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Summary

A thin-film spin-split superconductor connected to normal metal reservoirs driven

out of equilibrium by a spin dependent voltage is studied numerically in the quasi-

classical Keldysh-Usadel framework. Two setups are considered: one in which the

spin dependent chemical potentials are shifted oppositely in the reservoirs (setup A)

and one where they are shifted in the same way in both reservoirs (setup B). Phase

diagrams showing the regions of superconductivity, bistability and the normal state

for various spin-voltages and spin-splitting fields are calculated for both setups. A

bulk superconductor in equilibrium can only coexist with spin-splitting fields smaller

than the Chandrasekhar-Clogston limit m < ∆0/
√
2, but when driven out of equi-

librium this limit can be surpassed. In setup B, we find that superconductivity is

recovered when m − eVs < ∆0. This is attributed to how the spin-splitting field

and the voltage shows up in the gap equation, demonstrating that the combined

effect of a spin-splitting field and a voltage is an effective field meff = m − eVs.

In setup A, superconductivity is recovered when m ≈ eVs, but the gap is spatially

inhomogeneous due to an increased effective spin-splitting field at one interface, and

a decreased field at the other interface. This reveals the appearance of the FFLO

state in the superconductor.
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Sammendrag

En spinn-splittet superledende film koblet til normalmetall-reservoarer drevet ut

av likevekt av en spinnavhengig spenning blir undersøkt numerisk ved å løse den

kvasiklassiske Usadelligningen. To ulike oppsett blir undersøkt: ett hvor det spin-

navhenginge kjemiske potensialet er forskjøvet p̊a motsatt m̊ate i de to reservoarene

(oppsett A) og ett hvor det er forskjøvet p̊a samme måte (oppsett B). Fasedia-

grammer som viser hvilke parametersett som gir superledning, bistabilitet og nor-

maltilstand blir beregnet for begge oppsettene. En bulk superleder i likevekt kan

eksistere sammen med et spinn-splittende felt mindre enn Chandrasekhar-Clogston-

grensen m < ∆0/
√
2, men ute av likevekt er det mulig å overskride denne grensen.

I oppsett B finner vi at superledning gjenopprettes n̊ar m− eVs < ∆0. Dette fork-

lares med at det spin-splittende feltet og spinn-spenningen opptrer som et effektivt

spinn-splittende felt meff = m− eVs i gapligningen. I oppsett A opprettholdes den

superledende tilstanden n̊ar m ≈ eVs, men det superledende gapet er romlig inho-

mogent grunnet et økt effektivt spinn-splittende felt p̊a den ene siden av superled-

eren, og et minket felt p̊a den andre siden. Dette demonstrerer at superlederen er i

en tilstand kjent som FFLO-tilstanden.
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1 Notation and conventions

This thesis uses natural units, where Planck’s reduced constant ℏ, Boltzmann’s

constant kB, the speed of light c, the vacuum permittivity ϵ0 and permeability µ0,

and the gravitational constant 4πG are all normalized to unity. The electron charge

is e = −|e|. Complex numbers are written z = x+ iy where i is the imaginary unit,

and the superscript ∗ is used for complex conjugation.

Three-dimensional vectors are written in bold typeface as A. Cartesian unit vectors

are denoted by ex, ey, ez. Partial derivatives are written ∂x ≡ ∂/∂x, and the operator

∇ = ∂xex + ∂yey + ∂zez.

Many matrices of different dimensions will be encountered. For 2 × 2 matrices,

no additional notation is introduced. 4 × 4 matrices are specified with a hat Â,

and 8 × 8 matrices are denoted Ǎ. Commutators are written with square brackets

[A,B] = AB − BA, and anticommutators with curly brackets {A,B} = AB + BA.

The superscript † is used for Hermitian conjugation and T is used for the matrix

transpose.

The multiplication of matrices with different dimensions is resolved by taking Kro-

necker products with appropriate identity matrices, for example

ÂB̌ =

(
Â 0

0 Â

)
B̌. (1.1)

The Pauli matrices are

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
, (1.2)

and the Pauli matrix vector σ ≡ σxex + σyey + σzez.

The Dirac delta function δ(x) is defined by∫ ∞

−∞
f(x)δ(x)dx = f(0). (1.3)
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2 Superconductivity

2.1 Introduction

Superconductivity is a remarkable phenomenon in which certain conductors exhibit

zero electrical resistance and perfect diamagnetism when cooled below a critical

temperature Tc. The discovery of superconductivity dates back to 1911, when Heike

Onnes observed that mercury’s electrical resistance vanished below 4.2K [1]. At the

time quantum mechanics was not yet born, and the underlying mechanism of the

phenomenon remained a mystery. In 1933, a discovery was made by Meissner and

Ochsenfeld. They realized that a superconductor is a perfect diamagnet and that

magnetic flux can only penetrate a thin layer near the surface [2], and this became

known as the Meissner effect. A fully microscopic theory for superconductivity ex-

plaining the phenomenon from first principles was published in 1957 by Bardeen,

Cooper and Schrieffer [3]. The BCS theory proposed that a weak, attractive inter-

action between electrons caused the formation of Cooper pairs, which consist of two

entangled electrons with opposite spin and momenta. A gap in the electronic band

structure was also predicted.

Superconductors are divided into two categories depending on how they respond to

an external magnetic field [4]. Type I superconductors switch abruptly from the

Meissner state, corresponding to complete screening, to the normal state with full

penetration of magnetic flux when the field reaches a critical strength hc. Type II

superconductors exhibit a phase in between the Meissner state and the normal state

in which magnetic flux is allowed to partially penetrate the material through vortices.

In the Meissner state, screening currents occur because the electrons moving in a

magnetic field are affected by the Lorentz force. When the currents become large

enough, the kinetic energy is too large to favor the superconducting state over the

normal state. This is known as the orbital effect. In thin films with an in-plane

magnetic field, the orbital effect can be neglected because the currents perpendicular

to the plane are suppressed [5]. In such thin films, the magnetic field manifests as

a spin-splitting field, causing the electronic bands for different spins to be split,

which again causes pair breaking. This is known as the paramagnetic effect, and

together with the orbital effect it is responsible for trying to prevent the coexistence

of magnetism and superconductivity.

When a superconductor is in contact with a non-superconducting material, new

phases can arise due to the proximity effect. The proximity effect is the process by

which properties of adjacent materials leak into one another, creating a region with
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properties derived from both materials. A phenomenon related to the proximity

effect is Andreev reflection [6], which can be understood by considering a super-

conductor in contact with a normal metal. An electron in the normal metal with

energy lower than the superconducting gap is approaching the interface to the su-

perconductor. It cannot enter the superconductor because no quasiparticle states

exist for such an energy. The electron has several possibilities to overcome this ob-

stacle. It could for example be reflected at the interface, or it could tunnel through

the superconductor. Another option is to be Andreev retroreflected as a hole. The

electron then pairs up with another electron at the interface leaving a hole behind,

and the electrons enter the superconductor as a Cooper pair. The reflected hole

is phase coherent with the Cooper pair, and will therefore carry information about

the superconducting correlations into the normal metal. The proximity effect is an

essential ingredient in for example superconducting spintronics.

Superconducting spintronics is an emerging field that offers exciting possibilities for

novel technology [7–10]. Spintronics is a field that utilizes the spin property of elec-

trons to store, process, and manipulate information in electronic devices. Spin is

an intrinsic angular momentum of electrons, and along a given quantization axis it

can have two values: up or down. This binary structure makes the spin a natural

choice for information carrier, as the fundamental building blocks in digital elec-

tronics consist of 0s and 1s. One common example of a device based on concepts

from spintronics is the hard disk drive (HDD), which is a storage device used in

most computers. The storage capacity of the HDD was increased drastically by the

introduction of giant magnetoresistance [11, 12], which is the observation that the

resistance of a ferromagnet/normal metal/ferromagnet junction depends on the rel-

ative orientation of the magnetization in the ferromagnets. Switching the alignment

of the spins in one of the ferromagnets creates a different current signal, and this can

be used to code information. The dissipationless currents in a superconductor have

the potential to reduce the power consumption of electronic devices. The marriage

of the energy efficient superconductors and the increased functionality of utilizing

electronic spins as information carriers is therefore an intriguing idea. Supercon-

ducting order can enhance central effects in spintronics such as magnetoresistance

and open up for more energy-efficient computing, and superconducting spintronics

is an area of great research interest.

In electronic devices, there can be magnetic elements. Superconductivity is easily

destroyed by magnetic fields, so for the realization of superconducting spintronics

it is crucial to develop methods for restoring superconductivity in contact with

magnetic materials. This thesis is dedicated to exploring how the superconducting
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state can be restored for high spin-splitting fields. Additionally, the analytical and

numerical framework established in this thesis sets the stage to explore further

non-equilibrium effects in spin-split superconductors that have not been studied

previously, such as crossed Andreev reflection [13].

In this chapter, we describe two fundamental objects in condensed matter physics,

namely field operators and Green functions. We proceed to derive a mean-field

Hamiltonian describing superconducting systems, and we explore how a spin-splitting

field affects superconductivity. In chapter 3, the quasiclassical Keldysh-Usadel for-

malism is introduced and a transport equation for the relevant Green function is

derived. In chapter 4, the non-equilibrium distribution function is introduced. In

chapter 5, parametrized transport equations are derived, and the numerical frame-

work for solving and interpreting the results of these equations are presented. Chap-

ter 6 presents the exact setup used and the results obtained. The thesis is concluded

with a summary and outlook in chapter 7.

2.2 Field operators and Green functions

In quantum mechanics, a system is described by a wave function that solves the

relevant Schrödinger equation, and any quantum mechanical observable can be cal-

culated from the wave function [14]. However, many systems are cumbersome or

impossible to describe using quantum mechanics. In many-body systems, for ex-

ample, it is close to impossible to keep track of the wave function of every single

particle. In some systems, particles might be created or annihilated, and quantum

mechanics does not account for that. This demonstrates the need for quantum field

theory.

Quantum field theory introduces the operators c†α and cα which create and annihilate

a particle in the state associated with the quantum numbers α, respectively. The

quantum numbers contained in α could for example be momentum k and spin σ. The

creation and annihilation operators act on vectors in Fock space, which houses all

possible many-particle states. In superconducting systems, we are mostly concerned

with electrons, which are fermions. Fermionic creation and annihilation operators

satisfy the anticommutation relations{
c†α, cα

}
= δαα′ , {cα, cα} =

{
c†α, c

†
α

}
= 0. (2.1)

The operators ckσ, c
†
kσ can be Fourier transformed from the momentum basis to the
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position basis, giving the field operators

ψ†
σ(r) =

∑
k

c†kσ e
−ik·r ψσ(r) =

∑
k

ckσ e
ik·r . (2.2)

The field operators satisfy the same anticommutation relations as the creation and

annihilation operators. ψ†
σ(r) is interpreted as an operator that creates a particle

with spin σ at the position r, while ψσ(r) destroys such a particle. In the Heisenberg

picture, operators are time-dependent and their time evolution is governed by the

Heisenberg equation,

i
∂ψ†

σ(r)

∂t
=
[
H,ψ†

σ(r)
]
, (2.3)

i
∂ψσ(r)

∂t
= [H,ψσ(r)], (2.4)

where the right-hand side is a commutator between the second-quantized Hamilton

operator H and the field operator.

Green functions can loosely be thought of as the quantum many-particle physics

analogy to the wave functions in quantum mechanics, and they are a powerful tool.

Green functions are correlation functions between two field operators, describing

the evolution of one state into another state. There exist several versions of Green

functions, but one with an easy interpretation is the time-ordered Green function,

Gσ1σ2(r1, t1; r2, t2) = −i⟨T ψσ(r1, t1)ψ
†
σ2
(r2, t2)⟩. (2.5)

The time ordering operator T ensures that the field operators act in chronologi-

cal order. Assuming t1 > t2, the Green function is interpreted as the probability

amplitude for finding a particle at (r1, t1), provided that a particle was inserted at

(r2, t2).

Mathematically, a Green function G(x, s) of a linear operator L(x) is a solution to

L(x)G(x, s) = δ(x− s). (2.6)

Green functions are particularly useful when solving the inhomogeneous equation

L(x)u(x) = f(x), because the solution can be expressed via a Green function: u(x) =∫
G(x, s)f(s)ds.

2.3 The superconducting Hamiltonian

The starting point for the BCS theory is that there exists an effective attractive

interaction between electrons. The origin of this interaction was initially taken to

be phonons, which are quasiparticles describing quantized lattice vibrations, but
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superconductivity can be mediated by any interaction as long as it is attractive in a

thin shell around the Fermi surface. The Hamiltonian describing a general attractive

spin-independent electron-electron interaction is

H =
1

2

∫
drdr′V (r, r′)

∑
σσ′

ψ†
σ(r, t)ψ

†
σ′(r

′, t)ψσ′(r′, t)ψσ(r, t), (2.7)

where the potential V (r, r′) < 0 for at least some positions (r, r′). This describes

a two-particle interaction, but it would be useful to rewrite it to a single-particle

Hamiltonian in which the particle moves in a background field set up by the other

electrons. This is conducted by the mean-field approximation, in which it is assumed

that the product of two field operators is close to the expectation value of the

product. The product of two field operators in the mean-field approximation is

ψσ′(r′)ψσ(r) = ϕσσ′(r, r′) + φ(r, r′), (2.8)

where ϕσσ′(r, r′) ≡ ⟨ψσ′(r′)ψσ(r)⟩ and φ(r, r′) is a small fluctuation field. The time

dependence of the field operators is suppressed for brevity in the notation. Next,

define the order parameter

∆σσ′(r, r′) = −V (r, r′)ϕσσ′(r, r′). (2.9)

The absolute value |∆σσ′(r, r′)| is referred to as the superconducting gap, while

the phase of the order parameter is referred to as the superconducting phase. To

first order in the fluctuation field, the mean-field version of the Hamiltonian (2.7)

becomes

H = −1

2

∫∫
drdr′

∑
σσ′

[∆σσ′(r, r′)ψ†
σ(r)ψ

†
σ′(r

′) + ∆∗
σσ′(r, r′)ψσ′(r′)ψσ(r)

−∆σσ′(r, r′)ϕ∗
σσ′(r, r′)].

(2.10)

This Hamiltonian describes superconductivity. We will proceed from 2.10 in two

different ways. Firstly, the Hamiltonian for a contact interaction V (r − r′) =

−λ(r)δ(r− r′) will be considered, and the resulting Hamiltonian will be used when

deriving equations of motion for superconducting hybrid systems. Secondly, we will

consider the Hamiltonian for a bulk superconductor with a short-range interaction

and use this to obtain an expression for the free energy. The free energy will be

used to derive the BCS gap equation and the Chandrasekhar-Clogston limit, which

is an upper limit on the spin-splitting field that can coexist with a superconductor

in equilibrium.

2.3.1 Contact interaction

If the particles that mediate the attractive electron-electron interaction are very

short-ranged, the potential can be approximated by V (r, r′) = −λ(r)δ(r, r′). Due
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to the Pauli principle, the two electrons that now are located at the same position

must have opposite spins. The order parameter therefore satisfies

∆σσ′(r, r′) = λ(r)⟨ψ−σ(r)ψσ(r)⟩δ(r− r′)δ−σ,σ′ , (2.11)

where the anticommutation rules of fermionic field operators with different quantum

numbers were applied. Define a new order parameter

∆(r) ≡ ∆↑↓(r, r) = −∆↑↓(r, r). (2.12)

Performing the sum over the spins in (2.10) and inserting the definition of ∆(r)

yields

H = −
∫

dr
(
∆(r)ψ†

↑(r)ψ
†
↓(r) + ∆∗(r)ψ↓(r)ψ↑(r)+

)
+

∫
dr∆(r)ϕ↑↓(r). (2.13)

In calculations that do not depend on constant terms in the Hamiltonian, the second

integral can be set to zero. This is the case for the Hamiltonian that we will use to

describe superconducting hybrid systems, but it is not the case when for example

deriving free energies.

2.3.2 Bulk superconductor

In bulk and homogeneous materials, operators and observables depend on the rel-

ative coordinate ρ = r − r′, and they do not depend on the direction or absolute

position. We assume interactions between the fermions to be short-ranged so that

their spins must be opposite, but we do not assume the interaction to be a delta-

function. In this case, the order parameter (2.9) reduces to

∆σ,−σ(ρ) = −V (ρ)⟨ψ−σ(0)ψσ(ρ)⟩, (2.14)

and we define the order parameter

∆(ρ) = ∆↑↓(ρ) = −∆↓↑(ρ) =
∑
q

∆q e
iq·ρ . (2.15)

Inserting the Fourier transformed expressions for the field operators

ψσ(r) =
∑

k ckσ e
ik·r and the order parameter into (2.10) gives the Hamiltonian

H = −
∑
q

(
∆qc

†
q↑c

†
−q↓ +∆∗

qc−q↓cq↑

)
+H0, (2.16)

where

H0 =
∑
q

∆q⟨c†−q↓c
†
q↑⟩. (2.17)
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Next, we want to diagonalize the Hamiltonian because that will explain why |∆|
is termed ”the superconducting gap”, and it is also a convenient starting point for

deriving an expression for free energy. We consider a superconducting system in the

presence a spin-splitting field m = mez, for which the full Hamiltonian is

H =
∑
k,σ

ϵk,σc
†
k,σck,σ −

∑
k

(
∆kc

†
k,↑c

†
−k,↓ +∆∗

kc−k,↓ck,↑

)
+H0. (2.18)

Here, ϵk,σ = ϵk − σm and ϵk is the free electron energy relative to the Fermi energy.

The diagonalization is performed via a Boglioubov-transformation [15] by introduc-

ing new fermion operators γk,σ that are linear combinations of ck,σ and c†k,σ,(
ck↑

c†−k↓

)
=

(
vk uk

−uk vk

)(
γk↑

γ†−k↓

)
. (2.19)

In the gauge where ∆k is real, the constants vk and uk are chosen to be [16]

vk =
1√
2

√
1 +

ϵk√
ϵ2k +∆2

k

, (2.20)

uk =
1√
2

√
1− ϵk√

ϵ2k +∆2
k

, (2.21)

and this makes the Hamiltonian diagonal:

H = H0 +
∑
kσ

(√
ϵ2k +∆2

k − σm

)
γ†kσγkσ +

∑
k

(
ϵk −

√
ϵ2k +∆2

k

)
≡ H0 +

∑
kσ

Ekσγ
†
kσγkσ +

∑
k

(ϵk − Ek) .
(2.22)

The quasiparticle energy was defined as Ekσ = Ek − σm =
√
ϵ2k +∆2

k − σm. It is

clear that ∆k appears as a gap in the quasiparticle energy spectrum, and this is why

it is referred to as the superconducting gap.

We now derive the free energy associated with this diagonal Hamiltonian. This

derivation, as well as the soon-to-come derivation of the Chandrasekhar-Clogston

limit, is based on Ref. [16]. Free energy is defined as

F = − 1

β
ln(Z), (2.23)

where Z is the grand canonical partition function,

Z = Tr
(
e−βH

)
=
∑
{ns}

⟨{ns}| e−βH |{ns}⟩ . (2.24)
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Here, |{ns}⟩ is a many-particle state with n1 particles in state (k1, σ1), n2 particles

in state (k2, σ2) etc. The many-particle states can be chosen to be the eigenstates

of the diagonal Hamiltonian, and the partition function is then

Z = e−β(H0+
∑

k(ϵk−Ek))
∑
{ns}

⟨{ns}|
∑
i

1

i!

(
−β
∑
j

Ekjσj
nj

)i

|{nk,σ}⟩

= e−β(H0+
∑

k(ϵk−Ek))
∑
{ns}

∏
j

eEkjσj
nj

= e−β(H0+
∑

k(ϵk−Ek))

1∑
n1=0

1∑
n2=0

. . .

1∑
nM=0

eEk1σ1
n1 eEk2σj

n2 . . . eEkMσM
nM .

(2.25)

Here, nj is the occupation number for the single-particle state (kjσj) in the many-

particle state |{ns}⟩, which has to be either zero or one due to the particle being

fermions. The free energy of the Hamiltonian (2.22) therefore becomes

F = H0 +
∑
k

(ϵk − Ek)−
1

β

∑
kσ

ln
(
1 + e−βEkσ

)
, (2.26)

where the sum runs over all single-particle states. Differentiating the free energy

with respect to the order parameter ∆k and demanding this derivative to be zero

gives the BCS gap equation

∆k = −
∑
k′

Vk,k′∆k′
tanh

(
β
2
(Ek′ −m)

)
+ tanh

(
β
2
(Ek′ +m)

)
4Ek′

(2.27)

in the presence of a spin-splitting field.

2.4 The Chandrasekhar-Clogston limit

Looking back at the gap equation (2.27), we realize that there might exist several

solutions for the order parameter. For example, the normal metal state with ∆ = 0

is always a solution to the gap equation, but from experiment we know that super-

conductors exist and that the normal state is not always the ground state. It is the

free energy given by (2.26) that determines whether the system is in the supercon-

ducting or the normal state, as the free energy is always minimized in equilibrium.

By comparing the free energy of the normal state and the superconducting state

for increasing spin-splitting fields, we can find a limit on the magnitude of the spin-

splitting field that can coexist with bulk superconductivity in equilibrium. This

limit is known as the Chandrasekhar-Clogston limit [17, 18].

First of all, note that the term on the second line of the mean-field Hamiltonian

(2.10) is zero when V (r, r′) = 0, and otherwise it can be rewritten to

H0 =
1

2

∫∫
drdr′∆σσ′(r, r′)ϕ∗

σσ′(r, r′) = −1

2

∫∫
drdr′

|∆σσ′(r, r′)|2

V (r, r′)
. (2.28)
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Neglecting any dependence on absolute position, using the definition (2.15) and

Fourier transforming the relative coordinate gives

H0 = −
∑
kq

∆k∆
∗
k−q

Vq
, (2.29)

where k and q are measured relative to the Fermi momentum. We assume that the

potential is non-zero and constantly equal to −V in a thin shell |ϵk| < ω around the

Fermi surface, and zero otherwise .This corresponds to a constant potential in real

space, meaning ∆(ρ) also is a constant in real space. Therefore, in k-space the gap

is present only in the thin shell around the Fermi surface, which we will use later to

constrict some k-space sums. The constant term becomes

H0 =
∆2

V
. (2.30)

For a superconductor, the free energy is

F SC(m) =
∆2

V
+
∑
k

(ϵk − Ek)−
1

β

∑
kσ

ln
(
1 + e−β(Ek−σm)

)
. (2.31)

The normal state has the free energy

FN(m) =
∑
k

(ϵk − |ϵk|)−
1

β

∑
kσ

ln
(
1 + e−β(|ϵk|−σm)

)
. (2.32)

From now on, the temperature is set to zero. As seen from the gap equation (2.27),

the gap is unaffected by a spin-splitting field m < ∆0 when the temperature is zero.

In the derivation m < ∆0 is assumed, and this should be self-consistently checked

at the end of the derivation.

In the case without a spin-splitting field, the free energies are

FN(0) =
∑
k

(ϵk − |ϵk|), (2.33)

F SC(0) =
∆2

0

V
+
∑
k

(ϵk − Ek), (2.34)

and FN > F SC because we consider a material that is superconducting at low

temperatures.

In the presence of a spin-splitting field m > 0, the free energy of the normal state

decreases to

FN(m) =
∑
k

(ϵk − |ϵk|)−
1

β

∑
k

(
ln
(
1 + e−β(|ϵk|−m)

)
+ ln

(
1 + e−β(|ϵk|+m)

))
=
∑
k

(ϵk − |ϵk|)−
|ϵk|<m∑

k

(m− |ϵk|) .
(2.35)
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Similarly, the free energy of the superconducting state in the presence of a spin-

splitting field can be expressed as

F SC(m) =
∆2

0

V
+
∑
k

(ϵk − Ek)−
Ek<m∑

k

(m− Ek) . (2.36)

The last sum is zero because we assumed m < ∆0 and the free energy is therefore

unaffected by the spin-splitting field.

When increasing the strength of the spin-splitting field, the system will remain

superconducting until the free energy of the normal state has decreased to FN =

F SC . At this critical value mc of the spin-splitting field a phase transition will occur,

and for any field m > mc the normal state will be the ground state of the system.

The equation to be solved is therefore

∑
k

(ϵk − |ϵk|)−
|ϵk|<mc∑

k

(mc − |ϵk|) =
∆2

0

V
+
∑
k

(ϵk − Ek). (2.37)

In the thermodynamic limit, which is the limit where the particle number N and

the volume of the system V go to infinity while the ratio N/V stays constant, the

k-space sum is replaced by an integral,∑
k

→
∫
D(ϵ)dϵ. (2.38)

Here, D(ϵ) is the density of states for particles with energy ϵ. The density of states is

approximated by the density of states at the Fermi level N0 because the temperature

is zero and the electrons under consideration are close to the Fermi surface. This

gives
|ϵk|<mc∑

k

(mc − |ϵk|) = 2N0

∫ mc

0

(mc − ϵ)dϵ = N0m
2
c . (2.39)

For the term ∆2
0/V , return to the gap equation and substitute one of the ∆0s:

∆2
0

V
=

|ϵk|<ω∑
k

∆2
0

tanh
(
β
2
(Ek −m)

)
+ tanh

(
β
2
(Ek +m)

)
4Ek

(2.40)

Because the temperature is zero, tanh
(
β
2
(Ek ±m)

)
= 1. Therefore,

∆2
0

V
=

∆2
0N0

2

∫ ω

−ω

dϵ√
ϵ2 +∆2

0

= ∆2
0N0 sinh

−1(
ω

∆0

).

(2.41)
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The last term in the equation for mc is

Q ≡
∑
k

(Ek − |ϵk|) = N0

∫ ω

−ω

(√
ϵ2 +∆2

0 − |ϵ|
)
dϵ. (2.42)

The integral was constricted to [−ω, ω] because ∆0 is zero outside this thin shell

around the Fermi level. Using the approximation ∆0/ω ≪ 1 gives

Q = −N0ω
2 +N0ω∆0

√
ω2

∆2
0

+ 1 +N0∆
2
0 sinh

−1

(
ω

∆0

)
≈ 1

2
N0∆

2
0 +N0∆

2
0 sinh

−1

(
ω

∆0

)
.

(2.43)

Inserting all this into the equation for mc gives

mc =
∆0√
2
, (2.44)

which is consistent with the assumptionm < ∆0. This is known as the Chandrasekhar-

Clogston limit.

2.5 The FFLO state

In the previous section, we derived a limit on the spin-splitting field that can coexist

with BCS superconductivity. However, there exist possibilities for the Cooper pair

to survive even beyond the Chandrasekhar-Clogston limit in systems where the

paramagnetic effect suppresses the orbital effect. One option is to become an equal-

spin triplet Cooper pair [19]. Another option is to keep the spins anti-parallel and

instead acquire a non-zero center of mass momentum 2q, as shown in figure 1. Such

a state was predicted in 1964 by two independent groups: Fulde and Ferrel [20],

as well as Larkin and Ovchinnikov [21], and the state is known as the FFLO state

in the western literature and the LOFF state in the eastern literature. The FFLO

state appears for certain strengths of the spin-splitting field when the temperature is

lower than a critical value T ∗ [22, 23]. In clean superconductors, T ∗ < 0.56Tc. The

critical temperature is sensitive to impurities [24, 25], so in a dirty superconductor

the critical temperature has to satisfy T ∗ < −∆0/2 ln(τ∆0) where τ is a parameter

related to the time between collisions with impurities.

In an FFLO state, the superconducting order parameter is spatially modulated. The

electrons with spin-up are modeled as plane waves, and because their Fermi surface

is shifted by q they acquire an extra phase factor e±iq·r. The Fermi surface of the

17



Figure 1: Due to a spin-splitting field, the electronic bands for spin-up and spin-down are shifted

relative to each other by 2µBB. In the FFLO state, this shifts the Fermi momenta to kFσ =

kF +σq, leading to the Cooper pair in the figure (black dots) gaining a center-of-mass momentum

2q.

spin-down electrons is shifted by −q giving an extra phase factor e±iq·r. Therefore,

the singlet Cooper pair changes to [19]

(↑↓ − ↓↑) → (↑ eiq·r ↓ eiq·r− ↓ e−iq·r ↑ e−iq·r)

= (↑↓ − ↓↑) cos(2q · r) + i(↑↓ + ↓↑) sin(2q · r).
(2.45)

The singlet superconducting correlations, and thus the order parameter, as well as

the triplet correlations are therefore seen to oscillate in space.

The FFLO state is quite sensitive to impurity scattering and hardly exists in dirty

superconductors [26], and is therefore hard to detect experimentally. The existence

of an FFLO-like state is established in superconductor/ferromagnet hybrid struc-

tures [8]. Evidence have been claimed in some organic quasi-2D superconductors and

heavy fermion superconductors, but there is no undisputed experimental verification

in such systems yet [23, 27–30].

3 The Usadel equation

As discussed earlier, Green functions are one of the cornerstones in quantum field

theory, and it is desirable to find the Green function for our system. To find the

Green function we need a transport equation and suitable boundary conditions, and
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this is what we will accomplish in this section. The derivation follows closely the

derivation in Ref. [31].

Firstly, we will write down the Hamiltonian for the system and derive transport

equations for the field operators. Then the Keldysh Green function formalism will

be introduced, and an equation of motion for the Keldysh Green function will be

derived. Next, we introduce appropriate approximations, which in our case are the

quasiclassical approximation, the dirty limit and the diffusive limit. The resulting

transport equation is a second order partial differential equation known as the Usadel

equation [32].

3.1 The Hamiltonian

We will now introduce an ultimate Hamiltonian for a superconductive, ferromagnetic

system with magnetic and non-magnetic impurity scattering. In the end, the mag-

netic spin-flip scattering will be neglected and the electromagnetic fields A and ϕ

will be set to zero, but we nevertheless include them for generality in the derivations.

The Hamiltonian consists of five parts,

H(t) = H0(t) +HSC(t) +HM(t) +Himp(t) +Hsf (t). (3.1)

H0 is the Hamiltonian for non-interacting particles, given by

H0(t) =
∑
σ

∫
drψ†

σ(r, t)

[
1

2m

(
ℏ
i
∇− eA(r, t)

)2

+ eφ(r, t)− µ

]
ψσ(r, t). (3.2)

Here, A(r, t) and φ(r, t) are the electromagnetic fields, and µ is the chemical po-

tential. HSC is the superconducting Hamiltonian given by equation (2.13), and HM

describes the effect of the spin-splitting field m,

HM(t) = −
∑
σσ′

∫
drψ†

σ(r, t)(σ ·m)σσ′ψσ′(r, t). (3.3)

Here, σ is the Pauli matrix vector. Scattering events are taken into account by the

non-magnetic impurity scattering Hamiltonian

Himp(t) =
∑
σ

∫
drψ†

σ(r, t)Vimp(r)ψσ(r, t), (3.4)

and by the magnetic, spin-flip scattering Hamiltonian

Hsf (t) =
∑
σσ′

∫
drψ†

σ(r, t)Vsf (σ · S(r))σσ′ψσ′(r, t). (3.5)
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3.2 Equation of motion for field operators

The starting point for deriving the transport equations is the Heisenberg equation

of motion for the field operators and their adjoints,

i
∂ψ

(†)
σ (r, t)

∂t
=
[
ψ(†)
σ (r, t), H(t)

]
(3.6)

It is therefore necessary to calculate the commutator between the field operators

ψσ(r, t) and ψ
†
σ(r, t) and all five constituents of the Hamiltonian. All the components

of H except the superconducting part have the form

H ′(t) =
∑
σ′′σ′

∫
dr′ψ†

σ′′(r
′, t)Hσ′′σ′(r′, t)ψσ′(r′, t). (3.7)

Note that the operators denoted with H are neither Hamiltonians nor Hermitian

in general, and that they depend on r in contrast to the Hamiltonian. It can be

shown that the commutator between the constituents of the Hamiltonian and the

field operator is

[ψσ(r, t), H
′(t)] =

∑
σ′

Hσσ′(r, t)ψσ′(r, t). (3.8)

In the derivation, the anticommutation rules of the field operators were used as well

as the commutation relation [A,BC] = {A,B}C − B{A,C}. We also note that

Hσ′′σ′(r′) and ψσ(r, t) commute because they depend on different coordinates. The

contributions to the equation of motion for the field operator ψσ(r, t) are conclusively

[ψσ(r, t), H0(t)] =

(
− 1

2m
(ℏ∇− ieA(r, t))2 + eφ(r, t)− µ

)
δσ′σ′′ψσ(r, t) (3.9)

≡ H0(r, t)ψσ(r, t),

[ψσ(r, t), HM(t)] = −
∑
σ′

[σ ·m]σσ′ψσ′(r, t), (3.10)

[ψσ(r, t), Himp] = V (r)ψσ(r), (3.11)

[ψσ(r, t), Hsf (t)] = Vsf
∑
σ′

[σ · S(r)]σσ′ψσ′(r, t). (3.12)

The commutator with the superconducting part of the Hamiltonian has to be com-

puted separately, and the result is

[ψσ(r, t), HSC(t)] = −δσ↑∆(r, t)ψ†
↓(r, t) + δσ↓∆(r, t)ψ†

↑(r, t). (3.13)

Now that we have found the equation of motion for the field operators, we also need

the equations of motion for the adjoint field operators ψ†
σ(r, t). Calculating the com-

mutator between the adjoint field operator and the constituents of the Hamiltonian
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is straightforward for the superconducting, spin-splitting and scattering Hamiltoni-

ans, as we can simply take the adjoint of equations (3.10), (3.11), (3.12) and (3.13):

−
[
ψ†
σ(r, t), HM(t)

]
= −

∑
σ′

[(σ ·m)T ]σσ′ψ†
σ′(r, t), (3.14)

−
[
ψ†
σ(r, t), Hsf (t)

]
= Vsf

∑
σ′

[(σ · S(r))T ]σσ′ψ†
σ′(r, t), (3.15)

−
[
ψ†
σ(r, t), Himp(t)

]
= V (r)ψ†

σ(r), (3.16)

−
[
ψ†
σ(r, t), HBCS(t)

]
= −δσ↑∆∗(r, t)ψ↓(r, t) + δσ↓∆

∗(r, t)ψ↑(r, t) (3.17)

The commutator with H0 has to be calculated in the same way as when deriving

(3.8) because of the spatial derivative. A calculation similar to the calculation of

(3.8) gives

[
ψ†
σ(r, t), H0(t)

]
= −

∑
σ′′σ′

∫
dr′ψ†

σ′′(r
′, t)Hσ′′σ′(r′, t)δσσ′δ(r− r′) (3.18)

It would be convenient to swap the field operator ψ†
σ′′(r′, t) and δ(r− r′) to get the

commutator on the same form as the previous commutators. This is managed by

partial integration and discarding surface terms, and the result is

[
ψ†
σ(r, t), H0

]
= −

[
− 1

2m
(ℏ∇+ ieA(r, t))2 + eφ(r, t)− µ

]
ψ†
σ(r, t)

= H†
0(r, t)ψ

†
σ(r, t).

(3.19)

3.3 Equation of motion in spin ⊗ Nambu space

Instead of working with the field operators for different spins and their adjoints, it

is convenient to introduce a vector that describes both particles and holes and their

spin. The vector and its adjoint are defined as

ψ(r, t) =
(
ψ↑(r, t) ψ↓(r, t) ψ†

↑(r, t) ψ†
↓(r, t)

)T
,

ψ†(r, t) =
(
ψ†
↑(r, t) ψ†

↓(r, t) ψ↑(r, t) ψ↓(r, t),
) (3.20)

and they live in a vector space named spin ⊗ Nambu space. We proceed to write

down an equation of motion for the vector ψ(r, t) based on the equations of motions

for each of the components ψ
(†)
σ (r, t) from the previous section:

i∂tρ̂4ψ(r, t) =
(
ξ̂(r) + Vimp(r)− ∆̂ + Ŝ(r)− M̂

)
ψ(r, t)

≡ H(r, t)ψ(r, t).
(3.21)
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Here, the following matrices were defined:

ρ̂4 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 ,

ξ̂(r) = − 1

2m
(∇r − ieA(r)ρ̂4)

2 + ρ̂4(eϕ(r)− µ),

∆̂ =


0 0 0 ∆

0 0 −∆ 0

0 ∆∗ 0 0

−∆∗ 0 0 0

 ,

Ŝ(r) =

(
σ · S(r) 0

0 [σ · S(r)]T

)
Vsf ,

M̂ =

(
σ ·m 0

0 [σ ·m]T

)
.

Note that the components of Ŝ and M̂ are 2× 2 matrices.

The equation of motion for the adjoint vector ψ†(r, t) is found by adjugating the

equation of motion (3.21), which switches the order of the vector and the matrices.

However, the matrix ξ̂ contains operators which should act on ψ†, which makes the

notation inconvenient because then we cannot simply switch the order of this matrix

and the field operator. A notational solution is to let the operators in the following

equation work towards the left, whereas matrix multiplication is performed in the

usual way:

ψ†(r, t)(−i∂tρ̂4) = ψ†(r, t)
(
ξ̂∗(r) + Vimp(r) + ∆̂ + Ŝ(r)− Ẑ

)
= ψ†(r, t)H†(r, t).

(3.22)

3.4 Keldysh space formalism

As foreshadowed at the beginning of this chapter, we will soon introduce and use the

quasiclassical theory of superconductivity. In quantum field theory, there are many

ways to define Green functions, and in the quasiclassical theory there are two main

Green function formalisms: the Keldysh real-time formalism [33] and the Matsubara

imaginary-time formalism [34]. The Matsubara imaginary-time formalism is less

general than the Keldysh-space formalism, and it is not valid out of equilibrium.

Therefore we will stick to the Keldysh space formalism, which has proven useful in

the description of superconductors out of equilibrium.
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The Green function in this formalism is an 8× 8 matrix in Keldysh space defined as

Ǧ(1, 2) =

(
ĜR(1, 2) ĜK(1, 2)

0 ĜA(1, 2)

)
. (3.23)

Here, ĜR, ĜA and ĜK are termed the retarded, the advanced and the Keldysh Green

function respectively, and the coordinates (1, 2) are short for (r1, t1; r2, t2).

The retarded Green function describes electrons, and its definition is

ĜR(1, 2) = −iθ(t1 − t2)ρ̂4⟨
{
ψ(1), ψ†(2)

}
⟩. (3.24)

The anticommutator should be interpreted as{
ψ(1), ψ†(2)

}
= ψ(1)ψ†(2) + ((ψ†(2))T (ψ(1))T )T . (3.25)

T denotes matrix transpose, and the commutator between ψ(1) and ψ†(2) is defined

similarly. The advanced Green function describes holes and is defined as

ĜA(1, 2) = +iθ(t2 − t1)ρ̂4⟨
{
ψ(1), ψ†(2)

}
⟩, (3.26)

while the Keldysh Green function,

ĜK(1, 2) = −iρ̂4⟨
[
ψ(1), ψ†(2)

]
⟩, (3.27)

contains information about the non-equilibrium effects in the system. The 2 × 2

diagonal blocks of these three Green functions are termed normal Green functions

G while the off-diagonal blocks are termed anomalous Green functions F .

It is possible to show that ĜR and ĜA are related by

ĜA = −(ρ̂4Ĝ
Rρ̂4)

†, (3.28)

which means that if we know one of them, we can calculate the other [31, 35].

The equation of motion for the retarded Green function is found by multiplying with

iρ̂4 and differentiating with respect to t1, and using the equation of motion (3.21)

for the vector ψ(1):

i∂tρ̂4Ĝ
R(1, 2) =− i(i∂t1 ρ̂4θ(t1 − t2))ρ̂4⟨

{
ψ(1), ψ†(2)

}
⟩

− iθ(t1 − t2)ρ̂4⟨
{
i∂t1 ρ̂4ψ(1), ψ

†(2)
}
⟩

= δ(t1 − t2)⟨
{
ψ(r1, t1), ψ

†(r2, t1)
}
⟩

− iθ(t1 − t2)ρ̂4⟨
{
H(1)ψ(1), ψ†(2)

}
⟩

= δ(1− 2) + ρ̂4H(1)ρ̂4Ĝ
R(1, 2).

(3.29)
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The advanced Green function satisfies the same equation of motion. The Keldysh

Green function satisfies almost the same equation, but there is no delta-function

because there is no step function in the definition of ĜK . Thus, for the full Green

function,

(i∂t1 ρ̂4 − ρ̂4H(1)ρ̂4) Ǧ(1, 2) = δ(1− 2)1̌. (3.30)

We will label this equation the right-handed equation of motion. Recall that the

products ÂB̌ of a 4× 4 matrix Â and a 8× 8 matrix B̌ should be understood as

ÂB̌ ≡

(
Â 0

0 Â

)
B̌. (3.31)

In the same way, we can find a left-handed equation of motion for the Green function

using the equation of motion (3.22) for the adjoint vector ψ†(2). Again we let

operators work towards the left while matrix multiplication is performed in the

usual way, and we multiply the Green functions with i∂t2 ρ̂4 from the right. The

left-handed equation of motion reads

Ǧ(1, 2)
(
i∂t2 ρ̂4 − Ȟ(2)

)†
= δ(1− 2)1̌. (3.32)

Subtracting the left-handed equation of motion from the right-handed equation of

motion gives the single transport equation(
i∂t1 ρ̂4 − ρ̂4Ȟ(1)ρ̂4

)
Ǧ(1, 2)− Ǧ(1, 2)

(
i∂t2 ρ̂4 − Ȟ(2)

)†
= 0. (3.33)

Instead of continuing working with the coordinates (1, 2), we now switch to the

center of mass and the relative coordinates defined by

R =
1

2
(r1 + r2), T =

1

2
(t1 + t2),

r = r1 − r2, t = t1 − t2.
(3.34)

This is called the mixed representation or the Wigner representation. For more

compact notation, we also introduce the notation

X = (R, T ), x = (r, t). (3.35)

The quasiclassical theory is expressed in terms of p = (p, E), where p is the mo-

mentum and E is the energy, instead of the relative coordinates x. Therefore, we

will Fourier transform the transport equation (3.33) by acting on it with
∫
dx e−ipx,

where px ≡ p ·r−Et. We also introduce a convolution A⊗B between two functions

A, B in the mixed representation,

A(X, p)⊗B(X, p) =

∫
dx e−ipx

∫
d3A(1, 3)B(3, 2)

= ei(∂XA
∂pB−∂pA∂XB

)/2A(X, p)B(X, p),

(3.36)
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where ∂XA
∂pB = ∇RA

∇pB
− ∂TA

∂EB
. The exponential is to be understood as a

Taylor expansion, and the A and B subscripts indicate which of the functions A and

B the derivatives act at. The convolution (3.36) product is introduced because the

notation proves convenient for the gradient approximation, which will be introduced

later. In the case of tranlationally invariant systems in time the partial derivatives

with respect to the center of mass time T and energy E will fall out.

Note that the functions encountered here are expressed in different coordinates, for

example (r1, t1; r2, t2), (R, T ; r, t) and (R, T ;p, E). Strictly speaking, the function

is not the same when we switch coordinates and it should be given a new name, for

example A(r1, t1; r2, t2) = A′(R, T ; r, t). However, to ease the notation we omit the

primes and keep the name of the function regardless of the coordinates.

Now we are ready to Fourier transform (3.33). Term by term, the left-hand side of

the equation is

i∂t1 ρ̂4Ǧ(1, 2) + i∂t2Ǧ(1, 2)ρ̂4 (3.37)

−ξ̂(r1)Ǧ(r1, t1; r2, t2) + Ǧ(r1, t1; r2, t2)ξ̂
∗(r2) (3.38)

−Vimp(r1)Ǧ(r1, t1; r2, t2) + Ǧ(r1, t1; r2, t2)Vimp(r2) (3.39)

−Ŝ(r1)Ǧ(r1, t1; r2, t2) + Ǧ(r1, t1; r2, t2)Ŝ(r2) (3.40)

ρ̂4∆̂ρ̂4Ǧ(r1, t1; r2, t2)− Ǧ(r1, t1; r2, t2)∆̂
†

= −∆̂Ǧ(r1, t1; r2, t2) + Ǧ(r1, t1; r2, t2)∆̂
(3.41)

M̂Ǧ(r1, t1; r2, t2)− Ǧ(r1, t1; r2, t2)M̂. (3.42)

and each of these terms will be considered separately now.

The time derivatives in the mixed representation is given by ∂t1 = ∂t + ∂T/2 and

∂t2 = −∂t + ∂T/2, and the Green function in the mixed representation is Ǧ(X, x).

The Fourier transform of the first term (3.37) becomes∫
dx e−ipx

[
i(∂t +

1

2
∂T )ρ̂4Ǧ(X, x) + i(−∂t +

1

2
∂T )Ǧ(X, x)ρ̂4

]
. (3.43)

The integration variable x = (r, t) is independent of T , thus we can take the ∂T s

outside the integral. The ∂t-parts can be rewritten using integration by parts. After

setting a surface term to zero, inserting ∂t e
−ipx = iE eipx and using the definition of
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the convolution A⊗B we get the final expression(
1

2
∂T − iE

)∫
dx e−ipx

(
iρ̂4Ǧ(X, x)− Ǧ(X, x)iρ̂4

)
=

(
i

2
∂T + E

)[
ρ̂4, Ǧ(X, p)

]
=
[
Eρ̂4, Ǧ(X, p)

]
+
i

2
{(∂EEρ̂4)∂T (Ǧ(X, p))− ∂T (Ǧ(X, p))(∂EEρ̂4)}

=Eρ̂4 ⊗ Ǧ(X, p)− Ǧ(X, p)⊗ Eρ̂4 ≡
[
Eρ̂4, Ǧ(X, p)

]
⊗.

(3.44)

The commutator is defined as [A,B]⊗ = A⊗B −B ⊗ A.

Continue with the second term (3.38), and remember that the operators in ξ̂∗(r)

work towards the left. Explicitly written out, the second term is

− ξ(r1)Ǧ(1, 2) + Ǧ(1, 2)ξ∗(r2) =
1

2m
(∇2

1 −∇2
2)Ǧ(1, 2)

+

[(
e2

2m
A2(r2) + eϕ(r2)

)
−
(
e2

2m
A2(r1) + eϕ(r1)

)]
Ǧ(1, 2)

− ie

2m

[
∇r1A(r1)ρ̂4Ǧ(1, 2) +∇r2Ǧ(1, 2)A(r2)ρ̂4

]
− ie

2m

[
A(r1)ρ̂4∇r1Ǧ(1, 2) + (∇r2Ǧ(1, 2))A(r2)ρ̂4

]
.

(3.45)

We will now Fourier transform each of these four terms. In the mixed representation,

the derivatives are given by ∇r1 = ∇r +∇R/2 and ∇r2 = −∇r +∇R/2. The first

term of (3.45) becomes

1

2m

∫
dx e−ipx

[
(∇r +

1

2
∇R)

2 − (−∇r +
1

2
∇R)

2

]
Ǧ(1, 2)

=
1

2m

∫
dx e−ipx [2∇r∇R] Ǧ(1, 2) = i

p

m
∇RǦ(X, p).

(3.46)

For calculation of the second term, define f(ri) =
e2

2m
A2(ri) + eϕ(ri). The function

f commutes with Ǧ because it is a scalar. Taylor expanding the functions f around

R gives ∫
dx e−ipx

(
f(R− r

2
)− f(R+

r

2
)
)
Ǧ(X, x)

=

∫
dx e−ipx

∞∑
n=0

1

n!

[(
−1

2

)n

−
(
1

2

)n]
∂nf(R)

∂Rn
rnǦ(X, x)

=
(
e−

i
2
∇Rf

∇p − e
i
2
∇Rf

∇p

)
f(R)Ǧ(X, p) = −

[
f(R), Ǧ(X, p)

]
⊗

= −
[
e2

2m
A2(R) + eϕ(R), Ǧ(X, p)

]
⊗

(3.47)
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From keeping track of the two terms f(R±r/2) in this calculation, we also conclude

that for general matrices A and B the following relations hold:∫
dx e−ipxA

(
R+

r

2

)
B(X, x) = A(R)⊗B(X, p), (3.48)∫

dx e−ipxB(X, x)A
(
R− r

2

)
= B(X, p)⊗ A(R). (3.49)

For the third term, these two relations are applied and some surface terms are

discarded, and we find

− ie

2m

∫
dx e−ipx(∇r +

1

2
∇R)A(R+

r

2
)ρ̂4Ǧ(X, x)

+ e−ipx(−∇r +
1

2
∇R)Ǧ(X, x)A(R− r

2
)ρ̂4

= − ie

2m

(
−(−ip) + 1

2
∇R

)∫
dx e−ipx A(R+

r

2
)ρ̂4Ǧ(X, x)

− ie

2m

(
+(−ip) + 1

2
∇R

)∫
dx e−ipx Ǧ(X, x)A(R− r

2
)ρ̂4

= − ie

2m

(
1

2
∇R

{
ρ̂4A(R), Ǧ(X, p)

}
⊗ + ip

[
ρ̂4A(R), Ǧ(X, p)

]
⊗

)
.

(3.50)

Split the fourth term of (3.45) into two parts. Consider the first part ignoring the

prefactor − ie
2m

for brevity.∫
dx e−ipx A(R+

r

2
)ρ̂4(∇r +

1

2
∇R)Ǧ(X, x)

=
∞∑
n=0

1

n!

(
1

2

)n

(∇n
RA(R))ρ̂4(i∇p)

n

∫
dx e−ipx(∇r +

1

2
∇R)Ǧ(X, x)

=
∞∑
n=0

1

n!

(
1

2

)n

(∇n
RA(R))ρ̂4(i∇p)

n

(
ip+

1

2
∇R

)
Ǧ(X, p) =

∞∑
n=0

1

n!

(
i

2

)n

·

(∇n
RA(R))ρ̂4

(
ip∇n

pǦ(X, p) + in∇n−1
p Ǧ(X, p) +

1

2
∇R∇n

pǦ(X, p)

)
=ip

(
A(R)ρ̂4 ⊗ Ǧ(X, p)

)
− 1

2
∇RA

(A(R)ρ̂4 ⊗ Ǧ(X, p))

+
1

2
∇RG

(A(R)ρ̂4 ⊗ Ǧ(X, p)).

(3.51)

The calculation of the second part is similar to the calculation of the first part and

gives ∫
dx e−ipx[(−∇r +

1

2
∇R)Ǧ(X, x)]A(R− r

2
)ρ̂4

= −ip
(
Ǧ(X, p)⊗A(R)ρ̂4

)
− 1

2
∇RA

(
Ǧ(X, p)⊗A(R)ρ̂4

)
+
1

2
∇RG

(
Ǧ(X, p)⊗A(R)ρ̂4

)
.

(3.52)
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In total, the fourth term of (3.45) is

− ie

2m
ip
[
A(R), Ǧ(X, p)

]
⊗ +

ie

2m

1

2

{
∇RA(R)ρ̂4, Ǧ(X, p)

}
⊗

− ie

2m

1

2

{
A(R)ρ̂4,∇RǦ(X, p)

}
,

(3.53)

and the Fourier transformed version of the entire equation (3.38) is

i
p

m
∇RǦ(X, p)−

[
e2

2m
A2(R) + eϕ(R), Ǧ(X, p)

]
⊗

−i p
m

[
ieA(R)ρ̂4, Ǧ(X, p)

]
⊗ − 1

2m

{
ieA(R)ρ̂4,∇RǦ(X, p)

}
.

(3.54)

For (3.39) and (3.40), respectively, the relations (3.48) and (3.49) are applied and

the results are [
−Vimp(R), Ǧ(X, p)

]
⊗, (3.55)[

−Ŝ(R), Ǧ(X, p)
]
⊗
. (3.56)

For the last two terms (3.41) and (3.42) the matrices ∆̂ and M̂ are constants with

respect to the coordinate x, and in that case the convolution A ⊗ B is equivalent

with matrix multiplication. The terms therefore become[
−∆̂ + M̂,G(X, p)

]
⊗
. (3.57)

The Fourier transformed version of the transport equation (3.33) finally takes the

form [
Eρ̂4 − eϕ(R)− Vimp(R)− Ŝ(R)− ∆̂ + Ẑ, Ǧ(X, p)

]
⊗

−i p
m

[
ieA(R)ρ̂4, Ǧ(X, p)

]
⊗ + i

p

m
∇RǦ(X, p)

− e2

2m

[
A2(R), Ǧ(X, p)

]
⊗ − 1

2m

{
ieA(R)ρ̂4,∇RǦ(X, p)

}
⊗ = 0.

(3.58)

To shorten the notation, we introduce

Σ̂ = Σ̂(X, p) = eϕ(R) + Ŝ(R) + ∆̂− M̂. (3.59)

In our system, there is no p- or E-dependence in Σ̂, but in general there could exist

terms in the Hamiltonian giving rise to a p- and E-dependence. Therefore, Σ̂ will

be assumed to depend on (X, p) for generality. With this notation, the commutator

on the first line of (3.58) reduces to[
Eρ̂4 − Σ̂− Vimp(R), Ǧ(X, p)

]
. (3.60)
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The transport equation (3.58) is still exact, and practically impossible to solve in

most systems of interest. The next sections will be dedicated to introducing approx-

imations that makes the equation solvable.

3.5 The quasiclassical approximation

Green functions are powerful for computing observables in condensed matter physics,

but in most cases it is impossible to find an exact expression. Therefore, approx-

imations are necessary. In superconductivity, the quasiclassial approximation has

turned out to be very successful.

The assumption in the quasiclassical theory is that the Fermi wavelength λF is

the shortest length scale in the system, or equivalently, that the Fermi energy is

the greatest energy scale of the system. This means that λF is smaller than the

system length, the impurity scattering length, the superconducting coherence length

and any other relevant length scale in the system. The exact Green function of

such a system consists of a part that oscillates rapidly on a length scale λF and

an envelope function that varies on other length scales in the system. The rapid

oscillations are on a length scale much shorter than typical relevant length scales in

superconductivity, and for many applications it is desirable to integrate out these

oscillations [36, 37]. Effects such as weak localization and persistent currents cannot

be described when integrating away the oscillations, but usually the effects related

to superconductivity are much more important. The quasiclassical theory provides

a method for integrating out the irrelevant oscillations, which makes calculations a

lot easier.

In the quasiclassical theory, only contributions close to the Fermi level are kept

in the Green function because the Green function is strongly peaked at the Fermi

level [36, 38, 39]. A simplified mathematical justification for this follows. In a

homogeneous system, the Green function depends only on the relative coordinate r,

and for energies close to the Fermi level one finds

Ǧ(r) ≃ e−ipF ·r f̌(r), (3.61)

where f̌ is the envelope function that varies slowly compared to the oscillating

exponential factor. In momentum space,

Ǧ(p) =

∫
dr e−ip·r e−ipF ·r f̌(r) = f̌(pF − p). (3.62)

Because f̌ varies slowly in real space, it is sharply peaked in momentum space

at p ≈ pF . This demonstrates that Ǧ(p) is strongly peaked at the Fermi level
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pF . Constraining the quasiparticle momentum to the Fermi surface is equivalent to

defining the quasiclassical Green function

ǧ(R, T,pF , E) =
i

π

∫ ωc

−ωc

dξpǦ(X, p), (3.63)

where ξp = p2

2m
− µ = p2−pF

2

2m
. Even though the quasiclassical Green function does

not depend on |p|, the notation ǧ(X,pF , E) = ǧ(X, p) will be kept for brevity. The

cutoff energy ωc must be there for the integral to converge [37]. It has no physical

meaning and should disappear in any expression for physical observables.

The transition from the Green function Ǧ to the quasiclassical Green function ǧ will

not be carried out quite yet. Before doing it, it is convenient to rewrite the equa-

tion of motion utilizing the peakedness of Ǧ around the Fermi level, which justifies

neglecting the third line of (3.58) and the utilization of the gradient approximation.

Additionally, a diffusive approximation of the impurity scattering will be applied.

3.5.1 The quasiclassical Green function in a bulk superconductor

We derive the quasiclassical Green function in a bulk superconductor. In a clean

superconductor with no electromagnetic fields, the right-handed equation of motion

(3.30) reads

(i∂t1 ρ̂4 +
1

2m
∇2

r1
1̂− ∆̂)Ǧ(1, 2) = δ(1− 2)1̌. (3.64)

Inside a bulk material, the Green function only depends on the relative coordinates

(r1 − r2, t1 − t2) = (r, t). Fourier transforming the equation of motion gives(
Eρ̂4 −

p2

2m
1̂− ∆̂

)
Ǧ(p, E) = 1̌. (3.65)

The solution to the retarded component of the Green function is therefore

ĜR(p, E) =

(
Eρ̂4 −

p2

2m
1̂− ∆̂

)−1

=
Eρ̂4 +

p2

2m
− ∆̂

E2 − ( p2

2m
)2 − |∆|2

. (3.66)

The isotropic quasiclassical Green function is then

ĝR(E) =
i

π

∫
dΩp

4π

∫ ωc

−ωc

dξpĜ
R(p, E)

=
i

π

∫ ωc+µ

−ωc−µ

d

(
p2

2m

)
Eρ̂4 +

p2

2m
− ∆̂

E2 − ( p2

2m
)2 − |∆|2

≈ i

π

∫ ∞

−∞
dξ

Eρ̂4 + ξ − ∆̂

E2 − ξ2 − |∆|2
=
i

π

∫ ∞

−∞
dξ

Eρ̂4 − ∆̂

E2 − ξ2 − |∆|2
.

(3.67)
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This integral is proportional to
∫∞
−∞

dx
1−x2 , which does not converge. However, from

a physical perspective, the Green function cannot diverge because physical observ-

ables, such as the density of states and the superconducting gap, depend on it. This

is resolved by adding a small, imaginary convergence factor iδ to the energy. The

integral we need to solve is

I =
i

π

∫ ∞

−∞
dξ

1

(E + iδ)2 − ξ2 − |∆|2
≈ i

π

∫ ∞

−∞

dξ

E2 − ξ2 − |∆|2 + 2iδE
. (3.68)

This integral can be calculated in the two cases E2 > |∆|2 and E2 < |∆|2 by the

residue theorem. This is thoroughly done in Ref. [31], and the result is

ĝR(E) =


sgn(E)√
E2−|∆|2

(Eρ̂4 − ∆̂) E2 > |∆|2

−i√
|∆|2−E2

(Eρ̂4 − ∆̂) E2 < |∆|2
. (3.69)

3.5.2 Symmetries of the quasiclassical Green function

Not all elements of the Green function are independent. Therefore, when solving

the equations of motion, the Green function can be parametrized and thus reduce

the complexity of the problem. In this section, we derive symmetry relations for the

quasiclassical retarded, advanced and Keldysh Green functions.

The definition of the retarded Green function was given in equation (3.24), or written

out on matrix form, ĜR(1, 2) equals

−iθ(t1 − t2)


⟨
{
ψ↑(1), ψ

†
↑(2)

}
⟩ ⟨

{
ψ↑(1), ψ

†
↓(2)

}
⟩ ⟨{ψ↑(1), ψ↑(2)}⟩ ⟨{ψ↑(1), ψ↓(2)}⟩

⟨
{
ψ↓(1), ψ

†
↑(2)

}
⟩ ⟨

{
ψ↓(1), ψ

†
↓(2)

}
⟩ ⟨{ψ↓(1), ψ↑(2)}⟩ ⟨{ψ↓(1), ψ↓(2)}⟩

−⟨
{
ψ†
↑(1), ψ

†
↑(2)

}
⟩ −⟨

{
ψ†
↑(1), ψ

†
↓(2)

}
⟩ −⟨

{
ψ†
↑(1), ψ↑(2)

}
⟩ −⟨

{
ψ†
↑(1), ψ↓(2)

}
⟩

−⟨
{
ψ†
↓(1), ψ

†
↑(2)

}
⟩ −⟨

{
ψ†
↓(1), ψ

†
↓(2)

}
⟩ −⟨

{
ψ†
↓(1), ψ↑(2)

}
⟩ −⟨

{
ψ†
↓(1), ψ↓(2)

}
⟩

 .

We see that the retarded Green function has the symmetry

ĜR(1, 2) =

(
GR(1, 2) FR(1, 2)

(FR)∗(1, 2) (GR)∗(1, 2)

)
. (3.70)

Fourier transforming introduces a complex conjugate and a minus sign,

ĜR(X, p) =

∫
drdt ei(r·p−Et) ĜR(X, r, t)

=

(
GR(X, p) FR(X, p)

(FR(X,−p))∗ (GR(X,−p))∗

)
.

(3.71)
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The quasiclassical Green function is found by i
π

∫
dξp. For the lower right block,

this gives

i

π

∫
dξp(G

R(X,−p))∗ = −
(
i

π

∫
dξpG

R(X,−p)
)∗

= −(gR(X,−p̂F ,−E))∗ ≡ −g̃R(X, p̂F , E).

(3.72)

In the last line, tilde conjugation was defined as complex conjugation and E → −E.
This shows that the quasiclassical retarded Green function has the symmetry

ĝR(X, p̂F , E) =

(
gR(X,E) fR(X,E)

−f̃R(X,E) −g̃R(X,E)

)
(3.73)

The advanced Green function has the same symmetry. The symmetry of the Keldysh

Green function is slightly different because there is a commutator instead of an

anticommutator in the definition of the Keldysh Green function. Therefore, the

minus signs on the lower row vanish, and

ĝK(X, p̂F , E) =

(
gK(X,E) fK(X,E)

f̃K(X,E) g̃K(X,E).

)
(3.74)

3.5.3 Limits on the spatial variation of the vector potential and the

Green function

The Green function is strongly peaked around the Fermi level. Therefore, the p

in the transport equation (3.58) can be replaced by the Fermi momentum pF . The

other assumption in the quasiclassical theory is that the Fermi energy is the greatest

energy scale of the system. This means that for example |pF | ≫ |eA(R)|. The

envelope function part of the Green function varies slowly on the Fermi wavelength,

meaning ∇RǦ is small compared to the Fermi momentum:

∇RǦ(R)λF ≈ Ǧ(R+ λFeF )− Ǧ(R) ≪ 1

=⇒ ∇RǦ(R) ≪ 1

λF
∝ pF .

(3.75)

It can now be seen why the third line of (3.58) is negligible. The first line has

no assumptions on it, while the second line contains two terms with a large value

(pF ) times a small value (ieA and ∇RG). The third line contains first a small

term squared ((−ieA)2), then small (ieA) times small (∇RG), so these terms are

negligibly small compared to the other terms in the equation.

3.5.4 The gradient approximation

We introduce the notation

A ◦B = ei(∂TA∂EB
−∂EA

∂TB )/2AB (3.76)
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between two matrices A = A(X, p) and B = B(X, p). With this notation, the

convolution can be written

A⊗B = ei(∇RA
∇pB

−∇pA
∇RB

)/2A ◦B. (3.77)

In the gradient approximation, the quasiclassical assumption that all quantities vary

slowly compared to the Fermi wavelength is applied. Therefore, spatial derivatives

are only kept up to first order, and the rapid oscillations of the Green function

disappear. The first order gradient approximation is given by

ei(∇RA
∇pB

−∇pA
∇RB

)/2 ≈ 1 +
i

2
(∇RA

∇pB
−∇pA

∇RB
) , (3.78)

which implies

A⊗B ≈ A ◦B +
i

2
(∇RA) ◦ (∇pB)− i

2
(∇pA) ◦ (∇RB). (3.79)

Moreover, commutators in the gradient approximation are

[A,B]⊗ ≈ [A,B]◦ +
i

2
{∇RA,∇pB}◦ −

i

2
{∇pA,∇RB}◦ (3.80)

{A,B}⊗ ≈ {A,B}◦ +
i

2
[∇RA,∇pB]◦ −

i

2
[∇pA,∇RB]◦. (3.81)

As before, the subscript on the commutators and anticommutators denotes what

kind of multiplication to use.

Using the gradient approximation and neglecting any terms higher than first order

in ∇R reduce the two first lines of the equation of motion (3.58) to[
Eρ̂4 − Σ̂(X, p)− Vimp(R), Ǧ(X, p)

]
◦
− i

pF

m
∇̃Ǧ(X, p)

+
i

2

{
∇RΣ̂

′(X, p),∇pǦ(X, p)
}
◦
− i

2

{
∇pΣ̂

′(X, p),∇RǦ(X, p)
}

◦
= 0,

(3.82)

where the notation

∇̃Ǧ ≡ ∇RǦ−
[
ieA(X)ρ̂4, Ǧ

]
◦ (3.83)

was introduced as well as the short-hand notation

Σ̂′(X, p) = Eρ̂4 − Σ̂− Vimp(R)− i
pF

m
ieA(X)ρ̂4. (3.84)
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3.6 Impurity averaging

The impurity potential Vimp(r) is modelled as a sum over N identical impurities:

Vimp(r) =
∑
j

U(r−Rj), (3.85)

where Rj are the impurity positions. The impurity positions are denoted with cap-

ital Rs, and they are assumed to be random, uncorrelated and numerous. Super-

conductors satisfying these requirements are termed dirty superconductors. Dealing

with this potential in the transport equation is hard because there is such a large

number of impurities. Additionally, what matters is the average effect of the im-

purities, and the exact impurity configuration of the system is uninteresting. It

is therefore reasonable to average over all possible configurations of the impurity

positions. The average over all impurity positions is an integral over all possible

impurity positions Rj,

⟨X⟩imp =
1

VN

∫
dR1

∫
dR2 . . .

∫
dRN . (3.86)

The volume of the system is V , and X is the variable that is averaged over.

Explicitly extract the impurity scattering from the right-handed equation of motion

(3.30), and use the subscript 0 for the part with no (non-magnetic) impurities:

(i∂t1 ρ̂4 − ρ̂4H0(1)ρ̂4 − Vimp(1))Ǧ(1, 2) = δ(1− 2)1̌. (3.87)

Denote the Green function solving this equation without any impurities Ǧ0. Define

a function F (1, 2) such that∫
d3Ǧ0(1, 3)F (3, 2) = δ(1− 2). (3.88)

Then the Green function can be written

Ǧ(1, 2) =

∫
d3

∫
d4Ǧ0(1, 4)F (4, 3)G(3, 2). (3.89)

Insert this into (3.87) to obtain∫
d3F (1, 3)Ǧ(3, 2)−

∫
d3δ(1− 3)Vimp(3)Ǧ(3, 2) = δ(1− 2). (3.90)

Multiply this equation by
∫
d1Ǧ0(5, 1):∫

d3

∫
d1Ǧ0(5, 1)F (1, 3)Ǧ(3, 2)−

∫
d3

∫
d1Ǧ0(5, 1)δ(1− 3)Vimp(3)Ǧ(3, 2)

= Ǧ(5, 2)−
∫

d3Ǧ0(5, 3)Vimp(3)Ǧ(3, 2) =

∫
d1Ǧ0(5, 1)δ(1− 2) = Ǧ0(5, 2)
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=⇒ Ǧ(1, 2) = Ǧ0(1, 2) +

∫
d3Ǧ0(1, 3)Vimp(3)Ǧ(3, 2) (3.91)

This equation is known as the Dyson equation, and it is the integral equivalent to the

differential equation of motion for the Green function (3.82) that we have considered

up to now.

The goal now is to perform an approximation to Dyson’s equation known as the self-

consistent Born approximation. Before doing this, introduce the notation AV B =∫
d3A(1, 3)V (3)B(3, 2) for convolution integrals to ease the notation. Iterating the

Dyson equation gives

G(1, 2) = G0(1, 2) +

∫
d3G0(1, 3)V (3)G0(3, 2)

+

∫∫
d3d4G0(1, 3)V (3)G0(3, 4)V (4)G0(4, 2) + . . .

(3.92)

which in the short-hand notation for convolution integrals is

G = G0 +G0V G = G0 +G0V G0 +G0V G0V G0 + . . . (3.93)

Now we do an impurity average the way we defined in equation (3.86). G0 does not

depend on the impurity positions and can therefore be taken out of the integrals.

Denote the impurity averaged Green function by ⟨G⟩ = Gav. Then,

Gav = G0 +G0⟨V G⟩
= G0 +G0⟨V ⟩G0 +G0⟨V G0V ⟩G0 +G0⟨V G0V G0V ⟩G0 + . . .

(3.94)

Usually, we take ⟨V ⟩ = 0, meaning that on average the potential has the same

strength at each point. If ⟨V ⟩ ≠ 0 we can include the constant in the chemical

potential which, effectively is the same as ⟨V ⟩ = 0. If the potential is sufficiently

weak, we can do an approximation in orders of V . The first order approximation to

Gav is called the Born approximation:

Gav = G0 +G0⟨V G0V ⟩G0 = G0 +G0ΣG0. (3.95)

We introduced an impurity self-energy Σ, which is defined as

Σ(3, 4) = ⟨V (3)G0(3, 4)V (4)⟩. (3.96)

With coordinates and integrals written explicitly, we get

Gav(1, 2) = G0(1, 2) +

∫
d3G0(1, 3)

∫
d4⟨V (3)G0(3, 4)V (4)⟩G0(4, 2)

= G0(1, 2) +

∫
d3

∫
d4G0(1, 3)Σ(3, 4)G0(4, 2).

(3.97)
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The Born approximation catches the first two terms of the exact expression for Gav.

Next, we introduce the self-consistent Born approximation,

Gav = G0 +G0⟨V GavV ⟩Gav. (3.98)

Compared to the Born approximation, we switched two of the G0s with Gav. The

self-energy in the self-consistent Born approximation is

Σ(3, 4) = ⟨V (3)Gav(3, 4)V (4)⟩. (3.99)

The point of doing this is that this approximation is closer to the exact expression

than the Born approximation. The self-consistent Born approximation contains not

only the zeroth and second order terms of Gav but also some (but not all) fourth

order terms. This is seen by iterating (3.98), writing out the integrals and the sums

in the V s and comparing it to the exact expression.

The Dyson equation in the self-consistent Born approximation is

Gav(1, 2) = G0(1, 2) +

∫
d3G0(1, 3)

∫
d4Σ(3, 4)Gav(4, 2). (3.100)

Acting with (i∂t1 ρ̂4 − ρ̂4Hni(1)ρ̂4) on this equation gives the equivalent equation

written with derivatives instead of integrals:

(i∂t1 ρ̂4 − ρ̂4Hni(1)ρ̂4)Gav(1, 2)−
∫

d3Σ(1, 3)Gav(3, 2) = δ(1− 2). (3.101)

Compared to the right-handed equation of motion (3.30), this equation has the

same form except for the impurity scattering part and that the Green function is

the impurity averaged one. A similar argument as above can be executed for the

left-handed equation of motion. This means that the only change we need to do

to the transport equation (3.58) is to change the Green function to the impurity

averaged one, and to recalculate the effect of impurity scattering.

3.6.1 Calculation of the impurity self energy

In the self-consistent Born approximation, we had

Σ(1, 2) = ⟨V (1)Gav(1, 2)V (2)⟩. (3.102)

The potential V can be written

V (r) =
∑
q,Rj

1

V
v(q) eiq·(r−Rj), (3.103)
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where v(q) is the Fourier transformed impurity potential belonging to one of the

impurities. We assume V to be real, therefore v must satisfy v(−q) = v∗(q).

Writing out the self-energy and splitting it into one part where the impurity position

from V (1) and V (2) is the same and one where it is not gives

Σ(1, 2) = ⟨
∑
Rj

1

V2

∑
qq′

v(q)v(q′) e−iRj(q+q′) eiqr1+iq′r2 Ǧ(1, 2)⟩

+⟨
∑

Ri ̸=Rj

1

V2

∑
qq′

v(q)v(q′) eiq(r1−Ri) eiq
′(r2−Rj) Ǧ(1, 2)⟩.

(3.104)

If in the second line we consider specific impurity positions Ri ̸= Rj and perform

the impurity averaging ⟨...⟩, we find that these term vanishes due to the random

locations of the impurities unless q = q′ = 0. We assume that this contribution to

the impurity self energy is so small that we can disregard it. If we consider the jth

term in the first line and perform the average ⟨...⟩, again we find that this is zero

unless q+ q′ = 0 due to the integral
∫
dRi e

−iRi(q+q′) = Vδ(q+ q′). This implies

Σ(1, 2) =
N

V2

∑
q

v(q)v(−q) eiq(r1−r2) Ǧ(1, 2). (3.105)

Now we approximate the sum over q with an integral,

Σ(1, 2) = n

∫
dq′

(2π)3
|v(q′)|2 eiq(r1−r2) Ǧ(1, 2), (3.106)

where n = N/V . In the equation of motion, it is the Fourier transformed version

of the impurity self energy that shows up, so we need an expression for the Fourier

transformed self-energy. After a a change of variables from q′ to q = p−q′, the self

energy is

Σ(X, p) =

∫
dx eipx Σ(1, 2) = n

∫
dq′

(2π)3
|v(p− q)|2Ǧ(R, T,q, E). (3.107)

We need an approximation for the integral to continue. In the quasiclassical approx-

imation, integrals act on Green functions that are strongly peaked near the Fermi

level. If we are in the quasiclassical regime and particle-hole symmetry applies,

meaning that the density of states is approximately the same for particles and holes

equally distanced from the Fermi level, the following integral approximation is valid:∫
dp

(2π)3
=

∫
dΩp

4π

∫ ∞

0

dp

2π2
p2 =

m

2π2

∫
dΩp

4π

∫ ∞

−µ

dξpp

≈ m

2π2
pF

∫
dΩp

4π

∫ ∞

−∞
dξp = N0

∫
dΩp

4π

∫ ∞

−∞
dξp.

(3.108)

37



N0 is the density of states in a 3D free electron gas. With this approximation, the

impurity self-energy becomes

Σ(X, p) = nN0

∫
dΩq

4π

∫
dξq|v(p− q)|2Ǧ(R, T,q, E). (3.109)

In our equations, Σ(R, T,p, E) will always appear in combination with Ǧ(R, T,p, E),

which is strongly peaked near the Fermi level. It is therefore reasonable to approx-

imate the self-energy with Σ(R, T,pF , E), meaning that p −→ pF in the above

equation. In the same way, Ǧ(R, T,q, E) is strongly peaked close to pF , so we can

approximate v(p− q) ≈ v(0).

Lastly, we incorporate the diffusive or dirty limit in the equations. The supercon-

ductor is assumed to be dirty, which means that there are many impurities and

consequently that the mean free path is small. The consequence of this assumption

is that the momentum direction of the particles in the superconductor changes often.

Diffusion is manifested in the theory in two assumptions. The first assumption is

that the quasiclassical Green function can be Taylor expanded to first order in the

momentum direction eF ,

ǧ ≈ ǧs + eF · ǧp, (3.110)

and that this is a good approximation. All the direction dependence of the Green

function is now in eF . The first term ǧs = ǧs(X, |pF |, E) is the isotropic part of

the quasiclassical Green function, and the anisotropic part ǧp = ǧp(X, |pF |, E) is

small compared to the isotropic part. The second assumption is that the impurity

potential part of the Hamiltonian dominates over the other parts.

After performing the angular integral, we then find that the self-energy can be

written

Σ(R, T,pF , E) = − i

2τ
ǧs(R, T, |pF |, E) ≡ σ̌(X, p), (3.111)

where we changed notation from Σ to σ to emphasize that the self energy is a

functional of ǧ and not Ǧ. We defined the constant relaxation time

1

τ
≡ 2πnN0|v(0)|2. (3.112)

3.6.2 Equation of motion with the impurity self energy

When deriving the transport equation (3.58), we started by subtracting the left-

handed equation of motion from the right-handed equation of motion. We then got

a bunch of terms that we Fourier transformed and rewrote. The contribution to the

right- minus left-handed equation from the impurity self-energy is

−
∫

d3Σ(1, 3)Gav(3, 2) +

∫
d3Gav(1, 3)Σ(3, 2). (3.113)
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Fourier transforming gives

−
∫

d3

∫
dx e−ipx (Σ(1, 3)Gav(3, 2)−Gav(1, 3)Σ(3, 2))

= −
[
Σ(X, p), Ǧ(X, p)

]
⊗ = −

[
σ̌(X, p), Ǧ(X, p)

]
⊗

(3.114)

This followed from the definition (3.36) of the convolution in the mixed representa-

tion. Performing the gradient approximation gives the following contribution to the

equation of motion:

−
[
σ̌(R, p), Ǧ(X, p)

]
⊗ ≈ −

[
σ̌(X, p), Ǧ(X, p)

]
◦

− i

2

{
∇Rσ̌(X, p),∇pǦ(X, p)

}
◦ +

i

2

{
∇pσ̌(X, p),∇RǦ(X, p)

}
◦.

(3.115)

Finally, the impurity averaged equation of motion in the self-consistent Born ap-

proximation and the first order gradient approximation is[
Eρ̂4 − Σ̂(X, p)− σ̌(X, p), Ǧav(X, p)

]
◦
+ i

pF

m
∇̃Ǧav(X, p)

+
i

2

{
∇RΣ

′(X, p),∇pǦav(X, p)
}
◦ −

i

2

{
∇pΣ

′(X, p),∇RǦav(X, p)
}
◦ = 0.

(3.116)

where

Σ′(X, p) = Eρ̂4 − Σ̂(X, p)− σ̌(X, p)− i
pF

m
ieA(X)ρ̂4. (3.117)

3.7 The Usadel equation

We are now in the position to find the Usadel equation. The Usadel equation is the

quasiclassical and diffusive version of (3.116) averaged over all momentum directions.

The quasiclassical limit is found by performing the integral i
π

∫
dξp. The diffusive

limit is found by Taylor expanding the Green function as in (3.110) and by assuming

that the impurity self energy dominates over the other parts of the Hamiltonian.

The angular average is the integral
∫
dΩeF /4π.

Terms arising from the second line of (3.116) are usually neglected in the quasiclas-

sical theory for superconductors. The first commutator is small due to the nearly

isotropic nature of the Green function and the slow variation of all self-energies

in the system, while the second commutator is small due to the spatial variation

∇RǦav being small. Neglecting the second line and performing the integral over the

magnitude of the momentum i
π

∫
dξp gives[

Eρ̂4 − Σ̂(X, p)− σ̌(X, p), ǧ(X, p)
]
◦
+ ivF ∇̃ǧ(X, p) = 0, (3.118)
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where vF = pF/m and ǧ is the impurity averaged quasiclassical Green function.

This equation is known as the Eilenberger equation [40].

The Eilenberger equation does not uniquely determine the Green function because

ǧ could be multiplied with any constant and still satisfy the transport equation. An

additional normalization condition is therefore necessary:

ǧ ◦ ǧ = 1̌. (3.119)

One way to see that this condition is valid is to first note that it is valid in a bulk,

homogeneous superconductor in equilibrium. The quasiclassical, retarded Green

function in such a system was given in equation (3.69). Returning to the beginning

of the derivation of the transport equation, one can show that ǧ ◦ ǧ satisfies the

same equation as ǧ. The Green function is normalized to a constant ǧ ◦ ǧ = A1̌,

meaning A must equal one to join up smoothly with the equilibrium solution [41].

However, this argument is not particularly rigorous. A more rigorous derivation

of the normalization can be found by an alternative derivation of the Eilenberger

equation in Ref. [42].

To first order in the anisotropy, the normalization condition yields

ǧs ◦ ǧs + ǧs ◦ eF · ǧp + eF · ǧp ◦ ǧs = 1. (3.120)

Performing the angular average over this equation gives

ǧs ◦ ǧs = 1, (3.121)

which in turn implies that

ǧs ◦ ǧp + ǧp ◦ ǧs = 0. (3.122)

These equations will soon be useful, as they will be used to express ǧp in terms of

ǧs.

The Eilenberger equation together with the normalization condition makes it pos-

sible to express ǧp in terms of ǧs. This is seen by first multiplying Eilenberger with

eF , and then performing the angular average, which gives

1

3

[
Eρ̂4 − Σ̂− σ̌, ǧp

]
◦
+

1

3
i|vF |∇̃ǧs = 0. (3.123)

The intermediate step[∫
dΩ

4π
eF ∇̃ǧ

]
x

=

∫
dΩ

4π
eFxeFi

∇̃i(ǧs + eFk
ǧFk

) =
1

3
ex∇̃xǧs (3.124)
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and similarly for the y- and z-direction was used for the calculation of the second

term. Note the Einstein summation convention in this equation.

In the diffusive limit, the magnitude of the content in Eρ̂4− Σ̂ is much smaller than

the magnitude of σ̂, so these terms are neglected in the commutator. Multiplying

(3.123) with ǧs◦ from the left and using the normalization condition (3.122) gives

ǧp = −τ |vF |ǧs∇̃ǧs. (3.125)

In the final step of deriving the Usadel equation, an angular average over the momen-

tum pF will be performed on the equation of motion. The following two integrals,

where the first order Taylor expansion has been applied, are therefore useful.∫
dΩeF

4π
ǧ = ǧs, (3.126)

∫
dΩeF

4π
eF ǧ =

∫
dΩeF

4π

(
eFxex + eFyey + eFzez

) (
eFx ǧpx + eFy ǧpy + eFz ǧpz

)
=

1

3
ǧp.

(3.127)

We now integrate the Eilenberger equation over all momentum directions. Note that

Eρ̂4 − Σ̂− σ̂ and i|vF |∇̃ have no momentum dependence and can be pulled outside

the averaging integral
∫

dΩ
4π
. The result is[

Eρ̂4 − Σ̂(X, p)− σ(X, p), ǧs(X, p)
]
◦
+ i|vF |∇̃

1

3
ǧp(X, p) = 0. (3.128)

The impurity self energy σ̌ = ǧs/2τ commutes with ǧs, so it disappears from the

equation. Defining the diffusion constant D = τv2F/3 and inserting the expression

(3.125) for ǧp, the result is finally

D∇̃(ǧs∇̃ǧs) + i
[
Eρ̂4 − Σ̂, ǧs

]
◦
= 0. (3.129)

This equation is known as the Usadel equation. For the rest of this thesis, the

isotropic Green function ǧs will be denoted ǧ unless stated otherwise.

It is not always a good approximation to omit the anticommutators on the second

line of (3.116), for example if one wants to study spin Hall effects [43]. In that

case, obtaining the Eilenberger equation is not straightforward due to the ∇ps.

The solution is to go straight from (3.116) to the Usadel equation by performing

the integral over the magnitude and direction of the momentum at the same time.

Partial integration can then be used in the anticommutators.
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3.8 Boundary conditions

The Usadel equation is a second order differential equation, which means that two

additional conditions are needed to uniquely determine the solution. These bound-

ary conditions are applied at the edges of the material we solve for. If we want to

solve the Usadel equation in several materials in a hybrid system, we must solve

in each of them separately and apply boundary conditions at the interfaces. The

reason for this is that the length scales associated with boundaries are not larger

than the Fermi wavelength, as assumed in the quasiclassical theory. A derivation

of general boundary conditions for the diffusive, quasiclassical theory is beyond the

scope of this thesis but can be found in Ref. [44].

In the tunneling limit, the boundary conditions reduce to the Kupriyanov-Lukichev

boundary conditions [45],

ǧ∂xǧ = ± 1

2Lζ

[
ǧ, ǧ
]
. (3.130)

ǧ is the Green function ”inside” the material, while ǧ is the Green function ”outside”.

If the outside is to the left of the interface, we use the plus sign, and the minus sign

is used when the outside is to the right of the interface. The length of the inside is

L, and ζ = RB/R is a dimensionless interface parameter describing the ratio of the

barrier resistivity RB to the bulk resistance R of the inside material.

4 The distribution function

4.1 General form

Earlier we encountered the normalization condition ǧ ◦ ǧ = 1̌. Writing this out in

terms of the retarded, advanced and Keldysh components gives the condition

ĝR ◦ ĝK + ĝK ◦ ĝA = 0. (4.1)

An ansatz solution for ĝK is

ĝK = ĝR ◦ ĥ− ĥ ◦ ĝA, (4.2)

and ĥ is known as the distribution function. The retarded, advanced and Keldysh

Green functions have symmetries discussed in section 3.5.2, and from these symme-

tries one can show that the distribution function has the symmetry

ĥ =

(
h1 h2

−h̃2 −h̃1

)
. (4.3)
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Equation (4.2) does not uniquely define ĥ, which is seen by ĥ → ĥ + ĝRŷ + ŷĝA.

This means that we have some freedom to choose ĥ. Usually, h2 is set to zero so

that the distribution function becomes block diagonal.

The distribution function has earned its name because it is related to the occupation

numbers of particles and holes. The particle number n is given by

n(r1, t1) =⟨ψ†
↑(r1, t1)ψ↑(r1, t1) + ψ†

↓(r1, t1)ψ↓(r1, t1)

− ψ↑(r1, t1)ψ
†
↑(r1, t1)− ψ↓(r1, t1)ψ

†
↓(r1, t1)⟩

=
i

2
Tr
{
ĜR(r1, t1; r1, t1)− ĜA(r1, t1; r1, t1)− ĜK(r1, t1; r1, t1)

}
.

(4.4)

Going back to the definitions of ĜR and ĜA, we see that

ĜR(r1, t1; r1, t1)− ĜA(r1, t1; r1, t1) = 2i Im
{
ĜR(r1, t1; r1, t1)

}
.

Fourier transforming the relative time in the Green functions gives

n(r1, t1) =
i

2

∫
dE

2π
Tr
(
2i Im

{
ĜR(R = r1, T = t1; r = 0, E)

})
−Tr

(
2i Im

{
ĜK(R = r1, T = t1; r = 0, E)

})
.

(4.5)

The Keldysh Green function satisfies the same ansatz solution as the quasiclassical

Keldysh Green function, ĜK = ĜR ◦ ĥ− ĥ ◦ ĜA. Therefore,

n(r, t) =
i

2

∫
dE

2π
Tr
{
2i Im

{
ĜR(r1, t1;0, E)

}
(1− ĥ(E))

}
=

∫
dE Tr

{
− 1

π
Im
{
ĜR(r1, t1;0, E)

}(1− ĥ(E)

2

)} (4.6)

If the distribution function is diagonal, which it can be chosen to be when there

are no spin-flipping terms in the Hamiltonian, the trace is simply the sum over the

diagonal elements of the Green function multiplied by (1− hσ(E))/2. We recognize

the expression for density of states Dσ(E) = − Im
{
GR

σσ(E)
}
/π, and conclude that

(1− hσ(E))/2 is the occupation function for either electrons or holes of spin σ.

This is the reason ĥ is called the distribution function. This shows that h
e/h
σ (E) =

1− 2f
e/h
σ (E), and that the full 4× 4 distribution function is

ĥ(E) =

(
1− 2fe(E) 0

0 1− 2fh(E)

)
. (4.7)

In equilibrium, the distribution function ĥ is obtained by inserting the Fermi-Dirac

distribution function into the general form of ĥ, and the result is

ĥ(E) = tanh

(
βE

2

)
1̂. (4.8)
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This show that the equilibrium Keldysh Green function is

ĝK(E) = (ĝR(E)− ĝA(E)) tanh

(
βE

2

)
. (4.9)

4.2 In the presence of a voltage

We now find the distribution function in the presence of a voltage. Consider a

system with an applied voltage. On the left-hand side of the system, this rises the

electron band with eV compared to the right side of the system. The Fermi level

on the right side is still µ, while the Fermi level on the left side becomes µ + eV .

Energy is defined relative to the Fermi level on the right side. Before switching

on the voltage, the probability of finding an electron at energy ϵ′ on the left side

was f(ϵ′). After switching on the voltage, the electron has energy ϵ = ϵ′ + eV , but

the probability of finding this electron is still f(ϵ′) = f(ϵ − eV ). Therefore, the

distribution function for electrons with energy ϵ on the left side is fe(ϵ) = f(ϵ−eV ).

The probability for the electron at energy ϵ′ to be missing is 1 − f(ϵ′), which is

equivalent to the probability of finding a hole at energy −ϵ′. After switching on

the voltage, the energy of the electron increases to ϵ = ϵ′ + eV , while the energy

of the hole decreases to −ϵ = −ϵ′ − eV . The probability of finding a hole at −ϵ
is 1 − f(ϵ − eV ) = f(−ϵ + eV ). The distribution function for holes with energy

ϵ on the left side is therefore fh(ϵ) = f(ϵ + eV ). Inserting fe(ϵ) = f(ϵ − eV ) and

fh(ϵ) = f(ϵ+ eV ) into (4.7) gives

ĥ =

tanh
(

β(ϵ−eV )
2

)
0

0 tanh
(

β(ϵ+eV )
2

) . (4.10)

In the general case, one can apply spin-dependent voltages. If we take the spin-

quantization axis to be the z-axis, the distribution function takes the form

ĥ =


tanh

(
β(ϵ−eV↑)

2

)
0 0 0

0 tanh
(

β(ϵ−eV↓)

2

)
0 0

0 0 tanh
(

β(ϵ+eV↑)

2

)
0

0 0 0 tanh
(

β(ϵ+eV↓)

2

)

 . (4.11)
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5 Parametrized equations and numerics

Not all components of the Green function are independent, so it is convenient to

parametrize the Usadel equation. In this chapter, we derive parametrized versions

of the retarded and Keldysh Usadel equation suitable for numerical calculations.

Additionally, the self-consistent gap equation will be derived. Lastly, we describe

how the parametrized equations are solved numerically and how the phase of the

system is determined.

5.1 The Ricatti parametrization

In this section, we parametrize the retarded Green function and the retarded Usadel

equation.

For simple calculations, the θ-parametrization of the retarded Green function is

practical. The retarded Green function is parameterized with two scalar parameters

θσ,

ĝR =


c↑ 0 0 s↑

0 c↓ −s↓ 0

0 s↓ −c↓ 0

−s↑ 0 0 −c↑

 , (5.1)

where sσ ≡ sinh θσ and cσ ≡ cosh θσ [39]. However, there are several limitations to

the θ-parametrization. It can only describe singlet pairing and short-range triplet

pairing, the hyperbolic functions are multivalued, and θσ is unbounded. This can

lead to convergence- and stability problems in numerical calculations. Therefore, we

will use another popular parameterization called the Ricatti parametrization. It is

single-valued and the parameters are bound to [0, 1], so it is well suited for numerical

calculations. Also, it is more general than the θ-parametrization in the sense that

one can analyze singlet pairing and both short-range and long-range triplet pairings.

The derivation of the Ricatti parametrized equations is a shortened version of the

derivation done in [46].

The Ricatti parametrized retarded Green function is defined as

ĝR =

(
N 0

0 −Ñ

)(
1 + γγ̃ 2γ

2γ̃ 1 + γ̃γ

)
=

(
2N − 1 2Nγ

−2Ñ γ̃ −(2Ñ − 1)

)
, (5.2)

where γ is a 2×2 matrix, N ≡ (1−γγ̃)−1 and 1 is the 2×2 identity matrix. With this

parametrization, the symmetries of the retarded Green function are automatically

satisfied.
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Consider the retarded part of the Usadel equation including the self-energies for

superconductivity and magnetism,

D∇(ĝR∇ĝR) + i
[
Eρ̂4 − ∆̂ + M̂, ĝR

]
= 0. (5.3)

The two upper blocks of this matrix equation are used for deriving the equations of

motion for γ and γ̃ because the lower two blocks of the equation are equivalent to

the upper two blocks. We multiply the upper left block with γ from the right and

subtract it from the upper right block, and then we multiply with N−1/2 from the

left. The first term in the Usadel equation becomes

1

2
N−1

(
[∇(ĝR∇ĝR)](1,2) − [∇(ĝR∇ĝR)](1,1)γ

)
= ∇2γ + 2(∇γ)Ñ γ̃(∇γ). (5.4)

The same operation is performed on the commutator to obtain

1

2
N−1

(
[iE
[
ρ̂4, ĝ

R
]
](1,2) − [iE

[
ρ̂4, ĝ

R
]
](1,1)γ

)
= 2iEγ (5.5)

and
1

2
N−1

(
[i
[
M̂, ĝR

]
](1,2) − [i

[
M̂, ĝR

]
](1,1)γ

)
= ih · (σγ − γσ∗). (5.6)

The commutator between ∆ and the retarded Green function is[
∆̂, ĝR

]
=

(
∆iσ2(−2Ñ γ̃) ∆iσ2(−2Ñ + 1)

∆∗iσ2(2N − 1) ∆∗iσ2(2Nγ)

)

−

(
2Nγ∆∗iσ2 (2N − 1)∆iσ2

(−2Ñ + 1)∆∗iσ2 −2Ñ γ̃∆iσ2

)
,

(5.7)

and this gives

1

2
N−1

(
[i
[
∆̂, ĝR

]
](1,2) − [i

[
∆̂, ĝR

]
](1,1)γ

)
= ∆σ2 −∆∗γσ2γ. (5.8)

This gives one equation of motion for the parameter γ and one for its tilde conjugate,

D∇2γ + 2D(∇γ)Ñ γ̃(∇γ) + 2iEγ −∆σ2 +∆∗γσ2γ + ih · (σγ − γσ∗) = 0, (5.9)

D∇2γ̃ + 2D(∇γ̃)Nγ(∇γ̃) + 2iEγ̃ +∆∗σ2 −∆γ̃σ2γ̃ − ih · (σ∗γ̃ − γ̃σ) = 0. (5.10)

The Riccati parametrized Kupriyanov-Lukichev boundary conditions for γ are

∂xγ1 =
1

L1ζ1
(1− γ1γ̃2)N2(γ2 − γ1)

∂xγ2 =
1

L2ζ2
(1− γ2γ̃1)N1(γ2 − γ1).

(5.11)

The boundary conditions for γ̃ are found by tilde conjugation.
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5.2 Parametrization of the distribution function

The goal of this section is to derive a linear ordinary differential equation for the

distribution function using the formulation introduced in [47]. The starting point

for deriving an equation of motion for the distribution function is the Keldysh part

of the Usadel equation. Define the matrix current Ǐ ≡ Dǧ∇̃ǧ such that the Keldysh

Usadel equation becomes

∇̃ · ǏK = −i
[
Eρ̂4 − Σ̂, ǧ

]K
. (5.12)

The distribution function is block diagonal and can therefore be parametrized by

the eight basis matrices,

ρ̂0 =

(
I 0

0 I

)
, ρ̂4 =

(
I 0

0 −I

)
,

ρ̂1 =

(
σx 0

0 σx

)
, ρ̂5 =

(
σx 0

0 −σx

)
,

ρ̂2 =

(
σy 0

0 σy

)
, ρ̂6 =

(
σy 0

0 −σy

)
,

ρ̂3 =

(
σz 0

0 σz

)
, ρ̂7 =

(
σz 0

0 −σz

)
.

(5.13)

These matrices span the block-diagonal spin-Nambu space, and parametrizing ĥ

with these turns out to transform the equation of motion into a simple form. Using

the Einstein summation convention, the distribution function in this basis is

ĥ = hmρ̂m (5.14)

with coefficients

hm =
1

4
Tr
{
ρ̂mĥ

}
. (5.15)

Due to the symmetry of the distribution function, only four of these coefficients are

independent. However, all eight coefficients will be treated as independent because

they are related by tilde-conjugation, which switches the sign of the energy E → −E.
By keeping all the coefficients, it will be sufficient to solve the equations for E ≥ 0.

Numerically, hm will be treated as a 8-vector, and in the equation of motion 8× 8-

matrices will operate on it. Using the parameterization ĥ = hmρ̂m, the definition

of Ǐ and ĝK = ĝRĥ− ĥĝA gives the following expression for the Keldysh part of the

matrix current:

ÎK = D[(ĝR∇̃ĝR)ρ̂m − ρ̂m(ĝ
A∇̃ĝA)]hm +D[ρ̂m − ĝRρ̂mĝ

A]∇̃hm. (5.16)
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Multiply with ρ̂n/4 from the left and take the trace. Defining the quantities

In =
1

4
Tr
{
ρ̂nÎ

K
}
, (5.17)

Qnm =
D

4
Tr
{
ρ̂mρ̂n(ĝ

R∇̃ĝR)− ρ̂nρ̂m(ĝ
A∇̃ĝA)

}
, (5.18)

Mnm =
D

4
Tr
{
ρ̂nρ̂m − ρ̂nĝ

Rρ̂mĝ
A
}
, (5.19)

allows us to write

In = Qnmhm +Mnm∇̃hm. (5.20)

This quantity has a clear physical interpretation: In is proportional to the spectral

currents in the system. For example, the charge current is proportional to
∫
I4dE,

and the spin current when the z-axis is the spin quantization axis is proportional to∫
I7dE.

Multiplying the Usadel equation by ρ̂n/4 from the left and take the trace gives

∇̃ · In = − i

4
Tr
{
ρ̂n
[
Σ̌, ǧ

]K}
, (5.21)

After expressing the right-hand side in terms of the distribution function, this equa-

tion will be combined with (5.20) to find a second order differential equation for the

distribution function.

In the case of a block-diagonal self-energy Σ̌ = diag(Σ̂, Σ̂) that does not depend on

the Green function, which is the case for e.g. superconductivity and the magnetic

field, the commutator in (5.21) is simply[
Σ̌, ǧ

]K
=
[
Σ̂, ĝK

]
. (5.22)

Substituting hmρ̂m and ĝK = ĝRĥ− ĥĝA and using the cyclic property of the trace

gives

∇̃ · In = −Vnmhm, (5.23)

where

Vnm =
i

4
Tr
{[
ρ̂n, Σ̂

]
(ĝRρ̂m − ρ̂mĝ

A)
}
. (5.24)

In the case of a second-order self-energy Σ̌ = Σ̂ǧΣ̂, such as the spin-flip scattering,

the commutator in (5.21) is[
Σ̌, ǧ

]K
=
[
Σ̂, ĝRΣ̂ĝK + ĝKΣ̂ĝA

]
. (5.25)

Multiplying by ρ̂n from the left, taking the trace and using the cyclic property of

the trace, and substituting in hmρ̂m and ĝK = ĝRĥ− ĥĝA gives

∇̃ · In = −Wnmhm, (5.26)
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where we defined

Wnm =
i

4
Tr
{[
ρ̂n, Σ̂

]
× (ĝRΣ̂ĝRρ̂m − ρ̂mĝ

AΣ̂ĝA + ĝR
[
ρ̂m, Σ̂

]
ĝA)
}
. (5.27)

For an Usadel equation that contains only self-energy terms of the types described

above, the equation for ∇̃ · In is

∇̃ · In = −(Vnm +Wnm)hm, (5.28)

where each self energy of first-order has its own Vnm-term, and each second-order

term has its own Wnm-term. Inserting (5.20) into (5.28) gives a second order differ-

ential equation for the distribution function:

Mnm∇̃2hm = −(∇̃Mnm +Qnm) · ∇̃hm − (∇̃ ·Qnm + Vnm +Wnm)hm. (5.29)

Defining the vector h = (h0, h1, . . . , h7)
T and the matrices Q,M , V andW according

to their elements (n,m), and setting A = 0, gives the equation

∇2h = −M−1(∇M +Q) · ∇h−M−1(∇ ·Q+ V +W )h. (5.30)

We proceed with the parametrized boundary conditions for the distribution function.

The Keldysh part of the boundary conditions is

(ǧ∂xǧ)
K = ± 1

2Lζ

[
ǧ, ǧ
]K
. (5.31)

Multiply by ρ̂n/4 from the left and take the trace. The left-hand side is recognized

from equation (5.17) as In. We calculate the right-hand side:

± D

2Lζ

1

4
Tr
{
ρ̂n
[
ǧ, ǧ
]K}

= ± D

8Lζ
Tr
{
ρ̂n(ĝ

RĝK + ĝK ĝA − ĝRĝK − ĝK ĝA)
}

= ± D

8Lζ
Tr
{
ρ̂n(ĝ

R(ĝRρ̂m − ρ̂mĝ
A)− (ĝRρ̂m − ρ̂mĝ

A)ĝA)hm
}

± D

8Lζ
Tr
{
((ĝRρ̂m − ρ̂mĝ

A)ĝA − ĝR(ĝRρ̂m − ρ̂mĝ
A))hm

}
= ±(T nmhm − Tnmhm).

(5.32)

In the last line, we defined the matrices

Tnm = − D

8Lζ
Tr
{
ρ̂n(ĝ

R(ĝRρ̂m − ρ̂mĝ
A)− (ĝRρ̂m − ρ̂mĝ

A)ĝA)
}

=
D

8Lζ
Tr
{(
ĝAρ̂n − ρ̂nĝ

R
) (
ĝRρ̂m − ρ̂mĝ

A
)}
.

(5.33)

T nm =
D

8Lζ
Tr
{(
ĝAρ̂n − ρ̂nĝ

R
) (
ĝRρ̂m − ρ̂mĝ

A
)}
. (5.34)
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5.3 The gap equation

Recall the definition of the superconducting order parameter,

∆(r, t) = λ(r)⟨ψ↓(r, t)ψ↑(r, t)⟩. The order parameter can be expressed via one of

the elements of the anomalous Keldysh Green function,

ĜK
23(r, t,R, T ) = −i⟨[ψ↓(R+ r/2, T + t/2), ψ↑(R− r/2, T − t/2)]⟩ (5.35)

as

∆(r, t)/λ = lim
r,t→0

i

2
ĜK

23(r, t,R, T ). (5.36)

Fourier transforming, using the integral approximation (3.108) and performing the

integrals over the momentum gives

∆(r, t)/λ =
N0

4

∫ ωc

−ωc

dEf̂K
21(R, T, E). (5.37)

It turns out that the above integral diverges for a bulk superconductor if the integra-

tion is performed over all energies. Physically, however, we should only consider the

energy spectra of the phonons that mediate attractive electron-electron interaction

in the superconductor [48]. This is why the integration limits are set to ±ωc.

We could also have chosen to express the order parameter with other components

of the Keldysh Green function, for example

∆(r, t)/λ =
i

2

(
lim

∆r,∆t→0
ĜK

41(∆r,∆t,R, T )

)∗

=
N0λ

4

∫ ωc

−ωc

dE[f̃K
21(r, t, E)]

∗. (5.38)

These two expressions for the order parameter can be combined to make an expres-

sion where the integral is evaluated for positive energies,

∆(r, t) =
N0λ

4

∫ ωc

0

dE[fK(E) + (f̃K(E))∗]21. (5.39)

The coupling constant λ and the cut-off energy ωc are related through the order

parameter ∆0 at zero temperature because ∆ must converge to ∆0 when the tem-

perature goes to zero in a bulk superconductor [46]. The retarded Green function

in a bulk superconductor is given by (3.69), and in equilibrium the Keldysh Green

function is

ĝK(E) =

2sgn(E) Eρ̂4−∆̂
E2−|∆|2 tanh

(
βE
2

)
E2 > |∆|2

0 E2 < |∆|2
. (5.40)
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At zero temperature, |∆| = |∆0| and tanh(βE/2) = sgn(E), meaning that fK
21(E) =

2∆0/
√
E2 − |∆0|2 when E2 − |∆0|2 > 0 and zero otherwise. Inserted into (5.37),

this gives the zero-temperature self-consistent equation

∆0 = N0λ

∫ ωc

|∆0|
dE

∆0√
E2 − |∆|2

. (5.41)

Dividing by ∆0 and performing a change of variables according to E = |∆0| cosh(u),
we find the relation between the coupling constant, the cut-off energy and the zero-

temperature order parameter ∆0:

ωc = |∆0| cosh
(

1

N0λ

)
. (5.42)

The self-consistent gap equation finally reads

∆(r, t) =
N0λ

4

∫ |∆0| cosh(1/N0λ)

0

dE[fK
21(E) + (f̃K

21(E))
∗]. (5.43)

5.4 Numerical determination of the state of a system

The self-consistent equation for the order parameter has the form ∆ = F (∆), and

the simplest way to solve such an equation is by fix-point iteration. The solution

strategy is the following: Choose an initial guess ∆ = ∆1 which is inserted into the

retarded Usadel equation to find the retarded Green function ĝR. After that, solve

the equation of motion for the distribution function given ∆1 and ĝR, and use the

retarded Green function and the distribution function to calculate the successive

∆2 = F (∆1). This is repeated until |Re{∆n+1 −∆n}| and | Im{∆n+1 −∆n}| is
less than some threshold value for all positions, and the system is then said to have

converged to a fixed point for the gap. A weakness in using the absolute convergence

criteria instead of the relative criteria |Re{∆n+1 −∆n}/Re{∆n}|, and similarly for

the imaginary part, is that it will not be accurate when the actual solution for

the gap is very small, but finite. Nevertheless, when the gap is zero the relative

change in the gap can be very large, so in systems where the gap is zero for at least

one position the relative criteria alone cannot be used alone. Therefore, it is more

convenient to use the absolute convergence criteria.

In some systems, the gap will always converge towards the same fixed point for

any initial guess ∆1 ̸= 0. For superconducting systems, the fixed point is non-zero,

while for normal state systems, the gap always converges to zero. These are stable

solutions. There also exist unstable solutions, in which any perturbation from the

solution will lead to a divergence away from that point. This is for example the case
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a) b)

Iteration

c)

Iteration

d)

Figure 2: Demonstration of how the gap develops through the self-consistency iterations for a

system in the superconducting phase (a and b), the bistable phase (c) and the normal phase (d).

The red lines show the development when the initial guess is ∆ = ∆0, and the blue lines when the

initial guess ∆ = 0.01∆0.

for the normal state solution ∆ = 0 in a superconductor. Unstable solutions are

physically uninteresting and will be discarded.

Some systems have distinct, locally stable solutions for the gap, meaning that the

solutions are robust to small perturbations. These solutions correspond to different

local minima in the free energy, and the system will eventually collapse into the

state corresponding to the lowest free energy. A system that resides in a global

minimum can be adiabatically varied by tuning the magnetic field or voltage until

the system no longer is in the global minimum. It is now in a local minima in the

free energy, but there is an energy barrier that prevents the system from jumping

into the global minima. Therefore, it can remain in the local minimum for a while

and a superconducting hysteresis effect can be observed.

In practice, the phase of a system is determined by solving with a low initial guess

∆ = 0.01∆0 and a high initial guess ∆ = ∆0. Regions where both branches converge

to a non-zero value, either to the same solution or to different superconducting

solutions, are termed superconducting. If both solutions converge to zero, the system

is in the normal state. Regions where one finds one superconducting solution and

one normal solution are termed bistable. The categorization of the phase is depicted

in figure 2, and is consistent with the definitions in [47].
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The exact transition lines from the normal state to the superconducting state are not

straightforward to calculate in the Usadel formalism, because there is no simple way

to calculate the free energy out of equilibrium using quasiclassical theory. However,

the transition lines are assumed to be in the bistable regions.
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6 The effect of a spin-voltage on a spin-split su-

perconductor

6.1 Introduction

It is established that superconductivity can co-exist with spin-splitting fields well

beyond the Chandrasekhar-Clogston limit by spin-triplet or FFLO pairing, by the

introduction of spin-orbit coupling to the system [49], by modification of the band

structure in the superconductor [50], and by driving the superconductor out of equi-

librium [47, 51]. This insight is applicable to the field of superconducting spintronics

[7], where stabilizing superconductivity in the presence of magnetic elements is of

great importance.

Bobkov and Bobkova [51] found that superconductivity can be recovered by sand-

wiching a superconducting film between two half metals and voltage bias the junc-

tion. A spin-splitting field m was applied to the superconductor. The half metals

can be thought of as fully polarized ferromagnets with magnetizations pointing in

opposite directions. Say the left half metal is polarized in the +z-direction, and

that a voltage +V is applied in the left half metal and −V is applied in the right

half metal. Then there is a voltage drop V for spin-up particles at the left interface,

and a voltage drop −V for spin-down particles at the right interface. There is no

voltage drop for spin-up particles at the right interface or spin-down particles at

the left interface. We therefore have a spin-dependent voltage, also known as a spin

accumulation. Inside the film, the distribution of spin-up electrons is identical to

the distribution in the left half metal and the distribution of spin-down electrons is

identical to the distribution in the right half metal, so the distribution function is

ĥ =


h+ 0 0 0

0 h− 0 0

0 0 h+ 0

0 0 0 h−

 , (6.1)

where h± = tanh β(E ± |e|Vs)/2. Hence, at zero temperature the distribution func-

tion has a one-step form in each of the spin subbands. Such a one-step form was

essential for the recovery of superconductivity. Inserting the one-step distribution

function and the Green function for a bulk, spin-split superconductor into the gap

equation revealed that m = |e|Vs is equivalent to m = |e|Vs = 0, explaining why

superconductivity is recovered under the simultaneous influence of a spin-splitting

field and a spin-dependent voltage. It is also mentioned, though not further ex-

plored, that a spin-dependent quasiparticle distribution can lead to the occurrence
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of an FFLO state for some parameter ranges.

Superconductivity is also recovered when applying a purely electric voltage eV = m,

as reported by Ref. [47]. In this article, the superconductor was in contact with

normal reservoirs where the chemical potentials were shifted by ±eV compared to

the superconductor. The recovery of superconductivity was motivated analytically

by considering the gap equation when applying a voltage and a spin-splitting field

in a similar manner as explained above, and also numerically by calculating the

phase diagram for a system with a varying voltage and spin-splitting field. This

phase diagram, which displays the regions of superconductivity, bistability, and the

normal state, was symmetric under exchanging eV ↔ m. Another setup where

the chemical potentials in both reservoirs were shifted by +eV was also suggested,

but the phase diagrams for the two setups should be identical. To see why, we

show that the gap |∆| at a superconductor/normal metal interface has the same

value regardless of whether the chemical potential in the normal reservoir is shifted

by plus or minus eV . The distribution function at the interface is approximately

identical to the distribution function in the reservoir,

ĥ =


h+ 0 0 0

0 h+ 0 0

0 0 h− 0

0 0 0 h−

 . (6.2)

Inserting this into the gap equation gives

∆ =

∫ ∞

−∞
dEf21(E) tanh

(
E − |e|V

2T

)
+ f12(−E) tanh

(
E + |e|V

2T

)
, (6.3)

where f is the anomalous retarded Green function. At zero temperature, this reduces

to

∆ =

∫ ∞

|e|V
dE (f21(E)− f12(E))−

∫ |e|V

−∞
dE (f21(E)− f12(E)) . (6.4)

Switching the sign of V gives

∆ = −
∫ ∞

|e|V
dE (f21(−E)− f12(−E)) +

∫ |e|V

−∞
dE (f21(−E)− f12(−E)) . (6.5)

This may induce a phase shift to the order parameter, but we disregard it because

we are only interested in |∆|. Restricting our attention to real order parameters,

the bulk Green function for a spin-split superconductor satisfies f(−E) = −f ∗(E).

Inserting this into (6.5) shows that the gap is unaffected by the sign of eV .
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In the case of a spin-dependent voltage in the presence of a spin-splitting field, the

gap equation at zero temperature takes the form

∆ = −
∫ |e|Vs

−∞
dEf21(E) +

∫ ∞

−|e|Vs

dEf12(E)

+

∫ ∞

|e|Vs

dEf21(E)−
∫ −|e|Vs

−∞
dEf12(E).

(6.6)

Switching the sign of the voltage is equivalent to switching f12 ↔ f21, but in a bulk

spin-split superconductor they are related by f12(E) = −f21(−E). This substitution
changes the value of the gap, and therefore the gap is not necessarily symmetric in

position when a spin-dependent voltage is introduced to the system. We know

that superconductivity is recovered when the spin-dependent voltage is close to the

value of the spin-splitting field, but the full phase diagram showing the regions

of superconductivity, bistability and the normal state is unknown. An emerging

question is therefore how the phase diagram looks when applying a spin-dependent

voltage.

A spin-dependent voltage also opens up the possibility for the spatially inhomoge-

neous gap, indicating the presence of an FFLO state. An oscillating order parameter

divides the superconductor into domains with phases 0 and π. It has been suggested

that superconducting phase domains can be used for memory applications [52]. The

idea behind this is that the resistance of a superconducting layer with two phase-

domains is higher than the resistance of a layer with one single phase, and therefore

the critical current is lower. By tuning the layer to have phase domains one ef-

fectively can write 1, while tuning the layer to have a single phase corresponds to

writing 0. Setups leading to a dominating FFLO state have therefore the potential

to be used for storing information if the FFLO state remains when the spin voltage

is switched off. Motivated by this, we apply normal reservoirs instead of half metals

like Bobkov and Bobkova, let the spin-dependent voltage drops be nonzero at both

interfaces, and we see if this leads to the appearance of an FFLO state.

If the chemical potentials are shifted in the same way in both reservoirs, the order

parameter has to be symmetric because the system looks the same if the two reser-

voirs are swapped. The phase diagram could therefore look quite different from the

voltage-biased system described above. Motivated by this, we are interested in how

the phase diagram looks for a system where the spin-accumulation potential is the

same in both reservoirs.
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6.2 Model

The system we look at is a normal metal/superconductor/normal metal system.

The superconductor is a thin film with an in-plane spin-splitting field pointing in

the z-direction. This could be realized by growing the superconductor on top of a

ferromagnetic insulator which induces a spin-splitting field in the superconductor.

The normal metals are assumed to be reservoirs, unaffected by the inverse proximity

effect. The normal metals have a spin accumulation, and the spin-quantization axis

in the reservoirs is taken to be parallel to the direction of the spin-splitting field.

A spin accumulation can be created and detected with a structure consisting of a

normal metal N connected to two ferromagnets F1 and F2 with either parallel or

antiparallel magnetizations [53]. F1 is the injector and F2 is the detector. A current

passes through F1 into the normal metal, forming a closed circuit at the left part of

N. The current is spin-polarized due to the ferromagnet and when the current enters

the normal metal, the spin diffuses into the right side. The voltage between F2 and

N then depends on the relative orientations of the magnetizations of F1 and F2.

Note that a spin accumulation in the reservoirs is not the same as having ferromag-

netic reservoirs. In a ferromagnet in equilibrium, the density of states is different

for particles with different spins, but the chemical potential is the same regardless

of spin. Therefore, the distribution function is unchanged. On the contrary, a spin

accumulation changes the chemical potential but not the density of states, which

will drive spin-up electrons to move from the left reservoir to the right reservoir and

spin-down electrons in the opposite direction. This is illustrated in figure 3.

Two setups are considered: First, we consider setup A as shown in panel a) of

figure 4, where the quasiparticle distributions are oppositely shifted in the reservoirs.

Second, we consider setup B where the distribution functions in the reservoirs are

identical. This is shown in panel b) of figure 4. The distribution functions used in

setup A in the left and right reservoirs are

ĥaL =


h+ 0 0 0

0 h− 0 0

0 0 h− 0

0 0 0 h+

 ĥaR =


h− 0 0 0

0 h+ 0 0

0 0 h+ 0

0 0 0 h−

 . (6.7)
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Figure 3: An illustration of the difference between a non-equilibrium spin accumulation in the

normal metal reservoirs (upper graphs) and equilibrium ferromagnetic reservoirs (lower graphs).

The colored areas represent the number of electrons with spin up and down. The graphs in the

left part of the figure represent the left reservoir, and the right part represents the right reservoir.

In setup B, the distribution functions in the left and right reservoirs are equal,

ĥbL = ĥbR =


h+ 0 0 0

0 h− 0 0

0 0 h− 0

0 0 0 h+

 . (6.8)

This can be expressed in terms of the matrices ρ0 and ρ7 by noting that (ρ0+ρ7)/2 =

diag(1, 0, 0, 1) and (ρ0 − ρ7)/2 = diag(0, 1, 1, 0).

The superconductor is thin enough to be considered effectively 2D and to suppress

the orbital effect for an in-plane magnetic field. Edge effects at the interfaces not

bordering to the normal reservoirs are neglected, such that the superconductor can

be effectively treated as 1D.

The parameters were chosen close to Ref. [47] to make the comparison of the

phase diagrams easier. The length of the superconductor was set to L = 8ξ, where

ξ = D/∆0 is the bulk superconducting coherence length. Inelastic scattering was

modeled using the Dynes approximation E/∆0 → E/∆0 + 0.01i in the retarded

Usadel equation. The temperature in the reservoirs was T = 0.01Tc, which essen-

tially is zero. The interface parameter ζ is set to 3, corresponding to a high barrier

resistance compared to the normal state resistance. The self-energies included in

the Usadel equation were superconductivity ∆̂ and the magnetic exchange field M̂ .
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Figure 4: The two setups considered in this thesis. In setup A, the spin voltage Vs is opposite

in the normal reservoirs. In setup B, the spin voltages in the normal reservoirs are the same. The

superconductor is penetrated by the spin-splitting field m. The left side of the superconductor

refers to the position x = 0, and the right side refers to x = L.

The 1D Usadel equation together with the Kupriyanov-Lukichev boundary condi-

tions were then solved for 19 × 20 values for m and |e|Vs in the interval [0, 2∆0] in

setup A with initial guesses ∆1 = ∆0 (superconducting branch) and ∆1 = 0.01∆0

(normal branch) to construct figure 7. In setup B, the equations were solved for

19×39 values for m and |e|Vs in the intervals [0, 2∆0) and [−2∆2, 2∆0] respectively.

The result was the phase diagram for setup B in figure 5.

Calculations were performed on resources provided by UNINETT Sigma2.

6.3 Results and discussion

The numerical calculations required using supercomputer simulations which were

time-consuming, as the equations had to be solved self-consistently for every pa-

rameter set. This is the reason for not having an abundant number of plots with

results. We start by explaining the results for setup B, as these results are easier to

interpret than the results for setup A.

Figure 5 shows the phase diagram in setup B. The colors on the background show

the average value of |∆(x)|/∆0 in the normal branch, while the dots display the

average value of the gap in the superconducting branch. Dark purple regions are

in the normal state, while yellow regions are superconducting. Yellow dots on top
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Figure 5: Phase diagram for setup B. The background shows the average value of the gap in the

normal branch, and the dots show the average value of the gap in the superconducting branch.

Dark purple regions are categorized as the normal state, yellow regions are superconducting, and

dark purple regions with yellow dots are bistable.

of dark purple background means that the gap in the normal branch converged to

zero, while the gap in the superconducting branch converged to a value close to the

bulk value. These regions with dots on dark purple background are bistable. We

see that at zero voltage, superconductivity exists for m < ∆0. In the region

0.5∆0 < m < ∆0, the system is bistable. This is reasonable considering the

Chandrasekhar-Clogston limit at m ≈ 0.7∆0, which means that we expect a transi-

tion from the superconducting state to the normal state in this region. The same is

seen for a zero spin-splitting field when varying the spin voltage.

From the phase diagram, it is seen that the gap either converges to some value close

to ∆0 or to the normal metal solution at zero, but never to something in between.

This is reasonable considering the low temperature. In a bulk superconductor at zero

temperature, the gap is ∆0 for spin-splitting fields lower than the Chandrasekhar-

Clogston limit. When applying a spin-splitting field larger than this limit, the gap

immediately drops to zero. Therefore, the system with the same spin accumula-

tions in the reservoirs behaves like a zero-temperature, bulk superconductor with an

effective spin-splitting field meff .

In the figure, there is a superconducting band with width ∆0 following the line m =

|e|Vs, and a region of width 0.5∆0 outside this band is bistable. The phase diagram
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Figure 6: Distribution function modes in setup B case with m = |e|Vs = 0.737∆0. All other

modes are zero.

is symmetric around the line m = |e|Vs. This indicates that the simultaneous effect

of a spin-splitting field m and a spin voltage |e|Vs is an effective spin-splitting field

meff = m − |e|Vs. The modes of the distribution function in setup B are plotted

in figure 6. For negative energies, h0(−E) = −h0(E) and h7(−E) = h7(E) due to

the symmetry of the distribution function. The shape of the distribution function

is identical to the distribution functions in the reservoirs, ĥ = t+(ρ0 + ρ7)/2 +

t−(ρ0 − ρ7)/2 where t± = tanh((E ± |e|Vs)/2T ). This is equivalent to saying that

the distribution function for electrons with spin up and holes with spin down is

t+, and the distribution function for electrons with spin down and holes with spin

up is t−. The distribution function therefore has a one-step form in each of the

particle subbands. We already concluded that the system behaves like a bulk, spin-

split superconductor, so if we insert the bulk expression for the retarded, spin-split

Green function and the distribution function into the gap equation we find

∆ =

∫ ∞

−∞
dE

−2∆√
(E −m)2 −∆2

tanh

(
E − |e|Vs

2T

)
. (6.9)

Defining a new integration variable E ′ = E−|e|Vs shows that the spin-splitting field

and the voltage show up only in the combination m−|e|Vs. This demonstrates that

the effect of the voltage and the spin-splitting field indeed is the equilibrium system

with an effective field m− |e|Vs.

For the phase diagram to be fully symmetric, there should have been four extra

yellow squares at the edge of the superconducting region for Vs < 0. Physically, at

m = 0 the phase diagram should have been symmetric because at zero magnetic

field, switching the direction of the spins in the reservoirs should not have any effect.

It also turned out that the gap evolved differently for voltages ±0 when the strength

of the spin-splitting field was close to the limit for the normal state to become locally

61



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
m/ 0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

|e|Vs/ 0                

0

1

   | |/ 0

Figure 7: Phase diagram for setup A. The background shows the average value of the gap in the

normal branch, and the dots show the average value of the gap in the superconducting branch.

Dark purple regions are categorized as the normal state, and dark purple regions with yellow dots

are bistable. Yellow regions and regions with visible dots on a background that is not dark purple

are superconducting.

stable. The asymmetry in the phase diagram is therefore attributed to numerical

inaccuracy close to the transition lines from the superconducting to the normal state.

Figure 7 shows the phase diagram in setup A. Again, the colors on the background

show the average value of |∆(x)|/∆0 in the normal branch, while the dots display

the average value of the gap in the superconducting branch. Dark purple regions are

in the normal state, yellow regions are superconducting, and regions with dots on

dark purple background are bistable. The regions with visible dots on a background

that is not dark purple are defined as superconducting. Compared to the phase

diagram in [47], this phase diagram looks quite similar. It is maybe surprising that

the phase diagram looks the same regardless of the spin dependence of the applied

voltage, but there are important differences in the systems.

An important difference from the system with a spin-independent voltage is that

the distribution function and the gap are not symmetric, they are spatially inhomo-

geneous. Figure 9 shows the spatial profile of the superconducting order parameter

for different parameter choices in the region m + |e|Vs > ∆0 < m − |e|Vs. On the

left-hand side, the gap is nonzero, while on the right-hand side the gap is small.

This can be understood by recalling the discussion of the effective field meff in
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Figure 8: Distribution function modes in setup A with m = |e|Vs = 0.737∆0. All other modes

are zero.

setup B. On the left-hand side in setup A, meff ∼ m − |e|Vs while on the right-

hand side meff ∼ m+ |e|Vs. The effective spin-splitting field is therefore increasing

throughout the superconductor. An increase in the spin-splitting field leads to the

suppression of the order parameter because of the proximity effect. At zero tem-

perature in a bulk superconductor, the gap is not affected until the spin-splitting

field reaches the Chandrasekhar-Clogston limit. Therefore, the suppression of the

gap is due to Cooper pairs leaking out of the increasingly hostile superconductor

for increasing spin-splitting fields. This shows that it is reasonable that the gap is

larger on the left-hand side than on the right-hand side, and it also explains why

superconductivity is recovered.

Using the gap equation to explain the recovery of superconductivity in setup A

is not straightforward. The contribution from the modes hn of the distribution

function in setup A is more complicated than in setup B due to the modes being

inhomogeneous, as seen in figure 8. The part of the distribution function that shows

up in the gap equation is he↓ = (h0−h7)/2, which is the distribution function for spin-

down electrons. For negative energies, he↓(−E) = −(h0(E) + h7(E))/2. Therefore,

he↓(E) = sgn(E) = t− for |E| > |e|Vs as in setup B, but for energies |E| < |e|Vs
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The blue line has a phase shift from 0 to π at x/ξ ≈ 7, while the phase of the red line is zero

everywhere.

the distribution function varies both with position and energy. We can write this as

he↓(E) = t− + η(x,E) where η(x,E) is zero for |E| > |e|Vs. Inserting this into the

gap equation makes it clear that the spin-splitting field and the voltage do not show

up as m − |e|Vs in η. Thus, claiming that there is an effective spin-splitting field

m−|e|Vs in setup A is not justified from the gap equation, so it cannot fully explain

the recovery of superconductivity. However, another option for surviving beyond the

Chandrasekhar-Clogston limit was encountered earlier, namely the FFLO state. The

asymmetry in the gap indicates the existence of an FFLO-like state. Conclusively,

there are two effects responsible for allowing superconductivity to exist with a spin-

splitting field in setup A: the spin-accumulation counteracting the spin-splitting field

and the occurrence of an FFLO-like state.

The inhomogeneity due to the FFLO-like state could have practical applications. For

some of the parameter sets, the FFLO-like state is prominent enough to generate a

π phase shift inside the superconductor at the position where the derivative of |∆| is
discontinuous. The jump in the phase gives two superconducting phase domains: the

left domain has phase 0, while the right domain has phase π. This could potentially

be used in memory applications, as briefly discussed earlier. Another option is to

utilize that the gap is non-zero on one side of the superconductor, and close to zero

on the other side. Due to parts of the film being pushed to a near-normal state, the

spin resistivity of the film is smaller than that of a superconducting film because

the region with a finite gap is smaller. Therefore, the probability for tunneling and
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Figure 10: Spin current I as a function of spin voltage |e|Vs/∆0 for various spin-splitting field

strengths in setup A. The current was calculated in the superconducting branch and normalized

to the normal state current I0 at |e|Vs/∆0 = 2.

crossed Andreev reflection increases. The charge resistivity also decreases compared

to the homogeneous superconducting state because the probability for tunneling

increases. The spin- and charge resistivities of the film will still be higher than

that of a normal state film where the gap is zero. By tuning the film to be either

superconducting or inhomogeneous, or alternatively normal state or inhomogeneous,

it can be read as either zero or one. It therefore has the capacity to store information.

In dirty equilibrium superconductors, the FFLO state can only exist for vanishingly

small temperatures. It would be interesting to see if the FFLO-like state persists

for higher temperatures out of equilibrium, but this is left for future work.

Figure 10 shows the spin current in the superconducting branch of setup A as a

function of voltage for various spin-splitting field strengths. The charge current in

the system is zero. For m = 1.894∆0, I(|e|Vs/∆0) (blue) is linear up to m = |e|Vs.
Looking at the phase diagram, we see that this region corresponds to the normal

state. This makes sense; it is Ohm’s law but for spin currents and spin voltages. At

m = |e|Vs, the system is superconducting and there is a small dip in the current. The

superconducting state therefore has higher spin-resistivity than the normal state,

which is reasonable due to the superconducting gap. An incoming electron with

energy lower than the superconducting gap cannot be transmitted into the super-

conductor. Andreev reflection gives no net contribution to the spin current because
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the reflected hole has the same spin as the incoming electron. The only processes

that can contribute to the spin current in the superconducting state are therefore

tunneling and crossed Andreev reflection. This represents a higher resistivity com-

pared to the normal state, where the electron can simply be transmitted through the

interface. The same is seen for m = 1.052∆0 (green) and m = 1.263∆0 (turquoise).

At the two lowest spin-splitting fields m = 0.105∆0 (red) and m = 0.421∆0 (or-

ange), the spin current is zero up until some critical voltage. The spin current is

zero in the regions where the systems are superconducting, again indicating higher

resistivity in the superconducting state. The spin-current is conserved throughout

the superconductor. This is reasonable because there are no terms in the Hamilto-

nian flipping spins. If we had included spin-flipping terms, for example scattering

on magnetic impurities, the spin current would decay towards the center of the su-

perconductor. The absence of a charge current in the system is reasonable because

spin-up particles are moving from the left side of the system to the right side, while

the spin-down particles move in the opposite direction. The magnitude of voltages is

the same for both spins, so the number of spin-up particles moving right is the same

as the number of spin-down particles moving left. This gives a net spin current, but

no net charge current.

In setup B, all currents are zero. We can explain this if we go back to figure 4 and

let the y-axis be parallel to m. Setup b) is invariant over a π rotation around the

y-axis. However, a current flowing in the x-direction would change direction when

rotating the system around the y-axis. Therefore, there cannot be any currents in

setup B.
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7 Summary and outlook

In this thesis, we have solved the quasiclassical and diffusive Usadel equation nu-

merically in 1D and demonstrated that superconductivity can be recovered for spin-

splitting fields exceeding the Chandrasekhar-Clogston limit when applying a spin

voltage Vs to the system. The reasons for the recovery are the emergence of an

effective spin-splitting field proportional to the spin-splitting field minus the spin

voltage and the appearance of an FFLO state.

Having developed the framework for solving the Usadel equation numerically, other

non-equilibrium phenomena in superconducting films can be studied. One such

phenomenon is the process known as crossed Andreev reflection. An electron coming

in from the left in a normal metal/superconductor/normal metal junction pairs up

with an electron from the right normal metal, leaving a hole propagating away from

the right interface. The hole and the incoming electron are entangled, meaning the

superconductor creates entanglement between electrons on the left side and holes

on the right side. Quantum entanglement is needed for quantum computation and

teleportation of quantum states, and finding ways to generate entangled particles is

highly relevant. Crossed Andreev reflection competes with other types of scattering

at the interfaces, and there are currently research efforts focused on maximizing the

crossed Andreev reflection signals [54–57]. A natural extension of this thesis will be

to determine how using spin-split superconductors affects the probability for crossed

Andreev reflection.
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Appendix A: Numerical code

Matrices, Green functions, observables and basic operations

import numpy as np

from s c ipy . i n t e g r a t e import so lve bvp , simpson

from s c ipy . i n t e r p o l a t e import CubicSpl ine

import sys

from tqdm import tqdm

from time import time

np . s e t p r i n t o p t i o n s ( p r e c i s i o n =14, f loatmode=’ f i x ed ’ )

# MATRICES

# Paul i matr ices

sigma x = np . array ( [ [ 0 , 1 ] , [ 1 , 0 ] ] )

s igma y = np . array ( [ [ 0 , −1 j ] , [ 1 j , 0 ] ] )

s igma z = np . array ( [ [ 1 , 0 ] , [ 0 , −1 ] ] )

def dagger ( g ) :

”””

Dagger operator . np . complex128 conjugate and transpose .

”””

return np . t ranspose (np . conjugate ( g ) )

def comm(A, B) :

”””

Commutator between two matr ices .

”””

return A@B − B@A

def de l tamatr ix ( d l t a ) :

”””

The anti−d iagona l Del ta s e l f energy in the Usadel equat ion .

: param de l t a : number

: re turn : (4 ,4) matrix : an t i d i a g ( de l ta , −de l ta , d e l t a ˆ∗ , −d e l t a ˆ∗)
”””

s e l f e n e r g y = np . z e r o s ( ( 4 , 4 ) , dtype=np . complex128 )

s e l f e n e r g y [ 0 , 3 ] = d l ta

s e l f e n e r g y [ 1 , 2 ] = − d l t a

s e l f e n e r g y [ 2 , 1 ] = np . conjugate ( d l t a )

s e l f e n e r g y [ 3 , 0 ] = − np . conjugate ( d l t a )

return s e l f e n e r g y

def s igmablock ( sigma ) :

””” Create the (4 ,4) e q u i l v a l e n t o f the Paul i matr ices . ”””

zero = np . z e r o s ( ( 2 , 2 ) , dtype=np . complex128 )

return np . b lock ( [ [ sigma , ze ro ] , [ zero , np . conjugate ( sigma ) ] ] )

# GREEN FUNCTIONS

def gR( r c t t i ) :

”””
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Constructs the re tarded Green func t ion matrix g from the R i c a t t i matr ices a and b .

: param r c t t i : (32 ,) array o f matr ices be l ong ing to one s i n g l e node .

: re turn : The (4 ,4) re tarded Green func t ion be l ong ing to t ha t node .

”””

vm = ve c t o r t o ma t r i c e s ( r c t t i )

a , b = vm[ 0 ] ,vm[ 1 ]

N, tN = create N and tN (a , b)

I = np . i d e n t i t y (2 )

g11 = N @ ( I + a @ b)

g12 = 2 ∗ N @ a

g21 = − 2 ∗ tN @ b

g22 = − tN @ ( I + b @ a )

return np . b lock ( [ [ g11 , g12 ] , [ g21 , g22 ] ] )

def gA( g R ) :

”””

Constructs the Advanced Green func t ion g iven the re tarded green func t ion .

: param gR : (4 ,4) matrix , the re tarded green func t ion .

: re turn : the (4 ,4) advanced green func t ion .

”””

return − rho [ 4 ] @ dagger ( g R ) @ rho [ 4 ]

def gK( r c t t i , d i s t r f n c ) :

”””

Construct the Keldysh green func t ion from the re tarded Green func t ion

and the d i s t r i b u t i o n func t i on .

: param r c t t i : (32 ,) array . The re tarded Green func t ion

( at one energy and one po s i t i on ) .

d i s t r f n c : (32 ,) array . The d i s t r i b u t i o n func t i on

( at one energy and one po s i t i on ) .

: re turn : (4 ,4) array . The Keldysh Green func t ion .

”””

h , dh = h and dh from vec ( d i s t r f n c )

g R = gR( r c t t i )

g K = g R @ h − h @ gA( g R )

return g K

def dgR( r c t t i ) :

”””

Der i va t i v e o f the re tarded 4x4 Green func t ion at one po in t : ( d/dx gR) ( x n ) .

: param r c t t i : (32 ,) array . The re tarded Green func t ion .

: re turn : The d e r i v a t i v e o f the (4 ,4) re tarded Green func t ion

”””

a , b , da , db = ve c t o r t o ma t r i c e s ( r c t t i )

N, tN = create N and tN (a , b)

dN = N @ (da @ b + a @ db) @ N

dtN = tN @ (db @ a + b @ da ) @ tN

# b l o c k s o f d/dx gˆR( x ) :

ul = 2 ∗ dN
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ur = 2 ∗ (dN @ a + N @ da )

l l = − 2 ∗ (dtN @ b + tN @ db)

l r = − 2 ∗ dtN

return np . b lock ( [ [ ul , ur ] , [ l l , l r ] ] )

def dgK( r c t t i , d i s t r f n c ) :

”””

The d e r i v a t i v e o f the Keldysh Green func t ion .

: param r c t t i : (32 ,) array . The re tarded Green func t ion

( at one energy and one po s i t i on ) .

d i s t r f n c : (32 ,) array . The d i s t r i b u t i o n func t i on

( at one energy and one po s i t i on ) .

: re turn : (4 ,4) array . The d e r i v a t i v e o f the Keldysh Green func t ion .

”””

g R = gR( r c t t i )

dg R = dgR( r c t t i )

dg A = gA(dg R )

h , dh = h and dh from vec ( d i s t r f n c )

dg K = g R @ dh − dh @ dg A + dg R @ h − h @ dg A

return dg K

def r c t t i a nd d r c t t i f r om Fu l l r e tGF ( fu l l r e tGF ) :

”””

Extrac t r c t t i and d/dx r c t t i from a Full RetardedGF ob j e c t .

: param f u l l r e t g f : Full RetardedGF ob j e c t

: re turn : t u p l e − r c t t i , d r c t t i . ( e , 32 , N) arrays .

”””

E = fu l l r e tGF . en e r g i e s

x = fu l l r e tGF . xax i s

r c t t i = fu l l r e tGF . r c t t i

d r c t t i = np . z e r o s (np . shape ( r c t t i ) ) # de r i v a t i v e o f r c t t i

for e in range (E. s i z e ) :

f u l l r e tGF . energy index = e

d r c t t i [ e ] = fu l l r e tGF . eom(x , r c t t i [ e ] )

return r c t t i , d r c t t i

# OBSERVABLES

def de l t a ( r c t t i , vect , E, r e t i n t e g r and=False ) :

”””

Ca l cu la t e d e l t a ( superconduct ing order parameter ) g iven a re tarded green func t ion

and a d i s t r i b u t i o n func t ion .

Del ta = − i n t 0 ˆw dE [gK(E) ] 21 + [gK(E) ] 41

: param r c t t i : ( e , 32 , N) array . The re tarded Green func t ion .

: param vec t : ( e , 32 , N) array . The d i s t r i b u i t i o n func t i on ( parameter ized ) .

: param E: ( e , ) array . Energies .

: param re t i n t e g r and : True i f the in tegrand

shou ld be returned .
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: re turn : (N, ) array . Del ta at each node .

( e , N) array . Del ta in tegrand at each node .

”””

omega = E [ 0 ] # in t e g r a t i on l im i t

i f E[−1] > E [ 0 ] :

omega = E[−1]

p r e f a c t o r = 1/ (2∗np . l og (2∗omega ) )

N = r c t t i [ 0 , 0 , : ] . s i z e

i n t e g r and a r r = np . z e r o s ( (E. s i z e , N) , dtype=np . complex128 )

for e in range (E. s i z e ) :

for i in range (N) :

g K = gK( r c t t i [ e , : , i ] , vect [ e , : , i ] )

i n t e g r and a r r [ e , i ] = − ( g K [ 1 , 2 ] + np . conjugate ( g K [ 3 , 0 ] ) ) / 2

d l t a = − simpson ( in t eg rand ar r , E, ax i s=0) # in t e g r a t e us ing Simpson ’ s ru l e

i f r e t i n t e g r and :

return i n t e g r and a r r

return p r e f a c t o r ∗ d l t a

# EQUILIBRIUM

def v e c t o r t o ma t r i c e s ( r c t t i ) :

”””

Extrac t the matr ices a , b , da , db from the r e a l v ec to r r c t t i a t ∗one∗ po s i t i on .

: param r c t t i : (32 ,) array . Contains the r e a l and imaginary e lements

o f a , b , da , and db .

: re turn : (4 ,2 ,2) array : np . array ( [ a , b , da , db ] )

”””

vb = r c t t i [ : 1 6 ] + 1 j ∗ r c t t i [ 1 6 : 3 2 ]

a = np . reshape (vb [ 0 : 4 ] , ( 2 , 2 ) )

b = np . reshape ( vb [ 4 : 8 ] , ( 2 , 2 ) )

da = np . reshape (vb [ 8 : 1 2 ] , ( 2 , 2 ) )

db = np . reshape ( vb [ 1 2 : ] , ( 2 , 2 ) )

return np . array ( [ a , b , da , db ] )

def mat r i c e s t o v e c t o r (M) :

”””

Make the r e a l v ec to r r c t t i from the matr ices a , b , da , db at ∗one∗ po s i t i on .

: param M: (4 ,2 ,2) array : np . array ( [ a , b , da , db ] )

: re turn : (32 ,) numpy array . Contains the r e a l and imaginary e lements

o f a , b , da , and db .

”””

Mr = np . r e a l (M)

Mi = np . imag (M)

Mtot = np . array ( [Mr,Mi ] )

return np . reshape (Mtot , ( 3 2 , ) )

def v2m(v ) :
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”””

Simi lar func t i on as vec t o r t o ma t r i c e s , but f o r m po s i t i o n s in s t ead o f one po s i t i on .

: param v : (32 , m) . The r i c a t t i parameter i za t ion at each po s i t i on m.

re turn : (4 , 2 , 2 , m) . a , b , da , db f o r each po s i t i on m.

”””

m = v [ 0 , : ] . s i z e

M = np . reshape (v , (8 , 2 , 2 , m) ) # [Re(a ) , Re( b ) , Re( da ) , Re( db ) ,

#Im(a ) , Im( b ) , Im(da ) , Im( db ) ]

M = M[ 0 : 4 ] + 1 j ∗ M[ 4 : 8 ] # [ a , b , da , db ] f o r each po s i t i on

return M

def m2v(M) :

”””

Simi lar func t i on as ma t r i c e s t o v e c t o r , but f o r m po s i t i o n s in s t ead og one .

: param M: (4 , 2 , 2 , m) . a , b , da , db f o r each po s i t i on m.

re turn : (32 , m) . The r i c a t t i parameter i za t ion vec tor at each po s i t i on m. .

”””

m = M[ 0 , 0 , 0 , : ] . s i z e

v = np . z e r o s ( ( 8 , 2 , 2 ,m) )

v [ 0 : 4 ] , v [ 4 : 8 ] = np . r e a l (M) , np . imag (M)

v = np . reshape (v , (32 ,m) )

return v

def create N and tN (a , b ) :

”””

Creates N and tN from the matr ices a and b .

: param a , b : ( 2 , 2 ) . The matr ices gamma and Ti lde (gamma)

: re turn : tup l e , ( 2 , 2 ) . N and tN=t i l d e (N) .

”””

I = np . i d e n t i t y (2 )

N = np . l i n a l g . inv ( I − a @ b)

tN = np . l i n a l g . inv ( I − b @ a )

return N, tN

def f u l l e q u i l d i s t r f n c (E, N, T, Vi=0):

”””

Creates a ( e ,32 ,N) array conta in ing the e qu i l i b r i um d i s t r i b u t i o n func t i on .

: param E: ( e , ) r e a l array . Energies .

: param N: number o f nodes .

: param T: temperature .

: pram Vi : v o l t a g e .

: re turn : ( e ,32 ,N) array . The d i s t r i b u t i o n func t i on in equ i l i b r i um .

”””

d i s t r f n c = np . z e r o s ( (E. s i z e , 3 2 ,N) )

for e in range (E. s i z e ) :

for n in range (N) :

h = h equ i l (T, E[ e ] , Vi )

dh = np . z e r o s (np . shape (h ) ) # the d e r i v a t i v e i s zero

v , dv = co e f f i c i e n t s f r om ma t r (h ) , c o e f f i c i e n t s f r om ma t r (dh)

vec = make vec (v , dv )

d i s t r f n c [ e , : , n ] = vec

return d i s t r f n c
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def h equ i l (T, Ei , Vi ) :

”””

Equi l i br ium d i s t r i b u t i o n func t i on ( matrix form ) .

: param T: temperature / c r i t i c a l temperature

: param Ei : energy

: param Vi : v o l t a g e .

: re turn : (4 ,4) array . The equ i l i b r i um d i s t r i b u t i o n func t i on at (T, Ei , Vi ) .

”””

Ei = np . r e a l ( Ei )

e l e c t r on = np . tanh (1 . 76/T ∗ ( Ei−Vi )/2) ∗ np . i d e n t i t y (2 )

ho l e = np . tanh (1 . 76/T ∗ ( Ei+Vi )/2) ∗ np . i d e n t i t y (2 )

zero = np . z e r o s ( ( 2 , 2 ) )

return np . b lock ( [ [ e l e c t r on , ze ro ] , [ zero , ho l e ] ] )

def mul (x , y ) :

”””

Matrix mu l t i p l i c a t i o n o f th ree diment iona l arrays where the l a s t dimension i s

po s i t i on .

Performs a 2x2 matrix mu l t i p l i c a t i o n x @ y fo r each po s i t i on m.

: param x , y : (2 ,2 ,m) arrays .

: re turn : (2 ,2 ,m) = x @ y

”””

return np . einsum ( ’ i j n , jkn −> ikn ’ , x , y )

# NON−EQUILIBRIUM

def make bas i smatr i ce s ( ) :

”””

Create the b a s i s matr ices f o r (4 ,4) b l o c k d iagona l matrix space .

: re turn : rho = (8 ,4 ,4) array conta in ing the e i g h t (4 ,4) b a s i s matr ices .

( rho0 , rho1 , rho2 , . . . , rho7 )

”””

rho4 = np . diag ( [1 ,1 , −1 , −1])

# Paul i matr ices

sigma0 = np . i d e n t i t y (2 )

sigma1 = np . array ( [ [ 0 , 1 ] , [ 1 , 0 ] ] )

sigma2 = np . array ( [ [0 , −1 j ] , [ 1 j , 0 ] ] )

sigma3 = np . array ( [ [ 1 , 0 ] , [ 0 , − 1 ] ] )

b0 = sigmablock ( sigma0 )

b1 = sigmablock ( sigma1 )

b2 = sigmablock ( sigma2 )

b3 = sigmablock ( sigma3 )

b4 = rho4 @ b0

b5 = rho4 @ b1

b6 = rho4 @ b2

b7 = rho4 @ b3

rho = np . array ( [ b0 , b1 , b2 , b3 , b4 , b5 , b6 , b7 ] )

return rho

rho = make bas i smatr i ce s ( )

def c o e f f i n b b a s i s (M, n ) :
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”””

Find the p ro j e c t i on o f the matrix M on the n−th element rho n o f the rho−ba s i s .

: param M: (4 ,4) array .

: param n : index o f the b a s i s matrix .

: re turn : Mn. Number . Pro jec t ion o f M on bn .

”””

return np . t r a c e ( rho [ n ] @ M) / 4

def c o e f f i c i e n t s f r om ma t r (M) :# co e f f i c i e n t s from matrix

”””

Transform a (4 ,4) b l o c k d iagona l matrix in to the corresponding (8 ,)− array in

rho−space .

: param M: (4 ,4) b l o c k d iagona l matrix .

: re turn : (8 , ) vec to r . The matrix m expressed in the rho−ba s i s .

”””

M0 = c o e f f i n b b a s i s (M, 0)

M1 = c o e f f i n b b a s i s (M, 1)

M2 = c o e f f i n b b a s i s (M, 2)

M3 = c o e f f i n b b a s i s (M, 3)

M4 = c o e f f i n b b a s i s (M, 4)

M5 = c o e f f i n b b a s i s (M, 5)

M6 = c o e f f i n b b a s i s (M, 6)

M7 = c o e f f i n b b a s i s (M, 7)

v = np . array ( [M0, M1, M2, M3, M4, M5, M6, M7] )

return v

def mat r i x f r om c o e f f i c i e n t s ( v ) :

”””

Construct the f u l l (4 ,4) b l o c k d iagona l matrix from i t s c o e f f i c i e n t s in

the rho−ba s i s .

: param v : (8 , ) array conta in ing (M0, M1, . . . , M7) = the c o e f f i e c i e n t s in

the rho−ba s i s .

: re turn : (4 ,4) matrix be l ong ing to v .

”””

M = np . z e ro s ( ( 4 , 4 ) , dtype=np . complex128 )

for n in range ( 8 ) :

M += v [ n ] ∗ rho [ n ]

return M

def make vec (v , dv ) :

”””

From the two (8 ,m) arrays v and dv , c rea t e one r e a l (32 ,m) array .

I f m=0, then there i s no second dimension to the v ec t o r s invo l v ed .

: param v : (8 ,m) array (np . complex128 )

: param dv : (8 ,m) array (np . complex128 )

: re turn : (32 ,m) array ( r e a l ) = [Re( v ) , Re( dv ) , Im( v ) , Im( dv ) ]

”””

vec = np . array ( [ np . r e a l ( v ) , np . r e a l ( dv ) , np . imag (v ) , np . imag (dv ) ] ) # (4 , 8 , m)

i f v . s i z e == 8 :

return np . reshape ( vec , ( 3 2 , ) )

else :

m = v [ 0 , : ] . s i z e
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return np . reshape ( vec , (32 ,m) )

def s p l i t v e c ( vec ) :

”””

Extrac t the np . complex128 (8 ,m) vec t o r s v and dv from vec .

: param vec : (32 ,m) array . [Re( v ) , Re( dv ) , Im( v ) , Im( dv ) ] .

: re turn : v , dv . Both have shape (8 ,m)

”””

k = 8

v = vec [ 0 : 8 ] + vec [ 1 6 : 2 4 ] ∗ 1 j

dv = vec [ 8 : 1 6 ] + vec [ 2 4 : 3 2 ] ∗1 j

return v , dv

def h and dh from vec ( vec ) :

””””

S p l i t the rea l , parametr ized vec to r and cons t ruc t the be l ong ing matr ices .

: param vec : (32 ,) array

: re turn : the 4x4 matr ices be l ong ing to vec

”””

v , dv = s p l i t v e c ( vec ) # parameter ized d i s t r i b u t i o n fnc + d e r i v a t i v e

h matr = ma t r i x f r om c o e f f i c i e n t s ( v ) # d i s t r i b u t i o n func t i on

dh matr = ma t r i x f r om c o e f f i c i e n t s ( dv ) # de r i v a t i v e o f d i s t r i b u t i o n func t ion

return h matr , dh matr

def mul Mv(M, v ) :

”””

Matrix t imes vec to r f o r mu l t i p l e p o s i t i o n s at once .

The dinemsion o f the matr ices and vec t o r s are 8 in the code , but in

p r i n c i p l e they cou ld have any dimension .

: param M: (8 ,8 ,m) . Matrices o f dimension (8 ,8) f o r each o f the m po s i t i o n s

v : (8 , m) . Vector o f dimension (8 ,m) fo r each po s i t i on

return : (8 ,m) . Mv fo r each po s i t i on .

”””

return np . einsum ( ’ ikn , kn −> in ’ , M, v )

def s a v e a r r a y l i s t t o f i l e ( l s t , path ) :

”””

A func t ion fo r sav ing any number o f f l a t t e n e d arrays in to the same . npy− f i l e .

Each array needs a unique l o a d f r om f i l e ()− funct ion , because t h i s func t i on

does not save the shape o f the arrays nor t h e i r names .

: param l s t : l i s t conta in ing arrays . The arrays in l s t has shape (m, )

where m could be any number .

: param path : the path to the p lace where we save the arrays .

: re turn : None

”””

L = len ( l s t ) # number o f arrays

l eng th s = [ ] # leng t h s o f arrays in l s t

to t = 1 # t o t a l numer o f e lements we want to save : f o r each array ,

#we save the number o f e lements and the e lements .

for e l in l s t :

l eng th s += [ e l . s i z e ] # we need to save each element o f the array

to t += 1 + e l . s i z e # plus one because we a l s o need the t o t a l
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#number o f e lements in the array

# i n i t i a l i z e the array we want to save .

ar r = np . z e r o s ( tot , dtype=np . complex128 )

a r r [ 0 ] = L

c = L+1 # counter . The index f o r where the next array shou ld be i n s e r t e d in arr .

for i in range (L ) :

l i = l eng th s [ i ] # lengh t o f array i in l s t

ar r [ i +1] = l i

a r r [ c : c + l i ] = l s t [ i ]

c += l i

# save arrays

np . save ( path , a r r )

return None

def app end t o f i l e ( arr , f i l ename , ove rwr i t e=False ) :

”””

Append an array to a . t x t− f i l e . The arrays are s t o r e s as two l i s t s :

Re( arr ) and Im( arr ) .

D i f f e r en t arrays are separated by #.

: param arr : (m, ) array to be wr i t t en to f i l e .

: param f i l ename : path to f i l e

: param overwr i t e : boolean . True i f we do not want to overwr i t e the f i l e :

i n s t ead erase whatever i s in the f i l e

from be fo r e and wr i t e the array in to the empty f i l e .

”””

a r r s t r = str (np . r e a l ( a r r ) ) + str (np . imag ( ar r ) ) + ’#’

m = ’ a ’ # append mode

i f ove rwr i t e :

m=’w ’ # i f f i l ename i s not empty , empty i t and s t a r t wr i t i n g .

# pr in t ( ’Warning : do NOT open ’+ f i l ename+’ wh i l e the program i s running ! ’ )

f i l e = open( f i l ename , m) # open t e x t f i l e f o r appending the newly c a l c u l a t e d d e l t a

f i l e . wr i t e ( a r r s t r )

f i l e . c l o s e ( )

return 0
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Solvers

class Full RetardedGF :

”””

This c l a s s conta ins the re tarded Green funct ion , and func t i ons f o r s o l v i n g the

Usadel equat ion in equ i l i b r i um .

”””

def i n i t ( s e l f , l , N, r , T, E, q , exchange , r c t t i=np . empty (0 ) ,

d e l t a=np . empty ( 0 ) ) :

”””

This c l a s s conta ins the re tarded Green funct ion , and func t i ons f o r s o l v i n g the

Usadel equat ion in equ i l i b r i um .

: param l : system l eng t h / x i0

: param N: number o f nodes at the x−ax i s

: param r : In t e r f a c e parameters . Ei ther a number or a (2 , ) array i f the

i n t e r f a c e parameter i s d i f f e r e n t at the l e f t and r i g h t border .

: param T: temperatures . Ei ther a number or a (2 , ) array i f the temperature

i s d i f f e r e n t at the l e f t and r i g h t border .

: param E: ( e , ) . Energies .

: param q : i n e l a s t i c s c a t t e r i n g . Real number .

: param exchange : (3 , ) array . Spin s p l i t t i n g f i e l d in d i r e c t i o n s x , y , z .

: param r c t t i : ( e ,32 ,N) r e a l array . The re tarded green func t ion at each

energy and node .

: param de l t a : (N, ) . The superconduct ing order parameter / gap at each node .

”””

s e l f . l ength = l

s e l f .N = N

s e l f . xax i s = np . l i n s p a c e (0 , l ,N)

s e l f . e n e r g i e s = E

e = s e l f . e n e r g i e s . s i z e

s e l f . q = q # i n e l a s t i c s c a t t e r i n g term

s e l f . exchange = exchange # exchange f i e l d

try : # i s r an number or an array?

dummy = int ( r )

s e l f . i n t e r f a c e pa r ame t e r s = np . array ( [ r , r ] ) # (rL , rR)

except :

s e l f . i n t e r f a c e pa r ame t e r s = r

try : # i s T a number or an array?

dummy = int (T)

s e l f . temperatures = np . array ( [T, T] )

except :

s e l f . temperatures = T # (TL, TR)

i f r c t t i . s i z e : # i f r c t t i i s g iven

s e l f . r c t t i = r c t t i

s e l f . g u e s s p r e v r e s = Fal se # the guess f o r ( e , n) i s r c t t i ( e , n)

#− not the p r e v i ou s l y c a l c u l a t e d va lue .

else :

s e l f . r c t t i = np . z e r o s ( ( e , 3 2 ,N) ) # guess : normal metal

s e l f . g u e s s p r e v r e s = True # the guess f o r ( e , n) i s r c t t i ( e−1,n ) .
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#Ie . use the p r e v i ou s l y c a l c u l a t e d va lue as a guess .

i f de l t a . s i z e : # i f d e l t a i s g iven

s e l f . d e l t a = de l t a

else :

s e l f . d e l t a = np . z e r o s (N, dtype=np . complex128 )

s e l f . energy index = 0

# choose boundary cond i t i ons

s e l f . nxn = False

s e l f . nxn transparent = False

s e l f . vxv = False

def s a v e t o f i l e ( s e l f , path ) :

”””

Save r e l e v an t informat ion from the o b j e c t to a f i l e .

The o b j e c t can then be loaded from the f i l e .

: param path : path to the f i l e where the o b j e c t i s saved . Ending with . npy .

”””

# the arrays we save

l s t = [ s e l f . xaxis , s e l f . ene rg i e s , np . array ( [ s e l f . q ] ) , s e l f . i n t e r f a c e pa ramet e r s ,

s e l f . temperatures , s e l f . r c t t i . f l a t t e n ( ) , s e l f . de l ta , s e l f . exchange ]

# save

s a v e a r r a y l i s t t o f i l e ( l s t , path )

# −−− EOM AND BC −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
def eom( s e l f , x , r c t t i ) :

”””

Equation o f motion fo r the re tarded Green func t ion .

: param x : (m, ) , the x−ax i s .

: param r c t t i : (32 , m) , the re tarded green func t ion at each po s i t i on m.

: re turn : (32 , m) , d e r i v a t i v e d/dx r c t t i a t each po s i t i on m.

”””

m = x . s i z e

M = v2m( r c t t i ) # (4 , 2 , 2 , m)

a , b , da , db = M[ 0 ] , M[ 1 ] , M[ 2 ] , M[ 3 ] # (2 ,2 ,m)

# crea te the matr ices N and t i l d e (N)

I = np . t ranspose (np . f u l l ( (m, 2 , 2 ) , np . i d e n t i t y ( 2 ) ) , ( 1 , 2 , 0 ) ) # (2 ,2 ,m)

N inv = I − mul (a , b ) # (2 , 2 , m)

tN inv = I − mul (b , a )

N = np . t ranspose (np . l i n a l g . inv (np . t ranspose ( N inv , ( 2 , 0 , 1 ) ) ) , ( 1 , 2 , 0 ) )

# transpos ing due to np . l i n a l g . inv tak ing inve r s e over the two l a s t axes

tN = np . t ranspose (np . l i n a l g . inv (np . t ranspose ( tN inv , ( 2 , 0 , 1 ) ) ) , ( 1 , 2 , 0 ) )

# current energy inc l ud ing i n e l a s t i c s c a t t e r i n g

Ei = s e l f . e n e r g i e s [ s e l f . energy index ] + 1 j ∗ s e l f . q

# normal metal

d da = − (2 ∗ mul (mul (da , tN ) , mul (b , da ) ) + 2 j ∗a ∗ Ei )

d db = − (2 ∗ mul (mul (db , N) , mul ( a , db ) ) + 2 j ∗b ∗ Ei )

# supe r conduc t i v i t y

i f np . count nonzero ( s e l f . d e l t a ) :

i f not np . a r ray equa l (x , s e l f . xax i s ) :
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d = CubicSpl ine ( s e l f . xaxis , s e l f . d e l t a ) ( x )

# in t e r p o l a t e d e l t a i f the x−ax i s i s not the o r i g i n a l one

else :

d = s e l f . d e l t a

de l ta s i gma = np . einsum ( ’n , i j −> i j n ’ , d , s igma y )

# (2 ,2 ,m) . sigma y ∗ d e l t a ( x ) at each po s i t i on

de l tacon s igma = np . einsum ( ’n , i j −> i j n ’ , np . conjugate (d ) , s igma y )

# (2 ,2 ,m) . sigma y ∗ conjugate ( d e l t a ( x )) at each po s i t i on

d da += − ( de l ta s i gma − mul (mul ( a , de l tacon s igma ) , a ) )

d db += − (− de l tacon s igma + mul (mul (b , de l ta s i gma ) , b ) )

# spin−s p l i t t i n g f i e l d

i f np . count nonzero ( s e l f . exchange ) :

h = ( np . t ranspose (np . f u l l ( (m, 2 , 2 ) , s igma x ) , ( 1 , 2 , 0 ) ) ∗ s e l f . exchange [ 0 ]

+ np . t ranspose (np . f u l l ( (m, 2 , 2 ) , s igma y ) , ( 1 , 2 , 0 ) ) ∗ s e l f . exchange [ 1 ]

+ np . t ranspose (np . f u l l ( (m, 2 , 2 ) , s igma z ) , ( 1 , 2 , 0 ) ) ∗ s e l f . exchange [ 2 ] )

d da += − 1 j ∗ ( mul (h , a ) − mul (a , np . conjugate (h ) ) )

d db += 1 j ∗ (mul (np . conjugate (h ) , b ) − mul (b , h ) )

return m2v(np . array ( [ da , db , d da , d db ] ) )

def bc nxn ( s e l f , r c t t i l e f t , r c t t i r i g h t ) :

”””

Boundary cond i t i ons f o r a normal metal on both s i d e s .

: param r c t t i l e f t : ( 32 , ) . Retarded Green func t ion j u s t i n s i d e the

l e f t border .

: param r c t t i r i g h t : ( 32 , ) . Retarded Green func t ion j u s t i n s i d e the

r i g h t border .

: re turn : ( 32 , ) . The r e s i d u a l s o f the boundary cond i t i ons .

”””

l = s e l f . l ength

# l e f t

r l = s e l f . i n t e r f a c e pa r ame t e r s [ 0 ] # in t e r a f c e parameter

al , bl , dal , dbl = ve c t o r t o ma t r i c e s ( r c t t i l e f t ) # r i c a t t i matr ices

r e s a l = dal − 1/(2 ∗ r l ∗ l ) ∗ a l

r e s b l = dbl − 1/(2 ∗ r l ∗ l ) ∗ bl

# r i g h t

r r = s e l f . i n t e r f a c e pa r ame t e r s [ 1 ]

ar , br , dar , dbr = ve c t o r t o ma t r i c e s ( r c t t i r i g h t )

r e s a r = dar + 1/(2 ∗ r r ∗ l ) ∗ ar

r e s b r = dbr + 1/(2 ∗ r r ∗ l ) ∗ br

return mat r i c e s t o v e c t o r ( [ r e s a l , r e s b l , r e s a r , r e s b r ] )

def bc t ransparent ( s e l f , r c t t i l e f t , r c t t i r i g h t ) :

”””

Transparent bc f o r NXN.

r c t t i in N i s zero .

”””

al , bl , dal , dbl = ve c t o r t o ma t r i c e s ( r c t t i l e f t )

ar , br , dar , dbr = ve c t o r t o ma t r i c e s ( r c t t i r i g h t )
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return mat r i c e s t o v e c t o r (np . array ( [ al , bl , ar , br ] ) )

def bc vxv ( s e l f , r c t t i l e f t , r c t t i r i g h t ) :

”””

KL bc fo r VXV.

”””

al , bl , dal , dbl = ve c t o r t o ma t r i c e s ( r c t t i l e f t )

ar , br , dar , dbr = ve c t o r t o ma t r i c e s ( r c t t i r i g h t )

return mat r i c e s t o v e c t o r (np . array ( [ dal , dbl , dar , dbr ] ) )

def bc snn ( s e l f , r c t t i l e f t , r c t t i r i g h t ) :

l = s e l f . l ength

# l e f t border : SX

r l = s e l f . i n t e r f a c e pa r ame t e r s [ 0 ]

g R = gR( r c t t i l e f t )

dg R = dgR( r c t t i l e f t )

Ei = s e l f . e n e r g i e s [ s e l f . energy index ]

d l t a = 1 # gap in S

d = de l tamatr ix ( d l t a )

q = s e l f . q

i f Ei > d l t a :

p r e f = 1 / np . emath . s q r t ( ( Ei + 1 j ∗q )∗∗2 − np . abs ( d l t a )∗∗2)
else :

p r e f = −1 j / np . emath . s q r t (np . abs ( d l t a )∗∗2 − ( Ei + 1 j ∗q )∗∗2)

g SC = pre f ∗ ( Ei∗ rho [ 4 ] + d)

kupr luk i = g R @ dg R − 1/(2∗ l ∗ r l ) ∗ comm(g SC , g R )

r e s a l = kupr luk i [ 0 : 2 , 0 : 2 ]

r e s b l = kupr luk i [ 2 : 4 , 0 : 2 ]

# r i g h t border : XN

r r = s e l f . i n t e r f a c e pa r ame t e r s [ 1 ]

ar , br , dar , dbr = ve c t o r t o ma t r i c e s ( r c t t i r i g h t )

r e s a r = dar + 1/(2 ∗ r r ∗ l ) ∗ ar

r e s b r = dbr + 1/(2 ∗ r r ∗ l ) ∗ br

return mat r i c e s t o v e c t o r ( [ r e s a l , r e s b l , r e s a r , r e s b r ] )

# −−− SOLVE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
def s o l v e ( s e l f , e , guess ) :

”””

So lve the re tarded Usadel equat ion fo r a g iven energy .

: param e : energy index . We so l v e the equat ion fo r Ei = energ i e s [ e ]

: param guess : (32 ,N) array . I n i t i a l ge s s on the re tarded green func t ion .

: re turn : The return o b j e c t o f s o l v e b vp

”””

s e l f . energy index = e # update energy index

i f s e l f . nxn :

bc = s e l f . bc nxn

e l i f s e l f . nxn transparent :
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bc = s e l f . b c t ransparent

e l i f s e l f . vxv :

bc = s e l f . bc vxv

s o l = so lve bvp ( s e l f . eom , bc , s e l f . xaxis , guess ) # so l v e

i f not s o l . s u c c e s s :

print ( s o l . message )

sys . e x i t ( )

# update the o b j e c t ’ s re tarded green func t ion at energy Ei .

s e l f . r c t t i [ e ] = s o l . s o l ( s e l f . xax i s )

return s o l

def f u l l s o l v e ( s e l f ) :

”””

So lve the re tarded Usadel equat ion fo r a l l ene rg i e s .

: param path : path to f i l e where the r e s u l t i s saved .

: re turn : None .

”””

for e in tqdm(range ( s e l f . e n e r g i e s . s i z e ) ) :

# make a guess

i f s e l f . g u e s s p r e v r e s : # use prev ious r e s u l t as guess

i f e==0:

guess = s e l f . r c t t i [ 0 ]

else :

guess = s e l f . r c t t i [ e−1]

else : # r c t t i i s g iven : t y p i c a l l y the a r e s u l t t ha t i s a l ready c a l c u l a t e d

guess = s e l f . r c t t i [ e ]

# so l v e

s o l = s e l f . s o l v e ( e , guess )

class Ful l D i s t rFnc :

”””

The purpose o f t h i s c l a s s i s to s o l v e equat ions o f motion fo r the d i s t r i b u t i o n

func t i on fo r a c o l l e c t i o n o f energ i e s and vo l t a g e d i f f e r e n c e s .

”””

def i n i t ( s e l f , l , N, r , T, E, V, q , r c t t i i n , d r c t t i i n ,

exchange , vect=np . empty ( 0 ) ) :

”””

: param l : system l eng t h / x i0

: param N: number o f nodes at the x−ax i s

: param r : In t e r f a c e parameters . Ei ther a number or a (2 , ) array i f the

i n t e r f a c e parameter i s d i f f e r e n t at the l e f t and r i g h t border .

: param T: temperatures . Ei ther a number or a (2 , ) array i f the temperature

i s d i f f e r e n t at the l e f t and r i g h t border .

: param E: ( e , ) . Energies .

: param V: (v , ) . Vol tage d i f f e r e n c e s . Le f t s i d e : +V/2 , r i g h t s i d e : −V/2.

: param q : i n e l a s t i c s c a t t e r i n g . Real number .

: param r c t t i o u t l : ( e , 3 2 ) . The r i c a t t i parameter ized green func t ion

j u s t ou t s i d e the l e f t border .

: param r c t t i o u t r : ( e , 3 2 ) . The r i c a t t i parameter ized green func t ion
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j u s t ou t s i d e the r i g h t border .

: param r c t t i i n : ( e ,32 ,N) . The r i c a t t i parameter ized green func t ion

in s i d e the mater ia l .

: param d r c t t i i n : ( e , 32 , N) . Der i va t i v e o f r c t t i .

: param exchange : (3 , ) array . Spin s p l i t t i n g f i e l d in d i r e c t i o n s x , y , z .

: param vec t : op t i ona l . ( v , e , N, 32) , the so l v ed d i s t r i b u t i o n func t i on .

I f not s p e c i f i e d , vec w i l l be a p l a c eho l d e r u n t i l the equa t ions are so l v ed .

”””

# −−−−−−− Object a t t r i b u t e s t ha t never changes −−−−−−−

s e l f . l ength = l

s e l f .N = N

s e l f . xax i s = np . l i n s p a c e (0 , l ,N)

s e l f . e n e r g i e s = E

e = s e l f . e n e r g i e s . s i z e

s e l f . q = q # i n e l a s t i c s c a t t e r i n g term

s e l f . v o l t a g e s = V

v = s e l f . v o l t ag e s . s i z e

s e l f . r c t t i i n = r c t t i i n

s e l f . d r c t t i i n = d r c t t i i n

try : # i s r an number or an array?

dummy = int ( r )

s e l f . i n t e r f a c e pa r ame t e r s = np . array ( [ r , r ] ) # (rL , rR)

except :

s e l f . i n t e r f a c e pa r ame t e r s = r

try : # i s T a number or an array?

dummy = int (T)

s e l f . temperatures = np . array ( [T, T] )

except :

s e l f . temperatures = T # (TL, TR)

# choose boundary cond i t i ons

s e l f . snn = False

s e l f . nxn = False

s e l f . nxn transparent = False

s e l f . same = False

s e l f . oppos i t e = Fal se

# −− Matrices in Usadel equat ion and boundary cond i t i ons −−
s e l f . c o e f f ma t r i c e s = np . z e r o s ( ( 6 , s e l f .N, e , 8 , 8 ) , dtype=np . complex128 )

# M, dM, Q, dQ, V and W: t h i s array i s e s p e c i a l l y u s e f u l when i n t e r p o l a t i n g

s e l f . T in = np . z e r o s ( ( 2 , e , 8 , 8 ) , dtype=np . complex128 )

# Matrix f o r boundary cond i t i ons

s e l f . T out = np . z e r o s ( ( 2 , e , 8 , 8 ) , dtype=np . complex128 )

# Matrix f o r boundary cond i t i ons

s e l f . exchange = exchange

s e l f . magnt matrix = ( exchange [ 0 ] ∗ s igmablock ( sigma x )

+ exchange [ 1 ] ∗ s igmablock ( sigma y ) + exchange [ 2 ] ∗ s igmablock ( s igma z ) )
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# −−−−−−− Object a t t r i b u t e s t ha t changes wh i l e s o l v i n g the eqs −−−−−−−

s e l f . v o l t ag e index = 0

s e l f . energy index = 0

s e l f . p o s i t i o n i nd ex = 0

s e l f . guess = np . z e r o s ( (32 , N) )

# s e l f . v e c t conta ins the parameter ized d i s t r i b u t i o n func t ion in the mater ia l .

i f vect . s i z e : # i f a s o l u t i on i s a l ready g iven

s e l f . vect = vect # (v , e ,N,32)

else :

s e l f . vect = np . z e r o s ( ( v , e , N, 32) ) # (v , e ,N,32) r e a l array . P laceho lder .

s e l f . d i s t rFn c ou t l = 0

s e l f . d i s t rFnc ou t r = 0

s e l f . d e l t a=None

# −−− FUNCTIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
def s a v e t o f i l e ( s e l f , path ) :

”””

Save the Fu l l Dis t rFnc o b j e c t to a f i l e .

: param path : path to the f i l e wi th the . npy ending .

”””

# Li s t o f arrays to be saved

l s t = [ s e l f . xaxis , s e l f . i n t e r f a c e pa ramet e r s , s e l f . temperatures ,

s e l f . ene rg i e s , np . array ( [ s e l f . q ] ) , s e l f . vo l tages , s e l f . r c t t i i n . f l a t t e n ( ) ,

s e l f . d r c t t i i n . f l a t t e n ( ) , s e l f . vect . f l a t t e n ( ) , s e l f . exchange ]

s a v e a r r a y l i s t t o f i l e ( l s t , path )

def c a l c u l a t e ma t r i c e s ( s e l f , de l ta new ) :

”””

Ca l cu la t e the matr ices M, dM, Q, dQ, V, W and T, and pu t t i n g them in to the

o b j e c t proper ty c o e f f ma t r i c e s .

This func t i on shou ld be c a l l e d only once per time the eqs are so l v ed !

: param de l ta new : (N, ) array conta in ing the superconduct ing order parameter

at each po s i t i on .

: re turn None .

”””

# pr in t (’− c a l c u l a t i n g matr ices − ’)

for e in tqdm(range ( s e l f . e n e r g i e s . s i z e ) ) :

for s i d e in [ 0 , −1]: # l e f t and r i g h t s i d e

gR in = gR( s e l f . r c t t i i n [ e , : , s i d e ] ) # re t g f j u s t i n s i d e

#l e f t / r i g h t border

gA in = gA( gR in ) # avd g f j u s t i n s i d e l e f t / r i g h t border

gR out = rho [ 4 ] # Assume N r e s e r v o i r s on both s i d e s

gA out = gA( gR out )

s e l f . T in [ s ide , e ] = ( np . einsum ( ’ ik , nkj , j l , mli −> nm ’ ,

gA out , rho , gR in , rho ) − np . einsum ( ’ ik , nkj , mjl , l i −> nm ’ ,

gA out , rho , rho , gA in ) − np . einsum ( ’ nik , kj , j l , mli −> nm ’ ,

rho , gR out , gR in , rho ) + np . einsum ( ’ nik , kj , mjl , l i −> nm ’ ,

rho , gR out , rho , gA in ) )

s e l f . T out [ s ide , e ] = ( np . einsum ( ’ ik , nkj , j l , mli −> nm ’ ,

gA in , rho , gR out , rho ) − np . einsum ( ’ ik , nkj , mjl , l i −> nm ’ ,
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gA in , rho , rho , gA out)− np . einsum ( ’ nik , kj , j l , mli −> nm ’ ,

rho , gR in , gR out , rho ) + np . einsum ( ’ nik , kj , mjl , l i −> nm ’ ,

rho , gR in , rho , gA out ) )

for n in range ( s e l f .N) :

g R = gR( s e l f . r c t t i i n [ e , : , n ] ) # re t g f at energy Ei and po s i t i on n

g A = gA( g R ) # adv g f at energy Ei and po s i t i on n

dg R = dgR( s e l f . r c t t i i n [ e , : , n ] ) # de r i v a t i v e r e t g f at Ei , n

dg A = gA(dg R ) # de r i v a t i v e adv g f at Ei , n

a , b , da , db = ve c t o r t o ma t r i c e s ( s e l f . r c t t i i n [ e , : , n ] )

N, tN = create N and tN (a , b)

# Need to f i nd (d/dx )ˆ2 gR .

da , db , d da , d db = ve c t o r t o ma t r i c e s ( s e l f . d r c t t i i n [ e , : , n ] )

# dN/dx

dN = N @ (da @ b + a @ db) @ N

dtN = tN @ (db @ a + b @ da ) @ tN

# (d/dx )ˆ2 N

d dN = (dN @ (da @ b + a @ db) @ N + N @ (da @ b + a @ db) @ dN

+ N @ ( d da @ b + 2∗ da @ db + a @ d db ) @ N)

d dtN =( dtN @ (db @ a + b @ da ) @ tN + tN @ (db @ a + b @ da ) @ dtN

+ tN @ ( d db @ a + 2∗ db @ da + b @ d da ) @ tN)

# cons t ruc t (d/dx )ˆ2 gR .

ul = 2∗ d dN # upper l e f t b l o c k

ur = 2∗ (d dN @ a + 2∗ dN @ da + N @ d da ) # upper r i g h t b l o c k

l l = − 2∗ ( d dtN @ b + 2∗ dtN @ db + tN @ d db ) # lower l e f t b l o c k

l r = − 2∗ d dtN # lower r i g h t b l o c k

dd gR = np . block ( [ [ ul , ur ] , [ l l , l r ] ] ) # (d/dx )ˆ2 gR

dd gA = gA(dd gR ) # (d/dx )ˆ2 gA

d gRdgR = dg R @ dg R + g R @ dd gR # d/dx (gR d/dx gR)

d gAdgA = dg A @ dg A + g A @ dd gA # d/dx (gA d/dx gA)

dltamatr = de l tamatr ix ( de l ta new [ n ] )

M = (np . einsum ( ’ k i s , l s i −> k l ’ , rho , rho )

− np . einsum ( ’ k i t , ts , l s r , r i −> k l ’ , rho , g R , rho , g A ) )

dM = (− np . einsum ( ’ k i t , ts , l s r , r i −> k l ’ , rho , dg R , rho , g A )

− np . einsum ( ’ k i t , ts , l s r , r i −> k l ’ , rho , g R , rho , dg A ) )

Q = (np . einsum ( ’mit , nts , sr , r i −> nm ’ , rho , rho , g R , dg R )

− np . einsum ( ’ n i t , mts , sr , r i −> nm ’ , rho , rho , g A , dg A ) )

dQ = (np . einsum ( ’mit , nts , s i −> nm ’ , rho , rho , d gRdgR)

− np . einsum ( ’ n i t , mts , s i −> nm ’ , rho , rho , d gAdgA ) )

V super = 1 j ∗ (np . einsum ( ’ n i t , ts , sr , mri −> nm ’ , rho , dltamatr ,

g R , rho ) − np . einsum ( ’ n i t , ts , msr , r i −> nm ’ , rho , dltamatr , rho , g A )

− np . einsum ( ’ i t , nts , sr , mri −> nm ’ , dltamatr , rho , g R , rho )

+ np . einsum ( ’ i t , nts , msr , r i −> nm ’ , dltamatr , rho , rho , g A ) )

V magnt = 1 j ∗ (np . einsum ( ’ n i t , ts , sr , mri −> nm ’ , rho ,
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s e l f . magnt matrix , g R , rho )

− np . einsum ( ’ n i t , ts , msr , r i −> nm ’ , rho , s e l f . magnt matrix , rho , g A )

− np . einsum ( ’ i t , nts , sr , mri −> nm ’ , s e l f . magnt matrix , rho , g R , rho )

+ np . einsum ( ’ i t , nts , msr , r i −> nm ’ , s e l f . magnt matrix , rho , rho , g A ) )

W = np . z e ro s ( ( 8 , 8 ) )

s e l f . c o e f f ma t r i c e s [ : , n , e ] = np . array ( [M, dM, Q, dQ,

V super + V magnt , W] )

return None

# −−− EOM AND BC −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
def eom( s e l f , x , vec ) :

”””

Equation o f motion fo r the parametr ized d i s t r i b u t i o n func t i on hvec at

a l l p o s i t i o n s and one energy .

: param x : (m, ) array . x−ax i s . NOT s e l f . x ax i s !

: param vec : (32 ,m) array conta in ing hv and dhv at each node .

: re turn : (32 ,m) array conta in ing d/dx vec .

”””

i f np . a r ray equa l (x , s e l f . xax i s ) :

cm = s e l f . c o e f f ma t r i c e s [ : , : , s e l f . energy index , : , : ] #(6 ,m,8 ,8 )

else : # in t e r p o l a t e the c o e f f i c i e n t matr ices i f the x−ax i s i s not the o r i g i n a l .

cm = CubicSpl ine ( s e l f . xaxis ,

s e l f . c o e f f ma t r i c e s [ : , : , s e l f . energy index , : , : ] , a x i s =1)(x )

cm = np . t ranspose (cm, (0 , 2 , 3 , 1 ) )

M, dM, Q, dQ, V, W = cm [ 0 ] , cm [ 1 ] , cm [ 2 ] , cm [ 3 ] , cm [ 4 ] , cm [ 5 ] # (8 , 8 , m)

M inv = np . t ranspose (np . l i n a l g . inv (np . t ranspose (M, ( 2 , 0 , 1 ) ) ) , ( 1 , 2 , 0 ) )

hv , dhv = s p l i t v e c ( vec )

d dhv = − mul Mv(M inv , mul Mv(dM + Q, dhv ) + mul Mv(dQ + V, hv ) )

return make vec (dhv , d dhv )

def bc t ransparent ( s e l f , v e c l , v e c r ) :

”””

Transparent ( cont inuous ) boundary cond i t i ons .

Demands t ha t the d i s t r i b u t i o n func t i on in s i d e the mater ia l i s the e qu i l i b r i um

one .

: param v e c l : ( 32 , ) . The d i s t r i b u t i o n func t i on j u s t i n s i d e the l e f t border .

: param vec r : ( 32 , ) . The d i s t r i b u t i o n func t i on j u s t i n s i d e the r i g h t border .

: re turn : ( 32 , ) . The r e s i d u a l s o f the boundary cond i t i ons .

”””

hout l = c o e f f i c i e n t s f r om ma t r ( s e l f . d i s t rFn c ou t l ) # the ou t s i d e ( e qu i l i b r i um )

#d i s t r i b u t i o n func t i on

hl , dhl = s p l i t v e c ( v e c l ) # d i s t r i b u t i o n func t i on j u s t i n s i d e l e f t border

r e s l = hout l − hl # re s i d ua l

hout r = c o e f f i c i e n t s f r om ma t r ( s e l f . d i s t rFnc ou t r )

hr , dhr = s p l i t v e c ( v e c r )

r e s r = hout r − hr

r e s = make vec ( r e s l , r e s r )
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return r e s

def bc NXN( s e l f , v e c l , v e c r ) :

”””

KL boundary cond i t i ons f o r normal metal on both s i d e s .

: param v e c l : ( 32 , ) . The d i s t r i b u t i o n func t i on j u s t i n s i d e the l e f t border .

: param vec r : ( 32 , ) . The d i s t r i b u t i o n func t i on j u s t i n s i d e the r i g h t border .

: re turn : ( 32 , ) . The r e s i d u a l s o f the boundary cond i t i ons .

”””

e = s e l f . energy index

r l = s e l f . i n t e r f a c e pa r ame t e r s [ 0 ] # in t e r f a c e parameter at l e f t i n t e r f a c e

r r = s e l f . i n t e r f a c e pa r ame t e r s [ 1 ] # at r i g h t i n t e r f a c e

l = s e l f . l ength

# l e f t border

M l , Q l = s e l f . c o e f f ma t r i c e s [ 0 , 0 , e ] , s e l f . c o e f f ma t r i c e s [ 2 , 0 , e ]

T in l = s e l f . T in [ 0 , e ]

Tout l = s e l f . T out [ 0 , e ]

hou t l = c o e f f i c i e n t s f r om ma t r ( s e l f . d i s t rFn c ou t l )

hl , dhl = s p l i t v e c ( v e c l )

r e s l = M l @ dhl + Q l @ hl − 1/(2∗ l ∗ r l ) ∗ ( Tout l @ hout l − Tin l @ hl )

# r i g h t border

M r , Q r = s e l f . c o e f f ma t r i c e s [ 0 , −1, e ] , s e l f . c o e f f ma t r i c e s [ 2 , −1, e ]

Tin r = s e l f . T in [ 1 , e ]

Tout r = s e l f . T out [ 1 , e ]

hout r = c o e f f i c i e n t s f r om ma t r ( s e l f . d i s t rFnc ou t r )

hr , dhr = s p l i t v e c ( v e c r )

r e s r = M r @ dhr + Q r @ hr + 1/(2∗ l ∗ r r ) ∗ ( Tout r @ hout r − Tin r @ hr )

r e s = np . array ( [ np . r e a l ( r e s l ) , np . r e a l ( r e s r ) , np . imag ( r e s l ) , np . imag ( r e s r ) ] )

return r e s . f l a t t e n ( )

# −−− SOLVE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
def s o l v e ( s e l f , v , e ) :

”””

So lve the equat ion o f motion with KL boundary cond i t i ons f o r energy

E[ e ] and vo l t a g e V[ v ] . The d i s t r i b u t i o n func t i on on the ou t s i d e i s the

e qu i l i b r i um d i s t r i b u t i o n func t i on .

: param v : v o l t a g e index

: param e : energy index

: re turn : the o b j e c t t ha t s o l v e b vp re turns .

”””

s e l f . v o l t ag e index = v

s e l f . energy index = e

# Equi l i br ium d i s t r i b u t i o n func t i ons on the ou t s i d e .

T = s e l f . temperatures [ 0 ]

Ei = s e l f . e n e r g i e s [ e ]
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Vi = s e l f . v o l t ag e s [ v ]

p = np . tanh (1 . 76/T ∗ ( Ei + Vi )/2)

m = np . tanh (1 . 76/T ∗ ( Ei − Vi )/2)

i f e==0:

s e l f . d i s t rFn c ou t l = np . diag (np . array ( [ p , m, m, p ] ) )

# spin vo l t a g e Vi in z−d i r e c t i on

# s e l f . d i s t rFn c ou t l = np . d iag (np . array ( [m, m, p , p ] ) )

# ordinary vo l t a g e

i f s e l f . same :

s e l f . d i s t rFnc ou t r = np . diag (np . array ( [ p , m, m, p ] ) )

# spin vo l t a g e Vi in z−d i r e c t i on

# s e l f . d i s t rFnc ou t r = np . d iag (np . array ( [m, m, p , p ] ) )

# ordinary vo l t a g e

e l i f s e l f . oppos i t e :

s e l f . d i s t rFnc ou t r = np . diag (np . array ( [m, p , p , m] ) )

# spin vo l t a g e −Vi in z−d i r e c t i on

#s e l f . d i s t rFnc ou t r = np . d iag (np . array ( [ p , p , m, m] ) )

# ordinary vo l t a g e

else :

sys . e x i t ( ’ Choose same or oppos i t e s i gn s on vo l t ag e s ! ’ )

i f s e l f . nxn :

bc = s e l f . bc NXN

# e l i f s e l f . nxn transparent :

# bc = s e l f . b c t ransparen t

else :

sys . e x i t ( ’ Choose a boundary cond i t i on ’ )

s o l = so lve bvp ( s e l f . eom , bc , s e l f . xaxis , s e l f . guess )

i f not s o l . s u c c e s s :

print ( s o l . message )

sys . e x i t ( )

s e l f . vect [ v , e ] = np . t ranspose ( s o l . s o l ( s e l f . xax i s ) )

# update vec according to the s o l u t i on o f the equat ion

return s o l

def f u l l s o l v e ( s e l f , path ) :

”””

So lve the equat ion o f motion fo r a l l ene rg i e s and vo l t a g e d i f f e r e n c e s .

The r e s u l t i s saved to f i l e f o r each energy and each vo l t a g e in case

something crashes and the func t i on i s not ab l e to f i n i s h .

: param path : path to the f i l e where the r e s u l t i n g o b j e c t i s saved ,

with ending . npy .

”””

for v in range ( s e l f . v o l t a g e s . s i z e ) :

for e in tqdm(range ( s e l f . e n e r g i e s . s i z e ) ) :

s e l f . guess = np . t ranspose ( s e l f . vect [ v , e ] )

s o l = s e l f . s o l v e (v , e )

s e l f . s a v e t o f i l e ( path )
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def abso lu t e conve rgence (new , old , t o l ) :

”””

Abso lute convergence c r i t e r i a .

: param new : new array

: param o ld : o ld array

: param t o l : t o l e rance

: re turn : True i f new and o ld are c l o s e enough . False o therwi se .

”””

F rea l = np .max( np . abs ( np . r e a l (new − o ld ) ) )

F imag = np .max( np . abs ( np . imag (new − o ld ) ) )

i f F rea l<t o l and F imag<t o l :

return True

else :

return False

def s o l v e ( to l , V, exchange , f i l ename , d l tagues s , s , o ) :

””””

So lve the Retarded + Keldysh Usadel equat ion s e l f c o n s i s t e n t l y .

”””

homepath = ’ ’

p ro j e c tpath = ’ ’

# cons tant s

l = 8 # system l eng t h / x i0

N = 100 # number o f nodes

x = np . l i n s p a c e (0 , l ,N) # xax i s

# Unevenly spaced energ i e s

E = np . z e ro s (500)

E [ 0 : 5 0 ] = np . l i n s p a c e (30 , 3 , 50 , endpoint=Fal se )

E [ 5 0 : 5 0 0 ] = np . l i n s p a c e (3 , 1e−3, 450)

q = 1e−2 # i n e l a s t i c s c a t t e r i n g in re tarded Usadel equat ion

r = 3 # in t e r f a c e parameter

T = 1e−2 # temperature in r e s e r v o i r s

delta new = CubicSpl ine (np . l i n s p a c e (0 , l , 1 0 0 ) ,

np . f u l l (100 , d l tagues s , dtype=np . complex128 ) ) ( x )

d e l t a o l d = np . copy ( de l ta new ) + 10 ∗ t o l # the prev ious d e l t a .

# At the moment chosen in such a way tha t the whi le−l oop s t a r t s

# ob j e c t s to s o l v e f o r

r e t g f = Full RetardedGF ( l , N, r , T, E, q , exchange )

r c t t i , d r c t t i = r c t t i a nd d r c t t i f r om Fu l l r e tGF ( r e t g f )

d i s f n c = Ful l D i s t rFnc ( l , N, r , T, E, np . array ( [V] ) , q , r c t t i , d r c t t i , exchange )

# choose boundary cond i t i ons

r e t g f . nxn = True # KL bc , normal metal on the s i d e s

d i s f n c . nxn = True # KL bc , normal metal on the s i d e s

d i s f n c . same = s # V on both s i d e s i f same , V on l e f t and −V on r i g h t i f oppos i t e

d i s f n c . oppos i t e = o

counter = 0
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while not abso lu t e conve rgence ( delta new , de l t a o l d , t o l ) :

counter += 1

i t t ime = time ( )

# − − − − − − − − − − − − − − − − − − − − − − −
# update re tarded equat ion according to the r e c en t l y c a l c u l a t e d d e l t a

r e t g f . d e l t a = delta new

# Solve the re tarded Green func t ion

r e t g f . f u l l s o l v e ( )

# update r c t t i and d r c t t i in d i s t r i b u t i o n f u n c t i o n according

# to the s o l u t i on fo r the re tarded green func t ion

d i s f n c . r c t t i i n , d i s f n c . d r c t t i i n = r c t t i a nd d r c t t i f r om Fu l l r e tGF ( r e t g f )

# ca l c u l a t e matr ices be l ong ing to new r c t t i and new de l t a

d i s f n c . c a l c u l a t e ma t r i c e s ( de l ta new )

# Solve the d i s t r i b u t i o n func t i on

d i s f n c . f u l l s o l v e ( p ro j e c tpath+’ g r e en func t i on s /DF ’+f i l ename [1:−2]+ ’ . npy ’ )

d e l t a o l d = np . copy ( de l ta new )

# ca l c u l a t e d e l t a from the c a l c u a l t e d green func t ion and d i s t r i b u t i o n func t i on

delta new = de l t a ( r e t g f . r c t t i , np . t ranspose ( d i s f n c . vect [ 0 ] , ( 0 , 2 , 1 ) ) , E)

# − − − − − − − − − − − − − − − − − − − − − − −

# save d e l t a

app end t o f i l e ( delta new , pro j e c tpath+’ d e l t a s / d e l t a s ’+f i l ename [1:−2]+ ’ . txt ’ )

return r e t g f , d i s f n c
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