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Abstract

In recent years, neural networks have risen to prominence through the field of

machine learning. These networks are primarily implemented on commercially-

available transistor-based devices, however such devices are not well-suited for

emulating the brain in the way neural networks desire. Here is a natural inter-

section with the field of neuromorphic computing, or computing inspired by the

human brain.

This thesis employs micromagnetic computer simulations to investigate the

properties and synchronization of ferromagnetic oscillators. The oscillators are

driven by the spin-Hall effects, and contained within a 2D plane using magnetic

anisotropy. Once characterized, the synchronization and desynchronization are

used to create an oscillatory neural network, drawing from the macroscopic os-

cillations within the brain. This neural network is additionally modeled with the

Kuramoto model, thereby opening for it to be interfaced with existing training

algorithms.

Finally, investigation of the voltage response to (de)synchronization reveals

that global synchronization and the order parameter of the system can be de-

termined by voltage fluctuations alone. This is of great use for experimental

realizations of this device.

The presented oscillator is an extension of a ferromagnetic spiking neuron,

being materially similar with only modifications to the electric setup.
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Sammendrag

I løpet av de siste årene har nevrale nettverk blitt fremtredende gjennom maskin-

læring. Disse er ofte implementert p̊a kommersielt tilgjengelige, transistorbaserte

enheter, som ikke er godt egnet til å etterligne hjernen slik nevrale nettverk ønsker.

Her er det et naturlig skjæringspunkt med nevromorfisk prosessering, eller pros-

essering inspirert av menneskehjernen.

Denne masteroppgaven benytter mikromagnetiske datasimuleringer for å un-

dersøke egenskapene til, og synkroniseringen av, ferromagnetiske oscillatorer. Os-

cillasjonene drives av spin-Hall-effektene og begrenses til et 2D-plan ved hjelp av

magnetisk anisotropi. Etter at synkroniseringen og desynkroniseringen er begge

karakterisert, brukes de til å skape et oscillatorisk nevralt nettverk inspirert av

de makroskopiske oscillasjonene i hjernen. Det kompliserte magnetiske systemet

forenkles ved bruk av Kuramoto-modellen, og dermed åpnes det for bruk av ek-

sisterende eksisterende treningsalgoritmer for maskinlæring.

Undersøkelse av spenningsresponsen til (de)synkronisering viser b̊ade global

synkronisering og systemets ordenparameter kan bestemmes via forandring i spen-

ningen. Dette er til stor nytte for eksperimentelle realiseringer av disse ferromag-

netiske enhetene.

Den presenterte oscillatoren er en utvidelse av et kunstig ferromagnetisk nevron,

og er materielt lik, dog med endringer i det elektriske oppsettet.
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1 Glossary

• AFM - Antiferromagnet/-magnetism/-magnetic

• Demag - Demagnetization (demagnetizing field)

• EP-SHNO - Easy-Plane Spin Hall nano-oscillator

• FM - Ferromagnet/-magnetism/-magnetic

• HM - Heavy Metal

• IP - In-plane

• (i)SHE - (Inverse) Spin Hall effect

• (i)SHA - (Inverse) Spin Hall Angle

• LLG - Landau–Lifshitz–Gilbert

• LLG-SA - Landau–Lifshitz–Gilbert Spin Accumulation

• ONN - Oscillatory neural network

• OOP - Out-of-plane

• SHNO - Spin Hall nano-oscillator

• sLLG - stochastic Landau–Lifshitz–Gilbert

• SMR - Spin Hall Magnetoresistance

• SNN - Spiking neural network
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2 Introduction

After nearly 60 years, Moore’s law may still apply [1]. The law is an industry observation

stating that the number of transistors in an integrated circuit doubles every two years,

by the transistors themselves getting smaller. But it may not be long for this world [2]:

As transistors come closer to atomic scales, issues begin to emerge. Quantum tunneling

between the transistors becomes a larger problem [3], as does the thermal effects of an

increasing power density, and many more [3]. Even if contemporary transistors were not

pushing up against the limits of Moore’s law, there are several other drawbacks to modern

computer techniques: Most computers have the processing occurring in a different location

from the memory [4], constraining the speed to that of the data transfer between these

units. This is the so-called von Neumann bottleneck [5]. In addition, though modern

computers are parallelized in the sense that there can be multiple processors operating at

once, it is nevertheless an inherently serial operation: One instruction at a time [5].

The brain is able to perform all the necessary functions for life alongside real-time

image recognition, abstract thinking, and the formulation of sentences, all at once and

yet also in synchronicity. This is at a fraction of the power: AlphaGo, the first program

able to beat a professional human player in a game of Go, required more than 1MW of

power [6]. The human brain requires about 20W [7]. The gulf in efficiency is huge, and

creating computers operating at human levels of efficiency is of great interest.

Neuromorphic computing is a field of computer science that aims to emulate the brain

in either computer hardware or software, in order to increase the efficiency of computing

[5]. In many cases, this comes in the form of specialized computer chips, but it does

not have to: Artificial neural networks are a form of neuromorphics and are presently

implemented on conventional computer components. However, creating and using these

networks is computationally intensive in both time and resources [8], and they often

employ clusters of graphical processing units (GPUs) in order to parallelize their operation

as much as possible [6][9]. By mimicking the brain on the hardware itself, one opens for

much greater efficiency in performing tasks where the brain outperforms a computer

[5]. Computer vision is one such task. Unfortunately, transistors are not suited for the

creation of neuromorphic devices, requiring potentially thousands of them for a single

neurosynaptic unit [10]. Researchers have therefore been searching for other paradigms

where neuromorphic computing can be realized [11].

Spintronics is a field of quantum mechanics that investigates and exploits the spin of an

electron in addition to its charge. This is fundamentally different from modern electronics,

and it opens for improvements on existing technology in addition to the creation of entirely

new devices. Spintronics has already been used to create neuromorphic devices [12][13][11].

One example is the use of spintronic devices to create artificial neurons in a spiking neural

network, relying on behavior very similar to that of the biological neurons within the brain
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[14]. However, there are many other avenues in spintronic neuromorphics.

2.1 Outline

This thesis will first introduce four core concepts: Ferromagnetism and spin Hall effects

(Section 3), the Kuramoto model (Section 4), neuromorphic computing Section 5, and

the basics of neural networks (Section 5). An implementation for an easy-plane spiking

ferromagnetic neuron is presented in Section 6. Sections 7 and 8 cover the implementation

of an easy-plane spin Hall nano-oscillator (EP-SHNO) in a chain, studying the synchro-

nization and controllability thereof. Section 9 shows the potential of an EP-SHNO in an

oscillatory neural network, in line with existing implementations thereof.
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3 Ferromagnetic materials

This chapter will introduce core concepts from both ferromagnetism and spintronics that

partake in the creation of spin-Hall devices.

3.1 Contributions to the FM free energy

To study a ferromagnetic system, and more specifically the ground state, we need to

investigate the contributions to its potential energy. Understanding the various energy

contributions is also central to deriving the equations of motion inside a ferromagnetic

system. We will first consider the atomistic expressions for these terms, and use these to

derive expressions in the continuum (micromagnetic) limit.

Note that when we use the term ’spin’, we are not referring to individual electron spins

but rather the overall magnetic moment at a given lattice site.

3.1.1 Exchange coupling

The exchange interaction within a magnetic material is usually the most dominant interac-

tion and an important contributor to the potential energy. Between individual spin lattice

sites it can be described by the Heisenberg model [15] with the following Hamiltonian:

U =
∑
ij

JijSi · Sj (i ̸= j) (3.1)

Here, Jij is a material constant and the S-vectors are the spins at sites i and j. This

is a general form that takes into account coupling between all lattice sites. Within the

isotropic Heisenberg model, it is often assumed that Jij is constant when i, j are its nearest

neighbors, and zero otherwise.

Jij =

J i, j neighbors

0 otherwise
(3.2)

When including next-nearest neighbors and beyond, Jij will normally become weaker

for neighbors further apart. We will assume nearest-neighbor coupling unless otherwise

specified. This equation states that the interaction between the spins is governed by a dot

product and will energetically prefer a parallel or antiparallel alignment, depending on the

sign of J . For J > 0, the energy will be minimized by Si ∥ Sj, which is the ferromagnetic

case. And conversely, J < 0 is an antiferromagnet. Some sources write −
∑
Jij, which

switches this sign convention.

9



3.1.2 Magnetic anisotropy

With the Heisenberg model, it is assumed that the system is entirely isotropic, meaning

that for an individual spin there is no energetically preferential orientation in space.

Magnetizing a Heisenberg ferromagnet to an arbitrary direction is therefore equally as

costly. However, real magnetic materials are not isotropic, and certain orientations of the

magnetization are more costly than others [16].

The most important anisotropic contribution is the magnetocrystalline anisotropy,

which arises from spin-orbit interaction: The electron orbitals are linked to the crystallo-

graphic structure. Due to their interaction with the spins, they make the latter prefer to

align along a well-defined crystallographic axis (in the case of uniaxial anisotropy) or axes

(in the case of many-axial anisotropy) [16][17]. While usually weaker than the exchange

interaction, this contribution is important as it has a defined spatial direction, whereas

the exchange coupling only seeks to align the spins with respect to each other [17].

We define a normalized magnetization in 3D space

m =
M

|M|
= (α1, α2, α3)

α1 = sin θ cosϕ α2 = sin θ sinϕ α3 = cos θ

The energy can be considered a power series expansion of the magnetization compo-

nents [17],

E = E0 +
∑
i

biαi +
∑
ij

bijαiαj +
∑
ijk

bijkαiαjαk +O(α5) (3.3)

where b is the anisotropic interaction strength. As the energy is a scalar quantity, we can

invert the system and leave the energy unchanged, E(m) = E(−m) and thus E(αi) =

E(−αi). Thus, all odd powers in the power series disappear [17]. We discard the higher-

order O(α5) terms, and adjust the zero-point energy to get a more convenient expression:

E =
∑
ij

bijαiαj (3.4)

From a micromagnetic perspective, this can instead be expressed as

Uani = −K
∑
i

(Si · ê)2 = −K
∑
i

S2
i cos

2θ, (3.5)

where K is a material constant and ê is the unit direction of the anisotropy. The latter

equation simply used the definition of the dot product via angles between vectors. The fact

that this quantity is squared means that cos2θ is minimized for θ = ±π/2 and maximized

for θ = 0 and θ = π. The sign of K decides which of these are energetically less expensive.

10
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M

y
x

z

Easy-plane

Figure 3.1: Example setup for a hard-axis anisotropy. Red mesh is a ferromagnet, Khard ∥
ŷ is the hard-axis anisotropy direction forming a normal vector to the easy-plane,Keasy ∥ x̂

is the easy-axis within this easy-plane, and M is the magnetization is in one of its ground

states.

For the most part, we will consider a version of (3.5), written on the form:

Uani = −Keasy(S · ê∥)2 −Khard(S · ê⊥)2 (3.6)

This form of anisotropy creates an energetically expensive hard-axis, with strength

Khard < 0, which is the normal vector for an energetically inexpensive easy-plane com-

posed of a normal axis and an easy-axis. ”Normal”, in this case, means there is no asso-

ciated energy correction with that axis, while the easy-axis has a strength of Keasy > 0.

In our case, the absolute value of Keasy is orders of magnitude smaller than Khard. As a

result of this, the magnetization is strongly discouraged from existing outside of the easy-

plane, and within said plane, it prefers to exist along the easy-axis. This is exemplified

in Figure 3.1.

3.1.3 External magnetic field (Zeeman coupling)

The Zeeman effect is the result of coupling between the spins and an external magnetic

field. The expression of the energy contribution is

UZeeman = −µB
∑
i

B(r, t) · Si (3.7)

where µB = 4π×10−7J/A2m is the magnetic field constant and B is the external magnetic

field. The coupling is then summed over all lattice sites [18].

As µB is a defined positive quantity, the energy is minimized whenB and S are aligned.

In contrast to the anisotropy, the dot product in the Zeeman term is not quadratic and
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therefore specifies a preferential direction for the spins.

3.1.4 Dipolar interaction and demagnetization

Even though a sample may not contain any inherent magnetocrystalline anisotropy as

described in Section 3.1.2, it may still have a preferred direction that arises from the

shape of the sample, through stray (external) and demagnetizing (internal) fields [19].

For a magnetic dipole in an external magnetic field, the dipole’s magnetic field can be

expressed as

B =
µ0

4πr3
[3(m · r̂) · r̂−m] (3.8)

Combining this with the energy of a dipole in a magnetic field, E = −m · B, we

consider the case where the magnetic field is caused by a nearby magnetic dipole, such

that mi/j represent the value of the dipole located at site ri/j, and Rij = ri − rj [17].

Expanding the r̂’s, we get

Ei,j
dip = − 1

4πµo

3mi ·Rijmj ·Rij −mi ·mjR
2
ij

R5
ij

(3.9)

as an expression for the energy caused by the ij-dipolar interaction.

The surface of a finite sample exhibits magnetic dipoles which causes a stray field

outside the sample. In turn, this stray field induces an internal magnetic field, called the

demagnetization field [17]. We are most interested in the demagnetization field, however

equation (3.9) is cumbersome and does not readily capture the full effect of either of these

fields. We therefore introduce an explicit demagnetizing field, Hdemag, and write the total

energy due to self-interaction as [15]

Edemag = −1

2
µ0

∫
m ·HdemagdV (3.10)

Note that this quantity operates in the continuous limit by it being an integral over the

whole space rather than a summation over every lattice site. Regardless, the effect is

still the same: This energy is minimized when the magnetization is aligned with the

demagnetizing field. This field is dependent upon the shape and properties of the sample

in question.

As it is shape-dependent, there is no succinct way of expressing the demagnetizing

field for all geometries [15].

Though normally small, many ferromagnets rely entirely on the demagnetization to

provide the anisotropy. Furthermore, demagnetization is a long-distance effect compared

to the exchange coupling, and therefore it remains important to this work.
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3.2 Continuum limit for the spin lattice

In some cases, it is useful to treat a material as though it has a continuous magnetization

m rather than with individual, localized spin Si. Note that this m is not the same as mi

from earlier. This has already been performed for the demagnetization interaction, but

we wish to extend this treatment to the most relevant potential energy contributions for

our work.

To perform this change, some tricks are employed. We will proceed term-by-term in

the free energy.

3.2.1 Continuum exchange interaction

Recall that we expressed the exchange interaction as

U =
∑
ij

JijSi · Sj (i ̸= j) (3.11)

To obtain the Hamiltonian in the continuum model, we only consider nearest-neighbor

interactions,

U = J
∑
i

Si · Si+1 (3.12)

which is a reasonable assumption as the strength of the coupling Jij is expected to decay

with distance. This is the Heisenberg model, described previously.

We express the dot product term by term,

U = J
∑
i

Sxi S
x
i+1 + Syi S

y
i+1 + Szi S

z
i+1 (3.13)

and use the relation (Sxi − Sxi+1)
2 = (Sxi )

2 − 2Sxi S
x
i+1 + (Sxi+1)

2 to rewrite it as

U =− J

2

∑
i

(
(Sxi+1 − Sxi )

2 + (Syi+1 − Syi )
2 + (Szi+1 − Szi )

2 − |Si|2 − |Si+1|2
)

We assume all spins are of constant length, such that |Sj| = S, and can therefore remove

the last two terms by adjusting the zero-point energy. Additionally, we introduce the

notation s = S/S, where s is a unit vector and S is the magnitude of the spin. Thus we

can write this as

U = −JhS
∑
i

((sxi+1 − sxi )
2

h
+

(syi+1 − syi )
2

h
+

(szi+1 − szi )
2

h

)
(3.14)

where h is the lattice spacing. Now we take this to the continuum limit by setting h→ 0,

which yields
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U = J

∫
dV (∇m)2 (3.15)

Here we have also transformed the spin to its macroscopic equivalent, the magnetiza-

tion m.

3.2.2 Continuum anisotropy interaction

Recall that the uniaxial anisotropy contributes

Uani = −K
∑
i

(Si · ê)2 (3.16)

to the Hamiltonian, where K is the anisotropic energy. We will be focusing on the uniaxial

anisotropy only, as future work will study the combination of an easy-axis and a hard-axis

anisotropy, each represented uniaxially.

Without loss of generality, we set the anisotropy to be aligned with the ẑ. It is then

expressed as

Uani = −K
∑
i

(Szi )
2 (3.17)

The steps are similar to those for the exchange interaction, however we do not have

any cross-terms and so it is much simpler.

Uani = −K
∑
i

(Szi )
2 = −KS2

∑
i

(szi )
2 = −KS2h

∑
i

(szi )
2

h

where h is the lattice spacing and we have used the definition of S and si from earlier.

Now taking the continuum limit h→ 0, we obtain

Uani = KS2

∫
dV (mz

i )
2 (3.18)

3.2.3 Continuum Zeeman interaction

The continuum version of the Zeeman interaction is very similar to that of the anisotropy

interaction presented above. First recall that the Zeeman term contributes

UZeeman = −µB
∑
i

B · Si (3.19)

We write the magnetic field as B = Bêb, where êb is a function of both space and

time. This, in addition to earlier definitions, transform the above equation into

UZeeman = −µBBSh
∑
i

êb · si
h

(3.20)

14



where si is defined as above and h is the lattice constant.

We now take the continuum limit and obtain

UZeeman =

∫
dV µBBêb ·m (3.21)

3.3 The Landau-Lifshitz-Gilbert equation

Thus far we have considered the contributions to the Hamiltonian in a ferromagnetic

system. They will now be used to find the equation of motion for our system, the Landau-

Lifshitz-Gilbert (LLG) equation.

The LLG equation is a differential equation that describes the dynamics of the magne-

tization in both ferromagnetic and antiferromagnetic materials. The equation is as follows

[15][20]:

ṁ = −γm×H+ αm× ∂m

∂t
+ τ⃗ (3.22)

where m is the magnetization, γ is the gyromagnetic ratio, H is the effective field,

α is the Gilbert damping factor, and τ⃗ is some external torque applied to the system

[21]. This torque has not yet been characterized as it is necessarily system-dependent and

arises from a variety of sources. The effective field H encapsulates all the physics within

the systems; all the previously derived energy contributions regarding magnetic effects

are related to it by

H(r, t) = − 1

µ0Ms

δU [m(r, t)]

δm
, (3.23)

where U is the free energy of the system as a function of the magnetization, andMs is the

saturation magnetization. Thus, the potential energy terms we derived above are related

to the effective field by a functional derivative.

We will give some intuition by breaking the LLG equation down into parts.

3.3.1 Rotational term

For the sake of simplicity, assume that the effective field is constant in space and time.

This can be the very basic system of a single spin in a uniform magnetic field. For this

case we can, without loss of generality, write it as H = (0, 0, H). We perform the first

cross product in equation (3.22), neglecting all other terms, and get

ṁx = −γHmy

ṁy = γHmx

ṁz = 0

(3.24)
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which is immediately recognizable as a rotation in the xy-plane. Therefore, if the spin is

perturbed from its preferred alignment with the ẑ-axis, there is no restoring force and it

will begin to rotate in the xy-plane with a fixed amplitude, the speed of which is dependent

on the size of the perturbation. Otherwise, the spin will remain stationary. Therefore,

the first term in the LLG equation results in a spin precession around the direction of the

effective field direction H.

3.3.2 Damping term

We continue to assume that H ∥ ẑ.
The second term itself is rather difficult to handle as it is implicit and contains the

expression ṁ ∝ m×ṁ, making the time-derivative of the magnetization depend on itself.

We seek to find a more instructive way of expressing this equation by making it explicit.

We start with the LLG equation, (3.22), and for simplicity we drop the torque. We

cross the remaining equation with the magnetization,

m× ṁ = −γm×m×H+ αm×m× ṁ (3.25)

We focus our attention on the last term in this equation, as we wish to get rid of it. To

simplify this, we employ the relation a× (b× c) = (a · c)b− (a · b)c, which yields

m× (m× ṁ) = (m · ṁ)m− (m ·m)ṁ = −ṁ (3.26)

where we have also used the relation m ·ṁ = 0, under the assumption that the magnitude

of m is constant [21].

Inserting this back into (3.25), we get

m× ṁ = −γm×m×H− αṁ (3.27)

Subsequently, we insert this equation into (3.22)

ṁ = −γm×H+ α(−γm×m×H− αṁ) + τ⃗ (3.28)

= −γm×H− αγm×m×H− α2ṁ+ τ⃗ (3.29)

(1 + α2)ṁ = −γm×H− αγm×m×H+ τ⃗ , (3.30)

which yields the explicit LLG-equation

ṁ = −γLm×H− γRm×m×H+ τ⃗ (3.31)

where the index i is still dropped, and where we have defined γL = γ/1 + α2 and γR =

αγ/1 + α2. This is also known as the Landau-Lifshitz (LL) equation, as it preceded the

LLG equation (3.22) by 20 years. [21].
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This is a much simpler equation to look at, as the time-dependent term has been

isolated to one side of the equation. However, they are mathematically equivalent [22],

and we have shown that we can go from one to the other by algebra alone, so we will be

using both forms of the LLG equation interchangeably throughout. The equations are

practically equivalent when the dissipation energy, that is to say the damping, is small.

In this case, we express α as

α =
γR
γL

≪ 1 (3.32)

and α2 can be neglected in the definitions of γL = γ and γR = αγ, the two equations

become physically equivalent as well [22].

For instructive purposes, we expand the damping term in (3.31) and get

ṁx = −γRmxmzHz (3.33)

ṁy = −γRmymzHz (3.34)

ṁz = γR(m
2
x +m2

y)Hz (3.35)

There are two equilibria of this double cross product, m ∥ H and m ∥ −H. We

have made the same assumption H ∥ ẑ as above. Analysis of the rotational term, (3.24),

showed that a perturbation from m ∥ ẑ will turn into a rotation around the ẑ-axis. The

damping term will provide an additional force back to ẑ. Together these will cause a

spiral towards the ẑ-axis [16][23].

3.3.3 Torque term

As stated previously, the torque term occurs due to external influences on the system,

the nature of which are not contained within the LLG equation. We will discuss possible

torques which can affect the system.

3.4 Spin torques

The two terms of the LLG equation, (3.22), that we have tackled thus far are contained

within the effective field, tied directly to the Hamiltonian via a functional derivative. This

subsection will explore the torque term, τ , of the LLG equation (3.22) in more detail.

The torque itself is not provided by any one source, but from any source outside of

those contributing to the effective field.

3.4.1 Spin-transfer torque

Spin-transfer torque (STT) is a torque occurring in a ferromagnet when a spin-polarized

current (e.g. a polarized electron flow) is directed into a magnetic layer. In doing so,
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the angular momentum of the polarized current can be transferred into the spins of the

magnetic layer, changing the magnetization and potentially flipping it altogether. The

torque is mutual, and the polarized electrons are also altered by flowing through the

magnet, but we focus solely on the change within the ferromagnet [24].

The effect is usually only seen in very thin ferromagnetic layers. In larger layers, the

stronger magnetization often causes the charge current to flip its spin instead.

STT enters the LLG equation via the torque term,

τ⃗ = τ∥
m× (pc ×m)

|pc ×m|
+ τ⊥

pc ×m

|pc ×m|
, (3.36)

where pc is the polarization of the spin-polarized charge current passing through the fer-

romagnetic layer with magnetization m. This equation was derived by John Slonczewski

in 1996. Another name for this term, often used in textbooks, is Slonczewski torque [25].

3.4.2 Spin-orbit torque

Spin-orbit torque (SOT) differs from the spin-transfer torque by the charge current: In

STT, the torque is provided by a spin-polarized charge current passing through the mag-

netic material. In SOT, the torque arises entirely from spin-current flowing into the

ferromagnet [26], which can emerge without the charge current entering the ferromagnet.

A way to create such a spin current is with a bilayer consisting of a heavy metal and

a ferromagnet, where within the heavy metal there is a time-dependent accumulation of

spins near the interface [27]. Such an accumulation can occur via the spin-Hall effect,

which will be discussed in detail later.

It is largely agreed that there are two distinct SOTs in a bilayer: Damping-like (DL)

and field-like (FL). They enter the LLG equation as the torque term, expressed as follows:

τ⃗ = −|τFL|m× p̂s − |τDL|m× (m× p̂s) (3.37)

where p̂s is the spin-current polarization (not to be confused with the spin-polarized charge

current mentioned above) and m is the direction of the magnetization. Comparing the

DL term to the damping term of the LLG-equation (characterized by the Gilbert damping

parameter α), the naming becomes evident. As does the field-like term in comparison to

the rotational term.

3.5 Spin-Hall effects

Two very important features necessary for the implementation of our neuromorphic de-

vices are the spin-Hall effects. We give a detailed introduction.

As spin is an internal degree of freedom much like the electric charge, particles with

spin can be characterized as a charge current density and spin current density. This
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notion is something we have already touched upon when referring to spin current and its

polarization, but which will now be explored further.

Spin is one of the two types of angular momentum in quantum mechanics, and as a

result it can be represented as a vector quantity. The flow of spin-carriers it therefore

becomes a tensorial quantity, written
↔
q , with components qij, where i and j represent the

cartesian coordinates of the carrier flow and the spin flow respectively. As an example,

imagine we have an electron density n moving in the x̂-direction with a velocity v, which

is entirely spin-polarized in the ŷ-direction. In this case, the only non-zero component is

qxy = nv [28]. Going forward, we will write q(0) and q
(0)
ij to represent the charge and spin

current respectively. The governing equations can be written as follows [28]:

q(0) = −µnE−D∇n (3.38)

q
(0)
ij = −µEiPj −D

∂Pj
∂xi

. (3.39)

Here, n is the charge current density, µ and D are the mobility and diffusion constants

respectively, E is an applied electric field and P is the spin polarization density.

Equation (3.38) is the general drift-diffusion model of electron flow. The polarization

of this flow plays no role in this equation, as we expect from classical electrodynamics.

Equation (3.39) describes the spin current of polarized electrons. This exists indepen-

dently of spin-orbit interactions as the spins themselves are simply carried in the electron

flow [28]. Here we have assumed that the mobility’s dependence on the spin current is

small, and that there are no other sources of current [28].

In most cases we will be treating a 1D charge current, E = (Ex, 0, 0). For simplicity,

we also assume that it is entirely polarized in the y-direction, and that the electrons are

only allowed to diffuse along the x-axis (i.e. purely 1D motion of the charge current).

Then (3.39):

q(0) = −µnEx −D
∂n

∂x
(3.40)

q(0)xy = −µExPy −D
∂Py
∂x

. (3.41)

This is a very simplistic case, and in a real system, the electrons may diffuse in all

directions even though the field is unidirectional as we assumed here. There may therefore

be many non-zero terms in
↔
q . We will come back to this later.

As a flowing current implies an orbit, the spin-orbit interactions couple these two

currents. The result is a correction to each equation. For an isotropic material with

inversion symmetry, the corrected currents are [28]
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qi = q
(0)
i + γϵijkq

(0)
jk (3.42)

qij = q
(0)
ij − γϵijkq

(0)
k , (3.43)

where γ is a parameter proportional to the spin-orbit coupling strength (not the gyro-

magnetic ratio), and ϵijk is the Levi-Civita tensor. Note that we have written the charge

current q in component form. As an example, these equations imply that a spin current

defined by qzy (flow of spin carriers in the z-direction polarized in the y-direction) will

induce a charge current in the x-direction, qx = q
(0)
x + γq

(0)
zy . And inversely, a charge

current in the z-direction induces spin currents qxy. A more illustrative, but unrelated,

example is given in Figure 3.2, which highlights the directions of the SHE and iSHE in a

conductor.

The following combination of equations (3.38)-(3.39) and (3.42)-(3.43) is phenomeno-

logical, however it captures the spin-orbit coupling. We get

j/e = µnE+D∇n+ βE×P+ δ∇×P (3.44)

qij = −µEiPj −D
∂Pj
∂xi

+ ϵijk

(
βnEk + δ

∂n

∂xk

)
. (3.45)

where β = γµ and δ = γD are constants introduced which satisfy the Einstein relation,

and j = −ez [28]. The first two terms in each of these equations are the ones we know from

equations (3.38-3.39) that fully describe the system in the absence of spin-orbit coupling,

while the latter two are the corrections to account for spin-orbit coupling. Each of these

terms are rich in new dynamics, and thus we will tackle each in a non-chronological order.

Anomalous Hall effect

The term βE×P describes the anomalous Hall effect [28], which is a direct coupling

between the electric field and the magnetization P, contributing to the charge current.

In the regular Hall effect, an external magnetic field causes a deflection of the charge

current, and subsequently an accumulation of charges at each side of the conductor. In

the anomalous Hall effect, the magnetic field is now provided by the orientation of the

magnetization. The permanent magnetization of a ferromagnet therefore ensures that

this occurs even in the absence of an external magnetic field. It is important to note that

this does not stem from the contribution of the magnetization to the magnetic field, but

rather a result of spin-orbit interaction [28].

In certain magnetic materials, the anomalous Hall effect is far greater than the regular

Hall effect (though strongly temperature-dependent) [29]. For this reason it is sometimes

referred to as the extraordinary Hall effect.
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3.5.1 Spin Hall effect

The last two terms of equation (3.45), βnEk+ δ∂n/∂xk couple the electric field or charge

current diffusion gradient to the spin current, and describe the spin Hall effect (SHE) [28].

Note the indices: An electric field or a charge diffusion in the k-direction will induce a spin

current flowing in the i-direction polarized in the j-direction, that is entirely perpendicular

to the direction of the charge current flow. In other words, a charge current induces a spin

current transverse to itself. In a finite sample, this current will cause an accumulation of

spins near the boundaries, similar to the charge accumulation caused by the regular Hall

effect.

For future reference, it is worth considering a specific component of the qij-tensor,

namely the qzy, that is a spin current in the ẑ-direction polarized in the ŷ-direction.

Expressing this in full yields

qzy = −µEzPy −D
∂Py
∂x

+ ϵzyx

(
βnEx + δ

∂n

∂x

)
qzy = −µEzPy −D

∂Pz
∂y

− βnEx − δ
∂n

∂x

where we have expanded the Levi-Civita tensor explicitly. There is no electric field in the

ẑ-direction, and the second term is not caused by the SHE and is thus unimportant for

this discussion. This yields

qzy = −βnEx − δ
∂n

∂x
(3.46)

In essence, our charge current in the x̂-direction causes a ŷ-polarized spin current flowing

in the ẑ-direction.

3.5.2 Inverse Spin Hall Effect

The term δ∇ × P, which couples the polarization of the spins P to the current density

j, describes the so-called inverse spin Hall effect (iSHE). As suggested by the name, it is

the reciprocal of the regular spin Hall effect: An inhomogeneous spin density, or a spin

current, induces an electrical current j.

Consider that we prepare a system with a x̂-directed charge current. From above,

we know that this flow will introduce a non-zero qzy, that is a ŷ-polarized spin current

flowing in the ẑ-direction (there may be other components, but we will overlook them

and only study this simplified case). In our finite sample, this spin current will cause an

accumulation of spins at the boundaries: We will get a non-uniform polarization density

in the system, as there is a higher concentration of one ŷ-polarized charges at the ẑ-

boundary. Assuming that the spin accumulation is uniform in all other directions and

that we only consider ŷ-polarization, the fourth term of eq. (3.44) is
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Figure 3.2: Schematic diagrams of (a) spin Hall effect, (b) inverse spin Hall effect in a

nonmagnetic metal, as well as (c) anomalous Hall effect, (d) inverse spin Hall effect in a

ferromagnetic metal. JC is a charge current corresponding to the electron flow (red and

blue, color-coded by spin direction), JS is the spin current, and JSP is the spin-polarized

current. Figure from [30].

∇×P = (−∂zPy, 0, 0). (3.47)

In other words, the ŷ-polarized spin current in the ẑ-direction induces a charge current

in the x̂-direction, perpendicular to itself. This is depicted in Figure 3.2 b), where a spin

current Js causes a charge current Jc ∥ −x̂. This figure also illustrates the other (spin)

Hall effects.

To better characterize the spin Hall effect and the inverse spin Hall effect, it is common

to introduce Hall angles, θSHA and θiSHA. The definition of these quantities are as follows

Js = θSHA(P× Jc) (3.48)

Jc = θiSHA(P× Js) (3.49)

where Js, Jc and P are the spin current, the charge current, and the charge current

polarization respectively. The θSHA and θiSHA can therefore be regarded as material

parameters that describe the efficiency of conversion from charge current to spin current,

and vice versa, respectively [31][30]. These quantities are more explicit and useful for

numerical implementation [32].
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Figure 3.3: Illustration of SHE in (a) a spin Hall (SH) layer (or an HM layer) and (b) a

SH/FM bilayer, showing the effect the interface accumulation has on the magnetization.

Figure from [34].

3.5.3 Spin Hall magnetoresistance

When a current is applied to a(n) (anti)ferromagnetic material, the resistance may de-

pend on the magnetization, a phenomenon called magnetoresistance. It can arise from

anisotropy (AMR), from multilayer systems (GMR, CMR, EMR), and as will be discussed

here, the two spin Hall effects. In this case, it is called spin Hall magnetoresistance (SMR)

[33]. SMR is fundamentally different from the other forms of magnetoresistance: While

for instance AMR relies on the flow of current inside the ferromagnet itself, SMR is a non-

equilibrium proximity effect, allowing for magnetoresistance to occur within a conducting

layer adjacent an isolating ferromagnet (i.e. a bilayer) [33].

We continue our example above, with a charge current flowing in the x̂-direction inside

a heavy metal (HM), with an insulating ferromagnet (FM) atop it in the ẑ-direction, often

referred to as an HM/FM bilayer. Due to the spin Hall effect within the conductor, we will

have an accumulation of ŷ-polarized spins at the FM/HM interface. The electrons that

cause this spin accumulation cannot penetrate into the insulating ferromagnet, however

the polarization will be absorbed at the interface, acting as a torque that transfers angular

momentum into the ferromagnet. An example of this is shown in Figure 3.3, where the

spin current Js causes the magnetization M to oscillate around its axis. For M ∦ P, the

absorption is greatest [35], and the subsequent torque seeks to drive it into alignment with

the ŷ-axis [33][35]. Mathematically, this enters the LLG equation, eq. (3.22), as part of

the τ⃗ -term. For an accumulation of spins parallel to the magnetization, the incoming spin

current is instead reflected back into the metal [33][35]. The result is that the resistance in

the HM-layer changes with the magnetization of the FM layer, becoming smallest when

M ∥ P. The magnitude of the resistance depends on the instantaneous direction and

magnitude of the magnetization, and the polarization of the charge current. A result

of this is that we can create dynamics in the magnetization, and subsequently measure

the instantaneous phase of the magnetization, with the conductor: If a constant current
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is applied through the HM layer, the effective change in resistivity due to SMR will be

measurable in the resulting changes of the voltage.
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4 Kuramoto model

The Kuramoto model is a mathematical model used to describe systems of coupled os-

cillators. The long-term dynamics are governed by the following equation in universal

form:

θ̇i = Fi +
N∑
j

Γijsin(θj − θi) (4.1)

Here, θi is the phase and Fi the natural frequency of oscillator i, and Γij is an general

function describing the coupling strength between oscillators i and j, dependent on their

phase difference [36]. By natural frequency we mean the frequency that the oscillators

would have in the absence of coupling. The oscillators are otherwise assumed to be weakly

coupled [36].

These equations are difficult to analyze in general [36] due to the unspecific nature

of Γij. The simplest possible version considers all-to-all, equally weighted, sinusoidal

coupling,

θ̇i = Fi +
k

N

N∑
j

sin(θj − θi) (4.2)

This is the governing equation for the Kuramoto model. k is an associated coupling

constant and N is the number of oscillators in the system [36]. The 1/N factor ensures

well-behaved dynamics for a large number of oscillators [36]. Indeed, for N → ∞, the

Kuramoto model is exactly solvable [36].

For k = 0 or for Fi = Fj, θi = θj ∀ i, j, the behavior is trivial. For k ̸= 0, the frequency

of oscillator i is larger than its own natural frequency Fi if oscillator j is ahead of it,

θj > θi, and smaller in the converse case. The effect is that each oscillator will depart

its natural frequency based on its present phase compared to the other oscillators within

the system. The governing equations seek to make all the instantaneous frequencies

synchronized, either completely or with a phase difference (phase-locked). It should be

noted that this model is not so much concerned with the instantaneous phases as it is

about their instantaneous frequencies [36].

Noise can be added to the system by rewriting the equation as

θ̇i = Fi + ζi +
k

N

N∑
j

sin(θj − θi) (4.3)

where ζi is the time-dependent fluctuation of oscillator i, entirely independent of all other

oscillators. This can be modeled with a white noise process, i.e.

⟨ζi(t)⟩ = 0 ⟨ζi(t)ζj(t′)⟩ = 2Dδijδ(t− t′) (4.4)
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however for our purposes we will consider only a zero-noise system.

To further study the dynamics of the oscillators, we define an order parameter by

imagining a 2D oscillation in the complex plane [36], and thus write our definition as

reiψ =
1

N

N∑
j=1

eiθj (4.5)

where r is defined as the radius or phase coherence, and ψ is the mean phase of the system

[36]. In this case, r ∈ [0, 1], with r = 0 and r = 1 describing completely incoherent and

coherent motion respectively.

Multiplying both sides by e−iθi , we get

rei(ψ−θi) =
N∑
j=1

ei(θj−θi) (4.6)

which, when considering the imaginary part only, yields [36]

rsin(ψ − θi) =
1

N

N∑
j=1

sin(θj − θi) (4.7)

Thus, the Kuramoto model can be rewritten as [36]

θ̇i = Fi + krsin(ψ − θi) (4.8)

This is remarkable: Rather than describing the dynamics of each oscillator’s phase by

a deviation from all the other phases, this reformulation allows it to be described by a

deviation from the mean phase ψ. Moreover, because the order parameter r grows as

more and more oscillators synchronize, a positive feedback loop is formed in the system,

given that the coupling strength k > kc, where kc is a critical coupling strength [36]. Thus

far, we have imposed no restrictions on r and ψ.

It is illustrative to determine the synchronization times in a large system of oscillators,

and so we will convert r to a more suitable and measurable quantity: One of our neuro-

morphic devices uses the SHE to oscillate, forced to do so within an easy-plane plane via

anisotropy. This becomes a 2D oscillation well-suited for the Kuramoto model. We take

the absolute value of the order parameter equation:

|reiψ| =

∣∣∣∣∣ 1N
N∑
j=1

eiθj

∣∣∣∣∣, (4.9)

which reduces to
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|r| = 1

N

∣∣∣∣∣
N∑
j=1

eiθj

∣∣∣∣∣ (4.10)

|r| = 1

N

∣∣∣∣∣
N∑
j=1

cosθj + isinθj

∣∣∣∣∣ (4.11)

|r| = 1

N

√√√√( N∑
j=1

cosθj

)2

+
( N∑
j=1

sinθj

)2

(4.12)

(4.13)

Explicitly expanding this:

|r| = 1

N

√
cos2θ1 + cos2θ2 + ...+ cos2θN + sin2θ1 + sin2θ2 + ...+ sin2θN + cross terms

(4.14)

Using a trigonometric identity we reduce all the quadratic terms to N , and then write

the cross terms as a sum:

|r| = 1

N

√√√√N +
N∑
i=1

N∑
i ̸=j

(cos θicos θj + sin θisin θj) (4.15)

Under the assumption that the magnetization is confined within the xz-plane, we define

a normalized magnetization of a ferromagnet i as mi, with mix = cos θi and miz = sin θi,

whereupon

|r| = 1

N

√√√√N +
N∑
i=1

N∑
i ̸=j

(mixmjx +mizmjz) (4.16)

In this work we will often consider two-oscillator systems, for which the order parameter

is expressed as

|r| = 1

2

√
2 + 2m1xm2x + 2m2zm1z (4.17)

or, in trigonometric terms

|r| = 1

2

√
2 + 2cos θ1cos θ2 + 2sin θ1sin θ2 (4.18)

We consider a few example cases to give some intuition about this quantity: When

the oscillators are entirely in-phase, θ1 = θ2 and thus cos θ1 = cos θ2 and sin θ1 = sin θ2.

Inserted into (4.15), this yields |r| = 1. For antiparallel oscillators, θ1 = θ2 + π, then

cos θ1 = − cos θ2 and sin θ1 = − sin θ2, which yields |r| = 0 when inserted. For oscillators
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(a) F1 = 6.5 GHz, F2 = 6.7 GHz, k = 0.03 GHz.

(b) F1 = 6.6 GHz, F2 = 6.7 GHz, k = 0.03 GHz.

(c) F1 = 6.65 GHz, F2 = 6.7 GHz, k = 0.03 GHz.

Figure 4.1: Examples of the time evolution of the order parameter for the Kuramoto

model. System parameters are listed below the figures. In a) and b), the oscillators are

desynchronized. In c), the oscillators are synchronized with a phase difference, shown by

the constant value r < 1.0. By increasing the coupling constant or bringing the natural

frequencies closer, this r will approach 1.0, eventually being completely constant at r = 1.0

for F1 = F2.
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Figure 4.2: Instantaneous frequencies f1 and f2 as a function of natural frequency F1 ∈
[97, 103] GHz. F2 = 100GHz, k = 0.72GHz. Dashed lines mark the beginning and end of

the synchronization range, with synchronization defined as |f̂1 − f̂2| < 0.0012 GHz.

π/2 out of phase, θ1 = θ2 ± π/2 yields |r| =
√
2, and so forth. If the phase difference is

maintained over time, the oscillators are considered phase-locked and the order parameter

becomes a constant in time r ≤ 1 depending on the phase difference. For non-phase-locked

oscillators, the order parameter will oscillate with the instantaneous phase difference.

Figure 4.1 shows the time evolution of the order parameter for three different setups of

2 oscillators. The coupling constant is fixed in all cases while the natural frequency gap is

slowly closed, until synchronization is spontaneously attained. As the natural frequencies

F1 and F2 approach each other, the variations in |r| slow down, until they reach a critical

natural frequency after which they synchronize to some |r| < 1.0.

As with earlier work [12], we define the synchronization range as the range of natu-

ral frequencies for which two oscillators synchronize. As the Kuramoto model is equivalent

under an exchange of oscillators, we illustrate this by tuning the natural frequency of os-

cillator 1, F1, while keeping F2 fixed. Figure 4.2 plots the instantaneous frequencies f1

and f2 as a function of F1. We note the gradual departure of the instantaneous frequen-

cies from their corresponding natural frequencies, until they spontaneously synchronize

for F1 ∈ [98.6, 101.4] GHz, a range approximately 4 times the coupling constant. This is

a general relation for the 2-oscillator system: The synchronization range is always 4 times

the coupling constant, regardless of the exact value of F2. In Figure 4.1c where k = 0.03

GHz, the synchronization range of size 0.12GHz, or 0.06GHz in either direction centered

on the fixed F2.
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5 Introduction to neuromorphics

5.1 Neuromorphic computing

Neuromorphic computing is a concept originating in the late 1980s from the seminal work

of Carver Mead [10]. It is, in essence, encapsulated within its own title: Computation

which aims to mimic the function of the human brain [5], rather than the much more

approachable method of modern computers. For while it is approachable, it is also terribly

inefficient by comparison. Estimating the floating-point operations per second (FLOPS)

of the human brain is difficult as the architecture is vastly different from a conventional

computer, but the lower bound is placed at 2 × 1016 FLOPS [37]. By comparison, the

fastest supercomputer as of November 2022 is the Frontier machine at Oak Ridge National

Laboratory (ORNL), which at its peak operates at 1.6 × 1018 FLOPS [38]. This is also

the most efficient supercomputer, achieving approximately 62.68× 109 FLOPS W−1. By

comparison, the brain operates at approximately 20W [7], meaning an efficency of 1015

FLOPS W−1, several orders of magnitude greater.

By emulating the brain’s functionality in hardware, neuromorphic computing aims to

close the gap in FLOPS and create more efficient computers. There are a number of key

aspects that differentiate a conventional and neuromorphic computational device, which

contribute to the speed.

Conventional computers for the most part abide by the von Neumann architecture.

This was proposed by John Von Neumann in the paper ”First draft of a report on the

EDVAC” [4]. The EDVAC was among the first electronic computers ever designed, and in

the report on it, von Neumann proposed, among other things, the separation of the pro-

cessor unit and memory. This has proven widely successful and is adopted into practically

every commercially-available computer today. There are, however, issues with this: First,

computational speed is inevitably constrained by the rate of the data transfer between

the memory and the processor unit. This is a resource-intensive operation [5], and much

work has been spent mitigating the effect of the bottleneck in conventional computers,

such as memory caching, branch prediction, etc. These only postpone the inevitable with-

out solving the issue. The brain has a different structure altogether, wherein the data

storage and the analysis thereof occur in the same place, or within the same device [5];

in the brain, the neuron itself is responsible for both storing memory and propagating

the electrical impulses that operate on it. Neuromorphic hardware therefore avoids the

Von Neumann bottleneck by its very design, opening for potentially large increases in

computational speeds.

Other drawbacks of modern computers are their inherent serial in nature: A problem

is broken into a series of instructions, which are executed sequentially on a single processor

which changes the state of the program. While virtually all modern computers are parallel
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from a hardware perspective, with for instance several graphical processors operating

simultaneously, each of the individual devices remains serial. By combining several serial

units, in addition to employing modern computer science tricks, it effectively creates

a parallel computing scheme. The brain, by comparison, is inherently parallel: It is

able to maintain life functions, recognize images in milliseconds, form sentences, visualize

abstract concepts and perform many subconscious tasks all at once. Emulating the brain’s

structure may increase the potential for parallel computation, very beneficial for AI-

related tasks such as computer vision [5].

As one can imagine, AI applications will benefit greatly from the adoption of neuro-

morphic principles, as their work already seeks to incorporate brain-like functionality on

computing devices.

A drawback has been pointed out earlier: Conventional computer devices employ

workarounds and mitigations of their limitations rather than dealing with them directly

using new hardware. This makes it difficult to integrate them into neuromorphic comput-

ing principles. Research has therefore been spent on finding other hardware which is more

applicable to neuromorphic computing. Spintronics is one of these examples. In order to

understand the application of spintronics to neuromorphic computing, and especially to

neural networks, an introduction to all three is necessary. We will first explore existing

concepts in neural networks, followed by neuromorphic computing and their relation to

these. This will lay the groundwork for a study of the isolating ferromagnet for use in

spintronic neuromorphic.

We will give a qualitative and quantitative introduction to conventional neural net-

works. Additionally, we will introduce spiking and oscillatory neural networks.

5.2 Neural structure

In order to understand the basis of neuromorphic devices, it is important to first under-

stand the operation for the brain and central nervous system (CNS). The key components

in play are the neurons and the synapses. The neurons are specialized cells which perform

the basic signal processing and transmission inside the CNS. Our brains contain roughly

100 billion neurons [39]. The neurons themselves are divided into three separate parts:

The dendrites, soma and axon. Figure 5.1 depicts a single neuron, with every component

inside of it. We have added labels to highlight the most important aspects.

The dendrites gather the input from neighboring neurons [39], branching out and

opening for potentially tens of thousands of connections into a single neuron [40]. The

resulting input is passed into the soma, the neuron’s processing unit. The arrival timing

here is of utmost importance: The soma has a resting potential where it remains without

any stimulation. Arriving signals will temporarily raise the potential of the neuron until

it hits a threshold, called the activation potential, at which point it generates an action
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Figure 5.1: Schematic of a neuron, with important parts labeled. Figure adapted from

[43], labels added.

potential, or a large and momentary increase in potential across the membrane. This is

often called spiking or firing [41]. If the input signals arrive within a short enough time

frame and are of sufficient strength, the sum of their inputs is enough to cause a firing

[41]. Otherwise, the neuron ”leaks” the accumulated energy and relaxes back to its resting

potential [42].

The output is then passed to the axon, where it propagates into several axon terminals,

which release neurotransmitters to the dendrites of connected neurons [39]. The actual

connections from the axon terminals to neighboring dendrites are through the synapses,

which act as weights ω on different signals, promoting some and downprioritizing others.

This process then repeats itself in the next neuron, potentially causing a series of spiking

events which propagate through the network of neurons.

The aforementioned weight ω of the synapse should be familiar to anyone who has

knowledge on artificial neural networks (an introduction to which we present later). The

adjustability of the synaptic weights makes certain pathways through the brain more

conducive, which forms the cornerstone of learning and the formation of memories [44].

5.3 Neural oscillations

Neural oscillations, also known as brainwaves, come in two flavors: Within individual

neurons it comes as oscillations within either the membrane or action potential. On a

larger scale, it is representative of the synchronization of a number of neurons, giving rise

to macroscopic oscillations that are visible on an electroencephalogram (EEG) [45]. The

latter oscillations are of greater interest to us, and so we focus on them. It is to be noted

that although these macroscopic oscillations show up on EEGs, the connection between

these oscillations and cognitive activity is a subject of ongoing research [46], and their

computational function is an ongoing debate among neuroscientists [47].

These macroscopic oscillations are characterized by their frequency, amplitude and

phase, all of which change due to the properties of the individual neurons and, more

32



importantly, synchronization within neural ensembles (so-called local synchronization).

Though EEGs usually have a broad spectrum, certain bands of frequencies have an in-

creased oscillatory activity that is highlighted. To name a few of these, alpha wave (8-12

Hz), beta wave (13-30 Hz), delta wave (1-4 Hz), and two bands of gamma waves (up to

150 Hz).

Each wave is more prominent during certain activities. The alpha wave, for instance,

is predominant during wakeful relaxation where the eyes are closed [48], while the high-

frequency beta activity is linked to cognitive tasks [48]. The purpose of these oscillations

may be to group neurons together into computational units in response to cognitive load.

There is a dramatic change in EEG output during sleep compared to wakeful stages,

suggesting a strong link to states of consciousness [45]. However, as mentioned, the exact

nature of these oscillations is not fully understood. Other, more concrete suggestions

for their purpose include feature binding (the combination of input and information into

a cohesive experience) [49], neural coding (relationship between input stimulus and the

subsequent response) [45][50] and the control of everyday rhythmic behavior like walking

and breathing [45].

5.4 Basics of neural networks

Artificial neural networks, as they are most commonly made today, consist primarily of two

components: Nodes, or neurons, commonly arranged in layers, connected by adjustable

weights ω, modeling the synapses in a biological neural network. The first layer is called

the input layer, where input data is introduced to the system. The last layer is called the

output layer. Between these are hidden layers responsible for transforming the input data

into some form of output classification. Although this is a very common neural network

there are other forms. One example is perceptrons [51], which do not have hidden layers

at all. Each layer is connected only to the nodes in the previous and subsequent layer,

with each node taking input from the previous layer in the form of a weighted sum [52],

Y K+1
j =

∑
i

ωjiY
K
i (5.1)

where ωji are the synaptic weights associated with that node-node connection, Y K
i is data

outputted by a node in the Kth layer, and Y K+1
j is the data received by node j in the

K+1 layer. This is known as the propagation function. The magnitude of the weight

therefore specifies the strength of a specific connection. This input is transformed into an

output via an activation function, σ(x). The activation function is not standardized to

any one specific function, though to compute non-trivial problems with a small amount

of nodes this function must be non-linear. [53]. Common choices are the ReLu function,
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Figure 5.2: Conventional feedforward neural network in 4 layers, 2 of which are hidden.

Adapted from [54] by modifying labels.

the hyperbolic tangent, or the Sigmoid function, respectively

σReLu(x) = max(0, x)

σhyp(x) = tanh(x)

σsig(x) =
1

1 + e−x
.

This output is then distributed as input in the next layer, in the same fashion as above.

One can also introduce bias nodes, which are not connected to any preceding layers and

instead only provide a bias input to a specific layer.

The second important aspect of a neural network is training, which is done by pro-

cessing a large volume of examples. Initially, the weights of the system are randomized.

Then, input data from this example data set is presented to the system through the in-

put nodes. After passing through all the hidden layers, the output is compared to the

expected output. The difference between the actual and expected output is defined as the

error. At this point, a learning rule is used to adjust the weights of the system such that

this error is minimized. With a large data set, the weights will tend towards values that

minimize this error for all the examples [55]. At some point, one can stop the training

process and use the trained network to classify unknown data accurately [55].
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This whole process can be described in terms of matrix multiplication [52]: Consider

N neurons in the Kth layer, represented by the vector Y⃗ K , connected all-to-all to M

neurons in the K + 1th layer, Y⃗ K+1, where we borrow the notation for the neurons from

eq. (5.1). A sketch of this system is given in Figure 5.2. As each of the Y K+1
j neurons are

a weighted sum of Y K
i , we can write this as an equivalent matrix multiplication

Y⃗ K∗ = WK Y⃗
K + b⃗ (5.2)

where element i of Y⃗ K corresponds to Y K
i , WK is an M ×N matrix where the elements

are ωji, both from eq. (5.1) and we include a bias b⃗ which also connects to every neuron

in K + 1. Y⃗ K∗ is a temporary value, because we now apply the activation function σ on

every neuron, that is on every element in the Y⃗ K∗ vector, to determine which neuron is

allowed to propagate. The input into the next layer, Y⃗ K+1, is then

Y⃗ K+1 = hσ(Wk Y⃗
K + b⃗) (5.3)

where we have additionally added a so-called learning parameter h.

This describes the propagation of input data Y⃗ I through the network, through a series

of transformations from input to output through all the layers. As mentioned, our initial

input data will be training data and thus have corresponding expected output
ˆ⃗
Y . We

must now update our weights in such a way that input data will be transformed to match

this expected data. To do this, we first define a loss function (or objective function).

There is no single loss function, and developers can select any suitable function to fit

their needs. An example is

J = |Y⃗ O − ˆ⃗
Y |, (5.4)

simply the difference between the output data Y⃗ O and the expected data.

To summarize thus far: We have obtained how some input data will be transformed

when propagating through our neural network. We have additionally defined a loss func-

tion for use during training to determine how the neural networks perform. Now it is time

to implement the backpropagation, such that we can meaningfully update the synaptic

weights in a way that best minimizes this error. To do so, we must find the gradient of J
with respect to the weights, ∇J = ∂J /∂Wk. One can also allow other parameters, such

as the biases b⃗, to be tunable, at which point it will enter this gradient calculation.

From this, we obtain the iterative expression that will minimize the loss function by

adjusting the system weights,

Wk+1 = Wk − τ∇J , (5.5)

where τ is a step length deciding the impact each sample should have on the learning of

the model [52].
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Finding gradients is a very time-consuming process, and modern neural networks

involve an ever growing number of nodes, drastically increasing the number of parameters

and thus the number of elements in the Wk matrix. The large language model GPT-

3, which is, at time of writing, a generation behind the cutting edge large language

model GPT-4, is known to have employed 175 billion parameters, all of which had to be

iteratively trained [56]. The parallelizability of these computations is therefore paramount,

and is what is employed in machine learning frameworks such as TensorFlow [9].

5.5 Spiking neural networks

The nodes in an artificial neural network employ a static propagation model where all

neurons are powered at all times, which very loosely models a biological neural network.

In a spiking neural network (SNN), the neurons are constructed in such a way that they

more closely resemble biological neurons. An old, but still instructive model is the leaky

integrate-and-fire (LIF) model for neurons, which provides a time-dependence in addition

to a whole host of effects. We will come back to the LIF model, but it should be noted

that there are other models for neurons used in SNNs, for instance the very important

Hodgkin-Huxley model [57].

The neurons in an SNNs only transmit when their internal potential reaches a threshold

value. Here, the neuron fires (spikes), releasing a large current pulse which travels into the

next neuron. This current pulse is modulated by artificial synapses, similar to the weights

the conventional neural network. When propagating, this pulse increases the potential

of connected neurons, potentially causing a cascade of spikes propagating through the

network. In addition, the original neuron in this consideration relaxes back from its

threshold value.

The time-dependence is contained in how each neuron receives and potentially prop-

agates the information. This is in part described by the LIF model: The arriving spikes

Y K
i are multiplied by weights ωi and integrated (summed) as prior. If this summation

results in a value higher than a threshold, a spiking event occurs within the neuron and

the information is transmitted as Y K+1
I . If the potential remains below the threshold no

spiking occurs. However, the neuron itself wants to relax back to its ground state, and

will slowly leak the potential rather than store it indefinitely, ergo the summing is time-

dependent. A series of spikes arriving from many neurons within a short period (called

a spike train) may be necessary to cause the destination neuron to fire, and it is within

these spike trains that the input data is encoded [58].

In addition to the time-dependence, SNNs often fulfill (or should fulfill) criteria that

hold for biological neurons. The most important properties are [57][14]:

• Refractory periods: For a short period after firing, the neuron will not fire again,

even if normally sufficient stimuli is applied.
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• Latency: Upon receiving stimuli, biological neurons should exhibit delay, or latency,

in their response.

• Bursting: A converse of a refractory periods, where the magnitude of the stimuli is

great enough that the neuron fires repeatedly.

• Inhibition: The ability for neurons to act in an inhibitory rather than just excitory

fashion when encountering a spike, thereby preventing propagation.

There are advantages of a SNN compared to its conventional counterpart: They are

in theory faster than the neurons in a conventional network, and require less energy as

the neurons are only powered when they are firing, unlike the static neurons of today

that are continuously powered. Additionally, they may require fewer total neurons for

the same level of accuracy as a conventional neural network. There are also obstacles

in the way of creating a SNN: At present, there are a limited number of unoptimized

methods of training a SNN, and the ones used in conventional NNs (such as gradient

descent) are not suitable for the different paradigm that is SNN. Schemes such as spike-

timing-dependent plasticity and Hebbian learning exist and have been implemented, but

the details thereof are omitted in this introduction [11][59]. Furthermore, implementing

SNNs with transistors is very hardware intensive [10].

5.6 Oscillatory neural network

Though it may not be the easiest to implement, the spiking neuron is intuitively related

to the biological neuron: It obviously captures the spiking itself, but certain implemen-

tations also capture other properties of biological neurons such as bursting, refractory

periods and latency. But the brain also experiences macroscopic oscillations that are ob-

servable in electroencephalography diagrams, so-called neural oscillations or brain waves

[46]. The details of these oscillations have been discussed in Section 5.3. Oscillatory

neural networks (ONN) try to emulate this behavior, exploiting the synchronization of

oscillators for computation [46]. This reliance on synchronization make ONNs closely tied

to the Kuramoto model [60].

It is possible to use the normal Hebbian learning rule in ONNs, making them similar to

existing neural networks [60]. During Hebbian learning, it is the synaptic weights between

the oscillators that are updated every iteration, for instance the coupling constant K of

the Kuramoto model [46] that was discussed in Section 4. Information is encoded in the

phase of the oscillators. Setting one oscillator as the reference, we can use the relative

phase of all the other oscillators in comparison to the reference to encode the desired data

[46].

It is also possible to keep K constant for all iterations of the system, and instead

tune the natural frequency Fi in the Kuramoto model. This paradigm has received less
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attention than the former, but is more attractive for nano-scale applications [60]: On a

nano-scale device, tuning the coupling constant is often difficult as it is tied directly to the

material parameters themselves, while tuning the frequency is comparatively simple [60].

This approach effectively neglects the exact value of the phases for each oscillator and

instead evaluates the frequencies: The oscillators are either synchronized or desynchro-

nized to some reference frequency, encoding a binary state. This approach to ONNs has

already been realized in nanoscale spintronic devices, both in theory [12][61][13] and ex-

perimentally [49], as well as on several other hardware implementations [62]. This method

is key to our work. Therefore, we present a detailed introduction based on the work of

Vodenicarevic et. al. [60], who developed the learning algorithm used in our work.

There are two key advantages of an ONN: Synchronized oscillators all operate in

parallel, which can be exploited for parallel computation. Additionally, computing with

oscillators in the frequency domain allows low-voltage operation compared to standard

transistor-based computation. In short, ONNs are low-power and highly parallelized,

exactly what is sought-after for training and implementing artificial intelligence on various

devices [46].

5.6.1 Training an ONN

The training method by Vodenicarevic et. al. [60] is an extension of one presented by

Vassilieva et. al. [63]. The latter is not used in this thesis, and so it will be introduced in

broad strokes to highlight the differences.

The Vassilieva learning algorithm [63], was initially presented in 2011 through a math-

ematical context. The algorithm consists of presenting training input examples Y⃗ I , with

known expected output
ˆ⃗
Y , to the network through a set of input oscillators in a network

consisting of both input and output oscillator (each of arbitrary number, though usually

more output than input oscillators). Once done, it obtains the list of synchronized pairs

of oscillators, and compares it to
ˆ⃗
Y . The learning algorithm then operates on the natural

frequencies of the oscillators, slightly pushing apart the unexpected synchronizations and

at the same time promoting the desynchronized pairs that are supposed to be synchro-

nized by pulling their natural frequencies closer [60]. Note that a ”pair” of oscillators, in

this case, refers to a pairing of the input oscillator to any other non-input oscillator in

the system, which all function as output oscillators. All output oscillators synchronize to

one or none of the input oscillators, and are not allowed to interact with each other. As

pointed out in Vodenicarevic et. al. [60], this algorithm is greedy, only acting on IO-pair

as though they are isolated and do not influence each other. For some systems this is

an acceptable assumption [61]. But in a general system, all oscillators in the system will

affect each other, and thus the algorithm may end in suboptimal results [60]. Further-

more, without inter-oscillator coupling, the size of a problem that can be presented to the
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oscillators is limited [60].

The Vodenicarevic algorithm is, in broad terms, closer to what is expected from a

conventional neural network: The output oscillators are now allowed to interact with each

other in addition to the input oscillators, and we look at the synchronizations between

various output oscillator pairs to determine the state of the system. Further similarities

to conventional neural networks are that it is an offline learning algorithm which operates

by actively minimizing, through gradient descent, the total error function:

Etot =
1

M

M∑
m=1

∑
o-pairs

E
(m)
i,j (5.6)

where M is the number of training samples, E
(m)
i,j is the error of output pair, and o-pairs

are pairs of output oscillators (i, j) which we are summing over for sample m. To quantify

this error further, we introduce a measure for the actual desynchronization

Dm
i,j =

|f (m)

i − f
(m)

j |
k/2

(5.7)

where k is the coupling constant (which could be that of the Kuramoto model, but other

suitable models can be used [60]), and f
(m)

i is the time-averaged instantaneous frequency

of the ith oscillator, which is potentially different from its natural frequency Fi due to

interactions with other oscillators. If Dm
i,j ≤ 1, the oscillators are considered synchronized,

otherwise they are not. Note that D
(m)
i,j is always a non-negative number.

Based on this, the error itself is defined differently for our two different states: If the

oscillators (i, j) are expected to be synchronized for sample m, the error is

E
(m)
i,j =


1
2

(
D

(m)
i,j

)2

if D
(m)
i,j ≤ 1,

1

1+e
−4(D(m)

ij
−1)

if D
(m)
i,j > 1

(5.8)

while if they are expected to be desynchronized, the error is

E
(m)
i,j =


1− 1

2

(
D

(m)
i,j

)2

if D
(m)
i,j ≤ 1

1− 1

1+e
−4(D(m)

ij
−1)

if D
(m)
i,j > 1.

(5.9)

Note that in both these equations, the cases considers the state of the actual oscillators.

For all values of D
(m)
i,j , the error E

(m)
i,j ∈ [0, 1). Figure 5.3 depicts the loss function as a

function of the desynchronization, D
(m)
ij .

We now perform the gradient descent. From Figure 5.3, it is apparent that the loss

function is minimzed by D
(m)
ij → 0 for oscillators meant to be synchronized and D

(m)
ij →

∞ for desynchronized. Just like with regular machine learning, we now compute the

error gradient with respect to our tunable parameter, which are the natural frequencies
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Figure 5.3: Vodenicarevic loss function, plotted for a range D
(m)
ij ∈ [0, 2]. The functions

will asymptotically go to 1 and 0 respectively. Dashed line marks the transition from

synchronized to desynchronized.

of the output oscillators (D
(m)
ij depends on these implicitly, as the mean instantaneous

frequencies f
(m)

i depend on the initial configuration of the natural frequencies Fi). Thus,

we need to determine ∂E
(m)
i,j /∂F, which we can expand via the chain rule to be

∂E
(m)
i,j

∂Fa
=
∂E

(m)
i,j

∂f̄
(m)
i

∂f̄
(m)
i

∂Fa
+
∂E

(m)
i,j

∂f̄
(m)
j

∂f̄
(m)
j

∂Fa
, (5.10)

where
∂E

(m)
i,j

∂f̄
(m)
i

is found by differentiating eq. (5.8) and eq. (5.9).

Like Vodenicarevic et. al., we use the Kuramoto model both for this explanation

and later in our implementation. The differential equations are given in eq. (4.3), which

govern the instantaenous frequency and the phase, both relevant to our implementation.

We differentiate both of these with respect to the natural frequencies and get
∂fi(t)

∂Fa
= δi,a + k

∑
j

(
∂θj(t)

∂Fa
− ∂θi(t)

∂Fa

)
cos [θj(t)− θi(t)]

∂θi(t+ dt)

∂Fa
=
∂θi(t)

∂Fa
+ 2πdt

∂fi(t)

∂Fa

(5.11)

where δ is the Kronecker delta function, and ∂θ(t = 0)/∂F = 0. This differential of

instantaneous frequency with respect to natural frequency is then combined into the

learning rule, eq. (5.10), becoming a complicated expression omitted presently.

During implementation, undesired sensitivity to initial conditions are avoided by ran-

domizing the initial phases θ ∈ [0, 2π), and the natural frequencies Fi are clipped to stay

within a certain region, dependent on the range of devices used.

All work presented in this section is attributed to Vodenicarevic et. al. [60]. This

is an offline learning algorithm of complexity O(N3), but it is highly parallelizable. As

this algorithm is related to standard gradient descent common in conventional machine
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learning schemes, it can and has been implemented as a neural layer in machine learn-

ing libraries such as TensorFlow, which ensure the use of GPU acceleration if available,

drastically increasing the speed of training [60].

5.7 Summary

In this section, we have presented two novel methods of neural networks that more closely

align with current models of the brain. The first are SNNs, which model the leaky

integrate-and-fire behavior of a biological neuron, in addition to many other biological

properties. These are complicated networks that do not have a readily-available learn-

ing algorithm nor integrate easily with existing hardware, but promise highly parallel,

low-power computing. The second are ONNs, modeling a more macroscopic brainwave

activity using the synchronization and phase-locking of coupled oscillators to perform

parallelized cost-effective computation. These oscillators come in two flavors, the more

hardware-friendly of which trains the system by updating the natural frequencies of out-

put oscillators. This has already seen realizations, both experimentally and in simulation,

and already has several learning algorithms which employ existing neural networking

techniques, for instance gradient descent.

These are two examples of neuromorphic approaches to neural networks, but it’s not

a comprehensive list, and many more exist. An example is reservoir computing, which re-

lies on a combination of the feedforward network presented in Section 5.4 and a recurrent

neural network, which itself is a feedforward network that allows for cyclical connections

between nodes. These recurrent networks are used as a reservoir, feeding into a regular

feedforward network. A more detailed introduction to this and other forms of neuromor-

phics, in addition to applications thereof, are found in [11].
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6 Spin-Hall magnetoresistance in a spiking artificial

neuron

In this section, we aim to present a ferromagnetic spiking neuron driven by the spin-

Hall effect (SHE). Additionally, we will investigate the use of spin-Hall magnetoresistance

(SMR) for obtaining the state of the ferromagnet, thus detecting spiking events in an

entirely self-consistent manner.

6.1 Background

Recent studies have investigated the use of of spintronics for the creation of nanoscale

artificial neurons [11], exploiting for instance the spin-Hall effects [14][64], magnetic tunnel

junctions [65], spin-transfer torque [66], and many more [11]. The results are promising,

and some of these devices are able to capture many of the properties of biological neurons

[14].

Spin-Hall magnetoresistance (SMR) is a type of magnetoresistance that occurs in a

conductor when it is in direct contact a magnetic material, due to the magnetization of

said magnetic material. It is described as the simultaneous action of the spin-Hall effect

(SHE) and inverse spin-Hall effect (iSHE) [33], causing a change in magnetization and

pumping a charge current respectively. A detailed description is given in Section 3.5.3.

However, since the resistance is now dependent on the direction of the magnetization, we

can observe changes in the adjacent ferromagnet by measuring the resistance across the

conducting layer. Such a change can, for instance, be the spiking events occurring in an

artificial neuron, where the magnetization (confined to an easy-plane in our case) changes

its direction by 180◦. This should produce a characteristic pulse which we can detect. In

addition, we wish to see if this output voltage pulse due to SMR can be used to spike

other artificial neurons. If this is the case, it opens for the creation of a spiking neural

network (SNN) entirely driven by SMR.
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Parameter Value

Lattice constant 12.376 Å (25 ◦C) [67]

Density 5.11 g/cm3 (25 ◦C) [67]

Exchange stiffness 3.65× 10−12 Jm−1 [68]

Gilbert damping parameter (α) (5.3± 0.1)× 10−4 [69]

Saturation magnetization 137 mT [68]

Gr (3.8± 1)× 1014S/m2 [70]

Gi (1.7± 0.7)× 1013S/m2 [70]

σ 10 µSm−1 [71]

Table 1: Selected material parameters of a YIG

Figure 6.1 depicts our proposed setup. We investigate a 24 × 12 × 2.4nm HM/FM

bilayer. We consider a YIG-like isolating ferromagnetic mesh (red, key parameters listed

in Table 2), with a ŷ-directed hard-axis, and a x̂-directed easy-axis, forming an easy xz-

plane, which we have defined by an explicit magnetic anisotropy within our simulation

parameters. In reality, the easy- and hard-axes of a YIG usually spring from shape

anisotropy and demagnetization. Additionally, there are some parameter differences from

the real material: We have increased the damping parameter from α 10−4 to α = 0.02, to

decrease the sensitivity and thus make it easier to handle. The electrical conductivity has

also been increased from the real value of 10µSm−1 to 0.1 Sm−1, which is a requirement

of the numerical solver in use by BORIS computational spintronics. Nevertheless, this

is much lower than the conductivity of the Pt-layer, 7MSm−1, so we consider it an

adequate value to make the ferromagnet isolating. The parameters from the Pt layer

(HM) are sourced from BORIS’s material database [72], with important quantities listed

in Table 3.

Our simulations run as follows: We apply two electrodes to the short faces of the

platinum mesh, through which we initially run a small, constant bias current Ib in x̂, or

an in-plane (IP) current. Due to the SHE in the Pt layer, there will be a deflection of the

electrons in the ẑ-direction, causing a spin-accumulation at the interface between the Pt

and the YIG, where they will transmit or reflect depending on the magnetization M of

the YIG, as explained in Section 3.5.3. This current will want to align the magnetization

along the ŷ-direction, however due to the strong hard-axis anisotropy the magnetization

will instead be deflected within the easy-plane. The reason for the bias current is to make

the simulation run faster: For no applied current, small fluctuations in the magnetization

due to e.g. rounding errors will introduce a small charge current in the Pt layer. Without

a ground electrode to flow towards, these electrons propagate in a complicated manner

which slows down the simulation drastically. In a real implementation of an artificial
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Parameter Value

Cell size 12x12x6 Å (25 ◦C) [67]

Density 5.11 g/cm3 (25 ◦C) [67]

Exchange stiffness 3.65× 10−12 Jm−1[68]

Gilbert damping parameter (α) 0.02 [69]

Saturation magnetization 137mT [68]

Gr 3.8× 1014S/m2 [70]

Gi 1.7× 1013S/m2 [70]

σ 0.1 Sm−1

Table 2: Selected simulation parameters for the YIG-like material. Changes will be

reasoned in the main text.

Parameter Value

θSHA 0.19

θiSHA 0.19

σ 7MS/m

Table 3: Selected material parameters of Pt [72]

neuron, a bias current may be beneficial as it can make spiking easier, but it is not a

necessity.

At specific intervals we will provide a rectangular current pulse, Is of much greater

magnitude than Ib, for a short time ts. This will momentarily increase the torque ap-

plied to the magnetization, breaking the equilibrium. The resulting angular momentum

provided to the magnetization will carry it past the ẑ-axis, whereupon it will accelerate

towards the other ground state, oriented antiparallel to the initial ground state (usually

we start in −x̂, so it will flip to +x̂). This we refer to as a spiking event. These mag-

netization dynamics will, due to SMR, change the resistance in the adjacent conducting

layer. As the simulation aims to keep the current constant, the effect will be a fluctuation

in the voltage, which we can isolate from the input rectangular pulse. The Pt layer is

therefore used to both drive the magnetization dynamics and measure the results.

6.2 Results

We present our results for a system where the ferromagnet is of size 24 × 12 × 2.4nm,

initially biased by Ib = 35 µA for 50 ps. We then apply a Is = 600 µA current spike for

ts = 10 ps, then return the current to the bias value. We apply two more of these pulses
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j⃗c
12 nm

24 nm

y

x

z

M

Easy-plane

Figure 6.1: Simulation setup for the artificial neuron, consisting of a heavy-metal ferro-

magnetic (HM/FM, red and blue meshes respectively) bilayer, with the former having the

properties of platinum (Pt) and the latter having parameters similar to a yttrium iron

garnet (YIG) (actual parameters listed in Table 2). A charge current j⃗c is applied in the

x̂-direction. The anisotropic easy-plane lies in the xz-plane, and the magnetization M⃗

oscillates within it.
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at 300 ps intervals, so that the magnetization is allowed to come to rest in its new ground

state.

Figure 6.2a depicts the response of our artificial neuron to three current pulses, de-

picted by their normalized magnetization components. Figure 6.2b depicts the voltage

output in red, overlaid the angle of the magnetization to the x̂-axis. The timing of the

input current pulses, Is = 600 µA over ts = 10 ps, are highlighted with black dashed lines.

We observe that for the spiking events, the Mx-component almost immediately flips 180◦.

Once flipped, it overshoots the x̂-oriented ground state. It does not have sufficient angular

momentum to pass the ẑ-axis and spike again, and so despite overshooting it eventually

relaxes into its new ground state, and we see that the oscillations disappear. After 300 ps,

another pulse is applied, and we see once again that the magnetization flips 180◦ in a

similar manner.

The spiking event itself occurs some time after the current pulse is applied: The

magnetization responds immediately and starts moving, however it continues the spiking

event even after the spiking current is removed. This is as expected, and a replication

of the behavior presented in [14] and [64]. The delay exists simply because the torque

itself is providing a large, momentary increase in the angular momentum, which carries

the magnetization direction past the ẑ-axis, at which point the spike occurs. This delay

is referred to as latency, and is a key feature of biological neurons.

A side note is the behavior of the ŷ-component. This is caused by the SHE, seeking

to align the magnetization with the ŷ-axis by pumping a spin current into the system.

This alignment is prevented by the hard-axis anisotropy. Nevertheless, the current pulse

momentarily increases this component, as one would expect. However, it is notable that

this component responds in the exact same manner for mx = ±x̂, that is regardless of

orientation.

The voltage response depicted in Figure 6.2b reaches a max of 50 nV for a brief mo-

ment during the application of the spiking voltage. After the application, the spiking

event creates many smaller oscillations, before dropping to zero as the magnetization

comes to rest. Note that, as mentioned prior, this voltage is isolated such that only the

effect of SMR is displayed. By comparison, our input pulse is 600 µV, over 4 orders of

magnitude larger than the output of this neuron. Furthermore, while the input is a single

rectangular pulse, the output is a series of successively smaller peaks corresponding to the

magnetization dynamics, each no longer than a few picoseconds. The output is therefore

extremely small and short-lived compared to the input, and additionally of a different

shape. This neuron is therefore unable to cause further spiking events downstream from

itself. The magnitude of the output would need to be drastically increased, and the shape

would also have to be altered. However, we are able to detect spiking events.
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(a) Magnetization components as a function of time.

(b) IP voltage and x̂-axis angle as a function of time

Figure 6.2: Spiking of a 24 × 12 × 2.4nm easy-plane ferromagnet interfacing a Pt layer,

Ib = 35 µA, ts = 10 ps, Is = 600 µA. a) components of the magnetization as a function

of time, b) angle of the oscillator to the x-axis and voltage response due to SMR as a

function of time. Black dashed bars indicate the timing of the input current pulses. The

data in b) has been normalized, meaning that the bias value has been subtracted, and

additionally the spiking pulse has been removed. Thus, all that is depicted is the response

due to SMR.
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6.3 Biological properties

Having characterized the general spiking behavior, we now aim to relate key properties of

the biological neuron to this spiking ferromagnetic setup and study the voltage response.

The latency property is immediately qualified by Figure 6.2, and we have discussed

it previously: During the first spike, the magnetization has to be accelerated from the

−x̂-direction and past the ẑ-axis, at which point the anisotropy carries it over into the

other ground state. As a result, the exact spiking event has some latency before it occurs.

However, in Figure 6.2b, where the dashed black lines indicate the spiking event, we note

that the majority of the dynamics and voltage output happen during the arrival of the

pulse, and the aftermath is less pronounced. This means that while there is physical

latency in how the magnetization responds to the pulse, it is not very prominent in the

output.

To tackle two more properties, namely bursting and refractory periods, we must create

two new setups. Figure Figure 6.3 depicts the magnetization response in such simulations.

We will tackle these one by one.

The refractory period is explained in Section 5.5. This is the property whereby a

neuron is not susceptible to spike if it has recently spiked without the necessary time for

relaxation. To test this, we apply a secondary pulse before the neuron is fully relaxed

into the other ground state. There is no exact time for when this occurs, but by looking

at the lifetime of the oscillations in Figure 6.2a, we decided on a 20 ps gap between the

pulses. The applied pulses were otherwise of the exact same magnitude and time span.

Figure 6.3a depicts our results, and they are positive: The neuron is still oscillating around

its new ground state by the time the second pulse arrives. Compared to what appears to

happen in Figure 6.2a, the oscillation is influenced by the spike and momentarily reversed,

before continuing as prior with no spiking event occurring. In effect, the aftermath of the

spiking event temporarily blocks any further events from occurring.

Bursting is effectively the opposite of a refractory period, whereby a single input pulse

is sufficient to make the neuron fire repeatedly. As we have established that a 600 µA
pulse over 10 ps is sufficient to cause a single spiking event, increasing either of these

quantities should be sufficient to cause bursting. We choose to increase the magnitude

of the pulse, as it can represent the arrival of several pulses from other neurons at the

same time. More specifically, we increase the spiking current Is = 1800 µA. The results

are depicted in Figure 6.3b, where we have elected to plot only the angle to the x̂-axis

as it best illustrates what is otherwise very cluttered behavior. The thinly dotted line

marks the arriving pulse. We see immediately that the angle oscillates greatly, between

approximately 0◦ and 180◦ with sharp peaks. Due to the wrapped angles, these sharp

peaks mean that the oscillator is making several full cycles. The large input current pulse

also created a larger ŷ-axis deflection of the magnetization, hence why the x̂-angle is not
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(a) Magnetization as a function of time for the refractory case. Loosely dashed lines mark the

two incoming pulses, separated by 20 ps in time, though of the same magnitude of Is = 600 µA
and duration ts = 10ps.

(b) Angle between magnetization and x̂-axis. Loosely dashed lines mark the incoming pulse,

Is = 1800µA, ts = 10ps.

Figure 6.3: Magnetization response illustrating the cases of refraction and bursting, both

features of real neurons, implemented on our spiking neuron. Parameters are listed in the

subcaptions.
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reaching 0◦ or 180◦ fully. To recap, applying a large enough current creates several spiking

events, compared to just a single spiking event. Therefore, this artificial neuron exhibits

bursting.

The leakiness of this neuron is shown through all figures, but particularly Figure 6.2a:

After a spiking event, the magnetization has enough angular momentum to overshoot the

ground state, though not enough to cause a secondary spiking event. Subsequently, it

slowly relaxes into the ground state, oscillating around it with a decreasing amplitude.

Effectively, the angular momentum provided to it by the initial spiking event is leaked.

This is no different from an insufficient input pulse momentarily exciting the magnetiza-

tion from its ground state, and it subsequently relaxing once the pulse has passed. We

have therefore implicitly shown that this neuron is leaky.

6.4 Outlook

Through the use of the two spin-Hall effects and an easy-plane anisotropy with a strong

hard-axis, we have presented a ferromagnetic spiking neuron that responds to input cur-

rent. If this current is sufficient, the neuron spikes, turning the magnetization 180◦ and

creating an output current pulse. If it is insufficient, the neuron relaxes towards its ground

state, thus acting like a leaky neuron. In addition to the leakiness, we have also verified

that the artificial neuron exhibits bursting by spiking several times for a large input, and

a refractory period wherein a recently-spiked neuron does not respond to an identical

input. The latency property, wherein there is some latency between an input current and

a spiking event, does exist, however it is very short and the neuron responds very quickly

to the input current. Inhibition in this neuron was not tested.

However, there are several fundamental drawbacks. A first flaw is that there is nothing

to stop a spiking pulse Is from propagating: If we apply an Is that is insufficient to

cause a spiking event, the pulse will nevertheless continue down the conducting layer and

potentially influence other neurons. This is not what we desire. To realize this neuron,

a means of blocking the propagation is necessary. For a larger scale device, it may be

simple to just manufacture a gap in the conductor and place the ferromagnet as a bridge

between the two separate conductors, now called A and B for convenience. The input

is now applied to A. This will ensure that the pulse is not allowed to propagate, as the

ferromagnet is isolating. However, this workaround comes with a separate issue: Although

the input pulse is no longer allowed to propagate, it can still cause magnetization dynamics

within the ferromagnet. In accordance with the inverse spin-Hall effect, these dynamics

will pump a current into conductor B, though smaller and of different size than that of

a successful spike. In short, an insufficient Is will nevertheless cause an output, and the

neuron is not all-or-nothing in terms of its propagation. We already see this effect in e.g.

Figure 6.2b: The moment the spike is applied, the magnetization begins rotating rapidly,
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and the result is a spike in the voltage. After the pulse has passed, the torque applied to

the angle disappears and so the change in angle also drops, resulting in a lower voltage

output after the spiking event. For a real neuron only when its membrane potential is

higher than a certain threshold should there be an output. Therefore, to realize this

neuron, a mechanism for blocking the propagation of unwanted signals is necessary. This

will also be necessary for shaping the output pulse, as at present it is a series of pulses,

each of small magnitude and duration, which does not match the input square pulse of

large magnitude.
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7 Spin Hall nano-oscillator

In this chapter, we will investigate simple systems of spin Hall nano-oscillators (SHNOs)

as an extension of the spiking neuron presented above. More specifically, we will present

an open chain of isolating, ferromagnetic easy-plane SHNOs (up to a total of 5 oscillators)

placed on a common platinum layer through which we run a charge current. These oscil-

lators will be placed close enough to interact and couple to each other. This interaction

will be primarily due to the demagnetization field, but through the common platinum bar

there will potentially be a secondary coupling through iSHE. As far as we are aware, the

iSHE coupling has not been studied in an isolated manner.

7.1 Background and setup

Spin Hall nano-oscillators are a promising device within the field of spintronics, and

especially for use in neuromorphic computing [64][12][61][13][73][74]. Their operation is

similar to the spiking bilayer presented above above: A current density greater than

some critical value is driven through a conducting layer, and the SHE creates a spin

accumulation at that interfaces with a neighboring ferromagnet, causing magnetization

dynamics. Unlike the spiking ferromagnet, we run this above-critical current continuously,

turning the spiking into an oscillation. These devices are similar to spin torque nano-

oscillators (STNOs). STNOs are driven by spin-transfer torque from a current going

through the ferromagnet itself, distinct from the bilayer required for an SHNO. The bilayer

setup has many benefits, including ease of manufacture [75] and synchronization strength

strength. It has been shown that SHNOs can synchronize for an 8x8 array of oscillators

[73] as well as for up to 50 oscillators in a 1D chain [75]. Additionally, simulations have

shown that SHNOs can be used for neural network applications [12][61][49][13]. Recent

research has shown an additional improvement in signal strength and quality with the use

of an easy-plane SHNO (EP-SHNO) [76], but synchronization of this variant has, to our

knowledge, not yet been studied.

Our basic system is depicted in Figure 7.1. It consists of a platinum (Pt) layer (blue

mesh), on top of which we have placed two insulating ferromagnets with an easy-axis

in the x̂-direction and a hard-axis in the ŷ-direction (red meshes). A current is led

through the conducting layer which creates a spin accumulation near the interface due to

SHE. In addition to SHE, there are two other effects that play a pivotal role: First, the

demagentization field (demag), the magnetic field generated by the ferromagnet’s internal

magnetization, will couple to all other magnets, attempting to align their magnetizations

with each other. Secondly, the magnetization dynamics of SHNO1 will, via iSHE, pump

a charge current into the conducting layer. This pumped charged current will flow in

the x̂-direction and subsequently interact with SHNO2 alongside the applied j⃗c. This
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Figure 7.1: Simulation setup of the connect 2SHNO system. M⃗1 and M⃗2 represent the

magnetization of SHNO1 and SHNO2 respectively, almost entirely confined within the

anisotropic easy-plane, which has a normal vector along ŷ. j⃗c is the applied charge

current.

potentially provides an additional coupling between the oscillators. Out of these two

couplings, only demag is known to provide synchronization [75][73]. The coupling due to

iSHE will be asymmetric, as any current pumped by SHNO2 will not affect SHNO1 to

the same degree.

The material parameters for the ferromagnets are the same as in Table 2, and for the

platinum they are provided by the BORIS Computational Spintronics material database

[72]. A set of relevant parameters are listed in Table 3. Additionally, we will also run

systems of more than two oscillators, but they will be placed and numbered in accordance

with Figure 7.1.

We define three measures: Angle difference, order parameter, and voltage difference.

Angle difference refers to the angle between the averaged magnetization of each SHNOs

compared to the others, averaged over a full period (due to the x̂-directed easy-axis, the

torque varies throughout a full cycle, and thus so does the frequency). When this value is

changing, the oscillators have different average frequencies. When it is aligned and non-

zero, the oscillators are phase locked. When they are aligned and zero, they are entirely

in-phase. We will sometimes refer to this as the phase difference. The order parameter

has been introduced and discussed in Section 4. The voltage difference is our realistic

observable, and the same as what is used with the spiking ferromagnet in Section 6.

Finally, we define the terms upstream and downstream as positions relative to the

flow of current. As an example, in the 2SHNO case depicted in Figure 7.1, SHNO1 is

the upstream oscillator and SHNO2 is the downstream oscillator. For systems with more

than two oscillators, we will avoid using this terminology for anything but the first and

last oscillators, and instead rely on the oscillator number.
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7.2 Results

In the simulations presented in Figures 7.2 and 7.3, we show the angle difference between

SHNOs (high and low damping respectively) in three geometries subject to three different

combinations of effect: 2SHNO, 3SHNO and 4SHNO (rows), subject to either both demag

and iSHE, only demag, or only iSHE (columns). The simulations are not run for the same

length of time, as the behavior of some systems is slower than others. SHE is always

enabled, as otherwise the oscillators do not have an applied torque. We initialize all

oscillators to their −x̂-oriented ground state, aside from SHNO1 which is initialized 20◦

in the +ẑ-direction, such that it leads the oscillation. The reasoning is that were we to

start them in all the ground state, it would be more difficult to determine how the phases

evolve to attain synchronization.

We first study the case of high damping in the ferromagnets, Figure 7.2, where α = 0.5.

For the all-effects 2SHNO case, Figure 7.2a, the angle difference drops from 20◦ to ap-

proximately −7.5◦ within 30ns. The negative angle means that SHNO2, the downstream

oscillator, leads the oscillation. This implies that though SHNO1 leads the oscillation

initially, SHNO2 eventually takes the lead. When disabling the iSHE and subjecting the

oscillators to only SHE and demag, shown in Figure 7.2b, the behavior is qualitatively

preserved: The SHNOs synchronize with a phase difference. However, disabling demag

and relying exclusively on iSHE yields a different, linear decrease in the angle difference,

depicted in Figure 7.2c. The likeliest explanation is that, in this case, there is effectively

no coupling trying to force the oscillators into synchronicity, and they are instead subject

to different torques due to the combined spin-Hall effects. The linear decay implies that

the downstream oscillator has a higher frequency on average.

We also observe the same behavior in the cases of more oscillators subject to iSHE

only, Figure 7.2f and Figure 7.2i: All of the angle differences decrease linearly, eventually

becoming negative and thus the downstream oscillator leads. Additionally, the darker

lines like SHNO1-SHNO4 and SHNO2-SHNO4 have the most negative slopes, indicating

that the further downstream the oscillator, the higher its frequency. For the case of high

damping with α = 0.5, iSHE introduces an extra torque on all downstream oscillators,

causing an increase in frequency that grows in magnitude for every oscillator added.

It appears that the number of oscillators has an effect on the synchronization for high-

damping: In the 2SHNO case, Figure 7.2a and 7.2b, the angle difference very simply drops

from its initial value of 20◦ to its phase-locked value of −7.5◦ within approximately 60 ns.

In the 4SHNO case, Figure 7.2g and 7.2h, the magnetization initially oscillates wildly, be-

fore finding a configuration wherein the oscillators become mutually phase-locked, taking

approximately 200 ns before the stability begins to emerge. However, in the 3SHNO case,

Figure 7.2d and 7.2e, none of the oscillators synchronize at all, and the angle differences

change throughout the whole 400 ns-simulation. It should be noted that there is a certain
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Figure 7.2: Angle difference as a function of time for the high-damping case, α = 0.5.

Left column: All effects. Middle column: Demag only. Right column: iSHE only. Top

row: 2SHNO. Middle row: 3SHNO. Bottom row: 4SHNO.

55



0.0 2.5 5.0 7.5 10.0
Time (ns)

300

200

100

0

An
gl

e 
di

ffe
re

nc
e 

(d
eg

.)

SHNO1-SHNO2 angle

(a)

0.0 2.5 5.0 7.5 10.0
Time (ns)

300

200

100

0

An
gl

e 
di

ffe
re

nc
e 

(d
eg

.)

(b)

0.0 2.5 5.0 7.5 10.0
Time (ns)

200

150

100

50

0

An
gl

e 
di

ffe
re

nc
e 

(d
eg

.)

(c)

0.0 2.5 5.0 7.5 10.0
Time (ns)

300

200

100

0

An
gl

e 
di

ffe
re

nc
e 

(d
eg

.)

SHNO1-SHNO2 angle
SHNO1-SHNO3 angle
SHNO2-SHNO3 angle

(d)

0.0 2.5 5.0 7.5 10.0
Time (ns)

300

200

100

0

An
gl

e 
di

ffe
re

nc
e 

(d
eg

.)

(e)

0.0 2.5 5.0 7.5 10.0
Time (ns)

200

150

100

50

0

An
gl

e 
di

ffe
re

nc
e 

(d
eg

.)

(f)

0.0 2.5 5.0 7.5 10.0
Time (ns)

300

200

100

0

An
gl

e 
di

ffe
re

nc
e 

(d
eg

.)

SHNO1-SHNO2 angle
SHNO1-SHNO3 angle
SHNO1-SHNO4 angle
SHNO2-SHNO3 angle
SHNO2-SHNO4 angle
SHNO3-SHNO4 angle

(g)

0.0 2.5 5.0 7.5 10.0
Time (ns)

300

200

100

0

An
gl

e 
di

ffe
re

nc
e 

(d
eg

.)

(h)

0.0 2.5 5.0 7.5 10.0
Time (ns)

200

150

100

50

0

An
gl

e 
di

ffe
re

nc
e 

(d
eg

.)

(i)

Figure 7.3: Angle difference as a function of time for the low-damping case, α = 0.02.

Left column: All effects. Middle column: Demag only. Right column: iSHE only. Top

row: 2SHNO. Middle row: 3SHNO. Bottom row: 4SHNO.
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degree of order: The long-term changes in phase for the 3SHNO system shows a period-

icity. The SHNO1-SHNO3 angle, for instance, oscillates with a period of approximately

90 ns, much longer than the period of any single SHNO. Additionally, the SHNO1-SHNO2

has a magnitude and periodicity close to that of the SHNO2-SHNO3 angle, but seemingly

delayed, with the peaks separated by around 20 ns. This is notable, as it implies the num-

ber of oscillators has a profound impact on the long-term synchronization of the system

in the high-damping case, but also that orderly, yet desynchronized states can exist.

For highly dampened EP-SHNOs, demagnetization proves to be the most dominant

effect, and for 2SHNO it serves to phase-lock the oscillators. For 4SHNO, it does the

same, creating a phase-locked pattern for the oscillators. However, rigid synchronization

is lost for three oscillators, as evidenced by Figures 7.2d, 7.2e. When considering the

iSHE-only cases above, we noted that the linear behavior of the angle difference implied

that the oscillators were not really interacting, and were simply subject to different, yet

time-independent, average frequencies.

In the case of low damping, Figure 7.3, the dynamics are more predictable: A degree

of synchronization is universal for all geometries, including 3SHNO, which was not the

case in the high-damping case shown in Figure 7.2d. This is not clear in the subfigures

of Figure 7.3, and so we will call attention to it: The angles differences are depicted

without any wrapping, meaning that what is observed is the actual difference in angles

after certain number of oscillations. What we observe is when demag is enabled (the left

and middle column), the angle difference between SHNO1 and all other SHNOs drops

rapidly from 20◦ to approximately −202◦, then decays towards approximately −360◦,

whereupon it synchronizes. The oscillator therefore end up synchronized with nearly no

phase difference, however SHNO1 attained this by lagging behind for 1 cycle. This occurs

in all cases, but only for angles that exist with respect to SHNO1, and it is therefore likely

tied to the initial angle of 20◦: The torque from SHE counteracts that of the anisotropy,

and so since SHNO1 is started with an angle to the x̂-axis, the magnetization experiences

a smaller net torque for a shorter time compared to SHNO2, SHNO3 etc. Therefore, it

accumulates less angular momentum in the first few oscillations, and the other SHNOs

start to lead the oscillation. After several full cycles, the oscillators are in their steady

states with the torque unable to accelerate the oscillations any further. Here, the long-

term synchronization effects come into play and slowly synchronize the oscillators, which

it achieves by further lagging SHNO1. This is also the case in both the 3SHNO and

4SHNO cases, Figure 7.3d, 7.3e, 7.3g and 7.3h, where all angles with respect to SHNO1

(blue lines) lag behind for one full cycle.

Additionally, the low-damping case synchronizes faster (approximately 3 ns for two

EP-SHNOs compared to 30 ns for high damping). It is likely that the speed is tied directly

to the damping, as the damping acts as a braking force on these oscillations, partially

counteracting the long-term synchronizing force between the oscillators. It may also be
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Figure 7.4: Angle difference as a function of time, 2SHNO with α = 0.02, iSHE only

(similar to Figure 7.3c), with SHNO1 initialized to 20◦ and −20◦.

the cause of the unexpected final layout of the oscillator phases depicted in Figure 7.2g,

as this has disappeared for low damping.

The iSHE-only cases of low damping, Figures 7.3c, 7.3f and 7.3i, show a different

behavior from that depicted in the corresponding high damping cases: The leading oscil-

lator, SHNO1, immediately and rapidly drops to having an angle of approximately −200◦

with all other oscillators, for all times. This is the same rapid drop we observe in all of

Figure 7.3, however it does not continue to drop towards −360◦. This is likely a result

of the same effect observed in the corresponding high-damping case, e.g. Figure 7.2i,

where there was no actual coupling seeking synchronization between the oscillators, but

instead the presence of iSHE created larger frequencies downstream. In this case, the an-

gle difference is caused by the aforementioned difference in initial torque, wherein SHNO1

experiences a smaller torque for a shorter time due to its angle with the x̂-axis. In this

case, this difference in torque lasts until SHNO2 leads by approximately 200◦, at which

point the steady-state behavior is settling in and SHNO1 attains approximately the same

frequency. By comparison, the oscillators which start in the same ground state, SHNO2,

SHNO3 and SHNO4, do not show any significant angle difference, as they are subject to

very similar torque.

To prove this hypothesis, we run a simulation where SHNO1 is set to −20◦, that

is below the −x̂-axis in the xz-plane. Figure 7.4 shows the results of this simulation,

and it is as we anticipate: SHNO1, now subject to a larger torque for longer, leads by

127◦. We note that this is asymmetric around the x-axis, likely a result of the different

torques experienced: At −20◦, SHNO1 experiences a momentary positive torque w.r.t the
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oscillation direction due to the anisotropy while SHNO2 does not. In the 20◦ case, both

oscillators are subject to only a negative torque due to anisotropy until they cross the

ẑ-axis.

This behavior underlines the importance of damping in minimizing the effect of the

dynamics occurring prior to synchronization, as depicted in Figure 7.2i: Although we

also have the initial 20◦ angle difference for SHNO1, there is no large drop early in the

simulation caused by the difference in torque.

7.2.1 Sensitivity to initial conditions

In the high-damping 4SHNO case depicted in Figure 7.2g, we noted that the synchro-

nization took a long time in comparison to other cases, including both the high-damping

2SHNO case (Figure 7.2a) and all the low-damping cases (Figure 7.3). In addition, the

final synchronized state had the oscillators phase-locked with a range of phase differences.

This begs the question of whether or not the synchronization is universal (that is, occur-

ring for all initial configurations of the 4SHNO system), or if it only occurs for certain

initial phase differences. If it is universal, are the final phase differences dependent upon

the initial phase difference, or unique to the system and its properties (coupling constants,

natural frequencies, damping etc.) and thus the same for all initial phase differences? Ad-

ditionally, we want to see if the synchronization time is dependent on the initial order of

the system.

We have tested the case where SHNO1 has a 20◦ angle to the −x̂-axis while all other

oscillators are parallel to the −x̂-axis. To determine the dependence on initial conditions,

we will initialize all the oscillators to random directions within the xz-plane, and then

run the simulation for 400 ns. For brevity, we refer to these results as ”baseline” and

”randomized” respectively.

Figure 7.5 depicts the baseline and randomized systems side-by-side. We have added

dashed lines Figure 7.5b to indicate the final (unwrapped) angles of the baseline system for

ease of comparison. Some angles have been adjusted by a full cycle (±360◦) to illustrate

that the system phase-locks with the exact same angle differences as discussed previ-

ously. However, the necessity of the adjustment illustrates the important point that the

oscillators take different, likely lower-energy paths, to achieve the same synchronization

pattern. Ergo, the system appears to be insensitive to the initial conditions and instead

likely synchronizes on the basis of its parameters. The choice of path to synchronization

is something that we have already observed in the case of the low-damping 2SHNO simu-

lation, Figure 7.3a, wherein the angle difference immediately drops to −200◦, whereupon

the shortest path to its synchronization is by continuing to lag until the angle difference

is −360◦.

Additionally, the randomized system takes approximately 100 ns longer than the base-
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(a) Initial angle of SHNO1 at 20◦, all others 0◦

(baseline).

(b) All initial angles randomized. Dashed hor-

izontal lines indicate the final angles (possibly

adjusted) of 7.5a, which we are comparing to.

Figure 7.5: Comparison between the baseline and randomized high-damping 4SHNO case.

line system to reach the same level of synchronization, likely a result of the initial state

being less ordered. It is reasonable to expect that any randomized initial condition will

take approximately the same time to synchronize.

More simulations are necessary to conclude that the layout of the phases is decided

by the system parameters alone rather than the initial configuration of the angles, but it

seems likely that this is the case.

7.2.2 Five oscillators

The fact that both the high-damping 2SHNO and 4SHNO cases synchronize while the

3SHNO phase differences oscillate periodically, points to a phenomenon related to the

number of oscillators. To be able to give any meaningful answers, we need to simulate

another odd-numbered system. The next simplest is 5 oscillators on an open chain,

5SHNO. All other parameters are the same as in the case of the randomized high-damping

4SHNO system presented above, including the randomized initial angles of the oscillators.

Figure 7.6 depicts our results in the form of angle differences, as before. This simu-

lation is run for 700 ns, though the first 550 ns are omitted. Additionally, these angles

are wrapped between −180◦ and 180◦ so they give an accurate picture of the final state

without considering the evolution that led to it. This is unlike all cases depicted pre-

viously, however we are only interested in the long-term synchronization of this system.

Additionally, some lines are made thinner and/or dashed so they are easier to differentiate.

What is immediately apparent is that even in the final state, the average phase dif-
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Figure 7.6: Angle difference as a function of time for the 5SHNO high-damping (α = 0.5)

case.

ferences oscillate. Normally there may be changes in frequency throughout one cycle

causing small fluctuations in the angle difference. These average out and disappear when

depicting the average phase difference. In this case, the phase differences exhibit long-

term oscillations of small amplitude, lasting much longer than one cycle, on the order of

20 ns. This is important, as it implies the oscillators are not properly phase-locked, but

nevertheless synchronized in a periodic manner.

The phase differences are also observed to cluster together. For instance, SHNO1-

SHNO2 has almost the same phase difference as SHNO3-SHNO4, −67◦. Other examples

include SHNO2-SHNO3 and SHNO4-SHNO5, both of which have a phase difference of

approximately −103◦. It should be immediately apparent that both of these clusters are

comprised of nearest neighbor oscillators. The cluster at the bottom of Figure 7.6 consists

of SHNO1-SHNO3, SHNO2-SHNO4, and SHNO3-SHNO5 all of which are pairs of next-

nearest neighbors with their phase differences clustered around −170◦. The final phase

differences are SHNO1-SHNO4, SHNO2-SHNO5 and SHNO1-SHNO5, (next-)-next-next-

nearest neighbors, which show no sign of clustering. It is likely that they are too far away

to meaningfully interact, and the final configuration is decided by the other oscillators.

It should be noted that due to the phase difference between SHNO1-SHNO3 and

SHNO3-SHNO5 both being −170◦, the phase difference between SHNO1-SHNO5 is nearly

360◦. In other words, the oscillators at the edge of this open chain are nearly in-phase.
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1 2 3 4 5

Figure 7.7: Synchronization groups of the 5SHNO case depicted in Figure 7.6. Blue solid

lines indicate pairs synchronized with a −67◦ phase difference, red dashed lines indicate

groups with a −103◦ phase difference, and arrows indicate synchronized next-nearest

neighbors with −170◦ phase difference.

For clarity, the layout of these clusters is depicted in Figure 7.7: All groupings of

the same color have the same phase difference. For instance, as discussed previously, the

SHNO1-SHNO2 phase difference is the same as SHNO3-SHNO4, (−67◦) hence they are

both blue in this diagram. The same goes for the red dotted lines. The arrows indicate

the next-nearest coupled pairs like SHNO1-SHNO3. This diagram shows that the layout

of the synchronization is dependent on the position: All possible next-nearest neighbor

pairs synchronize with the same angle difference. However, we get two types of nearest-

neighbor couplings, blue and red, each with its own characteristic phase difference. The

system is therefore not symmetric in its synchronization pattern.

We note that the pairs within each cluster appear to respond to each other, causing

a ripple in the phase differences. Take the bottom cluster in Figure 7.6: The SHNO2-

SHNO4 phase difference (marked in dark red) lags behind the SHNO3-SHNO5 phase

difference (thin orange), reaching its peak some nanoseconds later. And similarly, the

SHNO1-SHNO3 phase difference lags the SHNO2-SHNO4. Furthermore, looking at the

nearest-neighbor clusters (like SHNO2-SHNO3 and SHNO4-SHNO5), we note that they

also respond to each other, each having a positive amplitude while the other is negative.

Additionally, it appears this response shares the periodicity with that of the next-nearest

neighbor cluster: Each full cycle of the SHNO3-SHNO5 phase difference corresponds to

a full cycle of the SHNO4-SHNO5. The same goes for the SHNO1-SHNO2 and SHNO3-

SHNO4 clusters. However, these nearest neighbor pairs do not lag each other in the same

way the next-nearest neighbors do: The response is immediate and the phase differences

are in anti-phase, with one phase difference increasing as another decreases correspond-

ingly.
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It is likely that this is an effect of the odd number of oscillators, as it is also what we

observe in the high-damping 3SHNO case depicted in Figure 7.2d: The SHNO1-SHNO2

angle lags that of the SHNO2-SHNO3 by some nanoseconds, but it is nevertheless a

periodic response. In that system, the amplitude of the phase difference oscillations is

much greater than observed in this 5SHNO system, perhaps caused by the small number

of oscillators.

The synchronization of weakly-coupled open chains of oscillators has been studied in

[77]. Their work considered stochastic oscillators influenced by an explicit time delay. This

time delay was applied directly to the coupling mechanism. They found that, in the case

of a short time delay, the oscillators become phase-synchronized as the coupling strength

increases. This means that they are periodically in-phase, either by the frequencies being

the same or an integer multiple of each other [78]. Their amplitudes are unconstrained

and may be very different. In contrast, when the time delay is large, alternate oscillators

become phase-synchronized while neighboring oscillators become lag-synchronized [77].

Lag synchronization means that one oscillator shadows the exact behavior of another

[78], very much like phase-locking. Furthermore, the number of oscillators plays a role in

the behavior of the edge cases: For an even number of oscillators with a large time delay,

the oscillators at the edges will be in lag synchronicity, while for an odd number the edges

will be phase synchronized.

Though the SHNOs under consideration are neither intrinsically stochastic nor subject

to explicit time delay, one can relate the time delay parameter to the damping: Lower-

ing the damping increases the speed by which an oscillator responds to external torque,

including the synchronizing forces. It has already been shown that the synchronization

time for low damping oscillators is much lower than their high damping counterparts.

Additionally, we have already made the observation that the low damping SHNOs always

synchronize and do so in phase. By contrast, the synchronization of high damping SHNOs

appears to end in phase-locked states that seemingly depend on the number of oscillators.

Figure 7.2a and Figure 7.5b show that the edge oscillators of the 2SHNO and 4SHNO

chains respectively enter phase-locked (i.e. lag synchronized) states. We also note that

in the 4SHNO case depicted in e.g. Figure 7.5b, the final angle between SHNO1-SHNO4

is −180◦. This is important, because we previously highlighted that in the 5SHNO case,

SHNO1-SHNO5 are close to being in phase in comparison to all other pairs of oscillators

in the system. The slight offset may be caused by iSHE, as it is shown to increase the

frequency of downstream oscillators and may provide a considerable torque on SHNO5.

Nevertheless, this is broadly in line with what was presented in [77].

The relationship between the number of oscillators and their synchronization behavior,

and that between the time delay and the coupling, are by observation. For instance, the

time delay is applied directly to the coupling (inter-oscillator), while the damping is a

material parameter (intra-oscillator). Nevertheless, the behavior one expects from time
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(a) 3SHNO (b) 4SHNO

Figure 7.8: Order parameter (blue lines, left y-axes) and normalized voltages (red lines,

right y-axes) of the high-damping (α = 0.5) 3SHNO and 4SHNO cases, respectively.

delayed oscillators appears present in the case of highly damped SHNOs on a chain.

Based on this, it is expected that the 6SHNO case will synchronize rapidly and in a more

well-behaved manner than the 5SHNO case due to the symmetry. Additionally, the edge

oscillators may be approximately −180◦ out of phase due to the even number of oscillators,

but effects like iSHE make the final phase difference considerably smaller.

7.3 Voltage fluctuations

In Figures 7.2 and 7.3, we detailed the behavior of our system using the magnetization

directly or indirectly. As explained in previous sections, this is readily available in simu-

lations, but using this as an observable is not suited for realizations due to experimental

inaccessibility. In this section, we will investigate the behavior of the voltage in response

to the oscillation and subsequent synchronization.

For this analysis, we consider two high-damping cases: 3SHNO and 4SHNO with all

effects enabled, Figures 7.2d and 7.2g. These are respectively desynchronized (though

with some periodicity to their phase difference) and synchronized. The reasoning is that

these systems have many SHNOs and display very erratic behavior compared to their low-

damping counterparts in Figure 7.3, while also characterizing both desynchronization and

synchronization. Additionally, they run for a long time. Therefore, if we can characterize

the synchronization for these, it is easy to justify an extension to all the other setups.

The voltage is measured in the same way as for the spiking neuron in Section 6: The

IP current is supplied via two electrodes placed on the short faces of the conducting layer.

These electrodes are set to maintain the current at 750 µA at all times. The effect of SMR

will therefore be measurable as changes to the voltage.

Figure 7.8 depicts the measured voltages in the conducting layer overlaid the order
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parameter r for these systems. For Figure 7.8b, we know that the oscillators will synchro-

nize with some phase difference, and this is immediately apparent for the order parame-

ter, which eventually becomes a constant at r ≈ 0.4. The voltage responds accordingly,

oscillating erratically before becoming a constant in time as the oscillators reach their

phase-locked orientation. The voltage fluctuations do not correspond exactly with those

of the order parameter, but we see that the behavior is somewhat similar between them.

This is contrasted by Figure 7.8a, which we know to be desynchronized. Here, r

oscillates in a similar pattern to the angle difference in Figure 7.2d, as we would expect.

The voltage oscillates too, and it is periodic, but its shape does not correspond exactly

with the order parameter. Neither of these becomes constant in time.

This is promising: When the oscillators are synchronized, both the phase difference,

the order parameter and the voltage fluctuations due to SMR all become constant. And

conversely, when they do not synchronize, all these quantities fluctuate. It should be

noted that there is no 1:1 behavior between the order parameter r and the output volt-

age, especially for many-oscillator systems where the order parameter is a complicated

trigonometric quantity. However, the voltage can be used to determine whether an entire

system is synchronized or desynchronized. This will become important when using the

SHNO as a real neuromorphic device, as this binary state (synchronized or not) is what

will be used for a future neural network implementation. Potentially determining this in

voltage alone is a huge benefit.

7.4 Outlook

We have observed that high-damping and low-damping SHNO systems (of order α = 0.5

and α = 0.02 respectively) of up to 5 oscillators in a chain exhibit very different behavior:

The high-damping oscillators usually settle into phase-locked states that are seemingly

insensitive to the initial orientation, while the low-damping oscillators synchronize with

virtually no phase difference. Additionally, while the high-damping 2SHNO and 4SHNO

systems will synchronize, the 3SHNO and 5SHNO do not strictly speaking do so. Rather,

they enter a state wherein the phase differences oscillate, with either small or large am-

plitude, but in a periodic manner. Different sets of neighbors group together and attain

the same phase differences. In essence, these systems become ordered, but not fully

synchronized. These systems also have a degree of lag in their response to each other.

This is not the case for the low-damping oscillators, which synchronize completely for all

configurations simulated. Finally, there is also a large time-scale difference, with high-

damping SHNOs taking potentially more than 200 ns to synchronize compared to 5 ns for

a corresponding low-damping system.

Future work should look at the transition between these states, and the behavior as

the damping is gradually tuned from high-damping to the low-damping regimes. More
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oscillators can also be added to see how the clustering of phase differences changes. We

have also shown that the iSHE is not necessary for the interesting layout of the high

damping, and that the coupling by demag alone is sufficient. It should be investigated if

the omission of the common Pt bar also preserves these phase-locked synchronizations in

the high damping case. If this is the case, one could perhaps determine the phase of each

oscillator (and thus the phase difference between them) by measuring the voltage alone,

opening for greater experimental accessibility.

In our subsequent work, we will focus our attention on low damping. There are

several reasons for this: The YIG-like parameters we have based our work on usually

include a very small damping constant (α ∼ 10−4 [69]), the synchronization occurs in

more configurations and is overall more robust with very small phase differences, and

as mentioned previously the dynamics are faster compared to the high-damping case.

Furthermore, the low-damping 2SHNO case captures the synchronization behavior we

wish to study with minimal extra effects.

66



8 Perturbing the spin Hall nano-oscillators

Thus far, we have covered the basic behavior of SHNOs driven by a common current.

These ”bare SHNOs” allowed us to look at the basic synchronization of SHNOs and

additionally the impact of iSHE. However, these oscillators were, for all practical currents,

always synchronized or phase-locked, and additionally shows that iSHE is weak compared

to demagnetization. The next step towards creating an ONN with these EP-SHNOs is to

reliably make and break synchronization for a given system. This sets the stage for our

binary readout: Synchronized or desynchronized. To do this, we must make the frequency

of one (or both) oscillator(s) tunable.

The new setup is depicted in Figure 8.1. This is slightly a modified system of the one

in Section 7, as we have added a second layer of Pt atop both oscillators, through which

we run either an IP or OOP current (or both).

Easy-plane

j⃗dc
12 nm

60 nm

y

x

z

M

j⃗OOPc

j⃗IPc

SHNO1 SHNO2
Pt

Figure 8.1: Setup for the individually controllable 2SHNO system. Blue meshes are

conducting layers (Pt), and red meshes are ferromagnetic. The lower Pt bar is as before.

The top Pt bar is materially equivalent to the lower Pt bar. Electrodes are applied to

the xz- and yz-faces (IP and OOP respectively) of the top bars. In this diagram we have

removed the top Pt bar on SHNO2 for clarity, but in all cases both SHNOs will have top

bars, the reason being that we want the effect of the material’s presence to be the same

across all oscillators (even if they are not tuned by it).

We make a few definitions: The lower Pt bar refers to the Pt bar common for all the

SHNOs, which carries the driving current j⃗dc that drives the basic oscillations. The top

(or upper) Pt bar refers to the smaller Pt mesh atop the SHNOs, each of which carries

separate perturbing currents, jIPc and jOOPc . We will mostly report these in terms of their

corresponding voltage differences, ∆V IP and ∆V OOP respectively. This current is usually

much smaller than jdc . We define that an out-of-plane (OOP) current is the current in

the top bar which flows in the ±ŷ-direction, and in-plane (IP) current as flowing in the

±x̂-direction. This is in relation to the defined xz-oriented easy-plane. Note that both
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(a) Frequency response for an IP and diagonal current.

(b) Frequency response for an OOP current.

Figure 8.2: Oscillator frequency as a function of top bar potential in a 1SHNO case, as a

% of the 0V case. Note that each plot is shown for different voltage ranges, as the more

noteworthy behavior of the OOP case occurs at a greater potential difference.

a non-zero jOOPc and jIPc can be applied at once, causing a ”diagonal” charge current.

We will also flow the lower bar current in the +x̂-direction. We define ”upstream” and

”downstream” as positions in relation to this current, as previously. We also write the

natural and instantaneous frequency of the ith oscillator as Fi and fi respectively, and

the corresponding upper bar voltage difference as V IP
i or V OOP

i .

8.1 Controllability of the 1SHNO case

To introduce our methodology, we first show the controllability of an individual SHNO’s

frequency using the top bar. The setup for this is akin to the one shown in Figure 8.1,

however in this case there is no second, downstream SHNO. We instead have one SHNO

with one bar, which we tune while keeping the lower Pt voltage constant.

The frequency is measured by averaging the instantaneous frequency at every time
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step for the whole series. The simulations are run for 500ps, however the first 200ps are

neglected in this analysis to allow the oscillator to enter its steady state.

Figure 8.2 shows the (natural) frequency of SHNO1 in the 1SHNO case as a function

of the potential in the top Pt layer, with the bottom fixed to a 6mV potential difference.

In Figure 8.2a, we compare both purely IP and diagonal charge current. The IP current

affects the oscillator in same way as the current in the lower Pt, and so we both expect

and observe a linear relationship between its magnitude and the frequency ratio, at a rate

of approximately 0.05%/µV for this driving frequency. We report the ratio to give a sense

of scale of the impact caused by this perturbing frequency, though it is not preserved for

very large voltages. This is due to the OOP component of the magnetization growing

larger, breaking the linear relationship. The actual value of this relationship is, for the

small perturbing voltages, approximately 0.0754GHz/µV.
The OOP current Figure 8.2b causes entirely different behavior: The linear relation-

ship between current and frequency is lost, and instead the oscillator responds with a

lower frequency for both current directions. This relationship is asymmetric around 0V,

where the current direction changes sign. Furthermore, the magnitude of the response is

on the order of 105 times smaller compared to the case with IP current in Figure 8.2a. The

likeliest cause of this asymmetry is the fact that the driving current creates a non-zero

ŷ-component of the magnetization, which we have explained in detail in Section 3.5.3.

The takeaway is that the IP current allows the greatest degree of control, as the

response is linear and predictable, unlike that of the OOP case.

8.2 Synchronization of the 2SHNO case

In our study of the bare SHNO, we noted that the oscillators almost always became

phase-locked, with the phase difference dependent on material parameters such as damp-

ing, anisotropy and inter-oscillator separation. The presence of iSHE did increase the

frequency of downstream oscillators, but it was insufficient to break the synchronization.

With an understanding of how we can control the oscillators, we now aim to reproducibly

desynchronize the oscillators in the same manner employed by Garg et. al. [12], and thus

obtain the synchronization range of our setup.

Unless otherwise specified, we will keep the lower Pt bar voltage difference fixed at

4mV, with charge current flowing in the +x̂-direction, as before.

8.2.1 Phase difference for upstream perturbation

We first tune the upper bar voltage of the upstream oscillator, SHNO1. Figure 8.3 shows

the period-averaged IP angle difference as a function of time. This is the same measure as

used previously. We reiterate that a constant angle difference corresponds to oscillators

being phase-locked, i.e. synchronized. We observe in Figure 8.3 that for voltages below
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Figure 8.3: Angle difference as a function of time for a set of perturbing currents in

SHNO1.

approximately 3.5 µV, the angle difference grows asymptotically towards a characteris-

tic value which depends on the magnitude of the top Pt voltage, with higher voltages

corresponding to a brighter color. This gives a spectrum of phase differences. Beyond

3.5 µV, the angle difference begins to plateau before continuing to grow. For these values,

the perturbing voltage is large enough to overcome the restoring force provided by de-

magnetization, and a frequency difference occurs between the oscillators. The changing

slope we see in these desynchronized oscillators (most prominently in the 4.75 µV case)

is due to the coupling providing a negative torque until a 180◦ phase difference with the

unperturbed oscillator. After that, the torque switches to positive, as it is the shortest

path to align the oscillators, and the phase difference speeds up rapidly (these are still

unwrapped angles). This behavior will continue in time.

8.2.2 Synchronization range for upstream and downstream perturbation

The period-averaged angle difference between oscillators gives the layout of the system

in its (potentially) synchronized state, but it can also report to what degree oscillators

are desynchronized. This is instructive, but in the implementation of the SHNO as a

neuromorphic device we rarely consider the actual phases of the oscillators. Our focus is

instead on the (instantaneous) frequencies. Therefore, we instead look at the synchro-

nization range of the oscillators by depicting the time-averaged instantaneous frequency

as a function of perturbing voltage. Figure 4.2 depicts an example of a synchronization

range as a function of the natural frequency of one oscillator obtained via the Kuramoto

model. However, in Section 8.1 we showed that the natural frequency is proportional
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(a) Instantaneous frequency of the 2SHNO system as a function of input current in SHNO1.

(b) Instantaneous frequency of the 2SHNO system as a function of input current in SHNO2.

Figure 8.4: Instantaneous oscillator frequency as a function of the input current (i.e.

natural frequency) in SHNO1 and SHNO2 (up- and downstream) respectively. The un-

perturbed oscillator is, in this case, held at 0V, while the perturbed oscillator is varied

over the range specified.

to the perturbing voltage. As it is easier to obtain the voltage rather than the natural

frequency, we choose to report our results in voltage.

A secondary motivation is that Garg et. al. [12] have reported, through micromagnetic

simulations, the synchronization ranges for oscillators with completely separate conduct-

ing layers as part of their work. They used only one conducting layer per oscillator,

combining the driving and perturbing voltages into one. This current was kept strictly

unidirectional with respect to the oscillator. However, our setup allows for a bidirectional

flow of the perturbing current also as shown in Section 8.1. Therefore, we allow a reversal

of the perturbing current such that it can flow in the ±x̂-directions, parallel or antiparallel

the driving current. In this discussion, we are primarily concerned with the qualitative

aspects of the synchronization range and the impact of iSHE. We are not concerned with

the quantitative aspects, as those will be addressed in later sections.

Figure 8.4a shows the average instantaneous frequency of the oscillators as a function

of ∆V IP
1 , while ∆V IP

2 = 0. As mentioned previously, the natural frequency Fi is directly
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proportional to ∆V IP
i . These simulations are each run for 5 ns, though the first 1 ns is

neglected to allow the oscillators to attain their steady-state behavior. For brevity, we will

use the previously established notation of f1 and F1 being, respectively, the instantaneous

and natural frequency of SHNO1.

There are several promising aspects of these results: First, at the edges where |∆V IP
1 |

is greatest, f1 differs from f2 and grows as a function of |∆V IP
1 |, which is indicative

of desynchronization just as expected. As F1 approaches F2 by V IP
1 → 0V , both f1

and f2 depart their natural frequencies until they become equal and thus synchronize at

approximately −4 µV. This synchronization continues to approximately 4 µV, showing
a degree of symmetry centered around 0V and giving a corresponding voltage range of

8 µV. Within the synchronization range, the slope of f1 is lower than outside, and we see

that it starts growing faster for |∆V IP
1 | > 4 µV, showing that the oscillators are mutually

pulling on each others’ frequencies. Additionally, when the V IP
1 moves far beyond the

synchronization range, f2 → F2, that is to say, it relaxes towards its natural frequency.

This shows that two oscillators with vastly different frequencies do not interact to any

significant degree, very much in line with what is predicted by the Kuramoto model.

Figure 8.4b shows the synchronization range for when ∆V IP
2 ̸= 0 while the upstream

has ∆V IP
1 = 0V . That is to say SHNO2 is subject to an upper bar voltage while SHNO1

is unperturbed. The unperturbed oscillator is now not impacted by the iSHE, which

constantly alters the current in the conductor. The behavior is not changed in any qual-

itative degree, and we still observe a synchronization range of similar size. However, the

change from a desynchronized state to a synchronized state is less spontaneous, and the

frequencies appear to close with each other in a more gradual fashion. This may be an

artifact of insufficient runtime of the system.

In both Figure 8.4a and 8.4b, there is a change in slope for the instantaneous frequency

centered on 0V, and in both cases f1 and f2 grow slower for ∆V IP
1 > 0 and ∆V IP

2 > 0

respectively. This could be chalked up to the change in torque that arises from switching

the current direction. However, although not shown in this thesis, the change in slope is

also present in the case where fixed at ∆V IP
2 = 6.5 µV and ∆V IP

1 is varied in a strictly

positive range centered on 6.5 µV. In fact, performing this setup only shifts the behavior of

the synchronization range further along the x̂-axis, while maintaining the same behavior

as these simulations.

Additionally, it is also not present in the 1SHNO case shown in Figure 8.2a, where the

frequency of a single SHNO was controlled by adjusting the voltages in a range symmetric

about 0V. The response of the frequency is entirely linear with no change at any point in

the range depicted, despite ∆V IP
1 attaining both positive and negative values.

These two points rule out the possibility that the change in torque from a reversal of

the current direction is the root cause, and the presence when ∆V2 ̸= 0 while ∆V1 = 0 and

fixed implies that it is also not caused by variations in iSHE due to the changing torques.
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Figure 8.5: Instantaneous frequency of the 2SHNO system as a function of input current

in SHNO1, where SHNO1 and SHNO2 are materially separated and only coupled via their

demagnetization fields.

This kind of behavior is also not present in 2-oscillator Kuramoto model simulations as

exemplified in Figure 4.2, nor in the work by Garg et. al. [12] who simulated pairs of

SHNOs coupled by nothing but demagnetization. It must therefore be tied to something

intrinsic to the common Pt geometry.

8.2.3 Synchronization of completely separate SHNOs

To isolate the effect causing the change in slope, we separate the SHNOs entirely. By sep-

arate, we mean that the oscillators are HM/FM/HM trilayers as before, but the common

Pt bar is replaced with two materially identical bars, with the same thickness and width

as before, but with the length reduced such that it is the same as the oscillator. These

trilayers are subject to the same lower Pt bar voltage difference of 2mV, with SHNO1

experiencing a perturbation in the top bar. This way, we mitigate the effect of both iSHE,

but also the scattering and reflection due to SHE. The oscillators are now only coupled

via demagnetization (which has been shown to be the dominant coupling factor). Similar

work has already been undertaken by Garg et. al. [12]. We will later try to reproduce

their results, so it is important to verify that we can reproduce their synchronization

ranges first.

The reason for the reduction in voltage to 2mV is that with the lower Pt layer reduced

in size, the frequency of the oscillators increases dramatically. Earlier simulations for a

common Pt bar, such as the ones depicted in Figure 8.4a, show frequencies of approxi-

mately 105GHz for a 4mV driving voltage. For these separate oscillators, even at 2mV

the frequency is approximately 225GHz.

Figure 8.5 depicts the synchronization range of the separated oscillators. We imme-

diately observe that there is no significant change in slope centered on 0V. The synchro-

nization range is otherwise qualitatively the same, and of almost the same size despite
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operating at over twice the frequency. The small difference is likely due to the changed

properties of the simulation as a result of the separation. This is important: As mentioned

previously, these oscillators operate at more than 200GHz, yet the synchronization range

is approximately 8 µV in size. This means that the synchronization range is independent

of the natural frequencies, and entirely tied to the other parameters deciding the coupling

strength.

There appears to be a much greater symmetry in this situation compared to the

oscillators on a non-separated Pt bar, Figures 8.4a and 8.4b, not only in terms of the non-

changing slope but also in terms of the local fluctuations in f1 and f2 and the behavior

outside of the synchronization range. This, too, is to be expected from the Kuramoto

model.

The likeliest root cause of the change in slope is the (de)coupling provided by iSHE:

In the Kuramoto model, the coupling strength from SHNO1 onto SHNO2 is equal to that

from SHNO2 onto SHNO1, K12 = K21. This is usually represented by a symmetric 2x2

adjacency matrix. Materially separated SHNOs that are coupled only via demagnetization

exhibit the same behavior as what is anticipated by the Kuramoto model [12], though

small differences may occur due to the out-of-plane components of the magnetization and

other effects not accounted for. Altering the Kuramoto model to account for asymmetric

coupling only reduces the size and symmetry of the synchronization range without creating

a changing slope, suggesting that additional features such as the implicitly time-dependent

coupling (or state-dependent, as it depends on orientation) may be a root cause. Details

on this time-dependent coupling are present in the discussion of voltage fluctuations as

a result of synchronized or desynchronized SHNOs, presented in Section 7.3. Although

the voltages provided by these fluctuations are orders of magnitude smaller than the

input voltage, the effect adds up over time, especially with the phase difference previously

observed.

8.3 Temperature robustness of the 2SHNO synchronization

Until now, our simulations have only considered the T = 0K case. This provides much

simpler dynamics at the expense of experimental realizability. Local fluctuations due to

thermal noise may destroy the synchronization even at lower temperatures. On the other

hand, as the temperature is a statistical noise, it may be averaged out over time. It’s

therefore of interest to study the EP-SHNO’s robustness against temperature.

Our setup is the same 2SHNO case depicted in Figure 8.1. The simulations were

performed using the stochastic variant of the LLG-SA equation, namely the sLLG-SA

equation [32] with a 1 fs time step. To give a picture of the time evolution, we show

the angle difference as a function of time without any period-averaging, such that every

small fluctuation can be observed. These values will oscillate rapidly around their average
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values.

Figure 8.6 contains 4 subfigures, each depicting the angle difference of the 2SHNO case

subject to different temperatures. Within each figure there are two different values for

the voltage, ∆V IP
1 = 0V and ∆V IP

1 = 625 nV. These voltages were selected because they

both result in synchronization in the T = 0K limit, falling well within the synchronization

range depicted in Figure 8.4. Anything desynchronized in the T = 0K limit will still be

desynchronized for finite temperature, and so it was considered unnecessary to immedi-

ately test desynchronized cases. More simulations need to be run to fully characterize the

temperature dependence.

However, Figure 8.6 shows no synchronization between oscillators subject to finite

temperature, neither for ∆V IP
1 = 0V or ∆V IP

1 = 625 nV in any of T = 500mK, T = 1K

or T = 1.5K. We first explain Figure 8.6a, which is the same situation as plotted

in Figure 8.3, though this time for only two oscillators without any period-averaging.

The behavior is as expected: Due to the constantly changing frequency as the direction

of magnetization changes, the angle difference between the oscillators also fluctuates.

However, it oscillates around a specific value, and we see that in the 0V-case of Figure 8.6a

this value eventually becomes constant in time. This illustrates why we perform a period-

averaging in the first place, but it also characterizes the short-term oscillation over the

course of one cycle. These short-term oscillations are present in all cases, and with little

change in their periodicity or magnitude as the temperature grows. It therefore appears

that the temperature plays a small role in these short-term fluctuations.

The loss of synchronization is characterized by the large, unconstrained changes in

phase difference over time, as detailed in Section 7. For the finite-temperature simulations

depicted in Figure 8.6, the magnetization of SHNO1 and SHNO2 switches between being

parallel to nearly antiparallel several times within 100 ps to 200 ps. There is seemingly no

regularity between the oscillations. Consider, for instance, the 0V-case of Figure 8.6b,

where the phase difference initially fluctuates between 25◦ an −50◦, before suddenly going

beyond 140◦. This is also significant, as within this short period the angle difference of

the ∆V IP
1 = 0V-case becomes larger than that of the ∆V IP

1 = 625 nV-case. This does not

occur for T = 0K, as the steady-state angle difference is a characteristic of the ∆V IP
1 and

thus the lines do not cross.

The simulations in Figure 8.6 were each run for 650 ps, a relatively short time compared

to the expected synchronization dynamics. For instance, in the 625 nV case Figure 8.6a,

the oscillators are tending towards their steady-state phase difference, but have yet to at-

tain it. The synchronization ranges depicted in Figure 8.4a required 5 ns to be considered

sufficiently accurate. The reason for this compromise is runtime, as enabling tempera-

ture requires much more computational resources. It may be the case that the oscillators

come to rest after sufficient time. We therefore select the case where ∆V IP
1 = 0V and

T = 0.5K, depicted in Figure 8.6, and run the simulation for 10 ns. This case has the
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(a) T = 0K (b) T = 0.5K

(c) T = 1K (d) T = 1.5K

Figure 8.6: Instantaneous angle difference as a function of time for 2SHNO, with the

temperature of both oscillators varied from 0K t0 1.5K. SHNO1 subject to either ∆V IP
1 =

0V or ∆V IP
1 = 625 nV.
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Figure 8.7: Angle difference as a function of time for 2SHNO, ∆V IP
1 = 0V, T = 0.5K.

Simulation run for 10 ns.

fewest alterations and synchronizes the most readily in the T = 0K case.

The results are shown in Figure 8.7. Even when run for longer than is expected

necessary to establish steady-state behavior based on the T = 0K case, the oscillators are

still highly desynchronized: There are rapid, stochastic changes in the phase difference

for short time scales, and there is seemingly no long-term synchronization effect kicking

in.

The Curie temperature of a YIG, which shares some material parameters with our

SHNOs, is Tc = 560K [79], far beyond anything to be considered in this work. However,

this is the bulk temperature, and for our thin film the actual Curie temperature may be

wildly different. We therefore study the magnetization as a function of temperature for

our sample. The results are not depicted, but we report that at 20K, the magnetization

is only 1.2% weaker than the zero-temperature case. We consider this sufficient to rule

out the loss of ferromagnetic ordering as a cause for this thermal desynchronization, as

the desynchronization occurred for temperatures down to 500mK.

The discussion presented here is insufficient to make any conclusive statements about

the temperature sensitivity: It appears that the synchronization is highly dependent on

temperature to the point where it is lost for temperature far below the Curie temperature,

but no characterizing quantity has been found. Nor is this discussion sufficient to ascertain

whether or not the oscillators eventually synchronize: We have run simulations up to 10 ns,
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twice that which was previously considered sufficient to obtain the synchronization ranges

in e.g. Figure 8.4, yet it may be that the oscillators simply take much longer when subject

to finite temperature.

In later sections we will apply the Kuramoto model to a system on SHNOs in more

detail, relating the synchronization range obtained via micromagnetic simulations to that

of the perfect Kuramoto oscillators, and thus obtaining an effective coupling constant.

As finite temperature is modeled via white noise, it would be reasonable to assume that

the Kuramoto model with noise, eq. (4.4), could be used to model the finite-temperature

micromagnetic system. Once the coupling constant has been obtained in the zero temper-

ature limit, one could enable the noise and observe how (or if) the synchronization breaks

down. These results could be used in a prediction of a characteristic temperature for the

loss of synchronization, as well as deriving ways for increasing the temperature robustness.

The methodology for the application of the Kuramoto model to a micromagnetic system

will be shown in practice in Section 9.

8.4 Synchronization of the 3SHNO system

As discussed in [12], for binary classification we only need the synchronization of two

output oscillators (disregarding the method of synchronizing the oscillators, which may

require more). Present research has managed to synchronize up to 50 SHNOs in a chain

[75], and an 8x8 arranged in a 2D array [73]. These have been performed with a different

type of SHNO rather than the EP-SHNO; the long-range synchronization of the EP-

SHNO has, to our knowledge, not yet been studied. Therefore it is illustrative to study

the synchronization beyond the 2SHNO case when controlling the oscillators, and how

the synchronization breaks down. We aim to study the effect of the 3SHNO system as a

path toward more oscillators.

We will give consideration to two separate cases: A 3SHNO case in which SHNO1

is perturbed, and one where SHNO2 is perturbed. The motivation for the former is to

see how the synchronization propagates when there are several oscillators with a larger

spacing than in the 2SHNO case, while for the latter we are combining the behavior of

both the 2SHNO upstream and downstream perturbation. We neglect the case of the

last oscillator being perturbed, as the earlier discussion on the downstream perturbation

showed that the behavior is broadly the same as the upstream perturbation.

Note that, as previously mentioned, we are considering the low-damping case of the

3SHNO, which do synchronize naturally.

Figure 8.8a and Figure 8.8b depicts the instantaneous frequency of all three oscillators

as a function of perturbing voltage VIP
1 and VIP

2 respectively. To properly characterize the

system, we will use the labels for the oscillators (SHNO1 SHNO2 SHNO3) very often.

When the first oscillator is perturbed, Figure 8.8a, we see a familiar pattern: First,

78



(a) 3SHNO system where SHNO1 is subject to an upper bar voltage

(b) 3SHNO system where SHNO2 is subject to an upper bar voltage

Figure 8.8: Average instantaneous frequency of a 3SHNO system as a function of upper

bar voltage of perturbed oscillator (SHNO1 or SHNO2 respectively). We only plot this

for positive voltages, as the discussion above has dealt with the positive and negative

voltages separately and shown that the synchronization range is more or less symmetric,

though with a change in slope.
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the synchronized region, lasting until approximately 3µV. Here, the frequencies begin

to part ways. At 4 µV we note a sudden desynchronization creating a local peak, before

the frequency differences between SHNO1 and the other oscillators decrease slightly, then

continues to grow. This mimics the behavior seen in the 2SHNO case where SHNO1 is

perturbed, Figure 8.4a, though desynchronization occurs at a slightly lower frequency.

Secondly, we see that after SHNO1 moves far beyond the synchronization range, both

SHNO2 and SHNO3 stop being impacted by it to any meaningful degree, and more to

the point they synchronize and drop towards their natural frequencies.

In the beginning, all oscillators lie within their respective synchronization range, and

so as SHNO1 starts increasing its natural frequency, SHNO2 and SHNO3 follow suit

and increase their instantaneous frequencies. The direct coupling between SHNO1 and

SHNO3 is comparatively weak, and so it wants to desynchronize first. However, the cou-

pling between SHNO1 and SHNO2 is strong, and so is the coupling between SHNO2 and

SHNO3, meaning they are preventing desynchronization by proxy. Eventually, SHNO1

moves too far beyond the synchronization range with SHNO2, and it instead favors a syn-

chronization with SHNO3, itself already beyond the synchronization range with SHNO1.

The result is that SHNO2 and SHNO3 relax back towards their natural frequencies, while

SHNO1 increases as one would expect. In effect, we have two separate 2SHNO systems

in play, with SHNO2’s preferred synchronization moving from one to the other: Initially

it wants to follow SHNO1 due to the coupling, but as SHNO1 moves too far it switches

to prefer synchronization with SHNO3. This switching is what causes the shortening of

the synchronization range, as there is now an additional force coercing SHNO2 out of

synchronization with SHNO1.

When the middle oscillator is perturbed, Figure 8.8b, the behavior is a combination

of the upstream and downstream 2SHNO system, Figure 8.4a and Figure 8.4b. In this

case, the coupling between SHNO1-SHNO2 and SHNO2-SHNO3 are both strong. We

observe a comparatively strong synchronization with little splitting that lasts for over

6 µV, greater than when SHNO1 is perturbed in Figure 8.8a, and much improved over the

corresponding 2SHNO cases in Figure 8.4 of approximately 4 µV. This is because there

are two unperturbed oscillators in the system, SHNO1 and SHNO3, each of which impacts

SHNO2 with approximately the same strength as before. Intuitively we can think of this

as a 2SHNO system with much stronger coupling. The result is a larger synchronization

range. When the perturbation of SHNO2 becomes too large, both SHNO1 and SHNO3

desynchronize effectively at once, and the result is a very sudden and large jump in

frequency, while SHNO1 and SHNO3 relax toward their natural frequencies as before.

From our data we cannot conclusively say that SHNO1 and SHNO3 will synchronize but

there is a noticeable and persistent frequency difference in Figure 8.8b, suggesting that

they may not readily synchronize.

In summary, perturbing the 3SHNO system results in a combination of 2SHNO sys-
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tems: When SHNO1 in the 3SHNO system is perturbed, both SHNO2 and 3 will attempt

to follow suit until SHNO2 prefers synchronization with SHNO3, and the full-system syn-

chronization breaks. This shrinks the synchronization range. When SHNO2 is perturbed,

both SHNO1 and SHNO3 are coupled strongly to it, and as a result they both follow

suit before breaking synchronization effectively simultaneously. The result is a longer

synchronization range.

8.5 Outlook

All of the simulations in Section 8 have been run for the low-damping case. In Section 7,

we saw that these oscillators have the most predictable dynamics as they are prone to

quick and reliable synchronization. However, the high-damping case showed interesting

behavior, still synchronizing but with an unusual phase-locked configuration, or desyn-

chronizing with a periodicity. Research has already been put into the effect of damping

on the dynamics of a single SHNO [80], but none has been put into the characteristics

of synchronization, or the breaking thereof (to the extent of our knowledge). It would

therefore be of interest to see controlled (de)synchronization of a high-damping system.

For instance: While the high-damping 4SHNO system synchronizes strongly, the

3SHNO system is instead phase-synhronized, where the phase difference oscillates pe-

riodically with a large amplitude. This is shown in Figure 7.2. However, in Section 8.4,

we showed that once synchronization in a 3SHNO system breaks down by SHNO1’s fre-

quency being too high, the remaining oscillators will be less impacted by its presence and

instead act as though it is a 2SHNO system. This is especially evident in Figure 8.8a.

It begs the question: If the first oscillator in a high-damping 4SHNO system is moved

out of synchronization with all other oscillators, will the remaining oscillators act like a

highly-dampened 3SHNO system and subsequently also enter a phase-synchronized state,

as depicted in Figure 7.2d? And conversely, can we suddenly introduce an oscillator

(by for instance tuning its frequency into the synchronization range) and create synchro-

nizations as a 4SHNO system? Additionally, the 5SHNO depicted in Figure 7.6 shows

clustering of the phase differences depending on position. By tuning the frequency of only

one oscillator, one may be able to shift the whole cluster, or perhaps create entirely new

clusters if the frequency becomes too large to counteract.
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9 Neural network application of SHNOs

Traditional learning methods for neural networks usually operate on the synapses con-

necting the neurons: The weights in these synapses are adjusted by the learning algorithm

as more training data is fed into the network, the theory for which has been discussed

in Section 5.4. A similar methodology of adjusting weights can be applied to an ONN

by adjusting the coupling constants between oscillators. However, for nanoscale devices,

the coupling strengths are materially or spatially dependent, and as a result, altering the

coupling for training requires heavy circuitry [60].

At time of writing, and to the best of our knowledge, there are two primary learning

algorithms for ONNs implemented on SHNOs and STNOs. The first was initially pre-

sented by Vassilieva et. al. [63] in 2011 in a mathematical context (by which we mean

that the algorithm is presented purely mathematically and is not tailored for a specific

oscillator implementation). An overview of this algorithm is given in Section 5.6.1, but

the synopsis is that this algorithm relies on adjusting the natural frequencies of the os-

cillators, promoting synchronization between certain pairs and disincentivizing between

others in accordance with the expected output. Note that a ”pair” of oscillators, in this

case, refers to a pairing of the input oscillator to any other non-input oscillator in the

system, all of which effectively function as output oscillators. There is no interaction

between output oscillators. As pointed out by Vodenicarevic et. al. [60], this algorithm

is greedy, only acting on IO-pair as though they are isolated and do not influence each

other. For some systems this is an acceptable assumption [61]. But generally it is not a

good assumption, and the algorithm may end up giving suboptimal results [60]. Further-

more, without inter-oscillator coupling, the size of a problem that can be presented to the

oscillators is limited [60].

Vodenicarevic et. al. presented an algorithm more in line with existing machine

learning architecture [60]. This algorithm considers coupling between all the oscillators,

not just input-output pairs. A detailed mathematical summary of their learning algorithm

is given in Section 5.6.1. The operating principle of adjusting the natural frequency of

the output oscillators is the same as in Vassilieva et. al., but the algorithm is able to

implement gradient descent by design.

In both these methods, the coupling strength is kept fixed, and thus it lends itself to

the Kuramoto model. Indeed, Vodenicarevic et. al. rely on the Kurmaoto model in their

paper [60], and previous work [81] has shown that it is a good approximation, despite its

simplicity.

Both of these methods have been realized. Experimentally, Romera et. al. [49]

successfully trained a network of four STNOs to recognize spoken vowels using the learning

rule presented by Vassilieva et. al. In simulations, Singh et. al. [61] used the same learning

algorithm for a classification scheme using SHNOs synchronizing to the frequencies of two
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Figure 9.1: Micromagnetic setup of a SHNO neural network, presented by Garg et.

al. [12]. The SHNO itself, depicted on the left, consists of heavy metal ferromagnetic

(HM/FM) bilayer, where a charge current J is applied to the ferromagnet. The easy axis

is maintained by a magnetic field Happ. The right depicts the proposed neural network,

where SHNO1 and SHNO2 are input oscillators to which currents J1 and J2 (corresponding

to input data) are applied. SHNO3 and SHNO4 are output oscillators, subject to currents

J3 and J4 corresponding to their training. The placement is such that the input-output

pairs are a distance D apart, while the input-input and output-output are
√
2D apart. A

dimensionality reduction technique converts the higher-dimensional dataset {x1...xn} to

y1 and y2, each input to one input oscillator.

RF magnetic fields containing the input data. Garg et. al. used the Vodenicarevic

algorithm to train a simulated network of two input and two output oscillators for binary

classification of flowers [12]. In the latter case, the binary state was based on whether or

not the output oscillators were synchronized to each other.

Additionally, Garg et. al. used the Kuramoto model extensively in tandem with their

micromagnetic simulations. This is encouraged by the Vodenicarevic algorithm, though it

is not the only choice [60]. A secondary effect of the Kuramoto model is that a lot of the

micromagnetic work can be outsourced, drastically reducing the necessary computational

resources. In subsequent work, we will use the Kuramoto model for the same reason,

however we will explore some aspects not yet discussed in preceding papers.

All of these realizations, both computational and experimental, have regarded the

easy-axis SHNO (an example of which is depicted on the left in Figure 9.1) rather than

the easy-plane SHNO (EP-SHNO). Having explored the various capabilities of EP-SHNO
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synchronization, we will be extending the work of Garg et. al. to it.

9.1 System layout

At present, we have put most of our focus on an EP-SHNO on a common Pt bar in

Section 7 and Section 8. This system is not symmetric, as the common Pt bar allows the

iSHE to impact downstream SHNOs more than their upstream counterparts. The effect

of this has been studied in Section 7, where we saw that the frequency of downstream

oscillators was increased by iSHE. Additionally, with iSHE present, Section 8 shows a

change in slope for the instantaneous frequency as a function of applied voltage. This

disappeared when the common driving Pt bar was removed and the currents were ap-

plied completely independently, which is what is expected from the Kuramoto model (see

Section 4 for more details). Going forward, we will consider only the case of separated

oscillators. This is to reduce the number of effects impacting the system, in addition to

making the synchronization range more predictable.

Figure 9.2 shows our proposed EP-SHNO neural network. This system consists of

four separate insulating ferromagnetic meshes placed atop individual conducting meshes.

The ferromagnets are oriented so that they face each other, all oscillating in the same

xz-plane (coplanar). The hard axes are all oriented along the ŷ-axis, perpendicular to the

current, with the charge current flowing inside of the easy-plane. The SHNOs will thus

oscillate within the same plane, though with a slight out-of-axis contribution as a result

of the SHE. This SHE is provided by an applied current in the conducting layer, set to

some value to keep the oscillator at a natural frequency. This natural frequency is defined

as the frequency the oscillator would have in the absence of any other perturbing factor,

such as other oscillators.

This orientation is not strictly necessary. The oscillators presented by Garg et. al.,

depicted in Figure 9.1, were oriented such that their easy axes were parallel, without

facing each other. However, our work earlier in this thesis, for instance in Section 7 and

Section 8 considered coplanar EP-SHNOs. A natural extension of this work is to consider

a neural network with coplanar oscillators. It is not known if non-coplanar EP-SHNOs are

able to synchronize to the same degree as considered earlier. This should be investigated.

In Figure 9.2, the left-right opposing pair is marked as I1 and I2, our input oscillators.

Here, data encoded as current will set the natural frequency of these oscillators. The

top-bottom opposing pair, O1 and O2, are the output oscillators. These will be provided

a current to attain some natural frequency, which is tuned based on the training, moving

iteratively towards the most optimal value for our dataset. We define a heterogeneous

pair as any combination of input and output oscillators, and a homogeneous pair as the

two input oscillators or the two output oscillators. By design, all pairings of one type

(e.g. all heterogeneous oscillators) have the same coupling constant: They are spaced in
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Figure 9.2: Diagram of the Vodenicarevic-style EP-SHNO neural network. Red meshes

are ferromagnetic (FM) meshes, blue meshes are heavy metal (HM) meshes with the

properties of platinum (Pt). I1 and I2 are the two input oscillators, O1 and O2 are the

two output oscillators. The corresponding currents j⃗I1, j⃗I2 etc. flow through the HM

layers.
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Figure 9.3: Oscillator frequency as a function of charge current density in its associated

platinum layer. Prior to the activation current density ((88 ± 0.377) × 109A/m2, cor-

responding to (147.5 ± 0.625)µV), marked with a dashed vertical line, the oscillator is

stationary in an equilibrium. After the activation voltage, the frequency increases lin-

early with the current density, with a slope of (0.158± 0.0002)Hz/Am2, corresponding to

(0.095± 0.0001)GHz/µV.

such a way that the distance, i.e. coupling strength khet, is the same for any other pair of

the same type [12]. The homogeneous oscillators also all have the same coupling strength,

khom < khet. Finally, we define the natural frequency for the oscillator as FI1, FI2, FO1

and FO2, and the instantaneous frequencies as fI1, fI2, fO1 and fO2.

9.2 Activation frequency

As we are no longer working with a separate driving and perturbing current, it is prudent

to characterize this current (density) and its response in greater detail. Primarily, the

activation current density, that is the current density at which the torque from the iSHE

breaks equilibrium with the restoring forces such as anisotropy, and makes the SHNO

oscillate. This will yield a minimum expected frequency, and a relationship between the

applied charge current and frequency, which we will use to determine the correct current

to attain a given natural frequency. In this setup, we remove all but one oscillator, I1,

and apply a gradually increasing voltage difference across its adjacent platinum layer, just

as before.

Figure 9.3 details the results of this. The voltage applied is slowly tuned from 0V

to 1725 µV, with additional simulations run between 125 µV and 150 µV to more accu-

rately establish the activation voltage. Initially, the torque from the applied current is
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insufficient to cause oscillations, and the frequency remains at 0Hz for all times. At

approximately 147.5 µV, the torque from SHE is sufficient to overcome the anisotropy,

and the SHNO begins to oscillate. This leads to a discontinuous jump from 0Hz to ap-

proximately, 10GHz. Beyond this activation value, the frequency grows linearly with the

applied voltage. This is a non-linear activation function, which may be useful for other

implementations of neural networks. In this work we are instead concerned with the slope

in this relationship.

Note that Figure 9.3, and all subsequent plots, will work in voltage rather than current

density, unlike Garg et. al. [12]. The reasons are manyfold: Primarily, it is easier to work

with in the software we are using, BORIS computational spintronics [32], and thus easier

to report. Secondly, the voltage and current density are linearly related for a conductor

of fixed geometry, as is the case in our work. Thirdly, for such small devices as the ones

we are using, reducing or increasing the current density by altering the conductor area

does not necessarily reduce or increase the applied torque in a corresponding manner, due

to the complicated dynamics of the electrons as a result of SHE and iSHE in such a thin

conductor, making it difficult to control and thus a suboptimal way of measure.

The linear relationship between the input voltage and the oscillator frequency will be

exploited as a means of setting the natural frequency. This, in addition to the coupling

constant, are the two unknowns needed to simulate the system via the Kuramoto model.

9.3 Determining coupling coefficients

In the absence of altering the material parameters of an SHNO, either directly or via

electrical means, the Kuramoto model coupling constant k is proportional to oscillator

separation [12]. This exclusive separation-dependence of the coupling is intrinsic to mag-

netic fields, with their strength decreasing over distance. Therefore, we wish to relate

the coupling coefficient k to the synchronization range using the Kuramoto model, and

then extend it to the real system of oscillators. With this, we will be able to deter-

mine the coupling coefficient of both our heterogeneous and homogeneous pairs using the

synchronization range, and thus simulate the system using the Kuramoto model.

Compared to Garg et. al, who mostly used frequencies in the GHz range [12], our

oscillators are smaller with higher frequencies. This is seen in Figure 9.3, where the lowest

oscillating frequency is approximately 10 GHz. Therefore, we specify that our oscillators

operate on the order of 100 GHz to be sufficiently far from the activation frequency range.

Our earlier micromagnetic simulations in Section 8.2 show that the synchronization range

usually is around 1 GHz in size. In these simulations, the oscillators are closer and oriented

differently, so we expect it to be on the order of a few GHz instead.

The synchronization ranges of our micromagnetic SHNOs are depicted in Figure 9.4.

For the heterogeneous pairs, Figure 9.4a, the synchronization range is 3.9 GHz, while for
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(a) Heterogeneous oscillator pair

(b) Homogeneous oscillator pair

Figure 9.4: Synchronization ranges of a homogeneous and a heterogeneous pair of micro-

magnetic oscillators. In both cases, the natural frequency of one oscillator (O1 and I2

respectively) is held at approximately 100 GHz, and the other (I1) is varied from 97 GHz

to 103 GHz. Oscillator names correspond to the previous setup, which implies that the

first setup has the oscillator oriented perpendicularly to each other, while in the latter

they are face-to-face, though separated by a larger distance.
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Figure 9.5: Synchronization range as a function of Kuramoto model coupling constant.

the homogeneous pairs, Figure 9.4b, it is 1.33 GHz.

Next, we run simulations with the Kuramoto model, steadily increasing the coupling

constant k for a fixed range of natural frequencies, to obtain a relationship between the

synchronization range and the coupling constants. This is depicted in Figure 9.5. Here

we immediately see a linear relationship between the coupling constant and synchroniza-

tion range, and more importantly the synchronization range is 4 times larger than the

coupling constant. This is something we expect from the Kuramoto model, discussed in

Section 4. Thus, the synchronization ranges above correspond to khet = 0.97GHz and

khom = 0.33GHz. The ratio between these is 0.97
0.33

≈ 2.939, much greater than the
√
2

value reported by Garg et. al. This is notable: The layout of our oscillators is such that

the ratio between the center-center distance of homogeneous pairs is
√
2 greater than

heterogeneous pairs, just as in Garg et. al. [12]. Yet the relative coupling strength is not

1/
√
2 as they report, suggesting that the relative orientation of the oscillators also plays

a role.

To verify that the obtained k can accurately describe our system, we run a correspond-

ing series of Kuramoto model simulations with k = 0.97GHz. The results are depicted

in Figure 9.6. The behavior is quantitatively consistent with that of the heterogeneous

micromagnetic pair depicted in Figure 9.4a: The synchronization range is nearly identical

in size to that of the micromagnetic oscillators, with the slight offset likely caused by

inaccuracies converting from desired frequency to input voltage.

9.4 Predictions via Kuramoto model

With the coupling coefficients for our system obtained, we can in theory model our ONN

using the Kuramoto model. The goal is to obtain a set of system parameters, such as out-

put oscillator initial frequencies, input oscillator range, in addition to the corresponding

synchronization map of this setup. At present, only two parameters are currently char-
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Figure 9.6: Synchroniztion range for k = 0.97GHz.

acteristic of our system: khet = 0.97GHz and khom = 0.33GHz. These are, as explained

previously, invariant of the magnitude of the natural frequencies.

We carry out these simulations using a Python-implementation of the Kuramoto model

[82]. This library defines the interaction between the oscillators as an adjacency matrix,

to which the coupling constant is multiplied. In our case, the adjacency matrix is of form

I1 I2 O1 O2


I1 0 1/2.939 1 1

I2 1/2.939 0 1 1

O1 1 1 0 1/2.939

O2 1 1 1/2.939 0

All diagonal elements are 0 to prevent self-coupling. The elements corresponding

to heterogeneous pairs are set to 1, while the elements corresponding to homogeneous

pairs are reduced by a factor of 2.939, the ratio khet/khom. This matrix is multiplied by

0.97GHz, ensuring that all oscillators are coupled correctly. This adjacency matrix is

constant throughout all simulations.

The other parameters which define the synchronization map are the natural frequencies

of the output oscillators, as these values define the susceptibility for synchronization

depending on the coupling constant. Less initial separation of the natural frequencies

makes the oscillators more susceptible to synchronization, while for a sufficiently large

separation the coupling is not great enough to cause any synchronization. Initially, we

will also keep these fixed to show how they respond to variations in the input oscillator

natural frequencies.

Figure 9.7 shows two types of plots side-by-side. The left columns are frequency

maps, which depict the absolute frequency difference between the two output oscillators

(encoded in the colormap) as a function of the two input oscillator natural frequencies,
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(a) (b)

(c) (d)

(e) (f)

Figure 9.7: Frequency maps (left column) and synchronization maps (right column) for

a 4SHNO network of 2I/2O oscillators. The natural frequencies of I1 and I2 correspond

to the x- and y-axes, with khet = 0.97GHz and khom = 0.33GHz. The output oscillator

natural frequencies are: a) b) 99.5GHz and 100.5GHz, c) d) 99.6GHz and 100.4GHz e)

f) 99.8GHz and 100.2GHz. These are selected as they best illustrate the behavior. In the

synchronization map, white corresponds to synchronization and red to desynchronization.
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I1 and I2. This data is used in the creation of the synchronization maps, depicted on the

right, which compare the absolute frequency difference to a threshold value of 0.0012GHz

[12] to obtain Boolean data: Synchronized or not. This threshold was chosen by Garg et.

al. in their work, and at present we use the same value. It is possible to select a different

threshold, so long as both the Kuramoto model predictions and the later micromagnetic

simulations are subject to the same value.

The synchronization can be described as spontaneous, or happening very suddenly

when slowly probing through the frequencies. This is not readily captured in the synchro-

nization map due to the magnitude of the desynchronized frequencies. Consider the white

desynchronized region found in the center of the plot: Inside of it, the frequency difference

is on the order of 10Hz, compared to the natural frequency difference itself which is on

the order of 1GHz. Simultaneously, one can achieve a frequency difference of 100MHz

by moving only a few data points outside of the synchronized region, growing into the

GHz-range at the largest. This is the steady-state behavior that becomes apparent for

very long simulations, in our case 100 ns per data point. This also allows a large degree

of flexibility for the synchronization threshold: Previously it was set to 0.0012GHz, but

it can be set to a much higher value (e.g. 0.02GHz) without altering neither the shape

nor the size of the synchronization region.

All the frequency maps in Figure 9.7 show the emergence of horizontal and vertical

regions, forming a cross, where the frequency difference is minimal and approximately

constant for variations of a single input oscillator. For a sufficiently small separation, this

transfers over to the corresponding synchronization map. We additionally note that, in

the frequency map, there is a defined minimum and maximum value of the oscillators,

even as the input natural frequencies grow. Both have the same root cause: Figure 9.4

reveals that, far beyond the synchronization range, the oscillators will relax towards their

natural frequencies, and lower-frequency oscillators do not feel the presence of a nearby

high-frequency oscillator. Once the input frequencies become either both too large, both

too small, or a combination of the two, the output oscillators stop interacting with the

input oscillators and instead relax towards their natural frequencies. Thus we obtain

regions where the frequency difference is effectively a constant and equal to FO1 − FO2.

The cross is explained by one input oscillator (for instance I1) having a frequency too

large or small relative to either output oscillator, such that they do not couple to any

significant degree. At the same time, the second input oscillator (for instance I2) has a

frequency such that it individually influences both output oscillators, pulling their fre-

quencies closer together. This natural frequency is FI2 ≈ 100GHz, the midpoint between

FO1 and FO2. For a sufficiently small initial separation of FO1 and FO2, this mutual tuning

is sufficient to cause synchronization, fO1 = fO2. This minimal region remains predom-

inantly unchanged for variations of FI1 save for the central synchronized region, where

all oscillators in the system become synchronized. This shows that the synchronization
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along this cross is robust, and unaffected when FI1 is small or large compared to all other

frequencies.

The system is invariant when swapping I1 and I2, and so we get the same behavior

emerging when I1 is fixed while I2 varies, yielding a cross. For a system of many output

oscillators, there will be many overlapping crosses in the full synchronization map. An

example of this is seen in Romera et. al. [49]. In our case, we are concerned only with

two output oscillators, and we will focus primarily on situations that do not have crosses,

for instance Figure 9.7b.

Although there exists a minimal cross in Figure 9.7a, the resulting frequency difference

is not small enough to qualify as synchronized in Figure 9.7b. The reason is likely that

the coupling between the I2 and the output oscillators is not strong enough to close the

1GHz natural frequency gap between O1 and O2, unlike in the case of smaller natural

frequency gaps.

9.5 Micromagnetic simulations

Thus far we have assumed that our micromagnetic system could be modeled via the

Kuramoto model. This is the baseline for the work by Garg et. al. [12] and, in part,

Vodenicarevic et. al. [60]. If this assumption is true, we should be able to replicate

the synchronization maps in Figure 9.7 using micromagnetic simulations. This figure is

generated by running 300x300 simulations with the Kuramoto model for 4 oscillators.

Running that many micromagnetic simulations with the necessary level of resolution will

require far too many computational resources. This was the reason for switching to the

Kuramoto model in the first place. Therefore, we simulate a subset of the input frequency

combinations and verify them against the synchronization map obtained via the Kuramoto

model. The frequency map is not obtained, as there will be too few micromagnetic

simulations to make make it meaningful. In theory, and for enough simulations, it should

be very similar to the frequency map obtained from the Kuramoto model.

We first apply the linear relationship for voltage and frequency found in Section 9.2

to obtain the correct voltage difference for our oscillators. Following that, we let the

micromagnetic system run for 2 ns, and use the same method as for the Kuramoto model

to obtain the synchronization map.

Figure 9.8 depicts the micromagnetic simulation overlaid the Kuramoto model predic-

tion. The backing Kuramoto data is the same as described above. For the micromagnetic

cases, we set FO1 = 99.5GHz and FO1 = 100.5GHz, and let FI1 and FI2 vary accord-

ing to the green and yellow points. These points, green and yellow, correspond to the

output oscillators being synchronized and desynchronized respectively, just as with the

Kuramoto model prediction. One change from our earlier work is that we have changed

the threshold for synchronization: Our previous value of 0.0012GHz was based on the
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Figure 9.8: Micromagnetic simulations overlaid the synchronization map obtained via the

Kuramoto model. The micromagnetic output oscillator natural frequencies are 99.5GHz

and 100.5GHz, selected based on Figure 9.7b. Yellow squares represent desynchronized

output oscillators and green circles represent synchronized output oscillators, for corre-

sponding input oscillator natural frequencies.
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work of Garg et. al. [12], performed with micromagnetic oscillators in the 6GHz range.

In addition, their predicted synchronization ranges were on the order of 0.2GHz. In our

case, we are working with oscillators in the 100GHz range with synchronization ranges of

4GHz. As we discussed previously, one can alter the synchronization threshold within a

large range without causing significant changes to the synchronization region. We exploit

this to rescale our threshold by 100/6, such that it becomes |fO1 − fO2| < 0.02GHz. This

is still within the aforementioned range. This is applied to both the Kuramoto model

data and to the micromagnetic data.

If the Kuramoto model is a good fit, we expect the green points to more or less overlap

with the white (synchronized) region of the Kuramoto model, and the yellow points to lie

in the red (desynchronized) region.

We see in Figure 9.8 that there are both yellow squares in the synchronization re-

gion, and green circles outside of it. In addition, the synchronization does not appear

as rigorous, with yellow squares embedded within what is supposed to be a wholly green

synchronization region. This may in part be due to the simulations being run for in-

sufficient time: We used a 2 ns run time for each simulation, however for obtaining the

synchronization ranges a 5 ns run time was considered sufficient for materially separated

oscillators. If the system were to be run for longer, the long-term synchronization dy-

namics may properly separate the space into two distinct regions, just like the underlying

Kuramoto paper.

However, it may not be sufficient for treating the shape and size of the region: We note

that the upper-left side and lower-right side are uniformly desynchronized, as expected. In

other words, there is great overlap along the semi-minor axes of the synchronization ellipse.

This, in addition to the overlap with synchronized states in the expected synchronization

region, are the most positive attribute on the micromagnetic synchronization map. Along

the semi-major axis (upper-right and lower-left), the synchronized states leak over into

the desynchronized region, stretching the micromagnetic synchronized region. Without

characterizing the extent of the synchronization region along the semi-major axes, we

cannot state whether or not they are centered on the same point, FI1 = FI2 = 100GHz.

If they are, one could achieve some success in tuning the synchronization threshold, in

addition to running the simulations for longer. However, it may not solve the shape issue

entirely, as at some point this will start excluding more states along the semi-minor axes

too.

It should be noted that the semi-major axis coincides with the linear FO1 = FI2. This

is to be expected of the Kuramoto model, as khet > khom, and so when the input oscillators

have the same natural frequency, they pull at each output oscillator with twice the force

in the same direction. This stretches the synchronization region in that direction. If the

micromagnetic synchronization region is centered at FI1 = FI2 = 100GHz, it indicates

that our khet, obtained via the Kuramoto model, is far lower than the micromagnetic

95



system. This cannot be stated conclusively until a full picture of the micromagnetic

system is obtained.

The aforementioned issues regarding frequency-to-voltage conversion may play a role

in this offset: With our choice of FO1 = 99.5GHz and FO2 = 100.5GHz, we can use

the case of FI1 = FI2 = 100.0GHz as a calibration case. This case is supposed to be

synchronized, and with the input oscillator frequencies being equal and located between

that of the output oscillators it stands to reason that they should all synchronize to

100GHz given enough time. Our simulation output reports the following instantaneous

frequencies after 2 ns: fI1 = 100.197GHz, fI2 = 100.180GHz, fO1 = 100.02GHz, fO2 =

100.018GHz. The output is indeed synchronized, however the frequencies of the input

oscillators are notably higher than both output oscillators and very close to the edge

of what is defined by synchronization. The fact that both oscillators overshoot is an

indication that the conversion is wrong and in need of refining, and it may also create a

leftwards offset of the synchronization region.

Our simulations were too centered on the Kuramoto model synchronization range to

characterize the apparent range of the micromagnetic oscillators. Therefore, we cannot

state with confidence that the Kuramoto model is sufficient or insufficient to model this

system of EP-SHNOs. We will highlight two positive observations: First, the micromag-

netic synchronization region shows an indication of an elliptical shape like the underlying

Kuramoto model data, and it appears that the semi-minor axis of the elliptical region

corresponds to the micromagnetic model. It is the semi-major axis that is much larger.

Second, we have previously shown that the Kuramoto model can be used to accurately

characterize the synchronization ranges of two EP-SHNOs. Based on these observations,

we believe that, with refinement, our presented methodology can be applied to a neural

network of EP-SHNOs.

9.6 Discussion and outlook

Based on our results, we will discuss the continuation of this project, both completing the

work already done and continuing it into future projects. First, the issues and work that

remain on our present attempt at an EP-SHNO neural network, and then the next step

that goes beyond our setup.

9.6.1 Remaining work

Previous work by Vodenicarevic et. al. has created an offline learning algorithm for

oscillator-based classifiers that is compatible with the constraints of nanotechnology [60].

Garg et. al. have implemented it in and successfully trained a network of four SHNOs

[12] in a similar setup to what is presented here. In this work, we have emulated the

results leading up to the implementation of a network of four coplanar EP-SHNOs. First,
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we ran several micromagnetic simulations of a 1SHNO system to obtain an activation

voltage (and thus frequency), in addition to a relation between the applied voltage and

the resulting natural frequency. For our system, we obtained a value of 0.095GHz/µV.
With this in mind, we created a micromagnetic 2SHNO system of heterogeneous and

homogeneous oscillators separately, and ran simulations to obtain their synchronization

ranges. We verified these results against those obtained by the Kuramoto model, and

then used the Kuramoto model to obtain a relation between the synchronization range

and coupling coefficient of two oscillators. Having obtained the coupling constant, we were

able to model the micromagnetic system using the Kuramoto model, significantly reducing

the computational resources necessary in addition to opening for using the Vodenicarevic

et. al. learning algorithm.

With this simplified model, we used the Kuramoto model to obtain detailed syn-

chronization and frequency maps for this simplified system. We then employed these

synchronization maps to predict suitable values for the micromagnetic input frequencies

(i.e. voltages), and attempted to verify the maps’ validity by running micromagnetic

simulations with a selection of natural frequencies. This would lay the groundwork for

neural networks based on EP-SHNOs: The learning algorithm would be implemented

using predictions by the Kuramoto model alone, and the behavior of the EP-SHNOs is

close to that of the regular SHNOs, of which a full neural network has been realized in

Garg et. al. [12]. Unfortunately, comparing the results of the micromagnetic system with

that of its Kuramoto model representation yielded unsatisfactory overlap: The synchro-

nization range is an ellipse, and while there is good overlap along the semi-minor axes of

this ellipse, the micromagnetic simulations exhibit a much larger semi-major axis than its

Kuramoto model counterparts.

The Kuramoto model is not perfect for this system: The presence of an easy-axis

means that the natural frequency is dependent on the orientation of the magnetization.

The magnetization prefers alignment with the easy-axis, and thus there is an additional

torque depending on the orientation and magnitude of the magnetization. Additionally,

increasing the input current will increase the OOP deflection of the magnetization. In

effect, this reduces the oscillatory part of the magnetization for higher frequencies by

placing a larger component of the magnetization out-of-plane. The oscillators used by

Garg et. al. [12] were the more common, uniaxial type of SHNO similar to those that

have been used experimentally [75], with the axis set by a magnetic field rather than

anisotropy, which reduced the impact of both of these effects. Such oscillators therefore

lend themselves more naturally to the Kuramoto model.

Another issue related to the OOP deflection is that the frequency as a function of

input voltage, shown in Figure 9.3, is not strictly linear. This was assumed to be negligible

based on previous work. We tested this with a calibration case of in Figure 9.8 where

FI1 = FI2 = 100GHz while FO1 = 99.5GHz FI2 = 100.4GHz. The symmetry of this
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case should ensure that all oscillators synchronize with f = 100GHz. However, we noted

that all frequencies were above 100GHz, and worse that the input oscillators both had

higher frequencies than the output oscillator. This implies, at the bare minimum, that

the conversion from voltage and frequency is wrong, and that the assumption of linear

conversion is insufficient.

We recommend that the work of Garg et. al. is replicated more closely and in greater

detail within BORIS Computational Spintronics, as it is a simpler system with known

results with which one can compare. Once done, it can be extended to EP-SHNO in a

more rigorous manner.

9.6.2 Novel work

This work has been following the steps of Garg et. al. [12] in its setup and methodology.

This is to be expected, as we have been experimenting with a variation of the same device

in an attempt at creating similar results. Future work should explore new aspects of the

SHNO ONN. Scalability is one avenue: The setups presented both here in Figure 9.2 and

in Garg et. al. [12] do not easily lend themselves to expansion. The result of the square

setup in both Garg et. al. and in our work is that heterogeneous pairs of oscillators

have the same coupling constant khet, and all homogeneous pairs have the same coupling

constant khom < khet. However, adding more output oscillators will not maintain this: The

coupling constants are entirely separation-dependent, and the addition of more oscillators

will cause certain pairs of the two types to have intrinsically weaker coupling. Consider

adding two more output oscillators, O3 and O4, to the system shown in Figure 9.2 along

the y-axis, such that we have two input and four output oscillators forming an open cube.

In this case, O1 and O2 will couple as usual with a homogeneous strength, while O1 and

O3 will couple with heterogeneous strength. This will have a profound impact on the

system.

The presented system is also not easy to manufacture: We have neglected the presence

of an insulating substrate which would be necessary for the manufacturing process, and

additionally made the oscillators face each other, creating a hole on the scale of 20 nm

width. At present, manufactured SHNOs primarily come in the form of nanoconstrictions

[75][73], often in a chain similar to what was presented in Section 8. There are several

issues with using this as a neural network, some of which have been discussed previously:

First, each SHNO must be uniquely tuned to a specific natural frequency, which was solved

by the addition of a perturbing conducting layer in addition to the common conducting

layer upon which all SHNOs were deposited. This requires very precise manufacturing,

especially when interfaced with other hardware to provide the current. Secondly, the same

issue as presented above arises, as there is no layout of e.g. four SHNOs which results in

the present requirement of uniform coupling constants between the different types of pairs.
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Thirdly, the presence of iSHE will, as examined in Sections 7 and 8, cause a position-

and time-dependent coupling. It is therefore prudent to investigate these effects, both

micromagnetically and as modifications to the Kuramoto model.

Some of these scalability issues have been tackled in Bhotla et. al. [13]. This paper

builds upon the work of Garg et. al. [12]. The authors suggest an additional restriction on

the output oscillator natural frequencies, which would require that the natural frequencies

of the output oscillators, FO1 and FO2, be separated by a frequency ∆F for every update.

The reason for this is that we want to maintain the shape of the synchronization region:

We see in the synchronization maps, on the right in Figure 9.7, that the shape and size of

the synchronized region are dependent on the separation between FO1 and FO2. Secondly,

we know that the size of the synchronization range is independent of the actual natural

frequency (if O1 oscillates at 100 GHz and synchronizes to I1 when it is within ±3 GHz,

then the same range of ±3 GHz applies if O1 is at 200 GHz). The result is that by

maintaining a certain separation ∆F , we can move the synchronization region around in

space without destroying its shape. With this rather simple modification in place, Bhotla

et. al. go on to suggest several additional modifications that can improve the scalability,

incorporating multi-output systems. This would allow for more than binary classification,

but the details are omitted here.

In Section 8, we discussed the prospect of thermal noise applied to the system and the

issues arising for our micromagnetic oscillators. To date, there appears to be no work for

an implementation of even a strictly Kuramoto model-based implementation of a neural

network for T ̸= 0. As the synchronization in the micromagnetic implementation proved

to be very sensitive to thermal noise, it would be prudent to explore the effect of thermal

noise on an otherwise idealized ONN implemented with the Kuramoto model only, before

it is extended to SHNOs, especially EP-SHNOs.

99



10 Conclusion and future work

10.1 Conclusion

This thesis has chiefly concerned itself with the spin-Hall effects and their presence in com-

puter simulations of two different spintronic devices: The spiking ferromagnetic neuron

and the spin-Hall nano-oscillator. In the former, we showed that a heavy metal/ferromag-

netic bilayer can be made to flip its direction by the application of a short, high-magnitude

current pulse. The subsequent flip is called a spiking event, and due to spin-Hall magne-

toresistancem it will create a characteristic current output. We can therefore create and

measure spiking events with the same conductor and current. However, our presented

device has a fundamental drawback in that it is not successfully blocking signals that

do not cause spiking events. In addition, the output voltage is very low compared to

the input and the shape is not right, meaning that our presented device can not cause

self-consistent propagation.

The easy-plane spin-Hall nano-oscillator (EP-SHNO) came as an extension of the setup

for the spiking neuron, by placing more spiking units on the same conductor and increasing

the current to create continuous spiking - auto-oscillation. This type of oscillator has

received less attention than the easy-axis spin-Hall nano-oscillator, and has not been

shown to synchronize. Additionally, previous work has primarily considered the coupling

SHNOs via their demagnetization fields. The inverse spin-Hall effect (iSHE) due to a

common conducting layer has not been explicitly studied.

It is shown herein that EP-SHNOs synchronize in both low-damping and high-damping

regimes. For low-damping, the synchronization is robust and with a negligible phase dif-

ference. For high-damping, the synchronization is dependent on the number of oscillators,

and synchronizes with large phase differences. This system may also phase-synchronize,

creating periodic oscillations in the phase difference that propagates from one oscillator

to another in a time-dependent manner. These phase differences are due to the material

properties of the oscillators, and do not depend on the initial configuration of phases.

iSHE is shown to be a desynchronizing factor, increasing the frequencies of oscillators

downstream of the charge current in a common conducting layer. It is shown that in

the case of synchronization, the voltage fluctuations due to spin-Hall magnetoresistance

(SMR) are minimized, showing its potential use for determining the synchronization of

a whole system. However, the synchronization of these oscillators appears to be highly

sensitive to temperature.

The synchronization of EP-SHNOs is shown to reliably break by tuning the natural

frequency. This is much the same as the Kuramoto model of coupled oscillators. With this

in mind, this thesis presents a setup for an oscillatory neural network (ONN) implemented

on four interacting EP-SHNOs, relying on a learning algorithm previously used for a
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similar implementation.

10.2 Future work

The attempted implementation of an ONN has issues regarding synchronization that needs

to be resolved before future work can be attempted. In particular, an evaluation of the use

of the Kuramoto model for this novel type of SHNO needs to be undertaken. Extending

the Kuramoto model to account for anisotropic effects, damping, and temperature may

improve its accuracy and thus obtain better results. Once completed, this system should

be made more experimentally viable, for instance by reintroducing a common conducting

layer between all the oscillators. A more detailed outlook is given at the end of Section 9.

In the implementation of spintronic devices, this thesis primarily considered the low-

damping case. This was a choice of material parameters that stuck, and was beneficial

due to the fast nature of their dynamics compared to their high-damping counterparts.

However, simulations of the high-damping EP-SHNO show interesting behavior for the

synchronization, differing wildly from the low-damping case. A thorough investigation

of its synchronization, desynchronization, and phase layout, with a subsequent evalua-

tion of its potential as an ONN device, should follow. Additionally, this thesis focused

entirely on EP-SHNOs that were coplanar, that is oscillating in the same xz-plane with

parallel hard-axes in the ŷ-direction. Future work should investigate the synchronization

of non-coplanar oscillators, either with perpendicular hard-axes or parallel hard-axes but

offset easy-planes. This would open for more complex system geometries and thus more

flexibility in their setup, allowing a possible ONN to consider more complex problems.
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[18] Alex Hubert and Rudolf Schäfer. Material parameters for domain analysis. In Mag-

netic Domains, pages 337–372. Springer Berlin Heidelberg, 1998. doi:10.1007/

978-3-540-85054-0_4.

[19] David J. Griffiths. Introduction to Electrodynamics. Cambridge University Press,

hardcover edition, 7 2017.

[20] Soshin Chikazumi. Physics of Ferromagnetism (International Series of Monographs

on Physics, 94). Oxford University Press, paperback edition, 6 2009.

103

https://doi.org/10.1088/1741-2560/13/5/051001
http://arxiv.org/abs/1705.06963
https://doi.org/10.1088/2634-4386/ac3258
https://doi.org/10.1109/tnano.2023.3250261
https://doi.org/10.1109/tnano.2023.3250261
https://arxiv.org/abs/2208.06565
https://doi.org/10.48550/ARXIV.2208.06565
https://doi.org/10.1093/acprof:oso/9780198570752.001.0001
libgen.li/file.php?md5=94087c4f24d630bdd7612d02caa359b9
libgen.li/file.php?md5=94087c4f24d630bdd7612d02caa359b9
https://doi.org/10.1007/978-3-540-85054-0_4
https://doi.org/10.1007/978-3-540-85054-0_4


[21] Massimiliano D’Aquino. Nonlinear Magnetization Dynamics in Thin-Films and
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