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Abstract

Cells orchestrate an incomprehensible number of pathways and reactions to stay alive. In
order to ensure the correct production of reactants for the current conditions, the cell is
dependent on protein-activity regulation. This regulation is often conducted transcription-
ally, in which the activity of the protein is determined by its abundance as set by the rate of
gene expression. However, there also exist several posttranscriptional modes of regulation,
including a mechanism named allostery. Allosteric regulation is the reversible interaction
between a protein and a metabolite which induces a shift in the protein’s activity. This shift
is the result of an altered affinity of the protein for another molecule caused by conforma-
tional changes following binding of the metabolite, often termed the effector molecule, to
the allosteric site.

While the mechanisms of transcriptional regulation are thoroughly researched and docu-
mented, the case of allostery is somewhat different. Historically, posttranscriptional regula-
tion has been considered less important in the grand scheme of protein-activity modulation.
This is represented in the poor documentation of allostery, and in the lack of an established,
systematic approach to study and detect such interactions. Despite the increased develop-
ment of molecular biology tools, discovering allosteric interactions is typically very laborious
and resource-demanding work, requiring substantial amounts of time, equipment, and pre-
vious knowledge. The recent increased understanding of protein-metabolite interactions as
essential modes of metabolic regulation has, however, motivated the research community
to find more appropriate, efficient ways of studying this phenomenon. In this context, the
use of computational power to uncover the secrets of the immense interaction space is
especially appealing.

The aim of this thesis is to evaluate the potential of predicting allosteric interactions from
genome sequences, as represented by the sequence and structure of proteins. To achieve
this aim, data on protein-activating and -inhibiting metabolic interactions was retrieved
from the BRENDA database and assembled into a standardized dataset. This dataset con-
sists of 32 535 organism-specific interactions among 3 097 proteins and 1 002 metabolites,
and displays a trend of biased regulation towards central pathways of carbon metabolism.
Annotation of common interactions to a phylogenetic tree revealed both a taxonomy-wise
conservation and lacking documentation of allostery. In order to predict interactions from
protein structure, data on protein sequence and structural features annotated to the pro-
teins of the assembled database were downloaded. These features included eight different
protein classifiers: active sites, binding sites, conserved sites, domains, families, homol-
ogous superfamilies, PTMs, and repeats. The protein features were associated with the
interactions of the assembled database, and associations were further quantified through
Fisher’s exact tests using an odds ratio of 10 and an adjusted p-value less than 0.05 as the
significant threshold values.

The enrichment analysis identified in total 32 276 statistically significant associations. The
feature types family and domain were found to be most important for the prediction of
metabolite-interactions, and assessing a subgroup of the highly and exclusively associated
features and interactions revealed that the approach identified several biologically justifiable
connections. Extending the phylogenetic tree with predicted interactions further confirmed
the validity of the approach, but also caused the identification of a few false-positive pre-
dictions. Despite this inaccuracy, the aim of the thesis was achieved: association of protein
features with metabolite-interactions demonstrates that protein sequence and structure,
and thereby genome sequence, has the potential for being used as a predictor of allosteric
interactions.
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Sammendrag

Celler administrerer et ubegripelig antall reaksjonsveier og reaksjoner for å holde seg i live.
For å sikre korrekt produksjon av reaktanter for de aktuelle forholdene er cellen avhengig av
å regulere proteinaktivitet. Denne reguleringen utføres ofte transkripsjonelt, der aktiviteten
til proteinet bestemmes av dets konsentrasjon som er kontrollert av hastigheten på genut-
trykk. Imidlertid eksisterer det også flere posttranskripsjonelle reguleringsmåter, inkludert
en mekanisme kalt allosterisk regulering. Allosterisk regulering er den reversible interak-
sjonen mellom et protein og en metabolitt som induserer et skifte i proteinets aktivitet.
Dette skiftet er resultatet av en endret proteinaffinitet for et annet molekyl som forårsakes
av konformasjonsendringer etter binding av metabolitten, ofte kalt effektormolekylet, til
det allosteriske setet.

Mens mekanismene for transkripsjonell regulering er grundig undersøkt og dokumentert,
er tilfellet med allosterisk regulering noe annerledes. Historisk sett har posttranskripsjonell
regulering blitt ansett som mindre viktig i proteinaktivitetmodulering. Dette er represen-
tert i den mangelfulle dokumentasjonen av allosterisk regulering, og i mangelen på en
etablert, systematisk tilnærming til å studere slike interaksjoner. Til tross for økt utvikling
av molekylærbiologiske verktøy, er det å oppdage allosteriske interaksjoner typisk svært
arbeids- og ressurskrevende ved at det krever betydelige mengder tid, utstyr og tidligere
kunnskap. Protein-metabolitt interaksjoner har imidlertid nylig blitt ansett som essensielle
metabolske reguleringsmekanismer, noe som har motivert forskningsmiljøet til å finne mer
hensiktsmessige og effektive måter å studere dette fenomenet på. I denne sammenhengen
er bruken av beregningskraft for å avdekke hemmelighetene til det enorme interaksjonsom-
fanget spesielt tiltalende.

Målet med denne oppgaven er å evaluere potensialet for å forutse allosteriske interak-
sjoner fra genomsekvenser, som representert ved sekvensen og strukturen til proteiner.
For å oppnå dette målet ble data om proteinaktiverende og -hemmende metabolske inter-
aksjoner hentet fra databasen BRENDA og satt sammen til et standardisert datasett. Dette
datsettet består av 32 535 organismespesifikke interaksjoner mellom 3 097 proteiner og
1 002 metabolitter, og viser en trend av partisk regulering mot sentrale reaksjonsveier i
karbonmetabolismen. Annotering av populære interaksjoner til et fylogenetisk tre avslørte
både en taksonomisk bevaring og manglende dokumentasjon av allosterisk regulering. For
å forutse interaksjoner fra proteinstruktur ble data om sekvensensielle og strukturelle trekk
annotert til proteinene i databasen lastet ned. Disse trekkene inkluderte åtte forskjellige
proteinklassifiserere: aktive seter, bindingsseter, konserverte seter, domener, familier,
homologe superfamilier, PTMer, og repetisjoner. Disse proteintrekkene ble assosiert med
interaksjonene i den sammensatte databasen, og assosiasjoner ble ytterligere kvantifisert
via Fishers eksakte tester der en odds-ratio på 10 og justert p-verdi mindre enn 0,05 ble
brukt som signifikante terskelverdier.

Anrikningsanalysen identifiserte totalt 32 276 statistisk signifikante assosiasjoner. Fam-
ilie og domene var de proteintrekkene som ble funnet til å være viktigst for å forutse
metabolitt interaksjoner, og undersøkelse av en undergruppe av de sterkt og ekslusivt as-
sosierte trekkene og interaksjonene viste at analysen identifiserte flere biologisk relevante
forbindelser. Utvidelse av det fylogenetiske treet med foreslåtte interaksjoner bekreftet
ytterligere gyldigheten av tilnærmingen, men forårsaket også identifiseringen av noen få
falske positive konklusjoner. Til tross for denne unøyaktigheten ble målet med prosjek-
tet oppnådd: assosiasjonen av proteintrekk med metabolitt interaksjoner viser at pro-
teinsekvens og struktur, og dermed genomsekvens, har potensial som base for å forutse
allosteriske interaksjoner.
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1 Introduction

As a biologist, it is impossible to not be familiar with ”The Central Dogma”, also referred to
as ”The Secret of Life”. This concept derives from a lecture given by Francis Crick in 1957
[1], and today the definition of the central dogma is usually given as the following:

DNA → RNA → Protein

This concept has usually been considered the most significant part of metabolic control,
implying that the level of metabolic flux is decided by the amount of available protein,
which again is determined by the level of gene expression. However, when defining the
central dogma, this conception is not what Crick had in mind [1]. In fact, his definition of
the central dogma states ”Once information has got into a protein it can’t get out again” [1],
which refers to the phenomenon where once information has gone from deoxyribonucleic
acid (DNA) to protein, it can not be reversed back into the genetic code.

Today we know it to be scientifically true that ribonucleic acid (RNA) is enzymatically en-
coded from DNA in the process named transcription, and that proteins are synthesized
through the work of ribosomal proteins utilizing messenger-RNA (mRNA), transfer-RNA
(tRNA) and amino acids in the process called translation. We are also aware that for most
proteins to be active they require post-translational modifications such as acetylation or
the removal of certain structures, and that the activity of many proteins is regulated by
the binding of small metabolites, such as feedback inhibition by end products in a pathway.
Despite this knowledge of post-translational protein regulation, regulation at the transcrip-
tional level is still considered to be the main mode of metabolic control [2].

However, if the message expressed by Crick in his lecture in 1957 is so misunderstood by
the research community today, what if there is actually more to ”the secret of life” than what
has been historically anticipated? Perhaps the main mode of metabolic flux regulation does
not reside within the scopes of the central dogma, but is in fact executed after the protein
has been formed. One such mode of post-translational metabolic regulation, which is now
considered ”the second secret of life” [3], is the type of protein-metabolite interaction called
allosteric regulation.

This Chapter aims at providing the information necessary to understand the context of
and the motivation behind this current work. Firstly, the definition and role of allosteric
regulation as a mode of metabolic control will be given and discussed in light of more recent
research. The second Section will then address different methods for discovering protein-
metabolite interactions, classified by experimental- and computational-based approaches.
The third Section is devoted to describing an approach for studying and investigating the
network of small-molecule regulatory interactions, that aids in elucidating the current state
of allosteric research. Finally, the last Section of this Chapter will provide the motivational
defense for this project based on the information provided in the previous Sections, while
also describing this project’s aim in view of these incentives.

1



1.1 The role of allosteric regulation

1.1.1 The definition of allosteric regulation

Allosteric regulation is a type of protein-metabolite interaction (PMI) that regulates the
activity of a protein by affecting its affinity for another molecule [4, 5, 6]. The regulated
protein has two different conformational states - active and inactive. Which state the protein
acquires is determined by binding of a certain metabolite, termed the effector molecule, to
a region in the protein that is distant from the active site, termed the allosteric site [7].

Allosteric interactions are reversible regulatory mechanisms that may either increase or
decrease a protein’s function. While this function is often the catalytic ability of an enzyme
[7], all proteins could, in theory, be allosterically regulated [8]. An effector that increases
the protein’s function is called an allosteric activator, while an effector that decreases its
function is called an allosteric inhibitor [7]. Figure 1.1 illustrates different modes of allosteric
behavior, including the change in conformational state induced by the binding of an effector
molecule to a protein (a), allosteric inhibition (b), and allosteric activation (c) [7].

Figure 1.1: Different modes of allosteric behavior: (a) the conformational change induced by
ligand-binding, (b) allosteric inhibition, (c) allosteric activation, (d) the introduction of a new binding
site induced by ligand-binding, and (e) an allosteric switch consisting of an enzyme fused to an
allosteric protein [7].

Figure 1.1 also depicts two other, perhaps more sophisticated, modes of allosteric behav-
ior, namely the introduction of a new binding site (d) and a phenomenon referred to as an
allosteric switch (e). As mentioned, the binding of an allosteric effector induces a confor-
mational state in the protein. Even though this usually leads to a change in the active site,
causing the protein to become either active or inactive, it might also lead to the formation
of a new binding site on the protein. This new binding site might also be bound by a ligand,
triggering another conformational shift and change in activity. Furthermore, an enzyme
might be fused to an allosterically controlled protein, thereby being under allosteric control
via the conformational state of its construct partner. While allosteric control may be divided
into the two main categories of ”activation” and ”inhibition”, these two mechanisms of in-
direct allosteric control are also present in nature [7]. In order to reduce the complexity
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of the work conducted in this thesis, however, activation and inhibition are the only two
modes of allostery that will be regarded.

1.1.2 The role of allostery in metabolic regulation

As mentioned at the beginning of this introduction, it has long been thought that transcrip-
tional regulation, and thereby enzyme concentration and availability, is responsible for the
regulation of metabolism in microbes. The main reason for this belief is the modern view
of the central dogma of molecular biology, stating that DNA encodes mRNA that in turn
encodes proteins which then execute tasks in the cell [2]. However, several both recent
and not-so-recent studies have shown that this type of regulation is insufficient to explain
the observed metabolic fluxes [9]. In a study conducted by Chubukov et.al., they found
that very few reactions are fully controlled by enzyme concentrations and that there is, in
general, an excess level of enzymes available in the cell. They also found that substrate
concentration had a negligible effect on most reaction fluxes, leading them to the conclusion
that the flux must be controlled by other mechanisms, most likely allosteric regulation by
non-substrate metabolites or enzyme modification such as phosphorylation or acetylation
[9].

According to Kochanowski et.al., several additional studies have found a mismatch between
the relative change in enzyme abundance and the relative change in flux. These findings
are further indicators that posttranscriptional modifications and metabolic control such as
allosteric interactions play a large role in the regulation of metabolic fluxes compared to
transcriptional regulation [10]. The authors further suggest three hypotheses as to why
metabolic fluxes are not very sensitive to moderate changes in enzyme levels. Firstly, cells
produce an abundance of enzymes as a mode of protection. Insufficient metabolic flux
may be more harmful to the cell than spending resources on excess protein production,
and the cells therefore maintain higher amounts of protein to protect themselves against
unavoidable variations in protein levels. Secondly, a cell may need to change fluxes faster
than what can be accomplished by transcriptional regulation. For example, the response to
oxidative stress in yeast cells involves allosteric regulation which changes fluxes in seconds,
while transcriptional regulation works on the scale of minutes. The utilization of allostery
instead of transcriptional control may therefore be a question of life or death for a simple
microbe. Finally, the last hypothesis states that a perfect regulatory strategy that always
produces an optimal enzyme level is very difficult to design, leading to the generation of an
enzyme level that is unnecessarily high [10].

The role of transcriptional regulation in regulating metabolic fluxes, as explained by Kochano-
wski et.al., is illustrated in Figure 1.2. As can be seen in the graph, the metabolic fluxes
(F) are enzyme-limited at low levels of gene expression (enzyme abundance, E), but as
the enzyme concentration increases, the change in enzyme abundance has a weaker effect
on the measure of metabolic flux. In wild-type microbes, most enzymes are expressed in
overabundant levels. This means that the enzyme abundance will in most cases be located
within the blue area of the graph in which the enzyme abundance has very little effect on
the metabolic flux, indicating the importance of other mechanisms for the regulation of
metabolic fluxes [10].

On the other hand, in their article concerning a study of the regulation of fluxes through
individual enzymes of the glycolytic pathway in Saccharomyces cerevisiae, Daran-Lapujade
et.al. [2] emphasize that the mismatch observed between different levels of gene-expression
might simply be caused by the time delay that transpires between changes at the mRNA
level and the changes in protein concentrations and enzyme activities. However, they also
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Figure 1.2: Transcriptional regulation in metabolic control, illustrating the role of transcrip-
tional control, represented by enzyme abundance (E), in regulating metabolic flux (F). In wild-type
microorganisms, most enzyme abundances are within the blue range [10].

point out that studies utilizing steady-state chemostat cultures, where the cells grow under
constant conditions, find poor correlation between mRNA levels, protein concentrations and
fluxes, which indicates that time delay cannot be the only responsible factor. The authors
further present regulation of gene expression mainly at the posttranscriptional level as a
plausible explanation for this observed relationship [2].

In their study of the glycolytic pathway in S. cerevisiae, Daran-Lapujade et.al. did in fact
find that most of the gene-expression regulation is practiced at the protein synthesis-
degradation level and posttranslational level, rather than at the mRNA level [2]. Their
findings also include the identification of metabolic regulation, namely the regulation of en-
zymes by interactions with metabolic compounds such as substrates, products, or allosteric
effectors, as a ”substantial component of almost all regulation observed”. This means that
the transcriptional regulation of yeast glycolysis is less extensive than anticipated and that
this metabolic pathway is controlled by several regulatory mechanisms rather than one
simple regulation strategy. As glycolysis is a very central metabolic process, they further
conclude that this might be the case for other pathways, organisms, and conditions as
well, and states that identification of more important regulatory mechanisms deserves to
be prioritized [2].

1.2 Methods for discovering allosteric interactions

Historically, allosteric regulators have mainly been discovered by what is referred to as
random events, before they were later verified experimentally. While the development of
molecular biology tools has resulted in routine methods for gene and protein discovery, this
is yet to happen for allosteric effectors. However, in the later years, further attention has
been designated to finding a systematic way of discovering allosteric interactions. This has
caused an increase in the use of high-throughput chemical screens in the search for spe-
cific enzyme activators or inactivators [8], and also in the development of computational
methods for this same purpose. This Section is designated to describe some of the experi-
mental and computational approaches for discovering allosteric interactions that have been
developed and applied in the not-so-distant past.

4



1.2.1 Experimental approaches

There are several experimental ways of discovering and studying allosteric interactions.
Some frequently applied methods over the last few decades include X-ray crystallography,
nuclear magnetic resonance (NMR) spectroscopy, fluorescence resonance energy transfer
(FRET), and hydrogen-deuterium exchange mass spectrometry (HDXMS). While X-ray crys-
tallography provides detailed structural information about the protein, it cannot be used for
studying dynamical properties. NMR spectroscopy is, however, better at handling the tran-
sient conformations of allostery, and labeling proteins, such as with FRET and HDXMS, can
also be applied in order to track protein conformational changes [6]. These technologies
are only examples of methods that have been used to detect protein-metabolite interac-
tions, and there exist several additional approaches that utilize either these exact methods
or similar concepts for the detection of PMIs.

In the later years, approaches for discovering new allosteric interactions are typically divided
into metabolite-centric and protein-centric methods. The metabolite-centric approaches
aim at identifying protein targets for specific metabolites, while the protein-centric meth-
ods aim at identifying interacting metabolites for specific proteins. The two following Sub-
sections will describe a few metabolite- and protein-centric methods that have been suc-
cessfully used for discovering allosteric interactions, while also mentioning some of their
associated challenges.

The last part of this Subsection is devoted to an innovative approach that may not neces-
sarily be classified as either metabolite- or protein-centric. Instead of focusing on a small
subgroup of either proteins or metabolites and a larger group of the opposing variable, this
ligand-detected NMR-approach aims at mapping interactions within a small subnetwork of
enzymes and metabolic compounds, causing a reduction in the possible interaction space
compared to other existing methods.

1.2.1.1 Metabolite-centric approaches

This Subsection will describe a few experimental methods that identify protein targets of
small molecules. The approaches in focus are DARTS, SPROX, CETSA, and the utilization of
functionalized small molecules.

The workflows of DARTS, SPROX, and CETSA are shown in Figure 1.3 [11]. While these
three approaches have different workflows, they all share the same concept; two mixtures
of proteins, where one is mixed with a ligand and one is not, are examined in order to
distinguish between the enzymes that interact and those that do not interact with the ligand
in question. The main distinction between the methods is how the bound proteins are
identified from the unbound, which will be further explained below.

DARTS, drug affinity responsive target stability, detects the increased proteolysis-resistance
of target proteins that is induced by the binding of a small molecule. The experiment is
performed by treating cell lysate with the compound of interest and proteases before mass
spectrometry is used to identify the bound and proteolysis-protected proteins present in
protein bands on SDS-gels [12]. While DARTS has been used to identify the protein targets
of cancer drugs and the role of protein-metabolite interactions in aging, it does have the
limitation of poor identification of low-abundance proteins due to them not being clearly
visible on the gel [11].

SPROX, stability of proteins from rates of oxidation, is another lysate-based approach in
which proteins are exposed to different concentrations of a denaturant and an oxidizing
agent. When bound to a ligand, the proteins will be protected against denaturation, and the
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Figure 1.3: Outline of DARTS, SPROX and CETSA, used for identifying protein targets of small
molecules. Two mixtures of enzymes, one ligand-treated and one untreated, are treated in different
ways that allow for the distinction between ligand-bound and not ligand-bound proteins [11].

ligand-bound proteins can therefore be identified from the non-interacting proteins [11, 13].
The limitations of SPROX include its limited application in detecting low-affinity interactions
and therefore the identification of weak regulatory protein-metabolite interactions [11].

CETSA, cellular thermal shift assay, is an approach that can be used for monitoring the
stability of proteins in vivo [13]. The method exploits the change in thermal stability that is
induced by ligand-binding, and identifies target proteins by comparing the melting curves
of proteins in the presence and absence of a metabolite. CETSA has been used to identify
protein targets of several compounds, including ATP, but it is known to yield many false
negatives as not all ligands affect the proteins’ stability [11].

Lastly, functionalized small molecules can also be used to identify protein-metabolite in-
teractions, as illustrated in Figure 1.4. The functionalized ligands are crosslinked to the
proteins, tagged with a purification tag, and affinity purification is used to isolate the in-
teracting proteins which are subsequently identified with mass spectrometry [11]. There
are several options for altering the chemical functionality of such functionalized compounds
that can enable the identification of protein-metabolite interactions in different ways and
under different circumstances. However, a limitation of this approach, which is valid for all
of the experimental approaches mentioned above, is that they are limited to compounds
that are chemically stable throughout the experiment [11].

1.2.1.2 Protein-centric approaches

While there are several available approaches for identifying the protein targets of specific
metabolites, there, as mentioned, also exist methods for identifying interacting metabolites
for specific proteins. These approaches include DRaCALA and MI-DAS. While these methods
have been successfully utilized for the identification of protein-metabolite interactions, there
are a few general challenges with the protein-centric methods that cause them to be less
frequently applied. These challenges include a lower throughput than the metabolite-centric
methods, and that the approaches typically require purified proteins [11].
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Figure 1.4: Identifying protein-metabolite interactions by using functionalized small
molecules, applying crosslinking, affinity purification and mass spectrometry [11].

DRaCALA, differential radical capillary action of ligand assay, shown in Figure 1.5(A), is
based on the ability of a nitrocellulose membrane to sequester proteins, and their poten-
tially bound ligand, from unbound ligands. Spotting a mixture of proteins and radiolabeled
metabolites onto such a membrane causes the protein-metabolite complexes to be immo-
bilized at the site of interaction, while free ligand is mobilized and distributed together with
the liquid phase. The membranes are then quantitated using a Phosphorimager and the
fraction bound for the proteins is calculated using equations shown in Figure 1.5(B) [14].
While DRaCALA is a rapid, high-throughput method that overcomes the limitation of having
to use purified proteins, there are some expected challenges associated with this approach.
These challenges include the limited availability of radiolabeled ligands and the poor detec-
tion of transient interactions. Transiency is quite common for regulatory protein-metabolite
interactions [11], and the accuracy of this approach is thus reduced as a consequence of
this issue.

A protein-centric method that is supposedly suited to deal with the problem of detecting
transient interactions is MI-DAS, mass spectrometry integrated with equilibrium dialysis,
which identifies target metabolites using mass spectrometry. In the proof-of-concept ex-
periment for this method, where 5 enzymes were dialyzed against 138 metabolites, 13
novel interactions were discovered. This method does however require large amounts of
purified protein which does complicate its application [11].

1.2.1.3 Ligand-detected NMR

The Braunschweig Enzyme Database (BRENDA) reports over 4500 unique, regulatory inter-
actions in Escherichia colimetabolism and over 1500 in Saccharomyces cerevisiae [11], and
there have been performed several large-scale studies on protein-metabolite interactions
in which there is almost no overlap [15]. These facts indicate a very large interaction space
of proteins and metabolites, and Diether et.al. therefore suggest that it might be useful to
map the protein-metabolite interactions within a defined subnetwork, rather than on a large
scale. They report an NMR approach that allows for the detection of interactions between a
set of water-soluble proteins and metabolites, that they used for investigating interactions
between 29 enzymes and 55 metabolites of the E. coli central carbon metabolism [15].

The workflow of this approach is illustrated in Figure 1.6. The enzymes, tagged pre-
experiment, are mixed with the metabolites distributed in four different mixtures. Each
combination of protein and metabolite mix is then incubated for several hours before their
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Figure 1.5: The prinicples of the DRaCALA
approach, for identifying interacting metabolites
for specific proteins. Protein-metabolite com-
plexes are immobilized on a nitrocellulose mem-
brane while unbound ligand is distributed through-
out the membrane with the liquid phase (A). Equa-
tions are then used to analyze the data for the frac-
tion bound of proteins (B) [14].

NMR spectra are recorded. The result of this experiment was the detection of 98 interac-
tions, of which 40% of the interacting metabolites were predicted to be allosteric effectors
due to low chemical similarity to their target’s substrate. While 22 of these detected interac-
tions were already known, 76 had not been previously reported. These results demonstrate
the potential of using ligand-detected NMR for discovering novel interactions within a de-
fined subnetwork of metabolites and proteins, while also illustrating our lack of knowledge
regarding protein-metabolite interactions [15].

Although the ligand-detected NMR approach shows great potential for discovering novel
PMIs, there are a few disadvantages that can be associated with this procedure. Firstly,
the strength of this method is situated in utilizing a subnetwork of metabolism for studying
allosteric regulation. Even though this approach was demonstrated to be successful, it
does imply that the method is of a low-throughput and not easily applicable to the entire
metabolism of an organism. This circumstance complicates the large-scale application of
the current approach, thus weakening its relevance in a systems biology context. Secondly,
as with all experimental approaches, this type of method requires quite a lot of resources.
Using 29 different enzymes and four mixes of metabolites gives a total of 116 samples to
examine, which is demanding both in time, equipment, and funding. If this approach was to
be applied on a larger scale of PMIs and for several different organisms, these requirements
would increase accordingly, causing the generation of great expenses.
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Figure 1.6: The workflow of the ligand-detected NMR approach, for identifying protein-
metabolite interactions within a subnetwork of enzymes and metabolites. Pre-tagged enzymes are
mixed with four different metabolite mixtures, and the NMR-spectrum of each protein-metabolite
combination is recorded post-incubation [15].

1.2.2 Computational approaches

Historically, computational approaches have typically not been used to study allostery alone,
but rather in combination with experimental methods. They do however provide powerful
tools, for example by allowing for the simulation of protein conformational dynamics and
by having a prediction power that can enable the identification of allosteric sites [6]. Addi-
tionally, even though experimental approaches have great potential for identifying protein-
metabolite interactions, evaluating the in vivo functionality of such interactions can be a
tedious process requiring many follow-up experiments. The process of resolving this cur-
rently major bottleneck might be assisted by the use of computational power [11], further
increasing the research community’s initiative in developing new computational approaches
for discovering protein-metabolite interactions.

This Subsection will describe both purely computational and combined experimental and
computational approaches for identifying and analyzing protein-metabolite interactions.
Methods for determining the functionality of PMIs will first be discussed, followed by ap-
proaches that facilitate the identification of novel allosteric sites. As computational biology
is in focus in this project, special attention will be paid to approaches that do not rely on
immediate experimental work, such as the development of computational allosteric services
by Lu et.al.
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1.2.2.1 Determining in vivo functionality computationally

In their review of methods for detecting regulatory protein-metabolite interactions, Diether
and Sauer [11] describe two computational approaches for determining the in vivo func-
tionality and mechanisms of protein-metabolite interactions.

The first of these two methods is SIMMER, systematic identification of meaningful metabolic
enzyme regulation. This approach assesses whether the experimental measurements from
separate reactions can be explained by Michealis-Menten kinetics, or if more complex mod-
els that include allosteric interactions are required. Application of the approach resulted in
the successful identification of novel allosteric interactions in yeast, but its application to
organisms that are not as well characterized is made difficult by its requirement for prior
knowledge of certain kinetic parameters [11].

The other method that is described by Diether and Sauer is a combined experimental and
computational approach for identifying allosteric protein-metabolite interactions that con-
trol enzyme activity, documented by Link et.al. in 2013 [4]. The authors highlight the
problem of quantifying the in vivo activity of allosteric regulations only being possible by
computational modeling, of which all cases rely on a priori knowledge of either one or sev-
eral of the allosteric interactions. They therefore developed an approach, which is based
on fitting data from dynamic metabolomics and 13C isotopic labeling experiments to kinetic
models of the same pathway and testing putative allosteric interactions, that doesn’t require
any prior knowledge of interactions [4].

Applying the approach to investigate how allosteric interactions control the switch between
the gluconeogenesis and glycolysis pathways, Link et.al. identified the most likely regula-
tory interactions together with hypotheses of their function. All combinations of allosteric
activation and inhibition for the nine irreversible enzymes by the seven metabolites in the
model resulted in 126 putative allosteric interactions, of which 17 were already known.
One part of their test results suggested that active regulation of the enzyme pair phos-
phofructokinase and FBPase was necessary for flux reversal in upper glycolysis, and the
identified effector metabolites were in fact consistent with data from previous studies. The
authors describe their own method as a way of systematically mapping biologically relevant
allosteric interactions under certain conditions, but validation of the interactions’ functional
importance does, however, require experiments with mutant enzymes or approaches that
focus on single interactions [4]. Furthermore, even though the approach does not require
a priori knowledge of relevant PMIs, it does rely on prior knowledge of kinetic parameters
[11].

1.2.2.2 Allosteric site prediction for drug design

As previously mentioned, the binding of an allosteric modulator to a protein may change
its functional activity. These changes may alter different phenotypic traits, thus making
allosterically regulated proteins potential targets of medical treatment by drugs that are
designed to bind their allosteric sites and affect the proteins in the desired way [7]. It has
also been established that these types of drugs achieve higher specificity due to the higher
selectivity found among allosteric sites, resulting in fewer side effects and lower toxicity
compared to ligands binding at the active site [16, 17]. As the improvement of medical
treatments is of generally high interest in the research community, there have been many
efforts made in the last two decades to identify such allosteric sites.

As experimental approaches for discovering allosteric sites are typically very demanding
in terms of time and resources, predicting approaches based on computational methods
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are very attractive. One of the first developed predictive methods is COREX, a structure-
based algorithm that produces a list of possible protein conformations and their respective
probabilities [18]. This probability distribution function can then be examined in terms of the
effects of ligands and other chemical or physical properties [18]. COREX has successfully
been used to identify already known allosteric sites, to define the communication pathway
between regulatory and catalytic sites, and for predicting effector binding [18, 19]. Other,
newer methods for studying the dynamical details of allostery include statistical coupling
analysis for identifying amino acid residues involved in allosteric signaling within proteins
[19, 20], and a structure-based statistical mechanical model that allows for the analysis of
allosteric communication energetics [21].

Despite the progress made within the field of allostery, there are still challenges associated
with the identification of allosteric sites and mechanisms. These challenges constitute the
motivation of Lu and his team in developing several allosteric services that can be used for
studying relevant topics [3]. These tools include the Allosteric Database (ASD) (v. 3.0)
consisting of data about experimentally confirmed allosteric proteins and modulators [22],
the ASBench consisting of datasets of allosteric sites that can be used for the development
of computational methods to predict unknown allosteric sites [23], Allosite and AllositePro
for the prediction of allosteric sites [24, 16], and Alloscore for predicting binding affinities
of allosteric protein-modulator interactions [25].

While these tools provided by the Allosteric Database are useful for studying allostery, es-
pecially in the case of allosteric drug discovery, there are a few issues that complicate
their application for systems biology purposes. For example, while the discovery of novel
allosteric sites is useful for drug discovery, many of these sites have no known natural bind-
ing effectors [19]. A quick query of the ASD (v. 3.0) [22, 26] revealed that the database
in fact contains many inorganic compounds that may not regulate proteins in natural sys-
tems, and are thereby not necessarily useful in an in vivo systems biology context. Also,
the content of the database is of low diversity organism-wise. Of the reported proteins,
43% belong to humans and 31% to bacterial species, leaving 26% of the proteins to other
species [26]. This complicates the application of the Allosteric Database in studies of less
popular organisms or larger groups of species. Another complication, that is also relevant
for the other approaches described in this Subsection, is that these tools appear to be most
suitable for the study of singular interactions or pathways. For example, Allosite and Al-
lositePro seem to be adapted to identifying allosteric sites in only one protein at a time [24,
16], and although Alloscore does allow the user to upload multiple ligands for the assess-
ment of binding affinity between them and the protein in question [25], the assessment
of unknown interactions still require the putative effector molecule to be present in the
regarded dataset. These matters complicate the application of these tools for discovering
novel interactions on a larger scale, possibly making them just as resource-demanding as
previously described experimental approaches, especially when considering that the iden-
tified interactions may require experimental validation.

1.3 Related work

As a part of the current bottleneck that is validation of the functional in vivo relevance of
protein-metabolite interactions, technical limitations have also stood in the way of map-
ping small-molecule-enzyme regulatory interactions on a genome-scale. These limitations
were the motivation behind the efforts of Reznik et.al. [27] in developing a framework
for reconstructing and analyzing the small-molecule regulatory network (SMRN), which is
an alternative strategy to study small-molecule regulation. The group used Escherichia
coli as their model organism and gathered interaction data from the BRENDA and BioCyc
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databases. For every Enzyme Commission (EC) number they obtained a list of possible reg-
ulating small molecules, the type of interaction (activation/inhibition), and the interaction
constant (KI), and then mapped this data onto a genome-scale metabolic reconstruction of
E. coli [27].

The pipeline developed by the group for obtaining small-molecule regulation data and using
computational tools for integrating it with a genome-scale metabolic model is shown in
Figure 1.7 [27]. This computational framework is freely available on GitHub and can be
used to reconstruct and analyze the SMRN of other organisms, given that enough data is
available at the necessary databases [27].

Figure 1.7: The framework for reconstructing and analysing the SMRN, by Reznik et.al. [27].
Databases are mined for regulatory interactions that are subsequently mapped onto a genome-scale
metabolic reconstruction of the organism in question, E. coli in the current study. The resulting
network can be further analyzed to elucidate the role of regulatory interactions or other properties.

The data mining resulted in 1669 unique regulatory interactions among 321 unique metabo-
lites and 364 unique enzymes, of which 84% were inhibitions. The most frequent regulators
were ATP, AMP, ADP, PI, PPI, NADPH, GTP, cysteine, pyruvate, and phosphoenolpyruvate
(PEP), among which ATP was the most frequent regulatory metabolite with participation in
57 different reactions. Metal ions also constituted a significant fraction of the group. Statis-
tics on the E. coli metabolites (A) and enzymatic reactions (B) and scatterplots of activating
and inhibiting interactions in which each metabolite (C) and reaction (D) participates are
shown in Figure 1.8 [27].

When classifying the reactions according to functional metabolic subsystem, Reznik et.al.
found that most interactions targeted cofactor biosynthesis, nucleotide salvage pathway,
arginine/proline metabolism, alternate carbon metabolism, nucleotide biosynthesis, cell en-
velope biosynthesis, and glycolysis/gluconeogenesis. Some of the other high-flux path-
ways, such as the citric acid cycle and pentose phosphate pathway, were regulated by
relatively few metabolites, which supports evidence that they are mostly regulated tran-
scriptionally [27].

It is very well known that the central carbon metabolism (CCM), which provides energy
and biosynthetic precursors to the cell, is highly regulated, both transcriptionally, post-
translationally, and allosterically. Our understanding of this regulation is, however, still
incomplete. The reconstruction of the CCM SMRN by Reznik et.al., depicted in Figure 1.9,
shows that the majority of the CCM enzymes are regulated and that they interact with more
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Figure 1.8: Statistics on the com-
ponents of the SMRN constructed
by Reznik et.al. for E. coli: num-
ber of activating and inhibiting inter-
actions among the overall groups of
metabolites (A) and enzymatic reac-
tions (B), and scatterplots of activat-
ing and inhibiting interactions in which
each metabolite (C) and reaction (D)
participates [27].

Figure 1.9: The small-molecule regula-
tory network of E. coli central carbon
metabolism, assembled by Reznik et.al.
[27].
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small molecules than the average metabolic enzyme. Especially the enzymes of upper and
terminal glycolysis and those branching the citric acid cycle are very heavily regulated.
This structure suggests a non-random distribution of regulatory interactions, which can be
explained by the conservation of resources accomplished by feedback inhibition [27].

The authors highlight that having a proper understanding of enzyme activation and in-
hibition is important for improving the accuracy of metabolic models, as well as it can
also facilitate the engineering of new metabolic pathways, and improve our knowledge of
how and why metabolic abnormalities affect health and disease. This alternative approach
could cover a larger proportion of metabolism than previously developed approaches, could
strengthen the evidence for poorly documented interactions, and also help uncover the
role of regulatory metabolites and enzymes in relation to other processes that constitute
metabolic control [27]. While it is unsure whether this approach can be used to study an
organism on a genome scale, these factors are strong motives for conducting further re-
search on allosteric interaction networks. Incentives such as these are the subject of the
following Section.

1.4 Motivation and project aim

The studies described in Subsection 1.1.2 highlight the role of allosteric regulation as an
essential mechanism to maintain metabolic homeostasis by regulating a large selection
of cellular processes [4, 11]. However, as was demonstrated by the work of Reznik et.al.
described in the previous Section [27], many interactions between proteins and metabolites
are still missing from existing metabolic maps [4]. The work by Machado et.al., illustrated in
Figure 1.10, is another example of an extended metabolic model which shows that including
allosteric interactions in the core metabolism model of E. coli highly increases its complexity
[28], further strengthening the concept of allostery as a key phenomenon to understanding
biological systems and diseases [6].

Due to the importance of allostery in metabolic regulation, there are several advantages as-
sociated with increased allosteric knowledge. For example, as described by Daran-Lapujade
et.al. [2], many attempts have been made at increasing the fermentative capacity of Sac-
charomyces cerevisiae via genetic engineering, but so far all have failed. In their analysis
of the glycolytic enzyme regulation in S. cerevisiae, Daran-Lapujade et.al. found that the
regulation of glycolysis is in fact not mainly exerted at the level of gene expression, but that
it rather resides in the interactions of these enzymes with their environment. This discov-
ery may provide clarification as to why such engineering attempts have previously failed,
and also suggests that metabolic engineers face a greater challenge to achieve the goal of
enhanced fermentative capacity in yeast than what has been previously anticipated [2]. As
was also highlighted by Reznik et.al., uncovering the secrets of the protein-metabolite in-
teractome can thus contribute to more realistic and accurate metabolic models that not only
have purposes relevant to metabolic engineering, but to all domains of systems biology.

While these hypothetical advantages of increased allosteric knowledge motivate the efforts
of the research community to reveal the secrets of the allosteric interactome, there are
several obstacles standing in the way of such discoveries happening at a satisfyingly high
pace. Some of these obstacles are method-specific, as those described in Section 1.2, while
some are relevant to the general case of an allosteric study.

One of the main challenges associated with studying allosteric interactions is the vast space
of possible protein-metabolite interactions. Any metabolite could in theory interact with any
protein, and molecules also affect each others’ ability to bind proteins [29]. Pairing every
small molecule in combination with each other and with every protein results in an infinite
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Figure 1.10: Model of the E. coli core metabolism, extended with allosteric interactions. Acti-
vating and inhibiting interactions are illustrated by green and red edges, respectively [28].

number of putative interactions, whose evaluation is practically impossible to execute. Ad-
ditionally, all protein surfaces are potential allosteric sites, and with both enzymes and non-
catalytic proteins as possible allosteric targets [7], this immense interaction space poses a
challenge that cannot be tackled by either experimental or computational approaches that
are not designed for the purpose of large-scale studies.

Two other major problems in discovering allosteric effectors that are more specific to the
case of experimental detection, are low-affinity interactions and unknown chemical compo-
sition of the interacting metabolites [8]. Since many of the molecules that can be sensed
by allosteric proteins are normally present in high concentrations, the interaction must be
of low affinity for the proteins to sense small changes in the metabolites. However, as men-
tioned in relation to the approaches described in Subsection 1.2.1, this type of low-affinity
interaction is difficult to discover experimentally. Additionally, unlike active-site structures,
allosteric sites are not typically conserved between proteins [8]. While this does aid in the
application of allosteric effectors as therapeutic drugs [16, 17], it also implies that there
are no constraints on the chemistry of the effector molecules [8], thereby providing no
contribution to the downsizing of the broad allosteric interaction space.

The problems related to the discovery of allosteric interactions are especially relevant to
the application of experimental approaches, thereby encouraging the use of computational
methods instead. The approaches described in Subsection 1.2.2 provide evidence of the po-
tential for studying allostery computationally, and as demonstrated by the work of Lu et.al.
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[3], the prediction power provided by computational methods enables the identification of
allosteric sites from protein sequence. Even though these technological developments facil-
itate the identification of novel protein-metabolite interactions, many existing approaches
seem to be adapted to the prediction of sites in and interactions involving only single pro-
teins. While this may be useful for the study of individual reactions and smaller pathways,
systems biologists are typically interested in information on a larger scale, preferably span-
ning the entire genomic content. So far, most systematic studies of allosteric interactions
are limited to either central carbon metabolism or other metabolic subsystems, and to our
knowledge, there have been no efforts to thoroughly map the PMIs of either entire organ-
isms or universally.

With these motivational factors in mind, this project will combine knowledge from the fields
of biochemistry and bioinformatics in order to evaluate the potential of predicting allosteric
interactions from genome sequences. By utilizing data on known protein-metabolite inter-
actions, connections will be drawn between two factors: features annotated to the protein
that is subject of regulation, and the metabolite responsible for the regulating behavior with
the associated mode of regulation.

Documented protein-metabolite interactions, both activating and inhibiting, will be collected
for all available species. Protein structural and sequence features, such as domains and
conserved sites, for the enzymes participating in these interactions, will then be retrieved
as represented by their respective InterPro IDs [30]. Potential patterns between protein
features and protein-metabolite interactions may then be used to deduce the presence of
the same interactions in organisms displaying the same genomic content. Possible uses of
these predictions include the improved accuracy of systems biology models as a result of
implementing currently undocumented interactions, increased competence on topics related
to metabolic engineering, and the discovery of novel drug targets.
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2 Methods

This Chapter describes the work conducted in this thesis, whose workflow is illustrated in
Figure 2.1. The first Section of this Chapter describes part 1 of the diagram, which consists
of downloading data on allosteric interactions from the BRENDA database [31], processing
this information, and performing various statistical analyses in order to evaluate the gen-
eral knowledge of allostery. The second Section regards part 2 of the diagram, where the
prepared data from part 1 is continuously exploited in order to associate allosteric interac-
tions with protein families, domains, and sequence features retrieved from The Universal
Protein Resource (UniProt) [32]. The topics described include how enrichment analysis
was conducted, and the assessment of evidences of statistically associated features and
interactions.

BRENDA

Protein-metabolite interactions

EC Metabolite Mode Organism

1.2.3.4 ChEBI:12345 +/- Genus species

UniProt

Data downloading and processing Analysis

Statistics

Interactions and protein sequence features

EC Metabolite Mode Organism Feature

1.2.3.4 ChEBI:12345 +/- Genus species IPR012345

Enrichment analysis2

1

Figure 2.1: Workflow for this thesis.

The code utilized for the completion of these tasks is available at the GitHub repository
created for this project, at https://github.com/elinsroed/predicting-allostery. The scripts
are written in Python (v. 3.8.6) using Jupyter Notebook (v. 6.4.12) [33], while Microsoft
Excel (v. 2208) [34] and Python’s Pandas package (v. 1.2.2) [35, 36] are utilized to
organize the data. Matplotlib (v. 3.6.3) [37] and Seaborn (v. 0.12.0) [38] are used for the
plotting of most figures. An overview and description of the scripts and datafiles associated
with the current work are given in Table A1 (Appendix A, p. 89).

2.1 Creating an allosteric interactions database

The first main part of the work consisted of establishing a knowledge database of allosteric
interactions. This work consisted of downloading allosteric interaction data from the publicly
available database BRENDA [31], standardizing and filtering that data in order to create an
organized datafile consisting of the interactions that are of the highest interest, and then
analyzing this data with the purpose of gaining a better understanding of our allosteric
knowledge.
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2.1.1 Data download and cleaning

The source of allosteric data utilized in this project is the BRENDA enzyme database [31].
BRENDA classifies enzyme information with respect to the EC nomenclature, which groups
enzymes based on their performance in either the same or related enzymatic functions [31,
39]. The raw dataset of activating compounds and inhibitors from BRENDA was downloaded
by searching the database for ”Activating Compounds” and ”Inhibitors”, respectively. More
specifically, the compounds were accessed by utilizing the database’s ”Classic view” option,
and searching within the ”Activating Compounds” and ”Inhibitors” groups under ”Reaction &
Specificity”. The searches were conducted without specifying parameters in order to retrieve
all available information, and the box for showing organism-specific information was ticked
off in order to include the name of the organism for which the interaction was documented.
The retrieved information included the interactions’ respective EC number, recommended
name (protein), activating/inhibiting compound, commentary, organism, and primary ac-
cession number. The complete results were then downloaded as a CSV file and imported
into Microsoft Excel, resulting in the file ”Allosteric_interactions_BRENDA.xlsx” (Supplemen-
tary information 1, App. A, p. 89) containing separate spreadsheets for the activators and
inhibitors.

Upon viewing the downloaded information, it became evident that processing of the data
was necessary before further analysis could be performed. The addressed issues include
lacking standardization of metabolite and organism ID, and the presence of many unwanted
entries, such as metabolites listed as ”additional information”, interactions documented in
viruses, and interactions involving inorganic and extracellular compounds. The following
two Subsections will describe the standardization and filtering of the allosteric data that
was performed. The notebook used for conducting this work, ”BRENDA_data.ipynb”, can
be found in Supplementary information 6, while all utilized datafiles are available in Sup-
plementary information 1 and 2 (App. A, p. 89).

2.1.1.1 Standardizing metabolite and organism IDs

A preliminary look at the data downloaded from BRENDA made it apparent that metabolites
were referred to by many different synonyms. For example, isopropanol, with Chemical En-
tities of Biological Interest (ChEBI) ID 17824 [40], is in addition to isopropanol also referred
to as 2-propanol, propan-2-ol, 2-hydroxypropane, and isopropyl alcohol, to mention a few.
In order to ensure accurate analysis, these metabolite names were standardized by ChEBI
ID. ChEBI is a database and ontology of biologically interesting chemical entities that is
frequently used as a source of unique identifiers for compounds [40]. The standardization
of metabolites was performed using a file containing the name, ChEBI ID, and Interna-
tional Chemical Identifier (InChI) [41] string for all metabolites documented in BRENDA.
The file, named ”brenda_compounds.tsv”, was downloaded by conducting an empty search
for ligands in the BRENDA database under ”Classic view” - ”Reaction & Specificity” - ”Lig-
ands” [31]. The metabolite names were mapped to ChEBI ID which was further used as
the metabolites’ identifier in the remaining work.

Furthermore, some of the organism names included strain names and other details that
were unnecessary for the purposes of this current work. The organism names were there-
fore standardized by limiting the name length to two, causing different strains and sub-
species of the same organism to be classified together. This was done on basis of the
assumption that there is no strain-level variation for the presence of allosteric regulation.
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2.1.1.2 Filtering the data

Removing illogical entries

The data from BRENDA contained several entries that were illogical for the purpose of this
work. These entries included interactions where the metabolites were listed as ”additional
information” rather than as actual metabolites, and interactions documented with differ-
ent viruses as the originating organism. The entries with ”additional information” as the
metabolite ID and ”virus” in the organism ID were therefore removed from the dataset.

Intracellular compounds

As satisfactory filtering for allosteric interactions in BRENDA was not possible, quite a big
proportion of the retrieved regulatory interactions were not of an allosteric character. Many
of the interactions were competitive, and quite a large group were also extracellular. In
order to increase the proportion of allosteric and metabolic interactions, these entries were
therefore removed by filtering for and only keeping interactions involving intracellular com-
pounds.

This part of the filtering process was achieved by downloading a dataset with all metabolites
participating in models from the BiGG database [42]. The file was retrieved as ”bigg_models-
_metabolites.txt” from ”Data Access” at BiGG’s website [42], and is available as ”bigg_mod-
els_metabolites.csv” (Supplementary information 2, App. A, p. 89). In order to identify
the intracellular compounds, ChEBI IDs were extracted from the ’database_links’ column of
the BiGG dataset. The intracellular interactions from BRENDA were then isolated by filtering
the data for interactions involving metabolites whose ChEBI ID was present in the list of
BiGG ChEBI IDs.

Organic compounds

Primary analysis of the original, unfiltered data showed that many of the documented in-
teractions involved inorganic compounds. Despite these compounds being biologically and
metabolically relevant, they are typically not allosteric effectors, but rather cofactors or
other forms of inhibiting metabolites. To ensure an interaction dataset consisting of mostly
allosteric interactions, a final filtering was performed to remove these compounds.

Filtering of the inorganic compounds required the distinction between organic and non-
organic compounds. There are several recorded definitions for an organic compound. One of
these states that organic compounds are compounds ”in which one or more atoms of carbon
are covalently linked to atoms of other elements, most commonly hydrogen, oxygen, or
nitrogen” [43]. There are however several exceptions to this rule, including the compounds
carbon dioxide and cyanides which are classified as inorganic even though such bonds are
present [43]. Albeit, it is definite that all organic compounds will contain carbon, and from
experience, most biologically relevant organic compounds will also contain either hydrogen,
oxygen, or both. In order to ensure the most complete filtering, several combinations of
determining elements were used and assessed for the filtering of the interaction data.

The filtering process was conducted by checking for the presence of carbon, hydrogen, and
oxygen in the metabolites’ chemical formula, given by the InChI string that was associated
with the metabolites in Subsection 2.1.1.1. InChI is the International Chemical Identifier
developed under IUPAC, and contains the chemical content of a compound [41]. The data
was filtered in three separate rounds using [C], [C,H], and [C,H,O] as the determining
factors to decide which approach was most suitable for isolating the interactions with or-
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ganic metabolites. Primary analysis showed that [C] and [C,H] resulted in the remnant
of inorganic compounds such as cyanide, while [C,H,O] gave seemingly complete filter-
ing. Also, there seemed to be little difference in the most frequent metabolites among the
[C,H] and [C,H,O] groups, and there was only a slightly higher number of both activators
and inhibitors in the [C,H] group, indicating that the typical biologically relevant compound
contains not only carbon and hydrogen, but also oxygen. The data filtered using [C,H,O]
as the determining factor was therefore used for further work.

A final downsizing of the dataset was also conducted by removing duplicate interactions,
whose presence was probably due to several people documenting the same interaction.
The separate datasets of activating and inhibiting interactions were then concatenated,
resulting in a dataset of protein-metabolite interactions involving only organic and in-
tracellular compounds from non-viral organisms. These interactions are documented in
”BRENDA_interactions_intracellular.txt” (Supplementary information 1, App. A, p. 89).

2.1.2 Data analysis

In order to gain a better understanding of the state of our allosteric knowledge, various anal-
yses were conducted on the data from BRENDA that was prepared as described in the previ-
ous Subsection (Sec. 2.1.1). These analyses include statistics on the different elements of
the data, the creation of frequency distributions for these elements, and the visualization of
an interactive network for the most highly regulated enzymes. The Jupyter Notebook con-
taining the script used for performing these analyses, ”BRENDA_analysis.ipynb”, is available
in Supplementary information 9, while the utilized datafiles can be found in Supplementary
information 1 and 2 (App. A, p. 89).

Firstly, statistics on the data were generated by counting the number of interactions, pro-
teins, metabolites, activations, inhibitions, activators, and inhibitors present in the dataset.
The utilized identifiers were EC number for proteins and ChEBI ID for metabolites, while ac-
tivations and inhibitions were identified by the mode of interaction, given by a ”+” or a ”-”,
respectively. Furthermore, frequency distributions of the metabolites, divided into activa-
tors and inhibitors, reactions, and organisms were created to further examine the general
documentation of allosteric data. The top ten metabolites and proteins in the activator,
inhibitor, and enzyme groups were also extracted to evaluate their biological functions and
relevance, while the top ten organisms, ranged by number of documented interactions,
were extracted to assess the documentation of metabolic data in different species. Addi-
tionally, a scatter plot of the activating versus inhibiting metabolites was created with the
purpose of evaluating whether frequent activators are also frequent inhibitors, and vice
versa.

Lastly, using the Python package Pyvis (v. 0.3.1) [44], a network of the top ten enzymes
and their most frequent interacting metabolites was created in order to visualize and more
easily evaluate the connections of this group. The most frequent metabolic regulators were
defined as those interacting with either two or more of the top ten enzymes, and the network
is visualized in the HTML file ”network.html” (Supplementary information 10, App. A, p.
89).

2.1.3 Conservation of allosteric interactions

As mentioned in the introduction, the prediction and discovery of novel allosteric interactions
are made more difficult by allosteric sites not typically being conserved between proteins
[8]. As the conformation of the allosteric sites affects which effector molecules bind and
what effect they have on the protein, it is possible that this low degree of conservation might
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influence the conservation of allosteric interactions across species as well. As a mode of
evaluating whether this is the case, this part of the current work has the aim of mapping a
selection of allosteric interactions onto a phylogenetic tree spanning the three taxa of life,
Archaea, Bacteria, and Eukaryota.

In order to create a phylogenetic tree, a phylogeny file must first be built. Using a prepared
file of the top 100 most documented species in the interaction data from BRENDA, the
tool PhyloT [45] was utilized for creating a Newick file for the phylogeny of these species.
PhyloT builds the file by retrieving the genomes of the wanted species from the Taxonomic
Database of the National Library of Medicine (NCBI) [45, 46]. Among the top 100 species
in BRENDA were seven species whose genomes could not be retrieved. These species
included subspecies without specification and a species listed as ”Mammalia”. Because of
this, only 93 species were included in the tree generated by PhyloT, and the remaining six
unique organisms had to be manually added. These were ’Pseudomonas sp.’, ’Rattus sp.’,
’Bacillus sp.’, ’Synechocystis sp.’, ’Streptomyces sp.’, and ’Arthrobacter sp.’. As a branch
of the Mammalian species was already present in the tree, these organisms were simply
identified in order to properly map interactions in later steps.

For the manipulation of the Newick tree file created with PhyloT, Python’s package ETE3 (v.
3.1.2) [47] was utilized. The notebook used for this manipulation, ”create_phylotree.ipynb”,
is available in Supplementary information 8 (App. A, p. 89). The organisms were added by
manually researching their phylogeny in the NCBI Taxonomic Database [46], and then using
ETE3’s built-in functions to traverse and search the tree for the closest relatives of these
species. When the closest precursor was found, the organisms were added as children to
these nodes. The results from this work was a Newick phylogenetic tree file of 99 organisms,
available as ”tree_final.nw” (Supplementary information 4, App. A, p. 89).

The interactions to be mapped were selected based on their frequency of documentation
among the species in the tree. The top ten documented EC numbers were first identi-
fied, and the top metabolic regulator for each EC number was subsequently determined
based on the number of interactions between the relevant protein and metabolite with the
correspondent mode (activation/inhibition).

For annotating the tree with the chosen allosteric interactions, the web tool Interactive Tree
Of Life (iTOL) [48] was utilized. iTOL allows the user to upload a file, for example in Newick
format, for visualization of the tree, and then to upload several datasets for annotating
the tree with different symbols based on defined labels. Several different formats of such
files are accepted, but the one most appropriate for the work in this project is the binary
annotation file. This type of file contains information about the dataset, such as the type and
label of the dataset, and what type of separator is used for separating different variables.
The file also contains information on the different labels to be mapped, including their name,
and what color and shape each label should be denoted by. The data itself is represented
by a binary matrix, where each row contains one organism and one number for each label,
as shown in the example matrix in Table 2.1. The different possible values are 1, 0, and -1,
resulting in a colored symbol, an empty symbol, and no symbol in the tree, respectively.
For solving this current task, interactions being present in an organism were represented
by the number 1, and interactions not being present were represented by the number -
1. The different interactions were distinguished by different symbol colors, resulting in a
tree where each documented interaction is visible as a colored square at the end of an
organism’s branch, as shown in Figure 2.2 for the species of the Mammalian class with
three interactions.
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Table 2.1: Example of binary annotation matrix, for mapping documented protein-metabolite
interactions.

Field labels Int 1 Int 2 Int 3
Homo_sapiens 1 1 1
Rattus_norvegicus 1 -1 1
Bos_taurus -1 1 -1
Mus_musculus -1 1 -1
Sus_scrofa 1 1 1
Oryctolagus_cuniculus 1 -1 -1
Ovis_aries -1 1 -1
Rattus_sp. 1 -1 1
Equus_caballus -1 -1 1
Canis_lupus 1 1 1
Cricetulus_griseus 1 -1 -1
Cavia_porcellus -1 -1 -1
Mesocricetus_auratus -1 -1 1
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Figure 2.2: Example of phylogenetic tree, mapped with documented protein-metabolite interac-
tions.

2.2 Predicting interactions from protein features

The database of allosteric interactions that was constructed in the first part of the work in
this thesis provides basic allosteric knowledge of numerous species. The parts of this Sec-
tion will describe the work performed to exploit this knowledge for the purpose of predicting
protein-metabolite interactions based on information of protein families, domains, and se-
quence features. This work consisted of retrieving protein information for all EC number
and organism couples present in the data, performing enrichment analysis using Fisher’s
exact test for determining the statistical significance of feature-interaction associations,
analyzing the results from enrichment analysis by investigating the biological relevance of
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associated interactions and features, and lastly, mapping and validating predicted interac-
tions to the phylogenetic tree created in 2.1.3 to evaluate whether this approach can be
used for predicting allostery from protein structure.

2.2.1 Downloading protein annotations

The publicly available databases UniProt and InterPro [32, 30] contain structural annota-
tions for most of the proteins that are documented in BRENDA, and UniProt entries are
additionally reported with cross-references to InterPro accessions [32, 30]. The UniProt
database [32] was therefore used to retrieve protein data for the top hundred organ-
isms. The script used for downloading protein data is available in the notebook ”down-
load_features.ipynb” (Supplementary information 7, App. A, p. 89), while all utilized
datafiles can be found in Supplementary information 1, 2, and 3 (App. A, p. 89).

Classifying proteins by structure

Proteins can be classified into distinct groups based on several different properties and be-
haviors. For example, proteins can be classified based on chemical and structural properties
such as solubility, or based on their biological functions [49]. However, proteins may have
similar solubilities despite being both structurally and functionally different, and they may
also display a range of functions that proposes their classification into several groups [49].
Additionally, not all proteins have known functions, such as those that have been recently
discovered and require functional clarification. Another strategy for classifying proteins that
has been applied in more recent years is classification based on the proteins’ structural and
sequential properties. Identifying such properties of novel proteins allow scientists to pre-
dict their biological function without conducting any additional experimental work besides
determining the protein’s amino acid sequence and structural conformation [50]. The func-
tional properties of a protein are in part determined by what molecules it binds and how
that binding affects the protein’s dynamics, for example the effect of allosteric regulators.
The protein structure may therefore be used as a determinant of allosteric effector binding,
and traits utilized for such structural classification include protein families, domains, and
sequence features [50].

Proteins grouped together due to common evolutionary origin constitute the same protein
family [50]. In InterPro, a source of protein sequence information and tools for perform-
ing functional protein analysis [30], entries are classified into family and homologous su-
perfamily based on similar functions, sequence, and structure and only similar structure,
respectively [30]. Proteins of the same superfamily are more distantly related and display
lower sequence similarity than proteins of the same family [50].

While proteins within the same families typically display similar functions, protein domains
can be present in proteins with very different functions [50]. A protein domain is defined
as a distinct either functional, structural, or sequence unit in a protein, that is usually
responsible for the conduction of a specific function or interaction which affects the protein’s
overall biological role [30, 50]. Domains are not constricted to specific biological contexts
and can be found in proteins belonging to the same or different protein families [50].

The third type of protein classifier is sequence features. Sequence features are similar to
domains as they confer specific functions to the protein that affects its overall role, but they
are much smaller, usually only a few amino acids, and often reside within domains. Different
types of sequence features are active sites, binding sites, post-translational modification
(PTM) sites, and repeats [50]. InterPro also documents a type of feature referred to as
conserved site [30]. Active sites and binding sites contain conserved amino acids involved
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in catalytic activity and binding of molecules or ions, respectively [30, 50]. Conserved
sites are similar to these, but the conserved residues may not have a documented function
[30]. PTM sites consist of residues that are modified after protein translation, for example
by acetylation or methylation, while repeats are repeated amino acid sequences within a
protein that may possess binding or structural properties [50].

As mentioned, UniProt contains protein structure, sequence, and feature information about
all proteins in BRENDA. UniProt is a resource for protein sequence and annotation data
that collects information from several external sources in order to preserve the UniProt
databases, including the UniProt Knowledgebase (UniProtKB) of functional information of
proteins [32]. One of these external sources is the European Molecular Biology Laboratory’s
European Bioinformatics Institute (EMBL-EBI), which provides the InterPro service [32, 30].
Information on InterPro entries for protein characteristics annotated to a protein in UniProt
is available under the ’Family and domain databases’ category of the ’Family & Domains’
section, where cross-references to other databases are listed. The InterPro entries have
IDs denoted by ’IPR’, followed by a six-digit number, and each ID represents one unique
InterPro entry of one of the types that were mentioned above, namely family, homologous
superfamily, domain, active site, binding site, conserved site, PTM, or repeat. For the
sake of simplicity, the term ’feature’ will be used to describe all structural and sequential
classifiers.

Retrieving protein information

For downloading the protein information for the top hundred organisms in the BRENDA
data from UniProt, Python’s Bioservices package (v. 1.10.4) [51] was first used. The
utilized function, get_df(search_string), retrieves a dataframe of all data that can be ac-
cessed in the web interface of UniProt, including information on properties such as bind-
ing sites, active sites, and domains for the protein that is searched. The proteins of
interest in this analysis were obtained from the file of allosteric interactions created in
2.1.1. As the interactions are organism-specific, UniProt entries of the proteins were
searched for by creating strings containing information on both the EC number and or-
ganism; 'EC:12345 AND Homo sapiens AND reviewed:true'. The search strings also specified
that only information on reviewed entries was to retrieved, as these have been verified by
the team at UniProt [32]. By default, the get_df() function only returns information on the
top ten entries. To ensure an as accurate analysis as possible, and despite a slightly longer
run time, this limit was increased to 100 entries. The result of this process, with only rele-
vant data columns included, is recorded in ”protein_features_uniprot.txt” (Supplementary
information 3, App. A, p. 89). As the UniProtKB database is continuously updated, it is to
be noted that a new retrieval attempt might return other results than what was achieved
in this work.

Examining the retrieved protein data made it clear that protein features were described by
the type and name of feature in string format, rather than by unique identifiers. As these
feature names are not necessarily standardized for all entries and therefore more difficult
to work with for associating a feature with an interaction, finding other sources of protein
information was appealing. This work was therefore continued by utilizing the SeqIOmodule
of the Biopython package (v. 1.80) [52] and the Python urllib package (v. 1.26.12) [53]
to extract data from the URLs for every protein whose UniProt entry ID had been retrieved
and was documented in the file ”protein_features_uniprot.txt” (Supplementary information
3, App. A, p. 89). By this approach, the InterPro IDs that are cross-referenced to every
UniProt entry could be downloaded and associated with the respective protein-organism
pair, resulting in the file ”protein_feature_interpro.txt” (Supplementary information 3, App.
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A, p. 89) which contains a list of InterPro IDs for every unique combination of UniProt entry
ID, organism, and EC number.

Lastly, in order to associate the retrieved InterPro IDs with allosteric interactions, the re-
trieved data was merged with the prepared file from Subsection 2.1.1, after filtering the
interactions file for the top hundred organisms. The data was further reorganized to get
one unique interaction and feature on every row, which resulted in a file of unique associ-
ations between interactions, denoted by EC number, organism, metabolite and mode, and
InterPro IDs. As the InterPro accession IDs are not very descriptive, they were mapped to
entry type and name by merging the dataframe with a file of basic InterPro entry informa-
tion, ”entry.list.txt” (Supplementary information 2, App. A, p. 89), which was downloaded
from the ”Download” section on the InterPro website [30]. The association of interac-
tions with features and mapping of InterPro IDs to types and names resulted in the files
”features_interactions_merged.txt” and ”features_interactions_merged_types.txt”, respec-
tively (Supplementary information 3, App. A, p. 89).

2.2.2 Enrichment analysis

Enrichment analysis is a type of analysis that is performed with the purpose of identifying
enriched sets of a type of variable among a large population. It is typically used in gene ex-
pression analyses for identifying over- or under-expressed sets of genes in a sample [54],
but it can in principle be applied to any case. Enrichment analysis requires the applica-
tion of a statistical test to calculate the degree of enrichment and its statistical significance
[54], for example, Fisher’s exact test. The following Subsections detail how enrichment
analysis was conducted using Fisher’s exact test, and describe the evaluation and valida-
tion of statistically significant associations between features and interactions. The work of
the two first parts of the enrichment analysis, described in Subsection 2.2.2.1 and 2.2.2.2,
was performed utilizing the notebook ”enrichment_analysis.ipynb”, while the notebook ”ex-
plore_predictions.ipynb” contains the main scripts used for assessing predicted interactions
(Supplementary information 11, App. A, p. 89), which is described in the final Subsection
(2.2.2.3) of this Chapter. The datafiles used for the work described in this Section are
available in Supplementary information 1, 2, 3, and 5 (App. A, p. 89).

2.2.2.1 Fisher’s exact test

In order to investigate whether there are any statistically significant associations between
protein features and protein-metabolite interactions, Fisher’s exact test was applied. The
Fisher’s exact test is a type of statistical test that can be used for determining whether
there is an association between two categorical variables [55], with the null hypothesis
being that there is no association between the rows and columns of a 2x2 contingency
table [56]. In the case of the current work, where the aim is to associate protein features
and interactions, the null hypothesis is defined as follows: there is no association between
the presence of a specific protein feature, given by its InterPro ID, and a specific protein-
metabolite interaction, given by the interacting metabolite and the mode of interaction
(+/-).

Table 2.2 shows an example of a 2x2 contingency table for a certain protein feature and
a certain interaction. The number of cases in which both the feature and interaction are
present provides the value in the upper left cell (fi), the number of cases in which only the
feature is present provides the value of the upper right cell (f̃ i)), the number of cases in
which only the interaction is present provides the value of the lower left cell (f ĩ), and lastly,
the number of cases in which neither the feature nor the interaction is present provides the
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value in the lower right cell (f̃ ĩ). As there are several thousands of different interactions
and features, the number of combinations in which neither specific variable is present will
always be the highest.

Table 2.2: An example of a 2x2 table of categorical variables, for statistical testing of the
association between an interaction and a protein feature using Fisher’s exact test.

Protein feature present (f) Protein feature not present (f̃)

Interaction present (i) 8 75

Interaction not present (ĩ) 102 11 573

Fisher’s exact test produces two values; the odds ratio (OR) and the p-value. The OR shows
how many more times positive cases occur than negative cases [57], which in the current
point of issue are constituted by the cases where either both the feature and the interaction
is present (fi) or neither the feature nor the interaction is present (f̃ ĩ), and those where
only the feature or the interaction is present (f ĩ, f̃ i), respectively. The OR is calculated as
shown in Eq. 1 [57, 58].

OR =
fi/f̃ i

f ĩ/f̃ ĩ
(1)

The OR can be perceived as a measure of association between an exposing variable, the
feature, and an outcome, the interaction [58]. For a more intuitive interpretation, the
OR value can also be normalized using log10-transformation (log(OR)). The OR will in this
project be interpreted as explained by Eq. 2-4 [58]:

OR = 1 ⇔ log(OR) = 0 ⇒ presence of interaction is not affected by presence of feature (2)

OR > 1 ⇔ log(OR) > 0 ⇒ presence of interaction is associated with higher presence of feature (3)

OR < 1 ⇔ log(OR) < 0 ⇒ presence of interaction is associated with lower presence of feature (4)

Fisher’s exact test can be applied either two-sided or one-sided, where the one-sided version
has two alternatives; less and greater. With a two-sided hypothesis test, one tests the null
hypothesis of the OR being equal to 1 (OR = 1), while the one-sided version tests whether
the OR is equal to or greater than 1 (OR ≥ 1) and equal to or less than 1 (OR ≤ 1) for the
less and greater variant, respectively [57]. The example in Table 2.2 gives an OR of 12.10
with associated p-value of 1.00e-6 using a two-sided test, which implies that the probability
of the OR being 1 is 0.0001%. For determining whether this is a statistically significant
score, the p-value must be compared to a confidence threshold α [59]. Choosing a 95%
confidence interval, which implies that 95% of the calculated intervals upon repeating the
estimation process with random samples from the same distribution is expected to contain
the true value [60], gives a threshold of 0.05 (5%). As the p-value of 1.00e-6 is less
than 0.05, this indicates that there is a significant association between the feature and the
interaction. Had the p-value been equal to or above 0.05, the null hypothesis of the OR
being equal to 1 could not have been rejected, and the specific feature could thereby not
be associated with that specific interaction. Likewise for the one-sided version, the p-value
must be below the threshold (α) set by the confidence interval for the null hypothesis to be
rejected [57].
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As this type of analysis involves not only one, but several separate statistical tests, the re-
sulting p-values should be multiple testing corrected. This type of correction is performed in
order to adjust the statistical confidence measures based on the number of tests performed,
and thereby reduce the number of false-positives [59]. Adjustment can be conducted using
false discovery rate (FDR) estimation. The FDR is a measure of the number of incorrect
associations among all that are accepted, defined as the rate of false positives within the
group of accepted associations (p-value < α) [61]. The FDR can further be used to calculate
the adjusted p-value, also referred to as the q-value. Equally as the p-value, the q-value is
also a measure of the significance of an association, but it is calculated in terms of the FDR
instead of the false positive rate. This means that while a threshold of 5% for the p-value
implies that 5% of the truly not significant associations are considered significant, the same
threshold for the q-value entails that among all significant associations, 5% of these are
truly null [62].

The results from Fisher’s exact test for a larger group of exposure-outcome-pairs can be
visualized by plotting the OR-values and q-values as a scatter plot, with log(OR) on the
x-axis and log(q-value) on the y-axis. As for the confidence values, a threshold can be set
for the OR-value as a measure of how strong the association between the exposure and
outcome must be in order for the association to be scientifically interesting. This limit could
for example be log10(OR) > 1, which in the current case insinuates that the association is
only regarded if the odds of the interaction being present is at least 10 times higher when
the feature is present. These positively associated features and interactions will be visible
as dots in the top right of the scatter plot. The negatively significantly associated pairs will
be to the left of the -1 mark on the x-axis, while the null-associations lie closer to the x-axis
around the 0 mark. Due to their resemblance to volcano outbursts, these types of plots are
often referred to as volcano plots.

To test the null hypothesis of protein features and protein-metabolite interactions not be-
ing associated, two-sided Fisher’s exact test was applied to the data of protein features
generated in Subsection 2.2.1 (”features_interactions_merged_types.txt”, Supplementary
information 3, App. A, p. 89) utilizing the SciPy statistical functions module (v. 1.6.1)
[63, 64]. The resulting p-values were adjusted by FDR-correction utilizing the Statsmod-
els module (v. 0.13.5) [65, 66], and OR-values of infinite magnitude were limited to a
threshold outside of the OR range. Adjusted p-values (q-values) and OR-values were then
transformed on a negative and positive log10-scale, respectively, utilizing Python’s Numpy
package (v. 1.20.1) [67, 68]. For simplicity, -log(q-value) will be denoted as log(q)
where relevant. Analysis of these results demonstrated that no or close-to-no features
were negatively associated with interactions. The enrichment analysis was therefore re-
peated utilizing the greater one-sided variant, and the resulting data, reported in the file
”fishers_test_results.txt” (Supplementary information 5, App. A, p. 89) for all associations
and in the file ”predicted_interactions.txt” (Supplementary information 5, App. A, p. 89)
for only statistically significant associations (log(OR) > 1, q-value < 0.05, further denoted
’predictions’/’predicted interactions’), was further used for the work that will be detailed in
the following Subsections.

2.2.2.2 Statistically associated features and interactions

The data of associated protein features and protein-metabolite interactions that was gen-
erated in Subsection 2.2.1 included protein features of eight different types: active site,
binding site, conserved site, domain, family, homologous superfamily, PTM, and repeat. In
order to visualize the results produced from Fisher’s exact test in the previous Subsection
(Sec. 2.2.2.1), the log(OR)- and log(q)-values from ”fishers_test_results.txt” (Supplemen-
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tary information 5, App. A, p. 89) were plotted in 16 different volcano plots separated by
type of feature and by activating and inhibiting interactions. The plots were created utilizing
shared x- and y-axes for easier comparison between the groups, and to aid in the evaluation
of the effect and significance of different features in the prediction of allosteric interactions
from protein structure. The statistical values from Fisher’s exact test and the volcano plots
were further used to identify highly associated feature-interaction pairs, which were further
explored to evaluate whether the association can be biologically explained. This evaluation
was performed manually by researching the biological function of the relevant metabolite
and protein feature, and assessing their connection.

Additionally, two UpSet-plots comparing the predicted interactions, reported in ”predicted_i-
nteractions.txt” (Supplementary information 5, App. A, p. 89), for each feature type were
created using Python’s UpSetPlot package (v. 0.8.0) [69, 70]. UpSet plots are a way
of visualizing the relationship between larger number of sets, and are therefore a good
alternative to Venn diagrams when working with multiple data groups [69]. Generating
an UpSet plot requires the creation of a dataframe of counts for different subsets and
boolean values that denote whether the individual sets are part of the subset in question.
Python’s UpSetPlot package has a function for constructing such a dataframe from existing
dataframe columns, which was used to create plots from dataframes of feature-predicted
activating and inhibiting interactions. The features were mapped from InterPro ID to type
using the file ”entry_list.txt” (Supplementary information 2, App. A, p. 89). For better
visualization, only groups containing 6 and 10 or more entries were included for activations
and inhibitions, respectively. The purpose of generating these plots was to further elucidate
the relationship between different feature types, and possibly deduce whether any of the
types are excessive in the prediction of PMIs.

Lastly, histograms of the number of predicted interactions for each individual feature, de-
fined by unique InterPro ID, and histograms of the number of features associated with each
predicted interaction were created for every distinctive type of protein feature. This was
done with the purpose of evaluating the importance of specific features for predicting al-
losteric interactions, and in order to investigate whether any interactions are more highly
predicted in terms of the number of protein features they are predicted by. Separate his-
tograms were made for the activating and inhibiting interactions, resulting in four different
histograms for each feature type.

2.2.2.3 Predicting interactions

After conducting enrichment analysis, the statistically significant associations were used
to predict allosteric interactions that had not been previously reported. This was accom-
plished by mapping predicted interactions onto the phylogenetic tree that was created in
Subsection 2.1.3. In order to annotate interactions to all organisms and not only to those
for which the mapped EC numbers were already documented in BRENDA, protein features
for all annotated EC numbers for all organisms present in the phylogenetic tree were down-
loaded utilizing the notebook ”download_features.ipynb” (Supplementary information 7,
App. A, p. 89). The data retrieval was performed by the same approach as described in
Subsection 2.2.1, only searching for combinations of the top hundred organisms and the
ten EC numbers mapped in the tree. The results from this search are available in the file
”features_for_ECs_in_tree.txt” (Supplementary information 3, App. A, p. 89).

For determining predicted interactions for the organisms in the phylogenetic tree, the note-
book ”explore_predictions.ipynb” (Supplementary information 11, App. A, p. 89) was uti-
lized. The dataframe from the file of predicted interactions and their associated features
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from Subsection 2.2.2.1, ”predicted_interactions.txt” (Supplementary information 5, App.
A, p. 89), was filtered for the annotated interactions using the prepared file ”interac-
tions.csv” (Supplementary information 4, App. A, p. 89), which contains information on
all organisms and their annotated protein-metabolite interactions from the tree created in
Subsection 2.1.3. To establish which features could be used as predictors of each interac-
tion, the features in this dataframe were grouped to create a new dataframe where each
interaction (ChEBI : Mode) is assigned a list of predicting features.

For each feature retrieved for an EC number-organism pair, from ”features_for_ECs_in_tree-
.txt” (Supplementary information 3, App. A, p. 89), each group of interaction-associated
features was iterated through to find matches between the retrieved and the predicting
features. The organisms with matching features, and who weren’t already documented to
have the interaction, were added to an interaction-specific list of predicted organisms. A
dataframe containing both documented and predicted organisms for each interaction (EC
number : ChEBI ID : Mode) was then used to create a new binary annotation file (see
Subsec. 2.1.3) such that the predicted interactions are represented by a value of 0 in the
matrix, resulting in an empty symbol at the respective label and species, as illustrated in
Table 2.3 and Figure 2.3, respectively.

Furthermore, as a mode of validation of these organism-specific predicted interactions, lit-
erature was searched with the aim of finding potential experimental proof of these feature-
interaction connections. As BRENDA requires scientists to upload data themselves, there is
a genuine possibility that novel interactions are discovered but simply not documented in
BRENDA. If that is the case, it would function as a validation of the computational prediction.
Finding literature that states the opposite of what is suggested by the predictions would also
function as a mode of detecting potential false-positive predictions. The validation process
was conducted by utilizing the notebook ”explore_predictions.ipynb” (Supplementary in-
formation 11, App. A, p. 89) to create a file of the interactions that were predicted to
take place in the organisms of the phylogenetic tree based on the presence of associated
protein features, named ”predicted_interactions_to_be_validated.txt” (Supplementary in-
formation 5, App. A, p. 89), and searching for literature containing information on these
organism-specific interactions. The literature search itself was conducted with the help of
the co-supervisor of this thesis, Elisa Márquez-Zavala. The resulting evidence is reported
in the file ”evidence_of_predictions.csv” (Supplementary information 5, App. A, p. 89),
which includes article information such as the title, abstract, and DOI for each article that
was found for every organism-specific interaction. These evidences were investigated man-
ually.
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Table 2.3: Example of binary annotationmatrix, for mapping documented and predicted protein-
metabolite interactions.

Field labels Int 1 Int 2 Int 3
Homo_sapiens 1 1 1
Rattus_norvegicus 1 0 1
Bos_taurus 0 1 -1
Mus_musculus -1 1 0
Sus_scrofa 1 1 1
Oryctolagus_cuniculus 1 0 -1
Ovis_aries 0 1 -1
Rattus_sp. 1 0 1
Equus_caballus 0 -1 1
Canis_lupus 1 1 1
Cricetulus_griseus 1 0 -1
Cavia_porcellus -1 0 0
Mesocricetus_auratus -1 0 1
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Figure 2.3: Example of phylogenetic tree, mapped with documented and predicted protein-
metabolite interactions.
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3 Results

This Chapter will present and describe the results from the work performed in this thesis,
following the structure given in the Chapter of Methodology (Chapter 2). The first Section
is dedicated to examining the content of the assembled allosteric database. This examina-
tion includes various statistical analyses, a biological review of frequent allosteric regulators
and proteins, and assessing the conservation of allosteric interactions across evolutionary
distant and related species. These analyses are followed by the second Section which gives
a short description of the results from protein feature retrieval, before going into depth
of the results from enrichment analysis where all retrieved data is exploited for drawing
connections between the level of protein structure and the level of metabolic regulation by
an allosteric mechanism. This final Subsection will provide an overview of the identified
connections, present some of these associations in more detail to investigate their biolog-
ical validity, and demonstrate how predicted interactions affect the allosteric conservation
among species.

3.1 Creating an allosteric interactions database

The creation of an allosteric interactions database exploited data on activating and inhibit-
ing compounds retrieved from the BRENDA database [31] for all available organisms and
interactions. The first of the following Subsections summarises the state and statistics of
this assembled database after processing. The second Subsection presents information on
the different contents of the data, while the third and last Subsection will regard the phy-
logenetic conservation of allosteric interactions as suggested by the available information.

3.1.1 Data download and cleaning

Filtering for organic and intracellular compounds resulted in a file of organism-specific
protein-metabolite interactions whose data statistics are displayed in Table 3.1. The number
of interactions, including activations and inhibitions, is identified by the number of interac-
tions between unique proteins and unique metabolites, which are identified by EC number
and ChEBI ID, respectively. The number of unique, not organism-specific interactions is
included in parentheses.

Table 3.1: Statistics on the interaction data from BRENDA, after filtering for organic and intra-
cellular compounds. Proteins are identified by EC number and metabolites by ChEBI ID. Parentheses
denote the number of unique, not organism-specific interactions.

Data type Number

Interactions 32 535 (18 854)
Proteins 3 097
Metabolites 1 002
Activations 6 931 ( 4 096)
Inhibitions 25 604 (14 758)
Activators 479
Inhibitors 985
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An observation made from these statistics is that there is a higher content of inhibitors and
inhibiting interactions than of activators and activating interactions. More specifically, the
number of inhibitors is double the number of activators, and 78.7% of all interactions are
inhibitory. A possible reason for this relationship is that the inhibiting interactions include
both allosteric and competitive inhibitors. Although it would have been beneficial to separate
and filter out competitive inhibitors, there was not enough information available in BRENDA
to classify the type of interaction. The possible reasons for this observed relationship will
be elaborated upon in Chapter 4 (p. 59).

3.1.2 Data analysis

Figure 3.1 shows the result from frequency distribution analysis of the activating metabo-
lites, with the number of compounds on a log10-transformed scale. The majority of the
activators participate in only a few interactions, as represented by the high bars to the
left of the plot. More specifically, 448 of the activators (93.5%) participate in 50 interac-
tions or less, 353 activators (73.7%) in 10 interactions or less, and lastly, 145 activators
(30.3%) participate in only 1 interaction. To compare, only 12 compounds take part in 100
or more activating interactions, clearly showing that only a few metabolites regulate very
high numbers of proteins in an activating manner.

Figure 3.1: Frequency distribution of activators. The frequency of each metabolite was calcu-
lated by counting its number of occurrences in activating interactions, which are denoted by Mode:
+. The number of compounds is shown on a log10-transformed scale.

As the same protein-metabolite interaction may occur in several different organisms, the
prepared data contains duplicated interactions. This was accounted for by analyzing the
frequency distribution of activators participating in only unique interactions as well, with
results illustrated in Figure 3.2. The general distribution has not changed; the majority of
activators still participate in only a few interactions, while a few compounds display high
activating behavior. One observation made from these two distributions, however, is that
the top ten regulatory compounds were somewhat different. When not accounting for dupli-
cated documentation, adenosine triphosphate (ATP) was the top activating metabolite, with
glutathione and cysteine as second and third most frequent, respectively. After removing
duplicated interactions these metabolites had been rearranged, making glutathione the top

36



activator and ATP the third most frequent.

Figure 3.2: Frequency distribution of activators; unique interactions. The frequency of each
metabolite was calculated by counting its number of occurrences in unique activating interactions,
which are denoted by Mode: +. The number of compounds is shown on a log10-transformed scale.

Table 3.2 summarizes the metabolic functions of the top ten most common activators, not
accounting for multiple documentation. These metabolites include the nucleotides ATP,
adenosine diphosphate (ADP), adenosine monophosphate (AMP), and guanosine triphos-
phate (GTP), the antioxidants glutathione, cysteine, and ascorbate, the alcohol ethanol,
the essential cofactor pyridoxal phosphate (PLP), and the phosphorous sugar compound
fructose 1,6-bisphosphate. The metabolic pathways regulated by these metabolites in-
clude central carbon metabolism, degradation and biosynthesis of glycogen, amino acid
catabolism, and synthesis of nucleotides.

The result from frequency distribution analysis of the inhibiting metabolites is displayed in
Figure 3.3, with the number of compounds shown on a log10-transformed scale. Similar as
for the activating compounds, the majority of inhibitors participate in only a few interactions,
while the minority participate in either an intermediate or low number of inhibitions. 871 of
the inhibitors (88.4%) participate in 50 interactions or less, 616 (62.5%) in 10 interactions
or less, and 207 (21.0%) in 1 interaction. Furthermore, 61 (6.2%) and 24 (2.4%) of these
compounds take part in 100 and 200 inhibitions or more, respectively, while 1 metabolite
(0.1%), which was identified as ATP, participates in over 1 000 inhibitions. Although the
inhibiting metabolites show a trend of participating in more interactions than what is ob-
served for the activators, these results still indicate that compounds tend to interact with
only a few proteins in a regulating matter. However, the results also imply the existence of
metabolites that partake in a remarkably high number of protein-metabolite interactions,
and who thereby seem to exert a high level of control over several cellular processes.

As for the activating compounds, the frequency distribution of inhibitors is affected by the
presence of duplicated interactions. The frequency distribution of inhibitors participating in
only unique interactions is displayed in Figure 3.4, which shows a similar pattern between
the number of inhibitions and the number of compounds as previously observed. Unlike the
activating compounds, the top ten inhibitors were only slightly different after accounting
for duplicated interactions; ATP was still identified as the top inhibitor, followed by ADP and
AMP.
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Table 3.2: Top ten activators and their biological functions.

Metabolite Type of compound Biological functions

ATP Nucleotide [71]

An energy carrier [72], higher concentration indicates a high energetic
state [73, p. 582]. Allosterically activates pyruvate dehydrogenase ki-
nase which is part of the pyruvate dehydrogenase complex. The kinase
inactivates the complex causing a reduced flux through the citric acid
cycle [73, p. 640].

Glutathione Tripeptide [74]

Functions as a redox buffer and an antioxidant. It is for example used to
remove toxic peroxides formed under aerobic conditions, and functions
as a reducing agent in deoxyribonucleotide synthesis [73, p. 885].
Glutathione has also been shown to allosterically activate the master
virulence regulator PrfA of Listeria monocytogenes [75], and it functions
as a cofactor for several enzymes [76].

Cysteine Amino acid [73,
p.689]

Cysteine has strong antioxidant properties [77], functions as a sulfide
donor [78], and functions as an acid-base catalyst in the active site of
enzymes [73, p.197].

D-fructose
1,6-
bisphosphate

Sugar phosphate

Fructose 1,6-bisphosphate is an intermediate of glucose metabolism,
formed in one of the steps of glycolysis [79]. It can be further trans-
formed in late glycolysis and the citric acid cycle for production of en-
ergy and other metabolic building blocks [79], but it also has a role as a
metabolic regulator by affecting the activity of several enzymes involved
in central carbon metabolism [80]. Its regulatory mechanisms include
allosteric activation of pyruvate kinase and glucose-1-phosphate adeny-
lyltransferase [32].

Ascorbate Vitamin [81]

A vitamin that functions as a coenzyme for several enzymes, and has
anti-oxidant and anti-inflammatory effects [81]. Has been shown to
enhance the enzymatic activity of TET-enzymes, which play important
roles in different biological and pathological processes such as regula-
tion of DNA demethylation, gene transcription, embryonic development,
and oncogenesis [82].

AMP Nucleotide

Higher cellular concentration of AMP indicates a low energetic state.
Allosterically activates AMP-activated protein kinase (AMPK) which in-
creases glucose transport, activates glycolysis and fatty acid oxida-
tion, and suppresses energy-requiring processes. Also allosterically
activates phosphofructokinase-1 (PFK-1) to increase flux through gly-
colysis, glycogen phosphorylase to increase glycogen breakdown, and
pyruvate dehydrogenase to increase flux through the citric acid cycle
[73, p. 582, 592, 609, 640].

ADP Nucleotide

Higher cellular concentration of ADP indicates a lower energetic state.
ADP allosterically activates phosphofructokinase-1 (PFK-1), causing an
increased flux through glycolysis. ADP also activates citrate synthase
of the citric acid cycle and glutamate dehydrogenase which functions in
amino acid catabolism. In addition, higher concentrations of ADP also
activate other enzymes of the citric acid cycle and the respiratory chain
[73, p. 582, 592, 640, 681, 743], all causing higher energy production.

Ethanol Alcohol
Affects the function of several neurotransmitter-gated ion channels, in-
cluding allosteric activation of the glycine receptor [83].

GTP Nucleotide

GTP can be utilized for nucleic acid synthesis, as an energy source for
protein synthesis and gluconeogenesis, and as a signaling molecule
[84]. Regulatory functions of GTP include activation of phospho-
enolpyruvate carboxylase [85] and allosteric activation of cytidine-5’-
triphosphate (CTP) synthase (CTPS) [86], and it may also allosterically
activate argininosuccinase [87].

Pyridoxal
phosphate

Coenzyme [88]

Pyridoxal phosphate (PLP), the catalytically active form of vitamin B6, is
an essential cofactor for several different classes of enzymes [89]. PLP
is the cofactor of all aminotransferases, which catalyze the first step in
the catabolism of most amino acids [73, p. 679].
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Figure 3.3: Frequency distribution of inhibitors. The frequency of each metabolite was calculated
by counting its number of occurrences in inhibitory interactions, which are denoted by Mode: -. The
number of compounds is shown on a log10-transformed scale.

Figure 3.4: Frequency distribution of inhibitors; unique interactions. The frequency of each
metabolite was calculated by counting its number of occurrences in unique inhibitory interactions,
which are denoted by Mode: -. The number of compounds is shown on a log10-transformed scale.

An overview of the top ten most common inhibitors and their functions in metabolism is
given in Table 3.3. As for the activators, these compounds include the energy carriers ATP,
ADP, and AMP [72, 73], the amino acid cysteine [73, p. 689], and the tripeptide glutathione
[74]. In addition to these, the group also contains the nitrogenous compound urea [90],
the coenzymes nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinu-
cleotide phosphate (NADP+) [73, p. 522], the organic acid citrate, and the sugar-compound
glucose. The cellular functions governed by these compounds are mainly constituted by the
same pathways that were previously mentioned for the activators.
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Table 3.3: Top ten inhibitors and their biological functions.

Metabolite Type of compound Biological functions

ATP Nucleotide [71]

An energy carrying molecule [71, 72], whose higher concentration indi-
cates a high cellular energetic state [73, p. 582]. ATP regulates cellular
respiration by negative feedback which lowers the rate of energy pro-
duction [91]. Enzymes that are allosterically inhibited by ATP include
phosphofructokinase-1 and pyruvate kinase in the glycolytic pathway,
pyruvate dehydrogenase, citrate synthase, and isocitrate dehydroge-
nase of the citric acid cycle [73, p. 592, 640], and glycogen phospho-
rylase of the glycogen catabolic pathway [32].

ADP Nucleotide
Higher cellular concentration of ADP is an indicator of a lower energetic
state [73, p. 582]. ADP allosterically inhibits glycogen phosphorylase,
causing suppression of glycogen breakdown [32].

AMP Nucleotide

Higher cellular concentration of AMP indicates a low energetic state.
AMP allosterically inhibits fructose 1,6-bisphosphatase to reduce flux
through gluconeogenesis [73, p. 582, 592], and inhibits glucose-1-
phosphate adenylyltransferase which is part of the glycogen biosyn-
thetic pathway [32]. AMP thereby leads to a reduced flux through
energy-requiring processes.

Cysteine Amino acid [73, p.
689]

Cysteine has strong antioxidant properties [77], functions as a sulfide
donor [78], and functions as an acid-base catalyst in the active site of
enzymes [73, p. 197]. It is also an irreversible inhibitor of histidine
ammonia lyase [92], which catalyzes the first step of the histidine-
degradation pathway [93].

Urea Nitrogenous com-
pound [90]

Urea is formed from ammonia via the urea cycle as the final end product
of protein metabolism [90]. Urea has been shown to cause the denat-
uration of proteins by both direct and indirect effects [94].

NADH Coenzyme [95]

NADH is an important coenzyme in redox reactions of metabolism, in-
cluding reactions of the glycolytic pathway and citric acid cycle. A high
NADH to NAD+ ratio inhibits several enzymes involved in cellular respi-
ration, including pyruvate dehydrogenase, citrate synthase, isocitrate
dehydrogenase, and alfa-ketoglutarate dehydrogenase of the citric acid
cycle [96], and beta-hydroxyacyl-CoA dehydrogenase of fatty acid oxi-
dation [73, p. 522, 640, 661]. Thus, high levels of NADH cause lower
flux through energy-producing pathways.

Glutathione Tripeptide [74]

Functions as a redox buffer and an antioxidant. It is for example used
to remove toxic peroxides formed under aerobic conditions, and func-
tions as a reducing agent in deoxyribonucleotide synthesis [73, p. 885].
Effects include inhibition of γ-glutamyl-cysteine synthetase by a non-
allosteric mechanism [97], and protection of cells from immunological
cell damage via inhibition of antibody-antigen binding and suppression
of complement activation [98]. Glutathione also imposes feedback in-
hibition upon its own biosynthetic enzymes [76].

Citrate Organic acid

High concentrations of citrate indicates a sufficient level of energy-
yielding metabolism by oxidation of fats and proteins [73, p. 592].
Citrate inhibits several enzymes involved in cellular respiration, and
thereby reduces flux through energy-producing pathways. The reg-
ulating mechanisms of citrate include the exertion of negative feed-
back on glycolysis by inhibiting phosphofructokinase 1 and fructose-
2,6-bisphosphatase, and on the citric acid cycle by inhibiting pyruvate
dehydrogenase and succinate dehydrogenase [99].

Glucose Sugar

Glucose functions as an energy source for the cell and a precursor to
many metabolic intermediates. Glucose allosterically inhibits glycogen
phosphorylase [73, p. 534, 609], which participates in the degradation
of glycogen [100].

NADP+ Coenzyme [101]

NADP+ is an important coenzyme in redox reactions of metabolism, in-
cluding reactions of the pentose phosphate pathway [73, p. 522, 565].
It has also been shown to be a negative regulator of ADP-ribosylation
[102], a type of modification in which ADP-ribose is transferred from
NAD+ to a substrate [103].
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The result from frequency distribution analysis of the targeted enzymes is shown in Figure
3.6, with number of enzymes shown on a log10-transformed scale. As can be seen from
the plot, the distribution follows a similar pattern as the distributions for the regulating
compounds, where most enzymes are subject to regulation by only a few interactions. The
highest regulated enzyme, identified as glucose-1-phosphate adenylyltransferase, is very
prominent by participating in a number of 926 reported protein-metabolite interactions.
This is almost three times as many interactions as the second-highest regulated protein,
which was identified as pyruvate kinase. Furthermore, in total six enzymes (0.19%) are
documented with 200 or more interactions, 30 enzymes (0.97%) with 100 or more in-
teractions, and 116 (3.75%) are documented with 50 or more metabolic interactions. To
compare, as many as 2 357 (76.1%) proteins are documented with 10 interactions or less,
and almost a fourth of the enzymes, 767 (24.8%) to be exact, participate in only one
documented protein-metabolite interaction.

Accounting for the multiple documentation of interactions resulted in the distribution de-
picted in Figure 3.5. This consideration caused quite a drastic change in the enzyme dis-
tribution; the highest number of interactions was reduced from 926 to 78, and glucose-1-
phosphate adenylyltransferase, which descended to number twelve on the list of enzyme
targets, was replaced as the top regulated enzyme by pyruvate kinase. Additionally, the
slope of the distribution is a lot less steep than previously, and the percentage of proteins
that participate in an intermediate number of interactions is now much higher. Even though
this does indicate that the differences in the regulatory behavior of proteins are less drastic
than what was initially observed, combining these results with those from frequency dis-
tribution analysis of the metabolites implies a biased distribution of allosteric interactions
where a few metabolites and enzymes exhibit high regulatory activity. This matter will be
further explored in a later paragraph of this Subsection, and in Chapter 4 (p. 59).

Figure 3.5: Frequency distribution of regulated enzymes. The frequency was calculated by
counting the number of interactions, determined by metabolite ChEBI ID and mode, each enzyme
was subjected to. The number of enzymes is shown on a log10-transformed scale.

The top ten regulated enzymes and their functions in metabolism are shown in Table 3.4.
These include key enzymes of central carbon metabolism pathways, such as pyruvate
kinase, 6-phosphofructokinase, and citrate synthase, and enzymes involved in glycogen
metabolism. The top regulated pathways are thereby coherent between the regulating
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Figure 3.6: Frequency distribution of regulated enzymes; unique interactions. The frequency
was calculated by counting the number of unique interactions, determined by metabolite ChEBI ID
and mode, each enzyme was subjected to. The number of enzymes is shown on a log10-transformed
scale.

metabolites and the regulated proteins.

In addition to the frequency distributions, a network of the top ten regulated enzymes
and their interacting metabolites was generated (see Figure B1, App. C, p. 90). The
metabolites included in the network are those that interact with either two or more of the
enzymes in the chosen group. An observation made from viewing this network is that most
of the metabolites interact with more than two proteins, in both an activating and inhibiting
matter. Furthermore, all enzymes are subjected to both activating and inhibiting regulation
from several different compounds. The network is thereby quite heavily connected, indicat-
ing a well-structured, non-random regulation of the pathways that are represented by the
included enzymes and compounds. As mentioned, these are mainly constituted by central
pathways such as glycolysis and the citric acid cycle, and both synthesis and degradation
of glycogen. The distribution of metabolic regulatory activity will be further assessed in
Chapter 4 (p. 59).

Figure 3.7 shows the result from frequency distribution analysis of the organisms that were
documented in the data, with number of organisms on a log10-transformed scale. Similar
as for the other frequency distributions, only a few organisms have a higher number of
documented interactions. For instance, only seven organisms (0.29%) had 500 or more
documented interactions, while 2 024 (82.4%) and 818 (33.3%) were documented with
10 or fewer and 1 interaction, respectively. The organisms with the ten highest number
of documented interactions were Homo sapiens, Rattus norvegicus, Escherichia coli, Bos
taurus, Saccharomyces cerevisiae, Mus musculus, Sus scrofa, Oryctolagus cuniculus, Ara-
bidopsis thaliana, and Gallus gallus. These are all organisms that are either frequently
used as model organisms, or that are of special interest to science due to their relevance
for human medical development. These results thereby indicate a biased research focus,
causing a lower documentation rate for the less interesting organisms. This matter will be
further discussed in Chapter 4 (p. 60).

Lastly, Figure 3.8 and Figure 3.9 display the scatter plots of inhibitors versus activators
with respect to the number of inhibitions or activations in which each metabolite partici-
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Table 3.4: Top ten regulated enzymes and their biological functions.

Enzyme Function

Glucose-1-phosphate adenylyltransferase

Functions in glycogen and starch biosynthesis in bacteria and
plants, respectively [104]. Is allosterically regulated by metabo-
lites depending on the type of organism. Bacterial allosteric
activators include fructose-1,6-bisphosphate, hexanediol 1,6-
bisphosphate, NADPH, and pyridoxal phosphate, and inhibitors
are AMP and MgCl2. In plants, the enzyme is activated by 3-
phosphoglycerate and inhibited by orthophosphate [32].

Pyruvate kinase

Catalyzes the conversion of phosphoenolpyruvate and ADP to
pyruvate and ATP in the last step of glycolysis. Is allosterically
activated by either fructose-1,6-bisphosphate or AMP and other
sugar phosphates [105, 106, 107], and inhibited by ATP, among
others [73, p. 595].

Beta-glucosidase
Hydrolyses glycosidic bonds to release terminal glucosyl residues
from glycosides and oligosaccharides. Has several competitive
inhibitors [108].

6-phosphofructokinase

Catalyzes the first committing step of glycolysis, where
D-fructose 6-phosphate is phosphorylated to fructose 1,6-
bisphosphate by ATP. Is allosterically activated by ADP, AMP,
and fructose 2,6-bisphosphate, and inhibited by ATP and citrate
[32].

Tyrosinase
Catalyzes the initial and rate-limiting step in a cascade of reac-
tions leading to melanin production from tyrosine [32].

Phosphoenolpyruvate carboxylase

Carboxylates phosphoenolpyruvate to oxaloacetate, which is
further processed in the citric acid cycle [109], in plants and
bacteria [110]. It is especially important in plants, for the fixa-
tion of atmospheric CO2 in photosynthesis [109]. PEP carboxy-
lase is allosterically regulated by many effectors, depending on
the organism [110]. Activators include acetyl-CoA, fructose 1,6-
bisphosphate, GTP and glucose-6-phosphate [85, 110]. Is inhib-
ited by aspartate and malate [111, 110].

Glycogen phosphorylase

Catalyzes the rate-limiting step in glycogen catabolism, and thus
has a central role in maintaining cellular and organismal glucose
homeostasis. Uses pyridoxal 5’-phosphate as a cofactor and is
allosterically activated by AMP and inhibited by ATP, ADP, and
glucose-6-phosphate [32].

Glutamine synthetase
Catalyzes ATP-dependent conversion of glutamate and ammonia
to glutamine. Complete and partial inhibitors include glutamine,
glycine, alanine, and AMP [32].

L-lactate dehydrogenase
Catalyzes the conversion of L-lactate to pyruvate. Is inhibited
by pyruvate [32].

Citrate synthase

Key enzyme in the citric acid cycle, where it catalyzes the con-
densation of acetyl-CoA with oxaloacetate to form citrate [112].
Is allosterically inhibited by NADH [32]. Depending on the cell
type, succinyl-CoA, NADH, ATP, long-chain fatty acyl-CoA, and
citrate are negative allosteric modulators of the enzyme [113].
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Figure 3.7: Frequency distribution of organisms. The frequency was calculated by counting the
number of unique interactions, determined by EC number, metabolite ChEBI ID, and mode, docu-
mented for each organism. The number of organisms is shown on a log10-transformed scale.

pates, for reported and unique interactions, respectively. The names of the most easily
distinguished metabolites are denoted next to their corresponding data point. The inter-
sections of activating and inhibiting metabolites consisted of 462 compounds. This means
that only 17 metabolites were uniquely activators, while the unique inhibitors constituted
523 compounds.

Figure 3.8: Scatter plot of activators versus inhibitors. The plot was created using the activation
and inhibition frequencies of each metabolite that were computed for the generation of Figure 3.1 and
3.3.

An observation made from these results is that most of the metabolites cluster in the lower
left corner of the plots, while only a few are located further down the axes. Although some
compounds appear to only act as either activators or inhibitors, the majority do seem to
participate in both types of interaction. One compound, ATP, is located to the top right
corner with some distance from the rest of the groups, and is thereby easily distinguishable
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Figure 3.9: Scatter plot of activators versus inhibitors; unique interactions. The plot was
created using the activation and inhibition frequencies of each metabolite that were computed for the
generation of Figure 3.2 and 3.4.

as the overall top regulatory metabolite. The results from this analysis contribute to the
implication that most regulatory metabolites take part in a low or intermediate number of
interactions, while also showing that the majority functions as both activators and inhibitors.
These results also elucidate the central role of certain metabolites, including ATP, ADP, AMP,
and fructose 1,6-bisphosphate, in metabolic control. Chapter 4 will further review these
conclusions in light of a biased research focus.

In summary, analysis of the data in the assembled database shows that the metabolic
network of allosteric interactions is characterized by high connectivity, and that there exists
a biased regulatory consideration that is skewed towards central pathways. While most
metabolites and enzymes take part in only a few interactions, there is an exception to
this trend that constitutes key metabolic pathways such as central carbon and glycogen
metabolism. For these pathways, there is observed a high clustering among the interacting
enzymes and compounds, which may be an indication that these pathways are effectively
more regulated due to their importance and central role in metabolism. However, it may
also indicate that these pathways are simply more studied, which is a relevant topic for the
case of the organisms as well. Analysis of the organismal content of the prepared data did
indeed imply a skewed research focus in which typical model organisms are well studied,
while species that are less important from a research view remain fairly poorly studied. The
documentation of allosteric interactions among different organisms is a matter that will be
further explored in the following Subsection.

3.1.3 Conservation of allosteric interactions

The phylogenetic tree annotated with the ten most frequent unique EC numbers and their
most frequently associated metabolite among the top 100 documented species is shown in
Figure 3.10. The three taxa of life are separated by different colors; Archaea in green, Bac-
teria in purple, and Eukaryota in pink. Each individual interaction is denoted by a uniquely
colored square symbol, as described in Table 3.5. The tree in rectangular form with labels
for the interactions is available in Figure C1 (see App. C, p. 91).

As can be seen from the figure, most of the interactions are spread throughout the entire
tree, and no clear clustering of specific interactions can be observed in any taxonomic group.
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Table 3.5: Annotated interactions overview; colors of square symbols used for annotating
protein-metabolite interactions to the phylogenetic tree as shown in Figure 3.10.

Color EC number Enzyme Metabolite Mode
1.3.5.1 Succinate dehydrogenase Malonate -
2.2.1.6 Acetolactate synthase L-valine -
2.7.1.1 Hexokinase Glucose-6-phosphate -
2.7.1.11 Phosphofructokinase-1 Citrate -
2.7.1.30 Glycerol kinase α-glycerophosphate -
2.7.1.40 Pyruvate kinase Fructose 1,6-bisphosphate +
2.7.2.4 Aspartate kinase L-threonine -
2.7.7.27 Glucose-1-phosphate adenylyltransferase 3-phosphoglycerate +
3.1.3.11 Fructose-1,6-bisphosphatase AMP -
6.4.1.1 Pyruvate carboxylase Acetyl-CoA +
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Figure 3.10: Phylogenetic tree mapped with allosteric interactions. Taxa are indicated as
Archaea in green, Bacteria in purple, and Eukaryota in pink. See Table 3.5 for information on the
mapped interactions and their respective label colors. The tree was created using the iTOL (v. 5)
online tool [48].
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Furthermore, several of the interactions are present in species belonging to different taxa.
For example, both Homo sapiens and Escherichia coli, who are quite distant from each other
phylogenetically, are documented with five common interactions; inhibition of succinate
dehydrogenase by malonate (red), inhibition of phosphofructokinase-1 by citrate (purple),
inhibition of glycerol kinase by α-glycerophosphate (orange), activation of pyruvate kinase
by fructose 1,6-bisphosphate (dark pink), and inhibition of fructose-1,6-bisphosphatase by
AMP (grey). All of these enzymes are either directly a part of or related to the different
parts of central carbon metabolism, including glycolysis, gluconeogenesis, and the citric
acid cycle [32, 105, 114, 115, 116]. The conservation of these interactions, as well as the
general case of allosteric conservation, will be further discussed in Chapter 4 (p. 61).

While there cannot be observed any clear clustering of interactions in the tree, there does
appear to be an abundance of documented interactions within certain families and species.
For example, the Mammalia group, which is part of Eukaryota and branches species from
Rattus norvegicus to Canis lupus, seems to have a higher percentage of documented inter-
actions than other parts of the tree. Additionally, species such as the bacterium Escherichia
coli and the yeast Saccharomyces cerevisiae are documented with all but two and one of
the mapped interactions, respectively. These results are in concordance with the findings
from frequency distribution analysis of the organisms, which stated that several of these
same species were among the best documented organisms in the data from BRENDA.

Furthermore, some of the interactions appear to only be present in specific taxa or groups.
One of these is inhibition of hexokinase by glucose-6-phosphate (green), which only occurs
in Eukaryota. Hexokinases from different species differ in molecular mass and specificity.
Highly specific hexokinases are mainly found in bacteria and unicellular eukaryotes, while
non-specific are found in higher eukaryotes. Literature claims that inhibition by glucose-6-
phosphate is restricted to the 100-kDa hexokinases, which are mainly found in vertebrates
[117]. Additional studies have however shown that some plant hexokinases are sensitive to
inhibition by glucose-6-phosphate under certain conditions [118], and glucose-6-phosphate
has been declared a possible inhibitor of the Saccharomyces cerevisiae hexokinase as well
[119].

Three interactions are present in almost all kingdoms, except Animalia (Metazoa). These
are inhibition of acetolactate synthase by valine (blue), inhibition of aspartate kinase by
threonine (brown), and activation of glucose-1-adenylyltransferase by 3-phosphoglycerate
(light pink). Acetolactate synthase participates in the synthesis of the branched-chain amino
acids valine, leucine, and isoleucine [120], while aspartate kinase is involved in the biosyn-
thetic pathway leading from aspartate to the formation of homoserine. These two pathways
occur only in plants and microorganisms [121, 120], which explains the absence of these
interactions in animals. Activation of glucose-1-adenylyltransferase by 3-phosphoglycerate
is only documented for kingdoms of the bacterial taxa, as well as the kingdom of green
plants (Viridiplantae) [46]. As described in Table 3.4, this enzyme is important for the
biosynthesis of glycogen and starch that occurs in bacteria and plants, respectively [104].
The synthesis of glycogen is conducted by a different pathway in organisms such as yeast
and mammals [122], which explains the distribution of this PMI.

Lastly, even though the interactions are somewhat well-distributed trough out all three
main taxa, there are several gaps present at organisms that lack interactions documented
in their nearby relatives. Looking at the Mammalia group again, the species Cricetulus
griseus (Chinese hamster) and Equus caballus (horse) lack four of the interactions that are
frequently documented in other mammalian organisms, while Mesocricetus auratus (golden
hamster) and Cavia porcellus (domestic guinea pig) [46] lack three. Additionally, Candida
albicans, which is the closest relative of Saccharomyces cerevisiae, has no documentation
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of any of the annotated interactions, and several interactions are also missing from nearby
neighbors of Escherichia coli. Even though these gaps might be present due to scientifically
correct reasons, meaning that the interactions are in fact not possessed by these species,
they might also be caused by biased and incomplete research. This issue of inadequate
allosteric documentation will be of importance in later Subsections of this Chapter as well,
and will also be discussed in Chapter 4.

3.2 Predicting interactions from protein features

The database of allosteric interactions that was created in the first part of this project was
merged with structural information on the documented proteins retrieved from the UniProt
and InterPro databases. The following Subsections have the intention of describing the re-
sults from making these connections, and start with assessing the content of this now aug-
mented database. The second Subsection presents the volcano plots visualizing associated
protein features and protein-metabolite interactions, before regarding these associations
from a biological view. The final part of this Subsection will display the previously disclosed
phylogenetic tree after modification based on the new information, and assess the findings
from validation of the novel predictions.

3.2.1 Downloading protein annotations

The retrieval of information on the proteins documented in the processed data returned
protein features of eight different types: active site, binding site, conserved site, domain,
family, homologous superfamily, PTM, and repeat. Figure 3.11 shows the frequency distri-
bution of all protein features, as defined by their InterPro ID, with the number of features
on a log10-transformed scale. The total number of unique features was 5 827. Similar to the
relationship observed for the previously displayed frequency distributions (see Subsection
3.1.2), most features have a low or intermediate number of documentations, while only a
few are documented many times. One feature, identified as NAD(P)-binding domain super-
family, is easily distinguishable as the most common, with almost 1 200 documentations.
In contrast, 966 features (16.6%) were documented only one time, while 3 845 (66.0%)
and 5 464 (93.8%) features were documented 10 and 50 or fewer times, respectively.
These results thereby demonstrate a trend where the average protein feature is present in
a low number of different proteins, while a few dominating features exist and can be found
in a very high number of enzymes.

Table 3.6 displays the top ten documented protein features, given by their InterPro ID, type,
and name. These features were determined by computing the number of occurrences of
each feature in the data downloaded from UniProt and merged with the BRENDA data. As
can be seen in Table 3.6, all of the top ten features were of the type homologous superfamily,
indicating that this type of protein feature is typically well documented in the relevant
protein databases. Furthermore, three of the features are related to the same class of
enzymes, namely pyridoxal phosphate-dependent transferases. Pyridoxal phosphate (PLP)
is an active form of vitamin B6 whose dependent enzymes are very versatile catalysts,
and the reactions controlled by these enzymes are typically involved in the biosynthesis
of amino acids and derivatives. PLP-dependent transferases have also been identified as
important drug targets [123], and include the mammalian aspartate aminotransferase and
bacteric tryptophan synthase [124]. The best-documented feature, NAD(P)-binding domain
superfamily, represents the superfamily of NAD- and NADP-binding domains that can be
found in a variety of different enzymes, including several dehydrogenases [30].
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Figure 3.11: Frequency distribution of protein features. The frequency was calculated by count-
ing the occurrence of each protein feature, defined by its InterPro ID. The number of features is shown
on a log10-transformed scale.

Table 3.6: Top ten protein features, given by their InterPro ID, type and name. The quantity of
each feature was determined by the number of occurrences in the downloaded data.

InterPro ID Type Name

IPR036291 Homologous superfamily NAD(P)-binding domain superfamily

IPR027417 Homologous superfamily P-loop containing nucleoside triphosphate hydrolase

IPR013785 Homologous superfamily Aldolase-type TIM barrel

IPR029044 Homologous superfamily Nucleotide-diphospho-sugar transferases

IPR015421 Homologous superfamily Pyridoxal phosphate-dependent transferase, major domain

IPR015424 Homologous superfamily Pyridoxal phosphate-dependent transferase

IPR015422 Homologous superfamily Pyridoxal phosphate-dependent transferase, small domain

IPR036188 Homologous superfamily FAD/NAD(P)-binding domain superfamily

IPR011009 Homologous superfamily Protein kinase-like domain superfamily

IPR011004 Homologous superfamily Trimeric LpxA-like superfamily

3.2.2 Enrichment analysis

Figure 3.12 shows the volcano plots of associated protein features and protein-metabolite
interactions identified by enrichment analysis, for all eight feature types. The significance
thresholds in this analysis are set to 1.0 for log10(OR) and 0.05 for FDR-corrected p-values
(q-values). Among 57 908 associated features and interactions, 32 276 associations were
considered significant. The feature types with the highest number of observed significantly
associated interactions from Figure 3.12 are domain, family, and homologous superfamily.
The three different types of protein sites, namely active site, binding site, and conserved
site, also have several statistically significant associations. The last two feature types, PTM
and repeat, appear to have few associated interactions above the statistically significant
thresholds. The curves for these two groups are relatively flat compared to the rest of the
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plots, and their graphs also contain quite few datapoints. These results thereby indicate
that feature types such as domains, families, superfamilies, and protein sites are more
important than PTMs and repeats regarding the prediction of allosteric interactions.

Figure 3.12: Associations of protein features and protein-metabolite interactions, for eight
different types of protein features (active site, binding site, conserved site, domain, family, homolo-
gous superfamily, PTM, repeat). OR and FDR-corrected p-values are shown on a log10-transformed
scale, and the OR of any association shown here with log10(OR) > 4 was downsized from infinite
magnitude.

The importance of the different feature types in predicting allosteric interactions was further
assessed by comparing the sets of interactions that were statistically associated with each
type, and evaluating their exclusivity regarding predicted interactions. This comparison was
visualized by generating two UpSet plots for activating and inhibiting interactions, which are
illustrated in Figure D1 (see App. D, p. 93). Observations made from these plots include
an extensive overlap of predicted interactions between all feature types. The features
conserved site, domain, family, and homologous superfamily have the greatest intersection
for both interaction groups, while the second greatest intersection is among domain, family,
and homologous superfamily. These features also constitute the largest sets of predictions.
Furthermore, domain and family are the only two feature types that predict interactions not
predicted by any other feature type. This observation, and the large sizes of these groups,
indicate that domain and family are the two most essential feature types for this kind of
analysis.
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The next Subsections are dedicated to a closer review of the statistically significant as-
sociated protein features and protein-metabolite interactions identified in the enrichment
analysis. Firstly, specific associated features and interactions are thoroughly examined in
order to deduce whether these associations can be explained by a biologically valid motive.
Secondly, the work with the phylogenetic tree in Subsection 3.1.3 (Fig. 3.10, p. 46) is con-
tinued by mapping the cases in which these interactions are predicted by the presence of
a protein feature, for the sake of evaluating whether these predicted interactions fill empty
gaps left by the documented data.

3.2.2.1 Statistically associated features and interactions

Of the 32 276 feature-interaction associations that were considered to be significant, a
further 7 315 of these were deemed exclusive (infinite OR, downsized to 15 000). Table
3.7 displays a selection of the most highly associated metabolite interactions and pro-
tein features among each feature type, together with possible biological explanations for
these associations. Features denoted by a * represent those that were among the top five
interaction-predicting features in the histograms illustrating the type-separated frequency
distributions of interaction-predicting protein features, showed in Figure E1 (see App. E, p.
94-95).

Other highly predicting features identified from Figure E1 included the active sites of protein-
tyrosine phosphatase (IPR016130) and histidine acid phosphatase (IPR033379), the PLP-
binding site of class I aminotransferases (IPR004838), the conserved cysteine active site
of aldehyde dehydrogenase (IPR016160), the deoxynucleoside kinase domain (IPR031314)
and family (IPR002624), two superfamilies of domains that are found in aldehyde dehydro-
genases (IPR016162, IPR016163), and one superfamily of domains found in both aldehyde
and histidinol dehydrogenases (IPR016161). Figure E2 (see App. E, p. 96-98) was used
to identify interactions associated with high numbers of protein features, of which some
are activation by cyclic AMP (cAMP), activation by estrogen, activation by ATP, inhibition by
glucose, inhibition by quercetin, activation by pyruvate, and inhibition by doxorubicin.

An observation made from Table 3.7 is that several of the feature-interaction associations
represent the same protein-metabolite interactions. Examples of these include the activat-
ing allosteric interaction between cAMP and cAMP-dependent protein kinases, the inhibiting
effect of the substrate ribulose 1,5-diphosphate on Rubisco, and allosteric feedback inhibi-
tion of threonine on aspartate kinase. Two other repetitive interactions were activation of
glucose-1-phosphate adenylyltransferase (also called ADP-glucose pyrophosphorylase) by
3-phosphoglycerate, which is a known activator of this enzyme, and the inhibition of phos-
phoglucose isomerase by gluconate 6-phosphate, which is known to regulate the enzyme
in a competitive matter.

While there exist biological explanations for a considerable number of the described statisti-
cally significant associations, many of these represented interactions are not of an allosteric
character. In addition to the non-allosteric interactions mentioned above, the results also
included covalent bindings, such as biotin to the biotin-binding site, interactions between
enzymes and their cofactors, such as the binding of thiamin diphosphate, and several activa-
tions and inhibitions whom were either not classified or could not be proved by the reviewed
literature. Albeit, the analysis also identified multiple known allosteric interactions. These
include, in addition to those previously mentioned, activation of pyruvate kinase by fructose
1,6-bisphosphate, inhibition of PEP carboxylase by aspartic acid, and specificity regulation
of ribonucleotide reductase by deoxyribonucleoside triphosphates such as dTTP, dGTP, and
dATP. These results thereby imply that even though the analysis did identify biologically

51



relevant protein feature-metabolite associations, their represented interactions are not all
of an allosteric character. This matter will be further discussed in Chapter 4.

Table 3.7: A selection of the most highly associated interactions and features, separated by
feature type. A possible biological explanation is given for each association. The adjusted p-values
(q) are given by the exponential. Features among the top five interaction-predicting features of their
respective type are denoted by *.

Active sites

Interaction InterPro ID Name OR q Biological explanation

Activation:
cAMP

IPR008271* Serine/threonine-protein ki-
nase, active site

102 10−26 Serine/threonine-protein kinases phosphory-
lates serine and/or threonine residues on pro-
tein substrates, altering their function [125].
cAMP dependent protein kinase (PKA) is a type
of serine-threonine kinase [126] that is acti-
vated by cAMP in a dynamic and allosteric way
[32], which may thereby explain this associa-
tion.

Inhibition:
ribulose 1,5-
diphosphate

IPR020878 Ribulose bisphosphate car-
boxylase, large chain, active
site

7.6e3 10−22 Ribulose bisphosphate carboxylase (Rubisco)
catalyzes the carboxylation step in the Calvin
cycle and the oxygenation step in photorespira-
tion. Ribulose 1,5-diphosphate is its substrate
[127], which has been shown to inhibit enzyme
activation by CO2/Mg

2+ [128].

Activation:
fructose 1,6-
biphosphate

IPR018209 Pyruvate kinase, active site 174 10−18 Pyruvate kinase catalyzes the conversion of
phosphoenolpyruvate and ADP to pyruvate and
ATP in glycolysis. It is allosterically activated
by fructose 1,6-bisphosphate [105], which is
a key intermediate and regulatory molecule in
carbon metabolism [79, 80].

Inhibition:
aspartic acid

IPR033129

IPR018129

Phosphoenolpyruvate (PEP)
carboxylase, His active site
Phosphoenolpyruvate (PEP)
carboxylase, Lys active site

15e3

15e3

10−11

10−11

PEP carboxylase catalyses the carboxylation of
PEP to oxaloacetate [129], and is allosterically
inhibited by aspartic acid [111].

Activation:
ATP,
dATP,
dGTP,
dCTP,
dTTP

IPR030475* Ribonucleotide reductase
small subunit, active site

15e3

1.3e3

1.3e3

1.3e3

863

10−10

10−12

10−12

10−12

10−10

Ribonucleotide reductases synthesize deoxyri-
bonucleoside triphosphates (dNTPs) from ri-
bonucleoside di- or triphosphates (NTPs) for
DNA replication. ATP, dATP, dGTP and dTTP are
known allosteric effectors that ensure speci-
ficity for various substrates [130, 131].

Binding sites

Interaction InterPro ID Name OR q Biological explanation

Activation:
cAMP

IPR017441* Protein kinase, ATP binding
site

99.6 10−26 Protein kinases regulate cellular processes by
phosphorylating amino acid residues in protein
substrates [132]. cAMP dependent protein ki-
nase (PKA) is a kinase [126] whose activity is
stimulated by cAMP, which may thereby explain
this association.

Activation:
biotin

IPR001882 Biotin-binding site 1.1e3 10−14 Biotin binds covalently to a lysine residue in this
binding site [30].

Inhibition:
NADPH

IPR006184 6-phosphogluconate-
binding site

15e3 10−11 This binding site is found in the C-terminal
of 6-phosphogluconate dehydrogenase
[30], which catalyzes the conversion of 6-
phosphogluconate to ribulose 5-phosphate.
The conversion reduces NADP+ to NADPH
[133], which inhibits the enzyme [134].

Inhibition:
oxalosuccinate

IPR018136 Aconitase family, 4Fe-4S
cluster binding site

15e3 10−8 Aconitase catalyzes the conversion of citrate to
isocitrate in the citric acid cycle. The enzyme
is iron-dependent, with iron present within a
Fe-S cluster [135]. Oxalosuccinate is an in-
termediate in the subsequent reaction, where
isocitrate is oxidized to α-ketoglutarate [73, p.
628]. Inhibition of aconitase by oxalosuccinate
could thus be explained as a negative feedback
mechanism.
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Table 3.7: A selection of the most highly associated interactions and features (continued).

Conserved sites

Interaction InterPro ID Name OR q Biological explanation

Activation:
3-
phosphoglycerate,
sedoheptulose
1,7-DP,
2-deoxyribose
5-P,
hydroxypyruvate,
2-keto-3-deoxy
phosphoglu-
conate,
phosphoenolpyruvate
α-ketobutyrate.
Inhibition:
trehalose phos-
phate.

IPR005836 ADP-glucose pyrophospho-
rylase, conserved site

3.9e3

2.9e3

1.9e3

1.9e3

1.9e3

1.5e3

1.7e3

1.6e3

10−28

10−27

10−25

10−25

10−25

10−25

10−25

10−24

ADP-glucose pyrophosphorylase (also called
glucose-1-phosphate adenylyltransferase
[31]) is an allosterically regulated enzyme that
catalyzes the synthesis of ADP-glucose from
glucose-1-phosphate and ATP as part of starch
and glycogen biosynthesis [136, 137]. Many
of these enzymes are activated by glycolytic
metabolites [137], and also regulated by other
intermediates of the major carbon assimilatory
pathway [138]. The glycolytic metabolite
3-phosphoglycerate is a known activator of
the enzyme [138], while phosphoenolpyruvate
is also an intermediate of glycolysis and may
thus be a putative activator [73, p. 535].

Inhibition:
threonine

IPR018042 Aspartate kinase, conserved
site

15e3 10−23 Aspartate kinase catalyzes the first step in
the synthesis of aspartate-derived amino acids
such as threonine, lysine, and methionine
[139]. The enzyme is known to be regulated by
the end-products through feedback inhibition
[140], including allosteric inhibition by threo-
nine [139].

Inhibition:
D-gluconate 6-
phosphate

IPR018189 Phosphoglucose isomerase,
conserved site

15e3 10−22 Phosphoglucose isomerase interconverts glu-
cose 6-phosphate and fructose 6-phosphate,
and is thus a key part of glycolysis and glu-
coneogenesis [141]. D-gluconate 6-phosphate
is a competitive inhibitor [142].

Domains

Interaction InterPro ID Name OR q Biological explanation

Activation:
cAMP

IPR000719 Protein kinase domain 89.6 10−26 See Binding sites - Activation: cAMP -
IPR017441.

Activation:
3-
phosphoglycerate,
sedoheptulose
1,7-DP,
2-keto-2-deoxy
phosphoglu-
conate,
hydroxypyruvate,
2-deoxy-D-
ribose 5-P,
α-ketobutyrate

IPR005835 Nucleotidyl transferase do-
main

652

832

720

720

720

672

10−25

10−25

10−23

10−23

10−23

10−22

Nucleotidyl transferases transfer nucleotides
between compounds. The specific domain is
found in enzymes that transfer nucleotides
to phosphosugars [30], and has been an-
notated to subunits of the enzyme glucose-
1-phosphate adenylyltransferase which is al-
losterically activated by 3-phosphoglycerate in
plants [32]. It is plausible that this domain is
annotated to other transferases that have con-
nections to the additional metabolites.

Inhibition:
glycerol 3-
phosphate

IPR018485
IPR018484

Carbohydrate kinase, FGGY,
C-terminal
Carbohydrate kinase, FGGY,
N-terminal

1.2e3

1.2e3

10−24

10−24
Proteins of this family carry out ATP-dependent
phosphorylation of sugar substrates. They in-
clude glycerol kinase [143], which phosphory-
lates glycerol to glycerol 3-P and is allosterically
inhibited by fructose 1,6-bisphosphate [144].
A BRENDA entry claims that glycerol 3-P is a
competitive inhibitor of the enzyme [31], but
no evidence of this was found.

Inhibition:
threonine

IPR001341 Aspartate kinase 15e3 10−23 See Conserved sites - Inhibition: threonine -
IPR018042.

Inhibition:
D-gluconate 6-
phosphate

IPR035476
IPR035482

Phosphoglucose isomerase,
SIS domain 1
Phosphoglucose isomerase,
SIS domain 2

15e3

15e3

10−22

10−22
See Conserved sites - Inhibition: D-gluconate
6-phosphate - IPR018189. The enzyme is com-
prised of two domains that are both SIS domain
folds [30].
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Table 3.7: A selection of the most highly associated interactions and features (continued).

Families

Interaction InterPro ID Name OR q Biological explanation

Activation:
3-
phosphoglycerate,
sedoheptulose
1,7-DP,
hydroxypyruvate
+++

IPR011831 Glucose-1-phosphate
adenylyltransferase

3.9e3

2.9e3

1.9e3

10−28

10−27

10−25

See Conserved sites - Inhibition: 3-
phosphoglycerate - IPR005836.

Inhibition:
glycerophosphate

IPR005999 Glycerol kinase 15e3 10−25 See Domains - Inhibition: glycerol 3-
phosphate - IPR018485.

Inhibition:
D-gluconate 6-
phosphate

IPR001672 Phosphoglucose isomerase
(PGI)

15e3 10−22 See Conserved sites - Inhibition: D-gluconate
6-phosphate - IPR018189.

Inhibition:
threonine

IPR005260 Aspartate kinase, mono-
functional class

15e3 10−19 See Conserved sites - Inhibition: threonine -
IPR018042. The specific entry represents a
subclass of aspartate kinases that are mostly
lysine-sensitive.

Superfamilies

Interaction InterPro ID Name OR q Biological explanation

Inhibition:
ribulose 1,5-
diphosphate

IPR036376
IPR036422

Ribulose bisphosphate car-
boxylase, large subunit, C-
terminal domain superfam-
ily
RuBisCO large subunit, N-
terminal domain superfam-
ily

7.6e3

7.6e3

10−22

10−22

See Active sites - Inhibition: ribulose 1,5-
diphosphate - IPR020878.

Inhibition:
D-gluconate 6-
phosphate

IPR023096 Phosphoglucose isomerase,
C-terminal

15e3 10−17 See Conserved sites - Inhibition: D-gluconate
6-phosphate - IPR018189. This specific super-
family is not found in archaeal proteins [30].

Activation:
cAMP

IPR011009 Protein kinase-like domain
superfamily

66.5 10−26 See Binding sites - Activation: cAMP -
IPR017441. This superfamily represents the
protein-kinase-like domain and other struc-
turally similar domains [30].

Activation:
thiamine
diphosphate

IPR029061 Thiamin diphosphate-
binding fold

470 10−24 The entry represents the thiamin diphosphate-
binding fold found in enzymes such as pyruvate
dehydrogenases and phosphoketolases [30].
Pyruvate dehydrogenase catalyzes the conver-
sion of pyruvate to acetyl-CoA, utilizing thi-
amine diphosphate (TPP) as a cofactor [32,
145, 146].
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3.2.2.2 Predicted interactions

Expanding the phylogenetic tree from Subsection 3.1.3 with the protein feature-predicted
interactions identified in enrichment analysis resulted in the tree depicted in Figure 3.13.
As previously, the taxa Archaea is shown in green, Bacteria in purple, and Eukaryota in
pink, and the overview of the color-mapped interactions can be found in Table 3.5. The
tree in rectangular form with labels for the interactions is available in Appendix C, Figure
C2 (p. 92).
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Figure 3.13: Phylogenetic tree with allosteric interactions: documented (filled squares) and
predicted (empty squares). Taxa are indicated as Archaea in green, Bacteria in purple, and Eukaryota
in pink. See Table 3.5 for information on the mapped interactions and their respective label colors.
The tree was annotated using the iTOL (v. 5) online tool [48].

The new phylogenetic tree contains a total of 346 interactions, of which 132 are predicted
and 214 are documented. These newly added interactions appear to not have changed the
general clustering pattern that was previously observed, in which interactions are spread
throughout all taxa. Furthermore, the predictions seem to fill up some of the gaps quite well.
For example, the interactomes of Equus caballus, Sus scrofa and Canis lupus are expanded
with one of the interactions documented for their relatives, and three mammalian protein-
metabolite interactions were predicted for the closest neighbor of mammals, Gallus gallus.
Moreover, a few organisms went from zero interactions to three and four. These include
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for example Candida albicans, the closest relative of Saccharomyces cerevisiae, Drosophila
melanogaster, which is a common model organism, and Streptococcus pneumoniae. The
interactome of another close relative of S. cerevisiae, Schizosaccharomyces pombe, was
expanded from only two interactions to include all but one of those documented for its
neighbor. Additionally, the bacteria Synechocystis sp., Mycobacterium tuberculosis, and
Bacillus subtilis went from having three interactions to seven, eight, and nine, respectively,
while four interactions were added to the interactomes of the bacteria Lactococcus lactis,
Thermotoga maritima, and Klebsiella pneumoniae, and the eukaryote Oryza sativa. Lastly,
Arabidopsis thaliana, which is a typical model organism for plants, went from four to nine
annotated interactions.

Regarding the validation of predictions, the literature search for experimental proof of the
organism-specific predicted interactions resulted in a total of 10 articles related to two in-
dividual protein-metabolite interactions. Due to time constraints on the execution of the
project, this was a non-exhaustive search that required little effort and time, and only arti-
cles that were not already reported by BRENDA were retrieved for validation. The obtained
evidence provided information that both validated and rejected the predicted interactions,
but it also contained non-conclusive and non-relevant literature. This non-relevant infor-
mation regarded the inhibition of hexokinase by glucose 6-phosphate (EC 2.7.1.1, green)
in Plasmodium falciparum. The evidence obtained for this interaction describes a study
investigating the characteristics of the Toxoplasma gondii enzyme, which is 44% identical
to that of P. falciparum [147]. The study states that the hexokinase is not inhibited by
the metabolite in question [147], but a quick literature search for the hexokinase of P. fal-
ciparum revealed that the enzyme is in fact inhibited by its product glucose 6-phosphate
[148], which thereby confirms the validity of this prediction.

Of the predicted interactions for which relevant literature was obtained, two predictions re-
lated to the activation of pyruvate kinase by fructose 1,6-bisphosphate (EC 2.7.1.40, dark
pink) were true positives. These confirmations were related to predictions for Mycobac-
terium tuberculosis and Neurospora crassa. The evidence obtained for M. tuberculosis de-
scribes a study of allosteric regulation of M. tuberculosis pyruvate kinase by metabolites,
which concludes that fructose 1,6-bisphosphate activates the enzyme [149]. The evidence
obtained for N. crassa consisted of four articles describing studies of the relevant enzyme,
of which all either mentioned or confirmed the activating effect of fructose 1,6-bisphosphate
on the N. crassa pyruvate kinase [150, 151, 152, 153].

The false-positive predictions that were revealed by the validation process were all related
to the activation of pyruvate kinase by fructose 1,6-bisphosphate (EC 2.7.1.40, dark pink).
According to literature, fructose 1,6-bisphosphate, AMP and other sugar phosphates are
common activators of bacterial pyruvate kinase, and the enzyme may be classified into the
pyruvate kinases that are activated by fructose 1,6-bisphosphate and those activated by
AMP or another sugar phosphate, such as ribose 5-phosphate [106, 107]. The obtained evi-
dences show that the pyruvate kinases of the bacteria Thermotoga maritima [106], Bacillus
licheniformis [107], Staphylococcus aureus [154], and Synechocystis (Synechocystis sp.)
[155] are of the AMP-activated and not fructose 1,6-bisphosphate-activated types, thereby
disproving these predictions.

Additionally, it was previously mentioned that the inhibition of hexokinase by glucose-6-
phosphate (green) only occurs in higher eukaryotes (see Subsection 3.1.3, p. 46) [117].
However, the predictions in Figure 3.13 indicate that this interaction is present in several
eukaryotic microorganisms as well, and, as was mentioned above, confirming evidence was
found for this prediction in the parasite P. falciparum [46]. The matter of false-positive pre-
dictions and this case of seemingly illogical interaction annotation will be further discussed
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in Chapter 4 (p. 68).

Overall, analyzing the retrieved structural features for the regulated proteins of the top
hundred organisms in the assembled database revealed that the feature types homolo-
gous superfamily, family, and domain are most abundant. Associating these features with
metabolite-interactions by enrichment analysis resulted in 57 908 associations, of which
32 275 were deemed statistically significant. Comparing the feature types regarding their
predicting ability further identified family and domain as the most important interaction-
predicting features, and literature reviews revealed that the associations represented sev-
eral protein-metabolite connections that could be biologically justified. Lastly, annotating
predicted interactions to the phylogenetic tree that was disclosed in Subsection 3.1.3 re-
sulted in improved conservation of protein-metabolite interactions. The conducted valida-
tion process of these predictions confirmed the organism-specific presence of three inter-
actions, while four were revealed to be false positives.
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4 Discussion

This Chapter will review and discuss the results presented in the previous Chapter. The
biological interpretation of the content and analysis of the assembled allosteric interactions
database will be expanded upon by comparison with related work, and connections between
the protein feature andmetabolite-interaction level will be further reviewed with the purpose
of explaining and assessing the accuracy of the applied approach.

4.1 Creating an allosteric interactions database

In this Section, results generated during the first main part of this conducted work will be re-
garded. Firstly, the results from analyzing the assembled database of allosteric interactions
are discussed and compared to the work performed by Reznik et.al. [27]. Furthermore,
this Section will evaluate the contents of the utilized database in view of diverse and pre-
cise research, as well as assess the conservation of the acquired allosteric interactions on
a taxonomic level.

4.1.1 Comparison with previous work

The analysis performed in this project has a lot in common with the work conducted by
Reznik et.al. for reconstructing a small-molecule regulatory network [27], which was de-
scribed in Subsection 1.3. These common components include the investigation of fre-
quently regulating metabolites and frequently regulated enzymes, and the identification of
highly regulated and controlled metabolic pathways.

From Table 3.2 and 3.3, metabolites such as ATP, ADP, AMP, GTP, and cysteine were iden-
tified as frequent regulators of protein activity in the current analysis. These results are
in concordance with the conclusions of Reznik et.al., which identified these compounds,
among others, as frequent regulators of E. coli metabolic pathways [27]. Additionally, ATP
was identified as the overall most frequent regulator in both analyses, with participation in
57 different interactions in E. coli [27] and 650 unique interactions in the data utilized in
the current work. These results indicate that ATP possesses high regulatory control, which
makes sense from a biological view considering the central role of ATP as the main cellular
energy-carrier [72].

Another similarity between the results of Reznik et.al. and this current analysis is the per-
centage of inhibitory interactions. Despite the higher numbers of identified interactions,
enzymes, and metabolites in the current work, which are caused by the higher number of
considered organisms, the percentage of inhibitory interactions reported by Reznik et.al.
for E. coli is only 5.3% higher than the percentage of inhibitions in the currently assem-
bled data. This indicates that inhibitory interactions are more common than activating
interactions, and that this relationship exists regardless of organism. Another remark to
support this implication is derived from Figures 3.1, 3.2, 3.3 and 3.4, which show that the
number of interactions rendered by inhibitors is higher than for activators. These results
make sense considering the widespread use of feedback inhibition mechanisms to control
metabolite levels in pathways such as glycolysis and amino acid metabolism. Additionally,
even though filtering was conducted to remove interactions conducted in a competitive
manner, viewing the data did make it apparent that this filtering was not 100% successful.
It is, therefore, a great possibility that the final dataset contains a significant proportion of
competitive inhibitors, which is the case for the dataset utilized by Reznik et.al. as well.
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An interesting observation regarding the relationship between activating and inhibiting
metabolites was made from Figure 1.8 and the data utilized for creating the scatter plots
in Figures 3.8 and 3.9; 14 metabolites were identified as uniquely activators in E. coli [27],
and only 17 uniquely activators were identified from the data assembled in this work. This
implies that expanding the analysis of protein-metabolite interactions from E. coli alone to
all available organisms increased the number of unique activators by only 3 metabolites.
To compare, this expansion increased the number of inhibitors by over 300 metabolites.
Moreover, the interactive network in Figure B1 (p. 90) shows that most metabolites regu-
late enzymes by both activating and inhibiting mechanisms, and the few compounds that
only regulate by one mode usually do so by inhibition. These findings demonstrate that
very few compounds act solely as activators on a global basis, and further emphasize the
dominance governed by inhibiting effectors on metabolic regulatory networks.

Several of the highly regulating metabolites identified in Tables 3.2 and 3.3 and Figures 3.8
and 3.9 were found to be important for the regulation of central pathways such as glycoly-
sis, the citric acid cycle, gluconeogenesis, and glycogen metabolism. Additionally, many of
the identified highly regulated enzymes act as catalysts in these pathways, making these
results coherent with the conclusions of Reznik et.al. [27]. The interactive network in Fig-
ure B1 (App. A, p. 90) further displays the high connectivity among these top regulated
enzymes. While the results from frequency distribution analysis indicate a somewhat poorly
connected metabolic interaction network due to few interactions posed by the majority of
metabolites, the hubs exemplified in Figure B1 make the interactive network highly inter-
connected. These findings thereby indicate that enzymes of central metabolic pathways
such as glycolysis are devoted more regulatory attention than the average protein.

Overall, the results from data analysis and the work by Reznik et.al. [27] imply that the
most frequent regulatory metabolites and targeted enzymes are biased towards central
pathways. Reznik et.al. explains that this non-random distribution of regulatory interac-
tions may be explained by the conservation of resources accomplished by feedback inhibi-
tion [27], such as that imposed by ATP on the glycolytic enzymes 6-phosphofructokinase
and pyruvate kinase, and on citrate synthase of the citric acid cycle [32, 113, 73, p. 71].
However, as these pathways are so essential for the general function and life of a cell,
they are also of the highest interest to researchers of the life sciences. This has encour-
aged the conduction of excessive research on these pathways, making them generally more
well-studied than other less central parts of metabolism. This means that even though the
observed pattern of regulatory attention may be caused by effectively higher regulation of
central pathways, one cannot reject the possibility of other pathways being just as highly
regulated. This topic of a biased research focus will continue to be of importance in further
discussions of this Chapter.

4.1.2 Common model organisms are well documented

The frequency distribution of documented organisms in Figure 3.7 (p. 44) implies that
the top ten documented organisms consist of common model organisms and mammalian
species. For example, Homo sapiens was the species with most documented interactions,
followed by Rattus norvegicus and Escherichia coli. While these results might be interpreted
as an indication of a higher allosteric interaction content in the listed species, these observa-
tions are more likely due to a biased research focus rather than differences in the allosteric
interactome. Naturally, more research is being performed on species that are frequently
used as model species, such as E. coli, mouse and rat (Mus musculus, R. norvegicus), and
Arabidopsis thaliana. Additionally, developing new and improved technologies and treat-
ments within the field of medicine will always be of the utmost importance to the human
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race. This causes a great abundance of research and documented interactions for H. sapiens
and related species.

The interaction-annotated phylogenetic tree in Figure 3.10 (p. 46) further demonstrates
the trend of skewed documentation. Observations include considerable documentation of
interactions in the kingdom of Mammalia and a high number of interactions documented
for E. coli and the model-yeast Saccharomyces cerevisiae. Several archaeal species, on the
other hand, display much more incompleteness in the allosteric content, which supports the
assumption that PMIs of model organisms are more commonly discovered and reported.
However, there are some observations that don’t quite follow this pattern. For example,
Drosophila melanogaster, which is frequently used for research, had no documented inter-
actions in Figure 3.10, and Chlamydomonas reinhardtii, a green alga which is claimed to be
a well-established model [156], only possessed one annotated interaction. Furthermore,
A. thaliana, which was established as one of the top ten documented species, had fewer
annotated interactions than other model organisms, and also fewer than its plant-relative
Zea mays.

The differences in allosteric content observed in this analysis might imply that species such
as A. thaliana simply don’t possess the missing interactions. However, these discrepancies
might also be indicators of lacking documentation. It is for example unlikely that none
of the ten annotated interactions occur in D. melanogaster and that only one occurs in
C. reinhardtii, especially considering the documentations of their neighbors. If these find-
ings happen to be the result of lacking research, that might cause an inaccurate image
of allosteric conservation. Also, absent protein-metabolite interactions may result in false
or imprecise conclusions of studies that utilize these species due to the lack of possible
important metabolic mechanisms and constraints. The issue of absent documentation for
possible naturally present interactions will be further discussed later in this Chapter.

4.1.3 Allosteric interactions are well conserved

As described in Subsection 3.1.3, the interaction-annotated phylogenetic tree displayed in
Figure 3.10 (p. 46) indicates a taxonomic-wise well-conserved allosteric interactome. This
is made apparent from the spread of interactions across different taxa, families, and species.
For example, five interactions were common between Homo sapiens and Escherichia coli.
These two species belong to two different taxa, namely Eukaryota and Bacteria, respec-
tively. The presence of allosteric interactions in two such genetically distant species is an
indication that these interactions are conserved on the taxa level, and are therefore likely
to be present in relatives of these species as well. For H. sapiens, four close neighbors
are documented with all of the relevant interactions, and several others are documented
with either one, two, or three of these PMIs. On the other hand, none of E. coli’s nearest
neighbors are shown to possess all of the common interactions, while a few relatives have
one or two relevant documentations. As the presence of these interactions across taxa indi-
cates universal conservation, it is likely that the absence of these PMIs from other species,
especially the species closely related to the organisms in question, is due to a lack of doc-
umentation or research rather than biological reasons. These findings thereby support the
hypothesis formulated in Subsection 4.1.2.

4.1.4 BRENDA reports uncertain information

As has been acknowledged several times in the previous Subsections of this Chapter, miss-
ing interactions from the interaction-annotated phylogenetic tree in Figure 3.10 (p. 46)
might be a biological inaccuracy caused by incomplete documentation. However, the tree
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also contains a few interactions for which no evidence could be obtained in either UniProt
or other literature, and that thus appear to be wrongfully annotated. For example, Fig-
ure 3.10 (p. 46) and Table 3.5 (p. 46) show that the activation of glucose-1-phosphate
adenylyltransferase by 3-phosphoglycerate (light pink) is present in bacteria and plants.
As described in Table 3.4 (p. 43), this enzyme participates in the biosynthetic pathway of
glycogen and starch in bacteria and plants, respectively, and it is allosterically regulated
by organism-dependent metabolites. While 3-phosphoglycerate is reported as the main
activator of the plant enzyme, reviewed literature claims that the only bacterial species
that possess this regulation are oxygenic photosynthetical cyanobacteria [157]. Despite
this fact, BRENDA contains several documentations of this interaction’s presence in other
bacteria as well, including E. coli, Salmonella enterica and Clostridium pasteurianum [31].
Many of these BRENDA entries don’t specify the mode of activation, namely if the activa-
tion occurs by an allosteric mechanism, and quite a large number of these organism-specific
PMIs are also denoted as pH-dependent. As much of the data reported in BRENDA origi-
nates from studies performed in vitro, the conditions under which these interactions take
place might be different from in vivo conditions. This might result in the detection and
documentation of interactions that don’t generally occur in natural biological systems, and
that are thus not reported by studies performed in vivo. Additionally, it has frequently been
claimed in this Chapter that a lack of research is an essential issue in the field of allosteric
regulation. Therefore, it is possible that the entries in BRENDA do in fact represent correct
information, but that enough research has not been performed to further validate these
interactions and document them in additional databases such as UniProt.

Moreover, Figure 3.10 (p. 46) and Table 3.5 (p. 46) imply that the hexokinase of several
eukaryotes is inhibited by glucose-6-phosphate (green). As was noted in Subsection 3.1.3,
hexokinases from different species differ in molecular mass and specificity for both sub-
strates and regulators, and inhibition by glucose-6-phosphate is mainly restricted to hex-
okinases of vertebrates [117]. Studies do however indicate that some plant hexokinases
and the Saccharomyces cerevisiae hexokinase may be sensitive to glucose-6-phosphate in-
hibition [118, 119], which thereby explains the presence of this interaction in species such
as Zea mays and S. cerevisiae. One contradiction concerning this interaction regards the
kinetoplast Trypanosoma cruzi [46]. As indicated by Figure 3.10, BRENDA reports that the
T. cruzi hexokinase is inhibited by glucose-6-phosphate. However, more recently published
literature than what was referred to by BRENDA states that no such inhibition takes place
[158], which means that BRENDA essentially reports wrongful evidence according to the
current knowledge. This type of inaccuracy is to be expected when utilizing BRENDA be-
cause it is only possible to add a discovery to a database, not a negative validation. From
these observations, it appears as if the data in BRENDA is somewhat outdated and affected
by an automatic and naive approach to the collection of information. As BRENDA is utilized
as the main source of information in the current work, this constitutes a possible weak-
ness of the current approach. This issue can also be regarded as a weakness of the general
documentation of allosteric interactions, as true allosteric interactions are not distinguished
from weak, competitive, or environment/condition-dependent interactions.

4.2 Predicting interactions from protein features

This Section will address different aspects related to the second main part of the conducted
work, beginning with discussing the predictive ability of different protein structure features.
The approach for predicting allosteric interactions from protein feature data will then be
assessed and reviewed in light of the validity and correctness of feature-interaction associ-
ations and predicted interactions, and the effect of predictions on the allosteric conservation
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discussed in the previous Section will be considered.

4.2.1 Domain and family are most important for predicting PMIs

The retrieved data of feature information for the proteins in the assembled allosteric database
contained 5 827 unique features classified by InterPro into one of eight different feature
types: active site, binding site, conserved site, domain, family, homologous superfamily,
PTM, and repeat. Table 3.6 (p. 49) shows that all top ten documented features were of the
type homologous superfamily. Furthermore, the feature types domain, family, and homol-
ogous superfamily constitute the groups that contained the highest numbers of statistically
significant feature-interaction associations (see Fig. D1, p. 93). In order to gain a better
understanding of the connection between protein features and metabolite-interactions, this
Subsection will try to uncover the reasons behind these observations.

Firstly, what will cause a specific feature type to be associated with many interactions?
The current analysis was performed by associating each regulated protein in the database
with its annotated protein features, and then each of these features was associated with
the interaction in question. For a protein that is highly regulated, each annotated feature
will be associated with several interactions, while a barely regulated protein might yield
the association of just one interaction for each feature. Furthermore, features that are
annotated to a high number of proteins will likely be associated with more interactions than
if they were only annotated to one or two proteins. This means that features annotated
to several highly regulated proteins will be associated with more interactions than features
annotated to few, relatively poorly regulated proteins.

While the number of associated interactions for a feature is related to the number of proteins
to which the feature is annotated, the annotation of this feature is further dependent on
factors related to the characteristics of its feature type. For example, superfamilies are
the most generic type of feature because they not only encompass other, less general
features such as domains, but also because the proteins of a superfamily are only similar by
structure. Proteins of a family, on the other hand, are similar by both function and sequence,
as well as structure, which considerably reduces the number of compatible proteins. Thus,
the number of proteins within a family will likely be lower than the number of proteins within
a superfamily, causing a higher relative documentation rate of superfamilies.

The abundance of superfamily as an interaction-associated feature type is made even more
clear when examining the top ten documented protein features listed in Table 3.6 (p. 49).
As mentioned, all of these features were superfamilies, and three of them were related to
PLP-dependent transferases. The catalysts that depend on PLP (pyridoxal phosphate) are
typically very versatile, and the PLP-dependent transferases include, among others, mam-
malian aspartate aminotransferase and bacteric tryptophan synthase [124]. As this group
of transferases is comprised of proteins from at least two distinct taxa of life, that means
that the proteins of these three superfamilies are most likely quite prevalent, producing a
high documentation rate. The abundance of these superfamilies is further clarified by one
of the highly predicting features that were identified from the histograms in Figure E1 (p.
94-95), namely the PLP-binding site of class I aminotransferases. The proteins annotated
with this binding site are probably also annotated with either one or several of the super-
families related to PLP-dependent transferases. For a feature to predict an interaction, it
must be associated with that interaction via the proteins to which it is annotated. These re-
sults thereby indicate that the proteins annotated with PLP-dependent transferase-related
features are subject to regulation by many different interactions in many different species,
causing a high number of documentations.
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A similar case of documentational abundance was found for the NAD(P)-binding domain
superfamily. This was the overall best documented protein feature, and it represents pro-
tein domains to which the common cofactors NAD and NADP bind. As these cofactors are
essential for the life of all cells, the magnitude and ubiquity of the proteins possessing
such domains is a probable reason for the high number of documentations of this specific
feature. Additionally, the NAD(P)-binding domain superfamily is found in many dehydroge-
nases [30], and the histograms in Figure E1 (p. 94-95) identified several different features
related to this enzyme class as frequent predictors. These included the conserved cysteine
active site of aldehyde dehydrogenase, two superfamilies of domains found in aldehyde
dehydrogenases, and one superfamily of domains found in both aldehyde and histidinol de-
hydrogenases. Due to the same reasoning applied to the case of PLP-dependent transferase
superfamilies, the high documentation rate of this feature in the current dataset appears
perfectly valid.

As previously mentioned, Figure D1 demonstrates that the feature types domain, family,
and superfamily are those that are statistically significantly associated with the highest
numbers of interactions. Similar as for superfamilies, it is plausible that domains and fami-
lies are more frequently annotated to proteins than less generic feature types such as active
sites and binding sites. This is because the more generic features might be easier to detect
and characterize as their identification does not require as much information about the pro-
tein as features that constitute more specific sequential units. However, a high annotation
frequency means that these features are most likely annotated to proteins with allosteric
effectors just as often as they are present in proteins that do not have allosteric effectors.
This type of behavior is accounted for by Fisher’s exact test, as both the numerator and de-
nominator of Eq. 1 (see Subsec. 2.2.2.1, p. 28) increase. Therefore, these results indicate
that the feature types domain, family, and superfamily are more often statistically signif-
icantly associated with metabolite-interactions due to factors other than their frequency,
and that the connection between interactions and protein structure is stronger for these
feature types.

Despite the prevalence of superfamilies in the protein feature data and as an interaction-
predictor, they were shown to be excessive for the prediction of allosteric interactions. As
was established in Subsection 3.2.2, Figure D1 (p. 93) shows that the only two feature types
which predicted interactions not covered by any others are domain and family. This means
that these two feature types together provide all information supplied by superfamilies
and the remaining feature types. These observations thereby indicate that even though
superfamilies are well documented and thus provide a substantial amount of information
about the interactions of proteins, they are not unique contributors. Unique interactions are
instead predicted by features belonging to the types of domain and family, which further
implies that these two categories are the most important feature types to assess when
predicting protein-metabolite interactions from protein structure.

4.2.2 Biological validity of protein feature - interaction associations

Among 57 908 associations between 5 827 unique protein structural features and 13 737
metabolite-interactions, the conducted enrichment analysis identified 32 276 statistically
significant associations. Further 7 315 of these associations were deemed exclusive. The
exclusive associations are constituted by situations where there are no occurrences of the
feature being present when the interaction is not present, which results in an infinite odds
ratio due to the division by zero in Eq. 1 (see Subsec. 2.2.2.1, p. 28). For plotting
purposes, the odds ratio of these incidents was reduced to 15 000 (15e3 in Table 3.7, p.
52-54), corresponding to log(OR) > 4 in Figure 3.12 (p. 50). Of the associated features
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and interactions assessed in Table 3.7, twelve were exclusive, while the remaining 33 were
non-exclusively significant. As the exclusive association of a feature with an interaction in-
dicates a strong connection between the two variables, it is of interest to determine whether
these exclusive associations are in fact more accurate than those that are merely highly
significant. This Subsection is therefore devoted to further examination of the biological
validity of the associations reviewed in Table 3.7, with the additional aim of elucidating the
biological accuracy of the utilized approach in general.

As indicated by the biological explanations given in Table 3.7, two of the evaluated ex-
clusive associations represent actual allosteric protein-metabolite interactions. These were
inhibition of PEP carboxylase by aspartic acid, and the inhibition of aspartate kinase by thre-
onine. The latter interaction was represented by several feature-interaction associations,
of which all were exclusive, while two exclusive associations were evaluated for inhibition
of PEP carboxylase by aspartic acid. Additionally, literature confirms that NADPH acts as an
inhibitor of 6-phosphogluconate dehydrogenase, and that gluconate 6-phosphate is a com-
petitive inhibitor of phosphoglucose isomerase. While only one association was evaluated
for NADPH-inhibition of 6-phosphogluconate dehydrogenase, several exclusive associations
were found concerning phosphoglucose isomerase inhibition. The exclusive association of
the ribonucleotide reductase small subunit active site with ATP is also biologically valid, as
ATP is one of several allosteric effectors which ensures substrate specificity of the enzyme.

While these biologically justifiable findings indicate a strong accuracy of exclusive associ-
ations, two feature-interaction associations represent PMIs that could not be readily ex-
plained. These were inhibition of aconitase by oxalosuccinate and inhibition of glycerol
kinase by glycerophosphate. Even though the structure of the biological pathways in which
these enzymes take part suggests that the metabolites might exert negative feedback, no
such evidence was found. This means that these feature-interaction associations could not
be certainly verified by the regulatory mechanisms of their related enzymatic entities ac-
cording to existing literature. Nevertheless, it cannot be excluded that these associations
might still represent the bindings of metabolites to proteins. As previously stated, lacking
research on the protein-metabolite interactome is an essential issue, and it might therefore
be possible that the associations detected in this analysis represent PMIs that have simply
not been adequately studied.

In addition to the feature-interaction associations regarded above, several non-exclusive
associations could also be validated by the regulatory mechanisms of the enzymes to which
the features are related. For example, different features specific to ADP-glucose pyrophos-
phorylase (glucose-1-phosphate adenylyltransferase) were statistically associated with ac-
tivation by 3-phosphoglycerate, which is a documented allosteric activator of the enzyme.
Furthermore, the active site of the ribonucleotide reductase small subunit was statistically
associated with several documented substrate-specific allosteric activators of ribonucleotide
reductase, and the active site of pyruvate kinase was statistically associated with activation
by its allosteric modulator fructose 1,6-bisphosphate. While several of the non-exclusive
feature-interaction associations could not be explained with confidence based on charac-
teristics of the enzymes related to the features, it is still, as for the exclusive associations,
possible that these associations represent PMIs that take place either naturally or under in
vitro conditions. As this analysis did not consider all associated features and interactions,
it is from these findings difficult to determine whether exclusive associations are generally
more accurate than non-exclusive ones. No definite conclusion can therefore be drawn re-
garding whether exclusive associations represent true allosteric behavior more frequently
than non-exclusive, significant associations.

65



Another noteworthy metabolite-interaction that was found to be statistically associated with
protein features is cAMP-activation. As implied by Table 3.7, this interaction was associated
with a high number of protein features related to the protein class of protein kinases. This
class includes the cyclic-AMP dependent protein kinase that depends on cAMP for activity
stimulation [126], which thus explains the association of cAMP with general protein kinase
features. One of these cAMP-activation-associated features, the protein kinase-like domain
superfamily, was also identified as one of the overall top ten documented protein features
(see Table 3.6, p. 49), which provides an indication that general protein kinase features
are well documented. This may explain why cAMP-activation is associated with several,
and not just one or two, protein kinase features. The overall frequent association of cAMP-
activation with protein features is further clarified by Figure E2 (see App. E, p. 96-98),
which recognized a high number of predicting features for this interaction among several
different feature types.

While the conducted review identified many biologically valid protein feature-interaction as-
sociations, there were also several suggested effectors for which no certain biological con-
nection could be found to their associated proteins. This problem might have been caused
by the issue discussed in Subsection 4.1.4, namely the uncertain quality of entries reported
in BRENDA. As was previously discussed, BRENDA contains several questionable documen-
tations, including reported interactions of proteins and metabolites that are either incon-
sistent with other studies, condition-dependent, or of a weak nature. This problem affects
the results of this part of the analysis because features may be associated with interactions
even though they are naturally or biologically unrelated. This complicates the correct asso-
ciation of protein structural features with metabolite-interactions, and the identification of
seemingly unrelated proteins and interactions implies that the approach should be improved
in order to be used confidently as the basis for predicting protein-metabolite interactions.
Such improvements could for example include a more sophisticated approach to associat-
ing protein features with metabolite-interactions, in which only those that are biologically
relevant are used for predictions. On the other hand, the utilized approach did, as men-
tioned, also identify several true protein-metabolite interactions, and thus demonstrates
a biologically significant relationship between protein structure and metabolite-interaction
which can be exploited to predict allosteric interactions.

Additionally, the identified feature-interaction associations represent several protein-meta-
bolite interactions that do occur in in vivo systems, but are not of an allosteric character.
As was mentioned in the Chapter of Methods, filtering for purely allosteric interactions in
BRENDA was not possible. Despite removing extracellular and inorganic compounds from
the dataset during its compilation, the analysis in Subsection 3.1.2 revealed that a great
number of cofactors and competitive inhibitors remained present. Due to these findings,
it was expected that the feature-interaction association would result in the association of
protein features with interactions of cofactors and competitive inhibitors. While this issue
does not affect the ability of this project to demonstrate a biologically significant relation-
ship between protein structure and metabolite-interaction, the filtering process should be
improved to remove such interactions if the current approach is to be used as the basis for
a method of predicting allosteric regulation.

Lastly, the predictions of metabolite-interactions from protein features included a few in-
teractions that are coherent with the findings from the analysis of the protein-metabolite
interaction data. As was mentioned in Subsection 3.2.2.1, the histograms in Figure E2
(see App. E, p. 96-98) identified several metabolite-interactions that were predicted by
high numbers of features. These interactions included activation by ATP and pyruvate and
inhibition by glucose. As was established in Subsections 3.1.2 and 4.1.1, the results from
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this current work and that conducted by Reznik et.al. identified ATP as the most common
regulator. Reznik et.al. also recognized pyruvate as a common effector molecule [27],
and the network in Figure B1 (see App. B, p. 90) indicates a central role of glucose as
a metabolic regulator as well. The high association rate of these interactions with protein
features is thus coherent with their role as frequent protein modulators, which suggests
that the approach accomplished to detect, at least to some degree, a logical connection be-
tween protein structure and metabolite-interaction. The abundance of associated protein
features for these central metabolic regulators may also be interpreted as further evidence
of the non-random distribution of both enzyme regulation and research focus that has been
repeatedly suggested in this Chapter.

4.2.3 Predicted interactions closed phylogenetic gaps

The expanded phylogenetic tree in Figure 3.13 (p. 55) contained 132 predicted interactions,
which was 82 interactions less than the number of documentations. With the assumption
that these predictions are biologically accurate, this high number of predictions provides an
indication of a statistically significant relationship between protein features and metabolite
interactions which can be exploited to predict allosteric protein-metabolite interactions from
protein structure. On the other hand, had the approach not yielded any predictions, that
would have suggested that there exists no connection between the presence of protein
structural features and the regulation of proteins by metabolites. This could have meant
that the protein structure characteristics utilized in the current work are too generic, but as
the approach did yield predictions, no such conclusions can be drawn.

Furthermore, the annotated predicted interactions appear to not have changed the gen-
eral clustering pattern that was observed in Figure 3.10 (p. 46). Interactions are still
evenly spread throughout all taxa, and if any change was made, annotating the predictions
actually caused interactions to be even more spread than previously. For example, the
interactions defined as inhibition of fructose-1,6-bisphosphatase by AMP (grey), activation
of pyruvate kinase by fructose 1,6-bisphosphate (dark pink), and inhibition of acetolactate
synthase by valine (blue) were not present in Archaea in Figure 3.10. However, due to
the prediction of these interactions in the species Halobacterium salinarum, Methanocaldo-
coccus jannaschii, and Methanothermobacter thermautotrophicus and Methanocaldococcus
jannaschii, respectively, Archaea was shown to also possess these three PMIs. The annota-
tion of predicted interactions to the phylogenetic tree thus resulted in a higher conservation
of protein-metabolite interactions, indicating that distant species are more closely related
in terms of their protein-regulatory mechanisms than what is represented by documented
research.

As was described in Subsection 3.2.2.2, mapping predicted interactions to the phylogenetic
tree closed some of the gaps that were mentioned in Subsection 3.1.3 and discussed in
Subsection 4.1.3. For example, the interactome of Arabidopsis thaliana was expanded
from only four to nine out of the top ten interactions that were selected as a case study.
This new interactome better represents A. thaliana as a common model organism, as in
concordance with the results described in Subsections 3.1.2 and 4.1.1. A similar case is
found for the model organism Drosophila melanogaster, which advanced from zero to four
annotations. Furthermore, two close relatives of the model yeast Saccharomyces cerevisiae
were predicted to possess three and eight of the interactions documented for S. cerevisiae,
which displays a clear case of gap-filling in related species. Other such examples are found
in the phylum Chordata, which includes mammals and Gallus gallus, and in the bacterial
taxa as well. These findings indicate that the absence of interactions from certain species
might in fact be caused by lacking documentation, and thus support the previously stated
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hypothesis of both biased and incomplete research focus. However, it was revealed in
Subsection 3.2.2.2 that not all of the predicted interactions are biologically valid. This issue
of false positive predictions will be addressed in the following Subsection.

4.2.4 Interactions were both correctly and falsely predicted

The utilized approach resulted in the prediction of at least three biologically correct organism-
specific protein-metabolite interactions. As was validated by the obtained evidence de-
scribed in Subsection 3.2.2.2, the pyruvate kinase of both the bacterium Mycobacterium
tuberculosis and the eukaryote Neurospora crassa is in fact activated by fructose 1,6-
bisphosphate. Additionally, although the article that was obtained as evidence did not
describe the relevant enzyme, it was found that the hexokinase of Plasmodium falciparum
is inhibited by its product glucose 6-phosphate. These true positive predictions function
as further indicators of the validity of the current approach, and suggest that the utilized
structural protein features have potential as predictors of allosteric interactions. However,
in addition to these validations, the obtained evidence also prompted the identification of
four false positive predictions. The remains of this Subsection are devoted to attempting
to uncover what might cause such false positive predictions to occur, as well as to consider
this issue in relation to the confidence of the current approach.

The results from the conducted validation process showed that all false positive predic-
tions were related to the same interaction, namely activation of pyruvate kinase by fruc-
tose 1,6-bisphosphate (dark pink in Fig. 3.13). The obtained literature states that the
pyruvate kinases of the organisms in question are of the AMP-activated and not fructose
1,6-bisphosphate-activated types, which implies that even though these specific pyruvate
kinases are not inhibited by fructose 1,6-bisphosphate, there exist several pyruvate kinases
that are. The main reason for these false positive predictions most likely resides in the uti-
lization of EC numbers as the protein identifier. EC numbers represent catalytic reactions
and not specific enzymes, and some reactions may be catalyzed by more than one unique
protein. In some cases, these enzymes display the same regulatory behaviors, but there
also exist cases where the different proteins of the same catalytic function are regulated
by different mechanisms. Because the proteins documented in BRENDA are possibly not
properly standardized by name, EC number was chosen as the simplest and most accurate
identifier. However, this makes it impossible to distinguish between what specific proteins
are actually regulated by the metabolite in question, as in the case of AMP- and fructose
1,6-bisphosphate-activated pyruvate kinases. This essentially means that modulators are
associated with all proteins related to an EC number, despite possible differences in their
regulation. While such an assumption of universal regulators for an EC number might be
valid for interactions of some enzymes, it may result in false positive predictions in cases
where proteins related to the same EC number are regulated by different mechanisms.

Furthermore, it is possible that the false positive predictions of pyruvate kinase inhibition
were based on association with features that are too generic to be used confidently. Fea-
ture types such as superfamilies are more generic than the others in the sense that they
encompass proteins of only similar structure. This implies that two proteins of the same
superfamily might be entirely unrelated in terms of biological function and small-molecule
regulation. Domains, on the other hand, are more directly related to specific biological
roles, as is also the case of features such as active sites and binding sites. This means
that interactions associated with certain superfamilies might be specific to only parts of
the group of proteins to whom this feature is annotated, while interactions associated with
domains are more likely to be directly related to a biological function or characteristic that
determines or is connected to a specific regulatory behavior. Therefore, it is plausible that
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some feature types might be too generic to be utilized as predictors with confidence, sim-
ply because they are not sufficiently specific in terms of their annotated proteins and their
characteristics.

The issues of non-protein- and non-interaction-specific associations described in this Sub-
section can be argued as a consequence of the general research focus of this thesis. Focus-
ing on conservation at the level of phylogenetic taxa rather than the molecular level provides
less detail about the connection between protein structure andmetabolite-interaction, which
again reduces the confidence of predictions regarding prevalent proteins that are regulated
by multiple organism-dependent metabolites. However, focusing on the taxa level also re-
duces the complexity of the analysis. As was elaborated upon in the introduction, a great
deal of the problem with studying allostery is the low throughput of existing methods rela-
tive to the vast interaction space that is to be uncovered. By studying protein-metabolite
interactions on a genome scale for a larger group of organisms, this relationship between
throughput and interaction space is much more equalized. Utilizing relatively simple protein
characteristics such as features as the predicting variable also makes the approach more
applicable and easier to execute on a larger scale than existing methods, at least com-
pared to those that focus mainly on single protein-metabolite interactions. However, the
prediction of false positive interactions does imply that there is a certain inaccuracy to the
approach. While a payoff between accuracy and simplicity is always to be expected with
these types of analyses, it would be possible to improve the current method by applying
stricter demands to the utilized features. As was previously established, the main inaccu-
racy is likely related to different regulatory mechanisms of taxa-wise conserved proteins
related to the same EC numbers. Thus, if one could identify features responsible for the
binding of specific metabolites for proteins whose regulation is highly organism-dependent,
the prediction of these interactions could be restricted to those features. Nevertheless, the
identification of experimentally proven organism-dependent interactions does provide evi-
dence that general protein features have the potential as allosteric interaction-predictors,
implying that the approach’s simplicity is not an overall weakness.

In regard to false positive predictions, it should also be acknowledged that the current ap-
proach does not attempt at predicting allosteric interactions. Due to time limitations, this
project was conducted utilizing a naive approach of predicting protein-interaction associa-
tions based on threshold values in the volcano plots of Figure 3.12. The cases of predicted
interactions discussed in this Subsection are only part of a small case study that was per-
formed as a mode of demonstrating the potential of utilizing protein features to predict
allosteric interactions. This type of naive approach is bound to result in both false positive
and false negative associations due to issues with the inaccuracy of associations, and these
issues would have been better handled by a method based on machine learning that was
trained to have better accuracy. This will be elaborated upon in Chapter 5.

Lastly, the inhibition of hexokinase by glucose-6-phosphate (green) was predicted for sev-
eral different eukaryotic species. As previously acknowledged, hexokinase is a common pro-
tein that exists in different sizes and with different specificities. Literature implies that only
vertebrate 100-kDa hexokinase is inhibited by glucose-6-phosphate [159], but BRENDA
documents the interaction for species of other groups as well. Similar to the case of pyru-
vate kinase, the prediction of this interaction in non-vertebrate species might be due to the
presence of similar catalytical, hexokinase-specific, or generic structural features. How-
ever, this interaction was as mentioned also predicted for the parasite Plasmodium falci-
parum, and this prediction was later confirmed by additional literature reviews. In fact,
the P. falciparum hexokinase is declared a 55.3-kDa protein with 26% identity to that of
humans [148], and should according to certain literature thereby not be inhibited by glu-
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cose 6-phosphate [159]. However, the results from another study imply that there is no
difference between the species with 50- and 100-kDa hexokinases in relation to inhibition
by glucose 6-phosphate [117]. It thus appears as if this regulatory behavior is not limited
to higher eukaryotes after all, but might be more widespread than anticipated. As most of
the reviewed articles about the regulation of this specific enzyme were published several
decades ago, this might be an indication that previous research is somewhat outdated. This
matter will be part of the topic addressed in the following Subsection.

4.2.5 Poor documentation and research of allostery

An observation made about the literature that has been reviewed in the entirety of this
thesis is that the majority of the utilized articles were published either before or in the
early 2000s. Much of the existing allosteric and enzymatic research appears to have been
performed several decades ago, and there seems to be a significant shortage of compulsory
research efforts on these topics. In fact, the general amount of literature available for
allosteric regulation seem sparse compared to other fields of biology, including topics such
as transcriptional regulation. This assumption is supported by the results of the validation
process described in Subsection 3.2.2.2, which consisted of only ten articles concerning the
prediction of two protein-metabolite interactions in seven individual organisms. The file of
predicted interactions used to conduct the search included ten interactions in 60 individual
organisms. When also considering the fact that four of the retrieved articles described the
same organism-specific interaction and that one of the retrieved articles was irrelevant to
its case, little relevant information was obtained relative to the potential. Despite the high
simplicity of this search, these results, in combination with the biased research focus that
has been proposed in several previous sections of this thesis, is further indication of not
only biased research within the field of allostery, but also of poor attention paid towards
discovering and studying regulatory protein-metabolite interactions in general. As was also
argued in Subsection 4.1.4, these circumstances might promote outdated and misleading
scientific conclusions due to the use of incomplete and inaccurate metabolic models.
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5 Conclusion and Outlook

The aim of this thesis, as was described in Chapter 1, was to evaluate the potential of pre-
dicting allosteric interactions from genome sequences. In order to achieve this objective,
data on protein-metabolite interactions was first obtained and assembled into a standard-
ized database. Following analysis of its contents, structural features annotated to the pro-
teins of the database were retrieved, and connections were drawn between these features
and interactions with these proteins in terms of the regulatory metabolite and mode. This
current Chapter will summarize the efforts and highlight the most essential results and con-
clusions from each part of the work, followed by descriptions of possible further uses and
advancements of the developed approach.

The utilized protein-metabolite interaction data was retrieved from the publicly available
enzymatic database BRENDA. After filtering for intracellular and organic compounds, this
assembled database contained 32 535 organism-specific interactions among 3 097 proteins
and 1 002 metabolites. 18 854 of these interactions were unique, and 78.7% of the non-
unique interactions were inhibitory. Comparing the contents of this database with findings
from the study of small-molecule regulation in E. coli by Reznik et.al. indicated a general
abundance of inhibitory regulation regardless of the considered organism. These findings
are likely caused by the widespread use of competitive inhibition and feedback regulation
in metabolism in order to maintain condition-suitable levels of resources.

Furthermore, the contents of the assembled database were analyzed by studying frequency
distributions of the activators, inhibitors, targeted enzymes, and documented organisms.
The results from this work showed that the typical metabolite and enzyme only participate in
a few interactions, while the few effector molecules and proteins that are highly regulatory
and regulated are essential for central pathways such as glycolysis, gluconeogenesis, the
citric acid cycle, and glycogen/starch metabolism. These results are indications of two
possible hypotheses; central pathways are either subject to more regulatory attention due
to the conservation of resources by feedback mechanisms, or they are subject to more
research due to their essential role in the maintenance of cellular life. Similar patterns
were observed for the documented organisms, where the skewed distribution of interactions
reported indicated a biased research focus towards typical model organisms and species
related to Homo sapiens.

With the purpose of assessing the conservation of allosteric interactions on the level of phy-
logenetic taxa, ten well-reported interactions from the assembled database were annotated
to a phylogenetic tree of the top documented organisms. This work resulted in a tree of 99
individual organisms annotated with a total of 214 interactions. Important takeaways from
this result included well conservation of protein-metabolite interactions across taxa, and
the presence of interaction-gaps at several species whose relatives were documented with
well-conserved interactions. These observations are further indicators of a biased research
focus toward central species, which implies that missing interactions may represent lacking
documentation or research rather than lacking biological regulation.

To evaluate the potential of utilizing genome sequence as a predictor of allosteric regula-
tion, protein structural features represented by InterPro IDs were retrieved from UniProt for
all EC numbers documented for the top hundred organisms. These features were associ-
ated with their EC numbers’ respective metabolite-interaction, and enrichment analysis was
performed to find statistically significant relationships between features and interactions.
This resulted in 32 276 statistically significant associations, of which 7 315 were exclu-
sive. Investigating the overlap of predicted interactions of the eight different feature types
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showed that domain and family are the two most important interaction-predicting features
as they produced both many and unique predictions. Moreover, several feature-interaction
associations were proven to be biologically valid, but no definite indications were found of
exclusive predictions being more accurate than non-exclusive, significant associations.

Predicted interactions identified from enrichment analysis were annotated to the previously
created phylogenetic tree in order to assess whether such predictions are capable of closing
observed gaps in conserved interactions. This work resulted in 132 predicted interactions,
which gave the impression of enhanced conservation of allostery due to a more evenly
spread distribution of interactions and several closed phylogenetic gaps. These results were
further indicators of the previously suggested issue of biased research, and also of lacking
documentation of allostery. Additionally, the number of predicted interactions in the tree
as well as the biological validity of associations indicate that the utilized protein structure
features are valid predictors of protein-metabolite interactions. Searching for experimental
proof of predicted interactions did however reveal a few false positive predictions that might
be the result of associations based on generic features in terms of their relation to enzyme
function or widespread association.

Lastly, the literature obtained for this work indicates an abundance of outdated research
and highlights the need for newer efforts within the field of allosteric regulation. The utilized
database of enzymatic information also displays a need for quality control of its entries, as
findings of possibly biologically inaccurate information indicate a somewhat naive approach
to information retrieval and documentation. In addition to the lack of documentation that
has previously been suggested, these circumstances might promote outdated and mislead-
ing scientific conclusions which could be resolved by better allosteric knowledge.

If this project was given a few more months, it would have been of high interest to de-
velop a machine learning tool that exploits the statistically significant relationship between
protein structure features and protein-metabolite interactions to predict allostery from pro-
tein structure. While the current approach proposes the existence of such a relationship, it
would have been beneficial to have a tool that directly suggests metabolic regulators for a
protein given its annotated structural features. Moreover, as the conducted work also re-
sulted in false positive predictions for the considered case study, it could be advantageous
to investigate these connections more thoroughly to possibly determine factors that cause
the prediction of these protein-metabolite interactions to be more challenging and inaccu-
rate. This could either confirm or reject the hypotheses suggested in Subsection 4.2.4, or
uncover alternative causes for these false positives. Knowledge about these factors could
further be used to improve the method, and solutions could thereby be implemented in the
machine learning tool to reduce the uncertainty of predictions.

Furthermore, as was mentioned introductory-wise, improved allosteric knowledge would
likely contribute to increased accuracy of metabolic models. Therefore, it could be interest-
ing to include some of the predicted interactions in a genome scale metabolic model for one
of the species that, according to this analysis, is less studied allostery-wise. The utilized
organism could for example be Bacillus subtilis, which only had three documentations but
six additional predicted interactions. In order to assess the effect of protein-metabolite in-
teractions on the metabolic flux, flux balance analysis could be run and compared between
original and interaction-extended models. The allosteric interactions could be implemented
in the analysis as additional constraints on the enzymatic activity, for example by using
the concentration of essential effector molecules as additional constraining variables. Re-
sults from these analyses could then be used to deduce the effect of including regulatory
protein-metabolite interactions, and possibly lead to a more accurate metabolic model of
the organism in question.
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Appendices

Appendix A: Supplementary information

This appendix contains information about the supplementary material that is associated
with this work. The material is available at the GitHub repository created for this the-
sis (https://github.com/elinsroed/predicting-allostery), and consists of Python scripts (v.
3.8.6) written in Jupyter Notebook (v. 6.4.12) [33], raw datafiles downloaded from relevant
databases, and the results from the analyses conducted in this project. Table A1 provides
a description of the different files found in the repository, and their paths for easier access.

Table A1: Supplementary information overview; description of the content available at the
thesis’ GitHub repository.
No. Description Path
1 Raw and cleaned allosteric data from BRENDA datafiles\interactions
2 Supporting files for mapping and filtering interaction and feature data datafiles\support
3 Files of protein sequence features datafiles\features
4 Files used for creating and annotating the phylogenetic tree datafiles\phylotree
5 Files of results from enrichment analysis and validation datafiles\results
6 Script for cleaning interaction data from BRENDA data download and cleaning\BRENDA_data.ipynb
7 Script for downloading protein sequence features data download and cleaning\download_features.ipynb
8 Scripts for creating and annotating phylogenetic tree analysis\data_analysis\phylogenetic_tree
9 Script for analysing interaction data analysis\data_analysis\BRENDA_analysis.ipynb
10 HTML file of interactive network analysis\data_analysis\network.html
11 Scripts for conducting enrichment analysis and assessing results analysis\enrichment_analysis
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Appendix B: Network of protein-metabolite interactions

This appendix contains the network of protein-metabolite interactions for the top ten reg-
ulated enzymes and metabolites interacting with either two or more of the proteins in this
subgroup, created using Python’s pyvis package (v. 0.3.1) [44]. The network is displayed
in Figure B1, with enzymes shown as orange squares, metabolites as blue dots, and inter-
actions shown as green (activating) and red (inhibiting) edges. Its interpretation is given
in Section 3.1.2.

Figure B1: Network of protein-metabolite interactions, consisting of the top ten regulated
enzymes (orange squares) and metabolites (blue dots) interacting with two or more enzymes in this
subgroup of proteins. Activating interactions are shown by green edges and inhibiting interactions
are shown by red edges. This network was created and visualized using Python’s pyvis package (v.
0.3.1). [44]
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Appendix C: Interaction-annotated phylogenetic trees

This appendix contains the phylogenetic trees mapped with allosteric interactions in rect-
angular format with labels for the interactions. Figure C1 displays the phylogenetic tree
annotated with only documented interactions, while Figure C2 shows the phylogenetic tree
annotated with documented (filled squares) and predicted (empty squares) interactions.
The interpretation of the trees is given in Subsection 3.1.3 and 3.2.2.2, respectively.
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Figure C1: Phylogenetic tree mapped with allosteric interactions, rectangular. Taxa are
indicated as Archaea in green, Bacteria in purple, and Eukaryota in pink. Each mapped interaction is
presented by a single column, with the interaction label (EC number : Metabolite name : Mode) as
column header. The tree was annotated using the iTOL (v. 5) online tool [48].
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Figure C2: Phylogenetic tree with allosteric interactions, rectangular: documented (filled
squares) and predicted (empty squares). Taxa are indicated as Archaea in green, Bacteria in purple,
and Eukaryota in pink. Each mapped interaction is presented by a single column, with the interaction
label (EC number : Metabolite name : Mode) as column header. The tree was annotated using the
iTOL (v. 5) online tool [48].
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Appendix D: Interaction-predicting features

This appendix contains the results of the comparison of interactions predicted by every
feature type (active site, binding site, conserved site, domain, family, homologous super-
family, PTM, repeat), that was conducted with the purpose of assessing the importance of
these features in predicting protein-metabolite interactions. The overlaps of predicted in-
teractions were plotted as UpSet plots, separated by activating and inhibiting interactions,
which are displayed in Figure D1. The interpretation of these plots is given in Subsection
3.2.2.

Figure D1: Overlaps of protein-metabolite interactions predicted by eight protein feature
types: activating interactions (green) and inhibiting interactions (red). The vertical bars represent
the number of predicted interactions in the intersection of the groups highlighted by a dot in the
diagram below, while the horizontal bars represent the total amount of interactions predicted by the
respective feature type. The bars are sorted by size, and only groups with 6 and 10 or more entries
are included for activating and inhibiting interactions, respectively.
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Appendix E: Statistically significantly associated features and inter-
actions

This appendix contains histograms illustrating the frequency distributions of interaction-
predicting protein features and protein feature-predicted interactions that were identified
utilizing the results from enrichment analysis (Subsections 2.2.2 and 2.2.2.2). Figures E1
and E2 show the number of statistically significant associated interactions for each individual
protein feature, and the number of statistically significant associated protein features for
each individual interaction, respectively. The plots are separated by protein feature type
and mode of interaction (activation/inhibition), and a count limit, which is specified for each
individual plot, has been set with the purpose of bettering the visualization.

Figure E1: The number of associated interactions for each protein feature, separated by type
of protein feature and activating (+) and inhibiting (-) interactions. The mode of interaction and count
limit for the plots are indicated in the top right corner, while feature type is denoted by the x-axis
label.
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Figure E1: The number of associated interactions for each protein feature (continued).
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Figure E2: The number of protein features associated with each interaction, separated by
type of protein feature and activating (+) and inhibiting (-) interactions. The mode of interaction and
count limit for the plots are indicated in the top right corner, while feature type is denoted by the
y-axis label.
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Figure E2: The number of protein features associated with each interaction (continued).
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Figure E2: The number of protein features associated with each interaction (continued).
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