=

−→u

∧ z = zd (5.6)

do-mpc would not work when using roots in the expressions of the cost function or constraints.
This meant that J1 in (5.7) could not be implemented, and the alternative form J2 had to be used.

J1 =(
q

Kx∆x2 + Ky∆y2 − r)2 + Kz∆z2

J2 =((Kx∆x2 + Ky∆y2)− r2)2 + Kz∆z2
(5.7)

Squared Error Squared error positioning is implemented strictly using terms with the layout:
K∆x2. This is the simplest form of expressing the error between two variables in a function that
is convex and quadratic.

In squared error the following Equation was implemented in the cost function:

J = Kx(x − xd)
2 + Ky(y − yd)

2 + Kz(z − zd)
2 (5.8)

Attitude

Since there were two system models used, one using Euler angles and one using quaternions, it
was necessary to make attitude control solutions to match both of these. Which form of attitude
control to use was decided by the system model used.

Quaternion Attitude Control Quaternion attitude control is briefly described in section 4.3.5,
and is fully derived in appendix B.

The complete formula for attitude control with quaternions is given as:

J =KA(((ηdη+ ε1dε1 + ε2dε2 + ε3dε3)
2 − 1)2 + (−ε1dη+ηdε1 − ε3dε2 + ε2dε3)

2

+ (−ε2dη+ ε3dε1 +ηdε2 − ε1dε3)
2 + (−ε3dη− ε2dε1 + ε1dε2 +ηdε3)

2)2
(5.9)

where the variables with lower index d expresses the desired quaternion coordinates.

33

E2310: BSc. Thesis Chapter 5: Model Predictive Control

Euler Attitude Control Attitude control is achieved using the same method and layout as de-
scribed in section 5.2.1.

The formula for attitude control using Euler angles is given in the symbolic form:

J = Kφ(∆φ)
2 + Kθ (∆θ)

2 + Kψ(∆ψ)
2 (5.10)

with φ, θ and ψ being the roll, pitch and yaw coordinates.

5.2.2 Constraints

FOV constraint

To ensure that the Field of view (FOV) criteria are fulfilled by the MPC, a non-linear constraint
was designed. It was made with the assumption that the ROVs had access to the positional x-, y-
and z-coordinates of the other ROVs.

Figure 5.9: Field of view (FOV) concept

The concept of the solution is visualised in two dimensions, as it directly translates into three di-
mensions. The concept and the symbolic formula are the same in both cases, with the only differ-
ence being that in two dimensions the formula calculates the angle between the two-dimensional
vectors −→u and −→v in the plane. While in three dimensions calculating the angle between the same
vectors with a 3rd-dimensional component, and in space.

In Figure 5.9 the FOV criteria is fulfilled if the inequality constraint in the following Equation
holds

α≤ γ (5.11)

The angle α is the angle between −→v and −→u , and γ is the maximum FOV angle. In the figure 5.9
the γ angle is 60◦.

The vector between the two ROVs and the directional vector of ROV 1 is given by

−→v =

1− 2(ε2
2 + ε

2
3)

2(ε1ε2 + ε3η)
2(ε1ε3 − ε2η)

 ,−→u =

x2 − x1

y2 − y1

z2 − z1

 (5.12)

34

Chapter 5: Model Predictive Control E2310: BSc. Thesis

The following formula was used as the basis to calculate the angle between two vectors

cosα=
−→v · −→u

−→v

 ·

−→u

(5.13)

Rewriting the formula gives

γ≤ arccos

−→v · −→u

−→v

 ·

−→u

,

−→v

=∆ 1 (5.14)

where Equation (5.14) is the result of rewriting (5.13) and inserting it in to (5.11).
By rewriting (5.14), the final symbolic equation for the non-linear constraint is

cosγ ·

−→u

−−→v · −→u ≤ 0 (5.15)

The complete derivation of the equations used in the non-linear constraint used for the FOV con-
straint can be found in appendix A.

The complete formula of the implemented non-linear expression in the non-linear constraint is
given in do-mpc format as

m(x , u, z, pt v, p) = cos (γ) · d
− ((1− 2ε2

2 + 2ε2
3)(x2 − x1)

+ (2ε1ε2 + 2ε3η)(y2 − y1)
+ (2ε1ε3 − 2ε2η)(z2 − z1))

(5.16)

The non-linear constraint was implemented both as a soft constraint and a hard constraint, with
the γ-angle set for the soft constraint being smaller than the γ-angle for the hard constraint.

This gave the possibility of introducing steps to the penalty:

Table 5.2: FOV penalty steps

Step Angle range Severity Description Cost
1 α < γS Ideal Optimal range Low. Only from attitude control 5.2.1.
2 γS ≤ α < γH Warning Feasible range High. Cost from the soft constraint
3 γH ≤ α Infeasible Infeasible range Infeasible

Table 5.2 lists the transitions between steps and associated costs. Notably, lower steps’ costs persist
as the severity increases. This design choice proves to be advantageous in this system as it allows
for the creation of transition points that greatly increase the priority of the FOV constraints.
As long as α falls within the ideal range, its specific value holds limited significance, as the optical
communication function remains consistent throughout. This is therefore represented by a low
penalty.

When reaching the step with the severity warning, it is deemed necessary to take action to ensure
that α is controlled back to the ideal range. By increasing the cost drastically, the FOV-angle task

35

E2310: BSc. Thesis Chapter 5: Model Predictive Control

will have a higher priority and impact on the control.

When reaching the step with severity infeasible, then that would mean the hard constraint has
been violated and there is no longer communication between the ROVs.

Distancing Between the ROVs

To ensure that the ROVs avoid collisions, a non-linear constraint was designed. As with the FOV
constraint, the collision avoidance constraint also was designed with the assumption that any ROV
in the multi-agent system had access to the x-, y- and z-coordinates of all the other ROVs.

The constraint that ensured the distance between the ROVs was designed on the basis of

−→vd

≥ d (5.17)

If the length −→vd (the vector between two ROVs) is longer than d (a distance set by the operator),

the constraint gave no cost, but if

−→vd

< d, this gave a high cost.

m(x , u, z, pt v, p) = d2 − ((x2 − x)2 + (y2 − y)2 + (z2 − z)2) (5.18)

Equation (5.18) is the complete formula of the implemented non-linear expression in the non-
linear constraint.

As with the FOV constraint, the distancing constraint also was implemented both as a hard con-
straint and as a soft constraint. With the soft constraint being d and the hard constraint being
d10% (10% of the value d).

This introduced step for the distancing constraint:

Table 5.3: Distancing penalty steps

Step Distance range Severity Description Cost

1

−→vd

≥ d Ideal Optimal range None.

2 d >

−→vd

≥ d10% Critical Unsafe range High. Cost from the soft constraint

2 d10% >

−→vd

≥ d10% Infeasible Infeasible range Infeasible

The states of the distancing constraint are described in Table 5.3. When in the step described with
the severity ideal the distance between the ROVs is safe, and there is no penalty given.

When reaching the step of severity critical there is no collision, but the distance between the ROVs
is deemed unsafe, and this introduces a high cost to the controller which makes getting the dis-
tance back to the optimal range a priority.

When reaching the severity infeasible a collision is probable, which could cause material damage
on the ROVs.

36

Chapter 5: Model Predictive Control E2310: BSc. Thesis

System Parameters in the Controller

The do-mpc controller has several parameters that can be adjusted. The complete list of system
parameters can be found in the API reference for do-mpc [26] under the function
do_mpc.controller.MPC.set_param. The parameters used in the controller implemented in this
thesis are:

• n_horizon - Prediction horizon of the optimal control problem

• t_step - Timestep of the mpc

• n_robust - Robust horizon for robust scenario-tree MPC

• nlpsol_opts - Dictionary with options for the CasADi solver

• ipopt.max_iter - Maximum number of SQP iterations2

5.3 Results

5.3.1 Cost Function

The resulting Lagrange- and Mayer-term of the resulting cost function will be displayed in this
section.

The R-term is not displayed, as it only contains a gain R, that increases or decreases the cost of
altering the value of the controller output.

Positional Term in the Lagrange-term

lP1(xk, zk, uk, pk, pt v,k) =((Kx(xd − x)2 + Ky(yd − y)2)− r2)2 + Kz(zd − z)2

lP2(xk, zk, uk, pk, pt v,k) =(
q

Kx(xd − x)2 + Ky(yd − y)2 − r)2 + Kz(zd − z)2

lP3(xk, zk, uk, pk, pt v,k) =Kx(x − xd)
2 + Ky(y − yd)

2 + Kz(z − zd)
2

(5.19)

lP1: Using the implemented version of circular setpoint
lP2: Using the optimal version of circular setpoint3

lP3: Using squared error

Attitude term in the Lagrange-term

lA1(xk, zk, uk, pk, pt v,k) =KA(((ηdη+ ε1dε1 + ε2dε2 + ε3dε3)
2 − 1)2

+ (−ε1dη+ηdε1 − ε3dε2 + ε2dε3)
2

+ (−ε2dη+ ε3dε1 +ηdε2 − ε1dε3)
2

+ (−ε3dη− ε2dε1 + ε1dε2 +ηdε3)
2)

lA2(xk, zk, uk, pk, pt v,k) =Kφ(φd −φ)2 + Kθ (θd − θ)2 + Kψ(ψd −ψ)2

(5.20)

lA1: Using quaternions
lA2: Using euler-angles

2This is a parameter set for CasADi solver [30], which is used as a solver in the do-mpc toolbox
3As described in section 5.2.1, roots was unusable in do-mpc. This solution could therefore never be tested.

37

E2310: BSc. Thesis Chapter 5: Model Predictive Control

Full Lagrage-term

l(xk, zk, uk, pk, pt v,k) =lP(xk, zk, uk, pk, pt v,k) + lA(xk, zk, uk, pk, pt v,k) (5.21)

The full cost function added a positional term and an attitude term, as shown in (5.21).

m(xN+1) =l(xN+1, zN+1, uN+1, pN+1, pt v,N+1)

+ Ku(u
2
1,N+1 + u2

2,N+1 + u2
3,N+1 + u2

4,N+1 + u2
5,N+1 + u2

6,N+1 + u2
7,N+1 + u2

8,N+1)
(5.22)

Equation (5.22) is the Mayer-term of the cost function implemented in the final cost function.

Comparison of Positional Control Approaches

Figure 5.10: Cost. Comparison of circle setpoint and squared error

In Figure 5.10 the cost of the different configurations of the positional control is compared.

38

Chapter 5: Model Predictive Control E2310: BSc. Thesis

Figure 5.11: Cost. Implemented Circular Setpoint Around the Desired Position

Figure 5.11 gives a closer look at the cost of the implemented circular setpoint solution around
the desired position.

Figure 5.12: Derivative of cost. Comparison of circle setpoint and squared error

In Figure 5.12 the derivative of the cost in the different configurations is compared.

There are some important things to note when analysing these figures:

1. The circular setpoint and the squared error function have the same desired position in Figure
5.10, 5.12 and 5.13, but the final position is different. This is because of the fact that by
using the circular setpoint solution, the ROV has a final position at a distance r from the
desired position. In this example r = 1m.

2. The gain in the three functions for the configurations is adjusted to give them the same
starting point in x(0). This is done to make them comparable.

39

E2310: BSc. Thesis Chapter 5: Model Predictive Control

Observe that the derivative of implemented circular setpoint is declining exponentially as it ap-
proaches the terminal point, while the alternative circular setpoint and implemented squared error
are declining linearly.

Figure 5.13: Derivative of cost. Discontinuity in comparison of circle setpoint and squared error

However, using optimal circular setpoint introduces a discontinuity in the derivative at the desired
point, as shown in Figure 5.13.

5.4 Discussion

5.4.1 Cost Function

The circular setpoint solution gave some more predictability in regard to end positions in the
multi-agent system compared to the squared error solution, which all had the same desired point
as the endpoint, but could not all be placed there because of the distancing necessary between the
ROVs. When using the circular setpoint solution with r and d being set adequately, all ROVs are at
the same distance from the desired position, which as shown in Figure 5.8 creates a circle around
the point. This characteristic can also be used when performing cooperative tasks. By decreasing
the value of r and d while all the ROVs are positioned at the circle, they will all approach the
desired point from different directions. This could be used if the ROVs had grippers, and were to
pick up a fishing net at the ocean floor, and the positioning would be dynamic even when scaling
up the system and using several agents.

The circular setpoint solution had some fundamental problems, as the cost function was quartic
(fourth order). Namely:

1. A quartic cost function leads to the cost rapidly increasing when the distance between the
ROV and the desired point is growing, as seen in Figure 5.10. This could make the system
more unstable, as the cost from the positional error would dominate the cost function.

2. The quartic function implemented is not convex, which is a desired characteristic in cost
functions. The function has two minimum points, both a distance r from the desired posi-
tion, as seen in Figure 5.11.

3. The derivative of the function is exponential. This results in a problem where it is harder for
the optimiser to find the global minimum, since the derivative is close to zero in the area

40

Chapter 5: Model Predictive Control E2310: BSc. Thesis

around the desired position. This can be seen in Figure 5.12.

This circular setpoint solution was tested in simulations and the result from the testing is described
in Chapter 7.

An alternative solution to the implemented circular setpoint solution is also proposed, which uses
roots to give the cost a similar shape as the squared error solution, as seen in Figure 5.10. This,
for the most part, handled problems 1 and 3 from the implemented circular setpoint solution,
which could lead to better control. The alternative solution came with its own set of issues:

1. The issue of non-convexity still persists as problem 2 for the implemented solution. The
function was not convex, as it had 2 minimum points, both a distance r from the desired
point.

2. The expression introduced a discontinuity in the derivative of the function at the desired
point, as shown in Figure 5.13. Discontinuities in cost functions increase the complexity of
the optimisation problem.

As do-mpc would not run with the alternative solution for the circular setpoint, it could not be
tested in this thesis.

5.4.2 Non-linear Constraints

The FOV-constraint is a dynamic solution that was designed to ensure line of sight between the
ROVs. The angle limits for both the soft constraint and hard constraint could be set in the para-
meters, and the only requirement was the positional states of the other ROV, which could be
transferred through optical data transfer as long as the constraint was being held. Using soft con-
straints to create a range where the FOV angle was prioritized also leads to some robustness, as
the ROVs work to keep the angle in a range where the angle is far less than the limit to maintain
communication.

A problem with the current implementation of the FOV constraint was that when more than two
ROVs were being run, the amount of FOV constraints grew exponentially, since the system needed
access to the positional states of all the other ROVs to ensure that the distancing constraints was
being held.

This could be solved by introducing functionality for data transfer where the ROVs ensured global
access to positional data. Such functionality could have been explored with methods like con-
sensus [31], but as this thesis focused on the two-agent case, it was beyond the scope of the thesis.

The distancing constraint was first implemented in the cost function. This worked, but led to a
more complex cost function, which could increase the calculation time for the optimiser, and gave
a cost when the distance between the ROVs was larger than what was dangerous. This was unne-
cessary, as the distance between the ROVs was considered to be satisfactory as long as there was
some distance between them. The choice to set the distancing as a constraint meant that there
was no cost associated with the distancing as long as it was beyond the set distance d.

A sub-optimal design choice in the distancing constraint was that the hard constraint was set to
be 10% of the distance d, which is not a good solution when the value d is small. If d was set
to 1m, the hard constraint would be set to 10 cm, and as the physical size of the ROVs is at its
longest about 25 cm from the centre, a distance of 10 cm between the ROVs would be impossible,

41

E2310: BSc. Thesis Chapter 5: Model Predictive Control

as they would have crashed at about 50 cm. The value for the hard constraint could have been
implemented as its own parameter in the controller.

5.4.3 Disadvantages and Alternative Methods of Control

A problem with using MPC is that it is a computationally expensive controller, which requires
hardware that is able to handle the multitude of calculations that happens at each time step. This
is a key issue, as the BlueROV2 when operating without tethers, use a single board computer
as the control unit due to space limitation. This could make the controller unusable for the Blu-
eROV2.

Another potential problem with the use of MPC is that the performance of the controller is de-
pendent on having an accurate prediction model which is dependent on having a good model of
the system. If the model of the system is a poor representation, the performance of the controller
will be poor.

Alternatively, other methods of control could be explored. One example that was discussed at an
early stage in the thesis was to implement a cascade control system where the main control is
done by a MPC with a cycle time while the direct control of the thrusters is done with continuous
hardware implemented PID-controllers. This solution could handle the problem with hardware
limitations as the controller could have a slower cycle time but could lead to a more complex
control system, and a less reliable and robust system.

Another alternative to using MPC, is to use LQR, which generally is less computationally expens-
ive. This could have been an advantage with the hardware limitations on the BlueROV2. LQR
does not enable the use of constraints on the system, but this could be solved by implementing
the distancing constraint and the FOV constraint in the cost function with a high gain value. The
problem with using LQR is that the controller is primarily designed to control linear systems, and
the model for the BlueROV2 is non-linear, which would affect performance.

5.4.4 Do-mpc

The decision to utilise do-mpc in this thesis gave a head start in the development of the con-
troller as the functionality surrounding the optimiser already was implemented, and ready to be
used. There was not any need to design solvers or estimators, which likely would have been time-
consuming. The do-mpc package had examples, an API reference, and supported literature that
could be used as inspiration in design.

Do-mpc also came with a set of problems. The calculation time of the controller was slow and this
reduced the efficiency of the system, which probably will lead to performance issues when im-
plemented on the physical ROV. Another problem working with the do-mpc toolbox was that the
inner workings of the solver, and the way it solved complex problems were not always apparent.
For example, it was not always clear-cut how it handled broken hard constraints, which lead to
a lot of interpretation of results and effects during design and implementation. If the controller
were designed without using such a high-level toolbox, the functionality could be exploited more
efficiently.

An alternative to do-mpc could have been to explore other options for MPC toolboxes, which
could have led to better performance. An example is the MPC toolbox in Matlab, which also has

42

Chapter 5: Model Predictive Control E2310: BSc. Thesis

the possibility to convert the code to a C++ format. This likely would have led to a higher per-
formance of the controller nodes.

5.4.5 Model Implementation in do-mpc

Implementing the model in do-mpc was first attempted using matrix operations in numpy, but in
the end this was not feasible, since the states and other variables, were implemented as casADI
symbols. This caused issues, particularly in the DN L matrix, as it was necessary to use a casADI
function inside the numpy matrix, which caused an error. Therefore, for uniformity, the matrices
were written out row by row.

The equations of motion were also implemented as differential algebraic equations (DAEs), in-
stead of or ordinary differential equations (ODEs). This was done because in order to express the
equations of motion on ODE-form, it is necessary to invert (MRB +MA). Inverting these matrices
results in a “messy” expression, and it is recommended in the do-mpc documentation to utilise
DAEs instead [29].

43

Chapter 6

The Robot Operating System (ROS)

ROS is an open-source software development kit with tools and libraries, designed for use in robot
development. ROS is a so-called meta-operating system, which uses concepts typically found in
operating systems such as package management and message handling [32].

This chapter describes the implementation of the MPC, presented in Chapter 5, in ROS 2 and how
it is configured to interface with the Gazebo simulator. First, an introduction to the theoretical
framework is needed to understand the workings of ROS and how it will be used. Then, the
mathematical framework for trajectory planning is explained. Afterwards, the implementation’s
interface with Gazebo is described. The results are then presented, including the package structure
and the system topology. Lastly, certain aspects of the implementation are discussed.

6.1 Software

The following table is a list of software that was used in this project.

Table 6.1: Table of Software

Name Description Documentation
ROS 2 Humble Recommend Package

for Ubuntu 22.04
ROS2
Documentation[33]

Ubuntu 22.04.2
LTS (Jammy Jellyfish)

Operative System Ubuntu Image[34]

Gazebo Garden Application used for Simula-
tion

Gazebo Documentation [35]

Python 10.0 (or newer) Programming language (In-
troduces match case)

Python Documents [36]

do-mpc Python tool Installation documentation
[37]

C++ Programming language Windows documentation
[38]

44

Chapter 6: The Robot Operating System (ROS) E2310: BSc. Thesis

6.2 Theoretical Framework

6.2.1 A Look Into the ROS 2 Structure

Figure 6.1: A simple representation of how ROS filesystem is set up.

Workspace

The recommended way to organise all ROS 2 related work is to use a folder as a repository to
work from, and this folder is what would be called the workspace [33]. In Linux, one usually
has to build their workspace with colcon build and source it before use. Usually what one would
see inside a workspace, is a source folder (/src) where packages are stored, and the folders build,
install and log that gets generated by running colcon build.

Colcon, an acronym for “collective construction”, is an important tool in ROS 2, which sets up
the environment for the packages to be built, tested and used in, amongst other things. More
information can be found in the documentation [39, 40].

Package

A package contains the source code and the build around it to implement its functionality. Pack-
ages allow users to pack their source code neatly and can be easily distributed amongst others on
different platforms for use and further development [41].

45

E2310: BSc. Thesis Chapter 6: The Robot Operating System (ROS)

When creating a new package, ROS 2 offers a command to build a new package using the ament
tools, which can be used to build packages with files required when using Python or C++.

For Python:

• setup.py - Necessary for the user to tell ROS 2 how it should install the package.

• setup.cfg - Tells ROS 2 where it can find the executable that exists in the package

• source folder - has the same name as the package name and is for storing nodes.

• package.xml - Contains important information about the package and what libraries and
tools the package is dependent on.

For C++:

• CMakeLists.txt - Necessary for the user to tell ROS 2 how the code within the package should
be built

• package.xml - Contains important information about the package and which libraries and
tools the package is dependent on.

• source folder - Is named src/

ROS 2 also has a tutorial [41] for how packages are created and used, and documentation on the
content of setup and CMakeLists [42].

Nodes

A node in the ROS 2 environment is an executable that runs a programmed task. Nodes can be
a part of a larger system and use topics, Section 6.2.2, actions and services, Section 6.2.2 to com-
municate with other existing nodes within the same network [43, 44].

Nodes are structured as classes and with the use of the ROS 2 client library [45], which exist for
Python [46] (rclpy) and C++ [47] (rclcpp). The client library implements ROS 2 specific language
which enables the possibility for nodes written in different programming languages to commu-
nicate.

More documentation about classes exists for Python [48] and C++ [49]. How nodes are used to
set up topics can be found in chapter 6.2.2 with reference to a more in-depth tutorial that includes
how nodes are structured.

Launch & Parameters

Launch files are a helpful tool for projects that have multiple nodes running simultaneously. With
this tool, one only needs to run a single command to launch all of the nodes at once instead of
having to launch each node individually. With the way ROS 2 is designed, it is possible to launch
nodes from different packages if necessary, as ROS 2 is capable of handling that as long the pack-
age is within the same workspace. Launch can be written in Python, XML and YAML, and can be
read more about in ROS 2 documentation [50]

Nodes also can come with parameters, which act like the configuration of the node. These are
written in launch files like Python or YAML, and make it possible for the user to change the value
of these parameters during runtime [51].

46

Chapter 6: The Robot Operating System (ROS) E2310: BSc. Thesis

Tutorials on how to create a launch file in ROS 2 [52] and how parameters are used in nodes
[53], can be found in the ROS 2 documentation.

6.2.2 Communication in ROS

Topics

Topics [32, p.3] are based on subscribe/publish messaging with an example shown in Figure 6.2.
Whenever a node publishes a new message to a topic, then all nodes that are subscribing to this
topic will get sent the new message and run a callback function. This function is an assigned task
that runs when a subscriber node gets a new message from the topic it subscribed to.

Figure 6.2: Example of how a topic is used in a ROS environment.

Implementation of Topics in Python

When implementing a subscriber or publisher in Python, one has to define which topic name it
is going to communicate with and what type of message this topic uses. The documentation on
standard messages used in ROS 2 can be found in their index API [54].

Unlike publishers, a callback function also needs to be defined for subscribers to run whenever a
topic gets updated with a new message.

A more in-depth tutorial on how topics are implemented and used can be found in the ROS 2
documentation [55].

Action & Service

Services is an alternative way of communicating, Services use the call-and-response method. As
shown in Figure 6.3, the client will send a request to the server (step 1) and the server will respond
(step 2).

47

E2310: BSc. Thesis Chapter 6: The Robot Operating System (ROS)

Figure 6.3: Example of how services are used in a ROS environment.

When using services, only one client node can use the call-and-response method at a time with the
server node, and the client node has to wait for a response before continuing its task [56][32, p. 4].

Actions are a combination of topics and services. After the nodes have exchanged messages re-
garding the goal through services’ call-and-response (steps 1 and 2), the client will then send
a call, or request, for the result (step 3). While the server is running its process, the client can
continue doing other tasks while getting feedback from the server (step 4). After completion, the
server will then respond to the client with the result (step 5).

Figure 6.4: Example of how actions are used in a ROS environment.

Actions are better suited for long-running tasks as it allows the client to run other tasks while
waiting for the results, and actions can also be cancelled [57][32, p. 4].

6.2.3 Gazebo Garden & BlueROV2 Garden

Gazebo Garden is a simulation program for simulating physical objects in different realistic envir-
onments. It has multiple open-source libraries for simulation, logging, sensors and plugin-based
interface to physics engines [58]. Some of the important features include Linux compatibility,
ROS2-integration, 3D graphics, the possibility of loading custom systems into the simulation and
a precise physics engine [59].

BlueROV2 Garden is a workspace, which is still under development, that allows the user to spawn
multiple BlueROV2 Heavy models in a Gazebo simulated underwater environment. This was cre-
ated by Mikael Medina [4] and this workspace contains a physics engine simulating buoyancy

48

Chapter 6: The Robot Operating System (ROS) E2310: BSc. Thesis

and hydrodynamics, and enables the possibility of simulating ocean currents, thruster dynamics
and collision amongst other things.

BlueROV2 Garden creates topics associated with the ROVs spawned, which is used in control. The
topics used in this thesis are:

• Odometry with information about position, quaternions, linear- and angular velocity

• Thrusters 1 to 8

6.3 Mathematical Framework

This section introduces the necessary mathematical prerequisites to understand the functionality
of the trajectory node.

6.3.1 Polynomial Trajectories

A common method to parametrize a trajectory is to use a polynomial, q(t), where q(t) is the set-
point at time t. These polynomial trajectories can be divided into two main categories: a single
continuous polynomial, and piecewise polynomials, also known as splines. It is possible to use a
polynomial of a high order to represent a single continuous trajectory. This strategy has the ad-
vantage that the derivatives are continuous throughout the entire trajectory. However unneces-
sary oscillations in the polynomial, known as Runge’s phenomenon, are a distinct disadvantage
to employing this strategy [60].

Splines

An alternative strategy is to use splines, or piecewise polynomials of a certain order that sat-
isfies the given constraint requirements. Through this, it is possible to create trajectories using
polynomials of a lower order that include an arbitrary amount of waypoints. The disadvantage
of employing this strategy is that the derivatives are susceptible to being discontinuous in the
via-points (points that connect two splines). This phenomenon is shown for cubic polynomials in
Figure 6.5.

Cubic Polynomial Trajectories

Consider the cubic polynomial in Equation (6.1).

q(t) = a0 + a1 t + a2 t2 + a3 t3 (6.1)

Differentiating (6.1) with respect to t yields (6.2).

q̇(t) = a1 + 2a2 t + 3a3 t2. (6.2)

Let t0 denote the start time, and t1 denote the end time of the spline. Set the constraints q(t0) = q0

and q̇(t0) = v0, q(t1) = q1 and q̇(t1) = v1. Where q0, q1 and v1, v1 are, respectively, the start and
end time position and velocity. This results in four different equations, and as such, becomes a
set of equations that requires six constraints (t0, t1, q0, q1, v0 and v1) to have a unique solution.
Equation (6.3) expresses this set of equations in matrix form. Solving this will yield numerical

49

E2310: BSc. Thesis Chapter 6: The Robot Operating System (ROS)

values for a0, a1, a2 and a3. Inserting these into (6.1) results in a cubic polynomial that satisfies
the constraints [15, p. 253-254].

1 t0 t2
0 t3

0
0 1 2t0 3t2

0
1 t1 t2

1 t3
1

0 1 2t1 3t2
1

a0

a1

a2

a3

=

q0

v0

q1

v1

(6.3)

0 5 10 15 20 25 30
Time [s]

0

1

2

3

4

5

Po
sit

io
n

[m
]

Trajectory 1
Trajectory 2
Trajectory 3

0 5 10 15 20 25 30
Time [s]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Ve
lo

cit
y

[m
/s

]

Trajectory 1
Trajectory 2
Trajectory 3

0 5 10 15 20 25 30
Time [s]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Ac
ce

le
ra

tio
n

[m
/s

2]

Trajectory 1
Trajectory 2
Trajectory 3

An Exemplification of Discontinuity in the Acceleration

Figure 6.5: Three cubic polynomial splines showing discontinuity in the acceleration in the via-
points

If it is necessary to add constraints on acceleration, quintic polynomial trajectories are an option
to accomplish this. To put constraints on the jolt, a septic polynomial would be required.

6.4 Implementation

Figure 6.6: Overview of ROS 2 filesystem and connections

50

Chapter 6: The Robot Operating System (ROS) E2310: BSc. Thesis

Figure 6.6 shows how packages created during this project (inside the dotted line) are structured
inside the BlueROV2 Garden workspace. Inside the dotted lines are two packages, one for MPC
which was created in Python and stores the majority of the nodes, including also do-mpc mod-
ules, a launch file and a parameter file, while the other is a package for the possibility of using a
joystick for manual steering, written in C++.

6.4.1 Package for MPC

When creating a package to store the source code, ROS 2 offers a command to build the neces-
sary structure of a package for either CMake or Python. Considering this package would store the
majority of the nodes that would be created, including the actual MPC, Python were used, as the
toolbox used for the MPC was a Python library.

Package Configuration

All ROS 2 Python packages need to be configured with two configuration files. The file setup.py
describes how nodes are executed. This file contains entry_points that create executables.

The following entry points needed are:

• “GUI = mpc_controller.GUI:main”

• “bluerov_mpc = mpc_controller.mpc_controller:main”

• “setpoint = mpc_controller.setpoint_publisher:main”

The other configuration file is package.xml and this is where the ROS 2 package dependencies are
defined. For this package, the following dependencies are required:

• rclpy - ROS client library for Python

• std_msgs - Library of standard messages used in ROS

• nav_msgs - Library used for navigation messages, specifically Odometry for this project

• geometry_msgs - Library used to get common geometric primitives, specifically Vector for
this project

• ros2launch - Specify ros2launch package to make sure ROS 2 can recognise all launch file
formats and that ROS 2 can launch the launch file with ROS 2 command.

6.4.2 Launch and Parameters

As mentioned in Subsection 6.2.1, launch files have the option to add parameters when launch-
ing different nodes. A YAML file was used for storing these parameters as it gives an overview of
existing parameters for the user without having to access the source code of the launch file.

Table 6.2 lists the parameters found inside the YAML file.

51

E2310: BSc. Thesis Chapter 6: The Robot Operating System (ROS)

Table 6.2: Table of YAML Parameters

Parameter variable Description Option
n_multi_agent Size of the fleet [1, 2 or 3] agents
debug_rov Tells what should be printed

to the terminal screen
[0 or 1] prints the coordin-
ates of trajectory setpoint.
[2 to 4] prints the mpc
calculation for BlueROV2,
BlueROV3 or BlueROV4

FOV_constraint If the MPC should have any
Field of View constraint

[True or False]

radius_setp Radius on the circle around
setpoint

[Float] in meters

distance_rovs The distance between ROVs [Float] in meters
FOV_range_deg Hard constraint on field of

view angle
[Float] in degrees

FOV_range_soft_deg Soft constraint on field of
view angle

[Float] in degrees

cycle_time_publish How often it will do the cal-
culation and publish it

[Float] in seconds

Launching Multiple Agents

Figure 6.7: Simple flowchart showing how launch-file handles multi-agent

The YAML file contains a parameter for the number of ROVs spawned called multi_agent, and this
parameter gets extracted from YAML file into the launch file to generate a MPC node for each
ROV in the fleet.

The way BlueROV2 Garden handles multiple agents is by giving each model a unique name. In
this case, it was done such that the first ROV starts with “bluerov2”, and then continues with
“bluerov3” and onwards. The number behind “bluerov” is how the models are identified and are

52

Chapter 6: The Robot Operating System (ROS) E2310: BSc. Thesis

used to make it able to give each node a unique name and also it is how MPC nodes know which
ROV to control.

6.4.3 MPC Node

Figure 6.8: Overview of the node structure for mpc_controller.py

Figure 6.8 gives an overview of the structure of the MPC node with the initialisation phase in
focus. In its initialisation phase, the node performs tasks like declaring parameters, configuring
the MPC, and creating subscribers and publishers. During its runtime, subscribers will run callback
functions when new messages arrive, while publishers run at a set rate, and publish to the thruster
topics after the MPC has calculated new values.

Configuring Node for Multiple Agents

Launching multiple agents required modifications to the node. The MPC node takes the ROV’s
unique identification number into consideration and assigns each ROV with their own MPC. Since
the only difference in topic names are the numbering (bluerov2, bluerov3 etc), it was sufficient
to use that number as their main_id and extract that from the list of parameters that launched
with the node.

53

E2310: BSc. Thesis Chapter 6: The Robot Operating System (ROS)

Together with their identification number, the number of agents, known as n_multi_agent, is sent
as a parameter to the node which is used for collecting the odometry of other ROVs in the fleet.

Implementing do-mpc

To avoid unnecessarily convoluting the source code, the mathematical model and the controller
created with do-mpc were imported as modules to the node.

In its initiation phase when a node starts running, the necessary MPC parameters are extracted
and used to initiate the controller created with do-mpc. From Table 6.2, the parameters that are
used to configure the MPC controller are as follows:

• n_multi_agent

• FOV_constraint

• radius_setp

• distance_rovs

• FOV_range_deg

• FOV_range_soft_deg

At the end of the initiation, a timer will be set up to run in a cycle of the user’s specification.
For every cycle, a function will run, which is used for the MPC to calculate new values before
publishing it to all eight thrusters. After some trial and error, 0.05 seconds seemed to work well
enough for the purpose of this project.

Alternative Models and Controllers

The model and controller modules, seen in Figure 6.8, are built as classes and imported to the
node to be used as regular class objects. Assuming the user is familiar with do-mpc [26, 29], the
model can be readjusted for other ROV models and the controller, which amongst other things
takes the model class in its function, can also be adjusted.

Topics

Subscribers and publishers are also created during the initiation phase of the node. Table 6.3
shows the topics that are used in the MPC node and if the topic is used for a subscriber or publisher.

54

Chapter 6: The Robot Operating System (ROS) E2310: BSc. Thesis

Table 6.3: Table of Topics used in MPC node

Topics that are used from BlueROV2 Garden
Topic name Description Pub/Sub
/bluerov2_pid/bluerov{}
/observer/nlo/odom_ned

Odometry to the bluerov
model, {} is replaced with a
number

Subscribed

/model/bluerov{}/joint
/thruster1_joint/cmd_thrust

Used to to send values to
thrusters. Each thruster
has its own topic and goes
from thruster1_joint to
thruster8_joint

Published

Topics created from this Project
Topic name Description Pub/Sub
/ref Used to exchange the

coordinates of setpoint
Subscribed

/clock Used to exchange the real-
time

Subscribed

/control_mode Communication from GUI
about which modes is being
used

Subscribed

/std_test Communication from GUI
about which standard tests
to do

Subscribed

/record_data Communication from GUI
about if data should be re-
corded

Subscribed

/filename_data Custom name on the file for
recorded data

Subscribed

angle/from_{}_to_{} Used to exchange the field of
view angle between ROVs.
An example could be from 2
to 3.

Published

6.4.4 GUI

A graphical user interface node, or GUI.py, was created to simplify the user interaction with the
simulator and the BlueROV2 Garden workspace.

To publish, pub, a message to a topic from the terminal, it can be done by using the command
[61]

1 $ ros2 t o p i c pub <topic_name> <msg_type> ’<args > ’

and to see what is being published on a topic, one would have to echo the topic name. With a GUI
however, it would allow the user to set new coordinates for the setpoint and create a waypoint
quicker. It also would access the information that was thought to be useful for the user, like the
positioning of the ROVs and if it is violating any constraint that is mentioned in Subsection 5.2.2.
More details about the use of GUI can be found in Section 7.1.2, but it is still structured as a
regular node.

55

E2310: BSc. Thesis Chapter 6: The Robot Operating System (ROS)

6.4.5 Trajectory Node

The mathematical framework behind trajectory planning is explained in Section 6.3.1. This sec-
tion describes the ROS 2 implementation of the trajectory planning feature.

The trajectory node, or setpoint_publisher.py, is a node that is used to send the path of the traject-
ory to the MPC nodes. It is also implemented with a set of standard tests, explained in Section
7.1.3. The trajectory node is controlled from the GUI node through topics and publishes a refer-
ence at a set cycle to the topic /ref.

Figure 6.9 is a flowchart of the functionality implemented in the node. A trajectory is computed
by entering the goal position and velocity. The stop time is not needed, as it is computed by setting
an average velocity, and then computing the end time, by calculating the distance from the start
point to the endpoint, and dividing by the average velocity.

Figure 6.9: Flowchart - Trajectory node when getting setpoint from user

6.4.6 Package for Joystick Controller

The functionality of using a joystick to steer the setpoint manually was added as an option. This
package was implemented in C++.

The joy_con package with its node steers the setpoint and makes it possible to manually con-
trol the fleet. The node is dependent on another node, joy. The joy node is a part of the standard
ROS 2 distribution, the node detects inputs from the joystick and publishes these as a Joy message
to the /joy topic. The joy_con node subscribes to the /joy topic, and converts inputs in this topic,
to the setpoint topic, /ref. Both of these nodes were added to the launch file in the mpc_controller
package.

When the user changes the control mode to “manual” in the GUI, a message is published to the
topic /controller_mode, that both the trajectory and joy_con node subscribes to, in order to avoid
conflicts when publishing to /ref.

Moving the setpoint in the xy-plane is done by moving the left joystick, and in the z-axis is ac-
complished with the triggers.

56

Chapter 6: The Robot Operating System (ROS) E2310: BSc. Thesis

6.5 Results and Findings

6.5.1 Filesystem

Figure 6.10 shows the filesystem of BlueROV2 Garden workspace, with details of contents of the
packages, joy_con and mpc_controller, that were specifically created for this project.

Figure 6.10: Folder structure of BlueROV2 Garden with the filesystem of Joystick and MPC pack-
ages

57

E2310: BSc. Thesis Chapter 6: The Robot Operating System (ROS)

6.5.2 Launch of Packages w/ BlueROV2 Garden - Desktop Interface

Figure 6.11: Launching BlueROV2 Garden (upper) and launch file from mpc_controller (below)
together

6.5.3 System Topology

The graph was made by using the ROS 2 tool RQt-graph [62].

RQt-graph is a plugin for ROS 2 which is a GUI used to visualise the system topology. In Appendix
C, the system topology for one and two agents can be found. These are graphical visualisations

58

Chapter 6: The Robot Operating System (ROS) E2310: BSc. Thesis

of the ROS 2 network.

Some comments regarding the RQt-graphs:

• bluerov2_pid is a package name that has the odometry in it, and so even though there is a
PID-controller in the BlueROV2 Garden workspace, for it to be used, one has to publish to
the topic name /bluerov2_pid/bluerov2/references, which would then take over and render
the MPC controller useless. This is because the PID controller has no limitation on what
values it can publish to thrusters.

• Circles represent the node that is running, while squares with only text within the square,
represent topics.

6.6 Discussion and Analysis

6.6.1 Communication

This project has solely used the subscriber/publishers model as a way to communicate with other
nodes. However, the background for this thesis mentioned ROVs cooperating in performing com-
plex tasks like picking up loose fishing nets. This is where Action servers and clients would be a
beneficial asset to use for communication between ROVs.

Consider the example previously stated, Actions would be used to make sure that while one of the
ROVs is still getting into position, the ROV that is in position and is waiting for the ready signal
from the action server, is still able to perform control actions. Services are unsuitable for tasks
like these because it relies on the call-and-respond method. This way, one does not only achieve a
higher degree of autonomy in the ROVs, but it also enables more intelligent cooperation between
them.

Another possible use case for Actions is in the trajectory node. If the reference is an Action server
instead of a topic, it would enable the possibility to only update the reference if certain criteria
are met. Examples of criteria include; all ROVs being within a certain distance of the current ref-
erence, or the FOV constraint being upheld. This functionality can be useful if, in a real-world
scenario, an ROV malfunctions, the line of sight is broken and the ROVs are no longer able to
communicate, the ROVs will then have an estimate of each other’s position.

6.6.2 Parameters

The usage of a YAML file in this project is intended to give the user an overview of what parameters
exist and can be changed before launch. Generally, YAML files can be modified during runtime,
but the current implementation does not support this feature. The initialisation of the MPC only
happens in the initiation phase of the MPC node, which means if the user changes MPC parameters
during runtime, then this will have no effect on the controller unless the node is re-launched.
However, to re-initialise the MPC controller with new parameters, a new topic can be created
for this purpose. This can be particularly useful when tuning parameters on the physical system,
without having to restart the entire system.

59

E2310: BSc. Thesis Chapter 6: The Robot Operating System (ROS)

6.6.3 Reuse of Code

ROS 2 Philosophy

The ROS 2 philosophy is rooted in modularity. This means that the communication between the
nodes in the network should be as standardised as possible, using the standard message types,
with each node performing one specific task or a subset of tasks. This enables increased reusab-
ility of code. The MPC node utilises only default ROS 2 message types, including the odometry
message type. In addition, since the node imports the controller and the model separately, one can
readjust the model with no alterations to the source code. However, depending on the changes in
the controller, the source code of the MPC node might need to be adjusted to account for more
substantial modifications. The user would only need to be wary of the topic names for odometry
and thrusters, and the number of publishers created for thrusters. It can, therefore, be argued that
this package follows the ROS 2 philosophy.

Transfer to Real-Life Application

For this project’s packages to be applicable to physical ROVs, it is uncertain to which extent modi-
fications need to be made. However, something that is believed would need to be changed is the
launch of multiple MPC nodes. Considering that each ROV is going to have its own single-board
computer, changes and adjustments to the source code would be needed for it to only launch its
own MPC node and still take other ROVs in the fleet into consideration like its odometry for the
field of view constraint.

60

Chapter 7

Simulation

After designing the controller and implementing a system ready for use, the next step is to sim-
ulate and perform tests to analyse the system’s robustness. This is a crucial part of research to
ensure a smoother transition to real-life application.

During the simulation phase, testing was done with both Python and ROS 2 with Gazebo. With
Python, simulations were done through do-mpc’s simulation which enabled testing with an ideal
system model. With ROS 2, Gazebo enables interaction with a non-ideal system in real time.

A set of standardised tests were created for analysing the controller. Each test ran numerous times
for data collection and was later analysed to describe the controllers’ performance.

7.1 Design and Implementation

7.1.1 Python Simulator

The do-mpc toolbox has the possibility to run a controller, simulator and state estimator [26].
Configuring do-mpc with the model of the system and then running the controller, simulator and
estimator sequentially, enabled testing the MPC with an ideal system model. Meaning that the
system model used in the MPC would not deviate from the actual dynamics of the system, as it
does in real-world applications.

Figure 7.1: Block diagram of do-mpc simulator

Figure 7.1 is a block diagram of the signal flow in the do-mpc simulator. The signal notation u
and x is in state space representation, where u is the output vector, which in this system is the

61

E2310: BSc. Thesis Chapter 7: Simulation

signal to the thrusters and x is the states of the system, which in this system is the position and
attitude of the ROVs.

Some important distinctions between the Python simulator and the Gazebo simulator:

• The Python simulator is not implemented in ROS 2: The Python simulator does not run
in real-time, and there is no need to transfer any data to any other nodes, as the controller,
simulator and estimator are being run within the same script. Therefore ROS is not needed.

• The Python simulator used the system model using Euler angles: There were problems
with getting a stable version of the Python simulator using the quaternion model. There-
fore the model using Euler angles was used, as the physical properties of the system should
remain the same.

Figure 7.2: Screenshot from the do-mpc simulator animation

To visualise the result from the do-mpc simulator, a Python script, which used the library Mat-
plotlib [63] to create animations of the states of the system, was created. This script plotted the
positions of the simulated ROVs as scatter points, and the directional vectors as quivers. While
running the simulator the states were written to CSV files at every iteration, the CSV files are
then read by the visualisation script for visual interpretation of the results. A screenshot from the
do-mpc simulator animation can be seen in Figure 7.2.

7.1.2 Gazebo Simulator

The Gazebo Simulator is an appropriate intermediary step before implementing the system on
the physical model, as it can interface with ROS 2 and simulate asynchronously to the MPC. This
creates a real-time simulation that is closer to the conditions of physical testing.

The implementation of the control system in ROS 2 is described in Chapter 6, with a description
of how the control system interfaces with the BlueROV2 garden package [4], used for simulating

62

Chapter 7: Simulation E2310: BSc. Thesis

the dynamics of the BlueROV2 Heavy.

GUI

To interact with the Gazebo simulator, a Graphical User Interface (GUI) was made, as mentioned
in Section 6.4.4. The GUI also was used as the control unit for the standard tests. The GUI was
made using the Python package PySimpleGUI [64] and was implemented as a node in ROS 2.

Figure 7.3: Initial sketch of layout for the GUI

Figure 7.3 is the initial sketch of the layout for the GUI, it contained functionality to set positional
setpoints and a graphical representation of the positional states of the two ROVs. The ROVs were
plotted onto a two-dimensional Matplotlib canvas that was imported to the GUI.

When the functionality planned in the initial sketch had been implemented, it was decided to
expand the functionality. In the final version of the GUI, the following was implemented:

• Setting the control mode:

◦ Joystick control - manual control with joystick.

◦ Autonomous control - setting waypoints for the trajectory planning.

◦ Standard tests - running standard tests individually or sequentially.

• Enabling and disabling logging of the data from the simulator into CSV files.

• Plotting the path of the ROVs.

• Setting ocean current for the Gazebo simulator.

• Displaying the position of the ROVs.

• Observing the FOV angle between the ROVs. With indication of broken constraint.

63

E2310: BSc. Thesis Chapter 7: Simulation

Figure 7.4: Final version of GUI

The final version of the GUI is displayed in Figure 7.4.

The GUI had the functionality to run the standard tests (described in Section 7.1.3), sequentially.
Sequential testing made it possible to run all standard tests numerous times sequentially without
requiring an operator to oversee the test. This also ensured consistency in the testing.

To ensure that the initial conditions in all the tests were similar, the ROVs had to hold certain
conditions over a period of time before the next test could be run. The conditions were:

α < 15◦ ∧ dd < 2m (7.1)

where α is the FOV-angle between the ROVs and dd is the distance between the ROV and the
starting point for the tests. For the next standard test in the sequence to start both these conditions
had to be fulfilled for a total of 5 seconds for both ROVs.

7.1.3 Standard Tests

To perform a statistical analysis of the performance and robustness of the control system, a set
of standardised tests was designed. Using similar initial conditions for all tests, allowed for the
same scenario to be simulated multiple times. Four distinct trajectories were designed. Namely,
the circle-, torus-, line- and spiral test. Figure 7.5 shows 3D visualisation of the test trajectories.

64

Chapter 7: Simulation E2310: BSc. Thesis

Figure 7.5: 3D-plots of the standard tests

The standard tests were designed with an increasing level of complexity, with the line test being
the least complex, then the circle test, the spiral test, and the torus test being the most complex.

Line Test

The test is implemented with a cubic polynomial along the x-axis, with constraints q0, v0, v1 = 0.2,
q1 = 15, and an average speed of 0.2 m/s. Furthermore x(t) is limited to xmax(t) = 15 These
constraints yield (7.2). This test runs for 130 seconds.

x(t) =

�

5.33× 10−3 t2 − 3.55× 10−5 t3 for t ≤ 75
15 for t > 75 (7.2)

y(t) = 0 (7.3)

z(t) = 5 (7.4)

Circle Test

This test is defined by the following Equations (7.5), (7.6), and (7.7). In the xy-plane, the setpoint
traces a circle with a radius of five meters and a period of 200 seconds. Along the z-axis, the
trajectory moves with a sine wave, with a period of 50 seconds. This test runs for one period
along the xy-plane, or 200 seconds.

x(t) = 5cos
�

πt
100

�

− 5 (7.5)

y(t) = 5sin
�

πt
100

�

(7.6)

z(t) = sin
�

πt
25

�

+ 5 (7.7)

65

E2310: BSc. Thesis Chapter 7: Simulation

Spiral Test

The spiral test uses a path that traces a circle in the xy-plane, but with decreasing radius and
increasing frequency as the time, t, increases. This is defined by Equations (7.8), (7.9) and (7.10).
This test runs for 250 seconds.

x(t) = (4− 0.015t) cos
�

πt
100− 0.3t

�

− 4 (7.8)

y(t) = (4− 0.015t) sin
�

πt
100− 0.3t

�

(7.9)

z(t) = 5 (7.10)

Torus Test

The Torus test traces a trajectory of a helix that is wrapped around a torus. A torus is a surface
that can be created by revolving a circle one full rotation about an axis that is co-planar to the
circle. One possible parametrization for this trajectory is shown with Equations (7.11), (7.12),
and (7.13). Where r1 is the major radius, the outer edge of the torus, and r2 is the minor radius.
The ratio φ

θ gives the number of winds around the torus. The following parameters were used:
φ = 200, θ = 35, r1 = 7, r2 = 2. This test runs for 400 seconds, or one period in the xy-plane
[65].

x(t) =

�

r1 + r2 cos
�

πt
θ

�

�

cos

�

πt
φ

�

− (r1 + r2) (7.11)

y(t) =

�

r1 + r2 cos
�

πt
θ

�

�

sin

�

πt
φ

�

(7.12)

z(t) = r2 sin
�

πt
θ

�

+ 5 (7.13)

7.1.4 Controller Parameters

The parameters for the controller were found by using an experimental method. These paramet-
ers were initially set by prioritising the objectives set for the controller and setting the gains and
penalty terms associated with the objectives with the highest priority, with a bigger gain value.

The main objectives for the controller in prioritised order were:

1. Communication between ROVs.
2. Collision avoidance.
3. Path following.

For the FOV constraints the directly associated gains are either KA and KFOV or Kφ, Kθ , Kψ and
KFOV , depending on the model used. For the collision avoidance the directly associated gain is KD

and for the path following the directly associated gains are Kx , Ky and Kz.

The gains are intertwined, and thus adjusting one gain will have some impact on the perform-
ance of the system as a whole. Therefore, adjusting the gains was an iterative process where the
tweaking had the following procedure:

1. Conducting a simulation test that involves the ROVs tracing a designated path while ob-
serving their performance with respect to the aforementioned primary objectives.

2. Analysing the result, and the impact of the parameter set.

66

Chapter 7: Simulation E2310: BSc. Thesis

3. Deciding on what parameter to tweak next, by using the results from the previous test.

This procedure was repeated until the performance of the controller was satisfactory.
After testing the following parameters were used for the controller:

Table 7.1: Controller parameters

Symbol Description Value Simulator
Kx Cost function positioning gain constant 35 Python and Gazebo
Ky Cost function positioning gain constant 35 Python and Gazebo
Kz Cost function positioning gain constant 60 Python and Gazebo
KA Cost function attitude gain constant 12 Gazebo
Kx Cost function positioning gain constant 25 Python and Gazebo*
Ky Cost function positioning gain constant 25 Python and Gazebo*
Kz Cost function positioning gain constant 12 Python and Gazebo*
KA Cost function attitude gain constant 30 Gazebo*
Kφ Cost function attitude gain constant 20 Python
Kθ Cost function attitude gain constant 20 Python
Kψ Cost function attitude gain constant 20 Python
KD Penalty term distance constraint 70 Python And Gazebo
d Distance constraint distance 2 Python and Gazebo
KFOV Penalty term FOV constraint 70 Python And Gazebo
γso f t Soft FOV constraint angle 30 Python and Gazebo
γhard Hard FOV constraint angle 60 Python and Gazebo
R R-term gain 0.1 Python And Gazebo
n_horizon Controller parameter 20 Python and Gazebo
t_step Controller parameter 0.1 Python
t_step Controller parameter 0.05 Gazebo
n_robust Controller parameter 2 Python and Gazebo
ipopt.max_iter Controller parameter 3000 Python
ipopt.max_iter Controller parameter 25 Gazebo

The explanation of the symbols in Table 7.1 can be found in Chapter 5.

One noteworthy parameter for the controller is ipopt.max_iter, which sets the maximum number
of iterations for the solver that tries to solve the optimisation problem. This was set to 25 in the
Gazebo simulator and 3000 in the Python simulator. The justification for this is that when the
solver tried to find the solution to the optimisation problem, all other functionality in the node
was blocked. Running thousands of iterations of the solver could last close to a minute.

7.1.5 Test Scenarios

Prior to deciding on the test scenarios to focus on, preliminary tests were conducted to get a sense
of which scenarios would yield the most interesting results. The full list of tests conducted can be
found in Appendix E, with notes of the results from each test.

The specific scenarios decided to test are physical disturbances, modifications in the model para-
meters and communication errors. The following list contains the specific conditions tested:

• Default test: Benchmark test to get a reference point to which the rest of the tests can be
compared too. This test has no disturbances, model alterations or communication errors.

67

E2310: BSc. Thesis Chapter 7: Simulation

• Model mass: Model error test to see how sensitive the system is to model errors. The mass
was changed to double of correct mass.

• Package loss: Communication error test to see performance with 70% package loss.

• Currents with waves: A test with physical disturbances, to see the robustness of the controller
against ocean currents. The current speed in the x-direction is set to 0.25 m/s and 0.5
m/s. The current speed in the z-direction is the same as the x but with a change between
positive and negative direction every 2 seconds, which is a frequency of 0.5Hz. This is a
very simplistic representation of what would be called waves and does not represent the
true nature of waves.

• Added mass: Model modification. Test how deviations in the added mass parameters affect
the MPCs’ performance. Tests were run with halved and doubled added mass.

• Damping: Model modification. Test how deviations in the damping parameters affect the
MPCs’ performance. Tests were run with halved and doubled damping.

• Circular setpoint: Test how the proposed circular setpoint solution, derived in Chapter 5,
affect the performance of the ROVs

The four standard tests are used to test these parameters. Only one disturbance parameter is
tested at a time to try and isolate the system’s weaknesses. With tests being time-consuming, three
computers with differing hardware were used. Ideally, all tests should be done on one computer
or computers with equal hardware. However, this was taken into account by running default tests
on all three computers for comparison. The list of the relevant hardware of the computers used
in testing can be found in Appendix D.

Table 7.2: Overview of test run on each computer

Test Type PC
Default All
Halved added mass 1
Doubled added mass 1
Halved damping 2
Doubled damping 2
Doubled mass 3
Packet loss 70% 2
0.25 m/s Current with waves 3
0.5 m/s Current with waves 3
Circular setpoint 2

7.1.6 Statistical Analysis

The robustness of the controller is measured by analysing how well it performs the three main
objectives set for the controller. The criteria for which each objective is measured are as follows:

Communication between ROVs: The communication is measured by checking if the ROVs
break the FOV constraint at any point when running standard tests, the maximum angle set for
the FOV constraint is 60◦. This angle was chosen by considering the FOV of the camera, as men-
tioned in Section 3.3.2, which is 110◦ ± 90◦ tilt. Therefore it is considered reasonable with a FOV
of 120◦ for the optical sensor, giving a FOV angle of 60◦.

68

Chapter 7: Simulation E2310: BSc. Thesis

Collision avoidance between ROVs: Collision avoidance is measured by analysing the standard
tests, and checking if the distance between the ROVs at any point is less than 75 cm. This value is
determined by considering the physical size of the ROV, seen in Figure 3.2, which is a maximum
of about 25 cm from the geometrical centre of the ROV. Setting the minimum distance to 75 cm
gives a safety margin to ensure that no collision could have occurred.

Trajectory planning and path following: Path following is measured in the time shift of the
tests in the circle standard test.

To test the system thoroughly, it was decided to run each test about 100 times with two agents
per test condition, totalling 200 individual tests for each condition. Each test having 200 CSV files
will give an adequate amount of data to analyse the system. Since all tests are conducted multiple
times, it is impractical to show each individual test, therefore it was decided to show these data
points:

• Median value: Was chosen in favour of the average value since it is not affected by outliers.

• Maximum and minimum value: To show the worst outcome and potential outliers.

• 90th and 10th percentiles: Indication of the spread of the data points.

• Failure rate: Percentage of unique tests that failed to uphold the constraints.

• Time shift: Time shift from peak to peak, from the reference to the median. Indication of
how closely the reference is followed.

Plotting

Each MPC node creates and writes to a CSV file that contains the odometry and other relevant
information for plotting, along with a timer that counts the real-time since the simulation began.
The plotter reads all the CSV files, takes the real-time of the first file read and finds the closest
real-time in all the other files, then calculates the median value and median time. From the data
collected, it was decided on five different values to plot: the x, y and z position, the angle between
the ROVs, and the distance between the ROVs. The angles between the ROVs are of interest be-
cause the ROVs exchange data using optical sensors, and are therefore reliant on being in each
other’s field of view in order to exchange data. The distance between the ROVs is included be-
cause vehicles must remain at a certain distance from each other to avoid a collision. All plots are
made using the Python packages Pandas [66] and Matplotlib [67].

7.2 Results and Findings

The following table, 7.3, conveys the percentage of failed tests. A failed test is defined as a test
that violates the FOV and distance constraints at any point in the test. All tests were run with the
squared error cost function, with the exception of the test Circular setpoint, which was run using
the circular setpoint cost function.

69

E2310: BSc. Thesis Chapter 7: Simulation

Table 7.3: Table of the percentage of tests where constraints failed

FOV Constraints Failed [%] Distance Constraints Failed [%]
Test name Circle Torus Line Spiral Circle Torus Line Spiral
Default PC 1 7.74 5.29 0.59 11.76 0.0 0.0 0.0 0.0
Default PC 2 5.83 5.83 0.97 5.34 0.0 0.0 0.0 0.0
Default PC 3 5.22 3.91 8.26 16.09 0.0 0.0 0.0 0.0
Halved added mass 6.25 7.00 23.80 9.09 0.0 0.0 0.0 0.0
Doubled added mass 4.04 6.80 1.46 17.48 0.0 0.0 0.97 0.0
Halved damping 4.41 6.31 0.48 3.40 0.0 0.0 0.0 0.0
Doubled damping 1.39 3.24 0.0 1.39 0.0 0.0 0.0 0.0
Doubled mass 0.41 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70% Packet loss 3.88 4.85 0.49 1.94 0.0 0.0 0.0 0.0
0.25 m/s Current with waves 9.72 5.09 9.26 11.11 0.0 0.0 0.46 0.0
0.5 m/s Current with waves 16.96 19.13 11.4 16.67 0.0 0.0 0.44 0.0
Circular setpoint 90.95 100 14.76 92.86 15.71 22.86 7.14 15.24
Default Python simulator 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 7.4 presents the time shift from the circle test standard test, for all testing conditions.

Table 7.4: Table of time shift from the reference to the median linear positions

Time Shift in Circle Test
Test name Time Shift [s]
Positions x y z PC
Default PC 1 10.13 11.86 3.99 1
Default PC 2 21.69 23.86 7.66 2
Default PC 3 17.92 17.39 9.16 3
Halved added mass 12.87 14.17 3.93 1
Doubled added mass 15.76 18.28 5.54 1
Halved damping 21.78 22.10 7.05 2
Doubled damping 26.87 24.64 9.05 2
Doubled mass 33.81 27.30 10.67 3
0.25 m/s Current with waves 20.57 25.86 9.52 3
0.5 m/s Current with waves 20.40 20.50 8.75 3
70% Packet loss 20.40 20.50 8.75 2
Circular setpoint 20.58 11.16 2.30 2
Default Python simulator 19.90 1.80 1.15 N/A

Figures

This section presents selected figures, that are used to give an overview of the results.
A complete collection of all the figures from the Gazebo test results is found in Appendix G.
A complete collection of all the figures from the Python test results is found in Appendix F.

70

Chapter 7: Simulation E2310: BSc. Thesis

10

8

6

4

2

0

x
[m

]

0

5

10

15

20

25

30

An
gl

e
[

]

Angle between ROVs

6

4

2

0

2

4

6

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

4.0

4.5

5.0

5.5

6.0

z [
m

]
Comparison of Circle Test in Gazebo on Different Hardware and Python (Default)

Reference
PC 1 (Gazebo)

PC 2 (Gazebo) PC 3 (Gazebo) Python Sim

Figure 7.6: Comparison between Gazebo and Python (median)

10

8

6

4

2

0

x
[m

]

0

5

10

15

20

25

30

An
gl

e
[

]

Angle between ROVs

4

2

0

2

4

6

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

3.5

4.0

4.5

5.0

5.5

6.0

z [
m

]

Disturbances, Circle Test

Reference
2x Damping
0.5x Damping

2x Added Mass
0.5x Added Mass

70% Packet Loss
0.5 m/s Waves

0.25 m/s Waves
2x Mass

Figure 7.7: Showcase of disturbances, circle test

71

E2310: BSc. Thesis Chapter 7: Simulation

15

10

5

0

x
[m

]

Position

0

5

10

15

20

25

An
gl

e
[

]

Angle between ROVs

10

5

0

5

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

3

4

5

6

7

z [
m

]
Torus (Default)

Reference Median High Low

Figure 7.8: Torus test Python simulator

10
8
6
4
2
0
2

x
[m

]

Position

0
25
50
75

100
125
150

An
gl

e
[

]

Angle between ROVs

4

2

0

2

4

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

6

z [
m

]

Circle (Default PC 3) Breakdown Cases

Reference Test:35 rov2
(default PC3)

Test:97 rov3
(doubled mass)

Figure 7.9: Breakdown case and failed test

72

Chapter 7: Simulation E2310: BSc. Thesis

5

0

5

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

4

2

0

2

4

6

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

0

2

4

6

z [
m

]
Spiral (Default PC 1)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure 7.10: Spiral test under default conditions

15

10

5

0

x
[m

]

Position

0

10

20

30

40

50

An
gl

e
[

]

Angle between ROVs

5

0

5

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

1

2

3

4

5

6

7

z [
m

]

Torus (Double Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure 7.11: Torus test with doubled mass

73

E2310: BSc. Thesis Chapter 7: Simulation

20

0

20

40

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

30

20

10

0

10

20

30

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

z [
m

]
Torus (Circular Setpoint)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure 7.12: Torus test with circular setpoint

0

10

20

30

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

20

15

10

5

0

5

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

z [
m

]

Line (Halved Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure 7.13: Line test with halved added mass

74

Chapter 7: Simulation E2310: BSc. Thesis

7.3 Discussion

7.3.1 Python Simulator

When creating the initial version of the controller, the Python simulator was an important tool
as the ideal model removed discrepancies between the model implemented in the controller and
the actual system model, which otherwise could have been a source of error. The simulator also
enabled an indication of system performance by observing the calculation time of the controller at
each cycle. If modifying the controller severely prolonged the calculation time, it likely worsened
the performance of the system.

Since the model in the Python simulator is parameterised using Euler angles as opposed to qua-
ternions, which is implemented in the Gazebo simulator, there can be a slight difference in the
performance. However, the dynamics in the model should remain the same.

7.3.2 Gazebo Simulator

The control system designed in this thesis was designed and implemented for both single-agent
and multi-agent systems. The controller, the GUI and Gazebo can be launched with anywhere
from one to three agents by modifying the parameter for the number of agents in the ROS 2 files.
A specific cost function was also assigned depending on the number of agents launched, which
meant that no modifications had to be done in the code.

The system can be scaled up to N agents with few modifications in the code.

It was decided to focus on the two-agent case in the thesis, as opposed to the three-agent case, as
hardware limitations led to slower simulation speed, which worsened by adding more agents.

A parameter in the ROS 2 files which disabled the FOV constraint was also implemented. If the
FOV constraint was disabled the ROVs would not have any constraints in the attitude but would
have a desired attitude from the cost function, where they were to be directed towards the de-
sired point. This removed constraints on the system, which can enhance performance in collision
avoidance and path following.

Using Gazebo for Simulations

Using Gazebo for the simulations offered the opportunity to run tests of the control system with
realistic physics and robot dynamics. As field testing with the ROVs was not possible in this thesis,
Gazebo gave the opportunity to run simulations on a more realistic system than the Python sim-
ulator.

An important aspect to note regarding BlueROV2 Garden, which is the workspace used with
Gazebo, is that the model for the BlueROV2 Heavy might deviate from the dynamics of the actual
ROV. This means that the performance of the controller could differ if used for field testing. As
system identification was not a part of this thesis, no tests were done to analyse the accuracy of
the model, and the model was assumed to be an accurate representation.

75

E2310: BSc. Thesis Chapter 7: Simulation

Computer Hardware’s Impact on Results

The Gazebo simulator runs the simulations at or below real-time speed, so simulating many it-
erations was time-consuming. In order to accelerate this process, simulations were run in paral-
lel across several computers. This introduces a new source of error because the speed at which
Gazebo simulates is dependent on the hardware of the computers. The trajectory publisher does
not account for differing simulation speeds across the computers but instead publishes at a set
rate. The effect of this is that the trajectory will move faster relative to the speed of the simulation,
and will change the testing conditions in the different computers used. The effect of this can be
confirmed in Table 7.4, where it can be observed that the time shift value differs between the
different computers, with PC 1 having the lowest time shift value. When comparing the average
time shift value in the x-, y-, and z-coordinates, PC 2 had a 102.43% increase, and PC 3 had an
84.37% increase, compared to PC 1.

One way to mitigate this would be to have the publishing frequency, or the step size of the tra-
jectory node modified by the real-time factor

�

tsim
treal

�

. The real-time factor oscillates at a very high
frequency, so a viable solution would likely be to take the average real-time factor over a period
and multiply the publishing frequency (or the trajectory step size) with this factor.

If all the test was being run on the same computer the impact of hardware in the tests would have
been removed. This would have made the tests more directly comparable.

7.3.3 Robustness of Controller

The failure rates from the tests are displayed in Table 7.3, where it can be observed that the dis-
tancing constraint had a less than 1% failure rate in all tests using the squared error, which proves
some robustness in the collision avoidance objective.

Using the default parameters in the system model, the deviation in position was small, as exem-
plified in Figure 7.10. This test has a Failure rate of over 11%, seen in Table 7.3, but still follows
the trajectory of the path closely. This can also be observed in the other tests, seen in Appendix G.

The objective of communication between the ROVs did however have a considerable failure rate.
A frequent occurrence was controller breakdowns, where the constraints and deviation between
desired and actual position, were violated by a large margin. As can be seen in Appendix G, with
considerable peaks in the range outside the 10th to the 90th percentile.

The tests with the circular setpoint solution had a failure rate close to 100% in the standard tests
and thus did not achieve robustness.

Controller Parameters

The parameters for the controller were decided through an experimental method. As there were
a lot of parameters in the controller which could be adjusted, the parameters selected for testing
might not be the parameters that ensure the best-performing system. This is a source of error,
as continued experiments would have led to changes in performance, which could have led to
improvements in the performance of the controller.

76

Chapter 7: Simulation E2310: BSc. Thesis

Quantifying Path Following

Using time shift as a measurement for path following can lead to misleading results if there is
another external force acting upon the ROV, such as ocean currents. This is because the time
shift does not take into account the distance from the reference, but is rather an estimate of how
quickly the ROV reacts to changes in the reference. External forces like ocean currents can lead
to a static error.

Python and Gazebo Comparison

The Python simulator managed to fulfil the main objectives set, as exemplified in 7.8. When run-
ning the four standard tests, it did not violate the FOV constraint or the distancing constraint set
at any point, as seen in Table 7.3. The time shift was lower compared to the tests performed in
the Gazebo simulator, as seen in Table 7.4, where the average time shift value of the x-, y-, and
z-coordinates are 19.85% lower compared to PC 1, which is the PC with the lowest time shift in
the test.

The median values of the default tests run in Gazebo had similar performance as the default
test run in Python, as can be observed in Figure 7.6, where the average FOV angle and distance
between ROVs are all within the values of the soft constraint. The main difference is the time
shift, where the Python simulator performs better than Gazebo. This could also be observed for
the other standard tests, which can be seen in Appendix I

The standard test was only run once with the Python simulator, which has an impact on the result.
To fully test the robustness of the Python simulator, the test could have been run a multitude of
times, with varying initial conditions.

Effect of Altering Test Conditions

The median values from the tests with the altered test conditions are plotted in Figure 7.7, where
it can be observed that the median FOV angle for all tests is lower than the maximum angle set
for the FOV constraint, and the median distance between the ROVs is higher than the minimum
distance. This is also the case for all of the other standard tests, which can be found in Appendix
H.

Added Mass Modifying the added mass parameters had a significant impact on the performance
of the controller. From Table 7.3, an increase of line tests that fail to uphold the constraints can be
computed to 3893% when the added mass is halved. Inspecting Figure 7.13 confirms that halving
this parameter drastically affected the robustness of the controller, with the 90th percentile in
the angle between the ROVs peaking above 100◦. It can also be observed, from Figures 7.7 and
7.6 that the peaks are lower when the added mass is doubled. This can imply that the MPC is
“stopping short” by overestimating the added mass that is applied to the ROVs from inertia in the
surrounding water, compared to the internal model of the Gazebo simulator.

Damping The impact of modifying the damping parameters in the model is limited. From Table
7.3 an improvement in all tests can be observed when doubling the damping. Similarly, all but one
standard test see an improvement when halving the damping, but these values can be considered
to be negligible. From Table 7.4 an increase in the time shift can be seen, with an average increase
across the x-, y- and z-positions of 15.1% when doubling the damping.

77

E2310: BSc. Thesis Chapter 7: Simulation

Doubled Mass Doubling the mass in the controller improved the performance in terms of the
communication and collision avoidance between the ROVs, having a close to 0% failure rate in
the tests. However, the test was performed on PC 3, and from Table 7.4 the average time shift for
the x-, y- and z-coordinate is 54.1% higher for the test with doubled mass compared to the test
under default conditions.

In Figure 7.11, it can also be observed that the oscillations along the z-axis are centred around
z ≈ 4 m, 1 m lower than the reference signal. This is due to the fictitious mass in the controller
model, which causes large deviations in the controller’s g(η) compared to the simulator’s. The
controller is wrongly predicting how much force is required to keep its current altitude. This in
turn also causes the ROVs to fall further from the reference trajectory, and the nuances in the
trajectory are not as closely traced by the ROVs.

Packet Loss The packet loss tests improved the results from the tests when compared to the
default test on the computer that was used (PC 2). The percentage of failed tests in terms of com-
munication, and collision avoidance was lower in all the standard tests, and from Table 7.3, the
time shift was an average of 1.93% smaller for the x-, y- and z-axis.

The improvement in performance was unexpected, as less frequent data exchange between the
ROVs was thought to lead to worsened results. A theory as to why these results did occur is that
the less frequent changes in the time-varying parameters, x2, y2 and z2, led to better initial guesses
for the optimiser, which led to better results. The MPC could not predict future changes in the
aforementioned time-varying parameters, which could have made them a problem for the optim-
iser.

The result however did prove that packet loss had little impact on the robustness of the system.

Ocean Current with Waves Introducing ocean currents and waves as disturbances worsened
the performance in terms of communication and collision avoidance. When running tests with
0.25 m/s current, the ROVs violated the constraints more often for the circle test, the torus test
and the line test, and when running tests with 0.5 m/s current, the ROVs violated the constraints
more often for all tests, as seen in Table 7.3. The time shift also worsened in both tests compared
to the default test ran on the same computer (PC 3). Using the result from Table 7.4, the average
increase of the time shift over the x-, y-, and z-axis is calculated to 22.5% when running 0.25 m/s,
and 9.1% when running 0.5 m/s.

When comparing the weaker current (0.25 m/s) with the stronger current (0.5 m/s), considering
the communication between the ROVs, the test with the stronger current performed worse in all
tests, violating the constraints twice as often. When considering collision avoidance the difference
in the performance in the tests is negligible. The time shift was bigger in the tests with smaller
waves, which could be attributed to an increased cost connected to the positioning of the ROVs.
This is caused by the ocean current and waves creating a bigger difference ∆y and ∆z, as can be
observed in Figure 7.7, where the median trajectories are displayed.

Circular Setpoint The circular setpoint solution failed to provide robust control in terms of com-
munication and collision avoidance, as can be observed in Table 7.3. With close to 100% failure
rate for the FOV constraint, and also a high failure rate for the distancing constraint. The time
shift was lower when using the circular setpoint, with a decrease of 42.8% when compared to the
default test on the same computer that ran the circular setpoint test (PC 2).

78

Chapter 7: Simulation E2310: BSc. Thesis

Using the circular setpoint solution in the cost function made the positional term in the xy-plane
into a quartic function, as described in Section 5.2.1. This caused a more rapid increase in cost,
compared to the squared error as the position in the xy-plane deviates from the desired position.
This rapidly increasing cost makes the positional task in the controller prioritised, which leads to
the time shift being considerably lower when using the circular setpoint solution.

The rapidly increasing cost caused by the positional error seemed to undermine the FOV constraint
and the distancing constraint, as the cost of these soft constraints could become comparatively
low, this probably was the main cause of the lack of robustness in the communication. The effect
of this could be observed in Figure 7.12, where the 90th percentile of the values of the positioning
only slightly deviated from the desired position, while the 90th percentile of values for the FOV
angle broke the hard constraint set. This is likely the reason for the high failure rate in collision
avoidance as well. As the FOV hard constraint is broken, the controller breaks down and is unable
to find converging solutions, which leads to potentially random solutions, as will be described in
the following Section Failed Tests and Breakdowns.

The aforementioned problems with the circular setpoint solution could be attempted fixed by
turning the attitude control, FOV- and distancing soft constraints into quartic functions. This could
make the cost more comparable to the positional cost. Doing this could however lead to a less
stable system.

Failed Tests and Breakdowns

The graphs from the tests in appendix G show the median value, high, low, 90th, and 10th per-
centiles from the different tests. A common recurrence in the results is controller breakdowns,
which can be identified by the large gap between the 90th and 10th percentiles, and the high
and low values. An example of a controller breakdown is visible in 7.12, where the highs in the
positioning are remarkably larger than the limits for the 90th percentile.

Cases of a breakdown of the controller differ from other failed tests by them being unable to rap-
idly converge back to desired values for positioning, distancing and the FOV angle. This difference
is displayed in Figure 7.9 where Test:35 rov2 (default PC3) is a controller breakdown case, and
Test:97 rov3 (doubled mass) is a failed test. From the figure, it can be observed that the FOV angle
falls lower than the limit of the hard constant (60◦), but still is not able to converge. This is why it
is considered a controller breakdown, as it clearly is within an ideal range for the FOV- and distan-
cing constraint between time 100-125 s, but can not control the ROV to remain within these limits.

There could be several underlying problems that can cause these problems with controller break-
downs, for example:

• The MPCs’ inability to find an optimal input.
In the MPC, the maximum number of iterations was set to 25 to prevent unreasonably long
calculation times. The disadvantage of this approach is that the optimiser might not be able
to find the optimal system input and as such, can result in system behaviour that is sub-
optimal, particularly if the controller is unable to find an optimal solution several times in
a row. As the optimiser in do-mpc relies on initial guesses for the solver for fast optimising,
having bad previous optimising solutions can lead to poor initial guesses, which can lead to
slow optimising. The combination of having poor initial guesses, and a maximum iteration
of 25 for the solver could probably lead to controller breakdowns.

79

E2310: BSc. Thesis Chapter 7: Simulation

A potential countermeasure could be to remove the hard constraint for the FOV constraint.
This constraint is a non-linear function, which is harder to optimise, and the optimiser can
struggle to find converging solutions back to the feasible range.

• Problem with the attitude control on the model.
As no tests or analysis was undertaken to test the accuracy of the system model used for
the MPC, and that system modelling was not the main concern in BlueROV2 Garden, which
is the workspace used with Gazebo. The model used could have some problems with the
attitude dynamics. The fact that the Python simulator wouldn’t work when using the qua-
ternion model can be symptomatic of underlying problems. This should be explored if this
model were to be used in further work.

80

Chapter 8

Conclusion

This thesis set out to design and implement a decentralized MPC in a set of ROVs. The original goal
was to implement the solution the physical BlueROV2 Heavys. However, due to their involvement
in the broader research project, the ROVs were not finalised, and thus unavailable. The results
were, as a consequence, based on simulations. The results from repeated testing under various
conditions showed that the system can handle disturbances, as well as modifications to the system
parameters. The distancing constraint designed for collision avoidance worked as intended, with
a failure rate of less than 1% when using the squared error cost function. In terms of the FOV
constraint issues regarding robustness did arise, with a failure rate of up to a maximum of 23.8%
when running tests with disturbances.

The proposed circular setpoint solution proved good path-following capabilities but struggled
with consistently upholding the FOV constraint. Despite the challenge with robustness, this im-
plementation has the potential to perform more complex positioning tasks and thus has more
potential than the squared error solution.

However, system breakdowns, where one or more of the constraints were violated, did occur and
thus complete robustness was not achieved. The likely source of this error is that the optimiser, at
times, struggled to find a converging solution within the maximum number of iterations allotted.
This results in the MPC applying a non-optimal input to the thrusters.

One weakness in the test results is that the results were sensitive to the hardware of the computer.
To account for this, tests were run with default conditions on the three available computers and
comparisons between tests were only made with tests run on the same computer.

In conclusion, despite challenges with consistently upholding the FOV constraint, the specific-
ations set in the problem statement are met. Thus, the contributions from this thesis provide a
basis for future implementation into the physical system.

8.1 Further Work

Physical Implementation

The natural next step is to implement the system to the BlueROV2 Heavy in preparation to perform
physical testing. Physical testing will allow the test of the potential of the current implementation
by seeing how it other handles real-world dynamics and disturbances. Achieving this also opens
for performing system identification, such that accurate system parameters can be estimated.

81

E2310: BSc. Thesis Chapter 8: Conclusion

The controller struggled with upholding the FOV constraint, therefore, initial testing should be
done with wired communication, as a fail-safe.

Replacing do-mpc

Moving away from do-mpc can be advantageous as it struggled with performance, and could
become a problem in time-critical applications. An alternative is to use Matlab’s MPC-toolbox, this
would allow for rapid prototyping of the MPC in Matlab, and then use the C++ code generation
feature to implement it to ROS 2.

Tuning the Circular Setpoint

The circular setpoint showed that despite issues with the robustness, proved to have potential,
and is likely the path forward as it has the potential to support more complex manoeuvres, like
reducing the radius of the circle to simulate picking up an object with the grippers and transporting
it. Tuning the parameters, and implementing attitude control as a quartic function as described
in Section 5.4.1 is something that should be attempted in the future.

Troubleshooting Controller Breakdowns

To attempt to solve the problems with controller breakdowns, reproducing the scenarios when
breakdowns have occurred should be attempted. If the breakdowns are reproducible, analysis
of the system at the moment of breakdown is a meaningful way of troubleshooting. The initial
conditions in tests when a breakdown has occurred can be found in the CSV files [3] of tests with
breakdowns in control, as with the test Test:35 rov2 (default PC3), displayed in Figure 7.12.

82

Bibliography

[1] NOAA, How much of the ocean have we explored? 2023. [Online]. Available: https://
oceanservice.noaa.gov/facts/exploration.html, (Accessed: 09/05/2023).

[2] R. D. Christ and R. L. Wernli Sr., The ROV Manual, A User Guide for Remotely Operated
Vihicles, 2nd ed. Oxford, UK: Butterworth-Heinemann, 2014.

[3] L. R. Fosso, P. K. Kjærem, T. H. Staurnes and K. A. Johannesen, Decentralized model predictive
control for increased autonomy in fleets of rovs, 2023. [Online]. Available: https://github.
com/lrfosso/TowardsUnderwaterAutonomousFleets.

[4] M. A. Medina, ‘Template based underwater object detection in a simulation environment,’
Tech. Rep., Dec. 2022.

[5] E. Rowe, S. Hustad, P. Ø. Juliebø and E. O. Almenningen, ‘Implementation of a quaternion-
based PD controller in ROS2 for a generic underwater vehicle with six degrees of freedom,’
B.S. thesis, NTNU, 2022. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/
handle/11250/3002446.

[6] A. D. Bowen, M. V. Jakuba, N. E. Farr, J. Ware, C. Taylor, D. Gomez-Ibanez, C. R. Machado
and C. Pontbriand, ‘An un-tethered rov for routine access and intervention in the deep sea,’
in Proc. 2013 OCEANS - San Diego, San Diego, CA, USA: IEEE, Sep. 2013, pp. 1–7. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/6741383.

[7] G. Cossu, A. Sturniolo, A. Messa, S. Grechi, D. Costa, A. Bartolini, D. Scaradozzi, A. Caiti
and E. Ciaramella, ‘Sea-trial of optical ethernet modems for underwater wireless commu-
nications,’ Journal of Lightwave Technology, vol. 36, no. 23, pp. 5371–5380, 2018. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8468031.

[8] T. Inoue, T. Shiosawa and K. Takagi, ‘Dynamic analysis of motion of crawler-type remotely
operated vehicles,’ IEEE Journal of Oceanic Engineering, no. 2, pp. 375–382, 2013. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/6425431.

[9] BlueRobotics, BlueROV2, 2023. [Online]. Available: https://bluerobotics.com/store/
rov/bluerov2/, (Accessed: 11/04/2023).

[10] R. Jehangir, Bluerobotics bluerov2 heavy, [Screen grab of 3D model], 2018. [Online]. Avail-
able: https://grabcad.com/library/bluerobotics- bluerov2- heavy- 1, (Accessed:
12/04/2023).

[11] BlueRobotics, BlueROV2 Heavy Configuration Retrofit Kit, 2023. [Online]. Available: https:
//bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit/,
(Accessed: 11/04/2023).

[12] BlueRobotics, BlueROV2 datasheet. 2023, Revision 03/22. [Online]. Available: https://
www.dropbox.com/s/0j0puotbfs7dj9s/br_bluerov2_datasheet_rev2022-R4ROV.pdf?
dl=0, (Accessed: 14/04/2023).

[13] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd ed. Chichester,
UK: John Wiley & Sons Inc, 2021, ISBN: 9781119575054.

83

https://oceanservice.noaa.gov/facts/exploration.html
https://oceanservice.noaa.gov/facts/exploration.html
https://github.com/lrfosso/TowardsUnderwaterAutonomousFleets
https://github.com/lrfosso/TowardsUnderwaterAutonomousFleets
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3002446
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3002446
https://ieeexplore.ieee.org/abstract/document/6741383
https://ieeexplore.ieee.org/abstract/document/8468031
https://ieeexplore.ieee.org/abstract/document/6425431
https://bluerobotics.com/store/rov/bluerov2/
https://bluerobotics.com/store/rov/bluerov2/
https://grabcad.com/library/bluerobotics-bluerov2-heavy-1
https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit/
https://bluerobotics.com/store/rov/bluerov2-upgrade-kits/brov2-heavy-retrofit/
https://www.dropbox.com/s/0j0puotbfs7dj9s/br_bluerov2_datasheet_rev2022-R4ROV.pdf?dl=0
https://www.dropbox.com/s/0j0puotbfs7dj9s/br_bluerov2_datasheet_rev2022-R4ROV.pdf?dl=0
https://www.dropbox.com/s/0j0puotbfs7dj9s/br_bluerov2_datasheet_rev2022-R4ROV.pdf?dl=0

E2310: BSc. Thesis Bibliography

[14] C.-J. Wu, ‘6-dof modelling and control of a remotely operated vehicle,’ M.S. thesis, Flinders
University, 2018. [Online]. Available: https://theses.flinders.edu.au/view/27aa0064-
9de2-441c-8a17-655405d5fc2e/1.

[15] M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modeling and Control, 2nd ed.
Chichester, UK: John Wiley & Sons Inc, 2020, ISBN: 9781119523994.

[16] R. Mukundan, Quaternions: From classical mechanics to computer graphics, and beyond. New
Zealand: University of Canterbury, 2002. [Online]. Available: https://citeseerx.ist.
psu.edu/document?repid=rep1&type=pdf&doi=64e152a06f51f2d729e803c3e8c88f497a51a4aa,
(Accessed: 09/05/2023).

[17] J. Chou, ‘Quaternion kinematic and dynamic differential equations,’ IEEE Transactions on
Robotics and Automation, vol. 8, no. 1, pp. 53–64, 1992. DOI: 10.1109/70.127239.

[18] O.-E. Fjellstad and T. I. Fossen, ‘Quaternion feedback regulation of underwater vehicles,’ in
Proc. 1994 Proceedings of IEEE International Conference on Control and Applications, vol. 2,
Glascow, UK: IEEE, Aug. 1994, pp. 857–862. DOI: 10.1109/CCA.1994.381209.

[19] O. Calvo, A. Rozenfeld, A. Souza, F. Valenciaga, P. F. Puleston and G. G. Acosta, ‘Experi-
mental results on smooth path tracking with application to pipe surveying on inexpens-
ive auv,’ in Proc. 2008 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, [Photo], Nice, France: IEEE, Sep. 2008, pp. 3647–3653. DOI: 10.1109/IROS.2008.
4650966.

[20] S. S. Sandøy, ‘System identification and state estimation for rov udrone,’ M.S. thesis, NTNU,
2016. [Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/
2409503.

[21] The MathWorks, Inc., What is model predictive control? 2023. [Online]. Available: https:
//se.mathworks.com/help/mpc/gs/what-is-mpc.html, (Accessed: 03/04/2023).

[22] K. Hauser, Section iv. dynamics and control, chapter 17. optimal control, 2020. [Online].
Available: https://motion.cs.illinois.edu/RoboticSystems/OptimalControl.html,
(Accessed: 03/04/2023).

[23] S. P. Sethi, What Is Optimal Control Theory? Springer International Publishing, 2021, ISBN:
978-3-030-91745-6.

[24] E. F. Camacho, Model Predictive Control, 2nd ed. 2007. London: Springer London : Imprint:
Springer, 2007, ISBN: 978-0-85729-398-5.

[25] S. Boyd and L. Vandenberghe, Convex optimization. UK: Cambridge University Press, 2004.

[26] S. Lucia and F. Fiedler, Model predictive control python toolbox, 2023. [Online]. Available:
https://www.do-mpc.com/en/latest, (Accessed: 03/04/2023).

[27] A. Bürger, C. Zeile, A. Altmann-Dieses, S. Sager and M. Diehl, ‘Design, implementation
and simulation of an mpc algorithm for switched nonlinear systems under combinator-
ial constraints,’ Journal of Process Control, vol. 81, pp. 15–30, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0959152419303592.

[28] D. E. Seborg, T. F. Edgar, D. A. Mellichamp and F. J. Doyle III, Process Dynamics and Control,
3rd ed. UK: John Wiley & Sons Inc, 2011.

[29] S. Lucia, A. T̆atulea-Codrean, C. Schoppmeyer and S. Engell, ‘Rapid development of modu-
lar and sustainable nonlinear model predictive control solutions,’ Control Engineering Prac-
tice, vol. 60, pp. 51–62, 2017. DOI: 10.1016/j.conengprac.2016.12.009.

[30] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings and M. Diehl, ‘CasADi – A software
framework for nonlinear optimization and optimal control,’ Mathematical Programming
Computation, vol. 11, no. 1, pp. 1–36, 2019. DOI: 10.1007/s12532-018-0139-4.

84

https://theses.flinders.edu.au/view/27aa0064-9de2-441c-8a17-655405d5fc2e/1
https://theses.flinders.edu.au/view/27aa0064-9de2-441c-8a17-655405d5fc2e/1
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=64e152a06f51f2d729e803c3e8c88f497a51a4aa
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=64e152a06f51f2d729e803c3e8c88f497a51a4aa
https://doi.org/10.1109/70.127239
https://doi.org/10.1109/CCA.1994.381209
https://doi.org/10.1109/IROS.2008.4650966
https://doi.org/10.1109/IROS.2008.4650966
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2409503
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2409503
https://se.mathworks.com/help/mpc/gs/what-is-mpc.html
https://se.mathworks.com/help/mpc/gs/what-is-mpc.html
https://motion.cs.illinois.edu/RoboticSystems/OptimalControl.html
https://www.do-mpc.com/en/latest
https://www.sciencedirect.com/science/article/pii/S0959152419303592
https://doi.org/10.1016/j.conengprac.2016.12.009
https://doi.org/10.1007/s12532-018-0139-4

Bibliography E2310: BSc. Thesis

[31] R. Abdulghafor, S. Abdullah, S. Turaev and M. Othman, ‘An overview of the consensus
problem in the control of multi-agent systems,’ vol. 59, Apr. 2018. DOI: 10.1080/00051144.
2018.1492688.

[32] S. Macenski, T. Foote, B. Gerkey, C. Lalancette and W. Woodall, ‘Robot Operating System
2: Design, architecture, and uses in the wild,’ Science Robotics, vol. 7, no. 66, May 2022.
DOI: 10.1126/scirobotics.abm6074, (Accessed: 09/05/2023).

[33] Open Robotics, Ros2 documentation, 2023. [Online]. Available: https://docs.ros.org/
en/humble/index.html, (Accessed: 10/04/2023).

[34] Canonical Ltd, Ubuntu 22.04.2 lts (jammy jellyfish), 2023. [Online]. Available: https://
releases.ubuntu.com/jammy/, (Accessed: 10/04/2023).

[35] Open Robotics, Getting started with gazebo? 2023. [Online]. Available: https://gazebosim.
org/docs/garden, (Accessed: 28/04/2023).

[36] Python Software Foundation, Python 3.10.0 documentation, 2023. [Online]. Available: https:
//docs.python.org/release/3.10.0/, (Accessed: 28/04/2023).

[37] S. Lucia and F. Fiedler, Installation, 2023. [Online]. Available: https://www.do-mpc.com/
en/latest/installation.html, (Accessed: 07/05/2023).

[38] Microsoft, Microsoft c++, c, and assembler documentation, 2023. [Online]. Available: https:
//learn.microsoft.com/en-us/cpp/?view=msvc-170, (Accessed: 13/05/2023).

[39] D. Thomas, Colcon - collective construction, 2023. [Online]. Available: https://colcon.
readthedocs.io/en/released/index.html, (Accessed: 11/04/2023).

[40] Fraunhofer IPA, Ros 2 file system, 2023. [Online]. Available: https://ros2-industrial-
workshop.readthedocs.io/en/latest/_source/basics/ROS2-Filesystem.html, (Ac-
cessed: 12/04/2023).

[41] Open Robotics, Creating a package, 2023. [Online]. Available: https://docs.ros.org/
en/humble/Tutorials/Beginner- Client- Libraries/Creating- Your- First- ROS2-
Package.html, (Accessed: 11/04/2023).

[42] Open Robotics., Developing a ros 2 package, 2023. [Online]. Available: https://docs.
ros.org/en/humble/How-To-Guides/Developing-a-ROS-2-Package.html, (Accessed:
15/05/2023).

[43] Open Robotics, Nodes, 2018. [Online]. Available: https://wiki.ros.org/Nodes, (Last
edited: 12/04/2018 20:54:54).

[44] Open Robotics, Understanding nodes, 2023. [Online]. Available: https://docs.ros.org/
en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-
ROS2-Nodes.html, (Accessed: 12/04/2023).

[45] Open Robotics, About ros 2 client libraries, 2023. [Online]. Available: https://docs.
ros.org/en/humble/Concepts/About- ROS- 2- Client- Libraries.html, (Accessed:
28/04/2023).

[46] Open Robotics, Rclpy, 2023. [Online]. Available: https://docs.ros2.org/foxy/api/
rclpy/index.html, (Accessed: 28/04/2023).

[47] Open Robotics, Welcome to the documentation for rclcpp, 2023. [Online]. Available: https:
//docs.ros.org/en/humble/p/rclcpp/, (Accessed: 28/04/2023).

[48] Python Software Foundation, 9. classes, 2023. [Online]. Available: https://docs.python.
org/3/tutorial/classes.html, (Accessed: 28/04/2023).

[49] cplusplus.com, Classes (I), 2023. [Online]. Available: https : / / cplusplus . com / doc /
tutorial/classes/, (Accessed: 28/04/2023).

85

https://doi.org/10.1080/00051144.2018.1492688
https://doi.org/10.1080/00051144.2018.1492688
https://doi.org/10.1126/scirobotics.abm6074
https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/index.html
https://releases.ubuntu.com/jammy/
https://releases.ubuntu.com/jammy/
https://gazebosim.org/docs/garden
https://gazebosim.org/docs/garden
https://docs.python.org/release/3.10.0/
https://docs.python.org/release/3.10.0/
https://www.do-mpc.com/en/latest/installation.html
https://www.do-mpc.com/en/latest/installation.html
https://learn.microsoft.com/en-us/cpp/?view=msvc-170
https://learn.microsoft.com/en-us/cpp/?view=msvc-170
https://colcon.readthedocs.io/en/released/index.html
https://colcon.readthedocs.io/en/released/index.html
https://ros2-industrial-workshop.readthedocs.io/en/latest/_source/basics/ROS2-Filesystem.html
https://ros2-industrial-workshop.readthedocs.io/en/latest/_source/basics/ROS2-Filesystem.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Creating-Your-First-ROS2-Package.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Creating-Your-First-ROS2-Package.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Creating-Your-First-ROS2-Package.html
https://docs.ros.org/en/humble/How-To-Guides/Developing-a-ROS-2-Package.html
https://docs.ros.org/en/humble/How-To-Guides/Developing-a-ROS-2-Package.html
https://wiki.ros.org/Nodes
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/humble/Concepts/About-ROS-2-Client-Libraries.html
https://docs.ros.org/en/humble/Concepts/About-ROS-2-Client-Libraries.html
https://docs.ros2.org/foxy/api/rclpy/index.html
https://docs.ros2.org/foxy/api/rclpy/index.html
https://docs.ros.org/en/humble/p/rclcpp/
https://docs.ros.org/en/humble/p/rclcpp/
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://cplusplus.com/doc/tutorial/classes/
https://cplusplus.com/doc/tutorial/classes/

E2310: BSc. Thesis Bibliography

[50] Open Robotics, Using python, xml, and yaml for ros 2 launch files, 2023. [Online]. Available:
https://docs.ros.org/en/humble/How-To-Guides/Launch-file-different-formats.
html, (Accessed: 12/05/2023).

[51] Open Robotics., Understanding parameters, 2023. [Online]. Available: https://docs.ros.
org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Parameters/
Understanding-ROS2-Parameters.html#ros2-param-set, (Accessed: 12/05/2023).

[52] Open Robotics, Creating a launch file, 2023. [Online]. Available: https://docs.ros.
org/en/humble/Tutorials/Intermediate/Launch/Creating-Launch-Files.html, (Ac-
cessed: 05/05/2023).

[53] Open Robotics, Using parameters in a class (python), 2023. [Online]. Available: https://
docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Using-Parameters-
In-A-Class-Python.html, (Accessed: 05/05/2023).

[54] Open Robotics, std_msgs Message Documentation, 2021. [Online]. Available: https://
docs.ros2.org/galactic/api/std_msgs/index-msg.html, (Accessed: 05/05/2023,
Autogenerated on May 19 2021 01:52:13).

[55] Open Robotics, Writing a simple publisher and subscriber (python), 2023. [Online]. Avail-
able: https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/
Writing-A-Simple-Py-Publisher-And-Subscriber.html, (Accessed: 28/04/2023).

[56] Open Robotics., Understanding services, 2023. [Online]. Available: https://docs.ros.
org/en/humble/Tutorials/Beginner- CLI- Tools/Understanding- ROS2- Services/
Understanding-ROS2-Services.html, (Accessed: 12/04/2023).

[57] Open Robotics., Understanding actions, 2023. [Online]. Available: https://docs.ros.
org/en/humble/Tutorials/Beginner- CLI- Tools/Understanding- ROS2- Actions/
Understanding-ROS2-Actions.html, (Accessed: 12/04/2023).

[58] Open Robotics, How it works, 2023. [Online]. Available: https://gazebosim.org/home,
(Accessed: 04/05/2023).

[59] Open Robotics, Features and benefits, 2023. [Online]. Available: https://gazebosim.org/
feature, (Accessed: 04/05/2023).

[60] Y. Chen, ‘High-order polynomial interpolation based on the interpolation center’s neigh-
borhood the amendment to the runge phenomenon,’ in Proc. 2009 WRI World Congress on
Software Engineering, vol. 2, Xiamen, China: IEEE, May 2009, pp. 345–348. DOI: 10.1109/
WCSE.2009.295.

[61] Open Robotics, Understanding topics, 2023. [Online]. Available: https://docs.ros.org/
en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-
ROS2-Topics.html#ros2-topic-pub, (Accessed: 08/05/2023).

[62] D. Thomas, Rqt, 2016. [Online]. Available: http://wiki.ros.org/rqt, (Last edited:
30/08/2016 18:41:47).

[63] J. D. Hunter, ‘Matplotlib: A 2d graphics environment,’ Computing in Science & Engineering,
vol. 9, no. 3, pp. 90–95, 2007. DOI: 10.1109/MCSE.2007.55.

[64] PySimpleGUI, Pysimplegui - github, 2023. [Online]. Available: https://github.com/
PySimpleGUI/PySimpleGUI, (Accessed: 18/05/2023).

[65] Z. Chonoles, Do these equations create a helix wrapped into a torus? 2013. [Online]. Avail-
able: https://math.stackexchange.com/q/324553, (Version: 2013-03-08).

[66] Pandas, Api reference, 2023. [Online]. Available: https://pandas.pydata.org/docs/
reference/index.html, (Accessed: 10/05/2023).

86

https://docs.ros.org/en/humble/How-To-Guides/Launch-file-different-formats.html
https://docs.ros.org/en/humble/How-To-Guides/Launch-file-different-formats.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html#ros2-param-set
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html#ros2-param-set
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html#ros2-param-set
https://docs.ros.org/en/humble/Tutorials/Intermediate/Launch/Creating-Launch-Files.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/Launch/Creating-Launch-Files.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Using-Parameters-In-A-Class-Python.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Using-Parameters-In-A-Class-Python.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Using-Parameters-In-A-Class-Python.html
https://docs.ros2.org/galactic/api/std_msgs/index-msg.html
https://docs.ros2.org/galactic/api/std_msgs/index-msg.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Py-Publisher-And-Subscriber.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Py-Publisher-And-Subscriber.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
https://gazebosim.org/home
https://gazebosim.org/feature
https://gazebosim.org/feature
https://doi.org/10.1109/WCSE.2009.295
https://doi.org/10.1109/WCSE.2009.295
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html#ros2-topic-pub
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html#ros2-topic-pub
https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html#ros2-topic-pub
http://wiki.ros.org/rqt
https://doi.org/10.1109/MCSE.2007.55
https://github.com/PySimpleGUI/PySimpleGUI
https://github.com/PySimpleGUI/PySimpleGUI
https://math.stackexchange.com/q/324553
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html

Bibliography E2310: BSc. Thesis

[67] Matplotlib, Api reference, 2023. [Online]. Available: https://matplotlib.org/stable/
api/index.html, (Accessed: 10/05/2023).

https://matplotlib.org/stable/api/index.html
https://matplotlib.org/stable/api/index.html

Appendix

Appendix A

Derivation of FOV Formula

FOV cri teria : α≤ γ (A.1)

If the inequality constraint A.1 is true, then the FOV constraint is fullfilled.
The next step is determining the α angle:

α= arccos
−→v · −→u

||−→v ||+ ||−→u ||
, ||−→v ||≜ 1 (A.2)

The formula A.2 is used to determine the angle between the two vectors. −→v is a unit vector, and
its length is by definition 1.

Inserting the formula for α, A.2, in to the FOV criteria, A.1:

arccos
−→v · −→u
||−→u ||

≤ γ (A.3)

Multiplying A.3 with cos. This makes the equation less non-linear, which makes it easier to use
when used for control.

−→v · −→u
||−→u ||

≥ cosγ (A.4)

Multiplying with

−→u

. This is also a trick to make the equation less non-linear, and also to avoid

the possibility of division by zero faults in the program.

E2310: BSc. Thesis Chapter A: Derivation of FOV Formula

nl_con : cosγ · ||−→u || − −→v · −→u ≤ 0 (A.5)

Equation A.5 is the resulting non-linear constraint in symbolic form.

−→v : Attitude vector of the vehichle

−→v = R · î (A.6)

Equation A.6 is used to calculate −→v . This is the attitude vector of the vehichle in the local surge-
direction.

R =

1− 2(ε2
2 + ε

2
3) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)

2(ε1ε2 + ε3η) 1− 2(ε2
1 + ε

2
3) 2(ε2ε3 − ε1η)

2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε2
1 + ε

2
2)

 , î =

1
0
0

 (A.7)

The rotation matrix R is from page 32 in T. I. Fossen’s book Handbook of Marine Craft Hydro-
dynamics and Motion Control1. The î vector is by definition.

−→v =

1− 2(ε2
2 + ε

2
3)

2(ε1ε2 + ε3η)
2(ε1ε3 − ε2η)

 (A.8)

Multiplying the matrix with the vector in A.7, we get the resulting −→v in A.8.

−→u : Vector from ROV1 to ROV2

−→u =

x2− x1
y2− y1
z2− z1

 (A.9)

The vector in A.9 is the standard formula for a vector between two points.

nl_con : cosγ · ||−→u || − −→v · −→u ≤ 0
nl_con : cos(γ) ·

p

(x2− x1)2 + (y2− y)2 + (z2− z)2
−((1− 2ε2

2 + 2ε2
3)(x2− x1) + (2ε1ε2 + 2ε3eη)(y2− y1) + (2ε1ε3 − ε2η)(z2− z1))≤ 0

(A.10)
In A.10 the complete equation for the non-linear constraint is written out. First in symbolic form,
then in full form.

1T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd ed. Wiley, 2021. DOI:
10.1002/9781119994138.

Appendix B

Derivation of Formula for Attitude Control
Using Quaternions

The formulas in B.1, B.2 and B.3 is based on O.-E. Fjellstad and T. I. Fossen’s report Quaternion
feedback regulation of underwater vehicles1

eq = qd · q (B.1)

eq : difference between current attitude and desired attitude
qd : desired attitude
q : current attitude

Quaternion product from Fossen’s report:

eq = qd · q =

ηd ε1d ε2d ε3d

−ε1d ηd −ε3d ε2d

−ε2d ε3d ηd −ε1d

−ε3d −ε2d ε1d ηd

η
ε1

ε2

ε3

=

ηdη+ ε1dε1 + ε2dε2 + ε3dε3

−ε1dη+ηdε1 − ε3dε2 + ε2dε3

−ε2dη+ ε3dε1 +ηdε2 − ε1dε3

−ε3dη− ε2dε1 + ε1dε2 +ηdε3

(B.2)

I f qd = q → eq =

±1
0
0
0

(B.3)

Implementation in cost function :

Jq = ((ηdη+ ε1dε1 + ε2dε2 + ε3dε3)2 − 1)2

+(−ε1dη+ηdε1 − ε3dε2 + ε2dε3)2

+(−ε2dη+ ε3dε1 +ηdε2 − ε1dε3)2

+(−ε3dη− ε2dε1 + ε1dε2 +ηdε3)2
(B.4)

1O.-E. Fjellstad and T. I. Fossen, ‘Quaternion feedback regulation of underwater vehicles,’ in 1994 Proceedings of
IEEE International Conference on Control and Applications, 1994, 857–862 vol.2. DOI:10.1109/CCA.1994.381209

Appendix C

RQt-graph

Chapter C: RQt-graph E2310: BSc. Thesis

Figure C.1: ROS topology with one agent

E2310: BSc. Thesis Chapter C: RQt-graph

Figure C.2: ROS topology with two agents

Appendix D

Computer Specifications

Computer Specifications for Computer 1

Model Custom
Processor AMD Ryzen 7 5800X CPU @

4.80GHz
Memory 32000MB
Graphics Nvidia RTX 3080
Operating System Ubuntu 22.04.2 LTS

Computer Specifications for Computer 2

Model Lenovo Yoga Slim 7
Processor AMD Ryzen 7 4700U @

2.00GHz
Memory 16000MB
Graphics AMD Radeon RX Vega 8
Operating System Ubuntu 22.04.2 LTS

Computer Specifications for Computer 3

Model Dell Inc. OptiPlex 7050
Processor Intel(R) Core(TM) i7-7700

CPU @ 3.60GHz
Memory 32734MB
Operating System Ubuntu 22.04.2 LTS

Appendix E

List of tests done

Chapter E: List of tests done E2310: BSc. Thesis

Test name Sample size PC Note
Python simulator 1 NA Used in results
Default test 632 All Used in results (several computers)
Current 0.5 m/s 228 3 Used in results
Current 0.25 m/s 216 3 Used in results
Circle setpoint 210 2 Used in results
70% Packet loss 206 2 Used in results
Double added mass 206 1 Used in results
Halved Added mass 198 1 Used in results
Double damping 216 2 Used in results
Halved damping 206 2 Used in results
Doubled mass 242 3 Used in results
50% Packet loss 50 2 Packet loss 70% was prioritised
Current 0.3m/s x-direction 2 2 0.25 m/s and 0.5 m/s was prioritised
Current 0.3m/s -x-direction 2 2 0.25 m/s and 0.5 m/s was prioritised
Current 0.3m/s y-direction 2 2 0.25 m/s and 0.5 m/s was prioritised
Current 0.3m/s -y-direction 2 2 0.25 m/s and 0.5 m/s was prioritised
Current 0.3m/s z-direction 2 2 0.25 m/s and 0.5 m/s was prioritised
Current 0.3m/s -z-direction 2 2 0.25 m/s and 0.5 m/s was prioritised
Delayed signal between ROVs 0.5s 2 2 Packet loss was prioritised
Delayed signal between ROVs 1s 2 2 Packet loss was prioritised
Delayed signal between ROVs 2s 2 2 Packet loss was prioritised
Delayed signal between ROVs 4s 2 2 Packet loss was prioritised
Delayed signal between ROVs 5s 2 2 Packet loss was prioritised
Delayed signal between ROVs 7s 2 2 Packet loss was prioritised
Delayed signal between ROVs 10s 2 2 Packet loss was prioritised
One ROV stopped 2 2 Packet loss was prioritised
White noise positioning signal 200 2 Packet loss was prioritised
Mass 1kg 2 2 Improbable to occur
Mass 100kg 2 2 Improbable to occur
Lowered CG 2cm under CB 2 1 Had little impact on test
Double inertia 2 1 Had little impact on test
Halved inertia 2 1 Had little impact on test
Halved mass 2 2 Improbable to occur
Stochastic noise in the signal. ±1 2 2 Packet loss was prioritised
Stochastic noise in the signal. ±2 2 2 Packet loss was prioritised
Stochastic noise in the signal. ±3 2 2 Packet loss was prioritised
Worst case test 248 3 Not prioritized for report

Appendix F

Complete Collection of Results from the
Python Simulator

10.0

7.5

5.0

2.5

0.0

2.5

x
[m

]

Position

0

5

10

15

20

An
gl

e
[

]

Angle between ROVs

6

4

2

0

2

4

6

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

4.0

4.5

5.0

5.5

6.0

z [
m

]

Circle (Default)

Reference Median High Low

Figure F.1: Circle test Python simulator

Chapter F: Complete Collection of Results from the Python Simulator E2310: BSc. Thesis

15

10

5

0

x
[m

]

Position

0

5

10

15

20

25

An
gl

e
[

]

Angle between ROVs

10

5

0

5

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

3

4

5

6

7

z [
m

]
Torus (Default)

Reference Median High Low

Figure F.2: Torus test Python simulator

0.0
2.5
5.0
7.5

10.0
12.5
15.0

x
[m

]

Position

0

5

10

15

20

An
gl

e
[

]

Angle between ROVs

1.0

0.8

0.6

0.4

0.2

0.0

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

4.80

4.85

4.90

4.95

5.00

z [
m

]

Line (Default)

Reference Median High Low

Figure F.3: Line test Python simulator

E2310: BSc. Thesis Chapter F: Complete Collection of Results from the Python Simulator

6

4

2

0

2

x
[m

]

Position

0

2

4

6

8

10

An
gl

e
[

]

Angle between ROVs

2

0

2

4

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

4.80

4.85

4.90

4.95

5.00

z [
m

]
Spiral (Default)

Reference Median High Low

Figure F.4: Spiral test Python simulator

Appendix G

Complete Collection of Results from the
Gazebo Simulator

10

5

0

5

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

10

5

0

5

10

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

0

2

4

6

8

z [
m

]

Circle (Default PC 1)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.1: Circle test under default conditions (PC 1)

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Gazebo Simulator

20

0

20

40

60

80

100

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

10

5

0

5

10

15

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0

2

4

6

8

10

z [
m

]
Torus (Default PC 1)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.2: Torus test under default conditions (PC 1)

0

5

10

15

x
[m

]

Position

0
20
40
60
80

100
120

An
gl

e
[

]

Angle between ROVs

1

0

1

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

4.75

4.80

4.85

4.90

4.95

5.00

z [
m

]

Line (Default PC 1)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.3: Line test under default conditions (PC 1)

Chapter G: Complete Collection of Results from the Gazebo Simulator E2310: BSc. Thesis

5

0

5

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

4

2

0

2

4

6

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

0

2

4

6

z [
m

]
Spiral (Default PC 1)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.4: Spiral test under default conditions (PC 1)

10.0

7.5

5.0

2.5

0.0

2.5

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5

0

5

10

15

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

0

2

4

6

z [
m

]

Circle (Default PC 2)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.5: Circle test under default conditions (PC 2)

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Gazebo Simulator

15

10

5

0

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5

0

5

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0

2

4

6

8

z [
m

]
Torus (Default PC 2)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.6: Torus test under default conditions (PC 2)

0

5

10

15

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

2

1

0

1

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

4.25
4.50
4.75
5.00
5.25
5.50
5.75

z [
m

]

Line (Default PC 2)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.7: Line test under default conditions (PC 2)

Chapter G: Complete Collection of Results from the Gazebo Simulator E2310: BSc. Thesis

5

0

5

10

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

6

4

2

0

2

4

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

z [
m

]
Spiral (Default PC 2)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.8: Spiral test under default conditions (PC 2)

10.0

7.5

5.0

2.5

0.0

2.5

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

6
4
2
0
2
4
6

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

0

2

4

6

z [
m

]

Circle (Default PC 3)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.9: Circle test under default conditions (PC 3)

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Gazebo Simulator

15

10

5

0

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5

0

5

10

15

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0

2

4

6

8

10

z [
m

]
Torus (Default PC 3)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.10: Torus test under default conditions (PC 3)

0

5

10

15

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

4
3
2
1
0
1
2

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

6

z [
m

]

Line (Default PC 3)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.11: Line test under default conditions (PC 3)

Chapter G: Complete Collection of Results from the Gazebo Simulator E2310: BSc. Thesis

5

0

5

10

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

15

10

5

0

5

10

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

2
4
6
8

10
12
14

z [
m

]
Spiral (Default PC 3)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.12: Spiral test under default conditions (PC 3)

10
5
0
5

10
15
20

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5.0

2.5

0.0

2.5

5.0

7.5

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

0

2

4

6

8

10

z [
m

]

Circle (Halved Added Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.13: Circle test with added mass parameters halved

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Gazebo Simulator

15

10

5

0

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5

0

5

10

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0

2

4

6

8

z [
m

]
Torus (Halved Added Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.14: Torus test with added mass parameters halved

0

10

20

30

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

20

15

10

5

0

5

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

z [
m

]

Line (Halved Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.15: Line test with added mass parameters halved

Chapter G: Complete Collection of Results from the Gazebo Simulator E2310: BSc. Thesis

5

0

5

10

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

2

4

6

8

10

12

z [
m

]
Spiral (Halved Added Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.16: Spiral test with added mass parameters halved

10
8
6
4
2
0
2

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

6

4

2

0

2

4

6

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

2

4

6

8

z [
m

]

Circle (Doubled Added Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.17: Circle test with added mass parameters doubled

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Gazebo Simulator

20

15

10

5

0

5

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5

0

5

10

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0

2

4

6

8

z [
m

]
Torus (Doubled Added Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.18: Torus test with added mass parameters doubled

0

5

10

15

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

2

1

0

1

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

4.5

4.6

4.7

4.8

4.9

5.0

5.1

z [
m

]

Line (Doubled Added Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.19: Line test with added mass parameters doubled

Chapter G: Complete Collection of Results from the Gazebo Simulator E2310: BSc. Thesis

8

6

4

2

0

2

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

2

0

2

4

6

8

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

2

4

6

8

z [
m

]
Spiral (Doubled Added Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.20: Spiral test with added mass parameters doubled

10

8

6

4

2

0

2

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

6
4
2
0
2
4

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

3

4

5

6

7

8

z [
m

]

Circle (Halved Damping)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.21: Circle test with damping halved

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Gazebo Simulator

20

10

0

10

20

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

10

0

10

20

30

40

50

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0

2

4

6

8

z [
m

]
Torus (Halved Damping)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.22: Torus test with damping halved

10

5

0

5

10

15

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

2

0

2

4

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

4.0

4.5

5.0

5.5

z [
m

]

Line (Halved Damping)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.23: Line test with damping halved

Chapter G: Complete Collection of Results from the Gazebo Simulator E2310: BSc. Thesis

6

4

2

0

2

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

8
6
4
2
0
2
4

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

2

4

6

8

z [
m

]
Spiral (Halved Damping)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.24: Spiral test with damping halved

10

8

6

4

2

0

2

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

4

2

0

2

4

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

3.5
4.0
4.5
5.0
5.5
6.0

z [
m

]

Circle (Doubled Damping)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.25: Circle test with damping doubled

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Gazebo Simulator

10

0

10

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

10

0

10

20

30

40

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0

2

4

6

8

z [
m

]
Torus (Doubled Damping)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.26: Torus test with damping doubled

0

5

10

15

x
[m

]

Position

0

10

20

30

40

An
gl

e
[

]

Angle between ROVs

2

1

0

1

2

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

4.80

4.85

4.90

4.95

5.00

z [
m

]

Line (Doubled Damping)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.27: Line test with damping doubled

Chapter G: Complete Collection of Results from the Gazebo Simulator E2310: BSc. Thesis

6

4

2

0

2

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

2

0

2

4

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

3.5

4.0

4.5

5.0

z [
m

]
Spiral (Doubled Damping)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.28: Spiral test with damping doubled

10

8

6

4

2

0

x
[m

]

Position

0

20

40

60

An
gl

e
[

]

Angle between ROVs

4

2

0

2

4

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

3.5

4.0

4.5

5.0

5.5

6.0

z [
m

]

Circle (Double Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.29: Circle test with doubled mass

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Gazebo Simulator

15

10

5

0

x
[m

]

Position

0

10

20

30

40

50

An
gl

e
[

]

Angle between ROVs

5

0

5

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

1

2

3

4

5

6

7

z [
m

]
Torus (Double Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.30: Torus test with doubled mass

0

5

10

15

x
[m

]

Position

0

10

20

30

40

50

An
gl

e
[

]

Angle between ROVs

1.5

1.0

0.5

0.0

0.5

1.0

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

3.5

4.0

4.5

5.0

z [
m

]

Line (Double Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.31: Line test with doubled mass

Chapter G: Complete Collection of Results from the Gazebo Simulator E2310: BSc. Thesis

6

4

2

0

2

x
[m

]

Position

0

10

20

30

40

50

An
gl

e
[

]

Angle between ROVs

2

1

0

1

2

3

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

4.2

4.4

4.6

4.8

5.0

z [
m

]
Spiral (Double Mass)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.32: Spiral test with doubled mass

10.0

7.5

5.0

2.5

0.0

2.5

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5

0

5

10

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

3

4

5

6

7

8

z [
m

]

Circle (70% Packetloss)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.33: Circle test with 70% packet loss

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Gazebo Simulator

20

15

10

5

0

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

20

15

10

5

0

5

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0

2

4

6

8

z [
m

]
Torus (70% Packetloss)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.34: Torus test with 70% packet loss

0

5

10

15

x
[m

]

Position

0

20

40

60

80

An
gl

e
[

]

Angle between ROVs

2

1

0

1

2

3

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

4.50
4.75
5.00
5.25
5.50
5.75
6.00

z [
m

]

Line (70% Packetloss)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.35: Line test with 70% packet loss

Chapter G: Complete Collection of Results from the Gazebo Simulator E2310: BSc. Thesis

6

4

2

0

2

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

2

0

2

4

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

4.50

4.75

5.00

5.25

5.50

5.75

z [
m

]
Spiral (70% Packetloss)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.36: Spiral test with 70% packet loss

10.0

7.5

5.0

2.5

0.0

2.5

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5

0

5

10

15

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

0

2

4

6

8

10

z [
m

]

Circle (0.25 m/s Current With Waves)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.37: Circle test with 0.25 m/s current and waves

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Gazebo Simulator

15

10

5

0

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5

0

5

10

15

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0
2
4
6
8

10
12

z [
m

]
Torus (0.25 m/s Current With Waves)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.38: Torus test with 0.25 m/s current and waves

0

5

10

15

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

15

10

5

0

y
[m

]

0 20 40 60 80 100 120 140
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120 140
Time [s]

2

4

6

8

z [
m

]

Line (0.25 m/s Current With Waves)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.39: Line test with 0.25 m/s current and waves

Chapter G: Complete Collection of Results from the Gazebo Simulator E2310: BSc. Thesis

6

4

2

0

2

4

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

0

5

10

15

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

2

4

6

8

10

z [
m

]
Spiral (0.25 m/s Current With Waves)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.40: Spiral test with 0.25 m/s current and waves

10

5

0

5

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5

0

5

10

15

20

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

0
2
4
6
8

10
12

z [
m

]

Circle (0.5 m/s Current With Waves)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.41: Circle test with 0.5 m/s current and waves

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Gazebo Simulator

15

10

5

0

5

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

10

0

10

20

30

40

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

z [
m

]
Torus (0.5 m/s Current With Waves)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.42: Torus test with 0.5 m/s current and waves

0

5

10

15

20

25

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

10

5

0

5

10

y
[m

]

0 20 40 60 80 100 120 140
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120 140
Time [s]

2

4

6

8

10

12

z [
m

]

Line (0.5 m/s Current With Waves)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.43: Line test with 0.5 m/s current and waves

Chapter G: Complete Collection of Results from the Gazebo Simulator E2310: BSc. Thesis

5

0

5

10

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

0

10

20

30

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

z [
m

]
Spiral (0.5 m/s Current With Waves)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.44: Spiral test with 0.5 m/s current and waves

10

0

10

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

20

10

0

10

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

0

2

4

6

8

10

z [
m

]

Circle (Circular Setpoint)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.45: Circle test with circular setpoint

E2310: BSc. Thesis Chapter G: Complete Collection of Results from the Python Simulator

20

0

20

40

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

30

20

10

0

10

20

30

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

z [
m

]
Torus (Circular Setpoint)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.46: Torus test with circular setpoint

0

10

20

30

40

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

5.0

2.5

0.0

2.5

5.0

7.5

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

0

2

4

6

8

z [
m

]

Line (Circular Setpoint)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.47: Line test with circular setpoint

Chapter G: Complete Collection of Results from the Python Simulator E2310: BSc. Thesis

15
10

5
0
5

10

x
[m

]

Position

0

50

100

150

An
gl

e
[

]

Angle between ROVs

10

0

10

20

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

0

2

4

6

8

10

z [
m

]
Spiral (Circular Setpoint)

Reference
Median

High
Low

90th Percentile 10th Percentile

Figure G.48: Spiral test with circular setpoint

Appendix H

Showcase of Median Values from Tests With
Disturbances

10

8

6

4

2

0

x
[m

]

0

5

10

15

20

25

30

An
gl

e
[

]

Angle between ROVs

4

2

0

2

4

6

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

3.5

4.0

4.5

5.0

5.5

6.0

z [
m

]

Disturbances, Circle Test

Reference
2x Damping
0.5x Damping

2x Added Mass
0.5x Added Mass

70% Packet Loss
0.5 m/s Waves

0.25 m/s Waves
2x Mass

Figure H.1: Showcase of disturbances, circle test

Chapter H: Showcase of Median Values from Tests With Disturbances E2310: BSc. Thesis

15

10

5

0

x
[m

]

0

5

10

15

20

25

30

An
gl

e
[

]

Angle between ROVs

5

0

5

10

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

3

4

5

6

7

z [
m

]
Disturbances, Torus Test

Reference
2x Damping
0.5x Damping

2x Added Mass
0.5x Added Mass

70% Packet Loss
0.5 m/s Waves

0.25 m/s Waves
2x Mass

Figure H.2: Showcase of disturbances, torus test

0.0
2.5
5.0
7.5

10.0
12.5
15.0

x
[m

]

0

10

20

30

40

An
gl

e
[

]

Angle between ROVs

0

1

2

3

y
[m

]

0 20 40 60 80 100 120 140
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120 140
Time [s]

4.0

4.2

4.4

4.6

4.8

5.0

z [
m

]

Disturbances, Line Test

Reference
2x Damping
0.5x Damping

2x Added Mass
0.5x Added Mass

70% Packet Loss
0.5 m/s Waves

0.25 m/s Waves
2x Mass

Figure H.3: Showcase of disturbances, line test

E2310: BSc. Thesis Chapter H: Complete Collection of Results from the Python Simulator

6

4

2

0

x
[m

]

0

5

10

15

20

25

An
gl

e
[

]

Angle between ROVs

2

0

2

4

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

4.4

4.6

4.8

5.0

z [
m

]
Disturbances, Spiral Test

Reference
2x Damping
0.5x Damping

2x Added Mass
0.5x Added Mass

70% Packet Loss
0.5 m/s Waves

0.25 m/s Waves
2x Mass

Figure H.4: Showcase of disturbances, spiral test

Appendix I

Comparison Between Gazebo and Python

10

8

6

4

2

0

x
[m

]

0

5

10

15

20

25

30

An
gl

e
[

]

Angle between ROVs

6

4

2

0

2

4

6

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

4.0

4.5

5.0

5.5

6.0

z [
m

]

Comparison of Circle Test in Gazebo on Different Hardware and Python (Default)

Reference
PC 1 (Gazebo)

PC 2 (Gazebo) PC 3 (Gazebo) Python Sim

Figure I.1: Comparison between Gazebo and Python, circle test (median)

E2310: BSc. Thesis Chapter I: Comparison Between Gazebo and Python

15

10

5

0

x
[m

]

0
5

10
15
20
25
30

An
gl

e
[

]

Angle between ROVs

5

0

5

y
[m

]

0 50 100 150 200 250 300 350 400
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250 300 350 400
Time [s]

3

4

5

6

7

z [
m

]
Comparison of Torus Test in Gazebo on Different Hardware and Python (Default)

Reference
PC 1 (Gazebo)

PC 2 (Gazebo) PC 3 (Gazebo) Python Sim

Figure I.2: Comparison between Gazebo and Python torus test (median)

0.0
2.5
5.0
7.5

10.0
12.5
15.0

x
[m

]

0

10

20

30

40

An
gl

e
[

]

Angle between ROVs

0.6

0.4

0.2

0.0

y
[m

]

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 20 40 60 80 100 120
Time [s]

4.85

4.90

4.95

5.00

z [
m

]

Comparison of Line Test in Gazebo on Different Hardware and Python (Default)

Reference
PC 1 (Gazebo)

PC 2 (Gazebo) PC 3 (Gazebo) Python Sim

Figure I.3: Comparison between Gazebo and Python line test (median)

Chapter I: Comparison Between Gazebo and Python E2310: BSc. Thesis

6

4

2

0

x
[m

]

0

5

10

15

20

An
gl

e
[

]

Angle between ROVs

2

0

2

4

y
[m

]

0 50 100 150 200 250
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 50 100 150 200 250
Time [s]

4.85

4.90

4.95

5.00

z [
m

]
Comparison of Spiral Test in Gazebo on Different Hardware and Python (Default)

Reference
PC 1 (Gazebo)

PC 2 (Gazebo) PC 3 (Gazebo) Python Sim

Figure I.4: Comparison between Gazebo and Python spiral test (median)

Appendix J

Poster

Decentralized Model Predictive Control for Increased Autonomy in Fleets of ROVs
Lauritz R. Fosso, Kristian A. Johannesen, Pål K. Kjærem, Tor-Harald Staurnes

Department of Engineering Cybernetics - NTNU, Trondheim Norway

Summary
This project dealt with the design and imple-
mentation of a decentralized model predictive
control architecture to be implemented in a set of
BlueROV2 Heavys.

The ROVs communicate through optical sensors,
and therefore the line of sight between the ROVs is
a prerequisite for communication. In that context,
a model predictive controller is designed that
achieves this by having access to the other ROV’s
position. The system is implemented in ROS 2.

The simulations were performed in Gazebo, and a
set of four tests were designed to evaluate the con-
trollers’ robustness, these tests were run with differ-
ent disturbances such as ocean currents, with packet
loss, and modifications of system parameters.

Mathematical Model
The mathematical model utilises Fossen’s robot-
inspired equations to model the ROVs’ dynamics
[1, p. 15]. The accuracy of the mathematical model
is critical to the performance of the controller since
it relies on this model to predict future dynamics.

MPC
The model predictive controller, implemented in the
Python toolbox do-mpc[2], is designed to perform
crucial tasks for multi-agent systems. Namely, line
of sight for communication, collision avoidance and
path following. These tasks were the basis for the
design of the cost function and constraints set for
the controller. A solution for predictable position-
ing referred to as circular setpoint is also proposed.

ROS 2
The system is implemented in ROS2, which is
an open-source software development kit used in
robotics, with the goal of enabling increased mod-
ularity. ROS 2 is founded on the concept of nodes
that perform a specific task and communicate with
each other through standardised protocols.

Results

10

8

6

4

2

0

x
[m

]

0

5

10

15

20

25

30

An
gl

e
[

]

Angle between ROVs

4

2

0

2

4

6

y
[m

]

0 25 50 75 100 125 150 175 200
Time [s]

0

1

2

3

4

5

Di
st

an
ce

 [m
]

Distance between ROVs

0 25 50 75 100 125 150 175 200
Time [s]

3.5

4.0

4.5

5.0

5.5

6.0

z [
m

]

Disturbances, Circle Test

Reference
2x Damping
0.5x Damping

2x Added Mass
0.5x Added Mass

70% Packet Loss
0.5 m/s Waves

0.25 m/s Waves
2x Mass

Simulation
To test the control system, two simulators were used. Firstly, a Python simulator was used which used the
simulating functionality in do-mpc, which allowed for testing with an ideal model. A script was created to
visualise the data through Matplotlib animations that allowed for easy interpretation of the data.

Secondly, a Gazebo simulator was used to test the system in a real-time environment, and with a physics
engine that simulated the behaviour of submerged movement.

The results from the tests were used to analyse the robustness of the controller. Figure Disturbances, Circle
Test displays the median values of the tests done with different disturbances.

BlueROV2 Heavy

Video from Simulations
This QR code links to a video showing some of the
simulations in Gazebo and Python.

References
[1] T. I. Fossen, Handbook of Marine Craft Hydro-

dynamics and Motion Control, 2nd ed. Chich-
ester, UK: John Wiley & Sons Inc, 2021.

[2] S. Lucia and F. Fiedler, Model predictive con-
trol python toolbox, 2023. [Online]. Available:
https://www.do-mpc.com/en/latest, (Ac-
cessed: 03/04/2023).

	Acknowledgement
	Abstract
	Sammendrag
	Contents
	Terminology and Glossary
	Figures
	Tables
	Introduction
	Background
	Problem Statement
	Report structure
	Source Code

	Project Development
	Remotely Operated Underwater Vehicles
	Introduction
	ROVs in General
	Size-Classification
	Communication
	Propulsion
	Buoyancy

	BlueROV2
	Thruster Configuration and DoF
	Components and Sensors

	Mathematical Model
	Introduction
	Euler Angles
	Quaternions
	Unit Quaternions
	Hamilton Product
	Quaternion Inverse
	Quaternion Rotations
	Attitude Control Using Quaternions

	Skew-symmetric Operator
	Reference Frames
	Notation
	Equations of Motion
	Rigid-body Kinetics
	Hydrostatics
	Hydrodynamics
	Control Forces and Moments
	Tranformation From BODY To ned
	Complete Model
	Ocean Currents
	Alternative Parametrisation using Euler Angles

	Discussion
	Issues With the Original Model
	Parameter Uncertainties
	Implementation of Relative Velocity

	Conclusion

	Model Predictive Control
	Theoretical Framework
	Notation
	Optimal Control
	Why MPC?
	MPC Structure
	Decentralized Control
	Cost Function
	Constraints
	Function
	Modelling Optical Communication
	Do-mpc

	Design
	Cost Function
	Constraints

	Results
	Cost Function

	Discussion
	Cost Function
	Non-linear Constraints
	Disadvantages and Alternative Methods of Control
	Do-mpc
	Model Implementation in do-mpc

	The Robot Operating System (ROS)
	Software
	Theoretical Framework
	A Look Into the ROS 2 Structure
	Communication in ROS
	Gazebo Garden & BlueROV2 Garden

	Mathematical Framework
	Polynomial Trajectories

	Implementation
	Package for MPC
	Launch and Parameters
	MPC Node
	GUI
	Trajectory Node
	Package for Joystick Controller

	Results and Findings
	Filesystem
	Launch of Packages w/ BlueROV2 Garden - Desktop Interface
	System Topology

	Discussion and Analysis
	Communication
	Parameters
	Reuse of Code

	Simulation
	Design and Implementation
	Python Simulator
	Gazebo Simulator
	Standard Tests
	Controller Parameters
	Test Scenarios
	Statistical Analysis

	Results and Findings
	Discussion
	Python Simulator
	Gazebo Simulator
	Robustness of Controller

	Conclusion
	Further Work

	Bibliography
	Appendix
	Derivation of FOV Formula
	Derivation of Formula for Attitude Control Using Quaternions
	RQt-graph
	Computer Specifications
	List of tests done
	Complete Collection of Results from the Python Simulator
	Complete Collection of Results from the Gazebo Simulator
	Showcase of Median Values from Tests With Disturbances
	Comparison Between Gazebo and Python
	Poster

