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Abstract

An intuitive and attractive model for describing multi-neuronal activity is the pairwise maximum

entropy model. This model has shown particular promise in capturing the experimentally observed

probabilities of activity patterns, at least for few (∼ 10) neurons N . The model was initially

applied to retinal ganglion cell activity, but have later shown equally promising results in the

cortex. However, whether this good performance for small N generalizes to larger N is unclear.

Previous work has suggested that the quality of the pairwise model should be linear in Nv̄δt when

Nv̄δt ≪ 1, the so-called perturbative regime, regardless of what the true probabilities of activity

patterns are, where v̄ is the mean firing rate and δt is the binsize. Here, we analysed data from the

rat visual and auditory cortex, using various measures performance. We find that the performance

of the pairwise model decays with Nv̄δt, although the model performs well in terms of predicting

the third order correlations even for large Nv̄δt.
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Sammendrag

En intuitiv og tiltrekkende modell for å beskrive aktiviteten i en populasjon av nevroner er den

parevise maksimalentropi-modellen. Denne modellen har vist seg å være god til å finne de eksper-

imentelt observerte sannsynlighetene for forskjellige aktivitetsmønstre, i hvert fall for f̊a (∼ 10)

nevroner N . Modellen ble først anvendt p̊a aktivitet i ganglionceller i netthinnen, men har senere

vist like lovende resultater i hjernebarken. Det er imidlertid uklart om denne gode ytelsen for liten

N ogs̊a holder for større N . Tidligere arbeid har antydet at ytelsen til den parvise modellen burde

være lineær i Nv̄δt n̊ar Nv̄δt ≪ 1, det s̊akalte perturbasjonsregimet, uavhengig av hva den sanne

sannsynligheten for forskjellige aktivitetsmønstre er, der v̄ er gjennomsnittlig avfyringsfrekvens og

δt er tidsintervallet. Her analyserte vi data fra den visuelle og auditive hjernebarken hos rotter,

ved å bruke ulike m̊al for ytelse. Vi finner at ytelsen til parevise modellen avtar med Nv̄δt, selv

om modellen predikerer tredjeordens korrelasjoner godt selv for store verdier av Nv̄δt.
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1 Why Care About Probabilities?

Hopefully, neuronal activity is not random. If it was, it would be difficult for the brain to generate

useful behavior. An abundance of different ideas have been explored to find patterns in this non-

random activity (Stephens et al., 2011. Among those are a range of dimensionality reduction

techniques (Cunningham and Yu, 2014). If the activity of N different neurons is related in some

way, one might be able to describe their activity with less than N numbers. This can be done

through a number of methods, importantly those that take into account the stochastic nature

of neural spiking. This might be useful for several reasons. First, the brain must deal with

probabilities on some level due to the noisiness of individual neurons. For example, there is likely a

probability distribution over activity patterns that correspond to a given head direction, and this

distribution must be known to the brain somehow. Second, a description in terms of probability

distributions may aid in the discovery of computational algorithms, for example by probabilistic

examining dependencies between different neurons (Savin and Tkačik, 2017; Schneidman, 2016).

Third, sampling from such distributions could produce brain-like synthetic data, which has a variety

of purposes (Betzel and Bassett, 2017). Finally, probability distributions formalize the problem

in a way that allows for the use of well-developed methods from other fields, such as statistical

mechanics (e.g., Sompolinsky, 1988) or information theory (e.g., Timme and Lapish, 2018).

One way of defining discrete ”brain states” is to let a state be the presence or absence of an

action potential in tiny slivers of time, called timebins, for each recorded neuron. That is, a state is

an activity pattern described by a binary vector. Ultimately, we may care more about states that

are meaningfully different to the brain (whatever that means), and it seems unlikely that the brain

distinguishes equally between all patterns of action potentials (see Section 6.5 and e.g., Ganmor

et al., 2015). While we may eventually want to define brain states differently, the binary vector is

a good starting point.

The simplest way of building an approximate probability distribution over these states from

some recording of neuronal activity is to simply count the number of times each state is observed

and dividing by the total number of observed states. For this to be a good approximation, one

requires many samples/observations per state. When we care about few neurons at a time this

is achievable in a typical experiment, but it rapidly becomes unfeasible because the number of

possible states increases as 2N with the number of neurons N . Thus, the number of possible state

quickly becomes so big that we could not write it down even if we had enough data to reliably

estimate the 2N −1 parameters (probability of each state, in this case). So, as recording techniques

improve and more neurons are recorded simultaneously (Gao and Ganguli, 2015; Stevenson and

Kording, 2011; Yuste, 2015), the distribution over states have to be approximated by something

other than counting. Preferably by finding some model that requires fewer than 2N −1 parameters

to be fit to the data. This nicely reflects our desire to find patterns in the data that allows for a

simple description. A reasonable approach could be to make sure some feature(s) of the data match

the model, while introducing as little structure as possible. That is, to make the approximated

distribution as flat as possible given some constraints. This is exactly what maximum entropy

models does (Savin and Tkačik, 2017). In particular, maximum entropy models that make all

firing rates and pairwise correlations of the model match the data look promising as they only have

N +N(N − 1)/2 parameters and have been shown to approximate the true (counted) distribution

well for few neurons (Schneidman et al., 2006; Shlens et al., 2006). This is known as the pairwise

maximum entropy model (pairwise model, for brevity), or the Sherrington-Kirkpatrick (SK) Ising
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model in the context of statistical mechanics (Sherrington and Kirkpatrick, 1975). Intuitively

speaking, this is similar to fitting a multi-variate Guassian to a number of real valued observations,

but it is done for binary variable.

Following these promising results, the pairwise model has been applied to different types of

neural recordings, such as calcium imaging (Meshulam et al., 2017, 2021; Wolf et al., 2023), intra-

cranial electroencephalography (iEEG; Ashourvan et al., 2021), and functional magnetic resonance

imaging (fMRI; Ezaki et al., 2017; Watanabe et al., 2013) data. Note that instead of considering

neurons, iEEG data typically considers electrodes while fMRI data typically considers regions of

interest. Some have used inferred pairwise models to estimate functional connectivity between

neurons (Kadirvelu et al., 2017) or brain areas (Ashourvan et al., 2021; Watanabe et al., 2013), to

look for signatures of neuropsychiatric disorders (Ezaki et al., 2017), and for decoding of a binary

stimulus (Posani et al., 2017). Beyond neuroscience, pairwise models have also seen use in a wide

variety of biological systems ranging from amino acid interactions in proteins to voting interactions

in the US supreme court (Cofré et al., 2019).

Despite this widespread use, we still don’t know whether the good model fit we see for small

N generalizes to large N . This prevents us from drawing strong conclusions about a system from

a fitted pairwise model as N increases. However, it is difficult to evaluate how close the inferred

model is to the data (i.e., how similar the probability of the different states are) for large N because

the number of states grows exponentially with the number of neurons. This makes it challenging

to estimate the true distribution from the data and to calculate the probability of each state in

the model because it involves a sum over all states. Nevertheless, we here attempt to evaluate the

performance of the pairwise model for large N . In order to express this aim precisely, we must first

have a better understanding of pairwise maximum entropy models and how to evaluate them.

2 Maximum Entropy Models

Our goal is to make a probability distribution over some states s. Here, these states represent

activity patterns of a population of neurons. They are constructed by converting the spike times

of a collection of N recorded neurons to spike trains by binning the spikes in time with a binsize of

δt. That is, each sample is described by a vector of length N , s(t) = [s1(t), s2(t), ..., sN (t)], where

si(t) = 1 when neuron i spikes at least once in bin t and si(t) = −1 when it does not. Here, we

will use a dataset recorded from the visual, auditory, somatosensory, and motor cortices of freely

moving rats (Mimica et al., 2022), described in more detail in Section 4.1.

One way to describe the distribution over all states with less than 2N − 1 parameters is to

only consider some features of the data. Apart from these features, the distribution is made as

unstructured or uniform as possible; the entropy is maximised. This corresponds to adding no

more information than that contained in the features. In the general case (Jaynes, 1957), the

distribution that achieves this is called the (Gibbs-)Boltzmann distribution, and is given by

p(s) ≡ 1

Z({gµ})
exp

(∑
µ

gµfµ(s)

)
. (1)

The parameters gµ are fit such that the expectation values ⟨fµ(s)⟩ of some features fµ(s) in the

model match the observed average values of those features in the data. The partition function

2



Z({gµ}) normalize the distribution and is thus given by

Z ≡
∑
s

exp

(∑
µ

gµfµ(s)

)
. (2)

2.1 Pairwise Maximum Entropy Models

In the pairwise maximum entropy model (pairwise model, for brevity), the features are simply the

means (i.e., firing rates) and pairwise correlations of every neuron and pair of neurons, respectively.

That is, the parameters are fit such that the means ⟨si⟩pair and correlations ⟨sisj⟩pair of the pairwise
model match the means ⟨si⟩data and correlations ⟨sisj⟩data in the data. The model is given by

ppair(s) ≡
1

Z
exp

∑
i

hisi +
∑
i<j

Jijsisj

, (3)

where the biases (or external fields) hi and couplings Jij are parameters fit to the data. Note that

the couplings are symmetric (Jij = Jji) and that self-connections are omitted (Jii = 0), resulting

in N +N(N − 1)/2 parameters.

2.2 Independent Models

To evaluate the performance of a fitted pairwise model, one may want to compare it to another

distribution fit to the data. A common choice here is the maximum entropy independent model

in which neurons are assumed to spike independently of one another. By doing this comparison,

one is measuring the importance of the pairwise correlations in accounting for the data. In the

maximum entropy independent model, only the means ⟨si⟩ are matched, giving

pind(s) ≡
1

Z
exp

(∑
i

hisi

)
. (4)

Now, only the biases hi have to be fit to the data such that ⟨si⟩ind match ⟨si⟩data. In the absence

of Jijs this is simple, as the biases are given by (Roudi, Aurell et al., 2009)

hind
i = arctanh ⟨si⟩data. (5)

Another way of constructing an independent model to compare the pairwise model to, is simply

remove the Jij from the a pairwise model fitted to the data. By doing the comparison between

a pairwise model and a pairwise model where the Jijs are set to zero manually, we evaluate how

much the pairwise model relies on its couplings in achieving whatever performance it achieves.

Here, we use both of these independent models, defined by hind or h, as a yardstick to measure

the performance of the pairwise model, in addition to evaluating its reliance on the couplings J .
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2.3 Approximating h and J

2.3.1 Boltzmann learning

Inferring the biases hi and couplings Jij of the pairwise model from data is more elaborate than

the Independent max ent model. The simplest and most reliable way of doing so is to, starting

from some initial value, iteratively change the parameters until the means ⟨si⟩ and correlations

⟨sisj⟩ of the pairwise model match those in the data. This procedure is called Boltzmann learning,

and the update rules are given by

δhi = η(⟨si⟩data − ⟨si⟩pair) (6a)

δJij = η(⟨sisj⟩data − ⟨sisj⟩pair) (6b)

where η is the learning rate chosen such that hi and Jij converges (Ackley et al., 1985). At

convergence the solutions will be that of the maximum likelihood estimates of h and J , given the

data.

The means and correlations from the data can be calculated directly. However, the means and

correlations from the pairwise model can only be calculated exactly for small N , when the sum

over all states (in Z) is small enough. One solution is to sample the pairwise model using Monte

Carlo sampling, with the current values of h and J , at each iteration and calculate the means and

correlations from that. We start from some initial state, then pick one random neuron i and flip it

such that si → −si. Now, we compare the probability of the old unflipped state sold with the new

flipped state snew. We want to sample more high-probability than low-probability states, so we

want to accept the new state as a sample if ppair(snew)/ppair(sold) is larger than one and sometimes

accept the new state if ppair(snew)/ppair(sold) is less than one. More precisely, we accept the new

state as a sample with probability

p = min

{
1,

ppair(snew)

ppair(sold)

}
= min {1, exp (H[sold]−H[snew])}, (7)

where H(s) =
∑

i hisi +
∑

i<j Jijsisj is the ”energy” or Hamiltonian of state s. To reduce the

influence of the arbitrary initial state, a burn-in period in which the first samples are discarded is

often included. This algorithm is a special case of the Metropolis-Hastings algorithm (Ghojogh et

al., 2020; Hastings, 1970). During Boltzmann learning, a given number of states are sampled at each

iteration using this algorithm, and then used to approximate the means ⟨si⟩pair and correlations

⟨sisj⟩pair of the pairwise model in Eq. (6). So, there are three tunable parameters in Boltzmann

learning: the learning rate η, the number of iterations, and the number of samples per iteration.

Biases and couplings obtained from Boltzmann learning are denoted as hboltz and Jboltz.

Boltzmann learning is reliable in the sense that it will eventually converge to the maximum

likelihood values of h and J , but this may take a long time. To address this, several approximate

closed-form solutions have been developed. These approximations include the naive mean field

(nMF; e.g., Roudi, Aurell et al., 2009; Roudi, Tyrcha et al., 2009), Thouless-Anderson-Palmer

(TAP; Thouless et al., 1977), Independent Pair (IP; e.g., Roudi, Aurell et al., 2009; Roudi, Tyrcha

et al., 2009), and Sessak-Monasson (SM; Sessak and Monasson, 2009) approximation. However,

these often make assumptions that may be violated in neuronal data.
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2.3.2 Naive mean-field approximation

In mean field theory generally, we have a system of many interacting elements that we simplify

by averaging over degrees of freedom. In our case, we average neural activity over time so that

neurons are approximated to only interact with each other via their mean activity. We can derive

the mean field equation by applying this approximation to the mean ⟨si⟩ of neuron i. We start by

rewriting ⟨si⟩ using the probability of si = ±1 given the state of all the other neurons s/i,

⟨si⟩ = p(si = 1|s/i)− p(si = −1|s/i) =
exp (hi +

∑
j Jijsj)− exp (−hi −

∑
j Jijsj)

exp (hi +
∑

j Jijsj) + exp (−hi −
∑

j Jijsj)

= tanh (hi +
∑
j

Jijsj), (8)

where the second equality follow from Z only being a sum over si = ±1. Now, we can apply the

mean field approximation by replacing sj with its mean ⟨sj⟩ (Hertz et al., 2011), giving the mean

field equation

⟨si⟩ = tanh

hi +
∑
j

Jij⟨sj⟩

. (9)

Another way to understand this approximation is that we assume that the fluctuations around the

means are small or have a small effect. Eq. (9) is readily solved for hi because we can calculate

the means ⟨si⟩ and ⟨sj⟩ from data. To find Jij we take the derivative of Eq. (9) with respect to

⟨sj⟩, obtaining the inverse susceptibility matrix

χ−1
ij = −Jij , (10)

which is equal to the inverse (connected) correlation matrix C̃ij = ⟨(si − ⟨si⟩)(sj − ⟨sj⟩)⟩. The

naive Mean Field (nMF) approximation is then given by

JnMF
ij ≡ −(C̃−1)ij . (11a)

hnMF
i ≡ tanh−1⟨si⟩ −

∑
j

Jij⟨sj⟩ (11b)

To get some notion of the accuracy of the closed-form approximations, we plot their inferred

parameters against those obtained from Boltzmann learning. For illustration purposes, we use

the same N = 20 and N = 100 random neurons from the dataset (Mimica et al., 2022) in all of

these comparisons (Figure 2.1-2.4). In Figure 2.1 we see that the nMF approximation is better for

fewer neurons and typically overestimate the real parameters, in agreement with previous findings

(Roudi, Tyrcha et al., 2009).
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Figure 2.1: Boltzmann learning against nMF for neural data. (A-B) A random subpopulation of
20 out of the 495 neurons were chosen. The nMF parameters hnMF

i and JnMF
ij were plotted against

the Boltzmann learning parameters hboltz
i and Jboltz

ij , which used a learning rate of η = 0.01, 40000
iterations, and 10000 samples per iteration. (C-D) A random subpopulation of 100 out of the 495
neurons were chosen. The nMF parameters hnMF

i and JnMF
ij were plotted against the Boltzmann

learning parameters hboltz
i and Jboltz

ij , which used a learning rate of η = 0.01, 80000 iterations, and
50000 samples per iteration. This figure shows that the nMF approximation finds somewhat larger
parameters than Boltzmann learning, especially for larger N .

2.3.3 Thouless-Anderson-Palmer approximation

The Thouless-Anderson-Palmer (TAP) approximation is an extension of the nMF approximation,

where the effect of neuron i on its own mean, via ⟨sj⟩ in Eq. (9), is corrected for (Thouless et al.,

1977). This results in

⟨si⟩ = tanh

hi +
∑
j

Jij⟨sj⟩ − ⟨si⟩
∑
j

J2
ij

(
1− ⟨sj⟩2

) (12)

replacing Eq. (9). The new term is often called the Onsager correction term. One could continue to

add new correction terms, getting a sequence of progressively better approximations, of which the

nMF and TAP approximations are the first two (Plefka, 1982). Like in the nMF approximation,

one can solve Eq. (12) for hi and obtain Jij by taking the derivative of Eq. (12) with respect to
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⟨sj⟩. This results in the inverse susceptibility (i.e., connected correlation) matrix

χ−1
ij = (C̃−1)ij = −Jij − 2J2

ij⟨si⟩⟨sj⟩, (13)

which can be solved for Jij (taking the root closest to (C̃−1)ij). Thus, the TAP approximation is

given by

JTAP
ij ≡

−1 +

√
1− 8⟨si⟩⟨sj⟩(C̃−1)ij

4⟨si⟩⟨sj⟩
. (14a)

hTAP
i ≡ tanh−1⟨si⟩ −

∑
j

Jij⟨sj⟩+ 2J2
ij⟨si⟩⟨sj⟩ (14b)

In general, both the nMF and TAP approximation performs best when the couplings Jij are

small (Plefka, 1982; Roudi, Aurell et al., 2009; Roudi, Tyrcha et al., 2009). In Figure 2.2 we see

that the TAP approximation is considerably better than the nMF approximation. However, the

overestimation observed previously (Roudi, Aurell et al., 2009; Roudi, Tyrcha et al., 2009) is less

conspicuous here.

Figure 2.2: Boltzmann learning against TAP for neural data. (A-B) A random subpopulation of
20 out of the 495 neurons were chosen. The TAP parameters hTAP

i and JTAP
ij were plotted against

the Boltzmann learning parameters hboltz
i and Jboltz

ij , which used a learning rate of η = 0.01, 40000
iterations, and 10000 samples per iteration. (C-D) A random subpopulation of 100 out of the 495
neurons were chosen. The TAP parameters hTAP

i and JTAP
ij were plotted against the Boltzmann

learning parameters hboltz
i and Jboltz

ij , which used a learning rate of η = 0.01, 80000 iterations,
and 50000 samples per iteration. This figure shows that Boltzmann learning and TAP find fairly
similar parameters for a population of 20 and 100 neurons.
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2.3.4 Independent pair approximation

In the Independent Pair (IP) approximation, we instead simplify the inference problem by consid-

ering subnetworks of only two neurons at a time. In the subnetwork consisting of neuron i and

neuron j, defined by p(s) = exp (hj
isi + hi

jsj + Jijsisj)/Z where hj
i is the bias on neuron i paired

with neuron j, the parameters are given by (Roudi, Aurell et al., 2009; Roudi, Tyrcha et al., 2009)

J IP
ij ≡ 1

4
log

[
((1 + ⟨si⟩)(1 + ⟨sj⟩) + C̃ij)((1− ⟨si⟩)(1− ⟨sj⟩) + C̃ij)

((1− ⟨si⟩)(1 + ⟨sj⟩)− C̃ij)((1 + ⟨si⟩)(1− ⟨sj⟩)− C̃ij)

]
(15a)

hj
i =

1

2
log

[
(1 + ⟨si⟩)(1− ⟨sj⟩)− C̃ij

(1− ⟨si⟩)(1− ⟨sj⟩) + C̃ij

]
+ Jij . (15b)

Figure 2.3: Boltzmann learning against IP for neural data. (A-B) A random subpopulation of
20 out of the 495 neurons were chosen. The IP parameters hIP

i and J IP
ij were plotted against the

Boltzmann learning parameters hboltz
i and Jboltz

ij , which used a learning rate of η = 0.01, 40000
iterations, and 10000 samples per iteration. (C-D) A random subpopulation of 100 out of the
495 neurons were chosen. The IP parameters hIP

i and J IP
ij were plotted against the Boltzmann

learning parameters hboltz
i and Jboltz

ij , which used a learning rate of η = 0.01, 80000 iterations,
and 50000 samples per iteration. This figure shows that the IP approximation finds parameters
similar to Boltzmann learning for a population of 20 neurons, but overestimate the magnitude for
a population of 100 neurons.

The inferred couplings can be used directly, but the biases needs to account for the interaction
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between neuron i and all other neurons, not just neuron j. The idea is to sum hj
i over j, excluding

j = i (Roudi, Aurell et al., 2009). To do this, we decompose Eq. (15b) into terms that include j

and terms that don’t, and then sum the latter over all pairs where j ̸= i, obtaining

hIP
i ≡ 1

2
log

[
1 + ⟨si⟩
1− ⟨si⟩

]
+

1

2

∑
j ̸=i

log

 1−⟨sj⟩−C̃ij+⟨si⟩−⟨si⟩⟨sj⟩
1+⟨si⟩

1−⟨sj⟩+C̃ij−⟨si⟩+⟨si⟩⟨sj⟩
1−⟨si⟩

+
∑
j ̸=i

Jij . (16)

The IP approximation is thus given by Eq. (15a) and (16). The accuracy of both nMF and IP

generally decrease with increased N and δt. It is conceptually simple to extend the IP approxima-

tion by considering sets of more than two neurons. However, this is computationally expensive and

typically gives better approximations only for very small binsizes δt (Roudi, Aurell et al., 2009).

Figure 2.3 shows that the accuracy of the IP approximation drops considerably as N increases

from 20 to 100. We also see the previously observed (Roudi, Tyrcha et al., 2009) overestimation

of the magnitude of the parameters for large N .

2.3.5 Sessak-Monasson approximation

Sessak and Monasson (2009) derived an approximation of the biases and couplings by perform-

ing a perturbative expansion in the (connected) correlations C̃ij . The Sessak-Monasson (SM)

approximation is given by (Sessak and Monasson, 2009; Roudi, Tyrcha et al., 2009)

JSM
ij ≡ JnMF

ij + Jij
IP − C̃ij

(1− ⟨s2i ⟩)(1− ⟨s2j ⟩)− C̃2
ij

(17a)

hSM
i ≡ 1

2
log

[
1 + ⟨si⟩
1− ⟨si⟩

]
−
∑
j

JSM
ij ⟨sj⟩+

∑
j ̸=i

Kij⟨si⟩Lj

− 2

3
(1 + 3⟨si⟩2)

∑
j ̸=i

K3
ij⟨sj⟩Lj − 2⟨mi⟩

∑
j<k

KijKjkKkiLjLk

+ 2⟨si⟩
∑
l<j

∑
k

KlkKkjKjiKilLlLjLk

+ ⟨si⟩
∑
j

K4
ijLj(1 + ⟨si⟩2 + 3⟨sj⟩2 + 3⟨si⟩2⟨sj⟩2)

+ ⟨si⟩
∑
l ̸=i

∑
j

K2
ljK

2
jiLlL

2
j ,

(17b)

where Li = 1−⟨si⟩ and Kij = C̃ij/LiLj . Note that this approximation assumes small (connected)

correlations, which may or may not be the case in neural data. In our testing, hSM is substantially

more sensitive to this assumption than JSM. Still, the TAP and SM approximations, or their mean

(Roudi, Aurell et al., 2009; Roudi, Tyrcha et al., 2009), generally give the best approximations

(i.e., closest to Boltzmann learning). Figure 2.4 displays an example of SM versus Boltzmann

learning parameters, illustrating the expected (Roudi, Aurell et al., 2009; Roudi, Tyrcha et al.,

2009) underestimation for large N .
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Figure 2.4: Boltzmann learning against SM for neural data. (A-B) A random subpopulation of 20
out of the 495 neurons were chosen. The SM parameters hSM

i and JSM
ij were plotted against the

Boltzmann learning parameters hboltz
i and Jboltz

ij , which used a learning rate of η = 0.01, 40000
iterations, and 10000 samples per iteration. (C-D) A random subpopulation of 100 out of the
495 neurons were chosen. The SM parameters hSM

i and JSM
ij were plotted against the Boltzmann

learning parameters hboltz
i and Jboltz

ij , which used a learning rate of η = 0.01, 80000 iterations, and
50000 samples per iteration. This figure shows that the SM approximation gives smaller parameters
than Boltzmann learning, which is more apparent for larger N .

2.3.6 Pseudolikelihood maximization

An approximation that compromise between the reliability of Boltzmann learning and the speed of

the approximate closed-form solutions would be ideal. Pseudolikelihood maximisation (PL; Besag,

1975) may fill this role. This approach decomposes the problem of finding the biases and couplings

into N independent subproblems by considering the conditional distribution of each neuron si

given all the others neurons s/i:

p(si|s/i) =

exp (si[hi +
∑
j ̸=i

Jijsj ])

2 cosh (hi +
∑
j ̸=i

Jijsj)
=

1

1 + exp (−2si[hi +
∑
j ̸=i

Jijsi])
(18)

The sum of these conditional distributions would replace the likelihood function and be maximised

over hi and Jij , where the final parameters are denoted by hPL
i and JPL

ij . Equivalently, the condi-
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tional distributions define N independent logistic regression problems, each resulting in an hi (the

zeroth coefficient) and a row i in the coupling matrix J (the coefficients in front of sji). This also

means that the pseudolikelihood approach uses all the data, rather than just its means and correl-

ations like in, for example, Boltzmann learning. This is typically advantageous, but leads to poor

approximations if we have very few samples. Approximating the biases and couplings using pseudo-

likelihood is significantly faster than Boltzmann learning, and converge to the maximum likelihood

values of hi and Jij in the limit of infinite samples. Additionally, pseudolikelihood is more reliable

than the closed-form approximations where we might have data that violates assumptions (e.g.,

large Jijs). As expected, we see that the Boltzmann learning and pseudolikelihood approximations

of h and J are very similar (Figure 2.5). When not stated otherwise, pseudolikelihood has been

used to approximate h and J from data.

Figure 2.5: Boltzmann learning against pseudolikelihood maximization for neural data. (A-B) A
random subpopulation of 20 out of the 495 neurons were chosen. The pseudolikelihood parameters
hPL
i and JPL

ij were plotted against the Boltzmann learning parameters hboltz
i and Jboltz

ij , which used
a learning rate of η = 0.01, 40000 iterations, and 10000 samples per iteration. (C-D) A random
subpopulation of 100 out of the 495 neurons were chosen. The pseudolikelihood parameters hPL

i

and JPL
ij were plotted against the Boltzmann learning parameters hboltz

i and Jboltz
ij , which used a

learning rate of η = 0.01, 80000 iterations, and 50000 samples per iteration. This figure shows that
Boltzmann learning and pseudolikelihood find almost the same parameters for a population of 20
and 100 neurons.
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2.4 Assessing Performance

After fitting the pairwise model, we want to know how well it captures the data. That is, we want

to assess how similar the pairwise distribution ppair with the approximated parameters h and J is

to the true distribution ptrue that would emerge if we had infinite data. Of course we don’t have

infinite data, so ptrue is often taken to be the frequency of each state in the data, denoted by pdata.

The similarity is measured as the Kullback-Leibler (KL) divergence between the pairwise and true

distribution:

dpair ≡ DKL(ptrue ∥ ppair) =
∑
s

ptrue(s) ln
ptrue(s)

ppair(s)
= Spair − Strue. (19)

However, this quantity is difficult to interpret in isolation. We therefore compare it to the KL

divergence between the independent and true distribution, given by

dind ≡ DKL(ptrue ∥ pind) =
∑
s

ptrue(s) ln
ptrue(s)

pind(s)
= Sind − Strue. (20)

This allows us to define a performance measure G,

G ≡ 1− dpair
dind

=
Sind − Spair

Sind − Strue
, (21)

which increases from 0 to 1 as the true distribution is described better by the pairwise distribution

than the independent distribution. Note that dpair, dind, and G also can be expressed using

entropies S as in Eq. (19), (20), and (21), given that the pairwise model fit is exact (i.e., ⟨si⟩pair =
⟨si⟩data and ⟨sisj⟩pair = ⟨sisj⟩data; Roudi, Nirenberg et al., 2009). Notice also that G depends

on the independent distribution pind, which can be defined either using the biases hind
i defined

in Eq. (5) or the biases hi inferred for the pairwise model (thus merely setting Jij = 0). The

former, hind
i , is traditionally used because it defines a maximum entropy distribution. However, it

may be interesting to consider what happens to G when using hi. That is, how the performance

of the pairwise model changes when removing its couplings Jij . Therefore, we consider both the

traditional performance measure G, using hind
i , and another performance measure GRC (removed

couplings), using hi.

2.5 Let’s assess the performance then!

Several previous studies have used G (or 1−G) to evaluate the pairwise model fitted to small (∼ 10)

neuronal populations (Chelaru et al., 2021; Ganmor et al., 2011a; Schneidman et al., 2006; Shlens

et al., 2006; Tang et al., 2008; Yu et al., 2008; Zanoci et al., 2019), and find good performance

(G ≈ 0.90). This has been found in a variety of species and brain areas, including salamander

retina, guinea pig retina, primate retina, cat visual cortex, rat and primate cortical cultures, and

primate sensory and executive cortices. Similarly, large G have been found for small N (regions of

interest, in this case) when applying the pairwise model to human fMRI data (Ezaki et al., 2017;

Watanabe et al., 2013).

Given these promising findings, one might wonder whether it’s possible to simplify the pairwise

model by only considering some of the potential couplings Jij while retaining the good performance,

and thus describing the data with even fewer parameters. Such simplifications include only allowing
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adjacent neurons to be connected (Shlens et al., 2009; Shlens et al., 2006), only considering large

couplings (Ganmor et al., 2011a), and distributing all pairs of neurons into clusters sharing one

coupling parameter (Ganmor et al., 2011a). These reduced pairwise models were all applied in the

retina, so while they retained good performance, it is not clear whether this is a general phenomena.

It is also not obvious whether the pairwise model will continue to reproduce the data distribution

well as we consider more neurons. For example, in systems where one would expect higher-order

correlations to be prominent, like natural images, the pairwise model might be sufficient for low

dimensionality (few pixels), but not for large (Bethge and Berens, 2007). Unfortunately, G is

difficult to calculate for larger N because the number of states grows exponentially. Thus, other

methods have been used to evaluate the pairwise model for large N , such as comparing third-order

correlations, the number of simultaneously active neurons, or the probability of highly sampled

states (Ganmor et al., 2009, 2011a, 2011b; Meshulam et al., 2017, 2021; Shlens et al., 2009; Tkacik

et al., 2006; Tkačik et al., 2014; Tkačik et al., 2009; Zanoci et al., 2019). Here, the results have been

more mixed. The performance generally seems to be good, apart from when N becomes very large

(N ≈ 120; Tkačik et al., 2014) or the input is highly structured (Ganmor et al., 2011b). Worse

performance have also been found when the neurons are anatomically close together compared

to far apart (Ohiorhenuan et al., 2010), but others have found the opposite (Meshulam et al.,

2017, 2021). Finally, larger G have been found in sensory cortical compared to executive cortical

areas (Chelaru et al., 2021). Some have therefore searched for other constraints to maximum

entropy models that improve performance in these conditions (in particular, for large N). These

constraints include the probability of simultaneous silence (Shimazaki et al., 2015), the probability

of highly sampled states (Ganmor et al., 2011b), and the probability of k simultaneously active

neurons (Tkačik et al., 2014; Tkačik et al., 2013). While these extensions generally show good

performance, they have also not been evaluated with G but with third-order correlations and/or

the number of simultaneously active neurons.

The problem with these alternative performance measures, relative to G, is that we don’t

know what they are missing. That is, if they show poor performance we know that the model fits

the data poorly, but if they show good performance we can’t know that the model fits the data

well because there could be large deviations in other higher-order correlations. Therefore, it would

be preferable if we knew how G scales with N . Then we could make stronger claims about the

adequacy of the pairwise maximum entropy model, and maximum entropy models generally, to

account for neuronal data. In light of this, Roudi, Nirenberg et al. (2009) performed a perturbative

expansion in Nv̄δt, where v̄ is the mean firing rate and δt is the binsize. They showed that the

quality of the pairwise model should be linear in Nv̄δt when Nv̄δt ≪ 1, regardless of what the

true distribution is. This is in agreement with the performance of the pairwise model obtained in

other studies (e.g., Schneidman et al., 2006; Tang et al., 2008; Yu et al., 2008). However, how G

behaves outside of this perturbative regime, when Nv̄δt > 1, is less clear. This prevents us from

making general statements about the performance of the pairwise model for neuronal data.

To rectify this, we here consider how well the pairwise maximum entropy model describes

neuronal data and how this depends on the number of neurons, the firing rates, the binsize, and the

cortical area. The first three questions are directly related to the predictions of Roudi, Nirenberg

et al. (2009), while the last one is more interesting neuroscientifically. We will also look at how

using suboptimal parameters from the nMF, TAP, IP, and SM approximation affects the scaling

of G, and at how some additional performance measures compares to G. Finally, we will consider

what the performance of the pairwise model might tell us about how a neural network functions.
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We do this both using G, representing how the pairwise model compares to the best independent

model, and GRC, representing how the pairwise model compares to itself without connections. For

brevity, we use G to refer to both GRC and G until we consider them separately in Section 4.2 and

4.3, respectively.

3 Approximating G

There are two problematic steps in calculating G from Eq. (21). First, the partition function Z of

the pairwise model is a sum over all states. This forces us to consider the case where N is small

enough to evaluate this sum, and the case where N is not, separately. Second, one often takes

ptrue = pdata, which is of course not strictly true. The perhaps clearest example is that one can’t

say that unsampled states are impossible to observe after recording for only a couple of hours.

This affects quantities calculated using pdata instead of ptrue, such as entropies, KL divergences,

and G (e.g., Panzeri et al., 2007). To rectify this, a finite sampling correction could be applied.

3.1 Finite sampling correction

To correct some sampling-dependent quantity K for finite sampling, different proportions r ∈
{1/2, 1/5, 1/10, 1} of the data samples were used, resulting in T samples. When r < 1, mutually

exclusive proportions of the data were used to calculate K, and the mean K̄ of these was used

further. To be clear, this means that if K depends on parameters inferred from the data, such as

h and J , these were inferred using only some proportion of the data. Now, K and K̄ were fit to

a second-order polynomial in 1/T . Taking the limit T → ∞, giving the intercept, results in the

corrected value of K (Strong et al., 1998).

This correction is generally small, but in the expected direction. That is, S becomes lar-

ger, dpair and dpair becomes smaller, and G becomes larger. Because the correction is small and

predictable, most of our results are uncorrected, but see Section 4.2.8 for an elaboration on the

finite sampling bias. This allows for a more thorough analysis, as the correction is computationally

expensive.

3.2 Performance for small N – summing over all states

For small N one can calculate the partition function Z of the pairwise distribution by summing over

all 2N states. This can then be used to calculate dpair, and thus G, by summing over all sampled

states ŝ (the unsampled states s have pdata(s) = 0). Note that we can sum over all sampled states

even for large N . Here, we calculate Z exactly for up to N = 20.

This method can only be used for small N , but it can be used for arbitrary binsize δt and mean

firing rate v̄. Therefore, we will consider the effect of changing δt and v̄ in subpopulations of N = 20

neurons. It is straight-forward to bin the spike times with whatever binsize we want. However,

getting the mean firing rate we want is more difficult because we have to pick subpopulations of

20 out of the 495 neurons that give a mean firing rate close to the desired one. When choosing a

subpopulation, we first pick one neuron i, and then pick remaining neurons j with a similar firing

rate to the first one. Because we have substantially more neurons with small firing rates than
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with large ones, the first neuron is picked with a probability proportional to its firing rate. The

remaining neurons are picked with a probability inversely proportional to the difference between

their and the first neuron’s firing rate. That is, the remaining neurons j were picked (without

replacement) with probability p(j) = 1
|vi−vj |3 /

∑N
k

1
|vi−vk|3 , where the exponent controls the spread

of firing rates within each subpopulation. This procedure was found to produce subpopulations

that spread out nicely along the range of possible mean firing rates. Then, G was calculated for

these subpopulations, with some binsize, by summing over all states.

3.3 Performance for large N – approximating Z

As N becomes large the number of states becomes so enormous that it is intractable to sum over

all of them. One solution would be to simply measure performance in some other way, such as

comparing the third-order correlations or the number of simultaneously active neurons (Tkačik

et al., 2014; Tkačik et al., 2009). Another approach would be to approximate Z, Spair, or dpair,

either of which would allow us to approximate G. Doing this, does not explicitly account for effect

of finite sampling. That is, there may still be a bias in Spair that we ignore by considering dpair

with ptrue = pdata. However, this does not seem to have a significant effect on the approximation

of G, as discussed in Section 4.2.8 and 4.3.7. Here, we consider a new way to approximate the

partition function Z of the pairwise model. Note that we can calculate pind, and thus dind, without

approximating Zind because the neurons are independent.

The idea is to find the Ẑ that gets the unnormalized probabilities of the pairwise distribution

as close to the probabilities/frequencies in the data as possible, only considering sampled states ŝ.

More precisely, we minimise

L ≡
∑
ŝ

(pdata(̂s)−
1

Ẑ
exp [

∑
i

hisi +
∑
i<j

Jijsisj ])
2 (22)

over Ẑ. Note that the resulting pairwise distribution don’t sum to 1 exactly. The approximation

of Z allows us to approximate ppair(s) which can be used to approximate dpair, and thus G, by

summing over all sampled states. This approximation can be used for both G and GRC. Finding

Ẑ is a convex one-variable minimization problem with simple function evaluations that can be

solved numerically with, for example, Brent’s algorithm (Brent, 1971). However, simply taking

the derivative of Eq. (22) with respect to Ẑ, setting it equal to 0, and solving for Ẑ, yields an

analytical expression for Ẑ:

Ẑ ≡

∑
ŝ

exp [2
∑
i

hisi + 2
∑
i<j

Jijsisj ]∑
ŝ

pdata(̂s) exp [
∑
i

hisi +
∑
i<j

Jijsisj ]
. (23)

This allows for rapid evaluations of Ẑ, and thus Ĝ. In a sense, this procedure evaluates the

performance of the pairwise model as charitably as possible, as it maximises the similarity between

the pairwise and data distribution. One can think about this as comparing the shape, rather than

the exact probabilities, of the pairwise and data distribution. However, for Ẑ to be close to Z,

the real pairwise model should not get closer to the data it was inferred from by dividing by some

number (by ”changing” Ẑ). This suggests that the approximation of the parameters h and J have
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to be close to optimal (i.e., producing a maximum entropy distribution fulfilling Eq. (6) to get

a good approximation of Z, and in turn, of G. To substantiate this suspicion, we look at the

difference between Ĝ and G (and ĜRC and GRC) as a function of Boltzmann learning iterations in

Figure 3.1.

Figure 3.1: Ĝ − G as a function of Boltzmann learning iteration for synthetic data. Five sets of
400000 and 100 samples were taken from a pairwise model of 20 spins with Gaussian parameters
(M = 0, SD = 1/

√
N − 1). Then, new pairwise models were inferred from these datasets using

Boltzmann learning with a learning rate of η = 0.001, 40000 iterations, and 5000 samples per
iteration. Ĝ−G (A) and ĜRC −GRC (B) was only calculated for 100 sets of parameters between
0 and 40000 iterations to save time. The magnitude of the fluctuations around 0 after convergence
is largely controlled by the learning rate η. In (B), only three sets of 400000 were used. This figure
shows that Ĝ becomes very similar to G as the parameters h and J are better approximated.

Figure 3.2: Scatterplot of Ĝ and ĜRC versus G using pseudolikelihood on synthetic data. Each of
the 100 dots corresponds to the performance of a pairwise model of 20 spins inferred from 400000
samples of an arbitrary pairwise model with Gaussian parameters (M = 0, SD = 1/

√
N − 1).

Pseudolikelihood was used to approximate h and J . G is compared to Ĝ (A) and GRC is compared
to ĜRC. This figure shows that Ĝ is very similar to G for N = 20.

Importantly, the number of data samples used to approximate the pairwise model seems to be

irrelevant for the fast convergence of Ĝ−G (and ĜRC −GRC). Thus, even severe undersampling

should not be a problem as long as we have good parameter approximations. It is also worth noting
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that using suboptimal parameters typically leads to an overestimation of G. In our testing this is

often, but not necessarily, the case. This may be because the probabilities of highly sampled states

are more underestimated by the pairwise model than the probabilities of rarely sampled states are

overestimated, resulting in an underestimation of Z due to the squared error in Eq. (22), and

finally an overestimation of G. As a sanity check, Figure 3.2 compares Ĝ and G directly.

It is worth commenting that calculating Ĝ from Ẑ for very small N (<∼ 5) occasionally results

in a Ĝ larger than 1. To avoid this, one could let Ẑmin =
∑

ŝ exp [
∑

i hisi +
∑

i<j Jijsisj ] ≤ Z

be a lower bound on Ẑ. That is, if Ẑ from Eq. (23) turns out to be smaller than Ẑmin, we set

Ẑ = Ẑmin. A second way of avoiding the occasional Ĝ larger than 1 would be to simply sum over

all states when N is small enough, for example when N ≤ 15. This is what we do in Section 4.

Another way to approximate Z relies on the assumption that the silent state (si = −1 for

all i) is approximated well by the pairwise model because it typically is highly sampled in the

data. This allows us to simply take Ẑ = exp [
∑

i hisi +
∑

i<j Jijsisj ]/pdata(s) where s is the silent

state (Ashourvan et al., 2021; Ganmor et al., 2011a; Tkačik et al., 2014). This is analogous to

the above procedure in that it finds the Ẑ that get the probability of the silent state from the

pairwise distribution as close to its frequency in the data as possible (by equating them). That

is, instead of considering all sampled states, we only consider the silent state. This is obviously

a good approximation when the probability of the silent state is a constraint in the maximum

entropy model (Tkačik et al., 2014). But in the context of the pairwise model (Ashourvan et al.,

2021; Ganmor et al., 2011a), this approximation becomes unreliable because the probability of the

silent state frequently is underestimated.

Figure 3.3: Comparison of Ẑ (Eq. 23) and approximations based on Ẑ =
exp [

∑
i hisi +

∑
i<j Jijsisj ]/pdata(s). A total of 20000 samples were taken from pairwise mod-

els with 15 spins and Gaussian parameters (M = 0, SD = 1/
√
N − 1). The approximations of

Z were calculated using only some of the samples, where the number of included samples range
from 100 to 20000 and only 100 evenly spaced numbers in this range were chosen. The h and J
that go into approximating Z were estimated using Boltzmann learning with a learning rate of
η = 0.001, 30000 iterations, and 5000 samples per iteration. This procedure was performed for a
total of 150 sets of Gaussian parameters, two examples of which are shown in (A) and (B). The
ratio of the approximated Z to the actual Z is displayed for Ẑ (blue), Ẑmean (green), Ẑmedian

(red), and ẐMostSampled (turquoise). (C) The ratio Ẑ/Z after 20000 samples for all 150 sets of
Gaussian parameters. This figure shows that our approximation of Z outperforms a previously
used approximation, and extensions thereof.

We can generalize the approximation based on the silent state somewhat. First, instead of
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deciding ahead of time that we approximate Z from the silent state we can use the most sampled

state (which is the silent state in most cases), giving ẐMostSampled. Second, we can consider the

approximation Ẑ = exp [
∑

i hisi +
∑

i<j Jijsisj ]/pdata(s) where s based on every sampled state s

and use their mean or median as our approximation Ẑmean or Ẑmedian. A comparison of Ẑ and

these approximations is displayed in Figure 3.3.

Eq. (23) is constructed so that the probabilities of the sampled states are as similar as

possible in the data and the pairwise model. The obvious way the approximation could fail is that

the unsampled states are very dissimilar in the data and the pairwise model. While the unsampled

states have a probability of zero in the data distribution, they have a non-zero probability in the

pairwise model. Therefore, Ẑ can fail if the unsampled states carry a substantial amount of the

probability in the pairwise model. Then, the approximated pairwise distribution p̂pair(s) will have

a sum larger than one. So, one might expect that Ẑ is a good approximation when the pairwise

distribution does not have too much entropy (i.e., is too flat). Then a minority of the possible

states will carry the majority of the probability. Thus, Ẑ should be progressively better for more

constrained maximum entropy models.

Eq. (22) suggests another performance measure that may be informative. We can compare

the minimum value of L for the pairwise and independent distribution:

GL ≡ 1− Lpair

Lind
. (24)

Remember that Lpair and Lind is the squared error between the data distribution, and the approx-

imated pairwise and independent distribution, respectively. Like for G, GL increases from 0 to 1 as

the pairwise distribution describe the data distribution better than the independent distribution.

For GL to stay between 0 and 1, Lind must be larger than or equal to Lpair, which should always

be the case because ppair is a more constrained maximum entropy distribution than pind. Looking

at GL may be a sensible thing to do because it, like G, measure how close ppair is to pdata, relative

to pind. Therefore, we would expect that Ĝ and GL show a similar scaling with the perturbative

parameter. However, GL offer some advantages over Ĝ, such as being marginally faster to compute

and not caring about whether Z is over- or underestimated. Remember that we, like for G, define

ĜRC and GRC
L the same way as Ĝ and GL, except that h is used in place of hind.

3.4 What about other performance measures?

Due to the difficulty of evaluating G for large N , it has been suggested that performance could

instead be evaluated by comparing the third-order interactions in the data with those in the inferred

pairwise model (Ganmor et al., 2011b; Tkacik et al., 2006; Tkačik et al., 2014; Tkačik et al., 2009).

The third-order correlation coefficient Cijk for each of the N(N − 1)(N − 2)/3! distinct triplets of

neurons is defined as

Cijk ≡ ⟨sisjsk⟩, (25)

analogous to the second-order (i.e., pairwise) correlation coefficient. While some use this directly

(Tkacik et al., 2006; Tkačik et al., 2009), others correct for the influence of lower-order correlations

by considering the connected third-order correlation coefficient

C̃ijk ≡ ⟨(si − ⟨si⟩)(sj − ⟨sj⟩)(sk − ⟨sk⟩)⟩ (26)
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instead (Tkačik et al., 2014). It is worth noting that when comparing Cijk or C̃ijk in the data and

the pairwise model, they distribute differently around the diagonal, an example of which is displayed

in Figure 3.4. This difference holds both for small (∼ 5) and large (∼ 100) N . Notice in particular

that C̃ijk centres around zero. This is expected because the pairwise model, by definition, does not

include any third-order correlations, beyond those induced by first- and second-order correlations.

To the extent that these are corrected for by C̃ijk, we would expect C̃pair
ijk to stay around zero,

ignoring sampling noise. This argument hints that a comparison of C̃ijks may not have much

utility as a performance measure.

Figure 3.4: Example comparisons of third-order correlations and connected third-order correlations
from the data and the inferred pairwise model. Two random subpopulations of 100 neurons
were chosen. The pairwise model was inferred using pseudolikelihood maximization before it
was sampled using the Metropolis-Hastings algorithm (as many samples as in the data). The
third-order correlations were then calculated from these samples using Eq. (25) (A and C), and
the connected third-order correlations using Eq. (26) (B and D). (A) and (B) displays the first
example subpopulation, while (C) and (D) displays the second. This figure illustrates the difference

between how Cijk and C̃ijk assess the performance of the pairwise model

The more fundamental problem with using third-order correlations to measure performance,

as mentioned previously, is that even if the third-order correlations match well, we cannot say that

the pairwise and data distributions match well. Here, we will attempt to determine whether this

is the case and thus whether similarity of third-order correlations could be a suitable proxy for G.

To that end, we define a performance measure based on the root mean squared error of third-order
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correlations as

GC ≡ 1−

√√√√∑i<j<k(C
data
ijk − Cpair

ijk )2∑
i<j<k(C

data
ijk − C ind

ijk )
2

(27a)

GC̃ ≡ 1−

√√√√∑i<j<k(C̃
data
ijk − C̃pair

ijk )2∑
i<j<k(C̃

data
ijk − C̃ ind

ijk )
2
, (27b)

where Cdata
ijk and C̃data

ijk are calculated from the data, Cpair
ijk and C̃pair

ijk are calculated from samples

of the pairwise model, and C ind
ijk and C̃ ind

ijk are calculated from samples of the independent model.

This performance measure is analogous and directly comparable to G.

Performance of the pairwise model has also been evaluated by comparing the number of

simultaneously active neurons in the data and the pairwise model (Ganmor et al., 2009, 2011a,

2011b; Tkacik et al., 2006; Tkačik et al., 2014; Tkačik et al., 2013; Tkačik et al., 2009). That

is, if the probability of m arbitrary neurons firing, denoted by Hm, is similar in the data and

the pairwise model, one might suspect that the pairwise model accounts well for higher-order

correlations. However, like for third-order correlations, we cannot know this. Therefore, we define

a performance measure based on the root mean squared error of Hm that, again, is analogous to

G:

GH ≡ 1−

√∑
m(Hdata

m −Hpair
m )2∑

m(Hdata
m −H ind

m )2
. (28)

Here, Hdata
m is calculated from the data, Hpair

m is calculated from samples of the pairwise model,

and H ind
m is calculated from samples of the independent model. For intuition, an example of how

Hpair
m compares to Hdata

m is displayed in Figure 3.5.

Figure 3.5: Example comparison of the number of simultaneously active neurons in the data and
the pairwise model. A random subpopulation of 100 neurons were chosen. The pairwise model was
inferred using pseudolikelihood maximization before it was sampled using the Metropolis-Hastings
algorithm (as many samples as in the data). The Hms were then calculated from these samples and
the data. (A) Scatterplot of Hm from the data and pairwise model, where small m is represented
by dark blue and larger m becomes light yellow (where m > 30 is all yellow). (B) Hm as a function
of m, showing how the pairwise model systematically over- and underestimates Hm. This figure
shows an example comparison of the number of simultaneously active neurons in the data and the
pairwise model.

Again, GRC
C , GRC

C̃
, and GRC

H is defined the same way as GC , GC̃ , and GH , except that h is
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used in place of hind.

4 Performance of the Pairwise Model on Neuronal Date

4.1 Preprocessing of data

We use a Neuropixel dataset recorded from the visual, auditory, somatosensory, and motor cortices

of freely moving rats (Mimica et al., 2022). Each ∼ 20 minute session consisted of the rat foraging

in an octagonal (2 × 2 × 0.8 m) arena in dim light, in darkness, with a small weight attached to

the implant, or with random-interval white noise playing. Here, we mainly consider the neurons

shared across six such sessions recorded from the same probe in the same animal on the same

day. This results in about 2 hours of data from N = 495 neurons, 130 of which are from auditory

cortices, and the remaining 365 neurons are from visual cortices. These sessions were concatenated

and binned with binsize δt. When not stated otherwise, a binsize of δt = 0.02 seconds is used,

giving about 450000 bins or samples. In Section 4.2.7 the performance of the pairwise model in

visual, auditory, somatosensory, and motor cortices will be compared. For the comparison, we used

data from four sessions recorded from the same probe in the same animal on the same day. These

sessions, constituting about 1 hour and 20 minutes, were concatenated and binned like above.

N = 539 neurons were recorded from visual cortices, N = 376 from auditory cortices, N = 287

from somatosensory cortices, and N = 1115 from motor cortex.

4.2 GRC – the Pairwise Model Compared to the Independent Model

using hi

Probably the simplest way of investigating how the performance of the pairwise model scales with

N , v̄, and δt is to simply plot the performance measure GRC or ĜRC from many subpopulations

as a function of the perturbative parameter Nv̄δt. Thus, that will be the format of most of the

following results.

4.2.1 Changing N — small N

For small enough populations, N <∼ 20, we can sum over all possible states and calculate the

pairwise distribution exactly. As a first test, we select 100 populations of N = 2, 3, ..., 20 neurons

randomly from the 495 neurons we have the most data on. Their parameters h and J were

then approximated using pseudolikelihood according to Eq. (18). Finally, the performance of

the resulting pairwise model was calculated from Eq. (21) and plotted against the perturbative

parameter Nv̄δt in Figure 4.1.

We see an approximately linear scaling of GRC for Nv̄δt ≪ 1. Interestingly, the linear scaling

seems to continue up to Nv̄δt ≈ 2. Also, the slope is fairly small, suggesting that the pairwise

model is almost completely reliant on its couplings in achieving its good performance.
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Figure 4.1: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for small N . 100 populations of size N were chosen randomly from the 495 neurons that were
shared over 6 sessions, where N varied from 2 to 20. A constant binsize of δt = 0.02 was used.
The mean firing rate v̄ had a mean of M = 6.04 and standard deviation of SD = 2.24 over all
populations. Pseudolikelihood was used to approximate h and J . GRC was calculated by summing
over all states. The black lines between the black dots represent the means while the black vertical
lines represent standard deviations. This figure shows that GRC initially scales linearly with Nv̄δt
when changing N .

4.2.2 Changing N — large N

Figure 4.2: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for large N . 100 populations of size N were chosen randomly from the 495 neurons that were
shared over 6 sessions, where N varied from 2 to 100. A constant binsize of δt = 0.02 was used.
The mean firing rate v̄ had a mean of M = 6.07 and standard deviation of SD = 1.24 over all
populations. Pseudolikelihood was used to approximate h and J . The black lines between the
black dots represent the means while the black vertical lines represent standard deviations. (A)
For subpopulations consisting of 15 or fewer neurons, GRC was calculated by summer over all
states. For subpopulations with more than 15 neurons, ĜRC was calculated using Ẑ from Eq.
(22). (B) GRC

L was calculated from Eq. (24) for all subpopulations. This figure shows that both

ĜRC and GRC
L has an initial linear scaling with Nv̄δt followed by a sharp fall and a levelling off,

although ĜRC level off before GRC
L .

22



As discussed previously (Section 3.3), we need to approximate GRC when N becomes large. Like

for Figure 4.1, we plot performance as a function of the perturbative parameter in Figure 4.2A,

except that ĜRC is used in place of GRC and we pick 100 populations up to N = 100 rather than

N = 20. The initial approximately linear scaling is still present, before ĜRC decreases sharply and

levels off around ĜRC = 0.6. This suggests that while the pairwise model might rely on mostly on

its couplings when Nv̄δt is small, its biases become more influential as Nv̄δt increases. However,

ĜRC does not fall to 0, indicating that removing the couplings from a pairwise model always makes

it noticeably worse. The alternative performance measure GRC
L (Eq. 24) was calculated for the

same random populations with the same parameters as in Figure 4.2A, and is displayed in Figure

4.2B as a function of Nv̄δt. We see a qualitatively similar scaling of GRC
L as of GRC. That is, an

initial approximately linear decrease, followed by a sharp fall before levelling off. The agreement

between these two measures further suggest that the biases of the pairwise model really are more

responsible for its performance as Nv̄δt increases.

4.2.3 Changing v̄ – semi-random 20-neuron populations

Figure 4.3: Performance of the pairwise model inferred with pseudolikelihood from neural data, for
different v̄. GRC was calculated for 5000 subpopulations of 20 neurons, where neurons in the same
subpopulation were chosen so that they have similar firing rates (see Section 3.2), by summing
over all states. A constant binsize of δt = 0.02 was used. The mean firing rate v̄ had a mean of
M = 11.22 and standard deviation of SD = 7.15 over all populations. Pseudolikelihood was used
to approximate the parameters h and J . The black lines between the black dots represent the
means while the black vertical lines represent standard deviations. This figure shows that GRC has
a similar scaling with Nv̄δt when changing v̄ as seen in Section 4.2.2.

To investigating how performance scales with the mean firing rate v̄ we choose non-random sub-

populations out of the 495 neurons, like described in Section 3.2. In Figure 4.3 we pick 5000

such subpopulations of 20 neurons with similar firing rates, approximate their parameters using

pseudolikelihood, and calculate GRC by summing over all states.

We observe that increasing v̄ gives approximately the same scaling of GRC as increasing N ,

even though the latter was based on an approximate GRC. One notable difference, however, is that

the levelling off happens for a smaller value of GRC and with a larger standard deviation than in

Figure 4.2. Also, the somewhat spotty coverage likely is a result of us not being able to choose v̄
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directly.

4.2.4 Changing δt – random 20-neuron populations

Exploring how GRC changes with binsize δt follows much the same procedure as above. Figure

4.4 displays 5000 random subpopulations of 20 neurons chosen from the 495 neurons. They were

binned with a uniformly random binsize between 0.005 and 0.05 seconds, their parameters were

approximated using pseudolikelihood, and GRC was calculated by summing over all states. Also

here, we see a similar pattern in the scaling of GRC: an initial linear scaling followed by a sharp

decrease and a levelling off. Interestingly, we see a similar levelling off for a smaller value of GRC

that we saw in Figure 4.3.

Figure 4.4: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for different δt. GRC was calculated for 5000 subpopulations of 20 neurons, where the binsize
δt was chosen uniformly between 0.005 and 0.2 seconds, by summing over all states. The mean
firing rate v̄ had a mean of M = 3.79 and standard deviation of SD = 1.42 over all populations.
Pseudolikelihood was used to approximate the parameters h and J . The black lines between the
black dots represent the means while the black vertical lines represent standard deviations. This
figure shows that GRC has a similar scaling with Nv̄δt when changing δt as seen in Section 4.2.2
and 4.2.3.

4.2.5 Changing N , v̄, and δt together

As a final test of the scaling of GRC with the perturbative parameter, the number of neurons N ,

the mean firing rate v̄, and the binsize δt were changed independently. This necessitated using

ĜRC in place of GRC again. Like in the previous two sections, Figure 4.5 shows the approximated

ĜRC of 5000 subpopulations with parameters approximated using pseudolikelihood. Also here, we

see a scaling reminiscent of the above results. We also see that ĜRC does not fall considerably as

Nv̄δt grows beyond Nv̄δt ≈ 15. The somewhat sharp boundaries in Figure 4.5 are also notable,

but they are likely a result of how N , v̄, and δt were chosen.
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Figure 4.5: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for different N , v̄, and δt. 5000 pairwise models were constructed and evaluated using uniformly
random N ∈ [2, 100], random δt ∈ [0.005, 0.05], and semi-random mean firing rate v̄ (see Section
3.2). The mean firing rate v̄ had a mean of M = 8.97 and standard deviation of SD = 5.54 over
all populations. ĜRC was calculated using Ẑ from Eq. (23). The black lines between the black
dots represent the means while the black vertical lines represent standard deviations. This figure
shows that GRC has a similar scaling with Nv̄δt when changing N , v̄, and δt independently as seen
in Section 4.2.2, 4.2.3, and 4.2.4.

Another way to change the number of neurons N , the mean firing rate v̄, and the binsize δt

together, without relying on ĜRC, is to choose non-random subpopulations with different v̄ and

of different sizes and then vary their binsize. In Figure 4.6 we choose subpopulations with similar

firing rates, and let N ∈ {20, 10} and δt ∈ {0.02, 0.02, 0.005}. 1500 subpopulations were picked

for the six combinations of N and δt. Their parameters were approximated using pseudolikelihood

and GRC was calculated by summing over all states.

We again see the initial linear scaling followed by a drop-off. However, the levelling off is not

apparent here, likely because Nv̄δt does not become large enough. Still, we consistently find that

larger values of N , v̄, and δt results in a smaller GRC. Although, here smaller binsizes do induce

a somewhat larger GRC than expected, as the smaller binsize dots exists in the top region of the

larger binsize dots in Figure 4.6 (e.g., green on top of red).

The similarity between the scaling of GRC in Figure 4.6, 4.3, and 4.4 and the scaling of ĜRC in

Figure 4.2 and 4.5, suggests that our findings are robust and not an artifact of the approximation

of Z. We find that the scaling with Nv̄δt largely holds when changing N (Figure 4.1 and 4.2), v̄

(Figure 4.3), δt (Figure 4.4), and all of them together (Figure 4.5 and 4.6).
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Figure 4.6: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for different N , v̄, and δt. Subpopulations with semi-random mean firing rate v̄ (see Section 3.2),
N ∈ {20, 10}, and δt ∈ {0.02, 0.02, 0.005} were chosen. 1500 subpopulations were picked for the six
combinations of N and δt. GRC was calculated by summing over all states and correcting for finite
sampling. Pseudolikelihood was used to approximate the parameters h and J . (A) Subpopulations
consists of N = 20 neurons. (B) Subpopulations consists of N = 10 neurons. This figure shows
that GRC has a similar scaling with Nv̄δt as seen in Section 4.2.1-4.2.4 when changing N , v̄, and
δt together.

4.2.6 Performance using nMF, TAP, IP, or SM parameters

We have already seen that pseudolikelihood maximization is a good compromise between speed

and accuracy when approximating h and J (Section 2.3.1-2.3.6; Nguyen et al., 2017). However,

it might still be interesting to look at how using parameters derived using nMF, TAP, IP, or SM

affects the scaling of ĜRC. This is because inaccurate parameters can have different effects on

the pairwise model they define. Typically, inaccuracies in parameters of small magnitude affects

the probability of different states the more than inaccuracies in large-magnitude parameters. To

investigate this, we here present results analogous to Figure 4.2, using nMF, TAP, IP, and SM

rather than pseudolikelihood. Note that the same random subpopulations have been chosen for

each approximation method. From previous investigations (Roudi, Aurell et al., 2009; Roudi,

Tyrcha et al., 2009) we expect that TAP and SM are better than nMF and IP, and thus that using

them should result in a scaling of ĜRC more similar to the pseudolikelihood case (Figure 4.2).

Further, from Figure 3.1 we expect that inaccurate parameters results in a larger ĜRC.

As a general trend, we see that using these closed-form approximations leads to an overes-

timation of ĜRC, reflected in an earlier levelling-off, and a more uncertain ĜRC, reflected in larger

standard deviations. Notably, using SM parameters seems to be an exception to this trend. How-

ever, in this case an overflow error occurred during the calculation of ĜRC in 385 out of the 9800

subpopulations due to a vastly overestimated magnitude of some his, indicating that the small-J

assumption of the SM approximation has been violated. Therefore, it is unclear how informative

the later levelling-off is. We also notice that the IP approximation seems to be fairly stable in that

ĜRC don’t fall below 0. However, this approximation leads to GRC
L becoming significantly more

unstable as Nv̄δt increases. These results show that using inaccurate parameters does have an

effect on ĜRC. Still, the stereotypical scaling found in Figure 4.1-4.6 persists.
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Figure 4.7: Performance of the pairwise model inferred with nMF, TAP, IP, and SM from neural
data, for large N . This is identical to Figure 4.2 except that h and J have been approximated with
nMF (A-B), TAP (C-D), IP (E-F), or SM (G-H) rather than pseudolikelihood. Using nMF, TAP,
IP, and SM resulted in 35, 2, 0, and 5 outliers with ĜRC < 0, respectively, which were omitted from
the plots. Additionally, for the SM approximation (G-H), 385 (out of 9800) ĜRCs were completely
omitted due to overflow errors. This figure shows that inaccurate parameters does have an effect
on ĜRC, but the characteristic scaling persists.
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4.2.7 Performance for different brain areas

Here, we follow the same format as for the different approximation methods and show how ĜRC

scales with Nv̄δt in recordings from rat visual, auditory, motor, and somatosensory cortices. Re-

member that the data we have looked at thus far also comes from visual and auditory cortices, so

we expect other recordings from these areas to look familiar.

The scaling of ĜRC in visual and auditory cortex does indeed look similar to Figure 4.2.

This similarity is more apparent for the visual cortex, which makes sense given that the majority

(365/495) of the available neurons in Figure 4.2 were located in the visual cortex. However, in the

auditory cortex the convergence was not clear with the usual 100 subpopulations with N varying

between 2 and 100. This is due to a smaller firing rate v̄ than in visual cortex, which makes

Nv̄δt smaller. Therefore, 50 additional subpopulations were added per N between 101 and 200.

These extra subpopulations were also added for the motor (Figure 4.9A-B) and somatosensory

(Figure 4.10A-B) cortices, for the same reason. Despite the larger subpopulations, the trend in

ĜRC is still not clear in the motor and somatosensory cortex. In Figure 4.9A we see a drop off

followed by convergence for the motor cortex, but the drop off is small as ĜRC converges to a larger

value than usual (∼ 0.85). For the somatosensory cortices in Figure 4.10A, the firing rate is so

small that Nv̄δt does not increase much above 8 for N up to 200, and the linear scaling of ĜRC

persists. Additionally, because some neurons very rarely fire, we occasionally get very negative

his, which leads to overflow errors when calculating Ẑ. To avoid this and get a better, and less

computationally expensive, picture of how ĜRC scales with Nv̄δt in the motor and somatosensory

cortex, we increase the binsize from δt = 0.02 to δt = 0.06 in Figure 4.9C-D and to δt = 0.14 in

Figure 4.10C-D.
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Figure 4.8: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for large N in visual and auditory cortex. For both cortical areas, 100 populations of size N
were chosen randomly, where N varied from 2 to 100. A constant binsize of δt = 0.02 was
used. Pseudolikelihood was used to approximate h and J . The black lines between the black dots
represent the means while the black vertical lines represent standard deviations. For subpopulations
consisting of 15 or fewer neurons, RCG was calculated by summer over all states. For subpopulations
with more than 15 neurons, ĜRC was calculated using Ẑ from Eq. (22). GRC

L was calculated from
Eq. (24) for all subpopulations. (A-B) The mean firing rate v̄ in the visual cortex had a mean
of M = 6.27 and standard deviation of SD = 1.24 over all populations. (C-D) In addition to the
populations up to N = 100, 50 populations per N between N = 101 and N = 200 were are also
included. The mean firing rate v̄ in the auditory cortex had a mean of M = 4.99 and standard
deviation of SD = 0.93 over all populations. This figure again shows the characteristic scaling of
ĜRC in the visual and auditory cortex, in different recordings.
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Figure 4.9: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for large N in motor cortex. 100 populations of size N were chosen randomly, where N varied
from 2 to 100. Pseudolikelihood was used to approximate h and J . The black lines between the
black dots represent the means while the black vertical lines represent standard deviations. For
subpopulations consisting of 15 or fewer neurons, G was calculated by summer over all states. For
subpopulations with more than 15 neurons, ĜRC was calculated using ẐRC from Eq. (22). GRC

L

was calculated from Eq. (24) for all subpopulations. (A-B) In addition to the populations up to
N = 100, 50 populations per N between N = 101 and N = 200 were are also included. A binsize
of δt = 0.02 was used. The mean firing rate v̄ had a mean of M = 3.51 and standard deviation
of SD = 0.86 over all populations. 4 populations were omitted due to their parameters being too
large and leading to overflow errors. (C-D) A binsize of δt = 0.06 was used. The mean firing rate
v̄ had a mean of M = 2.67 and standard deviation of SD = 0.64 over all populations. This figure
shows that increasing the binsize recovers the characteristic scaling of ĜRC in the motor cortex.
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Figure 4.10: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for large N in visual, auditory, motor, and somatosensory cortex. For each cortical area, 100
populations of size N were chosen randomly, where N varied from 2 to 100. Pseudolikelihood
was used to approximate h and J . The black lines between the black dots represent the means
while the black vertical lines represent standard deviations. For subpopulations consisting of 15
or fewer neurons, GRC was calculated by summer over all states. For subpopulations with more
than 15 neurons, ĜRC was calculated using Ẑ from Eq. (22). GRC

L was calculated from Eq. (24)
for all subpopulations. (A-B) In addition to the populations up to N = 100, 50 populations per
N between N = 101 and N = 200 were are also included. The mean firing rate v̄ in the motor
cortex had a mean of M = 1.86 and standard deviation of SD = 0.40 over all populations. 87
populations were omitted due to their parameters being too large and leading to overflow errors.
(C-D) A binsize of δt = 0.14 was used. The mean firing rate v̄ had a mean of M = 2.73 and
standard deviation of SD = 0.55 over all populations. This figure shows that increasing the
binsize recovers the characteristic scaling of ĜRC in the motor cortex.

First, it is noteworthy that we see a larger ĜRC for smaller v̄ and δt, as expected. Second,

the drop off and convergence is much clearer after increasing the binsize. Seeing this characteristic

scaling of ĜRC with Nv̄δt across different cortical areas suggests that it is a general phenomena.

4.2.8 Effect of finite sampling

To confirm that the above findings would not change significantly if we had more or less data, we

here reproduce Figure 4.1 and 4.2 using the finite sampling correction (Strong et al., 1998) and

using half of the data.
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Figure 4.11: (A, C, and E) Same as in Figure 4.1, but with only half the data, and corrected for
finite sampling. (B, D, and F) Same as in Figure 4.2, but with only half the data, and corrected
for finite sampling. In C and E, a random collection of half of the samples were used for every
population. This figure shows that the scaling of G and Ĝ is not extremely sensitive to the amount
of available data.

Both for N = 20 and for N = 100 we see that having only half of the data increases the stand-

ard deviations somewhat and that correcting for finite sampling gives a very slightly larger GRC

and ĜRC. However, neither having half of the data nor correcting for finite sampling changes the

scaling of GRC or ĜRC substantially, indicating that our conclusions will not be overly dependent

on the amount of data.
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4.2.9 Comparison with other performance measures

We now evaluate what third-order correlation can tell us about the performance of the pairwise

model. In Figure 4.12A, the root mean squared error of the pairwise correlations from the data

and pairwise model are displayed for different subpopulations, while Figure 4.12B shows the same

for the connected third-order correlations. We see that neither GRC
C nor GRC

C̃
show a scaling with

Nv̄δt similar to that of GRC or ĜRC.

Figure 4.12: Comparison of third-order correlations and connected third-order correlations from
neural data and the inferred pairwise model for 5 to 100 neurons. Like in Figure 4.2, 100 populations
of size N were chosen randomly from the 495 neurons that were shared over 6 sessions, where N
varied from 5 to 100. A constant binsize of δt = 0.02 was used. Pseudolikelihood was used to
approximate h and J . The black lines between the black dots represent the means while the black
vertical lines represent standard deviations. The resulting pairwise models were then sampled using
the Metropolis-Hastings algorithm (as many samples as in the data) before GRC

C and GRC
C̃

were

calculated from these samples. (A) Performance of the pairwise model as measured by third-order
correlations, Eq. (27a), of different populations of neurons. (B) Performance of the pairwise model
as measured by connected third-order correlations, Eq. (27b), of different populations of neurons.
17 outliers with GRC

C̃
< −1.1 were omitted.

Finally, In Figure 4.13 we investigate whether comparing the number of simultaneously active

neurons in the data and the pairwise model might be a good substitute for GRC. Also here, we see

a fairly linear scaling dissimilar from that of GRC and ĜRC.
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Figure 4.13: Comparison of number of simultaneously active neurons Hm from neural data and
the inferred pairwise model for 2 to 100 neurons. Like in Figure 4.2, 100 populations of size N
were chosen randomly from the 495 neurons that were shared over 6 sessions, where N varied from
2 to 100. A constant binsize of δt = 0.02 was used. Pseudolikelihood was used to approximate
h and J . The black lines between the black dots represent the means while the black vertical
lines represent standard deviations. The resulting pairwise models were then sampled using the
Metropolis-Hastings algorithm (as many samples as in the data) before GRC

H were calculated from
these samples. The Figure displays the performance of the pairwise model, as measured by GRC

H ,
Eq. (28), of different populations of neurons. 15 outliers with GRC

H < 0 were omitted, all of which
from subpopulations with N < 5.

4.3 G – the Pairwise Model Compared to the Independent Model using

hind
i

Now that we have looked at how the pairwise model performs compared to itself without couplings,

we will consider how it compares to the maximum entropy independent model. That is, we now

investigate the scaling of G and Ĝ, rather than GRC and ĜRC, with Nv̄δt. To do that, we follow

the same format as in Section 4.2 and plot the performance against Nv̄δt under a variety of

circumstances. The only difference is that the independent distribution is constructed from hind,

defined in Eq. (5), rather than h, inferred for the pairwise model via pseudolikelihood. To avoid

repetition, in this section we only briefly comment on the significance of each figure. Details on

the setup can be found either from the corresponding figure in Section 4.2 or in the figure caption.

4.3.1 Changing N — small N

In Figure 4.14, G follows a similar trend as GRC in Figure 4.1 for N ≤ 20. In this case, however, G

starts dropping significantly faster. Still, the large G for small Nv̄δt fits our expectation (Roudi,

Nirenberg et al., 2009). For ease of comparison, both with previous results for small N and with

Figure 4.16 and 4.17, N ≤ 10 is coloured blue while N ≥ 11 is coloured green.
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Figure 4.14: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for small N . 100 populations of size N were chosen randomly from the 495 neurons that were
shared over 6 sessions, where N varied from 2 to 20. The blue dots represent populations of 10 or
less neurons, while the green dots represent populations of 11 or more neurons. A constant binsize
of δt = 0.02 was used. The mean firing rate v̄ had a mean of M = 6.04 and standard deviation
of SD = 2.24 over all populations. Pseudolikelihood was used to approximate h and J . G was
calculated by summing over all states. The black lines between the black dots represent the means
while the black vertical lines represent standard deviations. This figure shows that G falls as N
increases.

4.3.2 Changing N — large N

Figure 4.15: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for large N . 100 populations of size N were chosen randomly from the 495 neurons that were
shared over 6 sessions, where N varied from 2 to 100. A constant binsize of δt = 0.02 was used.
The mean firing rate v̄ had a mean of M = 6.07 and standard deviation of SD = 1.24 over all
populations. Pseudolikelihood was used to approximate h and J . The black lines between the
black dots represent the means while the black vertical lines represent standard deviations. (A)
For subpopulations consisting of 15 or fewer neurons, G was calculated by summer over all states.
For subpopulations with more than 15 neurons, Ĝ was calculated using Ẑ from Eq. (22). (B) GL

was calculated from Eq. (24) for all subpopulations. This figure shows that both Ĝ and GL falls
as the number of neurons increases, before levelling off, although Ĝ level off before GL.
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Like for small N , Ĝ and GL follows a similar trend as ĜRC and GRC
L , except that they start

decreasing sharply for a smaller Nv̄δt. So, while the pairwise model might fit the data well when

Nv̄δt is small, its performance quickly falls as Nv̄δt increases. Further, we see a qualitatively

similar scaling of GL and Ĝ, suggesting that the performance of the pairwise model really does

drop as Nv̄δt increases. Unlike ĜRC, Ĝ seems to increase slightly as Nv̄δt becomes large, which is

curious.

4.3.3 Changing v̄ – semi-random 20-neuron populations

When changing v̄, however, G and GRC reacts differently. GRC clearly decreases as v̄ increases,

while G does not increase or decrease consistently with v̄. This is somewhat contrary to our

expectations about G going towards one as Nv̄δt becomes small. Therefore, we calculate G for an

additional set of populations, but this time with N = 10 (blue). As expected, this results in G

increasing, but it still does not seem to converge to one as Nv̄δt becomes small.

Figure 4.16: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for different v̄. G was calculated for 5000 subpopulations of 20 neurons (green) and 5000 sub-
populations of 10 neurons (blue), by summing over all states. The subpopulations were chosen so
that the neurons have similar firing rates (see Section 3.2). A constant binsize of δt = 0.02 was
used. The mean firing rate v̄ had a mean of M = 11.73 and standard deviation of SD = 8.29 over
all populations. Pseudolikelihood was used to approximate the parameters h and J . The black
lines between the black dots represent the means while the black vertical lines represent standard
deviations. This figure shows that there is no clear monotonic relationship between G and v̄.

4.3.4 Changing δt – random 20-neuron populations

When changing v̄, we observe that G falls as Nv̄δt increases, like for GRC in Figure 4.3, though

not as much. Moreover, the binsize might need to become smaller then 5 ms for G to converge to

one, both when N = 20 and N = 10.
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Figure 4.17: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for different δt. G was calculated for 5000 subpopulations of 20 neurons (green) and 5000 subpop-
ulations of 10 neurons (blue), by summing over all states. The binsize δt was chosen uniformly
between 0.005 and 0.2 seconds. The mean firing rate v̄ had a mean of M = 3.79 and standard devi-
ation of SD = 1.53 over all populations. Pseudolikelihood was used to approximate the parameters
h and J . The black lines between the black dots represent the means while the black vertical lines
represent standard deviations. This figure shows that G falls as δt increases, though not as much
as when increasing N .

4.3.5 Performance using nMF, TAP, IP, or SM parameters

Here, we again see that increasing N leads to a considerable drop in Ĝ, even when using other

parameter approximation methods. The perhaps biggest difference between Ĝ in Figure 4.18 and

ĜRC in Figure 4.7 is that there are substantially more outliers with Ĝ < 0 in the former case. This

suggests that good parameter approximations are even more important for Ĝ than for ĜRC.
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Figure 4.18: Performance of the pairwise model inferred with nMF, TAP, IP, and SM from neural
data, for large N . This is identical to Figure 4.15 except that h and J have been approximated
with nMF (A-B), TAP (C-D), IP (E-F), or SM (G-H) rather than pseudolikelihood. Using nMF,
TAP, IP, and SM resulted in 672, 60, 655, and 288 outliers with Ĝ < 0, respectively, which were
omitted. Additionally, for the SM approximation (G-H), 385 (out of 9800) Ĝs were completely
omitted due to overflow errors. This figure shows that inaccurate parameters does have an effect
on Ĝ, but the characteristic scaling persists.
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4.3.6 Performance for different brain areas

We see from Figure 4.19 that Ĝ again falls sharply before levelling off as Nv̄δt increases, even for

other recordings from the visual and auditory cortices. This is also the case for recordings from the

motor and somatosensory cortices, where we, like in Figure 4.9 and 4.10, use a binsize of δt = 0.06

in the motor cortex and δt = 0.14 in the somatosensory cortex to compensate for low firing rates.

Even though we see a familiar relationship between Ĝ and Nv̄δt in different cortical areas, the

scaling of GL varies more.

Figure 4.19: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for large N in visual and auditory cortex. For both cortical areas, 100 populations of size N
were chosen randomly, where N varied from 2 to 100. A constant binsize of δt = 0.02 was
used. Pseudolikelihood was used to approximate h and J . The black lines between the black dots
represent the means while the black vertical lines represent standard deviations. For subpopulations
consisting of 15 or fewer neurons, G was calculated by summer over all states. For subpopulations
with more than 15 neurons, Ĝ was calculated using Ẑ from Eq. (22). GL was calculated from
Eq. (24) for all subpopulations. (A-B) The mean firing rate v̄ in the visual cortex had a mean
of M = 6.27 and standard deviation of SD = 1.24 over all populations. (C-D) The mean firing
rate v̄ in the auditory cortex had a mean of M = 4.99 and standard deviation of SD = 0.93 over
all populations. This figure again shows that different recordings from the visual and auditory
cortices exhibit a similar scaling of Ĝ as that seen in Figure 4.15.
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Figure 4.20: Performance of the pairwise model inferred with pseudolikelihood from neural data,
for large N in motor and somatosensory cortices. For both cortical areas, 100 populations of size N
were chosen randomly, where N varied from 2 to 100. Pseudolikelihood was used to approximate
h and J . The black lines between the black dots represent the means while the black vertical
lines represent standard deviations. For subpopulations consisting of 15 or fewer neurons, G was
calculated by summer over all states. For subpopulations with more than 15 neurons, Ĝ was
calculated using Ẑ from Eq. (22). GL was calculated from Eq. (24) for all subpopulations. (A-B)
A constant binsize of δt = 0.06 was used. The mean firing rate v̄ in the visual cortex had a mean
of M = 6.27 and standard deviation of SD = 1.24 over all populations. (C-D) A constant binsize
of δt = 0.14 was used. The mean firing rate v̄ in the auditory cortex had a mean of M = 4.99
and standard deviation of SD = 0.93 over all populations. This figure shows a scaling of Ĝ in the
motor and somatosensory cortices reminiscent of that in Figure 4.15.

4.3.7 Effect of finite sampling

Like for GRC and ĜRC in Figure 4.2.8, we see that having half of the data increases the standard

deviations somewhat and that correcting for finite sampling makes G and Ĝ very slightly larger.

But again, the scaling does not change substantially, suggesting that our conclusions are not skewed

too much by a finite sampling bias.

Note also that while it might seem intuitive that G would scale with the average number of samples

per state (Ezaki et al., 2017), we see little evidence of that here, even when N range between 2

and 75.
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Figure 4.21: (A, C, and E) Same as in Figure 4.14, but with only half the data, and corrected
for finite sampling (and up to N = 19 rather than N = 20). (B, D, and F) Same as in Figure
4.15, but with only half the data, and corrected for finite sampling (and up to N = 75 rather than
N = 100). In C and E, a random collection of half of the samples were used for every population.
This figure shows that the scaling of G and Ĝ is not extremely sensitive to the amount of available
data.

4.3.8 Comparison with other performance measures

Even when comparing third-order correlations in the pairwise model and the maximum entropy

independent model, which makes GC and GC̃ decrease, we still don’t see a scaling similar to that

of G or Ĝ.
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Figure 4.22: Comparison of third-order correlations and connected third-order correlations from
neural data and the inferred pairwise model for 5 to 50 neurons. Like in Figure 4.15, 100 populations
of size N were chosen randomly from the 495 neurons that were shared over 6 sessions, but here
N varied from 5 to 50. A constant binsize of δt = 0.02 was used. Pseudolikelihood was used to
approximate h and J . The black lines between the black dots represent the means while the black
vertical lines represent standard deviations. The resulting pairwise models were then sampled
using the Metropolis-Hastings algorithm (as many samples as in the data) before GC and GC̃ were
calculated from these samples. (A) Performance of the pairwise model as measured by third-order
correlations, Eq. (27a), of different populations of neurons. 13 outliers with GC < 0 were omitted.
(B) Performance of the pairwise model as measured by connected third-order correlations, Eq.
(27b), of different populations of neurons. 2 outliers with GC̃ < −1.1 were omitted.

Figure 4.23: Comparison of number of simultaneously active neurons Hm from neural data and
the inferred pairwise model for 2 to 100 neurons. Like in Figure 4.2, 100 populations of size N
were chosen randomly from the 495 neurons that were shared over 6 sessions, where N varied from
2 to 100. A constant binsize of δt = 0.02 was used. Pseudolikelihood was used to approximate
h and J . The black lines between the black dots represent the means while the black vertical
lines represent standard deviations. The resulting pairwise models were then sampled using the
Metropolis-Hastings algorithm (as many samples as in the data) before GH were calculated from
these samples. The Figure displays the performance of the pairwise model, as measured by GH ,
Eq. (28), of different populations of neurons. 148 outliers with GH < 0 were omitted.
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Comparing the number of simultaneously active neurons, however, does reveal a performance

more similar to that G or Ĝ. Even though GH does not display the sharp fall that Ĝ does, it is

substantially closer than GC and GC̃ , and even GRC
H . Despite this, GH occasionally (in 148/9800

populations) becomes negative, meaning that the independent model occasionally performs better

than the pairwise model.

5 Is the model any good?

Given our systematic investigation of the relationship between G and N , v̄, and δt, we are in a

much better position than previous studies to make claims about how well the pairwise model

accounts for neural data generally.

5.1 The results are consistent with previous findings

Like many previous studies (Chelaru et al., 2021; Ganmor et al., 2011a; Schneidman et al., 2006;

Shlens et al., 2006; Tang et al., 2008; Yu et al., 2008), we also find that the pairwise model performs

well for small N (Figure 4.14). This finding holds across all tested approximation methods (Figure

4.18) and brain areas (Figure 4.19 and 4.20). This also holds regardless of which biases, h or

hind, are used for the independent model. Further, our findings are consistent with the predicted

(Roudi, Nirenberg et al., 2009) linear scaling of G for Nv̄δt ≪ 1. Comparing Figure 4.15, 4.16,

and 4.17, we see that this relationship is much clearer when changing N than when changing v̄ or

δt. This might suggest that we did not consider a small enough v̄ and/or δt. If we instead consider

GRC, the initial linear scaling holds when changing N , v̄, or δt independently (Figure 4.1-4.4) and

together (Figure 4.5-4.6). Further, some have hinted that the performance of the pairwise model

might decrease as N becomes large (Ashourvan et al., 2021; Barreiro et al., 2014; Ezaki et al.,

2017; Roudi, Nirenberg et al., 2009; Tkačik et al., 2014), which we here show systematically.

5.2 G decreases with the number of neurons

After the initial linear scaling of Ĝ and G with Nv̄δt we see a sharp drop before it levels off.

This stereotypical scaling holds when changing N in different cortical areas (Figure 4.19 and 4.20)

and using different parameter approximation methods (4.18), but it does not unambiguously hold

when only changing v̄ or δt (4.16, and 4.17). However, for GRC and ĜRC the stereotypical scaling

persists when changing N , v̄, and δt independently (Figure 4.1-4.4) and together (Figure 4.5-4.6),

in addition to for all tested approximation methods (Figure 4.7) and brain areas (Figure 4.8-4.10).

Although, changing N , v̄, and δt independently did result in G and Ĝ converging to slightly

different values. Finally, the alternative performance measure GL and GRC
L scales similar to G

and GRC with Nv̄δt, further increasing our confidence that this scaling is a general phenomena of

pairwise models fitted to (our) neural data.

These findings directly addresses the question posed by Roudi, Nirenberg et al. (2009) (their

Figure 2), in that we now have a strong case for how the performance of the pairwise model scales

with N (and v̄ and δt). Importantly, we clearly see that the pairwise model does not universally

capture the probability of neural states. Given that we would expect good performance for small
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Nv̄δt regardless of what the true distribution is (Roudi, Nirenberg et al., 2009), neuronal data

might not be structured in a way that makes the pairwise model unusually good. This is of course

not to say that the pairwise model is useless. It still seems to account well for neuronal activity in

the perturbative regime (small Nv̄δt). Moreover, sometimes we might not care that some higher-

order correlations are neglected, for example when using the pairwise model as a decoder (Posani

et al., 2017). However, if we are looking for the parameters that account maximally for neuronal

activity, pairwise correlations might not be it.

Since we find that G increases as δt decreases, one might be able to achieve arbitrarily good

performance simply by choosing a sufficiently small binsize δt. However, if one continues to make

the binsize smaller, one will violate the independent timebins assumption made when taking the

true distribution to be the frequency distribution of time binned states (i.e., when taking ptrue =

pdata). Thus, if we use an excessively small timebin (smaller than the correlation time of the spike

trains), ptrue = pdata becomes a worse assumption and we would instead want to infer a temporally

correlated distribution (Roudi, Nirenberg et al., 2009), such as a kinetic Ising model.

5.3 Good parameter approximations matter

First, we note that using other parameter approximation methods does change the scaling of Ĝ

and ĜRC somewhat. For Ĝ, using suboptimal parameters led to both under- and overestimations,

while it for ĜRC primarily resulted in overestimations. Because TAP and SM typically approxim-

ates h and J better than nMF and IP (Roudi, Aurell et al., 2009; Roudi, Tyrcha et al., 2009), the

deviations are more apparent for nMF and IP than for TAP and SM (Figure 4.7 and 4.18). Still,

we see substantially more populations with a Ĝ or ĜRC smaller than zero when using nMF, TAP,

IP, or SM compared to the more reliable pseudolikelihood. This likely results from violating the

assumptions in the closed-form approximations. The biases h in the SM approximation are par-

ticularly sensitive to violations of the small-J assumption, which resulted in overflow errors in 385

(out of 9800) Ĝs. This makes the usefulness of the closed-form approximations dataset-dependent.

In the dataset tested here, using the TAP approximation resulted in Ĝs and ĜRCs closest to the

ones from pseudolikelihood. Curiously, GL and GRC
L seems less sensitive to suboptimal parameters

(except for the IP approximation), suggesting nMF, TAP, and/or SM could be useful for evaluating

pairwise models with GL or GRC
L .

5.4 GC and GC̃ are not good proxies for G, but GH might be

Neither the third-order correlations nor the connected third-order correlations show a scaling with

Nv̄δt expected from G, Ĝ, GL, GRC, ĜRC, or GRC
L . Figure 4.22A and 4.12A shows that the

third-order correlations Cijk continue to be largely accounted for by the pairwise model. Thus, the

synchronized activity of triplets of neurons occurs close to a rate expected from their firing rates

and pairwise correlations. Figure 4.22B and 4.12B shows that the third-order correlations C̃ijk that

go beyond this expectation are almost equally well accounted for by the pairwise and independent

model. The fact that GC , GC̃ , G
RC
C , and GRC

C̃
do not change much with Nv̄δt, while Ĝ and ĜRC

does, likely reflects two facts: (1) that Ĝ and ĜRC include contributions from the pairwise model

failing to predict higher-order correlations and (2) that even small errors in predicting third-order

correlations (and for that matters higher-order ones) may lead to a large decrease in Ĝ and ĜRC,

because the number of kth order correlations initially increase exponentially with k.
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In contrast, measuring performance based on the number of simultaneously active neurons

(Figure 4.23 and 4.13) promote a somewhat different conclusion depending on which independent

model is used. We see that GH does decrease substantially with Nv̄δt, as opposed to GRC
H . This

suggests that the higher-order correlations implied by the number of simultaneously active neurons

are partially responsible for the drop Ĝ but not ĜRC. From this, one might suspect that G could

be approximated by comparing a collection of correlations of different orders.

Despite the somewhat promising results for GH , the third-order correlations and the number of

simultaneously active neurons does not fully capture the performance of the pairwise model. This

suggests that a large portion of the possible higher-order correlations has a small but non-negligible

contribution. That is, the amount of entropy accounted for by progressively more higher-order

correlations may not level off.

5.5 The couplings are responsible for the good performance for small

Nv̄δt, but less so for large Nv̄δt

GRC and ĜRC tells us how much a pairwise model relies on its couplings J , as opposed to its biases

h, for matching the data distribution. As GRC and ĜRC never go to zero, we see that removing the

couplings always makes the pairwise model worse. However, the removal of couplings is a lot more

destructive in populations with small Nv̄δt. Conversely, removing couplings is less influential for

large Nv̄δt, which makes sense considering that G and Ĝ also fall as Nv̄δt increases. One would be

removing couplings that did not give a good performance in the first place. Yet, this explanation

is unlikely to fully explain the scaling of ĜRC with Nv̄δt because it holds regardless of whether

N , v̄, or δt is changed (Figure 4.1-4.6), while the scaling of Ĝ does not. A perhaps supplementary

explanation comes from noticing that decreasing N , v̄, and δt all lower the average number of spikes

in each sample. Thus, one might suspect that how much pairwise models rely on their couplings,

as opposed to their biases, is determined by the average number of simultaneously active neurons.

This would mean that it is difficult for couplings to capture the probability of many neurons being

active at a time. This fits nicely with the finding that the couplings are almost entirely responsible

for the ability of the pairwise model to account for third-order correlations (Figure 4.12) and the

number of simultaneously active neurons (Figure 4.13).

5.6 Ẑ could facilitate the evaluation of other maximum entropy models

Interest in maximum entropy models extends well beyond the pairwise model (Yeh et al., 2010).

For example, some have removed constraints from the pairwise model (Ganmor et al., 2011a;

Shlens et al., 2009; Shlens et al., 2006), while others have added constraints (Ganmor et al., 2011b;

Shimazaki et al., 2015; Tkačik et al., 2014; Tkačik et al., 2013). Yet others have constructed

maximum entropy models by adding temporal correlations (Tang et al., 2008; Vasquez et al.,

2012) or stimulus-dependence (Granot-Atedgi et al., 2013). In all cases, this have been with the

explicit aim of finding models with sets of constraints that describe neural data well. However,

in evaluating the performance of these models for large N one again encounters the exponentially

increasing number of states. A good approximation of Z could alleviate this in the same way

as for the pairwise model: by enabling an approximation of G via a sum over all sampled states

rather than all possible states. Our approximation of Z could therefore aid the evaluation of other

maximum entropy models. Although, it should of course be tested for that particular model first.
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6 What does this tell us about the brain?

So, we have a way of evaluating the performance of the pairwise maximum entropy model. How

does this help us understand the brain? This discussion is primarily concerned with G and Ĝ

because they have a more intuitive meaning than GRC and ĜRC.

6.1 G measures the importance of higher-order correlations in a set of

spike trains

G is large when dind is large relative to dpair and small when dpair is large relative to dind. This

means that G is large when the pairwise model fits the data distribution substantially better than

the independent distribution. However, G can be small both when the pairwise and independent

model are equally bad at accounting for higher-order correlations and when they are equally good

at capturing a truly independent distribution. This latter case complicates the interpretation of

G but, fortunately, we rarely record completely independent neurons. With this caveat, one could

say that G measures how much of the total (i.e., second to Nth-order) correlations in the data

that is accounted for by pairwise correlations. GRC, however, is more difficult to interpret. This

is because the means ⟨si⟩ind and ⟨si⟩data don’t match when using h, which makes dind, and thus

GRC, larger than when using hind. This is what we see in, for example, Figure 4.1 and 4.14. The

means ⟨si⟩ind and ⟨si⟩data not matching means that some of the magnitude of GRC comes from

the means ⟨si⟩pair and ⟨si⟩data now matching. This makes it difficult to interpret GRC, as it does

not simply reflect the ability of pairwise correlations to account for all correlations in the data.

In any case, when interpreting G or GRC, it is important to remember that our data is a

matrix consisting of N binned spike trains. The correlation structure in this matrix depends on

N , v̄, and δt. So does, as we have seen, G. If we want to say something general about the statistics

of some neuronal population, we probably want that statement to be independent of the values of

N , v̄, and δt. This means that G will be most informative when considered in the context of Nv̄δt.

6.2 The scaling of G with Nv̄δt measures the importance of higher-order

correlations in a local circuit

Interpreting G and Nv̄δt together is a first step in moving from statements about spike trains to

statements about neuronal activity generally. When Nv̄δt is small, we expect G to scale linearly

with Nv̄δt regardless of what the true distribution is (Roudi, Nirenberg et al., 2009). However, the

scaling of G with Nv̄δt when moving beyond the perturbative regime, when the scaling becomes

non-linear, can inform us about the importance of higher-order correlations in the recorded neural

activity. While N seems to affect the scaling of G the most, followed by δt and v̄, it is still clear

that higher-order correlations become more important asNv̄δt increases. This might, speculatively,

be explained by (1) there being more opportunities for strong higher-order correlations in larger

populations, (2) a larger firing rate making it more likely for groups of neurons to spike together, and

(3) neurons being more synchronized over larger timescales. However, the scaling of G with Nv̄δt

is different depending on how Nv̄δt was changed (e.g., Figure 4.14-4.17). This makes it difficult to

draw firm conclusions about a neuronal population from the scaling of G with Nv̄δt. This might

suggest that considering G as a function of N , instead of Nv̄δt, could be more interpretable. Still,
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the average G or Ĝ for different values of Nv̄δt reflects the degree of importance of higher-order

correlations in the data.

In our analyses we had recordings of hundreds or thousands of neurons but only considered

a subpopulation of those at a time. However, we see fairly good agreement between the Gs of

the different subpopulations, hinting that higher-order correlations are about equally important

in the entire population of recorded neurons. Notably, from the perspective of one subpopulation

of neurons, there is no difference between a recorded but not included neuron and a not recorded

neuron. This suggests that the conclusions based on many subpopulations of recorded neurons can

be extended somewhat to non-recorded neurons in a, vaguely defined, local circuit.

6.3 Higher-order correlations seems to be more important in visual and

auditory cortices than in somatosensory and motor cortices

Comparing how G or Ĝ scales with Nv̄δt in different populations might teach us more about the

significance of the distribution of Gs and Ĝs than looking at a single population. That is, we can

say something about the relative importance of higher-order correlations. While we here compare

different cortical areas, such comparative analyses can of course be extended far beyond that, for

example to comparing the effect of different experimental conditions. We find that, in all cortical

areas, Ĝ start decreasing almost immediately, when Nv̄δt < 1. However, there are slight differences

in the value Ĝ converges to, suggesting that higher-order correlations are more important in some

areas than others. This might be interpreted as varying degrees of collaborative (i.e. population)

coding, which might reflect that different areas carry different amounts of information about some

stimuli (Cayco-Gajic et al., 2015). Additionally, in visual and motor cortices we see that Ĝ start

increasing slightly when Nv̄δt becomes larger. It is unclear what is causing this, but from Figure

4.16 one might suspect that a large firing rate may be involved. It is also noteworthy that we

see such a similar scaling in the four cortical areas despite increasing the binsize for motor and

somatosensory cortices. From Figure 4.17, one might expect that Ĝ should converge to a smaller

value for a larger binsize, suggesting that higher-order correlations are more important in visual

and auditory than in motor and somatosensory cortices.

6.4 Potential mechanisms behind higher-order correlations

The higher-order correlations responsible for the drop in G and Ĝ must come from somewhere.

In early sensory areas, they could be driven by some external stimulus that synchronize neuronal

activity. Barreiro et al. (2014) suggest that higher-order correlations could be induced in small

(3 − 16) networks of retinal ganglion cells (RGCs) by a bimodal stimulus distribution where the

RGCs are active above some stimulus threshold. However, we don’t see any signs of this in our

data as G is large for small N (Figure 4.1). Our findings are unlikely to be fully explained by

stimulus-induced correlations both because of this, and because our data is concatenated over

different sessions recorded during different experimental conditions (see Section 4.1). Thus, the

higher-order correlations should be generated by some biological mechanism (Shlens et al., 2009).

For example, higher-order correlations could be driven by fast recurrent excitation (Barreiro et al.,

2014). This might be mimicked by considering a timescale (i.e., binsize) so large that activity

have time to propagate through a network, which is consistent with G decreasing as δt increases.

Other potential sources of higher-order correlations could be unobserved neurons (Meshulam et al.,
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2021), neuromodulation, oscillations, or tripartite synapses. Of course, it is difficult to evaluate

which mechanism(s) are most influential from the current dataset. But, this work could help guide

experiments to areas in which such mechanisms are likely to contribute substantially to network

dynamics.

6.5 Limitations and future work

Despite these insights, there are many things the pairwise model can’t tell us. Most notably, time is

completely ignored as each sample/state is assumed to be independent and identically distributed

when estimating ptrue with relative frequencies. This makes it impossible to detect plasticity

or account for time-varying stimuli. The uncertainty in the model parameters h and J were not

considered here, beyond a general statement about the approximation method that generated them

(Figure 2.1-2.5). Estimating the uncertainty of each parameter could help us determine whether

G is significantly affected by the model fit (Zanoci et al., 2019), thus allowing stronger conclusions

about the performance of the pairwise model. As alluded to previously, comparing the scaling of

G under different experimental conditions is also an interesting direction for future investigations.

Both because one might suspect that the pairwise model performs differently under less varied

stimuli than considered here, and because it might tell us something about the relative degree of

population coding under different conditions.

Another topic worthy of further study is the accuracy of Ẑ. If Ĝ is to be applied more broadly,

we need a better understanding of when and how Ẑ is a poor approximation. It was suggested

here that Ẑ might be a good approximation when the entropy is not too large, but this was not

quantified. We also need a better understanding of how Ẑ affects Ĝ and interacts with other sources

of bias. Some initial testing suggests that Ĝ sometimes overestimates G when applied to neural

data, but this should be investigated further. One can decompose the error in Ĝ into two sources

in Eq. 21. The first due to the approximation of the model entropy Spair, which Ẑ does affect,

and the second due to the approximation of the data entropy Sdata, which Ẑ does not affect. Here,

these two sources have been lumped together by calculating the KL divergence dpair rather than the

entropies Spair and Sdata. However, considering them separately may be beneficial when searching

for a better understanding of when Ĝ fails. To disentangle the influence of different approximations

one could calculate the entropies, KL divergences, and Gs in different ways. The true data entropy

Sdata can be calculated either by the plugin method where the frequency distribution pdata is used

directly, resulting in Splugin
data =

∑
s pdata(s) ln pdata(s), or by some entropy approximation algorithm

(e.g., Archer et al., 2013; Strong et al., 1998), whose entropy we denote as Sapprox
data . The entropy

of the pairwise model Spair can be calculated either with a sum over all states when N is small,

giving Sexact
pair =

∑
s ppair(s) ln ppair(s), or by sampling the pairwise model and using one of the above

entropy approximation algorithms when N is large, denoted by Ssampling
pair . The KL divergence can

be expressed as
∑

s pdata(s) ln
pdata(s)
ppair(s)

=
∑

s pdata(s) ln pdata(s) −
∑

s pdata(s) ln ppair(s), where the

plugin entropy Splugin
data can be replaced by an approximation that corrects for finite sampling Sapprox

data ,

and the cross entropy Scross
pair =

∑
s pdata(s) ln ppair(s) can be replaced with Sexact

pair or Ssampling
pair .

Finally, either of these possible KL divergences dpair, with its corresponding dind, can be used to

calculate G. So, there are many possible comparisons to make. We suspect that a good starting

point for investigating the relative effect of underestimating the data entropy due to finite sampling

and replacing the cross entropy with a true entropy is to compare four approximations of the KL

divergence: (1) dpair = Splugin
data −Scross

pair , (2) dpair = Splugin
data −Sexact

pair , (3) dpair = Sapprox
data −Scross

pair , and
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(4) dpair = Sapprox
data − Sexact

pair . Note that we used the first of these approximations in our results.

Subsequently, the effect of inaccuracies in Ẑ could be assessed simply be replacing Z in ppair with

Ẑ. Using Ẑ would also allow us to compare the first and third of the four dpair approximations for

large N , while using Ssampling
pair in place of Sexact

pair enables the calculation of approximation two and

four as well.

Finally, we still have to choose a binsize to construct the states we are approximating a

probability distribution over. If we care about spike statistics and relationships between neurons,

this is probably fine provided that we recognize how the chosen binsize affects the results. If we

care about coding (e.g., Tkačik et al., 2014), however, it may be misleading to consider every

state s to be unique like when calculating KL divergences. That is, G tells us about how well the

pairwise model preserves the correlation structure in the data, it does not tell us how the pairwise

model preserves some meaning or representation in the data. For example, given some value of

G, it is not obvious whether the torus representation found in grid cells (Gardner et al., 2022) is

preserved in the model. For this, it might be more interesting to consider states that are similar, in

terms of conveying the same information (i.e., location on the torus), together. One might suspect

that similar states according to Hamming distance (syntactic similarity) convey similar information

(semantic similarity), but this does not seem be the case (Ganmor et al., 2015). Instead, (semantic)

similarity between states could be learned from the information they contain about some stimulus.

Note that which states that are similar to each other might change under different conditions.

These similarities could be used to define clusters of states containing approximately the same

information (Ganmor et al., 2015). Looking at clusters of states may allow for an interpretation

that is more related to coding and representations, though it should be done with caution (Brette,

2019; de-Wit et al., 2016). Further, this might simplify our analyses and interpretations in that

we could consider less than 2N states, as exemplified by Wolf et al. (2023) primarily caring about

the mean activity in two brain areas. Even though Ĝ may have mitigated some of the trouble of

looking at all 2N states individually, it will likely not scale to thousands or millions of neurons.

7 Conclusion

We have, for the first time, systematically evaluated the performance of the pairwise maximum

entropy model for large N . Our results are consistent with previous work investigating the per-

formance of pairwise models, but expand the work in important ways by showing that the good

performance observed for small N does not continue indefinitely. Additionally, we see that good

approximations of h and J are important for obtaining reliable Ĝs and that third-order correlations

are not responsible for the drop in Ĝ, while the number of simultaneously active neurons might

be responsible for some of it. We also speculate that our approximation of Z (Eq. 23) could be

useful more broadly, such as when evaluating other maximum entropy models, but this should be

investigated in future work. Finally, we discuss what G might tell us about neuronal dynamics, and

conclude that higher-order correlations plays an important role in populations with many neurons.

That is, pairwise correlations are not sufficient to account for neural activity in the general case.
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