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Sammedrag

Med den økende interessen for ikke-konvensjonelle superledere og jakten p̊a kontrollerbare kvante-

bits, har Ruderman-Kittel-Kasuya-Yosida (RKKY) vekselvirkningen, en viktig utveklslings-vekselsvirkning

mellom lokale spinnmomenter mediert av ledningselektroner, blitt gjennomg̊aende studert i for-

skjellige systemer, slik som vanlige metaller, konvensjonelle superledere, og normale metaller med

spinn-bane-kobling (SBK).

I dette arbeidet er fokuset p̊a å undersøke RKKY vekselvirkningen i en ikke-konvensjonell su-

perleder, hvor inversjonssymmetrien er brutt, og dermed har en Rashba SBK. B̊ade analytiske

beregninger, ved bruk av Schrieffer-Wolff transformasjonen (SWT) og numeriske simuleringer ved

hjelp av Bogoliubov-de Gennes (BdG) metoden blir brukt for å analysere vekselvirkningen.

Funnene i oppgaven viser at i ikke-konvensjonelle superledere har RKKY vekselvirkningen de for-

ventede Heisenberg og Dzyaloshinskii-Moriya (DM) komponentene. Vi observerer ogs̊a at Ising-

komponenten er større enn forventet, som tyder p̊a en innflytelse fra spesifikke egenskaper ved

den ikke-konvensjonelle superledende tilstanden. Videre finner vi at egenskapene til RKKY vek-

selvirkningen blir mer lik den av et normalt metall, mes degenerasjonen av vekselvirkningen min-

skes.
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Abstract

With the rising interest in unconventional superconductors and the pursuit of controllable quantum

bits, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, an important exchange interaction

between localized spins mediated by conduction electrons, has been extensively studied in various

systems such as normal metals, conventional superconductors, and normal metals with spin-orbit

coupling (SOC).

In this work, the focus is on investigating the RKKY interaction in unconventional superconduct-

ors, which have broken inversion symmetry and consequently Rashba-type SOC. Both analytical

calculations using the Schrieffer-Wolff transformation (SWT) and numerical simulations using the

Bogoliubov-de Gennes (BdG) approach are employed to analyze the interaction.

The findings reveal that in unconventional superconductors, the RKKY interaction exhibits the

expected Heisenberg and Dzyaloshinskii-Moriya (DM) components. Interestingly, we observe that

the Ising component is larger than anticipated, suggesting the influence of specific characteristics

of the unconventional superconducting state. Furthermore, we observe that the behavior of the

RKKY interaction becomes more akin to that of a normal metal, while the degeneracy of the

interaction decreases.
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1 Introduction

The interest in the field of spintronics has been steadily increasing for several decades, further

fueled by the public’s fascination with quantum computing. Recent reports from the Intergovern-

mental Panel on Climate Change (IPCC) on global energy consumption underscore the significance

of research and development in low-energy consumption for electricity, information transfer, and

storage [1, 2]. Superconductors have long played a crucial role in this field due to their unique

electron transport properties.

Ongoing research on the characterization of various superconductors has led to the discovery of

increasingly complex and exotic materials. In particular, high-transition-temperature and heavy

fermion superconductors have been extensively studied in recent decades, prompting the need for

theoretical explanations of experimental findings. One distinguishing characteristic of many heavy

fermion and some high-transition-temperature superconductors is their unconventional alternated

gap symmetry, placing them in the category of unconventional superconductors [3, 4]. The wide

range of transition temperatures exhibited by this class of superconductors holds fundamental im-

portance for potential applications.

Simultaneously, advancements in experimental techniques for examining spin structures have al-

lowed for the study of groundstate configurations of impurity spins in different materials. This

means that predictions for groundstate spin configurations, based on the Rudermann-Kittel-Kasuya-

Yosida (RKKY) interaction theory, can now be tested across a variety of materials.

When the RKKY interaction between impurity spins is understood in known materials, it can be

utilized to determine the characteristics of new materials. Furthermore, the surrounding material

can control the impurity spins, as the RKKY interaction is heavily dependent on the environment.

This results in controllable bits of atomic-scale information, which holds promise for information

transport and storage.

The recent experimental and theoretical progress in understanding unconventional superconduct-

ors has given rise to the research question addressed in this thesis: How does the RKKY interaction

behave in unconventional superconductors?

Extensive studies have already been conducted on the RKKY interaction in conventional super-

conductors, including investigations in the presence of magnetic fields [5]. The crucial distinction

between conventional and unconventional superconductors lies in the permissible pairing symmet-

ries for Cooper pairs. Various symmetries and symmetry-breaking mechanisms are possible. For

superconductors with d-wave symmetry, Aristov et al. examined the RKKY interaction and found

that the spin structure is more complex in such anisotropic superconductors compared to the con-

ventional case [6]. However, an increasing number of superconductors potentially exhibit p-wave

symmetry, which has already been shown to give rise to a range of intriguing phenomena [7]. One

of the most promising candidates for p-wave pairing of Cooper pairs is CePt3Si [8], where the

inversion symmetry is spontaneously broken. The RKKY interaction in such non-centrosymmetric

superconductors without inversion symmetry has not yet been studied, making it the focus of this

thesis.

After this introduction, the thesis proceeds with an explanation of the underlying theory. The

concepts of conventional and unconventional superconductivity are introduced in the framework

of second quantization formalism, which is briefly derived. For unconventional superconductors, a

broken symmetry is necessary, which is combined with the spin-orbit coupling (SOC) explained in

subsequent sections. The next section provides an introduction to RKKY interaction, laying the

foundation for the subsequent analysis. The Bogoliubov-de Gennes and Schrieffer-Wolff transform-

1



ations, which are the primary tools for determining the energy spectrum and effective interaction

in the investigated systems, are presented in Sec. 3. Additionally, the numerical approach is out-

lined, along with the computed observables.

Sec. 4 examines the first of four different systems - a normal metal with RKKY interaction. This

investigation, combined with the examination of RKKY interaction in conventional superconduct-

ors in Sec. 5, allows to put the chosen methods to the test. In Sec. 6, SOC is introduced to a

normal metal, which enables to explore the boundaries of known RKKY interaction behaviors. By

studying a normal metal with SOC, expectations for the unconventional superconductor analyzed

in Sec. 7 can be developed. Here, the main focus is on RKKY interaction in a superconductor

with Rashba-type SOC. Bound states resulting from the p-wave symmetry of the gap are also

briefly investigated. Lastly, the obtained results are discussed in Sec. 8, which also comprises some

suggests for further theoretical and experimental work.

During the course of this master’s thesis, a poster was presented on DPG Spring Meeting 2023 in

Dresden, where a science slam additionally presented the topic in an entertaining way. A teaser

for the science slam can be found in App. G and the poster in App. F. Moreover a video about

the basic concept of superconductors was created [9].

All code used in this thesis can be found on GitHub [10].

2



2 Theoretical Background

The following sections of this chapter are going to give an overview of the theories fundamental

to this thesis. At first the indirect interaction between spins via conduction electrons (RKKY

interaction) is introduced. Secondly, a brief introduction is given to 2nd quantization, which

is the formalism used throughout. Then the 2nd quantization is used to give an introduction

to superconductivity, which is first discussed for conventional superconductors. After that spin

orbit coupling (SOC) is introduced, because it is, in combination with broken inversion symmetry,

leading to unconventional superconductivity as discussed in the last section of this chapter.

Ultimately, these formalisms and concepts allow us to formulate the Hamiltonian of the system of

interest.

Note that the constant ℏ is set to unity throughout the entire thesis.

2.1 RKKY Interaction

The concept of the Rudermann-Kittel-Kasuya-Yosida (RKKY) interaction was firstly discussed

by M. Rudermann and C. Kittel as an explanation for the broadened lines found in nuclear spin

resonance experiments [11]. It was introduced as the indirect exchange coupling between magnetic

moments in a metal via the direct hyperfine interaction with the conduction electrons. T. Kasuya

and K. Yosida expanded this theory to localized inner d-electron interactions [12, 13].

The derivation of different characteristics of the RKKY-interaction takes a non-magnetic metal

with two impurity spins, which do not directly interact with each other, as a starting point.

This is schematically illustrated in Fig. 1(a), where the two large arrows with blue background

represent the impurity spins and the small arrows with red background are the itinerant spins.

The interactions between them are indicated by the double-tipped arrows of which the bright red

one is the direct spin-spin interaction and the dark red one the RKKY interaction, which is going

to derived in the following for a non-magnetic metal.

Consequently, the conduction electrons of the metal can be described by the Sommerfeld model

and their spin is assumed to interact locally and directly with the impurity spins, which leads to

the general expression for the RKKY interaction

HRKKY =

2∑
i=1

JS⃗is⃗i (2.1)

where J denotes the coupling strength between the classic local spin S⃗i and the quantum mechanical

itinerant spin s⃗i. The itinerant spins can be expressed via fermionic creation and annihilation

operators c[†] and transformed into k-space. J is assumed to be of Heisenberg type, since direct

spin-spin exchange interaction is considered. Based on that expression, the effect of the RKKY-

interaction onto the system can be studied via perturbation theory.

To first order in perturbation the correction to the groundstate energy is zero, because the electron

system is not spin-polarized. To second order in perturbation, there is a contribution due to the

fact that excited states are taken into account. If those excited states correspond to particle-hole

excitations, their contribution is not vanishing. When using the formalism of spin states and the

Pauli matrices, the energy correction to the groundstate energy to second order in perturbation

3



theory reads

E
(2)
0 =

−J2ℏ2

2N2

∑
k,q
i,j

Θk,k+qe
−iq(ri−rj)

⟨f |S⃗i · S⃗j |f⟩
ϵ(k + q)− ϵ(k)

where Θ is the Heaveside-stepfunction, ϵ(k) is the energy of the unperturbed system, N the total

number of particles and |f⟩ is the spin state of the itinerant electrons.

Therefore the coupling constant J is

JRKKY
ij =

J2ℏ2

2N2

∑
k,q,ms

2∑
i,j=1

Θk,k+qe
−iq(ri−rj)

⟨f |S⃗i · S⃗j |f⟩
ϵ(k + q)− ϵ(k)

(2.2)

which can be evaluated and shows an oscillatory behavior as a function of the separation R = (ri−
rj) of the impurity spins.

The oscillatory nature of this interaction can also be understood based on the electron density

between the two impurity spins. When treating the impurity spins as ferromagnetic layers that

enclose a non-magnetic layer representing the normal metal, it becomes clear that the wave function

of the electron depends on the free plane-wave and a reflected wave. The probability of finding an

electron at a certain position described by its wave function Π is therefore

|Π(x)|2 = | exp(ikx) +R exp(−ikx)|2 = 1 +R2 + 2R cos(2kx) (2.3)

with the reflection coefficient R, real space coordinate x, and wave vector k. Therefore the spin-

density of the electrons varies proportional to cos(x). Since the electrons are the carries of the spin

information that facilitate the indirect interaction between the fixed spins, this interaction is also

of oscillatory nature.

The expectation value in Eq. 2.2 can be evaluated and it is possible to explicitly study its dis-

tance dependence. In order to do so, the sum over k-space is converted into an integral in polar

coordinates and zero temperature is assumed. Additionally, the energies ϵ are taken to be the free

electron dispersion, which allows for an easier derivation here. This leads to

Inm = − J2

N2

∑
k,k′

Θk,k′
ei(k−k′)(ri−rj)

ϵk − ϵk′

=
J2V 2

N2(2π)6

∫ 2π

0

dα

∫ ∞

kF

dk

∫ kF

0

dk′
−2m∗

ℏ2
kk′

ei(k−k′)(ri−rj) cos (α)

k2 − k′2

as the integral to solve for determining the distance dependence. The angular integral can be

evaluated by using the substitution x = cos (α). After that the lower boundary of the k-integral

is changed to zero. That is possible, because the additional interval has a vanishing integral in

combination with the k′-integral. Therefore, the k-space integral reads

Inm =
−2m∗J2V 2

N2(2π)6ℏ2

∫ ∞

0

dk

∫ kF

0

dk′kk′
sin (k′R) sin (kR)

k2 − k′2

where the short-hand notation R = (ri − rj) is used. Now, the integral over k can be evaluated

and after using a trigonometric identity, the expression takes the form

Inm =
−2m∗J2V 2

N2(2π)6ℏ2

∫ kF

0

dk′k′
π

4
sin (2k′R)
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The remaining integral can be calculated using the implicit derivation of the sine function with

respect to the distance R. Finally, the expression is rearranged such that all dependencies on the

distance and the Fermi-momentum are explicit, which yields

Inm =
−2m∗J2V 2

N2(2π)6ℏ2

∫ kF

0

dk′
−π
8

d

dR
cos (2k′R)

=
m∗J2V 2π

N2(2π)6ℏ2
k4FR

2 sin (2kFR)− 2kFR cos (2kFR)

(2kFR)4

This expression can be simplified to the proportionality

Jij ∼
sin (R)−R cos (R)

R4
(2.4)

and Fig. 1(b) illustrates the resulting oscillation for the normalized R = R′/(2kF ). It is clearly

visible that the interaction strength oscillates around zero and is damped quickly. Since a positive

interaction constant favors anti-parallel spin alignment, while a negative interaction constant favors

parallel alignment, the impurity spins oscillate between parallel and anti-parallel alignment with

their separation distance. The exact behavior of the interaction strength Jij depends on the system

as will be shown in the later sections.

(a) (b)

Figure 1: (a) Schematic picture of RKKY interaction mechanism and (b) its oscillatory behavior.
Jij and R are normalized against the Fermi-energy kF .

The oscillatory behavior has also been explicitly derived in the tight-binding approach for graphene

[14], which is just one example for derivations based on different electron dispersions. Regardless

of the exact electron dispersion, a damped oscillation comprised of sin and cos terms over Rn is

expected, where n is the dimension of the system [15].

2.1.1 Spin Structure

The indirect interaction of spins leads to an effective interaction, which can take the same forms

as direct spin interaction. Most of these interactions can be described in the framework of the

Hubbard model [16], where different electron-electron interactions stem from Coulomb interaction.

Depending on the approximations or restrictions applied, the Hubbard model gives rise to different

spin-spin interactions.
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The first one is called Heisenberg interaction and it takes the form

HHeisenberg =
∑
i,j

JijSi · Sj

where Si denotes a classical spin and J is the interaction strength. This interaction strength

is the same for all components of the spins, but might vary for the different lattice sites. It

can give rise to ferromagnetic and anti-ferromagnetic order of spins, because we have Si · Sj =

Si,xSj,x + Si,ySj,y + Si,zSj,z and therefore the spins either try to minimize their total spin (anti-

ferromagnetic) or maximize it (ferromagnetic) depending on the sign of J .

It can be seen that it is possible to have different interaction strengths for different components of

the spins, which results in Ising interaction. It takes the form

HIsing =
∑
i,j

Iij · (Si · Sj)

where the interaction strength Iij itself is a vector now. Therefore the Ising interaction of spins

can reflect asymmetries in the system, since each spin component gets their individual interaction

strength.

In both cases, Heisenberg and Ising, the spins only interact componentwise with each other. But

in more complex structures that can change and the spin components can act in arbitrary ways.

That gives rise to the Dzyaloschinskii-Moriya (DM) interaction, which is based on the cross product

between two spins

HDM =
∑
i,j

Dij(Si × Sj)

and has an interaction strength Dij that can vary for the different components of the cross product.

This type of interaction allows for twisted spin configurations and does not give rise to simple

ferromagnetic or anti-ferromagnetic ordering.

Lastly, all remaining interaction types are going to be collected in a tensor in this thesis. It takes

the form

Hremaining =
∑
i,j

Si ·
←→
Γ ij · Sj

where
←→
Γ ∈ R3x3 is the interaction strength.

The combination of this four spin-spin interaction types allows to express any kind of spin config-

uration including highly complex ones.

2.2 2nd Quantization

Quantum mechanics can be formulated with the Schrödinger equation and wave functions, which

in combination give an accurate description of any system. For interacting many body systems

like found in condensed matter systems, the wave function depends on as many variable sets as

particles in the system. Therefore, it becomes extremely cumbersome to solve the wave function

to a many body system, leaving even relatively simple systems nearly unsolvable.

2nd quantization resolves this problem by working with occupation numbers and their correspond-

ing basis and operators, instead of wave functions. Its name stems from the fact, that particles are
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already a description that comes out of the quantization of energy spectra and now these particles

are going to be described by a formalism which is quantized even further. The full derivation is

beyond the scope of this thesis and is extensively covered in textbooks [17, 18]. Nevertheless, the

main concept is explained in the following.

Many particle states can be expressed as a product of single particle states |Ψ(x)⟩, where x rep-

resents all quantum numbers needed to uniquely define this state. Those quantum numbers can

include space r and spin projection σ. This notation adapts to many particle systems such that

|Ψ⟩ = |Ψ(x1, x2, . . . , xN )⟩ represents a state of N particles.

In quantum mechanics, indistinguishable particles are used to describe the system without actually

considering each individual particle, but more their distribution over different states. There are

still some differences between those particles, namely they can be distinguished into two different

types: into bosons that act even under exchange of two bosons, and into fermions that pick up a

minus sign when exchanging two of them. These signs do not not influence the expectation value

of the wave function since it is quadratic. But this only holds true as long as the particles have

different coordinates. When they have identical coordinates aka. quantum numbers, the Pauli

principle applies to the fermions resulting into a wave function equaling zero when two fermions

are exchanged. Bosons, however are not influenced by the Pauli exclusion principle.

This can be expressed in an occupation number basis, where the many particle states becomes

|Ψ⟩ = |nλ1
, nλ2

, nλ3
, . . .⟩

with n being the number of particles in the quantum states defined by the set of quantum numbers

λi. For bosons, there are none, one or more particles allowed in each state, so n ≥ 0, But it is

n = 0, 1 for fermions, since the Pauli exclusion principle applies.

Such states are created from vacuum by creation operators commonly denoted as c†λ (c̃†λ) for

fermions (bosons), which creates exactly one particle in state λ. The symbol † denotes the adjoint

of the respective operator. Particles can also be destroyed by the annihilation operators cλ (c̃λ),

which removes one particle of state λ. Any possible state can be constructed using a combination

of these four operators, including systems allowing for hopping and superconductivity.

Commutation relations are an important property of quantum mechanical operators and for the

fermionic particle operators in 2nd quantization formalism they are

{cλ1
, c†λ2
} = cλ1

c†λ2
+ c†λ2

cλ1
= δλ1,λ2

{cλ1
, cλ2
} = {c†λ1

, c†λ2
} = 0

where {. . .} denotes the anti-commutator.

For bosons, the commutator [. . .] is used formulate their commutation relations, which read

[c̃λ1 , c̃
†
λ2
] = c̃λ1 c̃

†
λ2
− c̃†λ2

, c̃λ1 = δλ1,λ2

[c̃†λ1
, c̃†λ2

] = [c̃λ1
, c̃λ2

] = 0

Any kind of operator like hopping, Coulomb repulsion or attractive interaction between two elec-

trons can be represented in 2nd quantization by combining an interaction potential and the needed

number of particle operators. That interaction potential can depend on all, some or no quantum

numbers of the system. Depending on the number of particles such an operator acts on, it is

called single-, two- , three-, ... particle operator. In this thesis, only operators acting on up to two

particles are relevant.
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One famous two-particle operator is the interaction between electrons, which can be repulsive as in

the Coulomb interaction or attractive nature. The attractive interaction is the basis for a theory

of superconductivity, which introduced in the next chapters.

2.3 Superconductivity

Superconductors are materials in their superconducting phase, which is reached upon cooling

down the material. Typically, these materials show some kind of conductivity before the phase

transition and change their behavior strongly under the transition. Zero electric resistivity and the

Meissner effect characterize the superconducting phase [19, 20], which is entered when the critical

temperature is crossed. The Meissner effect describes the magnetic behavior of superconductors,

which most prominently features the expulsion of magnetic fields.

Superconductors offer promising possibilities for applications, especially because of their perfect

conductance. But the required low temperatures constrain the applications so far, even though

current superconductors in use have critical temperatures within the regime of liquid nitrogen [4,

21]. They are therefore mainly used to generate strong magnetic fields in for example particle

accelerators [22] or magnetic resonance imaging (MRI) [23]. There also exist different smaller

technical applications like magnetometers [24], but to make superconductors more accessible and

more controllable, a deeper understanding of their properties is necessary.

2.3.1 Attractive Interaction

For superconductivity to arise, an attractive interaction between electrons is necessary. This can

be a very weak interaction, as seen over the course of this section, but it has to overcome the

Coulomb repulsion. There are several mechanisms leading to such an attractive interaction, but

the phonon mediated electron-electron interaction is the basis for BCS theory. Therefore it is

explained in more detail here.

A system with interacting electrons and phonons can be described by the Fröhlich Hamiltonian

HF =
∑
k,σ

ϵkc
†
k,σck,σ +

∑
q

ℏωq

(
1

2
+ a†qaq

)
+
∑
k,q

gk,qc
†
k+q,σck,σ

(
aq + a†−q

)

where c
[†]
k,σ annihilates [creates] an electron with momentum k and spin σ with the associated energy

of ϵk. Phonons are annihilated [crated] by a
[†]
q for momentum q. The first term is the kinetic energy

of electrons and the second term of phonons. The third term describes their interaction, which

can be treated as a perturbation. Consequently, the effective interaction can be obtained using

Schrieffer-Wolff transformation as explained in Sec. 3.2. The resulting effective electron-electron

potential mediated by phonons is

Veff = gk,qgk′,−q
ωq

(ϵk′ − ϵk′−q)
2 − (ℏωq)

2

and becomes attractive i.e. negative for (ϵk′ − ϵk′−q)
2
< (ℏωq)

2
and vanishes quickly for large

energy differences ϵk′ − ϵk′−q. This leads to seeing the potential as constant within a thin shell of

width q around the Fermi level and outside of this thin shell the potential is often neglected.
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Electrons in crystals also experience the repulsive Coulomb interaction, which looks like

HC =
∑
σ,σ′

∑
k,k′,q

VC(q)c
†
k+q,σc

†
k′−q,σ′ck′,σ′ck,σ

in second quantization formalism. It describes a scattering process with momentum transfer q.

The Coulomb potential VC = 4πe2

q2 is screened by the electrons in the system, whose density is

N(ϵ). Since we are interested in the total interaction of electrons within a thin shell around the

Fermi level, the renormalized Coulomb potential has the form

VC =
4πe2

q2 + 4πe2N(ϵF )

This potential weakens with increasing density of states at the Fermi level, which means it is rel-

atively weak in good metals with a high density of states at the Fermi level.

Nevertheless, the repulsive Coulomb interaction counteracts the attractive phonon-mediated in-

teraction. But while the phonon-mediated interaction is strongly localized in k-space around the

Fermi surface, the Coulomb interaction is focused in time. Therefore the phonon-mediated inter-

action acts over larger time-scales than the Coulomb interaction, which allows it to overcome the

repulsion when the electrons are separated by time.

A classic analog to this is depicted in Fig. 2. The attractive interaction can be understood by look-

ing at two traveling electrons. Because of their charge they will deform the ion lattice in such way

that they create an area with higher opposite charge. This higher charge density remains long after

the electron left and is felt by the other electron, which means that it is attracted to the path of

the first electron. Due to this retardation effect, the electrons are able to interact attractive despite

of the present Coulomb interaction. The resulting electron pairs are called Cooper pairs and have

integer spin (as opposed to half integer spin of single electrons). That integer spins makes them

bosons and behave accordingly to the Bose-Einstein statistic, which in turn means that they are

in a collective, macroscopic quantum state and do, for example, not experience resistance anymore.

Figure 2: The deformation of the lattice and the resulting local charge distortion lead to an effective
interaction between electrons despite their spatial separation.

Although all superconductors feature pairs of electrons, they show quite different properties ori-

ginating from internal structures within the superconducting materials. That allows to classify

superconductors in different ways.

One way is to look at the phase transition between superconducting and non-superconducting

phase when a superconductor is exposed to a magnetic field [19]. All superconductors expel weak

magnetic fields due to the Meissner effect after their specific London penetration depth, but when

the magnetic field crosses a certain threshold, the superconducting phase is destroyed. In type-1

superconductors, the phase transition caused by an external magnetic field and out of supercon-
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ductivity is discontinuous and therefore a phase transition of order one. In type-2 superconductors,

this phase transition happens via an intermediate phase, which leads to a continuous phase trans-

ition and there a transition of order two. Before superconductivity is complete destroyed, there

exists a phase where ordinary and superconducting properties are mixed and magnetic field vortices

are formed. This intermediate phase is entered upon a first threshold in magnetic field strength.

Increasing the magnetic field further leads to a higher density of magnetic field vortices and even-

tually to the complete loss of superconductivity. Therefore type-2 superconductors do not exhibit

a complete Meissner effect.

Another way to categorize superconductors is by the total orbital angular momentum of the formed

electron pairs [25]. Since the short-ranged Coulomb repulsion requires that no two identical elec-

trons meet at the same point in space, the pair wave function has to vanish when two identical

electrons meet. Their pair wave function is proportional to rl (r is spatial coordinate, l is orbital

angular momentum) for the spatial part and symmetric in its spin part. It has to be anti-symmetric

under the exchange of the two electrons, because it is fermionic. Consequently, there are two cases:

even and odd parity. Since parity can be written as (−1)l it corresponds to the orbital angular

momentum and ultimately to only opposite spin pairing for even, and opposite as well as same spin

pairing for odd l. Based on this a conventional superconductor is defined as the most symmetric

l = 0 case, while all l > 0 cases are called unconventional superconductors [19, 25, 26].

2.3.2 BCS Theory for Conventional Superconductors

Most elemental superconductors like mercury, aluminum or molybdenum are conventional super-

conductors and they have critical temperatures of T ≤ 4.5K. Mercury was actually the first

superconductor to be discovered in 1911 by H. Kamerlingh Onnes [27], who experimented on

the resistivity of different materials at temperatures of liquid helium. J. Bardeen, L. N. Cooper

and J. R. Schrieffer developed in 1957 a formalism to describe the vanishing electrical resistiv-

ity of Mercury [28]. Their theory (BCS theory) is still the framework to describe conventional

superconductors [29] and identifies attractive interaction between electrons as the reason for su-

perconductivity. Unconventional superconductors can be explained in an extended BCS theory,

which is introduced in Sec. 2.5.2.

Bardeen, Cooper and Schrieffer started the formulation of their formalism with the basic notion

that the attractive interaction between electrons close to the Fermi surface leads to the formation

of so-called Cooper pairs of electrons, which form a condensate [19]. They understood these pairs

as made up of electrons with opposite spin and opposite momentum. In their presence a gap in

the excitations spectrum forms around the Fermi surface as depicted in Fig. 3.
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Figure 3: Electrons with opposite spin and from opposite sites of a thin shell around the Fermi
surface (aka. opposite momentum) can pair into a Cooper pair.

Starting from the following Hamiltonian, a derivation of the BCS theory is presented,

H = −t
∑

⟨i,j⟩,σ

c†i,σcj,σ −
∑
i,σ

µic
†
i,σci,σ −

∑
i

Vic
†
i,↑ci,↑c

†
i,↓ci,↓ (2.5)

where c
[†]
i,σ annihilates [creates] an electron with spin σ at lattice site i, µi represents the local

chemical potential and Vi > 0 is an attractive on-site interaction between electrons. The first term

describes the hopping of electrons with amplitude t between nearest-neighbor sites as denoted by

⟨i, j⟩. The Hamiltonian describes exactly the previously discussed retardation effect, which leads

to the possibility of attractive interaction between electrons.

Transforming Eq. (2.5) by Fourier transformation leads to

H = − 1

N

∑
k1...k4

V δk1−k2+k3−k4
c†k1,↑ck2,↑c

†
k3,↓ck4,↓ +

∑
k,σ

ϵk,σc
†
k,σck,σ

where ϵk,σ is the electron dispersion including the chemical potential. Both potentials, µ and V ,

are assumed to be constant in space, although the attractive potential could have a momentum

dependence, which we will keep explicitly. Additionally, the attractive interaction potential is

assumed to be weak (weak-coupling approximation).

Following the BCS approach, only pairs between electrons with opposite momentum and spin are

considered, which leads to the classical BCS Hamiltonian:

HBCS =
∑
k,σ

ϵk,σc
†
k,σck,σ −

1

N

∑
kk′

Vkk′c†k,↑c
†
−k,↓c−k′,↓ck′,↑ (2.6)

where Vkk′ is the attractive two-particle potential which is active if k and k′ are both within a thin

shell around the Fermi-surface. It therefore is the effective potential from the previous equation

under all the assumptions made.

One way of solving the eigen-problem of Eq. (2.6) to determine its energy spectrum, is employing

the so-called mean-field approximation. Any operator A can be expressed by its expectation value

and its deviation from it: A = ⟨A⟩+ δA. Taking the product of two operators A,B and assuming

that their deviations from their expectation value is small, allows to write the product as

AB ≈ A⟨B⟩+B⟨A⟩ − ⟨A⟩⟨B⟩
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because we can neglect all terms of order δ2. By defining A = c†k,↑c
†
−k,↓ and B = c−k′,↓ck′,↑, the

mean-field BCS Hamiltonian can be formulated

HMF
BCS =

∑
k,σ

ϵk,σc
†
k,σck,σ

− 1

N

∑
kk′

Vkk′

(
c†k,↑c

†
−k,↓⟨c−k′,↓ck′,↑⟩+ ⟨c†k,↑c

†
−k,↓⟩c−k′,↓ck′,↑ − ⟨c†k,↑c

†
−k,↓⟩⟨c−k′,↓ck′,↑⟩

)
which can be further simplified by introducing the BCS gap function. The gap function is a gap

in the energy spectrum, which will become clearer when looking at the resulting energies of the

reformulated Hamiltonian. The self-consistent gap equation takes the form

∆k =
1

N

∑
k′

Vkk′⟨c−k′,↓ck′,↑⟩

∆∗
k =

1

N

∑
k′

Vkk′⟨c†k,↑c
†
−k,↓⟩

and therefore the mean-field BCS Hamiltonian can be expressed as

HMF
BCS =

∑
k,σ

ϵk,σc
†
k,σck,σ −

∑
kk′

(
∆kc

†
k,↑c

†
−k,↓ +∆∗

kc−k′,↓ck′,↑ −
1

N
∆k′∆∗

k

)

This equation can be solved using the Bogoliubov transformation (BdG), which is explained more

generally in Sec. 3.1. The main point here is that a transformation to new fermion operators

allows to diagonalize the Hamiltonian, which yields an expression with the form of a Fermi gas

H0 =
∑
k,σ

Ek(γ
†
k,σγk,σ + η†k,σηk,σ) +

∑
k

(
ϵk − Ek +

1

Vk,k′
∆k′∆∗

k

)

where γk,σ (ηk,σ) are the quasi-particle operators corresponding to positive (negative) eigenvalues.

The second sum is constant, while the first one describes the energy spectrum. The eigenvalues

are Ek =
√
ϵ2k +∆2

k and they are two-fold degenerate in spin.

Based on this energy spectrum, the density of states can be calculated and its form is presented in

Fig. 4. There the meaning of the gap becomes clearer, since it denotes half of the width of non-

occupied states around zero energy. Regardless of the system parameters, this shape is expected

for the local density of states of any conventional superconductor.
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Figure 4: Local density of states (LDOS) for a conventional superconductor. The gap width is
explicitly denoted by the red arrow.

One of the most prominent properties of superconductors is their critical temperature at which

they become superconducting. This temperature can be calculated based on BCS theory and

is therefore useful for the comparison between theory and experiment. The starting point for

the explicit formulation of the critical temperature is the gap equation expressed via in the new

quasi-particle basis

∆ = −V
∑
k

∆

2Ek
tanh

(
Ek

kBT

)
(2.7)

which only depends on temperature now, since we approximated the potential as constant. The

critical temperature Tc is now defined such that the gap ∆ vanishes at that specific temperature.

Eq. (2.7) linearizes for ∆→ 0 to

∆ = −V∆
∑
k

1

2Ek
tanh

(
Ek

kBT

)
→ 1 = −V

∫ ϵc

−ϵc

dE
N(E)

2E
tanh

(
E

kBT

)

where the sum over momentum is replaced with an integral over energy by using the density

of states of electrons N(E). The integral is taken only within the thin shell around the Fermi

surface where the attractive interaction is present, which naturally introduces the energy cutoff ϵc.

Additionally, the density of states can be assumed to be constant there, yielding

1 = −V N0 ln

(
1.14ϵc
kBTc

)
⇔ Tc =

1

kB
1.14ϵce

−1/|V |N0

which is an expression for the critical temperature that only depends on material constants. Fur-

thermore, solving the gap equation for T = 0 yields an expression for the gap at zero temperature

∆T=0 ≈ 1.764kBTc

which is a constant proportional to the critical temperature. This two results are central to the

weak coupling approximation [19, 25].
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2.4 Spin Orbit Coupling

Spin orbit coupling (SOC) is a relativistic effect in quantum mechanics, which stems from inter-

action between the spin and the effective magnetic field of an electron moving through it [30, 31].

Such a field can originate from a nucleus when the electron is moving on an orbit around it, or

from an intrinsic electric field.

Figure 5: Spin orbit coupling describes the linear dependence between an electron’s movement
through an electric field with a material and the resulting lifting of spin degeneracy in the electron’s
energy caused by a Zeeman split. The upper graph shows the laboratory frame and the lower shows
the electron frame. In the latter the spin splitting magnetic field becomes visible.

Fig. 5 shows an electrons movement through an electric field in the lab frame (LF) and in the

electron frame (EF). In the lab frame only the electric field is present, but in the electron frame

the Lorentz transformation of the electric field leads to a magnetic field, which in turn results into

a Zeeman shift. Since the effective magnetic field is determined by the speed and direction of the

moving charge its generated by, the spin of the electron has a preferred orientation depending on

the orbital movement of the electron through the electric field of the surrounding nuclei or the

band structure of a solid.

The resulting Zeeman shift splits energy levels that would otherwise be degenerate, although the

splitting is of the same order as or slightly smaller than relativistic corrections to the kinetic energy

when looking at the energy levels of atoms. The exact strength depends also on the electric field,

which in turn depends on the atomic number of the considered material.

In addition to lifting energy degeneracy, SOC gives rise to a number of interesting phenomena,

among them magnetic anisotropy [32], spin relaxation [33], magnetic damping [34], anisotropic

magnetoresistance [35], and anomalous Hall effect [36]. On a more fundamental level, broken

inversion symmetry in combination with the described atomic SOC leads to Rashba SOC which

is the reason for its relevancy for this thesis. In such non-centrosymmetric systems exist two

competing spin-spin interaction forms. As in the centrosymmetric case, there is Heisenberg type

interaction giving rise to (anti-)ferromagnetic orientation. That implies a colinear orientation of

the interacting spins and can be written as JH
ij Si ·Sj . The broken inversion symmetry additionally

gives rise to the anti-symmetric Dzyaloshinskii-Moriya interaction of the form Dij · (Si × Sj) [37,

38]. Therefore the presence of Rashba SOC enables the formation of chiral magnetic objects.

Generally, Rashab SOC can be expressed as

Hγ =
∑

σ,σ′,⟨i,j⟩

γ n (di,j × σ⃗σ,σ′) c†i,σcj,σ′ (2.8)
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with σ, σ′ being spin-indices and σ⃗ the Pauli-matrix vector. The SOC strength is denoted by γ.

There are different types of Rashba SOC that have different origins and take slightly different

forms. The different forms can be realized by choosing the interaction vector di,j = x̂(δi+x̂,j −
δi−x̂,j) + ŷ(δi+ŷ,j − δi−ŷ,j) + ẑ(δi+ẑ,j − δi−ẑ,j), which connects the two sites i and j and therefore

represents a kind of movement. The spin orbit field direction vector n is the symmetry breaking

axis and chosen according to the type of SOC, too. Theoretically, it is possible to control the

superconducting transition by the rotation of the symmetry breaking axis [39].

Motivated by the fact that p-wave superconductivity is predicted in CePt3Si [40], Rashba SOC

is investigated in more detail. This type of SOC models the breaking of inversion symmetry in

CePt3Si best.

The Rashba type of SOC was formulated in 1960 [41] and often arises due to symmetry breaking

at the surface or at the interface in heterostructures. But it can also arise due to crystal structures

that allow for an intrinsic electric field as it is the case in CePt3Si, as illustrated in Fig. 6. To

model such SOC correctly, the symmetry breaking axis n in Eq. (2.8) is chosen as out of plane

n = ẑ, while the thin film of the material is chosen to be in x− y plane. Since all later calculations

are going to be performed in k-space, the general expression is additionally Fourier transformed,

which yields

Hγ =
∑
σ,σ′,k

γ(kyx̂− kxŷ)c
†
k,σck,σ′ (2.9)

which clearly shows that Rashba SOC is linear in k. This symmetry can be concisely formulated

as Hγ(k) = −Hγ(−k) and causes an energy difference between electrons moving in opposite

directions. Therefore it breaks inversion symmetry.

2.5 Unconventional Superconductors

In unconventional superconductors, the angular momentum of the electron pair can be finite: l =

1, 2, ... [3, 29]. This leads to different symmetry properties, since the Pauli exclusion principle is, for

example, not broken anymore when the electrons have the same spin. Triplet pairing (↑↑), (↓↓) and
(↑↓ + ↓↑) is therefore possible and different transport mechanisms can be expected. The different

electron pairing channels are labeled analogous to atomic orbitals as s-wave superconductivity for

angular momentum l = 0, p-wave superconductivity for angular momentum l = 1 and so on.

Experimentally it is difficult to determine the superconducting channel of a material, because the

Meissner effect suppress the magnetic response of electron spins. Additionally, many p-wave states

exhibit very similar thermodynamical characteristics as s-wave or d-wave states do [26]. That leads

to many ongoing debates in the classification of superconductors regarding their symmetry.

Nevertheless, there is high evidence for triplet p-wave pairing in 3He [19], recently discovered UTe2

[42], under high pressure in UBe13 [43] and even in twisted graphene when an in-plane magnetic

field is applied [44]. Sr2RuO4 used to be a strong candidate for p-wave superconductivity, too, but

after nearly twenty years, recent experiments are considered to prove pure s-wave conductivity [45].

Some theories even suggest the presence of triplet superconductivity in doped semi-conductors [46].

In this thesis, the p-wave channel is of central interest and therefore the material CePt3Si is taken

as reference.
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2.5.1 CePt3Si

CePt3Si (Cerium - Platinum - Silicon) is a heavy fermion compound based on silicon and shows the

tetragonal crystal structure P4mm. Fig. 6 depicts the structure of this compound, which is also

called CePt3B-type structure. The name originates from the fact that this crystal structure was

first described for the compound CePt3B, which also belongs to the CePt3X compound group.

Because of this crystal structure, CePt3Si has no inversion symmetry and exhibits Rashba-like

SOC effects without external forces. Experiments confirmed its superconductivity at Tc = 0.75 K

in 2004 and with that CePt3Si was the first heavy fermion compound without inversion symmetry

to have a confirmed superconducting phase [8]. Later similar materials and other heavy fermion

compounds were also found to be superconducting.

There are ongoing experiments to determine the symmetry of the superconducting phase with

certainty, but so far no experiments contradict the prediction of p-wave superconductivity [47–49].

Since CePt3Si conserves time reversal symmetry while breaking inversion symmetry, it is expected

to have both s- and p-wave superconductivity [50]. Recent reviews of the current state of the art

suggest that RKKY interaction might be enhanced in CePt3Si due to its crystal structure, which

should also be visible in the superconducting phase [51]. Because of its gap symmetry and possible

influence on RKKY interaction, CePt3Si is taken as a reference material in later calculations of

this thesis. In order to do so, a new framework for describing CePt3Si is necessary, because the

classic BCS theory does not account for the new Cooper pairing channels caused by the SOC.

Therefore the extended BCS theory is introduced in the next section.

Figure 6: Atomic lattice structure of CePt3Si. Copyright by the American Physical Society. [8]

2.5.2 Extended BCS Theory

The superconductivity explained so far is of isotropic s-wave type and arises from phonon medi-

ated electron-electron interactions. In unconventional superconductors (angular momentum ≥ 1),

the superconductivity can be of different origin and while the critical temperatures are relatively

precisely measurable, the possible pairing symmetries are often strongly debated.

The classic BCS framework does not cover other than s-wave superconductors, but it can be extend
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to describe those different pairing symmetries. Since the pairing symmetries are dictated by the

symmetry of the corresponding interaction potential, it is possible to realize many different pairing

symmetries by choosing different interaction potentials. An interaction potential can, for example,

give rise to p-wave pairing, when it changes sign under k→ −k.
But although this is a possible description of unconventional superconductivity in the BCS frame-

work, it does have different short-comings. Overcoming those short-comings mostly includes pro-

posing a new pairing mechanism. Nevertheless, the extended BCS theory is introduced here to

capture many aspects of unconventional superconductivity.

The classic BCS Hamiltonian in Eq. (2.5) is extended by adding the possibility of attractive

interaction between electrons on nearest-neighbor lattice sites, which yields

HEBCS = −t
∑

⟨i,j⟩,σ

c†i,σcj,σ −
∑
i,σ

µic
†
i,σci,σ −

∑
⟨i,j⟩,σ,σ′

V σ,σ′

ij c†i,σci,σc
†
j,σ′cj,σ′ (2.10)

The first two terms remain unchanged, while the third term allows for nearest-neighbor attraction

now. That includes the possibility to form Cooper pairs from electrons with the same spin, which

can give rise to spin-singlet and spin-triplet pairing. Anisotropic s-wave, d-wave and p-wave pairing

are included in these possible pairing interactions that could be caused by e.g. long-range electron-

phonon interactions [52]. Which pairing symmetry dominates, depends on the system’s parameters,

which includes the ratio between the pairing amplitudes from conventional and extended BCS

theory.

Solving Eq. (2.10) involves the same steps as for the classic BCS Hamiltonian. Performing the

Fourier transformation, assuming a spatially uniform interaction potential and focusing on the

pairing between electrons with opposite momenta, the extended BCS Hamiltonian can be rewritten

as

HEBCS =
∑
k,σ

ϵk,σc
†
k,σck,σ

+
1

2N

∑
k,k′,σ,σ′

V σ,σ′
(
e−i(k−k′)x̂ + ei(k−k′)x̂ + e−i(k−k′)ŷ + ei(k−k′)ŷ

)
c†k,σc

†
−k,σ′c−k′,σ′ck′,σ

Introducing a similar mean-field approximation as before and defining the pairing amplitudes

F x±
σ,σ′ (k) = −

1

N

∑
k′

e∓ik′·x̂⟨c−k′,σ′ck′,σ⟩

F y±
σ,σ′ (k) = −

1

N

∑
k′

e∓ik′·ŷ⟨c−k′,σ′ck′,σ⟩

Aσ,σ′ (k) = V σ,σ′
(
eik·x̂F x+

σ,σ′ (k) + e−ik·x̂F x−
σ,σ′ (k) + eik·ŷF y+

σ,σ′ (k) + e−ik·ŷF y−
σ,σ′ (k)

)
yields the final form of Eq. (2.10):

HMF
BCS =

1

2

∑
k,σ,σ′

(
A∗

σ,σ′c−k,σ′ck,σ +Aσ,σ′c†k,σc
†
−k,σ′

)
+
∑
k,σ

ϵk,σc
†
k,σck,σ +H0

EBCS (2.11)

where

H0
EBCS =

1

N

∑
k,k′,σ,σ′

V σ,σ′
(
e−ik·x̂eik

′·x̂ + eik·x̂e−ik′·x̂ + e−ik·ŷeik
′·ŷ + eik·ŷe−ik′·ŷ

)
× ⟨c†k,σc

†
−k,σ′⟩⟨c−k,σ′ck,σ⟩
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The expression can be shorted by defining the spin and momentum dependent potential

V σ,σ′

k,k′ = V σ,σ′
(
e−ik·x̂eik

′·x̂ + eik·x̂e−ik′·x̂ + e−ik·ŷeik
′·ŷ + eik·ŷe−ik′·ŷ

)
⇒ Aσ,σ′ (k) = − 1

N

∑
k′

V σ,σ′

k,k′ ⟨c−k′,σ′ck′,σ⟩

The pairing amplitude Aσ,σ′ (k) allows for different spin and momentum symmetries, depending

on the system’s parameters. Since the interaction potential V σ,σ′

k,k′ has to follow the fermionic

anti-commutation relations, it has to be even under inversion of momentum and exchange of

spin. Writing the pairing amplitude as a matrix A(k), the symmetry of the interaction potential

translates into A(k) = −A(−k)T , where T is the matrix transpose. Consequently, the matrix A(k)

has even parity for spin-singlet and odd parity for spin-triplet Cooper pairs.

For later convenience, one can rewrite the matrix A(k) in terms of a three dimensional vector d(k)

representing spin-triplet Cooper pairs and a scalar ∆s(k) representing spin-singlet Cooper pairs.

That takes the form

A(k) =

(
−dx (k) + idy (k) dz (k) + ∆s (k)

dz (k)−∆s (k) dx (k) + idy (k)

)
(2.12)

where the components of the spin-triplet Cooper pair vector are defined as

dx (k) =
1

2
(−A↑,↑ (k) +A↓,↓ (k))

dy (k) =
1

2i
(A↑,↑ (k) +A↓,↓ (k))

dz (k) = −A↑,↓ (k)−∆s (k)

This is a general expression for triplet gap equations and the exact form is determined by the sym-

metry breaking that leads to the triplet pairing in the first place. In this thesis, inversion symmetry

is chosen to be broken and the resulting Rashba SOC determines the preferred triplet gap vector

d as is discussed in the next section. That allows to study an unconventional superconductor and

therefore the influence of triplet Cooper pairs on RKKY interaction on a system that corresponds

to a material with confirmed p-wave gap symmetry, namely CePt3Si.

2.5.3 Preferred Triplet Pairing Vector

Triplet pairing occurs among others in superconductors with broken inversion symmetry, which

can be achieved by introducing SOC. Since electron movements within a non-centrosymmetric

superconductor are strongly influenced by the SOC, the preferred symmetry of the triplet gap can

be explained with the direction of the SOC as done by Frigeri et al. [40].

In their work, the SOC is defined as HFrigeri
SOC = γ

∑
k,s,s′ gkσs,s′c

†
k,sck,s′ , where σ is the Pauli

matrix vector, s, s′ are spin indices, γ the SOC strength, and gk = −g−k is the three dimensional

SOC vector. This term is embedded into a superconductor that consequently exhibits singlet

and triplet pairing. The coupling depends on the difference of the density of states on the two

separated Fermi surfaces and therefore is of order γ/ϵF << 1, where ϵF is the Fermi energy of the

higher Fermi surface. That allows to decouple the singlet and triplet gap equations and to find

the critical temperature Tc for singlet and triplet pairing separately. For the singlet pairing the
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critical temperature Tc is found to obey the relation

ln

(
Tc

Tcs

)
= O

(
γ2

ϵ2F

)
which means that the critical temperature essentially is the same with and without SOC. It is

expressed relative to the critical temperature of the system without SOC Tcs, which is a pure

s-wave superconductor.

For the triplet pairing the critical temperature obeys

ln

(
Tc

Tct

)
= 2⟨

(
|d(k)|2 − |g(k) · d(k)|2

)
f(ρk)⟩k +O

(
γ2

ϵ2F

)
(2.13)

where d(k) is the normalized triplet gap function and the function f(ρ) is dependent on the SOC,

but not relevant for the further argumentation and therefore not specified here. This critical

temperature is express relative to Tct, which is the critical temperature of the pure p-wave super-

conductor. The highest possible critical temperature is according to Eq. (2.13) reached at Tc = Tct,

which is the case for d(k)||gk. This suggests a preferred spin alignment parallel to the SOC and

that there might be triplet states, which are unaffected by the lack of inversion symmetry. That

means that triplet state with a certain alignment to the SOC are not split by it.
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3 Methods

The subject of RKKY interaction in non-centrosymmetric superconductors is approached analyt-

ically as well as numerically. Both approaches have the goal of determining the energy spectrum

of the system in dependency on the orientation and separation of the impurity spins, as well as on

the present SOC and superconducting parameters.

3.1 Bogoliubov-de Gennes Transformation

The Bogoliubov-de Gennes method (BdG) was developed by Pierre-Gilles de Gennes [53, 54] and is

applicable on the BCS theory. It is based on a set of coupled Schrödinger equations and enables to

solve those, which allows to study more detailed and complicated (superconducting) systems. The

main idea is that the coupled equations can be solved by introducing effective new quasi-particles,

which contain all information about the system. Therefore the BdG is a complementary approach

to the Ginzburg-Landau theory [55].

As first step, the system of coupled Schrödinger equations is formulated in matrix form. The focus

is set onto a 4x4 matrix here, which allows to demonstrate the formalism for a quite general system.

It can be reduced to less dimensions in order to describe easier systems. The eigenvalue problem

can be formulated as [
ϵkσ0 A(k)

A†(k) −ϵkσ0

](
a

b

)
= Ek

(
a

b

)
(3.1)

where A(k) is a 2x2 matrix with A(k)A†(k) = |A(k)|2σ0, k momentum index, σ0 the unit matrix

in Pauli matrix formulation and Ek are the eigenvalues of the matrix. The eigenvector’s two

dimensional components a and b have to be determined.

The notation in the following is close to the notation of Ghanbari [5].

Based on Eq. 3.1, the two components of the eigenvectors can be related via

b =
A†(k)

|A(k)|2
(Ek − ϵk)a

and therefore the first two eigenvectors can be written as

Ψ1 =

(
a1

A†(k)
|A(k)|2 (Ek − ϵk)a1

)
, Ψ2 =

(
a2

A†(k)
|A(k)|2 (Ek − ϵk)a2

)

The remaining two eigenvectors for the four dimensional matrix can be obtained in the same way

from

a = − A(k)

(Ek + ϵk)
b

and consequently read

Ψ3 =

(
− A(k)

(Ek+ϵk)
b3

b3

)
, Ψ2 =

(
− A(k)

(Ek+ϵk)
b4

b4

)

These eigenvectors have to be orthonormal in order to form a unitary transformation, which is
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needed to transform the operators without loss of information about the system. The condition for

orthonormality reads ⟨Ψi|Ψj⟩ = δij , where δ is the Dirac-Delta function, and takes the following

form for the proposed eigenvectors

|a1|2 = |a2|2 =
|A(k)|2

|A(k)|2 + (Ek − ϵk)2

|b3|2 = |b4|2 =
(Ek + ϵk)

2

|A(k)|2 + (Ek + ϵk)2

These factors are used as normalization for the components of the eigenvectors.

The transformation matrix P is comprised of the four eigenvectors as columns and transforms

between the original particle and new quasi-particle basis. The vector part of the components is

chosen in accordance with the requirement that P is unitary and is therefore

a1 =

(
1

0

)
, a2 =

(
0

1

)
, b3 =

(
1

0

)
, b4 =

(
0

1

)

With this, the P can be written as

P =

[
uk vk

−v†
k uk

]

with the components

uk =
EK + ϵk√

(ek + ϵk)2 + |A(k)|2
σ0 , vk =

−A(k)√
(ek + ϵk)2 + |A(k)|2

(3.2)

The new quasi-particle operators that diagonalize the originally coupled set of Schrödinger equa-

tions are defined as c′ = Pc.

3.2 Schrieffer-Wolff Transformation

The RKKY-interaction is a second-order in perturbation phenomenon. In order to calculate ana-

lytically the correction to the energy spectrum of the unperturbed system, the so-called Schrieffer-

Wolff transformation (SWT) is going to be used [56, 57]. This method is based on a unitary

transformation from the eigenbasis of the unperturbed system H0 towards the basis of the effective

Hamiltonian H̃ = H0 +HRKKY . This effective Hamiltonian is valid in the low-energy regime, be-

cause the transformation decoupled the low- and high-energy subspaces, which makes this method

very suitable to study superconductors.

The interaction strength of the perturbation is denoted by J and the unitary matrix U is defined

as U = eiS . This leads to a unitary transformation of the total Hamiltonian of

H̃ = UHU† = eiSHe−iS

= H0 +HRKKY + i[S,H0] + i[S,HRKKY ] +O(J3)
(3.3)

The expansion in the second line is going to be cut at O(J3), so that the effective Hamiltonian is

determined up to O(J2). Choosing the unitary matrix such that HRKKY + i[S,H0] = 0 leads to

an effective Hamiltonian of H̃ = H0 + i[S,HRKKY ].

In order to get an explicit expression for H̃, an ansatz has to be made that has the same structure
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as the RKKY interaction term. This structure depends on the basis in which the unperturbed

system is diagonalized, since the RKKY term is transformed into the same basis. Additionally, all

coefficients in front of the single terms within the RKKY are formulated as general as necessary.

The coefficients are then explicitly determined by the requirement HRKKY + i[S,H0] = 0, which

enables to calculate the missing commutator in Eq. (3.3).

3.3 Numerical Approach

In addition to the analytical approach, the Hamiltonian of the two dimensional system is exactly

diagonalized numerically in python. The formulation of the Hamiltonian is done in a spin basis with

Nambu basis structure and the BdG formalism is used for the exact diagonalization. The system

is a superconductor with SOC and RKKY interaction and the boundary conditions are chosen to

be hard-wall for the x-direction and periodic for the y-direction. Such boundary conditions are

reasonable for thin film superconductors. With this choice of boundary conditions, the real-space

Hamiltonian has to be partially Fourier-transformed by

c⃗i,σ =
1

Ny

∑
ky

cix,ky,σe
i(kyiy) (3.4)

where the indices of the operator c change from the two dimensional position i⃗ in real space and

spin σ to partially Fourier transformed coordinates. The position in x-direction ix is still in real

space, while the y-direction ky is transformed into k-space. The spin σ stays the same under this

fourier transformation.

Such partially Fourier transformed operators allow to express the Hamilton operator of the system

as

H = H0 +
1

2

∑
ky

W †
ky
Hky

Wky
(3.5)

where Wky is the vector containing Ψix,ky for all positions in x-direction ix of the system. Ψix,ky

contains the Nambu-basis [58] for one position ix, which has the form

Ψ†
ix

=
(
c†ix,↑, c

†
ix,↓, cix,↑, cix,↓

)
The matrix Hky

is of dimension 4Nx× 4Nx, where Nx is the number of lattice sites in x-direction.

This Hamiltonian fulfills the relation Hix,jx,ky
= H†

jx,ix,ky
, which is imposed by complex conjugat-

ing Eq. (3.5).

Later in this thesis, the Hamiltonian is going to consist of terms for a tight-binding model, SOC of

Rashba-type and superconducting terms in BCS formulation. All of these terms have to be par-

tially Fourier transformed with Eq. 3.4. As it is one of the more complicated terms to transform,

the transformation of the SOC term is done explicitly here. The general expression in real space
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is taken from Sec. 2.4 and serves as the starting point:

HSOC = iγ
∑

⟨i,j⟩,α,β

c†i,αn · (di,j × σ⃗) cj,β

=
iγ

N

∑
ix,δ⃗

ky,k
′
y,α,β

c†ix,ky,α

(
δ⃗ · yσx − δ⃗ · xσy

)
cix+δ⃗·x,k′

y,β
e−ikyiy eik

′
y(iy+δ⃗·y)

= iγ
∑

ixδ⃗,ky,α,β

c†ix,ky,α

(
δ⃗ · yσx − δ⃗ · xσy

)
cix+δ⃗·x,ky,β

eiky δ⃗·y

= γ
∑

ix,ky,α,β

[
c†ix,ky,α

(iσy)αβcjx,ky,β(δjx,ix+1 − δjx,ix−1)− cix,ky,α(σx)αβcjx,ky,βδixjx2 sin (kya)
]

where δ⃗ is the distance between two nearest-neighbors on a square lattice with lattice constant a.

Therefore, there are local and nearest-neighbor terms in the SOC, although the original term

contained only nearest neighbor terms. Terms local in x-direction arise due to the transformation

because the nearest-neighbor in y-direction has a different ky-value, but the same ix-value.

After partially Fourier transforming all terms of the Hamiltonian in Eq. 7.5, the local components

of Hky can be expressed by the following 4x4 matrix

Hix=jx,ky
=

−µ+JS⃗ix σ⃗↑↑δix,i −2γ sin (kya)+JS⃗ix σ⃗↑↓δix,i 0 U∗
ix,ky

−2γ sin (kya)+JS⃗ix σ⃗↓↑δix,i −µ+JS⃗ix σ⃗↓↓δix,i −U∗
ix,ky

0

0 −Uix,ky µ−JS⃗ix σ⃗↑↑δix,i 2γ sin (kya)−JS⃗ix σ⃗↑↓δix,i

Uix,ky 0 2γ sin (kya)−JS⃗ix σ⃗↓↑δix,i µ−JS⃗ix σ⃗↓↓δix,i


(3.6)

where all sites ix containing an impurity spin are selected by δix,i. In order to see the symmetry of

the Hamiltonian more clearly, it can be simplified by expressing each of the four 2x2 blocks by a

2x2 matrix. The resulting symmetry structure of the local interaction Hamiltonian therefore takes

the form [
A B

B∗ −A

]

which is the structure of a Hermitian matrix as expected.

The nearest-neighbor terms have the structure[
C D

E† −C

]

where C,D,E are 2x2 matrices, and the terms get complex conjugated and transposed (†) for

the nearest neighbor in the other direction. Triplet pairing interaction is taken into account here.
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Similar to the SOC term, the partial Fourier transformation of the triplet pairing term looks like

Htri =
∑

i,j,α,β

∆i,j
α,βc

†
i,αc

†
j,β + h.c.

=
∑

ix,jx,α,β

∑
ky,k′

y

∆ix,jx
α,β c†ix,ky,α

c†jx,k′
y,β

e−i(kyiy)e−i(k′
yjy) + h.c.

=
∑

ix,δ,α,β

∑
ky,k′

y

∆ix,jx
α,β c†ix,ky,α

c†ix+δx,k′
y,β

e−i(kyiy+k′
yiy)e−i(k′

yδy) + h.c.

=
∑

ix,ky,α,β

(∆ix,jx
α,β c†ix,ky,α

c†jx,−ky,β
)(δjx,ix+1 + δjx,ix−1)2 cos (kya) + h.c.

where only nearest neighbor interaction is considered. Since Rashba SOC is considered, triplet

pairing is only considered for the case of equal spins [40]. Together with the remaining part of the

SOC term, the hopping term and the symmetry, this imposes the following formulation in order

to fulfill the requirement of a Hermitian matrix

Hix<jx,ky =


−2t cos (ky) −γ 2 cos (ky)V

↑
ix,ky

0

γ −2t cos (ky) 0 2 cos (ky)(V
↓
ix,ky

)∗

−2 cos (ky)(V
↑
ix,ky

)∗ 0 2t cos (ky) γ

0 −2 cos (ky)V
↓
ix,ky

−γ 2t cos (ky)

 (3.7)

were V σ
ix,ky

represents the pairing potential for same spin Cooper pairs with spin σ at site ix for

momentum ky and the lattice constant a = 1. The combination of matrix 3.6 and 3.7 describes

the on-site as well as nearest-neighbor interaction of the system. It takes the form
A B C D

B∗ −A E† −C
C E A B

D† −C B∗ −A


When looking at the eigenvalue equations of the full Hky

, one finds that if En,ky
is an eigenvalue

of Hky
then −En,−ky

is also an eigenvalue of Hky
. The eigenvector of −En,−ky

is found to be the

complex conjugate of the eigenvector of En,ky
, when additionally the momentum is reversed. This

symmetry can be exploited when diagonalizing the Hamiltonian numerically.

The diagonalized Hamiltonian can be expressed by the diagonal matrix D, which contains all

eigenvalues on its diagonal, when the original basis W is transformed into a new basis Γ. This new

basis is the eigenbasis of the Hamiltonian and defined by the relation

Γ†
ky

= W †
ky
Pky

=
(
γky,1, γky,2, . . . γky,4Nx

)
to the old, Nambu basis Wky

, where Pky
contains all eigenvectors as columns.

The components of these eigenvectors can be labeled as

PT
ky

=


u1,1,ky

v1,1,ky
w1,1,ky

x1,1,ky
u2,1,ky

. . . xNx,1,ky

...
...

u1,Nx,ky
v1,Nx,ky

w1,Nx,ky
x1,Nx,ky

u2,Nx,ky
. . . xNx,Nx,ky
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which leads to the definition of each single entry of the eigenbasis-vector as

γ†
ky,n

=
∑
ix

(
c†ix,ky,↑uix,n,ky + c†ix,ky,↓vix,n,ky + cix,−ky,↑wix,n,ky + c†ix,−ky,↓xix,n,ky

)
Using the symmetry of the eigenvectors under complex conjugation, which can be written as

PT
ky,n = P †

ky,n
= w∗

1,n,ky
, x∗

1,n,ky
, u∗

1,n,ky
, v∗1,n,ky

, w∗
2,n,ky

, . . . v∗Nx,n,ky

and using the symmetry under reversing momentum, the eigenbasis-vector components can also

be defined as

γ†
−ky,n

=
∑
ix

(
c†ix,−ky,↑w

∗
ix,n,ky

+ c†ix,−ky,↓x
∗
ix,n,ky

+ cix,ky,↑u
∗
ix,n,ky

+ cix,ky,↓v
∗
ix,n,ky

)

which also follows from the relation W−ky
= P−ky

Γ−ky
. It follows directly, that γ†

−ky,n
= γky,n,

which implies that not all γky,n operators are independent of each other for all ky-values what

restores the correct amount of degrees of freedom.

The diagonal Hamiltonian can now be written in terms of the new basis, which consist of the new

operators as suggested in BdG formalism, and reads

H = H0 +
1

2

∑
n,ky>0

En,kyγ
†
n,ky

γn,ky +
1

2

∑
n,ky<0

En,kyγ
†
n,ky

γn,ky +K

where the sum was split into a ky < 0, ky > 0 and ky = 0 part. The latter is simply denoted by

K for now.

Substituting En,ky → −En,ky in the sum over k < 0 allows to use the relation γ†
−ky,n

= γky,n in

the k < 0 term. After renaming ky → −ky and applying the relation γ†
−ky,n

= γky,n a second time,

the Hamiltonian reads

H = H0 −
1

2

∑
n,ky>0

En,ky +
∑

n,ky>0

En,kyγ
†
ky,n

γky,n +K

In order to evaluate the ky = 0 term, the problem that this mode does not have a negative partner

has to be resolved. That is done by applying the relation γ†
−ky,n

= γky,n and using that the

eigenvalues of H−ky are −En,ky , since the Hamiltonian then is

H = H0 −
1

2

∑
n,ky>0

En,ky +
1

2

∑
n,ky>0

En,kyγ
†
n,ky

γn,ky +
1

2

∑
n

En,0γ
†
n,0γn,0

Here, the Fermi-Dirac distribution may be used, since all γ-operators in
∑

n,ky>0 are independent

in this formulation of the Hamiltonian.

It is possible that for the ky = 0 mode, Hky
= H−ky

holds true. In that case, it also holds that if

En,0 is an eigenvalue then so is −En,0. Consequently, the eigenvalues can be sorted such that the

first 2Nx ones are negative and the last 2Nx ones are positive. If one of the eigenvalues is zero,

then there is a pair of eigenvalues equaling zero and the first and second half of the eigenvalues is

going to contain one of them each. The final expression for the Hamiltonian is therefore

H = H0 −
1

2

∑
n,ky>0

En,ky
− 1

2

∑
En,0≥0

En,0 +
∑

n,ky>0

En,ky
γ†
n,ky

γn,ky
+

∑
En,0≥0

En,0γ
†
n,0γn,0
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where all operators are independent of each other.

3.3.1 Local Density of States

Since spin-impurities are introduced into the non-centrosymmetric superconductor and they are

expected to interact and interfere with its behavior due to the local RKKY-interaction, it makes

sense to study the local density of states (LDOS). It allows to study the local symmetry charac-

teristics and their dependencies.

The starting point to derive the LDOS is the local charge in spin-basis ρi, which can be expressed

with the LDOS Di(E) and the occupation probability f(E), which is the Fermi-Dirac distribution.

That can be rewritten with the coefficients of the eigenbasis

ρi =

∫ ∞

−∞
Di(E)f(E)dE =

∑
σ

⟨c†i,σci,σ⟩

=
∑
n

[(
|ui,n|2 + |vi,n|2

)
(1− f(En)) +

(
|wi,n|2 + |xi,n|2

)
f(En)

]
For a superconducting system, low temperatures can be assumed and therefore the Fermi-Dirac

distribution can be approximated as Heaveside step-function Θ(x). That changes the upper limit

of the integral ∞ → 0 and replaces the f(E) → 1, which in turn allows the formulate the charge

density as

ρi =

∫ 0

−∞
Di(E)dE

=
∑
n

[(
|ui,n|2 + |vi,n|2

)
Θ(En) +

(
|wi,n|2 + |xi,n|2

)
Θ(−En)

]
The LDOS can therefore be obtained by calculating

Di(E) =
∑
n

[(
|ui,n|2 + |vi,n|2

)
δ(E + En) +

(
|wi,n|2 + |xi,n|2

)
δ(E − En)

]
In the implementation, the Dirac-delta function δ(E) is approximated by a Gaussian distribution

with standard derivation of 0.05.

3.3.2 Groundstate Orientation of Impurity Spins

The orientation of the impurity spins is discussed analytically in Section 7.6 and leads to a com-

bination of Heisenberg, Ising and Dzyaloshinskii-Moriya terms.

For the numerical approach the impurity spin-1/2 orientations are parameterized and their re-

spective free energies calculated. All possible spin configurations have to be considered, since the

numerical system has hard wall boundary conditions in x-, and periodic boundary conditions in

y-direction. Additionally, the symmetry in z-direction is broken by the SOC, which leaves each

direction unique. If the system had either only hard wall or only periodic boundary conditions,

then the xy-plane would be rotationally invariant and only the relative position of the spins would

matter.

Therefore, all possible spin configurations are parameterized in spherical coordinates and the dis-

cretization is chosen such that colinear and non-colinear alignments in all three directions are

included yielding 625 different spin configurations.

26



For each of the spin configurations the Hamiltonian is diagonalized and the free energy of the

system is calculated based on

F =
∑

n,k>0

[
−En,k

2
− 1

β
ln (1 + e−βEn,k)

]
−
∑
En≥0

En,k=0

2
−

∑
En,k=0≥0

1

β
ln (1 + e−βEn,k=0)

The groundstate than is determined by comparing the free energies of all spin configurations and

identifying the minimum.
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4 Normal Metal with RKKY interaction

A normal metal can be described by a tight-binding model for fermions, which has the Hamiltonian

Hnm = Hkin +Hpot = −t
∑

⟨i,j⟩,σ

c†i,σcj,σ − µ
∑
i,σ

c†i,σci,σ

with the annihilation [creation] operators c
[†]
i,σ for fermions with spin σ at lattice site i, and the

hopping amplitude t. Only nearest neighbor-hopping is included as indicated by ⟨i, j⟩ and the

hopping amplitude is used to shift all interaction potentials to a unitless expression That also

leaves the expectation value of the Hamiltonian unitless, when divided by t. The lattice can be

chosen freely and such that comparisons to possible experimental data become more easy. The

last term describes the potential energy of the system and is proportional to the chemical potential

µ = µ̃/t, which is unitless.

The Hamiltonian can be diagonalized by transforming the fermion operators from real space to

k-space via a Fourier-transformation of the form

ci,σ =
1√
N

∑
k

eikrick,σ

and its hermitian conjugate. For brevity, the vector k ∈ R2 is going to be written as k only.

Furthermore, the lattice constant a and any further lattice constant is set to one.

By defining the energy ϵk = −t
∑

⟨i,j⟩ exp(−ikδij), the Hamiltonian can be expressed as

Hnm =
∑
k,σ,σ′

(ϵk − µ)c†k,σck,σ′ (4.1)

The RKKY interaction as defined in Eq. (2.1) can also be Fourier transformed and then added

to Hnm. Note that the energy ϵk in Eq. 4.1 is not specified for any lattice. In the numerical

calculations, however, the lattice is chosen to be a square lattice and the energy takes the form

ϵk = −2t(cos (kx) + cos (ky)), which will be used in all following calculations.

The total system including the RKKY interaction can consequently be expressed as

HRKKY
nm =

∑
k,σ,σ′

(ϵk − µ)c†k,σck,σ′ +
∑

k,k′,σ,σ′

∑
i

J

N
ei(k−k′)ri(Si · σ⃗σ,σ′)c†k,σck′,σ′

where ri denotes the position of the impurity spin Si. The added term containing the RKKY-

interaction can be treated as a perturbation to the normal metal, which allows to use the Schrieffer-

Wolff transformation (SWT) to obtain the effective interaction.

After calculating the necessary commutators and taking the expectation value of the effective

Hamiltonian, the spin structure can be identified as

⟨HRKKY
nm ⟩ = ⟨Hnm⟩ −

∑
i,j,k,k′

(
J

N

)2

ei(k−k′)(ri−rj) 2SiSj (f(Ek)− f(Ek′)) (4.2)

where f(Ek,σ) = ⟨c†k,σck,σ⟩ denotes the Fermi-Dirac distribution and ⟨Hnm⟩ is the expectation

value for the unperturbed system. This spin structure is of Heisenberg form with a coupling con-

stant oscillating between positive and negative and, consequently, the preferred orientation of the

impurity spins is either parallel or anti-parallel without any preference regarding the axis, meaning
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that the system is isotropic in spin.

The changes within the normal metal because of the impurities are neglected and only the influence

of the normal metal environment onto the configuration of the impurity spins is investigated. This

simplification can be justified by the low density of impurity spins in the system and is applied to

all systems studied in this thesis.

(a)

0 2 4 6 8 10 12 14
distance in a

0.6

0.4

0.2

0.0
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1/
t

=0.5
=0.7

(b)

Figure 7: Figure (a) displays the orientation of the two impurity spins in the groundstate determ-
ined numerically for a system size of 240x20, µ = 0.5 and J = 2. This orientation is Heisenberg-like
and oscillates over distance. Figure (b) shows the oscillation in more detail for two different chem-
ical potentials µ calculate with the numerical approach. A stronger chemical potential leads to a
slightly longer oscillation period, but also to an earlier decay. It is a system with size 100x100 and
J = 2.

The numerical solution presented in Fig. 7 displays a Heisenberg-type spin-spin interaction. The

impurity spins align only parallel and anti-parallel, and the axis to which the spins are aligned is
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to a certain degree arbitrary and seems to oscillate with distance, too. Such a change in preferred

axis is in accordance the analytical theory, just as the Heisenberg interaction, as can be seen in

Fig. 7(b) Fig. 7(b) displays the oscillation of the RKKY interaction strength as calculated in Eq.

(4.2) over distance. A positive interaction strength corresponds to ferromagnetic (FM) ordering,

while a negative interaction strength corresponds to anti-ferromagnetic (AFM) ordering of the

impurity spins. The expected decay in interaction strength is clearly visible. It can be explained

by the fact, that the electrons can not travel entirely free within the metal and therefore loose

information about the spin while moving from one to the other impurity spin. The change in total

orientation of the impurity strength is due to the degeneracy of the system and is clearly reflected

in the numerical results, too.

Additionally, the influence of the chemical potential µ is visible in Fig. 7(b). The chemical

potential affects the RKKY interaction by altering the density of states of the conduction electrons

that mediate the interaction, since it affects the density of states by modifying the energy levels

available to the electrons. At higher chemical potential, the density of states is increased and the

RKKY interaction is strengthened, which can be seen by the longer periodicity of the oscillation. At

lower chemical potential, the density of states is decreased and the RKKY interaction is weakened.

The discrepancies between theoretical and numerical results stems from the limited numerical

accuracy. Since the energy levels of the lowest lying states only show differences of order 10−13,

they are numerically equivalent, which means that the actual groundstate is chosen somewhat

random. Nevertheless, the difference between the energy levels corresponding to non-colinear

alignments are of numerical significance. This form of degeneracy is also expected because of the

symmetry of the system.

Note that the RKKY interaction constant is kept within the interval [0, 3.5t], because a higher

interaction constant would lead a swap between FM and AFM ordering. The explanation lies in

the spin splitting of the metal’s bands that due to the RKKY interaction takes the form Jσ⃗ · S.
With increasing interaction strength J , the splitting becomes stronger and pushes the bands away

from the Fermi-energy level as illustrated in Fig. 8.

Figure 8: Splitting of positive and negative spin bands away from Fermi surface kF is proportional
to the RKKY interaction strength J for sites with impurities.

The two emerging separated bands correspond each to one spin orientation and they are filled up
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to the Fermi-energy.

These changes in the LDOS happen only at the sites of impurity spins, but the LDOS of sites in

between impurities are also influenced by the changes, because of the interaction between impurity

spins. As soon as the overlap of the two spin-bands vanishes and the LDOS at impurity sites shows

a gap, the LDOS of sites in between will also show a gap, if the impurity spins are aligned parallel.

That can be understood by looking at Fig. 9, which shows the LDOS of the two impurity sites

as well as one site in between. These changes in LDOS in the entire system influences the free

energy in such way that an AFM impurity spin orientation is preferred for short distances. For

long distances, on the other hand, the influences on the LDOS on sites between impurities is too

short ranged to have an effect on the free energy, since they neutralize over distance due to the

imperfect conductance of electrons.

Therefore the RKKY interaction strength is kept within J ∈ [0, 3.5t] to avoid such effects.

(a) RKKY J = 0 (b) RKKY J = 2

(c) RKKY J = 5

Figure 9: LDOS for a normal metal with two impurities at three different sites. For J = 0 in (a)
all LDOS are nearly identical, for weak J = 2 in (b) the development of two bands because of spin
orientation is visible, and for strong J = 5 in (c) the bands do not overlap any longer. The bands
form on the sites of the impurities at i = 45, 55, while the site i = 50 between them is influenced
by the changes of LDOS on the impurity sites. Depending on the impurity spin orientation, the
changes in LDOS on i = 50 differ.
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5 Superconductor with RKKY

RKKY interaction in both s- and d-wave superconductors has been the subject of extensive re-

search, as demonstrated by Ghanbari [5] and others. However, a brief examination of the system

is conducted in this study to assess the efficacy of the applied method and obtain results that can

be compared with previous findings.

The Hamiltonian of the system without impurity spins has the form

HSC = Hnm +
∑
i

Uc†i,↑c
†
i,↓ci,↓ci,↑

where U = Ũ/t denotes the strength of the attractive potential, which is a BCS on-site attractive

interaction. Therefore the system can be treated with the BCS formalism.

As the first step to diagonalize HSC , the attractive interaction term is transformed into k-space

and a mean-field treatment is performed as introduced in Sec. 2.3.2. HSC reads afterwards

HSC =
∑
k,σ

(ϵk − µ)c†k,σck,σ −
∑
k,σ

[
∆c†k,↑c

†
−k,↓ +∆∗c−k,↓ck,↑

]
− |∆|

2

V

The attractive interaction leads to an s-wave superconductor with ∆ ∈ R, which follows from the

definition of the superconducting gap and the fact that all involved quantities are real for singlet

s-wave pairing.

Secondly, a BdG transformation as described in Sec. 3.1 is applied which defines new fermion

operators as

ck,σ = ηk γk,σ + σ νk γ
†
−k,−σ

c†−k,−σ = −σ νk γk,σ + ηk γ
†
−k,−σ

where

ηk =
(
√

(ϵk − µ)2 +∆2 + ϵk − µ)√
(
√
(ϵk − µ)2 +∆2 + ϵk − µ)2 +∆2

νk =
∆√

(
√
(ϵk − µ)2 +∆2 + ϵk − µ)2 +∆2

and the notation is adapted from Ghanbari [59].

Ultimately, the diagonalized HSC takes the form

HSC = −|∆|
2

V
+
∑
k

(ϵk − µ) +
∑
k,σ

√
(ϵk − µ)2 +∆2

(
γ†
k,σγk,σ −

1

2

)

= −|∆|
2

V
+
∑
k

(ϵk − µ) +
∑
k,σ

ESC
k

(
γ†
k,σγk,σ −

1

2

)

This energy spectrum allows to investigate different properties of the superconductor, before the

RKKY interaction is added and studied.
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5.1 Bound States

Although the density of impurities in the system is chosen so small that their effects on the overall

superconducting gap can be neglected, the impurities still have an influence on the LDOS in their

close environment.

The impurity spins are chosen classical, which allows to treat them as magnetic impurities. Previous

work on their influence on the energy spectrum of the neighboring sites has shown that states within

the superconducting gap are occupied [3, 60], which in turn influences the phase transition and

gap itself [61].

The states that emerge are due to the Kondo effect. As derived by Shiba for the classical limit,

the presence of an impurity shifts the poles of the Green function of the system towards a Green

function with poles at

Ebound = ±∆0

1−
(
1
2JSρπ

)2
1 +

(
1
2JSρπ

)2
relative to the initial gap ∆0, where the RKKY interaction strength is J , the spin S and the density

of states ρ at the Fermi level in the normal state.

Spin, density of states and π are constants and therefore they are set to one for the numerical

calculations and the factor 1/2 is absorbed into J . Since the energy depends only on the oscillating

RKKY interaction strength, the energy of the electrons localized around the impurity depends only

on the distance to the impurity. Those electrons are localized around the impurities in the first

place, because the presence of the impurities lowers their energy. The oscillating nature of the

RKKY interaction is reflected in the position of the bound states. Generally, the LDOS shows a

strong superconducting gap, which closes with increasing RKKY interaction at the impurity site,

because it breaks the Cooper pairs [3].

On the sites next to the impurity, the bound states form as can be seen in Fig. 10. The different

colored lines there represent LDOS on different sites in the system and the dotted line is the

impurity site. An increasing RKKY interaction strength gives rise to clear in-gap peaks for negative

energies and only very small alternations for positive in-gap states. This relation changes to a

nearly equal distribution for the next-nearest neighbor site. Although not depicted here, with

increasing distance from the impurity the relation between positive and negative energy in-gap

states oscillates in the qualitatively same behavior as the RKKY interaction strength itself does.

Therefore the numerical results match the expected behavior for bound states.

Bound states do also exist in unconventional superconductors, but are more difficult to find and

exhibit more complex behavior, due to the presence of triplet Cooper pairs. In Sec. 7.4, an attempt

to study these bound states is made despite that difficulty.

5.2 Spin Structure of Superconductor with RKKY

The RKKY interaction is treated perturbatively again and therefore a SWT is applied. The ansatz

S =
∑

k,k′,α,β

(Ak,k′,α,βγ
†
k,αγk′,β +Bk,k′,α,βγ

†
k,αγ

†
−k′,−β + Ck,k′,α,βγ−k,−αγk′,β +Dk,k′,α,βγ−k,−αγ

†
−k′,β)
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Figure 10: Bound states at impurity spin in a s-wave superconductor.

is used in the SWT and yields the four coefficients

Ak,k′,α,β = i
∑
i

J

N
ei(k−k′)ri (Si · σ⃗α,β)

η∗kηk′

Ek′ − Ek

Bk,k′,α,β = −βi
∑
i

J

N
ei(k−k′)ri (Si · σ⃗α,β)

η∗kνk′

E−k′ + Ek

Ck,k′,α,β = αi
∑
i

J

N
ei(k−k′)ri (Si · σ⃗α,β)

ν∗kηk′

Ek′ + E−k

Dk,k′,α,β = αβi
∑
i

J

N
ei(k−k′)ri (Si · σ⃗α,β)

ν∗kνk′

−E−k′ + E−k

Based on these coefficients, the effective interaction HRKKY
SC can be calculated. After computing

the missing commutator and evaluating the Hamiltonian in the groundstate of the unperturbed

system, ⟨HRKKY
SC ⟩ is determined and the spin structure can be written in form of Heisenberg

interaction:

⟨HRKKY
SC ⟩ = ⟨HSC⟩ −

∑
i,j,k,k′

JSC
k,k′SiSj

where JSC
k,k′ is defined as

JSC
k,k′ =

∑
k,k′

(
J

N

)2

ei(k−k′)(r1−r2)
(
|ηkηk′ |2 + |νkνk′ |2 + 2η∗kηk′ν∗kνk′

) f(Ek)− f(Ek′)

Ek′ − Ek

This interaction strength oscillates with the separation distance between the impurities with a

similar behavior as a normal metal. The main difference is how strongly the oscillation is damped,

which can be seen in Fig. 11. There the oscillation between ferromagnetic and anti-ferromagnetic

ordering is depicted for different Cooper pairing potentials based on the numerical approach. Here,

the oscillation can be calculated as the difference between the free energy for ferromagnetic and

anti-ferromagnetic ordering, because those two are the only possible groundstates of the system. A

positive difference means that anti-ferromagnetic ordering is favored and for a negative difference

ferromagnetic ordering.

It can be seen that the RKKY interaction strength decreases significantly faster in a superconductor
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than in a normal metal. That originates from the behavior of the electrons, which ultimately lead

to the RKKY interaction. In a superconductor, the electrons close to the Fermi surface pair into

Cooper pairs, which leaves only the electrons in the lower energy states as available information

carriers of the RKKY interaction. The longer the distance between the impurity spins is, the

more likely it is that those previously single electrons also pair up into Cooper pairs and loose

the spin information in this process. Consequently, the range of interaction between impurity

spins in superconductors decreases with increasing attractive electron potential aka. increasing

superconducting gap.
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U = 0.0
U = 0.3
U = 0.6

Figure 11: Oscillation of numerical RKKY interaction strength between ferromagnetic and anti-
ferromagnetic, which is stronger damped with higher Cooper pairing potential. The system has
size 50x50, µ = 0.5, J = 2.

For the same reason as in normal metals, the ordering will switch between FM and AFM for

J > 3.8t (see App. A). Therefore the RKKY interaction strength is kept within J ∈ [0, 3.5t] to

avoid such effects for superconducting systems, too.

The numerical results agree with the analytical results as can be seen by comparing Fig. 11 and

Fig. 12. In the latter, the RKKY interaction strength JSC is presented for increasing distance

between the impurity spins, and for two different Cooper pairing potentials. The stronger potential

leads to a stronger damping of the oscillation just as in the numerical case. Nevertheless, there

are some differences visible for the smaller distances. While there are two clear peaks in the

analytically determined oscillation, there is only one distinct peak visible in the numerical result.

This difference might be caused by the fact that the numerical solution takes bound states in

account, while the analytical does not do so. Therefore the in-gap states influence the availability

of electrons for information transfer in such way, that the information loss is slightly slower in

the numerical result. That means in turn that the ferromagnetic ordering is favorable over longer

distances and slightly more comparable to the behavior in a normal metal than the results from

the analytical approach. But note that the RKKY interaction strength stays completely positive

for the superconducting case due to the modified density of states of the conduction electrons that

mediate the interaction.
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Figure 12: Oscillation of analytical RKKY interaction strength between ferromagnetic (positive)
and anti-ferromagnetic (negative), which is stronger damped with higher Cooper pairing potential.
The system is of size 100x100 and has µ = 0.5, J = 2.
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6 Normal Metal with Spin Orbit Coupling and RKKY

A normal metal with Rashba SOC with coupling strength γ = γ̃/(at) is studied now. This

type of SOC is a consequence of the broken inversion symmetry of the metal, since it is non-

centrosymmetric. The SOC strength is assumed to be the same in the entire system, which is

reasonable since only the bulk properties are of interest here.

Employing the Fourier transformation of the fermion operators, leads to the following formulation

of the system’s Hamiltonian

HSOC =
∑
k,σ,σ′

[(ϵk − µ)δσσ′ + γ n (dk × σ⃗σ,σ′)]c†k,σck,σ′ (6.1)

The Hamiltonian is therefore diagonal in momentum k, but not in spin σ.

Since the SOC couples spin and momentum, this is to be expected and leads to the definition of

helicity λ, which expresses exactly this dependency. The fermion operators are therefore trans-

formed from spin-space to helicity-space [62, 63] by the transformation

bk,λ =
1√
2|γk|

(√
(|γk|+ λγk,z)ck,↑ + λ

γk, x+ iγk,y√
|γk|+ λγk,z

ck,↓

)
(6.2)

ck,σ =
1√
2|γk|

(γk,x + iγk,y)(1− δσ=↑)

|γk|

(√
|γk|+ σγk,zbk,+ + σ

√
|γk| − σγk,zbk,−

)
(6.3)

where λ = ±1 is the helicity index and γ(k) = γndk = γk. This transformation is unitary and

therefore preserves the fermionic anti-commutation relations of the particle operators c.

Inserting this into the Hamiltonian in Eq. (6.1) leads to the diagonalized expression for the non-

centrosymmetric metal

HSOC =
∑
k,λ

((ϵk − µ) + λ|γk|) b†k,λbk,λ =
∑
k,λ

ξk,λb
†
k,λbk,λ (6.4)

Therefore the system’s energy spectrum in helicity basis is

ξk,λ = (ϵk − µ) + λ|γk|

which describes the lifting of the spin-degeneracy, because although each helicity-basis operator

bk,λ contains both ck,↑ and ck,↓, they are weighted differently. That leads to different energies

associated with the different spin-orientations.

The RKKY interaction is also transformed into helicity basis by means of Eq. (6.2):

HRKKY =
∑

k,k′,i,λ,λ′

T γ
i,k,k′,λ,λ′b

†
k,λbk′,λ′
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where Tγ,k,k′,i,λ,λ′ contains all pre-factors. The exact expression for T for a general SOC can be

found in App. B. For the case of Rashba-SOC, the entire transformation factor takes the form

HRKKY =
∑
i,k,k′

λ,λ′,σ,σ′

J

N

ei(k−k′)ri

2
√
|γk||γk′ |

[
Sz (Sx−iSy)

γ
k′,x+iγ

k′,y
|γ

k′ |

(Sx+iSy)
γk,x−iγk,y

|γk| −Sz

(γ
k′,x+iγ

k′,y)(γk,x−iγk,y)

|γk||γ
k′ |

]
σ,σ′

×
√
|γk||γk′ |

[
1 σ′

σ σσ′

]
λ,λ′ b

†
k,λbk′,λ′

=
∑
i,k,k′

λ,λ′,σ,σ′

J

N

ei(k−k′)ri

2

[
Sz − λλ′Sz

(γk′,x + iγk′,y)(γk,x − iγk,y)

|γk||γk′ |

+λ′(Sx − iSy)
γk′,x + iγk′,y

|γk′ |
+ λ(Sx + iSy)

γk,x − iγk,y
|γk|

]
For employing the SWT (see Sec. 3.2) again, a fitting ansatz has to be made based on the structure

of RKKY in helicity basis. This ansatz takes the form

S =
∑

i,k,k′,λ,λ′

Ai,k,k′,λ,λ′b†k,λbk′,λ′

and after calculating the two necessary commutators, the spin structure of two impurity spins

interacting via RKKY-interaction is found to be

⟨HRKKY
SOC ⟩ = ⟨HSOC⟩

+
∑
k,k′

(Ji,j,k,k′ + Ii,j,k,k′)SiSj +Di,j,k,k′(Si × Sj) + Si ·
←→
Γ i,j,k,k′ · Sj

where the coefficients J, I, D and
←→
Γ are defined as

Ji,j,k,k′ = −2
(

J

2N

)2

ei(k−k′)(r1−r2)F+++
k,k′ (6.5)

Ii,j,k,k′ =

 m+m∗

−(m+m∗)

i(m−m∗)

( J

2N

)2

ei(k−k′)(r1−r2)F+−−
k,k′ (6.6)

Di,j,k,k′ =

(
J

2N

)2

ei(k−k′)(r1−r2)

 i (Φ∗
1 +Φ1)F

++−
k,k′ − i (Φ′

1 + (Φ′
1)

∗)F+−+
k,k′

(Φ∗
1 − Φ1)F

++−
k,k′ + (Φ′

1 − (Φ′
1)

∗)F+−+
k,k′

0

 (6.7)

←→
Γ i,j,k,k′ =

 0 i(m∗ −m) 0

i(m∗ −m) 0 0

0 0 0

( J

2N

)2

ei(k−k′)(r1−r2)F+−−
k,k′ (6.8)

where the following short-hand notation is used for the energy dependence

F±±±
k,k′ = Kk,k′

+,+ ±Kk,k′

−,− ±Kk,k′

+,− ±Kk,k′

−,+

Kk,k′

λ,λ′ =
f(ξk,λ)− f(ξk′,λ′)

ξk′,λ′ − ξk,λ
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In addition, the phase factors stemming from SOC are defined as

m =
1

|γk| |γk′ |
(γk,xγk′,x − γk,yγk′,y + iγk,xγk′,y + iγk,yγk′,x)

RKKY interaction has already been investigated in normal metals with SOC [15, 64, 65], and

therefore the found spin structure can be compared to existing solutions.

The general spin structure for a two dimensional electron gas (2DEG) with SOC and RKKY was

calculated with the Green’s functions approach by Mohammad [15]. The notation used in that

thesis leads to a spin structure with three terms

Heff = J Si · Sj +D (Si × Sj) + Si ·
←→
Γ · Sj (6.9)

This is for a general SOC, while in the case of Rashba-SOC the
←→
Γ becomes zero.

The spin structure in Eq. (6.5) - (6.8) matches with the findings of Mohammad, because there is

a non-zero Heisenberg interaction as well as a Dzyaloshinskii–Moriya (DM) interaction. The exact

form differs from Mohammad’s, because the odd/even parts in the Green function formalism are

defined in a way that does not match with the approach presented in this work. But the crucial

part of DM interaction is similar and shows a similar structure, and therefore these two results are

considered to be physically equivalent.

The additional DM term in a 2DEG with SOC allows to interpret the spin interaction as a twisted

RKKY-interaction as shown by Imamura et al. [64]. They investigate a 2DEG with Rashba-SOC

and comparing the results for the spin-structure obtained with the Green’s function formalism to

the inner product of the untwisted spin space of the first spin and the twisted spin space of the

second spin. Namely, the spin space of the second impurity spin is twisted as

Sx
2 (θ12) = cos θ12S

x
2 + sin θ12S

z
2

Sy
2 = Sy

2

Sz
2 = cos θ12S

z
2 − sin θ12S

x
2

where the angle θ = 2mα|R1 −R2| with the SOC strength α.

The inner product with the untwisted spin space of the first impurity spin is consequently

S1 · S2(θ12) = cos θ12S1S2 + sin θ12 (S1 × S2)y + (1− cos θ12)S
y
1S

y
2

This corresponds to a Heisenberg-like interaction with strength cos θ12, an Ising-like interaction

of strength (1 − cos θ12) and the y-component of a Dzyaloshinskii-Moriya interaction term with

strength sin θ12.

That behavior can also be seen in the coefficients in Eq. (6.5)- (6.8), since the Heisenberg and

Ising term are real, while DM and remaining terms are imaginary before the k-space summation.

6.1 Spin Structure and Groundstate

For a better understanding of the analytical spin structure and therefore of the parameters con-

trolling the exact form of each contributions to the groundstate, the four different interaction

coefficients are plotted for different distances and two different SOC strengths in Fig. 13. For

the weaker SOC of γ = 0.1, Heisenberg interaction completely dominates the RKKY interaction
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over short distances, which is depicted in Fig. 13(a). It is mainly positive, but does oscillate a

little bit into the negative regime, too, which means that ferromagnetic spin alignment is strongly

favored. The DM interaction dominates the interaction starting from middle distances, from where

the Ising interaction also gains in strength. DM is mainly negative and has a very similar phase

to the Heisenberg interaction and both oscillations are damped in the same way. Interestingly, the

damping is not monotone, because the third maximum of interaction strength is larger than the

second one. That is due to the splitting of the total RKKY interaction strength onto the differ-

ent spin structure components. Calculating the total interaction strength still yields a monotone

damping.

With a stronger SOC, the damping becomes monotone and Heisenberg as well as DM become

weaker and their relative magnitude is inverted for even shorter distances than before, as can be

seen in Fig. 13(b). Although Heisenberg interaction still dominates for short distances leading

to a parallel alignment of the two impurity spins, DM interaction determines the spin structure

for middle distances of d = 2 − 7a, because the overall magnitude of the Heisenberg interaction

decreases stronger than the magnitude of the DM interaction. Therefore, a stronger SOC leads

to non-colinear spin alignment for middle distances, which is induced by the Dy term of DM.

Additionally, the stronger SOC leads to a smaller phase shift between Heisenberg and DM and an

increase of the Ising interaction terms Iz and Iy. That further narrows down the favored ground-

state spin orientation and counteracts the DM interaction on some distances.

For longer distances, Heisenberg interaction is dominating again, while DM and Ising interaction

become significantly weaker, leading to a parallel alignment again. This behavior is additionally

visualized as the groundstate spin configuration in App. E in Fig. 28.

The numerical approach does not allow to single out the different coefficients, but it allows to

determine the groundstate spin configuration.

0 1 2 3 4 5 6
distance in a

2000

0

2000

4000

6000

en
er

gy
/t

Analytical coefficients from SWT 
 for N= 100 = -5e-01  = 0.1 s = 0.0 t = 0.0

J
xy
Ix
Iy
Iz
Dx
Dy
Dz

8 10
250

0

250

(a)

0 1 2 3 4 5 6
distance in a

3000

2000

1000

0

1000

2000

3000

4000

en
er

gy
/t

Analytical coefficients from SWT 
 for N= 100 = -5e-01  = 0.2 s = 0.0 t = 0.0

J
xy
Ix
Iy
Iz
Dx
Dy
Dz

8 10

200

0

200

(b)

Figure 13: Analytical results for spin structure coefficients of a normal metal with SOC for (a)
weak SOC and (b) strong SOC. The inset shows longer distances, where the overall interaction
strength decreases, and therefore, the details of the long range behavior would otherwise not be
visible.

Fig. 14 presents the orientation of the impurity spins in the groundstate for different separation

distances between them. The blue and the green arrows belong each to one of the impurities,

respectively, and for parallel alignment the green arrow covers the blue arrow. As can be seen

in Fig. 14, parallel and non-colinear alignment of the spins are present in the groundstate. For

40



shorter separation distances, there is an oscillation between these two configurations, while the

oscillation vanishes for longer distances. That is as predicted by the analytical result.

Although not marked explicitly in this figure, there is some degeneracy to the groundstate in the

numerical solution. All states belonging to one groundstate show the same relative angle towards

each other, while their absolute orientation differs. Therefore the degeneracy is not completely

lifted by the systems anisotropy caused by SOC.

As can be seen from the expressions for each of the interaction types in Eq. (6.5)- (6.8), a degen-

eracy in in the xy-plane is to be expected from the symmetry of J and
←→
Γ . The DM terms, on the

other hand, show differences for x- and y-direction, but only in that sense that they each couple

differently to the z-direction. Therefore is the degeneracy in accordance with the analytical result.

Figure 14: Numerical groundstate spin configuration for a normal metal with SOC γ = 0.1 and
µ = 0.5 for system size 120x15. The spin configuration changes with distance and shows an
alternation between non-colinear and parallel spin alignment over distance.

Additional to the investigation of the separate analytical spin structure coefficients, the free energy

of the system is determined based on them and the groundstate spin configuration is presented in

Fig. 15. There the influence of the DM interaction after short distances becomes clearly visible,

because non-colinear alignments dominate the groundstate. That is a difference to the numerical

solution, where the DM seems to be weaker in comparison to the other coefficients, which might

be due to finite size effects.
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Figure 15: Analytical groundstate spin configuration for a normal metal with SOC γ = 0.2 and
µ = 0.5. The spin configuration changes with distance and shows an alternation between non-
colinear and colinear spin alignment over distance.
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7 Superconductor with SOC and RKKY

After the methods have been successfully tested on normal metal with and without SOC as well

as on conventional superconductor, an unconventional superconductor is studied now. It’s broken

inversion symmetry, which results into Rashba SOC, leads to triplet pairing in addition to singlet

pairing. The interactions within this non-centrosymmetric superconductor can be expressed by

the following Hamiltonian:

HuSC = HSOC +Hint (7.1)

The diagonalization ofHSOC is already known and written out in Eq. (6.4), therefore the attractive

interaction between electrons Hint has to be added and the final Hamiltonian diagonalized. The

RKKY interaction is going to be treated as a perturbation to that Hamiltonian again.

The attractive interaction term of the non-centrosymmetric superconductor is based on BCS theory

and reads in helicity space

Hint =
∑
k,k′,q

∑
α,α′,β,β′

−1

2
Vα,α′,β,β′(k, k′, q)b†k,αb

†
−k+q,βb−k′+q,β′bk′,α′

where α, β are helicity-band-indices and Vα,α′,β,β′(k, k′, q) = Ṽ /t denotes the interaction strength.

The SOC is assumed to be large compared to the size of the gaps, which suppresses interband

hopping. Therefore, the helicity indices are set to α = β = λ and α′ = β′ = λ′.

Since the phase space changes with the value of q and is maximal for q = 0, all other contributions

are negligibly small for large enough SOC [50, 62].

This leads to the following expression for the interaction term

Hint =
∑
k,k′

∑
λ,λ′

−1

2
Vλ,λ′(k, k′)b†k,λb

†
−k,λb−k′,λ′bk′,λ′ (7.2)

which allows for intraband pairing as well as pair-hopping.

Next, a mean-field approximation is done by introducing the average ak,λ = ⟨b−k,λbk,λ⟩ as done in

Sec. 2.5.2. The deviation from this average is assumed to be small in the system, such that the

approximation b−k,λbk,λ = ak,λ + δk,λ holds, and terms of order δ2 can be disregarded.

This allows to rewrite the Hamiltonian (7.2) as

Hint =
∑

k,k′,λ,λ′

−1

2
Vλ,λ′(k, k′)

[
a†k,λb−k′,λ′bk′,λ′ + ak′,λ′b†k,λb

†
−k,λ − a†k,λak′,λ′

]
From that, the order parameter

∆k,λ =
∑
λ′,k′

Vλ,λ′(k, k′)ak′,λ′

can be defined, which is called gap in the BCS theory. It has a dependence on k, since it is defined

in real space for nearest-neighbors only. Now, the Hamiltonian (7.2) can be further rewritten into

the form

Hint = −
∑
k,λ

1

2

[
∆k,λb

†
k,λb

†
−k,λ +∆†

k,λb−k,λbk,λ

]
+∆k,λa

†
k,λ (7.3)

where the last term is constant and is going to be disregarded for now. The new characteristics of

the gap ∆k,λ are discussed in the next section.
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7.1 Singlet and Triplet Pairing Interaction

The attractive interaction between electrons in a non-centrosymmetric superconductor does not

only lead to spin-singlet pairs but also to spin-triplet pairs. The Hamiltonian for attractive electron

interaction in the helicity basis is presented in Eq. 7.3 and reads

Hint = −
1

2

∑
k,λ

(
∆k,λb

†
k,λb

†
−k,λ + h.c.

)
where the constant term is neglected, because it is only a constant energy shift.

The Hamiltonian including tight binding model and spin-orbit-coupling is diagonalized by fermionic

operators in helicity space and its eigen-energies are symmetric in k. That allows to write the

operation of the time-reversal operator K = iσyK0 as K|k, λ⟩ = tk,λ| − k, λ⟩, where K0 is the

complex conjugation and it is acting on a state |k, λ⟩ [62]. Here, the nontrivial phase factor tk,λ is

defined for the eigenbasis in helicity space as

tk,λ = λ
γk,x − iγk,y
|γk|

and therefore depends on the chosen type of SOC. The phase factor allows to write the interaction

potential and the gap as

Vk,k′,λ,λ′ = tk,λt
∗
k′,λ′ Ṽk,k′,λ,λ′

∆k,λ = tk,λ∆̃k,λ (7.4)

That leaves the interaction potential and the gap even in k-space, because the phase factor tk,λ

contains all parts odd in k. In addition, it is possible to split the gap in spin-space into positive

and negative helicity parts

∆k,σ,σ′ = [(∆s,k + dkσ) iσy]σ,σ′

∆s,k =
∆̃k,+ + ∆̃k,−

2

dk =
∆̃k,+ − ∆̃k,−

2

γk
|γk|

= ∆t,k
γk
|γk|

which can be found when transforming between the two basis.

The resulting expression for the gap is a 2x2 matrix expressed in helicity basis variables for the

different possible spin-configurations. Furthermore, the definition of dk implies that only the

orientation parallel to the SOC is allowed as discussed in Sec. 2.5.3.

In the case of Rashba-SOC, it is possible to specify the expression for dk in terms of the SOC

vector γk and the triplet-pairing ∆t [66], so that the total gap reads in spin-space

∆k =

(
−i∆t,k

|γk| (kx + iky) ∆s,k

−∆s,k i
∆t,k

|γk| (ky − ikx)

)

which yields the same preferred triplet paring mechanism as predicted in Sec. 2.5.3. From this

representation of the total gap, it also becomes clear that there are only singlet stemming from the

s-wave gap and triplets (same spin pairs) stemming from the p-wave gap. There are no singlets

from the p-wave gap, because the dz component is zero since the symmetry breaking axis is chosen

in that direction.
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For a square lattice, the interaction potential can also be expressed as a more general 2x2 matrix

of the structure [62]

Ṽk,k′,λ,λ′ =
1

2
Vg (σ0 + σx) +

1

2
λλ′Vu,k,k′ (σ0 − σx)

=

[
Ṽ d
k,k′,λ,λ′ Ṽ o

k,k′,λ,λ′

Ṽ o
k,k′,λ,λ′ Ṽ d

k,k′,λ,λ′

]

where Vg[u] represents the even [odd] parts of the interaction in spin-basis. The case of only singlet-

pairing corresponds to Vu = 0 and Vg ̸= 0.

Furthermore holds for a square lattice that SOC generally is γ(k) = γ0k and that an attractive

interaction is most likely mediated by phonons, which leads to a k-independent even part Vg.

Additionally, the resulting gap functions are isotropic in k-space, because phonons lead to local

interactions in most cases. Nevertheless, the magnitudes of gaps corresponding to different helicity

bands can generally be different and their difference depends on the strength of the spin-orbit

coupling [62], because that leads to a difference in occupation of the two helicity bands. The ratio

between the positive and negative helicity gap determines the ratio |dk|/|∆s,k| and suggests that

for weak SOC singlet-pairing dominates while triplet-pairing dominates for strong SOC. Those two

cases have different gap symmetries, namely s-wave dominated or p-wave dominated for weak and

strong SOC, respectively.

Taking the triplet-pairing into account, as done in this section, alters the shape of the gap expected

to be seen in the density of states. For singlet pairing, there is one region close to E = 0 where the

density of states becomes zero. It is clearly visible for a large enough attractive potential U and the

typical shape can be seen in Fig. 4. The spin splitting by SOC leads to a splitting of the gap into

spin-up and spin-down parts, which give rise to an additional in-gap peak when added together as

is illustrated in Fig. 16. A singlet gap does not feature such peaks and is most comparable to the

spin-down gap of Fig. 16.

Figure 16: General expected behavior for a triplet gap. The spin-up and spin-down gaps are
slightly shifted with respect to each other, which leads to a second peak inside the gap. Graph
taken from [67].

Since the triplet-pairing mode allows for non-zero spin of Cooper pairs, these Cooper pairs can

potentially influence the RKKY interaction. Non-zero spin Cooper pairs have a different movement

behavior then singlet electrons, which have been the only mediating spins in a superconductor

without SOC. Therefore it is expected that the presence of triplet Cooper pairs alters the RKKY
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interaction between two impurity spins, in addition to the changes already caused by the SOC

itself.

7.2 Diagonalization

Combining all individual terms of the Hamiltonian, the non-centrosymmetric superconductor can

be described by

H0 = Hkin +Hpot +HSOC +Hint (7.5)

=
∑
k,λ

1

2
ϕ†
k

[
ξk,λσ0 i∆k,λσy

−i∆†
k,λσy −ξk,λσ0

]
ϕk +

∑
k

ξk

with the basis vectors ϕ†
k = (b†k,λ, b

†
−k,λ, bk,λ, b−k,λ) and ϕk its complex conjugate. In addition, it

is used that time reversal symmetry is preserved ϵk = ϵ−k.

This matrix can easily be diagonalized and has eigenvalues

E±
k,λ = ±

√
ξ2k,λ + |∆k,λ|2

The components of the eigenvectors are

ηk,λ =
Ek,λ + ξk,λ√

(Ek,λ + ξk,λ)2 + |∆k,λ|2

νk,λ =
−∆k,λ√

(Ek,λ + ξk,λ)2 + |∆k,λ|2

where Ek,λ = E+
k,λ Combining the two eigenvectors result in the transformation matrix P between

d and b operators

P †
k,λ =

[
ηk,λ νk,λ

−ν†k,λ ηk,λ

]

where the eigenvectors are in the columns of P .

The diagonalized Hamiltonian can therefore be expressed in the form of a Fermi-gas

H0 =
∑
k,λ

[
Ek,λ(d

†
k,λdk,λ − d†−k,λd−k,λ)

]
+
|∆|2

V
+
∑
k

ξk −
∑
k

Ek (7.6)

where d[†] is the annihilation [creation] operator for the quasi-particles that diagonalize the total

Hamiltonian. They are defined via the transformation from the helicity basis with matrix Pk,λ,

which contains the eigenvectors as columns.(
dk,λ

d†−k,λ

)
=

[
ηk,λbk,λ + νk,λb

†
−k,λ

−ν†k,λbk,λ + ηk,λb
†
−k,λ

]
(7.7)

The anti-commutation-relations of the d-operators are fermionic again, since Pk,λ is unitary.
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7.3 Andreev Reflection

Besides free energy and gap equation, the LDOS of the p-wave superconductor is of interest. As a

first test for the numerical approach for this system and as a first aid to characterize it, a special

edge effect between superconductor to other materials or vacuum is investigated. This certain

effect is called Andreev reflection, which was discovered by Andreev in 1964 [68] and by de Gennes

and Saint-Jaimes in 1963-64 [69].

It describes originally the phenomenon that an electron with energy E < ∆ (E relative to Fermi

energy) can not be transmitted into a superconductor in the form of a single electron, since it can

not overcome the potential barrier imposed by the superconducting gap. This electron can only be

transmitted into the superconductor as a quasi-particle, which in turn requires the transmission of

two electrons with opposite spin. Consequently, an electron with opposite spin at energy −E must

disappear from the normal-metal side of the interface. This looks like the reflection of a hole with

opposite spin, approximately opposite momentum and energy to the initial electron that is to be

transmitted into the superconductor [70, 71].

Rephrased this phenomenon can be described as an electron (hole) approaching a material, where

there is a gap while there is no gap in its material of origin. That leads to the reflection of the

electron (hole) as a hole (electron), while a Cooper pair is formed in the material with energy gap

[5].

These reflections are also present within unconventional superconductors and as shown by Eschrig

et al. [71] in a superconducting system that allows for triplet pairing, the surface states are strongly

influenced by the relative magnitude of the singlet and triplet gap order parameter ∆s and ∆t,

respectively.

To see that, the surface or boundary conditions in wave function formalism are defined by setting

the wave function to zero at the boundary. Based on that the bound state condition can be

expressed in dependence of singlet and triplet gap as well as the energy of the system and a

proportionality constant ξ ≤ 1 [72]. This bound state condition reads√
(∆2

1 − E2)(∆2
2 − E2) =

1− ξ

1 + ξ
(E2 + γ∆1∆2)

ξ = 1 for Θc < |Θ2| ≤ π/2

ξ =
sin2( 12 [Θ1 +Θ2])

cos2( 12 [Θ1 −Θ2])
for |Θ2| ≤ Θc

with cosΘ1 = k1x/k1 and cosΘ2 = k2x/k2, and the critical angle ΘC = arcsin (k1/k2).

Therefore, the proportionality constant depends on the relative magnitude of singlet and triplet

gap. The bound state condition reveals that only for |Θ2| ≤ Θc and γ = 1 zero-energy states

are possible. Consequently, they do only appear when the triplet gap is larger than the singlet

gap ∆s < ∆t. Exactly this ∆t/∆s dependent zero-energy states, which are caused by Andreev

reflections, are visible in Fig. 17. With rising triplet gap ∆t = V , the LDOS at zero energy rises

strongly at the edge of the system and eventually forms a clear peak.
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Figure 17: LDOS for the edge of an unconventional superconductor in the p-wave regime. With
increasing triplet pairing strength, the amount of zero-energy states increases because of Andreev
reflections [68, 72].

7.4 YSR States

Just as there are zero-energy states due to Andreev interaction at the edges of a non-centrosymmetric

superconductor, there also are YSR states inside the gap present as impurity spins in non-centro-

symmetric superconductors. These in-gap YSR states can be used to characterize p-wave su-

perconductors into topological and non-topological by analyzing their number, energy and spin

polarization. Furthermore, they allow to determine the direction of d for the triplet pairing [73].

Therefore the YSR states for a p-wave superconductor are investigated further here. According

to Kim et al., YSR states are not only to be expected in normal metals with SOC, but also in

non-centrosymmetric superconductors [74]. There the number and position of YSR bound states

depends on the potential of the magnetic impurity, the SOC and the superconducting gap. The

latter is relevant, because the energy of the bound states can be given most precise with respect to

the superconducting gap in absence of impurities and because the bound states are visible inside

the superconducting gap.

The s-wave dominated case has three potential bound states with energies

|E1,2|
∆s

=
α2 − J2

0J
2
1 ± α(3/2)

√
(J2

0 − J2
1 )

2 + (α− 1)(J0 − J1)4

α2(1 + (J0 − J1)2) + 2αJ0J1 + J2
0J

2
1

|E3|
∆s

=
1− J2

1

1 + J2
1

(7.8)

where α = 1 + γ2. The impurity potential Jl can have different angular momenta l. Note that

only two of the three states are possibly degenerate, but split by SOC. Additionally, the impurity

potential J is of quadratic order, which means that the bound states do not depend on the sign of

the impurity potential.

When the superconductor is dominated by p-wave superconductivity, the possible energies of bound
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states become

|E4,5|
|∆t|

=
1 + J1J0√

(1 + J2
0 )(1 + J2

1 )
± |γ| (J0 − J1)

2

(1 + J2
0 )(1 + J1)2

|E6,7|
|∆t|

=
1√

(1 + J2
1 )
± |γ| J2

1

(1 + J2
1 )

(7.9)

which are four possible states. Those states are both degenerate, but split in the presence of SOC.

Two of the states actually depend on the sign of J , because they appear in linear order.

In the system investigated here, the impurities are the isotropic local spins. Therefore, only the

part of the potential, which corresponds to vanishing angular momentum, is relevant here. That

means J0 ̸= 0, while J1 = 0, and the expected bound states are

|E1,2|
∆s

=
α2 ± α(3/2)

√
J4
0 + (α− 1)J4

0

α2(1 + J2
0 )

|E3|
∆s

= 0

|E4,5|
|∆t|

=
1√

(1 + J2
0 )
± |γ| J2

0

(1 + J2
0 )

|E6,7|
|∆t|

= 1

(7.10)

Therefore, two bound states are expected to be visible in the s-wave non-centrosymmetric super-

conductor. The same holds true for the p-wave case, although the states are expected to have

different energies. The explicit influence of SOC strength and RKKY interaction strength on the

YSR state energies are depicted in Fig. 18, where three main trends are visible. For the singlet

dominated case, the SOC strength does not seems to have any influence on the YSR energies, which

can be seen from the constant solid lines in blue and orange. This can be understood from the

fact that the majority of Cooper pairs does not have any net spin and therefore is not influenced

by the SOC as long as the SOC does not break the Cooper pairs. However, the RKKY interaction

strength does have an influence on the second energy for the singlet dominated case. Just as for

the two energies of the triplet dominated case, an increasing RKKY interaction strength leads to

a decrease of the YSR energy.

Furthermore does the SOC strength have an influence on the YSR energies of the triplet dominated

case. While an increasing SOC leads to an increasing energy for E4, it leads to a decrease in E5.

Physically, this reflects the change in the quasi-particle excitations with changing gap symmetry.

These changes cause the decrease with increasing RKKY interaction strength, too. The decrease

differs a little for the two energies and is slightly stronger for E5 then for E4, which leads to an

effective splitting of those two energies with increasing RKKY.
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Figure 18: Dependence of YSR state energies on SOC strength γ (solid line) and RKKY interaction
strength J (dashed line).

Additional to the different behaviors under change of SOC and RKKY interaction strength, the

LDOS at the YSR energies differs for the triplet and singlet dominated case. While the LDOS

is dependent on the distance from the impurity in both cases, it is generally higher as can be

seen in Fig. 10. There the singlet and triplet dominated case depicted in the left and right plot,

respectively. The singlet pairing is chosen quite high in the triplet dominated case, too, because

otherwise in-gap YSR states are difficult to identify since other states would overlap.

In the singlet dominated case, the highest in-gap peaks are seen at a distance of two sites from the

impurity at energies below the Fermi-level. The lower energy states are in general more clearly

visible, because they have a higher relative difference to the effective gap of the system than the

positive energy states.

For the triplet dominated case, the two most prominent peaks are at the impurity site and on its

nearest neighbor. Those peaks are caused by the triplet gap ∆t, which influences the LDOS at

the impurity directly and at the neighboring site as expected based on Eq. 7.10. For sites further

away from the impurity, these states that belong to E6,7 are still present but seem to vanish in

this plot, since they are moving into the energy regime where the gap of the impurity site ends.

The remaining peaks behave very similar to the ones of the singlet dominated case, although their

magnitude is significantly smaller.

For both cases, the magnitude seems to inversely depend on the RKKY interaction strength, which

is also oscillating in a non-centrosymmetric superconductor as going to be investigated later on.

Additionally, to the increase in LDOS at the YSR state energy, there also is an increase in the

LDOS at the opposite side of the gap. This contains two peaks and a lower but finite LDOS in

between them. The peaks get higher and closer to each other with increasing triplet pairing.

There are basically no effects of increasing triplet pairing at the site of the impurity visible.
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Figure 19: YSR states in non-centrosymmetric superconductor. There are four in-gap states visible
in (a) s-wave and (b) p-wave dominated case, which oscillate in energy and LDOS with increasing
distance to the impurity sites (dashed lines).

Note here that the YSR states occur because of the same local spin-spin interaction that gives rise

to RKKY interaction. Therefore, the RKKY interaction strength influences the YSR states and

assumably vice-versa.

7.5 Effective Interaction including RKKY

After having investigated the superconductor at the edges and with one spin impurity, the focus

is now set on the RKKY interaction between two impurities. The starting formulation of RKKY

interaction in non-centrosymmetric superconductors is the same formulation as introduced in Sec.

2.1. Therefore the local spin-interaction term

HRKKY =
∑

σ,σ′,k,k′

∑
i

J

N
ei(k−k′)ri(Si · σ⃗σ,σ′)c†k,σck′,σ′

is treated as a perturbation to the system and firstly is transformed into helicity basis by means

of Eq. (6.2):

HRKKY =
∑

k,k′,i,λ,λ′

T γ
i,k,k′,λ,λ′b

†
k,λbk′,λ′

where Tγ,k,k′,i,λ,λ′ contains all pre-factors. The exact expression for T for a general SOC can be

found in App. B and Sec. 6.

After transforming it further into the eigenbasis of the unperturbed Hamiltonian using Eq. (7.7),

the RKKY-interaction reads:

HRKKY =
∑

i,k,k′,λ,λ′

T γ
i,k,k′,λ,λ′(

η†k,ληk′,λ′d†k,λdk′,λ′ + νk,λν
†
k′,λ′d−k,λd

†
−k′,λ′ − νk,ληk′,λ′d−k,λdk′,λ′ − η†k,λν

†
k′,λ′d

†
k,λd

†
−k′,λ′

)
In order to obtain the Hamiltonian describing the effective interaction of the system including the

perturbation, a Schrieffer-Wolff-transformation is applied once more. Following the procedure as
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explained in Sec. 3.2, the commutator [S,H0] is computed using the ansatz:

S =
∑
i,k,k′

λ,λ′

(
Aγ

i,k,k′

λ,λ′

d†k,λdk′,λ′ +Bγ

i,k,k′

λ,λ′

d−k,λd
†
−k′,λ′ +Cγ

i,k,k′

λ,λ′

d−k,λdk′,λ′ +Dγ

i,k,k′

λ,λ′

d†k,λd
†
−k′,λ′

)
(7.11)

Afterwards, the requirement HRKKY + i[S,H0] = 0 is applied to it. The calculation can be found

in Appendix C.2 and leads to the following coefficients:

Aγ

i,k,k′

λ,λ′

= i
∑
i

T γ
i,k,k′,λ,λ′

ηk,ληk′,λ′

Ek,λ − Ek′,λ′

Bγ

i,k,k′

λ,λ′

= −i
∑
i

T γ
i,k,k′,λ,λ′

ν†k,λνk′,λ′

E−k,λ − E−k′,λ′

Cγ

i,k,k′

λ,λ′

= i
∑
i

T γ
i,k,k′,λ,λ′

ν†k,ληk′,λ′

E−k,λ + Ek′,λ′

Dγ

i,k,k′

λ,λ′

= −i
∑
i

T γ
i,k,k′,λ,λ′

ηk,λνk′,λ′

Ek,λ + E−k′,λ′
(7.12)

Based on that, the commutator [S,HRKKY ] is calculated and the effective Hamiltonian is formu-

lated.

The expectation value of the effective Hamiltonian Heff = H0 − i[S,HRKKY ] is

⟨Heff ⟩ = ⟨H0⟩ − i⟨[S,HRKKY ]⟩

= E0 − i
∑
i,k,k′

λ,λ′

∑
j,q,q′

β,β′

⟨
[
Ai,k,k′,λ,λ′d†k,λdk′,λ′ +Bi,k,k′,λ,λ′d−k,λd

†
−k′,λ′

+Ci,k,k′,λ,λ′d−k,λdk′,λ′ +Di,k,k′,λ,λ′d†k,λd
†
−k′,λ′ ,

ηq,βηq′,β′d†q,βdq′,β′ + ν†q,βνq′,β′d−q,βd
†
−q′,β′ − ν†q,βηq′,β′d−q,βdq′,β′ − ηq,βνq′,β′d†q,βd

†
−q′,β′

]
⟩

(7.13)

and a more detailed form is presented in Appendix D.

The effective Hamiltonian contains terms of different spin-structures, which originate from the

factors A,B,C,D and T only, because they contain the product Si · σ⃗σ,σ′ with σ being a spin index

again.

7.6 Analytical Spin Structure

The spin structure of the effective Hamiltonian is determined in order to allow for statements

about the preferred spin configuration of the impurity spins. Since all terms contain factors of the

type Λγ

j,q,q′

β,β′

T γ
i,k,k′,λ,λ′ , where Λ = A,B,C,D, the individual parameter combinations for helicity

and momentum are going to determine the effective spin-structure.

While the spin-structure for a simple normal metal with RRKY is of Heisenberg- type, it gets

more complicated with more included interactions. For a conventional superconductor without

SOC but with spin-splitting due to an external magnetic field, a mixture of Ising and Heisenberg

like spin-terms is present [5]. For a normal metal with SOC, the spin-structure contains Heisen-

berg and Dzyaloshinskii–Moriya like spin-interactions as well as interactions of type Si ·
←→
Γ · Si
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[15]. Therefore it is possible that the spin-structure for a non-centrosymmetric superconductor is

a combination of Heisenberg, Ising, Dzyaloshinskii–Moriya and tensor-product like terms.

The symmetry of the system limits the symmetry of the spin configurations. Since n̂ = ẑ is chosen

as symmetry breaking axis in the Rashba-type SOC, the z-axis is the only special axis in the sys-

tem. No edge-effects are taken into consideration in this analytical approach, and the underlying

superconductor is fully isotropic by choice of the potentials t, µ, V, U , which all do not depend

on their position in the superconductor. That leads to a possible degeneracy of the groundstate

spin-configurations.

As the transformation between spin- and helicity-basis in Eq.(6.2) shows, each helicity-basis op-

erator contains a spin-up and a spin-down operator regardless of their helicity. Consequently, all

spin-combinations are possible in the first place and are weighted and canceled solely based on the

energy terms associated with them as well as the dependencies of momenta to each other.

Evaluating the expression of the commutator [S,HRKKY ] leads to two distinct possible parameter

combinations for helicity and momentum:

(1st) (i, k, k′, λ, λ′) with (j, k′, k, λ′, λ)

(2nd) (i, k, k′, λλ′) with (j,−k,−k′, λ, λ′)

In order to determine the effective spin structure of the non-centrosymmetric superconductor with

RKKY-interaction, each term in ⟨Heff ⟩ (Eq. (7.13)) has to be evaluated individually. The resulting

spin structure contains Heisenberg, Ising, DM and remaining terms, which are labeled J, I,D,
←→
Γ

in accordance with Sec. 6 and are found to be

Ji,j,k,k′ = 2F+++
k,k′ (7.14)

Ii,j,k,k′ =

 m+m∗

−(m+m∗)

i(m−m∗)

F+−−
k,k′ −

 2Φ2

2Φ2

Φ2 +Φ∗
2

G+−−
k,k′ +

 −
(
(Φ′

1)
2 + (Φ∗

1)
2
)

(Φ′
1)

2 + (Φ∗
1)

2

1 + Φ2
2

G+++
k,k′

(7.15)

Di,j,k,k′ =

 i (Φ∗
1 +Φ1)F

−+−
k,k′ − i (Φ′

1 + (Φ′
1)

∗)F−−+
k,k′

(Φ∗
1 − Φ1)F

−+−
k,k′ + (Φ′

1 − (Φ′
1)

∗)F−−+
k,k′

0

 (7.16)

+

 i (Φ∗
1 +Φ2Φ

′
1)G

−+−
k,k′ − i (Φ′

1 +Φ2Φ
∗
1)G

−−+
k,k′

(Φ∗
1 − Φ2Φ

′
1)G

−+−
k,k′ + (Φ′

1 − Φ2Φ
∗
1)G

−−+
k,k′

0


←→
Γ i,j,k,k′ =

(
0 i(m∗−m)F+−−

k,k′ +i((Φ′
1)

2−(Φ∗
1)

2)G+++

k,k′ 0

i(m∗−m)F+−−
k,k′ +i((Φ′

1)
2−(Φ∗

1)
2)G+++

k,k′ 0 0

0 0 0

)
(7.17)

for a non-centrosymmetric superconductor. The following short hand notation for the energy terms

F,G is used:

F±±±
k,k′ = E++

1 (k, k′)± E−−
1 (k, k′)± E+−

1 (k, k′)± E−+
1 (k, k′)

G±±±
k,k′ = E++

2 (k, k′)± E−−
2 (k, k′)± E+−

2 (k, k′)± E−+
2 (k, k′)
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The energy terms E±±
1,2 (k, k′) consist of the sum of all prefactor combinations that yield a non-zero

contribution to ⟨Heff ⟩. They take the following form

Eλ,λ′

1 (k, k′) = |ηk,λ|2|ηk′,λ′ |2 f(Ek,λ)− f(Ek′,λ′)

Ek′,λ′ − Ek,λ
+ |νk,λ|2|νk′,λ′ |2 f(Ek,λ)− f(Ek′,λ′)

Ek′,λ′ − Ek,λ

− |νk,λ|2|ηk′,λ′ |2 f(Ek,λ) + f(Ek′,λ′)

Ek′,λ′ + Ek,λ
+ |ηk,λ|2|νk′,λ′ |2 f(Ek,λ)− f(Ek′,λ′)

Ek′,λ′ + Ek,λ

Eλ,λ′

2 (k, k′) = η†k,ληk′,λ′ν−k,λν
†
−k′,λ′

f(Ek,λ)− f(Ek′,λ′)

Ek′,λ′ − Ek,λ
− η†−k,λη−k′,λ′νk,λν

†
k′,λ′

f(Ek,λ)− f(Ek′,λ′)

Ek′,λ′ − Ek,λ

+ νk,λν
†
−k,ληk′,λ′η−k′,λ′

f(Ek,λ) + f(Ek′,λ′)

Ek′,λ′ + Ek,λ
+ η†k,λν

†
k′,λ′νk,kληk′,λ′

f(Ek,λ)− f(Ek′,λ′)

Ek′,λ′ + Ek,λ

In addition the phases Φ and m are short hand notation for

Φ1 =
γk,x + iγk,y
|γk|

Φ2 =
(γk,x − iγk,y)(γk′,x + iγk′,y)

|γk| |γk′ |

m = Φ′
1Φ1 =

(γk,xγk′,x − γk,yγk′,y + iγk′,xγk,y + iγk,xγk′,y)

|γk| |γk′ |

Putting all the components together the overall spin structure of the system reads

⟨Heff ⟩ =
(
J

N

)2 ∑
k,k′,i,j

ei(k−k′)R
(
(J + I)Si · Sj +D (Si × Sj) + Si

←→
Γ Sj

)
(7.18)

where R is the distance between the impurities again. In the case of ∆ = 0, no superconductivity,

only terms with factors of F survive, which changes the spin structure of a superconductor with

SOC to the spin structure of a normal metal with SOC (compare Eq. (6.5)- (6.8)). It is not

possible, however, to take the limit of vanishing SOC, because the energies and coefficients do not

only depend explicitly on the SOC strength γ, but also indirectly. As required by basics algebraic

relations, the spin structure is real and symmetric.

Just as in the case for a normal metal with SOC, the spin structure of a superconductor with SOC

comprises all four possible spin interactions. The Heisenberg J is basically the same in all four

investigated systems, since only the energies are adjusted to the present system.

The Ising term exists in both systems with SOC and in the unconventional superconductor it gains

an additional term. The DM interaction term has a similar form to the normal metal with SOC,

although its terms are slightly different in the unconventional superconductor due to additional

terms. These terms have, however, the same pattern as the terms equal to the normal metal case.

The change in the tensor
←→
Γ is very much alike. The components of the normal metal case are to

be found in the superconducting case, too, but there are additional terms.

Overall, the spin structure of a superconductor with SOC has the same structure as a normal metal

with SOC and is just expanded by some additional terms with the same symmetry characteristics.

7.6.1 Analytical Groundstate Spin Configuration

As a first step to evaluating the analytically derived spin structure, the individual components

are plotted over distance in Fig. 20. There, the cases of singlet and triplet non-centrosymmetric

superconductor are distinguished. Both have in common, that the Heisenberg interaction is dom-
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inating for short distances. Its exact value is cut in order to increase the visibility of the remaining

coefficients over longer distances, but the Heisenberg interaction is one order of magnitude larger

than all other coefficients for short distances. The interaction strength of
←→
Γ is one to two orders of

magnitude smaller than the other interactions and therefore its behavior is only barely visible. The

same holds true for the Dx and Dz components of the DM interaction, which is in strong contrast

to the Dy component that is the second strongest interaction for short distances. Nevertheless, the

damped oscillation of interaction strength is visible for all coefficients in both cases, which further

verifies the found spin structure. The damping is similarly strong for singlet and triplet, although

the exact oscillation differs.
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Figure 20: Analytically determined spin structure coefficients of a non-centrosymmetric supercon-
ductor, for the singlet (s-wave) case in (a) and the triplet (p-wave) case in (b).

For the singlet case depicted in Fig. 20(a), Heisenberg interaction dominates the interaction for

short distances up to a distance of d = 1a. At that point the Iz Ising term is the strongest

before DM interaction with Dy becomes strongest. Both these interaction favor anti-parallel spin

alignment, since they are always negative, while the Heisenberg interaction always favors parallel

alignment.

This clear preference of one certain alignment is not present for the second strongest interactions

Ix and Iy. Both oscillate around zero and always have the opposite sign of each other and a similar

magnitude, which is to be expected since the system is symmetric in the xy-plane. However, the Iy

component has the largest magnitude for long distances and is therefore expected to dominate the

interaction there. It has a positive sign for long distances and therefore favors parallel alignment

in the y-direction, while the x- and y-direction are controlled by the Dy term of DM.

In the triplet case, there is only the Heisenberg interaction that keeps the same sign for all distances

and favors only parallel alignment. All other components oscillate around zero in different ways,

as can be seen in Fig. 20(b). The Dy component of DM interaction is again having a significant

influence on the spin structure, even more than in the singlet case. Depending on the SOC strength

it is even of the same order of magnitude as the Heisenberg interaction and therefore even more

relevant on the short distances. Its defining role remains for distances between d = 1a to d = 3a

leading to a groundstate spin configuration that prefers a non-colinear alignment of the two spins.

Only after these middle distances, the Ising interaction with Iy starts to be of comparable size to

the DM term. Therefore, the spin structure for long distances is expected to show anti-parallel
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alignment in y-direction. In z-direction, the influence of DM and Ising are competing, while the

x-direction is still dominated by DM.

Overall, the spin structure for the triplet case is stronger influenced by DM interaction than the

singlet case.

In order to understand the changes in Ising interaction better, it is calculated for different singlet

and triplet gap sizes. The results in Fig. 21 indicated, that an increasing gap corresponds to

an increasing Ising interaction strength, although the exact changes and values depend on the

dominating gap symmetry. In the s-wave dominated case presented in Fig. 21(a), the Ix and

Iy components behave nearly anti-symmetric, while the Iz component is showing a completely

different behavior. It shows an increasingly deep minimum with larger singlet gap for very short

distances, but becomes more similar for all gap sizes with increasing distances. The same long

distance behavior is true for the x and y components.

In the p-wave dominated case, the Iz and Ix component behave very similar as can be seen in

Fig. 21(b). Although Ix grows slightly stronger with increasing triplet gap size, they show the

qualitatively same behavior and converge towards each other for long distances. The Iy component

grows with increasing triplet gap size, too, but is generally larger than the other components.

Additionally, it is purely positive and therefore always favors a FM ordering, while the other

two components are switching from FM ordering for short distances to AFM ordering on longer

distances. On very long distances d > 9.5a, all three components are converging towards each

other and eventually change sign.

Consequently, Ising interaction becomes increasingly important for the total spin structure with

increasing superconducting gap, but it still originates from SOC.
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Figure 21: Comparison of the three Ising components in an unconventional superconductor with
dominating s-wave (a) and p-wave (b) gap symmetry. The respective gap is gradually increased
from ∆ = 0.01 to ∆ = 0.15, while the system size is 100x100.

As a third case, a superconductor with equally stronger singlet and triplet pairing is investigated.

Its spin structure coefficients are plotted in Fig. 22, where the influence of the pairing strength

is visible immediately because of the differences in DM and Ising between Fig. 22(a) and 22(b).

A stronger pairing leads to a stronger DM and a weaker Ising interaction, while the oscillation

behavior stays nearly the same. As for all cases discussed so far, the Heisenberg interaction

dominates the small distance interaction as well as it appears again in the long distance interaction.

The middle distances are not as clearly dominated by one interaction, but are rather a complicated

56



interplay of Heisenberg, Ising and DM terms.
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Figure 22: Analytically determined spin structure coefficients of a non-centrosymmetric supercon-
ductor for (a) weak and (b) strong singlet and triplet pairing. The system size is 100x100 for both
cases.

In all of the systems with ∆t ̸= 0, there is an additional AFM bias visible, which stems from the

fact that the triplet Cooper pairs contribute to the mediation of RKKY interaction.

The behavior of the analytically found spin structure components is also visualized as the ground-

state spin configuration in App. E in Fig. 29, where the groundstate was determined by finding

the spin configuration that minimizes the free energy from Eq. 7.18.

7.7 Numerical Groundstate Spin Configuration

The numerical groundstate spin configuration is determined with the approach presented in Sec.

3.3. Since the dominating gap symmetry depends on the strength of SOC, the singlet and triplet

dominated case are both investigated. The ratio ∆s/∆t is taken to be of order 10 or 1/10, respect-

ively, to ensure a clear distinction between s- and p-wave symmetry.

The singlet dominated case is presented in Fig. 23. Just as for conventional superconductor, the

oscillation between FM and AFM ordering is fast for small distances but decays quickly for in-

creasing distance. It does not stop completely for the current system, which might be because of

the SOC. Since the SOC causes an alternation in the oscillation for normal metals, it is expected

to have an influence in superconductors, too, even when they are still of s-wave symmetry.

The orientation of the spins is mostly parallel in x-direction, but for short distances there are also

non-colinear configurations to be found. In some configurations, the spins are parallel to each

other, but not to x- or y-direction. This mixture occurs due to the influence of DM and Ising

interaction and is replaced by colinear spins along the x-axis for longer distances.
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Figure 23: Numerical groundstate spin configuration of an s-wave superconductor with γ = 0.2 for
80 lattice sites.

The groundstate spin configuration for a p-wave superconductor is presented in Fig. 24, where

to different system sizes are compared. In both cases, the spin alignment oscillation does barely

change over the distances investigated. For distances up to d = 21a, the results for the groundstate

spin configuration are non-degenerate, which means that only one groundstate is identified within

the numerical accuracy. For longer distances, there are 26 possible groundstates found numerically

and therefore only the short distances are of relevance here.

The mostly parallel ordering can be understood by looking at the mediators of RKKY interaction.

In normal metals, only the conduction electrons are transport spin information between the im-

purities. Electrons are a part of the quasi-particles which mediate RKKY interaction in singlet

superconductors and the other part of these quasi-particles are holes. In triplet superconductors,

there are two information carriers. On the one hand, the same quasi-particles as in singlet su-

perconductors contribute to the information transport, and on the other hand, the triplet Cooper

pairs are also mediating RKKY interaction. That leads to a change in the movement behavior

of the information carriers, which are partially able to travel significant longer distances, which

is reflected in the changed oscillation behavior of the RKKY interaction strength. Additionally,

there is a clear preference for alignment along the y-axis in the square system, while the x-axis is

preferred in the rectangular system. This difference stems from finite size effects and shows the

sensibility of the numerical solution. Nevertheless, it is in accordance with the analytical model,

since Heisenberg interaction does not prefer a specific direction and the components of Ising inter-

action are of competing magnitudes.

For short distances in the rectangular system, there is one spin configuration that is non-colinear

and the spins have nearly opposite orientation as depicted in Fig. 24(b). This stems from the

short domination of DM interaction. DM interaction depends, in turn, on the exact gap structure

and size, since the amount of Cooper pairs with net-spin decreases with decreasing triplet gap

size, which leads to a slightly altered oscillation behavior. Less Cooper pairs correspond to a lower
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chance that spin information gets mediated between the two impurity spins, because there are less

probabilities that one Cooper pair gets in contact with both impurities. Since this probability does

not only depend on the amount of possible attempts aka. information carrying particles, but also

on the distance between the impurities, a weaker triplet pairing leads to an earlier damped oscil-

lation. And since finite size effects tend to suppress the triplet gap, the non-colinear groundstate

spin configuration is not visible in the square system in Fig. 24(a).

Overall, the numerical results for a p-wave superconductor suggest a very similar behavior to a

normal metal, except that the information transport can happen over significantly longer distances

and the alignment along x-axis is strongly favored.

(a) (b)

Figure 24: Numerical groundstate spin configuration of a p-wave superconductor with γ = 0.1 and
∆t = 0.1 (a) for system size 80x80 and (b) for system size 120x15. Finite size effects and the
dominance of Ising and Heisenberg interaction are visible.

As in the normal metal with SOC case, the analytically determined groundstate is also plotted

in the same way as the numerical groundstate. In Fig. 25, the three different cases are presen-

ted: singlet- and triplet dominated as well as mixed superconductivity. All feature anti-parallel

alignment along the y-axis for the majority of distances, which stems from the Ising interaction.

Furthermore, are there non-colinear alignments for several distances in all three systems, but their

position and exact orientation differ. In the singlet dominated case in Fig. 25(a), there are more

non-colinear alignments than in the other two systems. It is also visible that the mixed system in

Fig. 25(c) shows a mixture of the features from singlet- and triplet-dominated systems. It shows the

more constant groundstate configuration in the middle distances as in the triplet-dominated case

in Fig. 25(b), while the configurations themselves show more similarity to the singlet-dominated

case.

The distances with the most non-colinear configurations are longer, which is as expected from the

coefficients discussed earlier. The numerical solution presented in Fig. 23 and 24 shows less of

the non-colinear states and only on short distances. There are also non-colinear states on short

distances in the analytical solution, which suggests that the numerical solution has more accuracy

for short distances. That might be due to finite size effects, since they show more influence on

weaker phenomena and RKKY interaction weakens with distance.
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(a) (b)

(c)

Figure 25: Analytical groundstate spin configuration of an unconventional superconductor with
γ = 0.1 for (a) singlet- and (b) triplet-dominated superconductivity, as well as (c) mixed. The gap
are either zero or ∆ = 0.2 in all cases.
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8 Discussion

The spin structure of an unconventional superconductor with Rashba SOC shows a combination

of normal metal and conventional superconductor characteristics, as can be shown with analytical

and numerical calculations. The results of the analytical approach are going to be discussed first

and the numerical results later on, and the used methods are critical examined, too.

In a normal metal, the RKKY interaction is of Heisenberg type and oscillates between ferromag-

netic (FM) and anti-ferromagnetic (AFM) ordering (Fig. 7). When superconductivity is intro-

duced into the system, the gap in the density of states (DOS) suppresses the AFM part of the still

Heisenberg-like RKKY interaction (Fig. 12). The larger the gap is, the stronger the FM part of

RKKY interaction is suppressed, too, leading to a faster decay in total RKKY interactio strength.

The RKKY interaction gains additional Ising and DM interaction terms as well as interactions

between the x and y components, when a Rashba SOC is considered. For the normal metal case,

the oscillation between FM and AFM ordering driven by Heisenberg interaction remains, and DM

also oscillates between those two orderings (Fig. 13). Especially on short distances, the Heisen-

berg interaction is still dominating the system, although the DM is of competing magnitude. An

increasing SOC strength leads to an increasing Ising interaction, which is purely FM in y-direction

and purely AFM in z-direction. It becomes of the same order as DM on middle distances, and the

DM influence also increases with increasing SOC strength for those distances. As expected because

of the increase in Ising and DM interaction, the Heisenberg interaction strength generally decreases

with increasing SOC strength. Nevertheless, Heisenberg interaction dominates the interaction on

long distances again, leaving only short and middle distances with potentially non-colinear spin

alignment.

For the unconventional superconductor, three different cases are investigated: s-wave, p-wave and

a mixture of those two. All three cases have Heisenberg, Ising, DM and xy-interaction terms, just

as the normal metal with SOC system. In an s-wave superconductor (Fig. 20(a)), the Heisenberg

term is purely FM and the DM term is purely AFM, as expected, because of the present gap struc-

ture. The x and y components of the Ising term are oscillating between FM and AFM ordering

and have the same magnitude, while having opposite phase. That also makes the x component of

Ising interaction more significant than in the previous systems, where it is one order of magnitude

smaller. Additionally, the z component of Ising is the largest in the s-wave superconductor and

of nearly the same magnitude as the already very strong DM interaction. Therefore, the Ising

interaction takes a significantly more influential role in the unconventional s-wave superconductor

than in normal metal or conventional superconductor cases. This can also be seen in Fig. 21(a),

where the influence of the gap size on Ising shows a clear correlation. An increasing gap size leads

to an increase in Ising interaction strength. That makes the spin structure of the impurity spins

colinear for most distances.

In a p-wave superconductor, the Ising interaction becomes even stronger with increasing triplet

gap and all its three components are in phase now (Fig. 21(b)). But while the y component is

staying purely FM, the other two components oscillate between FM and AFM ordering. There is

no physical explanation for this correlation between gap size and Ising interaction yet. Even in the

normal metal case, there is no complete phenomenological explanation for the Ising interaction,

but the form of the correlation suggests, nevertheless, two causalities. Since the Ising term only
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exists for systems with SOC, specifically Rashba SOC in this thesis, the fundamental reason for the

Ising is to be expected in the broken inversion symmetry. That also explains the special and more

complicated behavior of the Iz component, which is in the direction of the symmetry breaking

axis. Furthermore, the superconducting gap, regardless of its symmetry, enhances the Ising inter-

action strength, which suggests an interplay between broken inversion symmetry and Cooper pairs

as well as quasi-particles. For the triplet Cooper pairs, this enhancement is explainable by their

non-vanishing net-spin, which is interlinked with the broken inversion symmetry of the system, but

the exact form is not directly visible from the correlations found in this thesis. However, the larger

significance of Ising interaction in unconventional superconductors compared to normal metals can

be expected based on the analytical form of the Ising term, which gains two additional terms in

case of superconductivity.

DM and Heisenberg interaction are also oscillating between FM and AFM, which means that the

p-wave case shares more similarities with the normal metal case than with the s-wave case (Fig.

20(b)). That is due to the change in gap structure, since the triplet pairing adds states to the

gap edges. The gap led to the suppression of AFM ordering in the first place, but the edge states

counteract this effect. Additionally, there are in-gap YSR states that further counteract the sup-

pression of AFM ordering, such that the p-wave case includes it again. The triplet Cooper pairs are

also the reason for the purely FM z component of Ising interaction, because they contribute to the

mediation of RKKY interaction in addition to quasi-particles. In contrast to the quasi-particles,

they are not losing their spin information due to the superconductivity and therefore behave more

like quasi-particles in normal metals.

In the case of s- and p-wave gaps having the same size (Fig. 22), a mixture of the pure s- and

p-wave characteristics are visible. All spin structure terms oscillate between FM and AFM, and the

Ising interaction keeps its dominating role. For an increasing gap, the Ising interaction becomes a

little weaker, but the oscillation between FM and AFM becomes even clearer. That is because an

increasing gap does not only increase the singlet gap structure, but also the triplet gap structure.

Consequently, the characteristics of a conventional superconductor become more visible, but the

influence of the triplet gap is growing at the same time.

Two types of bound states are identified numerically for different systems in this thesis. Firstly,

there are Andreev states for the edges of an unconventional superconductor (Fig. 17). They ap-

pear for systems with a triplet gap as large as or larger than the singlet gap, which proves the

implemented BdG to work as expected.

Secondly, for conventional and unconventional superconductor, bound states and YSR states are

found close to the impurity sites (Fig. 10), respectively. Their existence and position haven been

predicted by Kim et al. and they behave exactly accordingly [74]. The position depends on the

type of gap structure and on RKKY and SOC strength, which both have different influence on the

position depending on the gap structure. Those differences occur because of the different net-spin

of Cooper pairs as more thoroughly explained in Sec. 7.4. Overall, it is expected that these states

influence the effective RKKY interaction and may lead to differences between numerical and ana-

lytical groundstate spin configurations.

The numerical groundstate for normal metals and conventional superconductors fully agrees with

the analytically predicted pure Heisenberg interaction, as well as with the modifications due to

chemical potential and superconducting gap.
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With introducing SOC to a normal metal, the movement behavior of information carriers, which

means that the electrons in normal metals mediate RKKY interaction differently depending on

the SOC. As suggested by the analytical results, the numerical groundstate spin configuration of

a normal metal with SOC exhibits not only FM and AFM ordering, but also non-colinear spin

alignments that originate in DM (Fig. 14). The oscillation behavior suggests the expected long

range behavior.

The expected influence of YSR states on RKKY interaction fits with the found groundstates for

conventional and unconventional superconductors. In both cases, there is only FM and AFM or-

dering regardless of the gap structure, but the oscillation behavior changes with gap structure.

While the oscillations for the s-wave superconductor are strongly damped and therefore relatively

short ranged, they show longer range behavior for p-wave superconductors (Fig. 23 and 24). This

differences stem from the different possible information carriers as explained in more detail in Sec.

7.7.

Just as for the normal metal with SOC, non-colinear spin alignment was also expected to occur

in unconventional superconductors, but the DM appears to be too weak in relation to Heisenberg

and Ising interaction in order to produce such an orientation.

As a third part of investigation, analytical and numerical results were compared more directly,

but determining the groundstate spin configuration based on the analytical coefficients. This was

only done for the systems with SOC, since in the isotropic systems there is only Heisenberg in-

teraction. These direct comparisons underline the influence of finite size effects on the numerical

solution, but generally show that the differences between the systems persist nonetheless. The

allow to understand the interplay of the competingly strong Ising and DM interaction better, since

the groundstate is strongly influenced by the effectively strongest spin structure coefficient. That

reveals how much the enhanced Ising interaction suppresses non-colinear alignment in supercon-

ducting systems, while the groundstate spin configuration in a normal metal is non-colinear for

nearly all distances.

All analytical results were obtained using the Schrieffer-Wolff transformation (SWT), which is a

tool in quantum many-body theory for studying the effective Hamiltonian of a system with two

energy scales. It is often used to study the RKKY interaction between magnetic impurities in a

metal, where the system contains a high-energy scale (associated with the exchange interaction

between the magnetic moments) and a low-energy scale (associated with the conduction electrons),

which is exactly the case here. One of the main strengths of the SW transformation is its ability

to derive an effective Hamiltonian that describes the low-energy physics of the system, which can

simplify the theoretical analysis. The effective Hamiltonian obtained through the SWT can also

provide physical insights into the underlying physics of the system, such as the role of quantum

fluctuations and collective excitations. Another strength of the SWT is its ability to handle sys-

tems with strong correlations and non-trivial geometries, where other methods such as mean-field

theory or perturbation theory may not be applicable. The SWT can be particularly useful in

systems with impurities, where the impurities can strongly affect the electronic structure and the

transport properties of the system. However, there are also some weaknesses associated with the

SWT. One is the high sensitivity to the choice of perturbation parameter that controls the strength

of the high-energy scale interactions, because a poor choice of perturbation parameter may result

in an ineffective transformation or an inaccurate effective Hamiltonian. Another potential limita-
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tion of the SWT is its sensitivity to the choice of basis set used to represent the operators in the

Hamiltonian. A different choice of basis set may lead to a different effective Hamiltonian, which

can affect the accuracy of the theoretical predictions.

Overall, the SWT is a powerful tool for investigating the RKKY interaction in metals with mag-

netic impurities. Since the studied systems fit well to the SWT approach and the perturbation

parameter and basis set were chosen carefully, the obtained results form this analytical approach

are considered reliable. There is one more short coming in the SWT performed in this thesis, which

is the loss of information about the feedback between impurities and the LDOS. Consequently, it

is not possible to study bound states or modifications of the gap due to RKKY interaction and

spin impurities. That is where the numerical approach becomes necessary and relevant.

For the numerical approach, the Bogoliubov-de Gennes transformation (BdG) is used, which is

a theoretical framework for studying superconductivity and related phenomena, including RKKY

interaction. The transformation allows for the description of the quasi-particle excitations in a

superconductor, which arise due to the formation of Cooper pairs. One of the main strengths

of the BdG is its ability to accurately capture the effects of superconductivity on the electronic

structure of a material, including the formation of the superconducting energy gap, and the modi-

fication of the density of states near the Fermi level. This makes it a useful tool for investigating

the behavior of the RKKY interaction in superconductors, which is affected by the presence of the

superconducting condensate and the modification of the electronic structure. Another strength of

the BdG is its ability to capture the spatial variation of the RKKY interaction, which is important

for understanding the behavior of magnetic impurities in superconductors and related phenomena,

such as the formation of YSR states. However, there are also some weaknesses associated with

the BdG transformation. One potential limitation is that the BdG transformation is a mean-field

theory and may not capture certain quantum fluctuations and other non-mean-field effects that

can be important in some materials, such as strongly correlated electron systems. That is, how-

ever, not a problem for the studied systems in this thesis. Another limitation of the BdG is the

computational cost associated with its application to large systems and the potential need to solve

self-consistency equations. Although the self-consistency equations were omitted due to time lim-

itation, the computational costs are still high and consequently the maximum feasible system size

had to be kept smaller than desired. That leads to finite size effects influencing the numerically de-

termined groundstate spin structures and constant pairing potentials for all system sites. Therefore

the following numerical results are preliminary for the spin configuration, but can be trusted for

the YSR states, because they are not as prone to be influenced by finite size effects. Additionally,

numerical accuracy limits the distinction between energy levels such that only differences of larger

than order 10−10 give reliable results for groundstate configurations. Those short-comings are also

visible in comparison to the analytically determined groundstate spin configurations.

Based on all previously presented results, the RKKY interaction of an unconventional supercon-

ductor can be understood as a mixture of the RKKY interaction in normal metals with SOC and

superconductors. It exhibits analytically the same structure as the former, while numerically show-

ing great resemblance with the latter. That might offer the possibility of a longer range control of

more complex spin structure than in normal metals without any external fields. Furthermore, the

groundstate of an unconventional superconductor is non-degenerate for short to middle distances

as suggested by the numerical results, and therefore it allows for more accuracy than a normal
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metal, which exhibits several possible groundstates due to its high symmetry.

To determine the groundstate spin configuration in a non-centrosymmetric superconductor exper-

imentally and therefore testing the presented results, a spin-polarized scanning tunneling micro-

scopy (STM) analysis of the material CePt3Si with added spin impurities can give further insights.

Such experiments would also allow to study the predicted YSR states in more detail as previous

experiments have already shown [75, 76]. The good resolution and spatial accuracy also allow to

study spin configurations influenced by RKKY interaction explicitly.

On the analytical side, the next step would be to implement a self-consistent approach to the BdG

methods. That would allow to study the influence of the RKKY interaction on the superconductor.

Additionally, a more advanced theory for YSR states that involves the coupling of electrons to the

impurities in l=2 channel [77] could be interesting to implement and study. Although, the combin-

ation of BdG and SWT allows to study more phenomena than just one by itself and consequently

gives a complete mean-field picture of the studied system, it might also be of interest to compare

the presented results that were obtained using SWT to results obtained by Green’s functions, be-

cause they allow to see more details about YSR states and are easier to generalize to more SOC

types.

Conclusively, the RKKY interaction in non-centrosymmetric superconductors is similar to the

RKKY interaction in normal metals with SOC, but has a higher tunability and a more accurate

groundstate for short to middle distances, when studied with a mean-field approach.
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A RKKY Caused Band Splitting in Superconductor

As explained in detail for the normal metal in Sec. 4, an increase in the RKKY interaction strength,

leads to a split in energy bands at the impurity sites. This change influences the LDOS at the

sites between the impurities, too, which leads to a shift in free energy. Since the shift depends on

the relative orientation of the impurity spins, its leads to a shift from favored parallel to favored

anti-parallel alignment of the impurity spins. That is visible in the following plots and the exact

same phenomenon as in the normal metal.

Therefore the RKKY interaction strength in superconducting systems is again restricted to J ∈
[0, 4t).

(a) Spin structure for SC with RKKY J = 2 (no SOC) (b) Spin structure for SC with RKKY J = 5 (no SOC)

Figure 26: Bands are splitting

(a) Spin structure for SC with RKKY J = 2, with SOC

Figure 27: Bands do not overlap any longer
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B Basis Transformation Coefficient

arrows (↑ , ↓) correspond to spin (up, down), while + and − correspond to positive and negative

helicity, respectively

HRKKY =
∑
i,k,k′

λ,λ′,σ,σ′

J

N

ei(k−k′)ri

2
√
|γk||γk′ |

[
Sz (Sx−iSy)

γ
k′,x+iγ

k′,y
|γ

k′ |

(Sx+iSy)
γk,x−iγk,y

|γk| −Sz

(γ
k′,x+iγ

k′,y)(γk,x−iγk,y)

|γk||γ
k′ |

]
σ,σ′

(B.1)

×
[ √

|γk|+σγk,z

√
|γk′ |+σ′γk′,z σ′

√
|γk|+σγk,z

√
|γk′ |−σ′γk′,z

σ
√

|γk|−σγk,z

√
|γk′ |+σ′γk′,z σσ′

√
|γk|−σγk,z

√
|γk′ |−σ′γk′,z

]
λ,λ′

b†k,λbk′,λ′

for Rashba-type SOC the expression simplifies to

HRKKY =
∑
i,k,k′

λ,λ′,σ,σ′

J

N

ei(k−k′)ri

2
√
|γk||γk′ |

[
Sz (Sx−iSy)

γ
k′,x+iγ

k′,y
|γ

k′ |

(Sx+iSy)
γk,x−iγk,y

|γk| −Sz

(γ
k′,x+iγ

k′,y)(γk,x−iγk,y)

|γk||γ
k′ |

]
σ,σ′

(B.2)

×
√
|γk||γk′ |

[
1 σ′

σ σσ′

]
λ,λ′ b

†
k,λbk′,λ′

=
∑
i,k,k′

λ,λ′,σ,σ′

J

N

ei(k−k′)ri

2

[
Sz − λλ′Sz

(γk′,x + iγk′,y)(γk,x − iγk,y)

|γk||γk′ |

+λ′(Sx − iSy)
γk′,x + iγk′,y

|γk′ |
+ λ(Sx + iSy)

γk,x − iγk,y
|γk|

]
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C Commutator

The calculation of the following commutator is based on the following identity of commutator and

anti-commutator for four arbitrary operators A,D,C,D:

[AB,CD] = AD{B,C} −BD{A,C}+ CA{B,D} − CB{A,D} (C.1)

The calculation are performed for a non-centrosymmetric superconductor and the limit of non-

superconductivity can be taken. With using the anti-commutation relations of the d[†]-operators,

this commutator reads:

[S,H0] =
∑

i,k,k′,λ,λ′,q,β

[
Ai,k,k′,λ,λ′d†k,λdk′,λ′ +Bi,k,k′,λ,λ′d−k,λd

†
−k′,λ′ (C.2)

+Ci,k,k′,λ,λ′d−k,λdk′,λ′ +Di,k,k′,λ,λ′d†k,λd
†
−k′,λ′ , Eq,βd

†
q,βdq,β

]
=

∑
i,k,k′,λ,λ′,q,β

Ai,k,k′,λ,λ′Eq,β

(
d†k,λdq,βδq,k′δβ,λ′ − d†q,βdk′,λ′δq,kδβ,λ

)
+Bi,k,k′,λ,λ′Eq,β

(
d†q,βd−k,λδq,−k′δβ,λ′ − d†−k′,λ′dq,βδq,−kδβ,λ

)
+ Ci,k,k′,λ,λ′Eq,β (d−k,λdq,βδq,k′δβ,λ′ − dk′,λ′dq,βδq,−kδβ,λ)

+Di,k,k′,λ,λ′Eq,β

(
d†q,βd

†
k,λδq,−k′δβ,λ′ − d†q,βd−k′,λ′δq,kδβ,λ

)
=

∑
i,k,k′,λ,λ′

Ai,k,k′,λ,λ′ (Ek′,λ′ − Ek,λ) d
†
k,λdk′,λ′ +Bi,k,k′,λ,λ′ (E−k′,λ′ − E−k,λ) d−k,λd

†
−k′,λ′

+ Ci,k,k′,λ,λ′ (Ek′,λ′ − E−k,λ) d−k,λdk′,λ′ +Di,k,k′,λ,λ′ (E−k′,λ′ + Ek,λ) d
†
k,λd

†
−k′,λ′
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D Expectation Value of Effective Hamiltonian

It is used that ⟨H0⟩ = E0 is the expectation-value in the groundstate of the unperturbed system and

f(x) is the Fermi-Dirac distribution. λ, λ′ are helicity indices and k, k′ are momenta. In addition,

i, j are the positions of the impurity spins, which are introduced with the RKKY-interaction.

⟨Heff⟩ = E0 +
∑

i,j,k,k′,λ,λ′

Ai,k,k′,λ,λ′aj,k′,k,λ′,λ (f(Ek,λ)− f(Ek′,λ′)) (D.1)

−Ai,k,k′,λ,λ′bj,−k,−k′,λ,λ′ (f(Ek,λ)− f(Ek′,λ′))

−Bi,k,k′,λ,λ′bj,k′,k,λ′,λ (f(E−k,λ)− f(E−k′,λ′))

+Bi,k,k′,λ,λ′aj,−k,−k′,λ,λ′ (f(E−k,λ)− f(E−k′,λ′))

− Ci,k,k′,λ,λ′dj,k′,k,λ′,λ (f(E−k,λ) + f(Ek′,λ′))

− Ci,k,k′,λ,λ′dj,−k,−k′,λ,λ′ (f(E−k,λ) + f(Ek′,λ′))

+Di,k,k′,λ,λ′cj,k′,k,λ′,λ (f(Ek,λ) + f(E−k′,λ′))

−Di,k,k′,λ,λ′cj,−k,k′,λ,λ′ (f(Ek,λ) + f(E−k′,λ′))

where the coefficients a, b, c, and d are defined as

aj,k,k′,λ,λ′ = η†k,ληk′,λ′

bj,k,k′,λ,λ′ = νk,λν
†
k′,λ′

cj,k,k′,λ,λ′ = νk,ληk′,λ′

dj,k,k′,λ,λ′ = η†k,λν
†
k′,λ′
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E Analytical Groundstate Spin Configuration

The spin configuration for a normal metal and a superconductor, each with SOC, is determined

analytically and the following graphs depict the spins in 3d.
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(a) weak SOC
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(b) strong SOC

Figure 28: Normal metal with SOC, analytical
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(a) singlet
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(b) triplet
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(c) mixed
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(d) mixed

Figure 29: Superconductor with SOC, analytical

F Poster

This poster was presented on the DPG March Meeting 2023 in Dresden as part of the poster session

on low temperature physics. Thank you to the Department of Physics at NTNU for covering my

travel expenses.
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G EinsteinSlam

The EinsteinSlam took place during the DPG SKM Spring Meeting 2023 in Dresden. It was part of

the evening program and attracted an audience of around 800 people. There were five participants

that each talked about their most resent research, after having three coaching sessions about the

science slam together. The audience voted the winner with their applause, and I got second place.

The two following pictures are to illustrate the style of the presentation, while a video of the science

slam is going to be uploaded by DPG to YouTube.

(a) Finja (me)

unconventional superconductor

(b) part of the presentation

Figure 30: Impressions from the EinsteinSlam of the DPG 2023.
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