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Abstract

Following the introduction of generative large language models in society, concerns have
been raised regarding their potential for misuse in academia, and the threat they pose
to the standards of academic integrity. In this thesis, we explore the emergent problem
domain of detecting machine-generated text in academia. We focus our efforts on three
sub-problems of the problem domain: producing suitable data for training and evaluation
detection models, the development of two distinct approaches for detecting machine-
generated text in academic work using large language models, and finally, a discussion of
the social and ethical aspects of applying such detection tools in academia. We produce the
dataset using human-produced research abstracts and prompt GPT-3.5, the model used in
ChatGPT, to produce machine-generated counterparts. For detecting machine-generated
text in academia, we propose two distinct approaches, in-context learning and fine-tuned
binary sequence classification which both are novel in scope of the problem domain.
Our in-context learning approaches display poor performance indicating that the problem
currently is too complex for application using current open-access models. In contrast,
our fine-tuned binary sequence classification approaches perform well. The best models
achieve an accuracy above 98% on in-domain data generated by ChatGPT. Although these
results are promising, testing on out-domain data, such as cross-architecture and cross-
corpus data, displays weaker performances, entailing further research to be done in this
field. The thesis is concluded with a discussion of the social and ethical aspects of applying
large language models in academia. It is important that a discussion of how we adjust
to the disruptions of generative large language models is based on a scientific foundation
led by performance evaluations of proposed detection tools, and the social and ethical
implications of their widespread application. It’s through transparency from both sides
of the problem that we can reap the benefits of large language models while maintaining
academic integrity.



Sammendrag

Introduksjonen av store generative språkmodeller har nylig ført til store endringer i sam-
funnet. Innen for academia, blir det gitt uttrykk for bekymringer knyttet til deres potensial
for misbruk i akademiske kontekster dermed også trusselen de utgjør mot akademisk integ-
ritet. I denne bacheloroppgaven utforsker vi det voksende behovet for det å kunne oppdage
maskingenerert tekst i akademia. Vi vektlegger tre underproblemer i hovedproblemstillin-
gen: produksjon av et egnet datasett for trening og evaluering av deteksjonsmodeller,
utvikling av to distinkte metoder for å oppdage maskinprodusert tekst i akademisk arbeid
og til slutt en diskusjon om de sosiale og etiske aspektene ved å bruke deteksjonsverktøy
i akademia. Denne oppgaven viser hvordan et egnet datasett kan produseres ved å bruke
menneskeproduserte sammendrag fra forskningsartikler og få GPT-3.5, modellen som
brukes i ChatGPT, til å produsere maskingenererte dobbeltgjengere av de menneskeprod-
userte sammendragene. For å oppdage maskinprodusert tekst i akademia foreslår vi to
distinkte metoder, in-context learning og fine-tuned binary sequence classification, som
tidligere ikke er dokumentert i anvendelse for problemstillingen. Våre in-context learning
metoder viser svake resulter, noe som indikerer at problemet for øyeblikket er for komplekst
for nåværende open-source språkmodeller. I motsetning til dette, demonstrerer fine-tuned
binary sequence classification metodene våre gode resultater. Våre beste modeller oppnår
en nøyaktighet over 98% på in-domain data generert av ChatGPT. Selv om disse resultatene
er lovende, viser tester fra out-domain data, som kryss-arkitektur og kryss-korpus data,
langt svakere resultater, noe som innebærer at det trengs mer forskning på dette feltet,
men som samtidig understreker viktigheten av å trene modeller på in-domain dataset.
Oppgaven avsluttes med en diskusjon av de sosiale og etiske aspektene ved bruk av store
språkmodeller i akademia. Det er viktig at en diskusjon om hvordan vi tilpasser oss
endringene språkmodeller påfører samfunnet, er basert på bakgrunn av metodisk evalu-
ering av de potensielle deteksjonsverktøyene, og de sosiale og etiske implikasjonene av
deres utbredte anvendelse. Det er gjennom åpenhet fra begge sider av problemstillingen
at vi kan dra nytte av fordelene store språkmodeller tilbyr, samtidig som vi opprettholder
standardene våres for akademisk integritet.
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1 Introduction

In late November 2022, the powerful capabilities of artificial text generation, a subfield of
artificial intelligence (AI) known as language modeling, became widely known through the
research release of OpenAI’s chatbot service, ChatGPT. This technology opened the eyes
of the public with regards to the extraordinary capabilities possessed by state-of-the-art
large language models (Yang, 2022), demonstrating broad general knowledge combined
with human-level problem-solving abilities (Bubeck et al., 2023). GPT-4, the newly re-
leased limited-access next-generation large language model and descendant of ChatGPT’s
release model GPT-3.5, has for instance passed a large collection of exams, amongst
them the Uniform Bar Exam and the Medical Knowledge Self-Assessment Program, out-
performing the large majority of human performances on these high-regarded academic
benchmarks (OpenAI, 2023a). While large language models have proved their potential
for streamlining human tasks; assisting in creative, scientific, and commercial processes
(A. Lee, 2023), there are risks and challenges related to their rapidly growing capabilities
and ease of access.

Back in 2015, an open letter signed by Stephen Hawking, Elon Musk1 and a dozen
of AI-research experts, called for increased investment into research ‘aimed at ensuring
that increasingly capable AI systems are robust and beneficial’ (FLI, 2015) while avoiding
potentially irreversible consequences of irresponsible and immature applications in society.
The letter states that by necessity, it is an interdisciplinary problem domain involving
economic, sociological, juridical, and technical research efforts, among others. Following
the release of GPT-4, a new open letter, signed by an even greater number of high-
regarded AI researchers and tech leaders2, called for a temporary halt in the development
of AI systems more powerful than that of GPT-4 (FLI, 2023). The letter advocated for
an immediate 6-month pause for the purpose of researching and establishing profound
policies and other AI safeguard measures (FLI, 2023). Additionally, the letter identifies
several areas of interest:

• New and capable regulatory authorities dedicated to AI

• Oversight and tracking of highly capable AI systems and large pools of computa-
tional capability

• A robust auditing and certification ecosystem

• Liability for AI-caused harm and measures for reducing economic and political
disruptions caused by AI

• Robust public funding for technical AI safety research

• Provenance systems to help distinguish real from synthetic productions

1Elon Musk co-founded OpenAI in late 2015 as an open-source non-profit competitor to the AI-industry
leaders (OpenAI, 2015)

2Among the signers was Elon Musk yet again, which cut ties with OpenAI in 2018 due to ‘concerns over
the increasing privatization of the company’ (CNBC Television, 2023), which the following year switched
from non-profit to ‘capped-profits’ (OpenAI, 2019)

1



In this thesis, we focus on the latter field of interest; it addresses the critical need for
new techniques and standards for digital content provenance. Among the many sectors
impacted by the lack of thorough research on robust AI provenance systems and usage
policies for large language models, academia stands out. Although large language models
already have seen applications within academia as an educational tool (Alver, 2023), con-
cerns are raised regarding authenticity, factual reliability, and the promotion of intellectual
laziness (Yvette Mucharraz y Cano et al., 2023). The current capabilities of-, and ease of
access to large language models have the potential for undermining independent thinking,
problem-solving, and engagement with academic subject matter. Ensuring the appropriate
use of these technologies is therefore essential in maintaining the standards of academic
integrity and the culture of intellectual curiosity.

1.1 Problem definition

In this bachelor thesis, we explore how large language models can be leveraged to prevent
their own misuse, thus the title, Turning Poachers into Gamekeepers. We aim to provide
insights into how academic institutions can govern the use of text-generative language
models in evaluation tasks, research papers, and other academic endeavors which prior
to the public access to large language models required human intuition to complete.
By researching this, we will more specifically examine various approaches for using large
language models for detecting their own textual signature, referred to as machine-generated
text. The main research question of this thesis can be summarized as:

How can large language models be leveraged to detect machine-generated text in aca-
demia?

To provide an evaluation, the problem is further broken into distinct and pre-requisite
sub-questions:

• What data foundation is necessary for the development and evaluation of tools for
detecting machine-generated text, and how can such in-domain data be produced?

• What current and potential future approaches show promise in existing literature for
efficient and precise detection of machine-generated text, and how do they currently
score in performance evaluations?

• What are the social and ethical aspects of applying machine-generated text detection
tools in academic settings?

1.2 Problem domain contributions

The overall problem domain of this thesis can be summarized as detection of machine-
generated text in academia. This bachelor thesis specifically contributes to the problem
domain with:

• A Literature review of current research within the problem domain

2



• The production of an in-domain dataset, and a statistical analysis of language model
characteristics when generating targeted in-domain data for training and performance
evaluation.

• Development, implementation, and performance evaluation of two distinct detection
approaches, In-Context Learning and Fine-tuned Binary Sequence Classification,
both novel in the scope of the problem domain.

• Discussion of the social and ethical aspects related to the application of machine-
generated text detection tools within academia and the weighted importance of
task-relevant performance-evaluation metrics respective to academic applications.

1.3 Formulation of the thesis

This thesis, including the theory section, has been written with some prerequisites regard-
ing certain topics and terminologies. It is written with the assumption that the reader
possesses the knowledge of the curriculum provided in the two initial years of NTNU’s
bachelor’s program, Computer Science. This includes various statistical terms, the under-
standing of statistical diagrams such as boxplots, and scatter plots, in addition to various
terms from the domain of Engineering in Computer Science such as big O Notation which
also includes computational complexities.

1.4 Thesis structure

The structure of the thesis is provided with concise descriptions.

1. Introduction
Provides a short introduction to the encapsulation problem domain of the bachelor
thesis and the importance of providing research within this domain.

2. Theoretic foundation
Provides the theoretical foundation for understanding the content of the thesis, aside
from the assumed knowledge of the reader described in 1.3.

3. Research methodology
A presentation of the foundational research methodology and the applied configuration.

4. Literature review
Summarizes relevant research within the problem domain, including the social impacts
of large language models, detection approaches, and the importance of data foundation
within the scope of machine learning.

5. Dataset collection and in-domain dataset production
Presents the datasets used for training and evaluating the implemented detection ap-
proaches, in addition to the applied methods for producing and cleaning an in-domain
dataset for the specific case of machine-generated text detection in academic text. The

3



methods for optimizing the datasets for targeted learning and reformatting for the ap-
proaches which require training.

6. Setup for detection approaches
Describes in detail the setup for both of the detection approaches, in-context learning,
and fine-tuned detection.

7. Results and analysis
Results from the dataset production and statistical analysis of characteristics in the
generator model, including discrepancies between the human-written and machine-
generated texts in the produced dataset.

8. Discussion
The discussion section provides discussion related to the results, various performance-
evaluation metrics and the social and ethical aspects related to the problem domain.

9. Conclusion and Further Work
The conclusion is a summarization of the takeaways from this thesis in addition to
further suggested work within the problem domain.

Broader impact
This section describes the possible broader impacts of our work outside of research.

1.5 Additional resources

All code used for the production of this thesis, including the datasets and the implemented
detection approaches are available at:

github.com/IDATT2900-072/MGT-Detection

The produced dataset of human-written and machine-generated research abstracts, ChatGPT-
Research-Abstracts, is available at:

huggingface.co/datasets/NicolaiSivesind/ChatGPT-Research-Abstracts

The dataset collection formatted for binary sequence classification, Human-vs-Machine,
is available at:

huggingface.co/datasets/NicolaiSivesind/human-vs-machine

The fine-tuned models are available for testing3 and download at:
huggingface.co/andreas122001/roberta-academic-detector

3On this website, the models can be used directly for classifying text by using the hosted inference,
provided by HuggingFace. Simply write some text in the text box and click ”Compute”. We suggest trying
either of the RoBERTa models, as, at the release of this thesis, the Bloomz-models do not seem to not work
well with the hosted inference.
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1.6 Central terminology

As this thesis uses a range of various technical terms, we would like to outline the absolute
central terminologies crucial for understanding the content throughout the thesis:

• Human-written text refers to text which is written by a human and not a large
language model

• Machine-generated text in the scope of this thesis, refers to text which is generated
by a large language model. In general use, the term is defined as ‘text generated
using machine-learning techniques in order to resemble writing in natural language’
(Cornell University, 2023).

• MGT-detection refers to the main problem of the thesis: The task of detecting
machine-generated text (MGT).

For the purpose of readability, we have put emphasis on minimizing the use of acronyms.
There are still some local occurrences. All are defined prior to usage.
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2 Theoretic foundation

This section presents the theoretical principles used in this thesis and aims to provide a
basic understanding of its main themes.

2.1 Artificial intelligence and machine learning

Machine learning is a subfield within Artificial Intelligence (AI) that focuses on teaching
computers patterns and relationships in data. With sufficient training, they can make
decisions and compute predictions superior to traditional static computer algorithms and
in some cases, even humans.

2.1.1 Neural networks

A fundamental concept which the field of machine learning is built upon is neural networks.
A neural network consists of multiple interconnected layers of mathematical functions
which often are referred to as neurons. The connections between these layers are given
numerical values called weights, which determine the impact each neuron has on the
succeeding one. Each neuron also has a bias, which is a value added to the sum of all
its weighted inputs for additional adjustability. Combined, the neurons, their biases, and
the weights between them determine the final output of the network. We typically refer
to the sum of weights and biases as parameters. These are central as they govern the
model’s ability to represent complex features within data and allow the model to capture
and generalize intricate data patterns which then can be applied to new and unseen data.

2.1.2 The transformer architecture and its attention mechanism

Transformers are an artificial neural network architecture designed to handle sequential
data. They work with sequences of numerical values, typically generated by converting
discrete data such as words in a text, into a continuous numerical representation called an
embedding. These embeddings capture various characteristics of the data through encod-
ings, including its positional information. This preserves the sequential context during
the conversion process from discrete textual representations to numerical embeddings,
enabling the model to capture long-range dependencies within the sequential data. The
introduction of the transformer architecture by Vaswani et al. (2017), has since revolution-
ized the capabilities of text generative models, as the previous approaches like recurrent
neural networks 4 struggled to efficiently capture complex relationships and dependencies
in text, limiting their ability to generate coherent and contextually accurate outputs, which
as a result limited their capabilities.

The success of the transformer architecture is largely due to its attention mechanism, which
enabled better identification of global dependencies between input and output, ultimately

4understanding what RNNs are and how they function is not central for the scope of this thesis. We have
still mentioned it for comparison.
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evaluating the importance of different words in the text as a whole. This allowed for
significantly more parallelization in comparison to recurrent neural networks and enabled
efficient computation while easing the task of capturing complex relationships within the
text (Vaswani et al., 2017).

2.1.3 Large language models

Large language models are deep neural networks using the transformer architecture. In
recent years, they have seen great success within the field of natural language processing
which, in addition to the transformer architecture, can be attributed to their immense
scale in terms of parameters, training data, and training time, allowing them to effectively
capture the complexities of human language. Following the introduction of the transformer
architecture, researchers discovered that increasing the number of parameters in these
models generally enhances their ability to capture intricate features and relationships
within human text. By providing the transformer architecture with a vast number of
parameters and training it on a diverse and extensive corpus of text, over time its parameters
become so finely tuned that it exhibits high-level human-like capabilities in the domain
of text. Consequently, each new version of a large language model usually possess more
parameters and greater capabilities than its predecessor.

When describing the capabilities of a large language model, they are usually put in the
context of its size, which is typically expressed in terms of the number of parameters they
have, rounded off. The size is commonly represented using a numerical value followed by
a suffix indicating the order of magnitude:

• k: ‘thousand’ - 103 (100k = 100 000)

• m: ‘million’ - 106 (100m = 100 000 000)

• B: ‘billion’ - 109 (100B = 100 000 000 000)

The latest large language model releases can perform a wide range of complex textual tasks
with high accuracy and versatility, including text generation, text-summarization, problem-
solving, text classification, and question-answering, among others, making them capable
of mimicking human-like understanding and generation of natural language. Bubeck et al.
(2023) portrayed GPT-4’s capabilities, stating it ‘could reasonably be described as an early,
yet incomplete version of Artificial General Intelligence’.

2.2 Tokenization

In natural language processing, tokenization is the process of breaking down texts into
a sequence of smaller pieces of text, called tokens. Tokenization plays a crucial role in
encoding textual and other forms of discrete data into numeric sequences that language
models are able to comprehend and process. When tokenizing text, the tokens build up a
vocabulary of all possible tokens as an array, where each token is associated with an array
index, also called token-IDs.
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Simple approaches to tokenization can be taking each individual word or character, or
separating a text by a delimiter. More advanced techniques, e.g. subword tokenization
and byte-pair encoding5 allow for more control of the how the vocabulary is created,
by for example separating words into more frequently used subwords, and by combining
frequently used characters in a text to represent common prefixes, suffixes or affixes,
making it easier for language models to comprehend (Gupta, 2022).

”This sentence will be tokenized.”
⇓

Tokenization
⇓

[”This ”, ”sen”, ”tence”, ” will ”, ”be ”, ”token”, ”ized.”]
Figure 2.1: Example of how a text can be tokenized, here using no particular tokenization
method.

2.3 Language modeling: Autoregressive vs bi-directional

Language modeling is a sub-field of natural language processing (NLP), which with its
recent advancements is arguably becoming the de-facto approach for most NLP tasks. It
is defined as the estimation of probability distributions for sequences or sets of tokens
(Wikipedia, 2023). The core goal is to capture the underlying structure and patterns
within a language, which can then be used to make predictions and perform various
tasks related to understanding and generating text. There are two primary approaches to
language modeling: autoregressive and bi-directional. While both approaches implement
transformer architectures, they differ in their training objectives, text generation processes,
and model-specific modifications to the underlying transformer architecture, making each
approach better suited for different sets of problems.

In autoregressive language modeling, exemplified by models such as OpenAI’s GPT-series,
BigScience’s BLOOM, or MetaAI’s LLaMa, the primary focus is on the generation of text.
Autoregressive models do this by predicting the next token given the preceding tokens in
the input text sequence. This approach leverages the context provided by the preceding
tokens and iteratively builds upon it to generate coherent and contextually relevant text.

Bi-directional language modeling, exemplified by models like Google’s BERT, or RoBERTa
utilizes a masked language modeling objective during training. In this approach, a portion
of the input tokens is masked, and the model learns to predict the masked tokens based on
the surrounding context. This allows the model to consider both preceding and following
tokens in the sequence, making it a bi-directional model (Devlin et al., 2019). Although
BERT is not designed for text generation in the same way as autoregressive transformers,
it excels at tasks requiring a deep understanding of input context, such as filling in blanks
or completing sentences. The bidirectional nature of BERT provides a more comprehens-
ive view of the input context but makes text generation more challenging compared to
autoregressive models.

5Understanding how these advanced tokenization methods work is not central to understanding this
thesis, it is important however, to understand that the text is split into a sequence of tokens before processing
with a language model.
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2.4 Model logits in language modeling and perplexity

Model logits are the raw, unnormalized output values produced by a neural network model.
In the context of classification problems, logits represent a model’s confidence score for
each candidate/class in the class domain. To transform these logits into probabilities, an
activation function, such as softmax, is applied to calculate the normalized probabilities
relative to each other. This transformation results in a normalized probability distribution,
often referred to as the probability distribution. The sum of all probabilities in a normalized
probability distribution adds up to 1.0, as the total probability of all possible outcomes
must equal to 100%.

Model logits are also the metrics used in autoregressive text generation (Papers With
Code, 2023). Given a sequence of tokens, an autoregressive model computes a logit for
every token in its ’vocabulary’, and the new generated token is selected from a small pool
of tokens with the largest probabilities (Hugging Face, 2022). With this perspective, the
steps in autoregressive language modeling can fundamentally be categorized as a series
of classification problems. It should still be mentioned that there are multiple layers of
algorithms within the token selection process to promote diversity in outputs and avoid
repetitive patterns, amongst others, but these are on a higher abstraction-level and do not
modify the computed token-logits (Hugging Face, 2022).

An interesting zero-shot in-scope6 classification approach which is based on model logits,
involves using the same procedure as in autoregressive generation of text to produce
token-logits for each token in an input text sequence. Since logits are computed for all
available tokens in the models ’vocabulary’, these can be used to measure the distance
between a token in a real text, and the likelihood of a specific model actually producing
this token (Face, 2023). Adopted from the field of information theory, this distance is a
metric referred to as perplexity (Jurafsky and Martin, 2023).

Perplexity is a measure of an autoregressive language model’s ability to predict the next
token given a preceding sequence of tokens. It is calculated as the inverse probability of
the true next token, according to the model’s probability distribution, raised to the power
of 1/𝑁 , where 𝑁 is the total number of tokens in the text (Jurafsky and Martin, 2023).
Unlike in autoregressive text generation where logits are used to extend the text sequence,
perplexity is applied as a loss function. Its application is to evaluate the model’s ability to
generate the next token in a real text and can for instance be used to fine-tune models for
specific language styles. As with all loss functions, a low score indicates that the model
does well in predicting the next true token, while larger perplexity scores indicate that
the token is more unexpected for the model. Conversely, perplexity can be applied as a
measure of how likely a text is to be produced by the model by calculating the perplexity
score of all tokens in a sequence and applying a binary cross-entropy loss function to
measure the similarity between the model’s predictions and the actual text (Huyen, 2019).

6Discrimination of human-written text vs. machine-generated text in academia
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2.5 Formulating MGT-detection as a binary sequence classification
problem

The problem of detecting if a text is generated by a machine or not can be formulated as
a binary sequence classification problem where a classifier, or detector, tries to classify
a sequence of tokens (see section 2.2) as being either positive (1), meaning machine-
generated, or negative (0), meaning not machine-generated, or more specifically human-
written. To train a detector means to maximize the probabilities of the detector classifying
the sequence as ”1” if the sequence is machine-generated and ”0” if the sequence is
human-written.

2.6 Metric performance evaluation of binary classification models

In a binary classification problem, the model’s performance can be measured by looking
at how many times it correctly labeled the data as positive or negative, also called true
positives (TP) and true negatives (TN), and conversely how many times it falsely labeled
the data as positive (FP) and negative (FN). From these numbers, metrics such as accuracy,
precision, f1-score, and recall can be measured.

Accuracy: This metric measures the overall correctness of the classifier. However, this
metric can be misleading if the number of each class is imbalanced, which is often the
case in real-world settings. This metric is calculated as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

Precision: This is the ratio of true positive predictions (correctly identified machine-
generated texts) to all positive predictions (all texts identified as machine-generated).
High precision means that when the model predicts a text as being machine-generated, it
is likely to be correct. This is calculated as:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

Recall: This is the ratio of true positive predictions to all actual positives (all actual
machine-generated texts). High recall means that the model is good at identifying machine-
generated texts when they are present. This is calculated as:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

F1-score: This is the harmonic mean of precision and recall, and it tries to balance the
two. It gives a weighted average of both precision and recall, calculated as:

𝐹1 = 2 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(4)
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2.7 Zero-shot and few-shot learning

There are various methods for approaching classification problems in natural language
processing. Among these are n-shot approaches, where 𝑛 refers to the amount of labeled
data/examples provided to the models at training-, fine-tuning- or inference time.

Zero-shot learning, initially called dataless classification (Chang et al., 2008), refers to
the ability of a model to generalize and perform tasks without any task-specific labeled
data. It can be applied across different domains and tasks, including in-context learning,
as well as most NLP tasks.

Few-shot learning refers to the problem of teaching machine learning models underlying
patterns in data based on a small number of labeled examples (Parnami and M. Lee,
2022), hence the term ”few-shot”. This approach can be applied in conjunction with a
range of methods for teaching neural networks, such as in-context learning, fine-tuning,
and for instance, episodic learning, which focuses on training models in few-step episodes
of distinct problem domains with the goal of improving the model’s ability to generalize
based on limited labeled examples7 (Laenen and Bertinetto, 2021).

2.8 In-context learning, prompt-engineering, and context windows

Due to the recent advancements regarding the capabilities of large language models, in-
context learning has emerged as a new paradigm within natural language processing. The
concept of in-context learning is to leverage the generalization abilities of autoregressive
large language models by providing task-specific information within one or more input
texts at inference-time8, relieving the need of weight-adjustment and the various costs
and pre-requisites related to them. This is done entirely through prompting, where the
specified task is defined in natural language.

In-context learning can be applied in both zero-shot and few-shot settings. In its simplest
form, any conversation with a large language model can be considered as being in a
zero-shot setting as the model is using the context of the conversation to produce adequate
responses. Typically, for evaluating zero-shot performance, more carefully crafted prompts
containing task-specific requirements and context are applied. The process of crafting
prompts for optimizing the performance of a generative language model is referred to as
prompt-engineering.

In addition to this, language models are also able to learn relationships in-context if labeled
examples are provided in the input text along with the prompt9. When adding labeled
examples, ultimately applying supervised learning, the approach is then considered to be
in few-shot setting.

One significant constraint of in-context learning is the context window size, which refers to

7While episodic learning is a method which is not approached in this thesis, we have still included it as
an example for outlining that there are many applications for few-shot learning.

8The process of using a trained machine learning model to perform a task
9A prompt is the instruction section of an input text. The input text may also contain other elements,

such as for instance labeled examples, but these are not considered as a part of the prompt.
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the maximum number of tokens a language model is able at process at a time. In simpler
terms, the context window size represents how many tokens the model can hold as context
when generating a response, including the response itself. Although the model is able to
continuously generate outputs and accept new inputs, when the context window limit is
reached, the window shifts towards the most recent tokens, causing the earlier tokens to
be removed from the context (Brown et al., 2020). This is often referred to as a sliding
window and is common in various computer science applications.

While the context window size is not strictly restricted by the architecture, it is a fixed
length that is set due to computational costs. The attention-mechanism in the transformer
architecture has a quadratic computational complexity, 𝑂 (𝑛2), where 𝑛 is the number
of tokens processed for context (Kitaev, 2020). This ultimately restricts today’s open-
access models to relatively small input sizes. GPT-3 (175B) currently have a fixed
context window size of 4096 tokens (Brown et al., 2020), and while the context window
size of open-source models like BLOOM (176B) and LLaMA (65B) can be adjusted
based on the available computational resources and memory limitations of the system on
which the model is hosted on, using these models for longer sequences would require
expensive computations as they are restricted by the same attention-mask complexity.
Although, there are workaround architectures like the Longformer (𝑂 (𝑛)) or the Reformer
(𝑂 (𝑛𝑙𝑜𝑔(𝑛)) which have proved valuable for long document tasks, they come with trade-
offs within general model capabilities and training complexity compared to the traditional
transformer architecture (Beltagy et al., 2020).

2.9 Transfer learning and fine-tuning

In machine learning, transfer learning is a set of techniques where solving a task is based
on using pre-existing knowledge or learned representations acquired from solving other
related tasks, in contrast to solving the problem by starting completely from scratch.

An example of transfer learning is the fine-tuning of pre-trained large language models.
The process of fine-tuning involves taking a general-purpose pre-trained model, trained
on a large amount of general data, and further training it on data specific to the task to be
solved. This is particularly useful in language modeling, where a large, general-purpose
language model is fine-tuned to perform a specific, downstream task, like classifying if a
text has positive or negative connotations. The fine-tuned model will inherit the general-
purpose model’s knowledge and capabilities that can also be useful for the downstream
task, like text comprehension, avoiding training a completely new model for only the
downstream task.

2.10 Dataset splits

When training and evaluating machine learning models, it is customary to split the dataset
into multiple subsets called splits. This is done to prevent biased results when evaluating
the model after it has been trained, by separating training data from test data. When the
model is tested, the model will not have seen the correct classifications for the test data,
which it has for the training data. This ensures that the model generalizes properly on the
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data, and does not overfit on the training data.

For practical supervised learning problems, the dataset is typically divided into three splits:

• Train-split
This split is the largest split and is used to train the model.

• Validation-split
This split is used to evaluate the performance of the model during training, and is
used to monitor of the model is overfitting on the training set which then can be
prevented.

• Test-split
This split is used additionally to measure the final performance of the model after
training and is used to see how well the model would perform on real-world data.

2.11 Design science research methodology

Design science research is a research methodology that focuses on the development and
performance of artifacts designed for the purpose of improving current paradigms within
a scientific field. Its core goal is to provide valuable knowledge to a set problem domain,
which can be used to improve functionality, performance, efficiency, or practicality of
techniques, algorithms, and other relvant tools depending on the specific problem domain,
typically referred to as artifacts (Brocke et al., 2020). It is a research methodology
that typically is applied in the domains of engineering and computer science where the
goals often are to optimize the current paradigms in the problem domain. This can
for instance involve testing novel approaches to the problem at hand or improving the
current established approaches. The methodology consists of two main activities, build
and evaluate. Build consists of designing artifacts intended to achieve the set goals with
respect to the problem at hand, while evaluate involves assessing its performance in
the domain and communicating the knowledge gained by these performance evaluations
Brocke et al. (2020).
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3 Research methodology approach

This section aims to provide a clear description of the applied research methodology
approach, and process used to conduct our work in a scientific manner.

3.1 Research approach

The research approach used for conducting the research presented in this thesis is an
approach to the research methodology design science research. The following are the
distinct stages of the research approach:

1. Experiences and motivation
Useed prior experience and motivation to formulate a problem domain and specific
problem definition.

2. Literature review
Conducted a thorough literature review as a foundation for our dataset collection,
detection approaches, and discussion of social and ethical aspects.

3. Design theorization
Based on the findings from the literature review, the designs for our detection
approaches were outlined and theorized.

4. Dataset collection
Using the selected and theorized detection approach designs, datasets for performing
model training and performance evaluations were both gathered and produced.

5. Implementation
The theorized designs were prioritized and implemented based on our design the-
orization.

6. Performance-evaluation and optimization
Iteratively test, evaluate and experiment with hyperparameters and intra-approach
techniques.

7. Document and discuss
Document and discuss the results from dataset production and the final performances
of the optimized detection approach implementations.

The listed stages were set prior to the initialization of the project and were followed
throughout the entire process of our research. They can also be found in the preliminary
project plan and mid-way bachelor poster. The purpose and goal for each stage are defined
in their respective subsections.
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Figure 3.1: The flow of our research stage completion. The figure displays a flowchart
for the general research flow of each stage of the research approach. The incremental
optimization in performance evaluation and optimization is presented as a loop to em-
phasize the recurrent nature of this stage. For dataset collection, implementation, and
performance-evaluation and optimization all direct to document and discuss as each intra-
stage milestone was continually documented following its completion.

3.2 Approach process

In this section, we describe the process for each of the outlined stages in our research
approach. The takeaway from each stage is described alongside reasoning for relevant
decisions made during each stage which impacts the following stages.

3.2.1 Experiences and motivation

Through experimentation with various language models and assessing their potential for
misuse within academia, the formulation of the problem domain was made. Following
this, the specific problem definition was developed through formulation a main research
question and deriving the core sub-problems from this. Further detail is described in
section 1.1.

3.2.2 Literature review (research process)

A literature review was conducted to assess the current research that has been done in
the field. This literature review was conducted through a comprehensive search and
careful analysis of various relevant academic works, research studies, and publications
related to the topic. This laid the foundation for producing the designed artifacts used for
subsequently answering the research questions of this thesis.

More specifically, the literature review served to:

• assess potential social impacts of language models and the need for MGT-detection.

• identifying prior research done and existing methods for MGT-detection.

• identifying potential gaps in the research on MGT-detection.

From the literature review, a set of existing and potential methods for MGT-detection
was found. These methods include two established methods; fine-tuned detection, and
perplexity, and one less documented, in-context learning.
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3.2.3 Design theorization

With respect to the problems and existing methods found in the literature review, the
approaches which showed promise with respect to previous success within the problem
domain or in similar problem domains were outlined and theorized for application of
MGT-detection in academia. The theorized designs also defined the further needs in the
next stage of data collection.

From the literature review, we outlined three main approaches for MGT-detection:

1. Perplexity

• Use language models to calculate model logits for each token in a text and set
a perplexity score threshold for what is predicted as human-written text and
machine-generated text. Perplexity scores above this threshold are predicted
as human-written text while scores below are predicted as machine-generated
text 10.

• Entirely zero-shot approach, requires only data for performance evaluation.

2. In-context learning

• Provide a language model a text to predict as either human-written or machine-
generated, and prompt describing the task it is to perform.

• Leverages the pre-existing capabilities and knowledge of language models to
determine the class of the provided text.

• Can be applied in both zero-shot and few-shot settings.
• Requires a small amount of data to be provided as labeled examples in few-shot

settings, as well as data for performance evaluation of both settings.

3. Fine-tuned binary sequence classification

• Fine-tune a pre-trained language model for binary sequence classification
• Applies transfer learning to efficiently optimize the model for the downstream

task of MGT-detection in academia
• Requires a considerable amount of data for training, in addition to data for

performance evaluation.

Within each of the approaches, lower-level techniques for performance optimization were
also applied. We later refer to these as intra-approach techniques. The specific application
of these techniques is presented in section 6, Setup for detection approaches, while the
corresponding literature supporting these techniques are provided in section 4, Literature
review.

10As perplexity measures the loss in the model’s ability to predict the next token of a provided text
sequence, lower scores are considered less unexpected to the model while larger values indicate that the
model finds the token more unexpected
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3.2.4 Dataset collection

With respect to the approaches outlined in section 3.2.3, the necessary data was collected.

From the literature review we found that for implementing the outlined approaches, in-
domain data was desirable. With respect to the problem domain this is specifically
human-written- and machine-generated academic texts. As we also wanted to compare
the performance of our best-performing approaches, out-domain data was also collected.

During the process of collecting data for the approaches, we found one dataset suitable
for out-domain training and performance evaluation: GPT-wiki-intros, which contained
human-written and machine-generated Wikipedia introductions. No other suitable datasets
were found, and a conclusion was drawn that an in-domain dataset had to be produced.
For this, we found a dataset containing scientific research abstracts. This was used to
sample a subset of the human-written academic texts in our dataset, while also being used
for targeting a language model to generate corresponding machine-generated academic
texts. Further detail about the collected dataset and the self-produced dataset is provided
in section 5.

Following the collection and production of the datasets, the statistical analysis of the dataset
and the characteristics displayed in the model used for generating the machine-generated
texts were performed. This was done prior to implementing and evaluating our detection
approaches such that any undesired characteristics in the dataset could be mitigated in the
performance evaluations of our proposed detection approaches.

3.2.5 Implementation

When entering this stage of the research project, we used our theorized designs from design
theorization phase to develop and implement the various approaches for MGT-detection.
The data collected during the data collection stage is described in section 3.2.4.

In this stage, the foundational implementation of our approaches to be used for perform-
ance evaluation in MGT-detection in academia, was developed. Due to time constraints
associated with a bachelor thesis, only two of the theorized approaches could be imple-
mented with proper evaluation and documentation. Most MGT-detection tools available
since the emergence of the thesis problem domain have been implemented with perplexity
as the base metric for MGT-detection. Various research papers have already been released
documenting the performance of this approach, such as DetectGPT proposed by Mitchell
et al. (2023). During the literature review, no documentation of in-context learning and
fine-tuned sequence classification for MGT-detection in general was found. Due to this,
a prioritization of providing valuable insight to novel approaches rather than optimizing
previously documented approaches such as the perplexity-based approach we outlined in
section 3.2.3. The focus was set on the exploration of in-context learning and fine-tuned
sequence classification to provide unique, novel, and valuable contributions to the thesis
problem domain.
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3.2.6 Performance-evaluation and optimization

Following the foundational implementations of the prioritized approaches, the stage of
performance-evaluation and optimization11 was initialized. In this stage, we exposed the
various approach variations12 to performance evaluation. Based on the results collected
in these tests, adjustments were made to explore if the approach had the potential to be
optimized. This involved testing various hyperparameters, combinations of testing data,
and applying distinct combinations of the intra-approach techniques found during the
literature review.

3.2.7 Document and discuss

This stage was initialized at the end of the data collection stage, and alongside the
implementation and performance evaluation and optimization stages. This was done to
continually document each completed milestone within the respective stages. The dataset
collection and -production were first documented alongside the statistical analysis of the
self-produced dataset. See section 3.2.4 for details. Following this, the performance
evaluations of the detection approaches were performed and documented. Following the
documentation of the detection approaches, each of the results were discussed, before
finalizing the report with the necessary contextual and supplementary sections such as the
introduction (section 1), theoretic foundation (section 2), research methodology (section
3), discussion of social and ethical aspects (section 8.5) and the conclusion (section 9),
each with regard to our defined research questions (section 1.1).

The final result of this stage is this report.

11In our preliminary project plan, we named this stage testing, evaluation, and adjustment. This was later
renamed for clarity, but the purpose and execution of the stage remain unaffected

12Each of the main approaches had sub-configurations which we refer to as approach variations
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4 Literature review

The aim of this section is to provide an overview of the existing research on MGT-detection,
both to identify previous work in the field and to identify gaps in the literature. Based
on the findings of this review, we define the methods that are used for further research.
To assess the need for MGT-detectors, we will first discuss the potential problems and
social impacts of using machine-generated text and language models, and the research
that has been done in this field. Existing methods for MGT-detection and their potential
usage in this thesis are then discussed. Finally, a discussion of the usage of datasets for
MGT-detection and what the literature suggests for generating such datasets is presented,
as it is an important aspect of most machine learning problems.

4.1 Social impacts of large language models

As language models are trained on large corpora of human text data, they will predictably
inherit certain biases present in this data. As shown by Solaiman et al. (2019) and
Brown et al. (2020), text generated by language models may reflect stereotypical and
biased opinions on topics such as gender, race, and religion. For instance, GPT-3 has a
higher probability of generating male identifiers when asked to complete sentences about
occupations tied to higher education and has a tendency to attribute positive and negative
words differently depending on race (Brown et al.). In addition to this, language models
have been notoriously known to generate hallucinations13 and factual errors (Zhao et al.,
2023). This is a problem, as users of these language models are often unaware of these
issues of such models.

This is especially concerning when considering language models being used to assist in
academic writing, as the models could potentially effectuate their biases and errors into the
writing of the researcher and thus affect the results expressed in the subsequent research
paper. Such manipulation of opinion is demonstrated in a recent study by Jakesch et al.
(2023), where they assessed the effects of using opinionated language models as writing
assistants. They found that such assistants were able to alter the opinions of the writers,
and sometimes were able to considerably affect the view of the writing. This could also
be problematic when considering adversaries maliciously making models opinionated to
support certain opinions or viewpoints.

Other examples of the potential for malicious usage of language models can also be found
in the literature, such as fake news generation and generation of content used for spam and
phishing attacks (Weiss, 2019). In a research paper on their language model Grover, trained
exclusively on news articles, Zellers et al. (2020) found that propaganda and fake news
generated by Grover was more trustworthy to humans than human-written propaganda.
Solaiman et al. (2019) and Brown et al. (2020) discuss the potential for similar usages in
their threat assessment for their respective models, GPT-2 and GPT-3.

Recent concerns have also been raised on if language models can be used maliciously in

13A language model is said to hallucinate when they generate content that is factually or objectively
wrong, often in a confident manner.
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academic writing, for instance by plagiarism-avoidance or ghostwriting14, as to wrongly
gaining good academic results. In a study by Khalil and Er (2023), it was found that
ChatGPT, when asked to produce essays on various topics, was able to generate content
of high originality in 40 out of 50 essays, as evaluated by plagiarism-detection software,
emphasizing the pressing concerns of language models ability to avoid detection. Ad-
dressing these threats requires the development of accurate detectors, as also pointed out
by Jawahar et al. (2020).

4.2 The importance of data

The performance of machine learning models is strongly influenced by the quality and
relevance of the datasets used for training, fine-tuning, and performance evaluation. In
the release paper of Google’s bi-directional language model, BERT, Devlin et al. (2019)
demonstrate state-of-the-art results even with relatively small amounts of task-specific
training data. They effectively transfer knowledge from pre-training to downstream tasks15,
reducing the need for extensive task-specific training data in fine-tuning approaches. This
finding suggests that when fine-tuning pre-trained language models, the size of the dataset
has less impact on performance than the quality and relevance of the data. This is partly
backed up by the findings documented by Bakhtin et al. (2019) which concludes: ‘matching
the domain of the training set is more important than model complexity’ (Bakhtin et al.,
2019).

In addition to this, Bakhtin et al. (2019) observed that their classifier learns to recognize the
characteristics of the machine-generated text and identify outliers as human-written text,
rather than the other way around. They argue that, a liability of this is that as various text-
generative models are pre-trained on corpora that may contain non-overlapping subsets and
also differ in architecture-specifics, their output texts inhibit slightly different signatures.
While there are shared characteristics among texts produced by separate text-generative
models, the generator-model(s) which are used to produce the machine-generated samples
in the training data still affects the detection-model’s internal representation of machine-
generated text and consequently, its ability to differentiate between real and generated
text.

Furthermore, Uchendu et al. (2020) suggests an alternative to the binary classification
problem called ”Authorship Attribution”, where instead of only detecting if the text was
written by a language model or not, additionally identifying which language model gener-
ated the text.

From these findings, we can observe that the overarching detection problem can be de-
composed into specialized sub-problems, each focusing on distinct aspects while sharing
the same primary goal of detection:

1. Binary classification of single-architecture model-signature
This sub-problem focuses on detecting text generated by a specific target model. The

14To write a text on behalf of someone else and officially crediting the text to the other person.
15In self-supervised learning, a downstream task is the main task to be solved, whereas upstream tasks

are additional tasks that are learned as a result of solving the downstream task.
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detection model is trained to discriminate between human-generated text and text
generated by the target model. By honing in on the unique signature of the target
model, the detection model can accurately identify whether a piece of text was
generated by the target model or not. This strategy may work well for applications
where the primary concern is detecting text generated by a particular model, but it
may have limited effectiveness against text generated by other models.

2. Binary classification of multi-architecture model-signature
In this sub-problem, the detection model is trained to identify universal character-
istics of machine-generated text, regardless of the specific model used to generate
the text. This means the detection model is less focused on the unique signature of
a single target model and more focused on the shared characteristics among texts
produced by different text-generative models. This sub-problem enables the de-
tection model to be more robust against a broader range of text-generative models,
but it may be less precise for discriminating between human-written and machine-
generated text compared to proposed solutions for the first sub-problem, where all
machine-generated data points are produced by a single text-generative model.

3. Multi-label classification of single-architecture model-signatures
This sub-problem goes beyond binary classification and aims to identify not only
whether a text is human-written or machine-generated, but also which specific
model was used to generate the text. The detection model is trained on samples
from multiple text-generative models, learning to recognize the distinct signatures
of each model. Solutions to this sub-problem can be beneficial in situations where it
would be desirable to know the source of the generated text, such as in understanding
the strengths and weaknesses of various large language models in generating text or,
if we look outside the scope of academia; tracking the use of a specific text-generative
model for malicious purposes.

Given that the latter two sub-problems require access to the text generated from a variety
of text-generative models, which due to the novelty of the problem domain has not yet
become publicly available, they are out of the scope of this thesis, and the main focus
will primarily be on Binary-domain classification of target model’s signature, with some
cross-testing between detection of two different target-models.

4.3 Methods of detection

The problem of MGT-detection is an emerging field of study with growing interest. As a
consequence, the literature in this field is rapidly evolving. The following will present the
literature on the methods that have been tried before.

The methods that can be found in the literature can be categorized into three categories:

• Classical neural classification models
Training of classical neural networks from scratch to classify a text as either human-
or machine-generated.
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• Fine-tuned detectors
Using pre-trained language models to classify text by replacing the output-layer with
an uninitialized classification layer and fine-tuning the model on human-written and
machine-generated text.

• Zero- and few-shot detection
A suite of methods where pre-trained language models are used directly, without
further training, to calculate token probabilities in conjunction with statistical meth-
ods.

Following is a more in-depth assessment of these categories.

4.3.1 Classical neural classification models

Solaiman et al. (2019) trained a logistic regression neural network on a dataset of real
and generated samples of the WebText-dataset, where they achieved an accuracy of ap-
proximately 74% on samples generated by the larger GPT-2 model (1.5B), demonstrating
the potential efficacy of such models. They also found that when limiting Top-K to 40,
the accuracy increased to 93%, suggesting that such classificators are sensitive to model
configuration, e.g. sampling method. Additionally, they found that shorter texts are harder
to detect when using these models. Similar work was done by Bakhtin et al. (2019) in their
extensive research on using energy-based models to discriminate between human-written
and machine-generated text, which was also discussed in section 4.2. One of the find-
ings from their work was that their model did not generalize well cross-corpus, meaning
that when training on e.g. book-texts, the model did not perform well on e.g. detect-
ing machine-generated Wikipedia articles, and vice-versa. This suggests that training on
task-specific text data might be better than trying to detect generally generated text.

A drawback of such models, which is important to note, is that building neural networks
from scratch can be an advanced procedure, and is often associated with immense resource-
and data requirements, which in turn can make testing such methods impractical or
infeasible for low-resource researchers.

4.3.2 Fine-tuned detectors

The most prominent results, however, have been from fine-tuning large pre-trained lan-
guage models to detect itself or other, similar models.

An example of this can be found in the work of Zellers et al. (2020), where they fine-tuned
their language model GROVER to detect outputs from itself across multiple model sizes16
and evaluated the results against existing detectors like FastText (Joulin et al., 2016) and
BERT (Devlin et al., 2019). They found that the GROVER model outperformed existing
detectors, with an accuracy of 92% (with GROVER-large) against 73%, suggesting that
the best model to detect outputs from GROVER is GROVER itself. They also found
that larger versions of the model achieved a higher accuracy on smaller versions and,
conversely, smaller models achieved a lower accuracy on larger versions.

16GROVER-base, -large and -mega with 124M, 355M, and 1.5B parameters, respectively.
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Another example can be found in the work of Solaiman et al. (2019), where they also
tested their GPT-2 model on fine-tuned detection. Here they fine-tuned various sizes17 of
the RoBERTa model for sequence classification on GPT-2 output, where they achieved a
SOTA18 accuracy of approximately 95%. Similar, but not identical to Zellers et al. (2020),
they found that training on output from larger models increased the accuracy on detecting
smaller models, regardless of the detector’s size. Partly in contrast to Zellers et al. however,
they found that a GPT-2 model of equivalent size to the RoBERTa model performed worse
at detecting GPT-2 output, concluding that a model itself is not necessarily the best model
for detecting itself. They argue that this is expected, however, due to RoBERTa being an
autoencoding model, which should perform better than autoregressive models like GPT-2
on sequence classification (Solaiman et al., 2019).

4.3.3 Zero- and few-shot detectors

As new and better language models are likely to be developed in the future, it might not
be feasible to retrain or fine-tune new detectors every time a better generator is released,
which would lead to a constant cat-and-mouse game of training new models. Incidentally,
there is another suite of methods that requires no training, by using language models as-is
in a zero- or few-shot setting.

Gehrmann et al. (2019) presents the GLTR tool, a tool for color-coding and visualizing
individual tokens in a text based on the probability that the token is generated or not.
This probability is calculated by inputting the previous tokens to the same or a similar
language model and getting the predicted output for that token from the model, thus seeing
how likely the model is to generate that specific token given the previous tokens. As
with autoregressive text generation, this is done by iterating through all tokens of the text
and using the previous sequence as context for producing the model logits. Although
this method is advantageous for detecting hybrid texts (machine-generated and edited
by a human), it lacks the possibility for automatic detection, as the color-coded tokens
necessarily have to be evaluated by a human, making it hard to measure the performance
of this method. Solaiman et al. (2019) takes this method further by allowing for automatic
detection where, instead of highlighting individual tokens, they take the total probability
of all tokens and determine if the whole text was generated or not by a threshold of the total
probabilities. This method was proven to be surprisingly efficient (ca. 83% accuracy) and
has later been improved upon by Mitchell et al. In the work of Mitchell et al. (2023) they,
instead of taking the raw sum of total probabilities of each token, perform minor rewrites
to the text using another large language model, then take the average of the logarithm of
each original probability over the rewritten probabilities to determine if a text is generated
by this model or not. A higher average of log probabilities indicates a higher likelihood
of the text being generated by the same model. This method achieved better results than
other existing zero-shot methods.

There has also been research conducted on the use of in-context learning in zero- and
few-shot settings. In the paper ‘Language Models are Few-Shot Learners’ by Brown
et al. (2020), they demonstrate GPT-3’s impressive performance in in-context zero- and

17RoBERTa-base and -large with 125M and 356M parameters, respectively.
18short for state-of-the-art
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one-shot settings, while occasionally outperforming state-of-the-art methods in in-context
few-shot settings. They document that scaling up language models greatly improves
task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior
state-of-the-art fine-tuning approaches. In addition to this Brown et al. states that in
general, the performance gap between zero-, one-, and few-shot learning increases with
model capacity (Brown et al., 2020), as can be seen in table 4.1.

Figure 4.1: Various in-context learning performances presented by Brown et al. (2020)
stating, ‘Larger models make increasingly efficient use of in-context information. We
[Brown et al.] show in-context learning performance on a simple task requiring the model
to remove random symbols from a word, both with and without a natural language task
description. The steeper “in-context learning curves” for large models demonstrate an
improved ability to learn a task from contextual information. We see qualitatively similar
behavior across a wide range of tasks’ (Brown et al., 2020)

For binary classification tasks, which also is the task domain of detecting whether texts
are human-written or machine-generated (MGT-detection), Brown et al. shows promising
results for in-context learning, respectively 88.3%, 89.7% and 88.6% accuracy in zero-
shot, one-shot, and few-shot settings. The task applied in the paper was a slightly modified
version of Winograd Schemas Challenge in the SuperGLUE benchmark19, which Brown
et al. refer to as a ‘classical task in NLP [natural language processing] that involves
determining which word a pronoun refers to when the pronoun is grammatically ambiguous
but semantically unambiguous to a human’ (Brown et al., 2020). While the original
SuperGLUE benchmark task collection also belongs to the binary classification domain
depending on the specific individual task, it was modified in the paper to align with the
binary classification problem of correctly resolving the pronoun reference (Brown et al.,
2020).

An example of in-context learning specifically being used for MGT-detection is demon-
strated by Khalil and Er (2023) in their paper on plagiarism, also discussed above. In their

19The SuperGLUE benchmark is a collection of tasks designed to evaluate the performance of language
models in advanced natural language processing tasks.”
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study, they took the 50 articles they generated with ChatGPT and then inputted the articles
into ChatGPT together with a prompt asking if the given text was generated by itself or
not. They found that 46 out of 50 articles were successfully identified as being generated,
achieving an accuracy of 92%. It is important to note however, that as they did not include
real samples in their tests, false positives and true negatives are impossible to calculate
for these tests, meaning the results could be biased, entailing more research to accurately
assess the performance of this method.

4.3.4 More on in-context learning

In a paper by Dong et al. (2023), it was found that the performance of in-context learning
is greatly dependent on a range of parameters. Among these are:

1. The formatting of the prompt20
The performance of in-context learning is severely sensitive to the content of the
instruction prompt. Dong et al. (2023) discusses how well-formulated instructions,
which describe the task precisely, in general, improve the inference performance
of in-context learning. They also found that having instruction prompts of low
perplexity in the detector model can improve performance. In addition to this
Dong et al. refers to Instruction Inductions proposed by Honovich et al. (2022).
Honovich et al. found that given several labeled examples, language models are
able to generate suitable task instructions. This aims to improve the quality of
automatically generated instructions by reducing the reliance on human-written
sentences.

2. The selection of labeled examples
A variety of methods can be employed to select a subset of examples from a pool
of training examples for in-context learning. Dong et al. categorize these into
unsupervised selection approaches, which rely on pre-defined metrics without re-
quiring labeled examples, and supervised selection approaches, which combine
unsupervised selection methods with data-driven approaches, such as reinforce-
ment learning, to optimize example selection using performance accuracies as
reward-functions. Notably, Liu et al. (2021) achieved decent results using k-nearest-
neighbors as an unsupervised selection approach, selecting neighbors based on a
predefined metric (Dong et al., 2023).

3. The scoring function for determining selected answer
There are also various approaches for determining the certainty of the model’s
prediction, in A Survey on In-context Learning this is presented as the scoring
function. The scoring function transforms the predictions of a language model into
an estimation of the likelihood of a specific answer. Dong et al. (2023) presents two
widely-used scoring functions which are relevant to the problem domain: Direct
and Perplexity. Direct adopts the conditional probability of candidate answers, but
this poses some restrictions on template design, not allowing the model to reflect

20As mentioned in section 2.8: A prompt is the instruction section of an input text. The input text may
also contain other elements, such as for instance labeled examples, but these are not considered as part of
the prompt.
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before providing a prediction. Perplexity computes the sentence perplexity of the
whole input sequence, removing limitations of token positions but requiring extra
computation time.

4.4 Summary and concluding remarks

To summarize, the three methods for MGT-detection are training classifiers from scratch,
fine-tuning language models for sequence classification, and zero-/few-shot detection.
Overall, the fine-tuned detectors have had the best performance, but alternative methods
like zero-/few-shot detection have also proved effective while also being much simpler,
faster, and less resource intensive. Classifiers trained from scratch have also had success,
although they require a lot more resources and expertise to train. Also, there is a research
gap in the literature regarding using in-context learning for MGT-detection, which will be
further explored.

Based on these findings, we want to further assess the efficacy of training and using larger
fine-tuned detectors, as the release and open-sourcing of large language models is a rather
recent practice. Additionally, we will explore the performance of using in-context learning
for MGT-detection, as it is currently a less documented approach. A description of the
setup for these methods can be found in section 6.
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5 Dataset collection and in-domain dataset production

In our literature review, section 4.2 Training-data, we presented three sub-problems related
to data. Due to the immaturity of the topical problem domain of this thesis, there is little
publicly available data that is suitable for this specific classification problem. In addition
to this, there are also resource constraints concerned with the required computational
resources needed to produce acquirable data from the state-of-the-art open-source language
models such as BLOOM (176B) and LLaMa (65B). They both require several hundred
gigabytes of RAM, GPU memory, and storage to load and run. It is possible to quantize the
models for inference to reduce minimum memory requirements, but this will reduce their
precision and subsequently the quality of the generated data. Based on these requisites, the
scope of this thesis is primarily concerned with binary-domain classification of a target
model’s signature, but we will also do comparisons related to binary-domain classification
of universal text-generative signature.

GPT-3.5 is currently the most popular and easily accessible state-of-the-art text-generative
model due to OpenAI’s public research release, ChatGPT. It is therefore sensible to provide
more research on this model, as it is more likely to be prevalent in academic work in the
short term. Additionally, OpenAI offers a commercial API allowing for the generation of
large quantities of data from their 175B model amongst others, thus reducing the need to
allocate extensive computational resources.

Considering these factors, we have used data which was generated by the GPT-3 model
GPT-Curie and the GPT-3.5 model ChatGPT for the training and evaluation of our detec-
tion approaches. Each model has its own dataset, which can be summarized:

1. GPT-Wiki-Intro (GPT-3)

• Consists of 150 000 data points each containing both human-written and
machine-generated Wikipedia page introductions.

• Machine-generated samples are produced using the GPT-3 model, text-curie-
001, which performance-wise matches GPT-3 with 6.7B parameters (Gao,
2021).

• Externally produced

2. ChatGPT-Research-Abstracts (GPT-3.5)

• Consists of 10 000 data points containing human-written and machine-generated
abstracts of research papers sourced from arXiv.

• Machine-generated samples are produced using gpt-3.5-turbo-0301, which has
175B parameters (Brown et al., 2020).

• Self-produced for the problem domain of this thesis.
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5.1 GPT-Wiki-Intro

GPT-Wiki-Intro is a dataset by Bhat (2023) and is publicly available on HuggingFace21.
Bhat produced the machine-generated introductions using the text-completion-optimized
GPT-3 model, text-Curie-001 by OpenAI. Official model specifications have not been
released, but the open-sourced AI research group, EleutherAI has through extensive task
evaluations (Gao, 2021) matched its performance with the GPT-3 6.7B-version based on
the performance-documentation from its official release paper by Brown et al. (2020).

Bhat (2023) sourced authentic Wikipedia page introductions from another publicly avail-
able dataset, wikipedia22 by Wikimedia (2022), and generated 200-word introductions
corresponding to the human-written versions by prompting text-Curie-001 with a title and
a starter text, as can be seen in listing 1.

1 "prompt": "200 word wikipedia style introduction on '{title}'
2 {starter_text}"

Listing 1: Curie completion prompt.

5.2 ChatGPT-Research-Abstracts

Having machine-generated text on academic work is an integral part of the problem domain
of this thesis, and due to its novelty, no publicly available datasets which provide academic
pieces produced by text-generative models were found. A dataset was therefore produced
using the ChatGPT model, GPT-3.5-turbo-0301, which is a snapshot of the model version
used in ChatGPT on 1st March 2023 and consists of 175 billion parameters. To promote
further research in the problem domain, the dataset is published and is publicly available23.

To produce machine-generated abstracts, an approach similar to Bhat (2023) was adopted.
Authentic abstracts were sourced from a publicly available dataset, arxiv-abstracts-202124

by Clement et al. (2019), which consists of 1 877 550 data points, while machine-generated
abstracts were produced using the titles of authentic abstracts for context. To reduce
superficial characteristics in machine-generated abstracts due to potential biases within
the generator model regarding research abstract lengths, a target word count equal to
that of the corresponding authentic abstract was provided. Additionally, to minimize the
possibility of authentic abstracts being contaminated with machine-generated segments,
all sourced abstracts are dated 2021 and earlier, prior to open access to state-of-the-art
generative models such as GPT-3 (November 18, 2021), BLOOM (July 26, 2022), LLaMa
(February 23, 2023) and GPT-4 (March 14, 2023).

Similarly to text-curie-001, abstracts are generated with gpt-3.5-turbo-0301 through
prompting. While text-curie-001 is optimized for text completions, gpt-3.5-turbo-0301

21huggingface.co/datasets/aadityaubhat/GPT-wiki-intro
22huggingface.co/datasets/wikipedia
23huggingface.co/datasets/NicolaiSivesind/ChatGPT-Research-Abstracts
24huggingface.co/datasets/gfissore/arxiv-abstracts-2021
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is optimized for chat completions, and must be prompted in a dialog format by listing
messages and the role of the sender (OpenAI, 2023b). The sender can be one of three
roles:

1. System
Used for introducing the conversation

2. Assistant
The communication interface of the model. All generated responses are of this role.

3. User
Represents the user and is used for instructing the model.

The API-documentation states that ‘In general, gpt-3.5-turbo-0301 does not pay strong
attention to the system message, and therefore important instructions are often better
placed in a user message.’ (OpenAI, 2023b). Through careful experimentation and
adoption of this finding, the instruction-prompt-sequence displayed in listing 2 was found
to produce desired results with regard to response consistency, format, phrasing, and word
count.

1 "messages": [

2 {"role": "system",

3 "content":

4 "You are a helpful assistant which produces

abstracts for research papers based on a title

and a length. Your task is to produce the

abstract which suits the title, and is of the

desired length in words."},

↩→

↩→

↩→

↩→

5

6 {"role": "user",

7 "content":

8 """Title: \"{title}\"

9 Abstract length: {word_count_goal} words

10

11 ---

12

13 Above is the title of a scientific research paper and the

length of its abstract. Using a formal/academic

language, write a new abstract which matches title and

has a length of {word_count_goal} words. Do not answer

with anything else than the abstract."""}]

↩→

↩→

↩→

↩→

Listing 2: GPT-3.5 chat completion input texts

The subset of authentic abstracts used in our dataset has been selected using a uniform
distribution with respect to word count. This should enable comparison of detection
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accuracy related to text lengths as all available texts-length is represented as evenly as
possible. The script used to perform a uniform word count selection is listed in appendix
A. The hyperparameters are listed in appendix 3. All hyperparameters are the default
values of the API with the exception of model and prompt which have no default value.
Their function is further described in section 6.1.1, where these are modified from their
default values.

1 hyperparams = {

2 "model": self.MODEL,

3 "prompt": input_text,

4 "max_tokens": inf,

5 "temperature": 1,

6 "top_p": 1,

7 "logprobs": 0,

8 "logit_bias": null,

9 "n": 1

10 }

Listing 3: GPT-3.5 chat completion prompt

5.3 Data cleaning

To ensure high data quality and minimize any superficial characteristics which may reveal
the source of the texts, we have performed these data cleansing measures:

1. Pre-selection evaluation
The source dataset, arxiv-abstracts-2021, was inspected to determine the interval
for selection.

2. Duplicate check
Identified and removed any duplicate entries in the dataset, ensuring that each data
point is unique and not artificially inflating the dataset size. This process aids
in preventing overfitting during training and improves the overall reliability of the
classification models.

3. Replacement of outliers
Manually went through a feasible amount of data points and removed any outliers
with regard to faulty content. Removed outliers were replaced using a substitution
script. All replacements were manually inspected.

4. Manual inspection
Manually went through a feasible amount of data points to identify any discrepan-
cies with regard to formatting between the human-written and machine-generated
abstracts.

5. Automatic correction
Based on the discrepancies found during the manual inspection 1, a script to reformat
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all samples and ensure consistency across the entire dataset was produced. The
script automates the process of correcting any general formatting discrepancies and
applies the necessary changes to both the human-written and machine-generated
text samples. The cleaning function used in the script is listed in appendix B.

6. Post-correction recount
After all data-cleaning measures were applied, all human-written and machine-
generated abstracts were recounted with regard to word count.

7. Post-cleaning inspection
Manually went through a feasible amount of data points to identify any discrepan-
cies with regard to formatting between the human-written and machine-generated
abstracts post-cleaning for further statistical analysis.

5.4 Optimizing dataset design for targeted learning

When building machine learning models for a particular problem, the dataset design should
be optimized to target relevant features within the data. We have done this by reducing the
number of features which is less related to the targeted problem; All machine-generated
text samples are produced using features derived from their human-written counterpart.
This includes a common style domain, a common descriptive feature, and in the case of
ChatGPT-Research-Abstracts, a common text length. This design aims to incentivize the
classification models to learn and discriminate features in underlying structures rather than
identifying content and superficial characteristics.

To use the datasets for supervised learning and performance evaluation, each text sample
is separated from its human-written/machine-generated counterpart and labeled as either
human-written (0) or machine-generated (1). This effectively doubles the amount of data
points in the original dataset. Although the text samples are reformatted into separate
labeled data points, each is distributed along with its counterpart into the same dataset
subset split where all human-written data points are located on even indices, and cor-
responding machine-generated datapoints on the succeeding odd indices. This splitting
policy ensures that the detection models do not identify the content of a datapoint based
on prior exposure to the counterpart during training, thus preventing the model from being
biased towards the label it previously encountered, leading to more reliable classification
performance.

To promote experimental control in the evaluation of generalization capabilities, a train-
validation-test split distribution has been adopted. Subsetting the dataset for various
purposes is to avoid overfitting and ensure model performance is evaluated using unseen
data (generalization). Having a separate validation-split enables tracking of performance
and adjustment of hyperparameters during training, while also reserving a subset for the
final performance evaluation.
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6 Setup for detection approaches

In this section, the various approaches and their corresponding implementations used for
performance-evaluation is presented. First, the setup for the in-context learning approach
is described, followed by a description of the setup for fine-tuned detection experiments.

6.1 In-context learning

In section 4.3.4, several strategies for optimizing in-context learning performance were
presented. These have been taken into account and applied, some with slight modifications.

For evaluating the use of in-context learning for the classification of real and generated
texts, two distinct approaches have been applied, which will be referred to as:

1. Human in-context learning
For this approach, the input texts used for the in-context learning classification task
are human-written through iterative experimentation and testing.

2. Inductive in-context learning
For this approach, inductive instructions proposed by Honovich et al. (2022) has
been applied. The input texts used for the in-context learning classification task are
entirely generated by the same model which performs the classification task.

Both of these approaches are tested under zero-shot and few-shot settings, resulting in a
total of four variations of input texts and 4 performance evaluations.

For these approaches, monetary costs set limitations for the amount of performance
evaluation possible. Due to this, the CRA-dataset was prioritized for the evaluations as it
is the most relevant for the problem domain of the thesis. Each distinct variation of the
in-context learning approaches was tested on 1000 data points each: 500 real abstracts, and
500 generated abstracts. In few-shot settings, six labeled examples were provided for each
classification task, three real abstracts, and three corresponding generated abstracts. The
selection of examples was done using the closest neighbors in terms of the word count of the
classification text. No abstracts were used twice. This resulted in a total of 7000/1000 rows
being used from the CRA-dataset for each of the two few-shot variations. In addition to
this, to evenly represent all small-deviating real-generated abstract pairs, the classification
texts, and corresponding examples were uniformly sampled from CRA with respect to
word count within the range WC ∈ [50, 325]. For clarification of why 325 was selected as
an upper limit, see section 7.1.2. All examples and classification texts were also stripped of
any non-space sequences of white-space from previous performance evaluations. This is
due to the finding of clear white-space usage patterns in the generator model, documented
in section 7.1.4. In zero-shot settings, the same example-classification-text bundles were
used as for few-shot settings, but omitting the examples and only using the classification
text. This is to ensure the performance evaluations are performed using the exact same
set of classification texts. The number of six examples was chosen mainly due to the
CRA-dataset only containing 10k datapoints. For each few-shot attempt four rows of the
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dataset were used, limiting the possible unique few-shot task bundles to six examples
each. In addition to this, the selected model has a context window size of 4096 tokens.
The longest 325 abstract word count few-shot input text equals to 3128 tokens, ultimately
nearing the limit of the model.

The following sub-sections present the in-detail methods of the approaches and their
n-setting-variations.

6.1.1 Model selection and hyperparameters

Brown et al. (2020) documented that in-context learning performance scales with the size
of the model. To be able to document state-of-the-art in-context learning performance
in an open-access model, a flagship-version25 was the desired option. Due to the same
constraints regarding hosting the largest open-source language models such BLOOM
(176B) on Idun, which is stated in the first paragraph of section 5, a similar approach
as for the generation of machine-generated samples in ChatGPT-Research-abstracts has
been used. Through the commercial API of OpenAI, the model text-davinci-003 was
used to perform the in-context learning. While using the ChatGPT model gpt-3.5-turbo-
0301 (175B) for production of the ChatGPT-Research-Abstracts dataset, for this task the
instruction-optimized GPT-3 model text-davinci-003 (175B) is used. This is mainly due
to the instruction-optimized GPT-3-series allowing retrieval of model logits while the
GPT-3.5 series does not. Retrieving top model logits enables the calculation of model
confidence scores for each of the classes in the class domain. Although this approach
enables evaluation of state-of-the-art open-access in-context learning performance, there
are constraints regarding this approach; the API limit logit retrieval to the top five logit
pools.

In listing 4, the hyperparameters are presented. Following are definitions of the hyper-
parameters and the reasoning behind the set value:

• model:
The name of the model to be used. At runtime, this is ‘text-davinci-003’

• prompt: The input text for the model to process. This is a formatted string that
includes instructions for the model and any labeled examples, depending on the
n-shot setting and input text approach. The exact formatting of the input texts is
presented later in this section.

• max tokens:
Restricts model output length. Value is set to 1 such that the model is restricted to
respond with a single token: the predicted class label of the classification text.

• temperature:
Temperature governs the randomness of the token selection algorithm. High values
promote diversity in answers, low values promote determinism. The value is set to
0, forcing the model always respond with the token with the highest logit value and
subsequently the one with the highest confidence score.

25the largest version of the model in terms of parameters
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• logprobs:
The number of model logits to retrieve for the generated token. The returned logits
are the ones of the highest value. The maximum allowed value is 5. All logits are
returned as logarithmic values.

• logit bias:
Accepts a dictionary of token-IDs as keys and a value ∈ [−100, 100]. The assigned
values represent a bias added to the corresponding token-IDs prior to processing
the input text, ultimately governing the likelihood of the tokens appearing in the
top 5 logits returned in the response. To ensure that both class label tokens are
present in the top 5 returned model logits, logit biases of 100 were added for each
of them. However, the model tended to respond with newlines and other words to
form sentences. Logit biases of −100 were added to all common tokens appearing
in the top-5 logits during testing. The code section which produces all logit biases
passed to the model can be found in appendix E.1. It should be noted that adding
biases prior to input text processing does not affect the calculated confidence scores
as the bias for each of the class labels is of equal value, and the confidence scores
are calculated using the corresponding class label token logits in relation to each
other. Confidence scores are further explained in 6.1.4

• n:
The number of attempts, and subsequently how many outputs to be produced for
each input text. This is set to 1 as only one attempt for each input text is sufficient
in this approach.

1 hyperparams = {

2 "model": self.MODEL,

3 "prompt": input_text,

4 "max_tokens": 1,

5 "temperature": 0,

6 "top_p": 1,

7 "logprobs": 5,

8 "logit_bias": self.logit_biases,

9 "n": 1

10 }

Listing 4: GPT-3 instruction hyperparemeters

6.1.2 Input text formatting

As presented in section 4.3.4, the in-context learning is sensitive to the formatting of
both the prompt and demonstration design. Due to this, two separate approaches were
implemented for comparison. The first approach is using an input text which is human-
written through iterative testing. The second approach is using the concept of inductive
instructions proposed by Honovich et al. (2022) in conjunction with minimizing perplexity
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of the input text with respect to the detection model as Dong et al. (2023) discussed in
section 4.3.4. In addition to this, we extend the concept of inductive instructions by
allowing the model to also position the examples as it saw appropriate and also assigning
its own labels, ultimately designing the entire input text. Each approach is presented
below, followed by the common measures applied for both approaches.

The human-written input was carefully crafted by thoroughly testing variations of the input
text through iterative testing and adjustment. Each version of the input text was tested for 30
samples at a time for both zero-shot and few-shot settings before being adjusted for further
testing. Variations of logit biases both negative and positive were also experimented with.
The input text, including the prompt, was sculpted to be well-formulated, clear, specific,
and concise, as Dong et al. (2023) found to be optimal in section 4.3.4.

For the inductive input text, text-davinci-003 was tasked with generating a suitable input
text, given the context of the task and three examples of each class. The examples in-
cluded real and generated versions of the same research abstracts extracted from ChatGPT-
Reseach-Abstracts. The ”text-davinci-003” was chosen to generate the input text to min-
imize potential perplexity within the prompt. As only the top five logits are retrievable
from the model, an exact perplexity score cannot be calculated. However, using the same
model performing the task for the creation of the input text to be used, should still reduce
its perplexity since is writing an input text for itself. The same positive logit-biases that
were added for human in-context learning, were added to the model’s chosen class labels
in addition to the negative logit-biases for the same tokens as with the human approach.
See logit biases previously presented in section 6.1.1.

For both approaches, further general measures were applied. Tips listed in an OpenAI
API guide (OpenAI, 2023b) regarding optimizing labels for proper tokenization have been
implemented:

• All labels are words that are handled as a single token in the tokenizer.

• All labels are capitalized.

• All labels are prepended with white space to ensure correct tokenization of the class
labels.

During the analyses of the returned log probabilities when experimenting with the human-
written input text, the model had higher token logit values for the labels without present-
ation despite being instructed to respond with exact labels. For collecting the prediction,
the unprepended versions were therefore used as the model displayed bias for using the
unprepended labels. Prepended versions were still used for labeling examples to ensure
proper tokenization. To clarify, only the instruction section of the input text, the prompt,
was formulated using labels without prependations.

The final input texts used for each of the approaches are listed in appendix E.2. In addition
to this, the input text used for generating the inductive input text is listed in appendix E.3
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6.1.3 Selection of labeled examples and demonstration design

To select the labeled examples for the few-shot setting Liu et al. (2021)’s proposed method
of using closest neighbors was applied. As metric, the word count of the real abstracts was
used. All labeled examples were the closest matches to the classification text in terms of
word count. In total, six examples were selected and added for each separate classification
task and no examples were used multiple times. To promote targeted learning of underlying
discrepancies between the real and generated examples selected from the closest neighbors
with respect to content, the generated abstracts corresponding to the selected real abstracts
were used for the labeled examples of generated text. This can also be viewed as selecting
the closest neighbor with respect to content.

The demonstration design, which refers to how the examples are presented and how many,
is similar, but slightly different for the human-written input text and the inductive input
text. In the human approach, we presented the examples at the start of the input text without
introducing the context; the context of the task was given along with the instruction prompt
at the end of the input text. In the inductive approach, the context of the task was presented
before the labeled examples. In addition to this, a supplementary instruction prompt for
the classification task was present at the end of the input text.

For labeling the examples in the Human approach, ‘Human’ and ‘Machine’ were used as
class labels. In the Inductive approach, the labels ‘Human’ and ‘AI’ was selected by the
model.

6.1.4 Scoring function

To evaluate the model’s confidence of its prediction the direct scoring approach presented
by Dong et al. (2023) was adopted. As mentioned, without access to all model logits,
perplexity cannot be calculated. The direct approach is still arguably the optimal candidate
of choice as we enforce the model to answer the predicted label using logit biases. The
catch which may affect the performance in terms of accuracy, is that the model is not
allowed to elaborate or reflect before providing an answer.

To calculate the confidence scores using the direct approach, the model logits for each of
the class labels representing the likelihood of the model predicting the text as either human-
written or machine-generated were extracted, followed by applying a softmax function.
The softmax function creates a normalized probability distribution of the provided logit
values in relation to each other. The result is a probability distribution with only two
values: the probability of the model predicting the classification text as human-written
and the probability of it predicting the classification text as machine-generated. In total,
the probability of both values adds up to 1.0. To clarify, the confidence score of a class
label represents the normalized probability of the model predicting that label for the
given classification text. For instance, a confidence score of 0.4531 indicates a 45.31%
probability that the model assigns the corresponding class label to the text in focus, but
it also reflects the model’s confidence in the prediction. As the temperature is set to 0,
making the model completely deterministic, it will always predict the label with the highest
confidence score. Since there are only two classes in the class domain, the selected label
will always have a confidence score ≥ 0.5.
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6.2 Setup for fine-tuned detection

In the following section, the setup for the fine-tuned detection approach is described. First,
a description of the base models used for fine-tuning is provided, followed by a description
of the hardware used, and lastly, the setups for training and evaluating the models are
described.

6.2.1 The base models

For the fine-tuning experiments, four different language models were chosen. This includes
three versions of the Bloomz-models in three different sizes (560m, 1.7b, and 3b), in
addition to the RoBERTa-base model. In table 6.1, an overview of these models and their
characteristics can be seen.

The Bloomz-models are a series of open-source, autoregressive large language models
presented by Muennighoff et al. (2022). The models are fine-tunings of a family of pre-
trained large language models called Bloom, and are fine-tuned using ‘instruction tuning’
(Muennighoff et al., 2022), similar to how InstructGPT (Ouyang et al., 2022) and ChatGPT
is tuned. As the ChatGPT-model is proprietary, the Bloomz-models are used instead, as
they best represent the capabilities of ChatGPT. The different sizes were used to assess
the importance of model size in detection. The RoBERTa model, as first mentioned in
section 4.3.2, is an autoencoding, or bidirectional, language model proposed by Liu et al.
(2021), and is an optimized version of the BERT model. This model is used as a baseline
for testing the Bloomz-models, as it is a much smaller model, and to further investigate
the difference in performance between autoencoding and autoregressive large language
model when used for detection.

Table 6.1: The models used for fine-tuning and their characteristics.
Model Size Training method Directionality
Bloomz-560m 560M Autoregressive Unidirectional
Bloomz-1b7 1.7B Autoregressive Unidirectional
Bloomz-3b 3B Autoregressive Unidirectional
RoBERTa-base 125M Autoencoding Bidirectional

To be able to fine-tune the models for text classification instead of text generation, a
classification layer (linear layer) is added in place of the normal generative head26 of the
language model. This classification head is initialized with random weights, while the
other layers stay as-is. Thus, the model consists of a pre-trained body27 and an untrained
head. This is all done automatically by the HuggingFace-API (Hugging Face, 2022).

6.2.2 Hardware

Modern state-of-the-art language models can require up to hundreds of gigabytes in storage
and memory capacity, and it is reasonable to provide a description of the hardware used

26The output layer (last layer).
27The input and hidden layers.
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for these experiments, as to assess the feasibility of using the same models and thus
promote the reproducibility of these experiments. Having adequate hardware resources
is imperative to be able to train the models effectively, meaning without running out of
memory and to keep training times relatively low. As this thesis is experimental, low
training times are essential to be able to effectively build and test the presented methods
in the given time period.

For training and evaluation of the fine-tuned models, NTNU’s HPC28-cluster Idun using
the workload manager SLURM was used. For the Bloomz-560m and the RoBERTa
model, a V100-16GB GPU in addition to 16GB CPU RAM was found to be sufficient.
For Bloomz-1b7 and Bloomz-3b, an A100-80GB GPU along with 50GB CPU RAM was
used. Larger Bloomz-models, like the 7b1 and the 173b model, were not possible to run
effectively on the hardware used, without advanced parallelization techniques or offloading
to disk, which would result in immense training times. The SLURM-scripts containing
the resource requests to the HPC-cluster used can be found in appendix H.

6.2.3 Training setup

The models were trained on selections from both the GPT-wiki-intros dataset and the
CRA-dataset separately, with the following alterations to the datasets:

• To limit training times, only 10% of the wiki-dataset was used, amounting to a total
of 30 000 datapoints, with an equal amount of each label (15 000 each).

• The CRA-dataset was stripped of all newlines and excessive white-spaces to prevent
the models from learning on the structure of the text and not the actual characteristics,
as mentioned in section 5.4.

Additionally, a mixed dataset was used, containing 50% of the shortened wiki-dataset
(15 000 datapoints) and 50% of the CRA-data (10 000), amounting in a total of 25 000
datapoints. This resulted in three datasets used for the fine-tuning experiments, which
will be referred to as ”wiki”, ”CRA” and ”mixed” in the context of fine-tuning. Also,
as mentioned in 5.4, the datasets were split into three subsets, a train-, validation-, and a
test-split. Here, the dataset was split such that the train-split contains 70% of all datapoints,
and the validation- and test-splits contain 15% each, for all datasets. All splits also contain
the same amount of each label. For the mixed-dataset, the dataset was split such that
all splits contained the same distribution of datapoints of the two other datasets, as to
prevent bias between the train, validation, and test subsets. An overview of the split sizes
is provided in table 6.2.

The models trained on the three datasets, wiki, CRA and mixed, resulted in three types
of detectors, henceforth called wiki-detectors, academic-detectors, and mixed-detectors,
respectively.

To limit training times, all models were trained for only one epoch, meaning the models
would go through all the data in the training-split exactly once. This could lead to the

28High Performance Computing
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Table 6.2: The dataset splits sizes used for the fine-tuning experiments in number of
datapoints.

Dataset Train-size (70%) Validation-size (15%) Test-size (15%)
Wiki 21000 4500 4500
CRA 14000 3000 3000
Mixed 17500 3750 3750

models not properly learning on the dataset, but as we will see in section 7.3, this will not
present much of a problem. Additionally, the maximum amount of tokens per input was
fixed to 512 tokens, which is also the default maximum amount of tokens for the RoBERTa
model, meaning all texts were padded and truncated to be 512 tokens. This also means
that the text for each input after 512 tokens are ignored. While the Bloomz-models do
not have such a token limit, fixing the tokens was used to further limit the training times,
as training times have a tendency to increase exponentially with the number of tokens
used, as explained in section 2.8. Furthermore, all models were trained using the same
hyperparameters. A full list of the hyperparameters used can be found in appendix G.

6.2.4 Evaluation setup

To effectively assess the performance of the models, they were evaluated using the
validation- and the test-split. Firstly, every training run was evaluated using the validation-
split 50 times per epoch (once every 0.02 epochs), measuring the performance. This way,
the performance of the models could be tracked over the course of one training run, as to
determine how fast the model was learning. To enforce that the evaluation is unbiased,
the test-split instead of the validation-split is used to measure the final performance of
the model after the training run is done. To test the model’s ability to generalize the data

Figure 6.1: Cross-testing scheme used for testing the fine-tuned models on the three
datasets, where the detectors (left) are tested on the datasets (right) that they point to.

across domains, meaning cross-dataset and cross generator-architecture, the models were
cross-tested on the different datasets. As can also be seen in figure 6.1, the wiki- and the
academic-detectors were tested on the wiki and CRA datasets, while the mixed dataset was
tested on all three datasets: wiki, CRA and mixed. Finally, the Bloomz-560m model was
trained and tested on the wiki and CRA datasets using 1024 maximum tokens to assess the
importance of the number of tokens used. The evaluation-sets are padded and truncated
the same way as the training-set.
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7 Results and analysis

This section presents and analyses the data and results generated by applying the method-
ology described in the preceding sections.

7.1 Production of the dataset

It is important to analyze the data which is to be used for training and evaluation. Deep
analysis can uncover flaws in the data which may influence detection models’ internal
representation of the two classes, human-written and machine-generated texts, which
subsequently could lead to discrimination on incorrect and superficial features of the
abstracts. In this subsection, we present and analyze the results of the dataset generation,
including the selection process in addition to the generation and cleaning of data related
to the production of the ChatGPT-Research-Abstracts (CRA) dataset.

To be able to analyze generator model (gpt-3.5-turb0-0301) characteristics, figure 7.1, 7.2
and 7.3 in section 7.1.1 are produced using the CRA dataset pre data cleaning.

7.1.1 Word count distributions

In section 5.2, we outlined our approach for selecting a subset of data points from the
source dataset arXiv-abstracts-2021 (AA21). Using the code listed in appendix A, a 10k
partially uniform subset was sampled with respect to word count (WC) and used as real
data points (CRA-Real) in our produced dataset, such that:

CRA-Real ⊂ AA21

Figure 7.1 displays WC-distributions of the AA21 dataset, a randomly sampled 10k subset
of AA21, and the CRA dataset with uniformly selected data points and correspondingly
generated data points (CRA-Generated). The 10k randomly sampled AA21-subset is added
to enable a comparison of the AA21 dataset’s natural distribution and the distribution of
the selected and generated data points.

The CRA-Real data points with a WC ∈ [50, 360] were sampled uniformly. However, for
WC ∈ (360, 600], the number of CRA-Real data points is underrepresented compared to
the ideal average sample size (IASS), which for a 10k subset where all WC ∈ [50, 600] is
IASS10 = 10000

551 ≈ 18. The sharp decline at WC = 360 for the CRA-Real distribution curve
is due to reaching the limit of available data points in the source dataset; all data points in
AA21 with a WC > 360 are below IASS10. Subsequently, samples are drawn from word
counts with unsampled data points until the subset size of 10 000 is reached, leading to
an increased average sample size for data points with WC ∈ [50, 360] and a decline in
samples where the distribution-curve of AA21 intersects with CRA-Real, at WC = 360.

An analysis of the distribution-curve characteristics offers general insights into the model’s
performance in generating research abstracts of a specific word count. The distribution
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Figure 7.1: Word count distributions for 𝑊𝐶 ∈ [50, 600] (pre-clean)

curve of the AA21 subset is positively skewed with a mode of WC = 102. While the
curve of CRA-Generated demonstrates similar characteristics, it inhibits a reduced skew
in comparison, and subsequently a higher mode of WC = 137. However, in the range of
WC ∈ [226, 301], the curve deviates from the AA21 subset-curve and oscillates around
the CRA-Real curve, displaying rough alignment with CRA-real which, if consistent, is
decent. As figure 1 is a representation of word count distribution, no definite conclusions
can be drawn regarding the generator model’s ability to generate abstracts of a specific
word count as it does not portray the relationship between target word count and actual
word count. Beyond WC = 330 the CRA-generated curve declines below the CRA-Real
curve, following a pattern similar to the AA21 subset curve.

Although no definite conclusions can be drawn from the distribution curves regarding
word count accuracy, CRA-Real distribution curve can still be used as a benchmark,
providing general insights into potential biases and limitations of the generator model; in
figure 7.1, we can observe that the generator model, in general, has difficulties in adhering
to the target word count specified in the generation prompts. For WC ∈ [70, 206], the
amount of generated abstracts exceeds the benchmark of CRA-Real, which potentially
could implicate a word count bias in the generator model. If we compare the word counts
of generated abstracts with their corresponding real abstracts, more accurate conclusions
may be drawn.

7.1.2 Generator model’s word count accuracy

In figure 7.2, the word count correlations of CRA-Real and CRA-Generated are presented
for each encapsulating data point in the CRA dataset. In addition to this, the average
correlation curve is calculated using the average y-value for each unique x-value.
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As the generator model was prompted to generate abstracts with word count equal to a
corresponding CRA-Real data point, the average correlation curve should ideally follow the
pattern of an identity line, which for comparison is listed as ”perfect correlation” in figure
7.2. Instead, the average word count of CRA-Generated declines as the corresponding
CRA-Real word count increases, subsequently reducing the correlation to the target word
count. The word count correlation of the entire dataset is in total 𝑟 = 0.96, but for the
intervals 𝑥 ∈ [325, 420] and 𝑥 ∈ [420, 600] the correlation index drops to respectively
𝑟 = 0.20 and 𝑟 = 0.09. This finding suggests that the generator model’s word count
accuracy deeply declines when generating abstracts of x > 325.

Figure 7.2: Comparison of real and generated abstract word counts (pre-clean).

In total, there are only 108 observations within 𝑥 ∈ [420, 600], and thus there are compar-
ably fewer observations in this interval. We notice that the curve is less consistent which
also may further implicate uncertainty regarding the observations within this interval. The
corresponding p-value of 𝑥 ∈ [420, 600] indicates that the probability of observing a cor-
relation index of 𝑟 = 0.09 under the null hypothesis 𝑟 = 0.00, is 38%. This is greater than
the typical significance threshold of 𝑝 < 0.05, which consequently renders the finding
insignificant; more observations are needed to conclude any correlation in this interval.
On the other hand, the p-value of the interval 𝑥 ∈ [325, 420], 𝑝 = 0.00 is significant. The
correlation of 𝑟 = 0.26, indicates that when prompting a target word count in this interval,
the generator is imprecise in terms of word count accuracy, typically by producing shorter
abstracts than requested. For the interval 𝑥 ∈ [50, 325] the generator model is comparably
more accurately supported by a significant correlation of 𝑟 = 0.97.

To get a better understanding of the generator’s word count accuracy, we can use the
absolute target word count deviation to measure the size of inaccuracy in relation to target
word count (TWC); larger absolute deviations indicate lower accuracy. In figure 7.3,
the average target word count deviation of generated abstracts for each unique x-value is
presented. The majority of generated abstracts are negative deviations, meaning that the
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generator produces abstracts shorter than the target word counts. As listed in the figure, a
total of 7942 are negative deviates, 1842 are positive deviates, and 216 are non-deviates
meaning they hit the target word count.

Figure 7.3: Mean absolute deviations from target word count for generated abstracts
(pre-clean).

Figure 7.3 shows that the mean average deviation increases as the target word count (TWC)
grows. For TWC < 130, the mean average deviation for all curves are below a threshold
of 6. This aligns well with the distribution curves in figure 7.1. For TWC ∈ [130, 220]
this threshold increases to 30 for mean absolute negative deviation and mean absolute
total deviation, while mean absolute positive deviation stays below a threshold of 25 for
all ranges of TWC. In addition to this, all generated abstracts with TWC > 420 are shorter
than their target word count. The word count accuracy of the generator model stabilizes
for TWC ∈ [220, 325], before steeply increasing for all TWC > 325, which aligns well
with the correlation decline in figure 7.2.

Based on these findings, a conclusion can be drawn regarding the generator’s word count
accuracy. While it in general is accurate for generating abstracts shorter than 325 words,
it struggles in producing abstracts larger than this. The majority of the time, the generator
produces shorter abstracts than the target word count; the amount of abstracts exceeding
their target word count reduces as the target word count grows, while the size of deviation
increases.

7.1.3 Data cleaning

The results from our data cleansing measures were as follows:

1. Pre-selection evaluation
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We found that the abstracts from AA21 had not been previously cleaned. Text-
wrapping and inconsistencies in white-space usage and paragraph separation-style
were still present in the original papers. In addition to this, the majority of the
abstracts with WC < 600 had been extracted incorrectly leaking into other sections
of its corresponding research paper. A portion of the abstracts shorter than 50 words
were also contaminated. The selection interval was therefore set to [50, 600].

2. Duplicate check
No duplicates were found during the post-selection duplicate checks.

3. Replacement of outliers
There were in total 23 outliers removed due to the content being faulty, such as
leakage into introductions. These were all found in the range of WC ∈ [380, 400].
All outliers were replaced with a new WC-uniform subset with WC ∈ [50, 360],
using a separate version of the uniform distribution script listed in appendix B, with
modifications such as a duplication safeguard.

4. Manual inspection
There were considerable differences between CRA-Real and CRA-Generated with
regard to formatting. While CRA-Real varied in format, the CRA-generated fol-
lowed a similar pattern using double-newlines as paragraph breaks. In addition to
this, we found that multiple abstracts with WC > 400 contained a second version
of the abstract in another language. The foreign language section was manually
removed.

5. Automatic correction
The cleaning script leveled the majority of formatting discrepancies found during the
manual inspections. There were still some visible differences between CRA-Real
and CRA-generated; see post-cleaning inspection.

6. Post-correction recount
As all abstracts were recounted post-cleaning, word counts were adjusted to reflect
the abstracts post-automatic and manual correction. For the abstracts which con-
tained foreign translations, the word counts were considerably reduced. As most
generated abstracts for this word count interval had large negative deviations from
their target word count, the absolute deviation is not of concern.

7. Post cleaning inspection
There were still some visible differences between CRA-Real and CRA-generated.
Through the post-cleaning inspection, we noticed that CRA-Generated seemed to
have a visibly higher frequency of paragraph breaks for structuring the texts.

7.1.4 Post-cleaning differences in semantics

As mentioned in section 5.4, designing the dataset to target underlying structures in the
texts rather than superficial characteristics is desirable for accurate performance evaluation.
Increased use of paragraph breaks (PB) in CRA-Generated compared to CRA-Real may
influence the detection model’s internal representation of generated texts as detection
models may correlate a high frequency of PB as a characteristic of the generator model.
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Through a statistical analysis following the discoveries made in section 7.1.3 regarding
PB-frequency during the data cleaning procedure, we have confirmed that there indeed
are clear and distinct patterns of PB-occurrences present in the dataset, although the
differences are not as prominent as initial concerns.

In figure 7.4, the average words per paragraph for each of the abstract domains are
presented. The linear clustering of observations is due to them being sorted by word count
in ascending order along the x-axis. This leads to discrete domains of linear clusters,
each representing how many PBs there are in the text; the upper cluster line represents all
abstracts without any PBs, which results in a 1:1 relationship between words per paragraph
(y-axis) and word count (x-axis).

Figure 7.4: Number of words per paragraph (post-cleaning)

On average, the human-written abstracts seem to have a positive linear relationship with
regards to words per paragraph as the word grows, while the generator model displays
a PB-pattern resembling a sigmoid-curve with regards to word count. For 𝑥 < 185
the large majority of the abstracts are a single-paragraphed. Beyond this, the generator
model drops and stabilizes at approximately 87 words per paragraph on average. For
all generated data points with WC < 185 only 27 out of 5169 are separated into two or
more paragraphs (number of PB > 0). For the real data points that number is 2543 out of
4138. Using this statistic alone; predicting all zero-PB abstracts as generated, a detection
accuracy of 78% may be achieved for WC < 185. This important statistic is present in
figure 7.4, and highlights the importance of analyzing the data which is to be used for
training and evaluation. As large language models are able to detect structures comparably
less apparent, characteristics such as these may serve as hints and subsequently ease the
task of detection, resulting in inflated performance evaluation as compared to removing
this feature from the texts altogether. In section 7.3 we will test if this affects detection
performance.
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7.2 In-context learning

In section, 6.1 two approaches for in-context learning were presented, each approach was
also tested in both zero-shot and few-shot settings, resulting in 4 variations of in-context
learning performance-evaluations for the CRA dataset, ChatGPT-Research-Abstracts. For
the metric calculations in this section, true machine-generated classifications texts are set
as the true positives, and true human-written classification texts are set as true negatives,
meaning the metrics precision, recall, and F1 scores are all calculated in relation to its
performance for machine-generated classification texts 29.

Without applying any performance optimization techniques with regards to the interpret-
ation of confidence scores, the results are as presented in table 7.1. Here, the threshold for
the model predicting a text as machine-generated was set to 0.5, following the standard of
typical binary classification. In simple terms, if the model’s confidence score of the text
being machine-generated is greater than 0.5, the classification text is considered to be pre-
dicted as machine-generated. For confidence scores lower than this, the classification text
is considered to be predicted as human-written. This also reflects the natural predictions
provided in the model output.

Table 7.1: Metric scores for the in-context learning approaches with 0.5 as machine-
generated threshold, which later is referred to as GCS Threshold).

Approach variation Accuracy Precision Recall F1-score Threshold
Human-zero-shot 0.482 0.219 0.014 0.026 0.5
Human-few-shot 0.474 0.432 0.166 0.24 0.5
Inductive-zero-shot 0.5 0.0 0.0 0.0 0.5
Inductive-few-shot 0.505 0.532 0.084 0.145 0.5

From metric scores presented in table 7.1, we can see that for all approach variations,
the model has an accuracy close to 0.5. This indicates that model in general struggles to
identify any features in the provided classification texts, even in a few-shot setting where
6 labeled examples are provided in the input text. For the human approach variations, the
accuracy is even below 0.5. This could potentially indicate that the model does identify
some discrepancies between human-written and machine-generated texts, but it fails in
correctly allocating the differences to the correct class labels.

To provide further insights into how the predictions are allocated with respect to the
true label of the classification text, confusion matrices for each of the approaches are
presented in figure 7.5. From the figure, it is apparent that for all approaches, the
model is largely inclined towards predicting the classification texts as human-written,
regardless of their true class label. There are still differences, especially when comparing
the performance of few-shot and zero-shot settings. In the human-zero-shot approach,
96.8% of all classification texts are predicted as human, while in the inductive-zero-shot
approach, 100% of the classification texts are predicted as human, meaning all 1000
classification texts provided were labeled as human despite half being machine-generated.
In few-shot settings the performance is comparably better; the human-few-shot approach
predicts 80.8% of the classification texts as human-written, while the inductive-few-shot
approach classifies 92.1% of the texts as human-written. Although this is higher than in

29Accuracy is not calculated in relation to any label. It is calculated for the entire pool of performances.
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(a) Human-zero-shot (b) Human-few-shot

(c) Inductive-zero-shot (d) Inductive-few-shot

Figure 7.5: Confusion matrices for each of the in-context learning approaches.

human-few-shot, the inductive-few-shot approach has a smaller portion of false positives
(top right corners) compared to true positives (bottom right corners), which when put in
the context of the thesis problem domain, may be considered the most important factor in
detection models.

Although the model struggles to perform its task through its natural in-context predictions,
better performance may be acquired by adjusting the confidence score threshold when a
classification text is considered machine-generated. By analyzing the allocation of the
confidence score for the texts being machine-generated, further insights into how to adjust
that threshold may be provided.

In figure 7.6, the confidence scores for the texts being machine-generated are compared to
their true label. We will refer to the model’s confidence score for a classification text being
machine-generated as the machine-generated confidence score (GCS) and the confidence
score for it being human-written as human-written confidence score (HCS). For clarity,
as the confidence scores are calculated in relation using a softmax-function, it should be
noted that the generated confidence is equal to the inverse of the human confidence score
and vice versa:

GCS = 1 − HCS

Whether the confidence scores are analyzed through GCSs or HCSs is result-wise arbitrary,
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but as the thesis problem domain is focused on MGT-detection, further analysis of in-
context learning performance will analyze model confidence through GCS.

(a) Human-zero-shot (b) Human-few-shot

(c) Inductive-zero-shot (d) Inductive-few-shot

Figure 7.6: Box-plots of confidence score of a text being generated for each true label

From figure 7.6, we can see that in the zero-shot settings, the model is certain of the large
majority of texts being human-written. In human-zero-shot, the model’s GCS is spread
more evenly than in inductive-zero-shot where all GCSs are located below 0.005 (0.5%)
confidence, while in human-zero-shot, outliers are allocated across the entire range of
[0, 1] (0%–100%). In few-shot settings, the model is in general less biased toward the
classification of texts being human-written. This is represented by the upper and lower
quartile edges being further apart. In the inductive-few-shot, both the third and second
quartile is shifted positively, subsequently also increasing the median GCS. The lower
quartile edge is for inductive-few-shot located at 0.09 GCS for human classification texts
and 0.11 GCS for the machine-generated classification texts, indicating that 75% of the
GCSs for each category are above these thresholds. In addition to this, in inductive-few-
shot, the model has slightly higher confidence in machine-generated classification texts
being generated than human-written classification texts being generated, implying that it
in some cases displays the ability to identify discrepancies between the human-written
and machine-generated texts. The takeaway is that in few-shot settings, the in-context
learning approaches are generally more confident of the text being machine-generated
than in zero-shot settings. This may show a potential of increasing accuracy if the GCS
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threshold of a text being machine-generated is adjusted for the general bias towards texts
being human-written for each respective approach variation.

Figure 7.7: In-context learning accuracies for all thresholds ∈ [0, 1], step size = 0.001.

Figure 7.8: In-context learning F1 scores for all thresholds ∈ [0, 1], step size = 0.001.

In figure 7.7 and 7.8, the respective accuracies and F1 scores when adjusting the GCS
threshold for when to predict a classification text as machine-generated is presented. From
figure 7.7, we can see that there are gains to be made with regard to accuracy by adjusting
the GCS threshold in few-shot settings. For zero-shot settings, no particular gain is made;

49



classifying all texts as generated produces the optimal accuracy of 0.5. The minimal
increase in accuracy at GCS threshold 0.078 for inductive-zero-shot is due to a true
human-written outlier being correctly predicted as human-written with a GCS threshold
greater than this. The outlier can be spotted among the true human-written labels in figure
7.6c. In figure 7.8, a quick takeaway is that the optimal GCS threshold in terms of accuracy
is aligned well with the median GCS for human-written classification texts in figure 7.6.

Despite figure 7.7 presenting optimal thresholds with regards to accuracies, when put in
context with the decreasing trend in F1 score as GCS threshold increases displayed in
figure 7.8, implies that optimizing the performance for accuracy will subsequently reduce
the F1 score. In section 8.2, we discuss the various metrics put in perspective of the thesis
problem domain. Here we rank the F1 score as the overall optimal performance indicator
when evaluating the performances of detection tools. Despite this, in table 7.2 we present
the various metric values when the GCS threshold is set to the accuracy-wise optimal
values.

Table 7.2: Metric scores for the in-context learning approaches with 0.5 as machine-
generated threshold.

Approach variation Accuracy Precision Recall F1-score Threshold
Human-zero-shot 0.513 0.507 0.93 0.656 0.00
Human-few-shot 0.526 0.518 0.756 0.615 0.002
Inductive-zero-shot 0.5 0.0 0.0 0.0 0.078
Inductive-few-shot 0.521 0.514 0.774 0.618 0.168

When adjusting the GCS thresholds in accordance with the confidence score bias’ displayed
by the model in figure 7.6, we can notice considerably improved performance in all metric
scores except for inductive-few-shot precision and all inductive-zero-shot scores where
the values are unaffected due to all examples being predicted as human-written for all
GCS threshold value ≥ 0.078. The confusion matrices when applying the accuracy-wise
optimal GCS Threshold is available for interested readers in appendix F.

Although the performance in general is improved with the accuracy-wise optimal GCS
threshold values applied, the overall performance is still far from sufficient for application
in a detection tool. Despite F1 being discussed as the most important performance
evaluation metric for the thesis problem domain in section 8.2, all metric scores should be
taken into account when evaluating overall performance. Accuracies close to 0.5 should
be considered as insufficient regardless of the other metrics.

Overall, we can conclude that the in-context learning approaches proposed in this thesis
do not provide valuable insights into the potential misuse of large language models in
academia. Despite this, few-shot settings in general do perform better than zero-shot
settings. In addition to this, using an inductive approach for prompt engineering does
seem to promote less bias in the model’s natural predictions, but once the GCS threshold
is updated to account for the bias’ within the model, the two input text approaches display
similar performance.
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7.3 Results from fine-tuned detection

This section presents and analyses the results from the fine-tuned detection experiments
based on the setup described in section 6.2.

7.3.1 Runtime and in-training validation results

As to assess the feasibility of fine-tuning a large language model, we will first present the
results from the training, including training runtimes and in-training validation.

Figure 7.9: Training runtimes (y-axis) for all models (x-axis) on all datasets (color coded)
with batch-size=8, all trained for one epoch.

In figure 7.9 the runtimes for the different models can be seen. From this figure, we can see
that the larger models had a much higher runtime when using the same system resources
with a maximum of 701 minutes (about 11 hours and 40 min) for the Bloomz-3b on the
wiki-dataset. We can also see that the RoBERTa model had a substantially lower runtime
of maximum 49 minutes, which is due to it also being a much smaller model. These
results will be important when evaluating the usability of the different models.

In figure 7.10 and figure 7.11 the F1-score of the models over the training steps can be
seen for the wiki- and the CRA-dataset respectively. For the wiki-dataset, we can see that,
when ignoring some instability, almost all models reach their maximum F1-score after
only about 100 training steps, showing how fast the models actually learn on a dataset.
With a batch-size of 8 this amounts to about 800 samples. We can also see the RoBERTa
model having reached its maximum F1-score already at the first evaluation, after only a
maximum of 52 training steps. For the CRA-dataset we see that the models are a bit more
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unstable, and it takes the Bloomz-3b model about 400 training steps to be stable over 90%.
This suggests that the texts in the CRA-dataset are more difficult to detect, which could be
due to the dataset being produced by a more advanced generator (ChatGPT), which could
be considered more ”human-like” than less advanced generators. We also see here that
the RoBERTa model achieves a high score relatively early.

Figure 7.10: F1-scores measured every 0.02 epochs over one epoch of training on the
wiki-dataset with batch-size=8 (meaning 8 datapoints every training step).

7.3.2 In-domain performance

Table 7.3: Metric results for the in-domain performance of the wiki-detectors, with the
best result from each metric marked in bold.

Base model Accuracy Precision Recall F1-score
Bloomz-560m 0.973 1.000 0.945 0.972
Bloomz-1b7 0.972 1.000 0.945 0.972
Bloomz-3b 1.000 1.000 1.000 1.000
RoBERTa 0.998 0.999 0.997 0.998

As can be seen in table 7.3, the results from models trained on the wiki-dataset are
prominent. All models were able to achieve an accuracy and F1-score of 0.972 or better,
and all models had a perfect or near-perfect precision. The Bloomz-1b7 model, despite
being three times larger, has scored almost identical to the Bloomz-560m model and even
has a 0.1% lower accuracy. The opposite can be seen for the Bloomz-3b model, however,
with a perfect score across all metrics, suggesting it has achieved a significantly sound
generalization of the data in the dataset. Also notable is the performance of the RoBERTa
model which, although being 24 times smaller than the Bloomz-3b model, is able to
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Figure 7.11: F1-scores measured every 0.02 epochs over one epoch of training on the
CRA-dataset with batch-size=8 (meaning 8 datapoints every training step).

closely follow the performance of the Bloomz-3b with an almost perfect score, scoring
better than both Bloomz-560m and Bloomz-1b7 on most metrics. This is in line with the
claim by Solaiman et al. that autoencoding models, like RoBERTa, are more suited for
classification tasks than autoregressive models like the Bloomz models.

(a) Bloomz-3b-wiki on wiki (b) RoBERTa-wiki on wiki
Figure 7.12: Confusion matrices for Bloomz-3b-wiki and RoBERTa-wiki on wiki dataset
across 45000 datapoints.

To take a closer look at Bloomz-3b’s and RoBERTa’s performance, we can see how
well they perform when tested on a larger dataset. The confusion matrices in figure
7.12 shows the distribution of true and false negatives and positives from the Bloomz-
3b-wiki-detector and RoBERTa-wiki-detector respectively when tested on the full test-
split of the wiki-dataset of 45 000 datapoints. Here we can see that only 14 of the
22 500 real texts (0.06%) were falsely labeled as being fake (a precision of ca. 99.94%)

53



by the Bloomz-3b model, while RoBERTa falsely labeled 23 fake texts (0.1%) as real
(precision of ca. 99.90%). However, RoBERTa had a lower count of false negatives of
only 36 (0.08%) while Bloomz-3b had 50 false negatives (0.11%), meaning RoBERTa
has a higher recall-score (99.84% against Bloomz-3b’s 99.78%). RoBERTa also had
a lower amount of total false predictions, meaning a higher accuracy than Bloomz-3b.
These differences in performance are miniscule however, and could be a result of random
variations. Nonetheless, we can see that when trained on only 21 000 data for one epoch,
both are able to generalize remarkably well for even 45 000 unseen datapoints from the
same dataset. Confusion matrices for Bloomz-560m and Bloomz-1b7 can be found in
appendix C.

Table 7.4: Metric results for the in-domain performance of the academic-detectors, with
the best result from each metric marked in bold.

Base model Accuracy Precision Recall F1-score
Bloomz-560m 0.964 0.963 0.965 0.964
Bloomz-1b7 0.946 0.941 0.951 0.946
Bloomz-3b 0.984 0.983 0.985 0.984
RoBERTa 0.982 0.968 0.997 0.982

The results for the CRA-dataset can be seen in table D.3. Although not as good as the
results from the wiki-dataset, these results are also notable. We can see that all the models
performed worse across all metrics, which could be due to the wiki dataset being bigger
and having more data to learn on, but it could also be because the dataset contains more
complex data, as also mentioned above. Also interesting is that Bloomz-1b7 performed
worse than Bloomz-560m across all metrics, with an even larger difference than for the
wiki-dataset. This could be due to Bloomz-1b7 having more parameters to train and thus
requiring more training to achieve the same performance, but this would not be true for
Bloomz-3b however, which overall performed best.

7.3.3 Cross-testing performance

Table 7.5: Metric results from cross-testing wiki-detectors on the CRA-dataset, with the
best result from each metric marked in bold.

Base model Accuracy Precision Recall F1-score
Bloomz-560m 0.559 0.553 0.615 0.582
Bloomz-1b7 0.539 0.537 0.555 0.546
Bloomz-3b 0.539 0.529 0.696 0.601
RoBERTa 0.559 0.547 0.693 0.611

The results from cross-testing the two datasets are less promising, however. As we can
see in table 7.5, the wiki-detectors did not perform well on the CRA-dataset, with the
highest F1-score of 61.1% and accuracies relatively close to 50%, which is equivalent to
random guessing. The same can be seen for the Bloomz-academic-detectors in table 7.6,
with accuracies close to 50%, and with an even lower F1-score of highest 27%. This low
F1-score seems to be a result of the academic-detectors tendency to over-classify texts as
being real, leading to a high precision and a low recall. A high precision is favorable, but
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Table 7.6: Metric results from cross-testing academic-detectors on the wiki-dataset, with
the best result from each metric marked in bold.

Base model Accuracy Precision Recall F1-score
Bloomz-560m 0.565 0.839 0.161 0.270
Bloomz-1b7 0.501 0.526 0.030 0.056
Bloomz-3b 0.515 0.955 0.032 0.062
RoBERTa 0.745 0.926 0.532 0.676

the low recall suggests that the models are not very useful in this context. These results
seem to suggest that training on data that is very specialized does not generalize across
datasets very well.

Figure 7.13: Confusion matrix for the RoBERTa-academic-detector on the wiki dataset
across 45000 datapoints.

The RoBERTa-academic-detector has better scores however, with an F1-score of 67.6%
and an accuracy of 74.5%, which is also better than the RoBERTa-wiki-detector. When
looking at the confusion matrix for this model in figure 7.13, we can see that the model
correctly identifies 11 973 of the 22 500 fake texts as fake (about 53.2%), while still having
only 2.13% false positives. Effectively, this means that the RoBERTa-academic-detector
is able to detect about half of the fake texts while still having few mislabeled real texts.

7.3.4 Results from mixed-detectors

To further assess the ability of the detectors to generalize, we can look at the results from
the mixed-detectors. In table 7.7 the F1-scores for the mixed-detectors on all three datasets
can be seen. The other metric results for this test can be found in appendix D.

As we can see, the models did not suffer much in performance on the wiki-dataset when
using a mixed dataset, with an F1-score of minimum 96.4% compared to minimum 97.2%
for the wiki-detectors. The same can not be said for the CRA-dataset however, where the
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Table 7.7: F1-scores for mixed-detectors on all datasets, with the best result from each
dataset marked in bold.

Base model Mixed Wiki CRA
Bloomz-560m 0.948 0.972 0.848
Bloomz-1b7 0.929 0.964 0.816
Bloomz-3b 0.988 0.996 0.772
RoBERTa 0.993 0.997 0.829

F1-score dropped by about 10 to 20 percent points across all detectors. It is important to
note however, that the mixed dataset contains only half of the datapoints of the datasets it
is composed of, meaning the mixed-detectors only had half of the data from each of the
two data domains to train on.

Similar to the other results, we can see that despite being much smaller, RoBERTa is able
to achieve among the best performance, and we can also see the performance decreasing
for the larger models, suggesting they could need more training.

7.3.5 Bloomz-560m with 1024 max-tokens

Table 7.8: Metric results for both Bloomz-560m detectors on in-domain data with 1024
max tokens.

Detector Accuracy Precision Recall F1
560m-wiki 0.998 1.000 0.996 0.998
560m-academic 0.984 0.980 0.989 0.984

To determine if the maximum tokens used has an impact on the performance of the model,
one can look at the performance of the Bloomz-560m model when trained with 1024 max-
tokens instead of 512 max-tokens, which can be seen in table 7.8. For the wiki-detector,
we can see that the F1-score increased from 97.2% to 99.8% when using more tokens.
Similarly, for the CRA-dataset, the F1-score increased from 96.4% to 98.4%. This is
interesting when considering that only a very small set of texts, for both datasets, has a
word count that would amount to much more than 512 tokens, as can be seen in figure 7.1
from section 7.1.1. Although using more tokens gives an exponential increase in training
times, there seems to be much to gain from using more tokens.
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8 Discussion

In the following, we first discuss the results from the dataset production. Then the results
from in-context learning are discussed, followed by a discussion on the usage of fine-tuned
detectors. Finally, this section will discuss ethical considerations of MGT-detection tools.

8.1 Dataset production

In this section, we shortly discuss some of the limitations of the generator model displayed
in section 7.1.2

In light of the findings presented in section 7.1.2, it is evident that the generator model’s
word count accuracy in generating research abstracts of a target word count diminishes
when the target word count exceeds 325. A key observation made in figure 7.2 and figure
7.3 is the considerable increase in mean average deviation and decline in correlation as
the target word count surpasses the 325 threshold. This decline in word count accuracy
might be attributed to the data the model has been pre-trained on. As we saw in figure
7.1, the distribution of the source dataset and the generated abstracts are similar even with
assigned target word counts. This may suggest that the bias displayed in the generator
model is due to the objective average length of research abstracts, which is represented
for comparison using a random subset. Furthermore, it may be biased as writing abstracts
above 325 words is rare - out of the approximately 2 million research abstracts in the AA21
dataset, only 6368 were above this, further supporting this hypothesis. Consequently, the
generator model may struggle to adapt and produce abstracts with a word count closer to
the desired target for TWC > 325.

Another reason for this bias may be the generator’s model architecture. The generator
model, gpt-3.5-turbo 0301 is an auto-regressive transformer model. This means it is uni-
directional and that it generates each individual token sequentially based on model logits
calculated from the previous sequence of tokens. This restricts its ability in predicting how
long its texts will be. An alternative model which may yield better results with regard to
word count accuracy is Google’s language model BERT. This model has a bi-directional
transformer architecture, meaning it processes entire segments of texts simultaneously.
This makes it exceed in a set of applications where the auto-regressive transformer ar-
chitecture does not. Examples of this are summarization or text classification, which are
further supported by the comparable size-to-accuracy ratio differences displayed in 7.3.

One might argue that writing length-specific texts independent of context is a simple
task which is an apparent weakness of the GPT-3.5 model used for dataset production
in this thesis. Comparing the generator model with human ability sheds light on its
weaknesses; producing texts of specific word counts is arguably an easy task for an
average human being given enough time. Finding approaches for generating sequences of
text that adhere to specific word counts would be desirable in the scope of data generation
for training detection models. Given the difficult task of separating between human,
machine-generated, and hybrid texts, texts of a large range of lengths would be beneficial
for enhancing versatility in the implementations of AI-plagiarism tools.
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8.2 Impact evaluation of performance-evaluation metrics

The importance of each of the classification evaluation metrics, Accuracy, Precision,
Recall and F1 Score should be valued with respect to the priorities and implications
regarding the task-specific application of a classification tool. Within the scope of the
thesis problem domain, emphasizing each of the various metrics would have distinct
impacts in the application of MGT-detection tools in academia. Following is a proposed
prioritization of the evaluation metrics for performance indication in the scope of the thesis
problem domain from least to most prioritized:

4. Accuracy
While accuracy might be the easiest metric to understand as it provides the general
performance of a detection tool, its application as an indicator for performance in
academic applications may be misleading, especially in cases where the classes are
imbalanced. For instance, in cases where there are comparably much fewer machine-
generated texts than human-written texts, a model could achieve a high accuracy
simply by predicting the majority class, while failing to effectively identify instances
of the minority class of machine-generated texts.

3. Recall
Recall would be a preferred metric of choice in cases where the priority is to identify
as many true positives as possible. In the scope of the problem domain, the result
of using this as a performance indicator would be an optimization of detecting the
largest amount of actual misuses. However, this metric does not directly account for
minimizing false positives, which could result in an increased amount of human-
written texts being falsely classified as misuses.

2. Precision
In the context of the problem domain, precision might be considered the single most
critical metric. A lower precision score implies a high percentage of false positives,
and ultimately, a higher chance of human-written texts being classified as machine-
generated. The consequences of false positives could potentially damage a student’s
or researcher’s academic record due to incorrect accusations of using language
models to generate their work. Maximizing precision score should therefore be a
prioritized metric when evaluating various detection tools.

1. F1 Score
Although we consider precision to be the most critical metric, for the overall per-
formance evaluation of a detection tool, we consider the F1 score to be the most
accurate indicator. Prioritizing the F1 score puts an equal emphasis on both pre-
cision and recall, which may be important in contexts where both false positives
(incorrectly identifying human-written texts as machine-generated) and false negat-
ives (failing to identify machine-generated text) are considered equally undesirable.
It provides a balanced score between detecting as many misuses as possible, while
also minimizing occurrences of false accusations.
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8.3 Performance of in-context learning

In section 7.2, we documented that the proposed approaches for implementing a detection
tool for misuse of large language models in academia do not currently provide adequate
performance with respect to the problem domain applications. In this section, we will
discuss potential factors which may have impacted performance, while also considering
the future of in-context learning with respect to the thesis problem domain.

All the proposed in-context learning approach variations30 is applied with a direct scoring
function. This puts constraints on the demonstration template design31, ultimately limiting
the model to only respond with the predicted class label. By adopting a perplexity scoring
function, as additionally suggested by Dong et al. (2023)32, relieving the output restrictions
constrained by the direct scoring function, improved performance may be discovered as
large language models in general displays better performances when allowed to reflect,
elaborate or reason before providing an answer (Li et al., 2022).

It is important to acknowledge that in-context learning is currently constrained by the
relatively small context window sizes of the current open-access large language models at
typically 512-4096 tokens. As the context window sizes are relatively small, this puts a
constraint on the number of labeled examples provided for context to less than 10 examples
in our proposed in-context learning approaches. For the future, however, window sizes are
also likely to increase along with model sizes and general task performances. Although
an increase in model size does not directly correlate with an increase in context window
size as it is restricted by computational resources which we presented in section 2.8,
as models continue to grow in size, capacity, and computational resource requirements,
context window sizes are also likely to increase as they will be less of a relative constraint.
This is further supported by the release of the currently limited-access GPT-4 model,
which already operates with 8k and 32k context window sizes (OpenAI, 2023a). As
context windows expand in the future, allowing for the inclusion of entire articles or
submissions as labeled examples, in-context learning for classifying academic texts may
show better potential both in terms of practicality and accuracy, increasing the potential
for in-context learning as a low-configuration approach requiring minimal in-domain data
for distinguishing between human-written and machine-generated academic texts.

The reduced performance displayed in the in-context learning approaches in zero-shot
settings33 in comparison with the same approaches in few-shot setting34 could possibly
be explained by a lack of internal representation in the GPT-3 model35 for true machine-
generated texts. For the model to establish a clear internal representation, characteristics
of machine-generated text would need to be present in the data exposed to it during pre-
training, along with context directly or indirectly associating these texts to the machine-
generated domain. Based on our experience that there currently is a limited amount of

30human-zero-shot, inductive-zero-shot, human-few-shot and inductive-few-shot
31Demonstration template design is referred to by Dong et al. (2023) as the combination of input text

formatting and format of model output predictions
32Dong et al. (2023) suggested both the direct and perplexity scoring functions in his survey on in-context

learning
33respectively referred to as human-zero-shot and inductive-zero-shot
34respectively referred to as human-few-shot and inductive-few-shot
35GPT-3 was used for the all in-context learning approach variations, and the only model used to conduct

in-context learning performance-evaluations
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publicly available data which satisfies these criteria, an assumption of this being the case
may align with the objective truth. However, there is a possibility of this having been an
area of focus during the development of the GPT-3 model (175B), subsequently rendering
this assumption false, but as the exact data used for training of the GPT-series is not
disclosed, no definite conclusion can be drawn. Additionally, further research on the
model’s ability to extract such internal representation from its general pre-training data
would need to be conducted. For the future, however, as more machine-generated texts
are labeled and exposed to language models during pre-training, they could prove better
in-context learning MGT-detectors without an architectural upgrade.

Despite GPT-3 displaying impressive results for in-context learning in binary classification
tasks among others (Brown et al., 2020), the provided classification task of distinguishing
human-written and machine-generated academic abstracts in this thesis seems to be above
its current capabilities. In-context learning is still a relevant approach for the future,
however, as the next generation of language models will continue to improve with regard
to their general capabilities. The next generation language models such as the GPT-4,
which is rumored to be 1000B by ‘people familiar with the inside story’ according to
Albergotti (2023), displays performances in complex tasks which outperforms the GPT-3
on all metrics, documented in Sparks of Artificial General Intelligence.

For the future, In-context learning is particularly relevant for academic text classification
in comparison with training-based approaches for several reasons. In-context learning
is entirely prompt-based, leveraging the pre-existing knowledge of large language mod-
els without the need for additional fine-tuning. This is advantageous for efficient text
classification in academia, where sub-domains vary greatly in character and application.
Approaches that involve task-specific training are demanding in terms of gathering in-
domain training data, but also in terms of continuously updating the in-domain training
data for a new generation of language model outputs.

To summarize; although the proposed approaches for using in-context learning for MGT-
detection in academia do not currently display sufficient performance for practical ap-
plication in academia, in-context learning still offers potential for the future. As large
language models continue to increase both in size and in capabilities, in addition to con-
text windows sizes becoming less of a constraint, in-context learning may also yield better
results despite poor performances in the problem domain applications36. GPT-3 (175B),
used for the in-context learning approaches in this thesis, does display performance just
slightly below fine-tuned models for the binary classification tasks provided in ‘Language
Models are Few-Shot Learners’ by Brown et al. For the detection tasks we provided in this
thesis, the implemented in-context learning approaches perform far below our proposed
fine-tuning approaches, subsequently displaying strong contrast between the performances
of the two detection approaches. In the future, however, in-context learning may yield
potential in providing a low-resource, efficient, and effective solution for MGT-detection
in academia given that the general analytical abilities of language models improve and
new and improved in-context learning approaches for the specific task are discovered. For
instance, next-generation models such as GPT-4 may yield better results for the problem
domain application and should be explored in further works.

36Detecting whether a text is human-written or machine-generated
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8.4 Performance of fine-tuned detection

As we can see from the results from the in-domain tests in section 7.3.2, the fine-tuned
detectors do well in generalizing data from the same domain or corpus of which it was
trained. These results are promising, and even more interesting is the striking efficacy of
the RoBERTa model, in comparison to the other models. We can see that RoBERTa’s
performance is on par with, and sometimes even better than the other models, despite being
a much smaller model, which highlights the superiority of bidirectional in comparison to
unidirectional autoregressive language models for MGT-detection.

From the cross-testing results, on the other hand, as shown in section 7.3.3, the models
seem to struggle when cross-testing between the two datasets, meaning that the academic-
detectors, which are good at detecting if research abstracts are generated or not (in-domain
data), are not necessarily be good at detecting generated Wikipedia-articles (out-domain
data), which is in line with the results of Bakhtin et al. (2019), as discussed in the literature
review in section 4.3.1. This suggests that to train a generalized model that can detect if
any text is generated or not, regardless of the domain of the data, a larger amount of data
across multiple corpora is needed.

This is to some extent what was tested for the mixed-detectors, with results shown in
section 7.3.4, where the datasets were combined and cross-tested, which corresponds to
a cross-corpus dataset. As we saw from these results, although still relatively high, the
performance decreased in comparison to the in-domain performance from training on only
one corpus, e.g. wiki or CRA. As already mentioned, this could be explained by the fact
that the mixed-dataset only contains half of the data points from each of the other datasets.
Still, it is interesting that the Bloomz-3b, while being the best model on both of the other
datasets in regards to in-domain performance, had the worst performance on the CRA-
dataset when trained on the mixed-dataset. Also, if we look back at figure 7.11, we can see
that after Bloomz-3b trained on half the dataset (0.5 epochs), it has an F1-score of roughly
95%, while the Bloomz-3b-mixed-detector only has an F1-score of 77.2% after training
on the whole of the mixed-dataset, equivalent to half of the CRA dataset. These results
suggest that training on larger amounts of data across different corpora could negatively
impact the performance when compared to training on in-domain data, which again would
support the findings of Bakhtin et al. (2019).

However, note that in contrast to Bakhtin et al., as the two datasets were generated by
two different text generators (GPT-3 and ChatGPT), the mixed-dataset is also cross-
architecture, in addition to being cross-corpus. Therefore conclusions as to whether
cross-corpus or cross-architecture is harder to detect can not be drawn from our results,
as the difficulty of detection could lie in either, or both, of these domains. It could be the
case that detecting text from multiple generators with the same fine-tuned detector is easy,
but detecting across data-domain like Wikipedia articles and research abstracts is hard, or
the opposite could be the case. Additionally, the drop in performance could be a result
of the models being too small, or that they are not trained long enough, or that they were
trained on too little data, although this is not known to be the case. This necessitates more
research, building on the limited scope of this thesis, to further determine the performance
of fine-tuned detectors on cross-corpus and cross-architecture data.

Another limitation of fine-tuned detection that is worth discussing, is the cost of fine-
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tuning new detectors. As we saw in section 7.3.1, where the runtime from the training was
presented, large language models take a significant time and resources to train, whereas
the Bloomz-3b-wiki-detector took a maximum of 11 hours and 40 minutes to train on
an A100 80GB GPU. This was also when using only 10% of the wiki-dataset, and if
using the whole dataset, the training time would likely be over 100 hours. As generative
language models become larger, and their texts more human-like, likely larger detectors
are needed, and as Bloom-3b is far from the largest model that exists today, it is reasonable
to assume that high-performing detectors would require far more resources to train in
the future. Also, when considering the quadratic increase in runtime with increasing
input tokens, the resource requirements could become immense for detecting larger texts.
Implications of this are that training and researching larger detectors could get difficult
and even insurmountable for most researchers, in addition to ramifications related to the
environmental stress of high resource usage.

On the other hand, it is not necessarily a certainty that larger models for detection are
needed, however. When we compare the sizes of the detectors with the sizes of the
generators that were used to generate the datasets for training the detectors, we can see
that the detectors perform quite well despite being smaller than the generators, suggesting
smaller detectors to be sufficient for detecting output from larger generators. For example,
when considering ChatGPT, which generated the CRA-dataset, has a size of 175B, it is
quite impressive that RoBERTa-base, with the size 125M (about 1400 times smaller), was
able to achieve an F1-score and accuracy of 98.2% on this dataset, again as shown in table
D.3.

Additionally, when considering the detection of larger texts, other architectures than the
transformer can be considered. As already mentioned in section 2.8, the runtime of
the longformer architecture increases only linearly with the amount of input tokens and,
although not researched in this thesis, the detection performance of such architectures
could be tested in the future.

8.5 Social and ethical considerations

In section 4.1, we presented literature documenting the potential social impacts of language
models and their use in academic work. In this section, we will build on this and discuss
both social and ethical considerations within the thesis problem domain.

8.5.1 Ethical considerations in the development and application of MGT-detection-
detection

As the topic of this thesis suggests, the nature of MGT-detection has much potential in
regard to increasing academic integrity and fairness. Thus, for the development of MGT-
detectors, ethical considerations are essential to prevent potential negative social impacts
related to the educational sector. One critical consideration is where to set the thresholds
with regards to the respective performance metrics accuracy, recall, precision, and F1-
score for what we define as acceptable loss in the detectors prior to deployment in the real
world. As previously mentioned, the consequences of mislabeling a true human-written
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text as machine-generated could have consequences for the author. The development of
detectors should be focused on minimizing occurrences of false accusations (false posit-
ives), over minimizing true machine-generated text as human-written (false negatives). It
is also important to note that, while a detector can have a precision of 100% on the dataset
it is tested on, meaning zero false positives, this is not a guarantee of similar performance
in real-world applications, meaning the possibility of false positives occurring can never
be completely ruled out, regardless of the measured performance of the detector.

As any approach to classification including MGT-detection are entirely probabilistic, a truly
objective detection tool may never be developed with the current consensual understanding
within the field of classification. Any human writing a text may coincidentally produce a
text which aligns well with the characteristics of machine-generated text. This is further
supported by the fact that a core goal of current large language models is to reproduce
human capabilities in writing, which further currently is a result of iterative training on
large collections of human-written text.

Contrary to this, a similar argument can be phrased for traditional plagiarism tools, which
in general have been successful in their applications in academia (Foltýnek et al., 2020).
Traditional plagiarism tools are in the same manner as expressed for MGT-detection, com-
pletely probabilistic approaches for detecting plagiarism. It should be acknowledged that
the application of such plagiarism tools is likely to be less relevant in the future as autore-
gressive language models in general excel in the task of paraphrasing text as documented
by (Wahle et al., 2021), providing an simple evasion-technique for traditional plagiarism
tools. MGT-detectors may prove to be a decent substitute if acceptable implementations
of authorship attribution models as proposed by Uchendu et al. (2020) and discussed
in section 4.1, are developed. Additionally, if decent MGT-detectors are implemented
paraphrased texts by language models may be identified as machine-generated text. Re-
tracing back to the applications of plagiarism tools; if we follow the same principles for
the applications of plagiarism tools in academia, similar acceptable loss thresholds for
MGT-detection should be acquirable.

Furthermore, the biases of the MGT-detectors should be studied extensively to prevent any
unfairness with respect to MGT-detection. As also discussed in section 4.1, the detectors
could potentially inherit biases that would disproportionately target specific social groups,
and studies on how false positives and false negatives from the detector distributes over
such social groups should be considered.

8.5.2 Social considerations for appropriation

Prior to the application of MGT-detection tools, thorough research focusing on the social
consideration with respect to applying machine-generated detection tools in academia
must be conducted. Building on the social impacts discussed in section 4.1, we have listed
3 main aspects of consideration we consider central in the problem domain:

What we define as inappropriate and appropriate use of language models in academic
work:
Language models have proved valuable tools for a range of applications both in general
and in academia. Limiting access for students, researchers, and other academic indi-

63



viduals may also constrain the quality- and efficiency of their productions in comparison
to allowing a defined set of usages. As an example, language models can be used for
effectively summarizing papers and determining whether the paper is relevant for their
focused problem domain. Another application is formulation assistance; there are various
tools such as Grammarly which uses artificial intelligence for aiding in proper, concise,
and clear formulations of text without applying a bias to the content (Grammarly, 2023).
These are a few examples of AI-assisted writing which may be considered appropriate
applications of language models in academia. On the other hand, there are applications
that should be considered inappropriate usage of language models. Using a language
model to perform academic work for the attributed authors which we refer to as ghostwrit-
ing, such as generating entire- or sections of submissions and articles as a technique of
quickly completing assignments or producing papers for the purpose of accomplishing
requirements for doctoral degrees or achieving high-regarded, reserved academic titles.
Allowing the usage of language models to this extent is likely to promote academic laziness
which subsequently will reduce the value of completing the task at hand, whether that is
educational or scientific; providing novel knowledge to the scientific domain.

As presented in section 4.1, the use of language models in academic work is problematic
when considering the model’s potential for affecting or manipulating the initial opinions
of the author. Although this is a serious concern regarding the introduction of language
models in academia, these models can provide useful insights with regard to the text’s
general factuality and further improve the overall quality of its content. Applying language
models for tasks like identifying correlations within textual data across various segments
of literature might provide insights that otherwise may have been overlooked by a human.
Another potential use case is applying language models as an automated layer for alerting
potentially inaccurate statements in the text, which may prove to reduce misstatements in
academic literature. On the other hand, applying language models for such a task may also
result in the opposite; the current language models are documented to be highly confident
in their generations, sometimes displaying high confidence in completely false statements.
As autoregressive language models on a foundational level simply perform next-token
prediction through estimation of probability distributions, they do not inherently under-
stand their generations, sometimes resulting in formulations of severely wrong statements.
Various methods for increasing the factual reliability of language models are already in
place and are continuously being further developed. OpenAI notes one of the distinct
improvements in their GPT-4 model from GPT-3.5, is its precision in factual reliability
(OpenAI, 2023c). Despite this, critically evaluating the outputs of language models are
central to the appropriate and responsible use of language models in academia, which also
is general practice for human literature as well.

There is a vast range of applications for language models in academic work, but deciding
what we define as inappropriate usages must be established prior to applying detection
tools such that the potential negative impacts of immature applications are reduced.

What we define as inappropriate and appropriate use of MGTdetectors in the eval-
uation of academic work:
For the evaluation of academic work, there are also considerations related to the applic-
ation of MGT-detection tools in academia. While these are designed with the intent of
promoting academic integrity, they should not entirely restrict the author’s process of
writing by discouraging creativity in academic writing as an indirect result of the unres-
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tricted application of mMGT-detection tools. Although the primary role of such tools is
to detect academic dishonesty, we must also consider whether their use might encourage
cautious, and rigid writing styles, subsequently constraining creativity and innovation
which academia seeks to promote.

In addition to this, transparency with regard to content provenance is a central consideration
for the application of MGT-detection tools. Academic individuals should be well informed
about how MGT-detection tools are applied in the evaluation of their work, including a
clear understanding of how they function. This transparency should allow for a fair
evaluation process and help in building trust and support on both perspectives of the
problem domain.

Establishing consensus on the acceptable thresholds for the use of MGT-detection tools
in academic evaluation becomes increasingly important as advances are made within
the domain of language models and the norms in academia adjust for the disruption
caused by these models. Academia must adapt to the constant development in society,
including our assumption that the application of large language models in academic work
is inevitable. In cases where there are disagreements between the respective authors and
evaluators, a system of accountability may prove valuable. Establishing appeal processes
that allow for human review and the provision of critical evaluation of the specific case may
provide a second layer of inspections working as a measure for safeguarding irresponsible
application of MGT-detection tools, and consequently reduce the unintended harm as a
bi-product of introducing MGT-detection tools in academia. It is through a careful balance
of considerations that we can define the appropriate use of MGT-detection in academic
evaluation.

The impacts of the derived acceptable application thresholds for the introduction of
MGT-detectors in academia: Both the impacts of establishing too loose or too strict
policies for the application of MGT-detection tools may prove devastating. False accusa-
tions may lead to unjust damages to an individual’s academic record, which subsequently
may lead to expulsion or even degree revocations depending on the severity of the case
and the academic policies in place. Too loose policies may results in damages to academic
integrity by promoting academic laziness and dishonesty, which could have serious im-
plications for the future of academia and its role in promoting discoveries of- and research
on new innovations, halting the development of society and humanity as a whole. As the
current standards of well-being across the globe, in general, are built upon continuous
and incremental scientific achievements, we must ensure that the introduction of language
models in academia does not contaminate the strict standards of academic integrity.

Artificial intelligence is increasingly being employed in all segments of the technology
industry. Ensuring that we are prepared and fully understand the impact this technology
will have on society is central prior to its application. Given the transformative potential
of artificial intelligence, both negatively and positively, we should thread carefully to make
sure we do not fall into one of the pitfalls of immature application. There are few fields
where recklessness or lack of forethought may prove more devastating than with artificial
intelligence.
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8.6 The future of MGT-detection

As language models continue to advance in replicating human capabilities, the task of
distinguishing human-written and machine-generated texts will become increasingly dif-
ficult. The development of robust MGT-detectors may be used against its intention; for
training language models to evade its detection. Interpretations of this fact can vary
greatly depending on perspective. Using MGT-detection tools in the training of language
models may improve their ability in replicating human natural language, which funda-
mentally is a core goal of language models. On the other hand, increasing its ability to
evade detection will subsequently result in an increase in misuse as the likelihood of being
caught is low. Given the current pace of advancements in artificial intelligence, the current
approaches of identifying native characteristics in machine-generated texts or using the
models themselves to calculate perplexity scores may eventually be rendered inadequate.

There are various approaches that intend to provide solutions for MGT-detection which
does not rely on the native textual signature of language models being distinguishable from
human-written text. Among these, we highlight the concept of watermarking. This is an
approach that involves inserting hidden biases or rules in the lexical selection process of
generative language models. These watermarks are intended to be transparent in human
observation and evident for detection tools tuned for the set watermarks. As with all
proposed approaches in this thesis, there are evasion techniques for watermarking as well.
such as hosting language models which do not adhere to the watermarking standards which
may be set. Implementing watermarking and setting up tools for detecting them requires
a unison development effort between the developers of generative models and developers
of detector models.

While this thesis has focused on the discrimination of homogeneous text domains. A key
aspect to additionally consider is the occurrence of hybrid texts. When using language
models for text production both in academia and in other sectors, it is likely that they
often will be used under the supervision of the authors. This opens up for texts being
partially produced by humans and partially generated by language models. We have left
this out of the scope of this thesis as it requires extensive efforts with respect to correctly
collecting and generating hybrid data with proper labeling. As the problem domain of
this thesis matures, and more data on this becomes available, comprehensive research on
the domain of detecting hybrid texts should be conducted. Approaches such as the GLTR
approach presented in section 4.3.4, highlighting tokens based on their classification score
may show promise in providing insight into what tokens are generated, and which are
human-written.
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9 Conclusion and further work

In this thesis various aspects regarding how large language models can be leveraged to
detect machine-generated text be detected in academia has been presented, considered,
tested, and evaluated. The problem is a complex one, built upon various sub-problems
such as the process of producing relevant and sufficient data for the training and evaluation
of models, the development and testing of detection approaches that show potential with
respect to both practicality and end-result performance in existing literature, and consid-
erations of a selection of social and ethical aspects related to the applications of such
detection tools in academia.

9.1 Necessary data foundation and the production of in-domain data

To enable the training and deployment of machine learning models in the problem domain,
a considerable foundation with regard to data is required, most importantly with respect
to data quality, but also in quantity. Sufficient datasets may be produced using features of
human-written texts as templates for a language model to produce similar texts. Despite
this, data-cleaning techniques and following statistical analysis of the data should be
conducted to reveal and mitigate any superficial characteristics which may impact accurate
performance evaluation.

Due to the infancy of the problem domain, dataset(s) containing in-domain data had to
be produced to allow comprehensive in-domain research on various approaches. Results
displayed both in our binary sequence classification and in the existing literature show that
using in-domain data is crucial for optimal performance in detection tools. Such in-domain
data was produced in this thesis using scientific research abstracts sourced from arXiv,
and corresponding machine-generated abstracts were generated using the large language
model gpt-3.5-turbo-0301. To reduce superficial discrepancies with regard to the general
characteristics in each of the domains, the model was instructed to match a target word
count equal to that of a corresponding human-written abstract and also prompted to match
the content using its title. Using a set of data-cleaning techniques, superficial discrepancies
between the two domains were reduced. Through further statistical analysis, discrepancies
were still found with regard to word count and page break usage frequency (PB-frequency).
The model used for generating the machine-generated abstract displayed imprecision with
regard to the target word count provided, typically generating abstracts below the target
word count. For word counts (WC) in WC ∈ [50, 325] the generator model displays a
correlation with its target word count of 𝑟 = 0.97, while for the interval WC ∈ [325, 420]
the word count correlation drops to 𝑟 = 0.2. This imprecision displayed at higher target
word counts indicates that the model displays a bias towards the natural average word count
distribution of its training data. It may also be attributed to the autoregressive architecture
of the generator model which makes it inferior in tasks such as predicting the length of
its output in comparison to bi-directional transformer-architectures. With regard to the
discrepancies displayed in the PB-frequency, the model displayed distinct patterns in its
deployment of paragraphs with respect to the word count of its abstracts. For word counts
lower than 185 an MGT-detection accuracy of 78% may be acquired by simply guessing all
abstracts as machine-generated if they do not contain any paragraph breaks. For abstracts
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greater than 185 in word count, the generator model displayed a consistent average of
87 words per paragraph. In contrast to these characteristics, the human-written abstracts
displayed a steady linear increase in words per paragraph as their respective word count
grow. Due to this finding, all performance evaluations were completed with all abstracts
stripped of any sequences of white space, including paragraph breaks and excluding single
spaces.

9.2 Current and future approaches for MGT-detection

The current and potential future approaches found to show promise in existing literature
are perpelxity-, in-context learning-, and fine-tuned binary sequence classification-based
MGT-detection approaches. While perplexity approaches have shown potential as a
zero-shot approach for MGT-detection, it was down-prioritized in this thesis as literature
documenting its performance in the problem domain already exists. The focus was instead
set on providing valuable insights into the performance of in-context learning and fine-
tuned binary classification which has not been documented in the literature with respect
to the problem domain.

For our in-context learning approach, 4 distinct variations were tested: in-context learning
with human-written input texts, in-context learning with inductive input texts, each in both
zero- and few-shot settings. The results show that all variations perform with an accuracy
close to 0.5, indicating that for the large majority of the provided task iterations, the
models are guessing the label to which the provided classification text belongs. Following
applying optimal thresholds when the model predicts a text as machine-generated, slight
performance gains were made in terms of accuracy, but considerable improvements were
made in terms of precision, recall, and F1-score. Despite this, the performance should
be evaluated across all metrics, and low performance in either of them should disqualify
any approach with regard to application in the problem domain. Prior to threshold
optimization, the inductive few-shot approach displayed better performance on all metrics,
in addition to being less biased in its confidence scores towards all classification texts
being written by a human. In total, the in-context learning performances documented
in this thesis do not suffice for practical application, indicating that the task currently is
too complex for current open-access language models for in-context learning. Despite
this, the results provide valuable insights into how various approaches and performance
optimization techniques can be applied in further in-context learning research projects.
Better performances may be discovered for in-context learning in next-generation language
models exemplified by GPT-4 which possesses both analytic capabilities and larger context
windows greater than its predecessor used in the proposed approaches.

In contrast to in-context learning, the fine-tuning approach has demonstrated significantly
more promising results. When tested on in-domain data, the best models were able to
achieve an F1-score of up to 100% on the text generated by GPT-3, and 98.4% on the text
generated by ChatGPT, indicating proficient performance in detecting machine-generated
text. When testing the performances on out-domain data, however, the models seem to
struggle greatly, with accuracies on par with random guessing, suggesting this to be a
limitation of such models. Our tests on using mixed-corpus datasets have shown that
generalization across multiple corpora is possible using fine-tuned detectors, although
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with lower performance than that of single-corpus detection. Furthermore, it was found
that doubling the size of the input to the model resulted in a performance increase of
about 2%-3%, although also quadratically increasing the runtime of the training. More
research on how training runtime can be decreased, as to allow for more efficient research,
is therefore advised. Lastly, through our research on fine-tuned detectors, we have also
further supported the hypothesis that autoencoding language models possess an inherent
advantage over autoregressive language models when it comes to text classification, and
from this, it is reasonable to suggest further research on fine-tuned detection to be focused
on testing and developing larger autoencoding models in the context of MGT-detection.

9.3 Social and ethical considerations in the application of MGT-
detection in academia

Prior to the introduction of advanced technology in society, careful considerations and
measures regarding both social and ethical aspects of its application must be established.
This caution has to a little degree been practiced with respect to the distribution of state-of-
the-art generative large language models which have been introduced into society without
proper preparation and caution with respect to sectors that they disrupt such as academia.
Academic institutions have now been faced with great challenges of how to adapt to this
disruption. Instead of following the example of the commercial large language model
distributors, we have outlined three criteria that we propose fulfilling prior to a potentially
immature introduction of MGT-detection tools in academia:

Firstly, we must define what is considered inappropriate and appropriate use in academic
work. Secondly, we must define what is considered inappropriate and appropriate use of
MGT-detection in academic evaluation. And finally, we must research and understand the
exact impacts of the definitions we set. Only by conducting comprehensive research in
these social domains, can we best understand and apply the correct measures, consequently
mitigating severe unintended consequences.

While there are strong arguments both for and against the application of MGT-detection in
academia, it is important that a discussion of how we adjust to the disruptions of generative
large language models is based on a scientific foundation led by performance evaluations
of proposed MGT-detection tools, and the social and ethical implications of a widespread
application. A solution may include a balance in accepting the usage of language models
in academic work while also providing policies for how to document these usages and
restrictions for what is defined as misuse. It’s through transparency from both sides of the
problem that we can reap the benefits of large language models while maintaining academic
integrity. By conducting both research and education on how large language models can
be used responsibly in the production and evaluation of academic work, a consensus for
their applications might be reached. If we gradually implement verifiable usage policies,
balanced and well-tested MGT-detection measures, and provide frameworks for attributing
language models in academic work, we can incrementally improve and find solutions that
benefit both sides of the problem domain.
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9.4 Closing statement

In this research, we have provided an introduction to how potential MGT-detection tools
may be developed and applied by displaying both successful and unsuccessful approaches
to how large language models can be leveraged to detect their misuse in academia. We
have produced, developed, and discussed foundational sub-problems of a problem domain
which is likely to increase in the coming years. Although our contribution to the field
is a small piece in a large puzzle, we hope to promote further research on the domain
by open-sourcing our produced datasets, our fine-tuned models, and all code used in our
research.

Thank you for reading our bachelor thesis.

22nd May 2023, Trondheim
Nicolai Thorer Sivesind & Andreas Bentzen Winje
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Broader impact

The research and topic presented in this thesis carries significant implications to society.
By addressing the emerging and pressing concern of academic cheating facilitated by
modern text generators, this research has the potential to contribute to broader impacts
related to the educational sector. These impacts include:

• Upholding of integrity in academia:
By developing models that can detect if a text is generated or not, teachers and
academic evaluators can potentially use these models as tools in their work to more
accurately evaluate students, and potentially enhance their evaluation methodolo-
gies. This, in turn, could improve the authenticity and originality of future academic
works.

• Promotion of educational fairness:
The research we have conducted aims to promote educational fairness by mitigating
the use of language models as tools for cheating. This serves to prevent unfair
advantages that could undermine the educational process and weaken the trust
within academia.

• Informing of potential misuse of language models:
By highlighting the potential misuse of language models, awareness among educat-
ors and students can be raised and further research can be conducted. Following
this, educational institutions can implement proactive measures to prevent cheating,
in addition to adjusting their evaluation strategies.

In closing, we want to stress that this thesis should be seen as an encouragement for further
work, and should not be used directly as a baseline for implementing systems that could
have impacts on society.
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Appendix

A Uniform sampling of data points

def sample_uniform_subset(dataset, column, subset_size, start, end,
seed):↩→

"""

Samples a subset of selected size with a uniform distribution

with respect to integer values within a set inclusive interval.

If roof of available data points for a specific integer value

is met before subset_size is reached, selection of data points

with this integer value is skipped to ensure non-duplicate

sampling, and uniform sampling will continue on integers with

remaining (not yet selected) data points.

↩→

↩→

↩→

↩→

↩→

↩→

Parameters

----------

dataset : list[dict] | Dataset

Dataset to be sample subset from.

column : str

Column name of the column with containing integer values.

subset_size : int,

Number of samples in returned subset.

start : int

Minimum integer value in returned subset - inclusive.

end : int

Maximum integer value in returned subset - inclusive.

Returns

-------

list[dict]

The uniformly selected subset in the format of

datasets.Dataset.↩→

"""

dataset = list(dataset)

subset = []

random.seed(seed)

random.shuffle(dataset)

# Sort data points into separate list for each integer value

word_count_lists = {i: [] for i in range(start, end + 1)}

for i, data_point in enumerate(dataset):
completion_bar(i, len(dataset), text='Sorting into lists')
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word_count = data_point[column]

if start <= word_count <= end:
word_count_lists[word_count].append(data_point)

print('')

# Sample until subset size is reached or all data points have

been sampled.↩→

while len(subset) < subset_size and len(word_count_lists) > 0:
empty = []

keys = list(word_count_lists.keys())

# Randomise order for each selection round for true uniform

sampling.↩→

random.shuffle(keys)

for key in keys:
completion_bar(len(subset), subset_size, text='Sampling

data points')↩→

if len(subset) >= subset_size:
return subset

if len(word_count_lists[key]) == 0:
empty.append(key)

continue
subset.append(word_count_lists[key].pop(0))

# Delete integer value lists where all data points are

sampled.↩→

for key in empty:
del word_count_lists[key]

return subset
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B Data cleaning script

def cleanup_whitespaces(text):
"""

Cleans a text, replacing all newlines with double newline if

preceding character is '.', '!', or "?", else replaces with a
single space character. All sequences of whitespaces are

replaced with a space character unless it's a newline.

↩→

↩→

↩→

Parameters

----------

text : str

String of text to be cleaned.

Returns

-------

str

The cleaned version of the text.

"""

# Replace all newlines which does not succeed '\n', '.', '!' or '?',
and does not precede another newline, with a↩→

# space character.

clean = re.sub(r'(?<![.!?\n])\n(?!\n)', ' ', text)

# Replace all newlines which succeeds a '.', '!' or '?' and does
not precede another newline, with a double newline.↩→

clean = re.sub(r'(?<=[.!?])\n(?!\n)', '\n\n', clean)

# Replace all non-newline sequences of whitespace with a single

space character.↩→

clean = re.sub(r'[ˆ\S\n]+', ' ', clean)

# Remove all non-newline characters succeeding a newline

character.↩→

clean = re.sub(r'(\n[ˆ\S\n]+)', '\n', clean)

# Remove any whitespace preceding first non-whitespace

character of the text.↩→

clean = re.sub(r'ˆ\s+', '', clean)

return clean
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C Confusion matrices for fine-tuning results

(a) Bloomz-560m-wiki on wiki-dataset (b) Bloomz-1b7-wiki on wiki-dataset

(c) Bloomz-3b-wiki on wiki-dataset (d) RoBERTa-wiki on wiki-dataset
Figure C.1: Confusion matrices for wiki models on wiki dataset across 45000 datapoints
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(a) Bloomz-560m-wiki on CRA-dataset (b) Bloomz-1b7-wiki on CRA-dataset

(c) Bloomz-3b-wiki on CRA-dataset (d) RoBERTa-wiki on CRA-dataset
Figure C.2: Confusion matrices for wiki models on CRA-dataset across 3000 datapoints
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(a) Bloomz-560m-academic on CRA-dataset (b) Bloomz-1b7-academic on CRA-dataset

(c) Bloomz-3b-academic on CRA-dataset (d) RoBERTa-academic on CRA-dataset
Figure C.3: Confusion matrices for academic models on CRA-dataset across 3000 data-
points
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(a) Bloomz-560m-academic on wiki-dataset (b) Bloomz-1b7-academic on wiki-dataset

(c) Bloomz-3b-academic on wiki-dataset (d) RoBERTa-academic on wiki-dataset
Figure C.4: Confusion matrices for academic models on wiki-dataset across 45000
datapoints
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D Metric results from mixed-detectors

Table D.1: Metric results from mixed-detectors on the mixed-dataset, with the best result
from each metric marked in bold.

Base model Accuracy Precision Recall F1-score
Bloomz-560m 0.949 0.981 0.917 0.948
Bloomz-1b7 0.930 0.949 0.909 0.929
Bloomz-3b 0.989 0.992 0.985 0.988
RoBERTa 0.993 0.987 0.998 0.993

Table D.2: Metric results from mixed-detectors on the wiki-dataset, with the best result
from each metric marked in bold.

Base model Accuracy Precision Recall F1-score
Bloomz-560m 0.973 0.999 0.946 0.972
Bloomz-1b7 0.965 0.996 0.934 0.964
Bloomz-3b 0.996 0.999 0.993 0.996
RoBERTa 0.997 0.995 0.999 0.997

Table D.3: Metric results from mixed-detectors on the CRA-dataset, with the best result
from each metric marked in bold.

Base model Accuracy Precision Recall F1-score
Bloomz-560m 0.831 0.772 0.940 0.848
Bloomz-1b7 0.788 0.721 0.941 0.816
Bloomz-3b 0.709 0.634 0.986 0.772
RoBERTa 0.794 0.709 0.996 0.829
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E Appendices related to In-context Learning

E.1 Logit biases for in-context learning

# Logit bias

banned_words = [" ", "\\", "n", "\n", "\n", "Class", "
Class", "class", ' class', "Label", "Answer",↩→

"Prediction"]

boosted_words = ["Human", "AI"]

for banned, boosted in zip(banned_words, boosted_words):
for token in self.tokenizer.encode(banned):

self.logit_biases[token] = ban_bias

for token in self.tokenizer.encode(boosted):
self.logit_biases[token] = boost_bias

E.2 Input texts for in-context learning

The initial texts were stored as an JSON-file. We have displayed it here using python
multi-line strings to present newline characters as actual newlines for readability.

{

"zero-shot":

"""Input text:"{classification_text}"

---

An input text is given above. Perform zero-shot classification of

the input text. Your task is to classify the input text and

predict if it is written by a human (use the class label:

Human) or if it is generated by a large language model such as

yourself (use the class label: Machine). Respond with the exact

class label of your prediction.\n\n""",

↩→

↩→

↩→

↩→

↩→

"few-shot":

"""Example 1:

Text: \"{human_text_1}\"

Class label: Human

Example 2:

Text: \"{generated_text_1}\"

Class label: Machine

Example 3:

Text: \"{human_text_2}\"
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Class label: Human

Example 4:

Text: \"{generated_text_2}\"

Class label: Machine

Example 5:

Text: \"{human_text_3}\"

Class label: Human

Example 6:

Text: \"{generated_text_3}\"

Class label: Machine

---

Input text: \"{classification_text}\"

---

Labeled examples are given above in addition to an input text. Use

the examples to perform few-shot classification of the input

text. Your task is to classify the input text and predict if it

is written by a human (use the class label: Human) or if it is

generated by a large language model such as yourself (use the

class label: Machine). Respond with the exact class label of

your prediction.\n\n""",

↩→

↩→

↩→

↩→

↩→

↩→

"gpt-zero-shot":

"""Classify the following text as either written by a human or

generated by an AI: '{classification_text}'. Please only answer
with the class label: 'Human' or 'AI'.\n""",

↩→

↩→

"gpt-few-shot":

"""I will provide you with examples of texts written by humans and

texts generated by AI. Based on these examples, please classify

the following text as either written by a human or generated by

an AI.

↩→

↩→

↩→

Example 1:

Text: '{human_text_1}'
Class label: Human

Example 2:

Text: '{generated_text_1}'
Class label: AI

Example 3:
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Text: '{human_text_2}'
Class label: Human

Example 4:

Text: '{generated_text_2}'
Class label: AI

Example 5:

Text: '{human_text_3}'
Class label: Human

Example 6:

Text: '{generated_text_3}'
Class label: AI

Now, classify the following text: '{classification_text}'. Please
only answer with the class label: 'Human' or 'AI'.\n"""↩→

}

E.3 Input text for producing machine-generated in-context learning input text

For reproductive purposes. The example texts provided is not omitted.

{

"inductive-instruction":

"""Example 1:

Text: "Karin Flaake (born 1944 in Schwerin, in Mecklenburg,

Germany) is a German sociologist and professor (retired) at the

Carl von Ossietzky University Oldenburg. Her publications on

the adolescence of young women and men (some written jointly

with Vera King) are part of the literature of

socio-psychologically oriented gender research. Another focus

of her work is on the chances of changing gender relations in

families. Biography

↩→

↩→

↩→

↩→

↩→

↩→

↩→
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Karin Flaake studied sociology and psychoanalytic social psychology

in Frankfurt / Main, then from 1972 to 1975 was research

associate at the sociological seminar of the University of

Göttingen, working on a research project on political learning

processes in general education schools. From 1975 to 1989 she

was a research associate at the Institut für Sozialforschung in

Frankfurt / Main, working on research projects in education

and sociology. Afterwards, she took her habilitation on the

topic: :Gender-specific patterns of identity and vocational

orientations of teachers". From 1982 to 1986, she had training

at the Institute for Group Analysis Heidelbergan worked with

the Frankfurt Working Group for Psychoanalytical Education

(FAPP). From 1991 to 1994 she was professor at the

Psychological Institute of Freie Universität Berlin, working in

the field of feminist science. From 1994 to the end of 2007 she

was Professor of Sociology with a focus on women's and gender
studies at the Carl von Ossietzky University Oldenburg. Flaake

is - especially with Heike Fleßner - co-founder of the Study

Program Women's and Gender Studies and the Center for
Interdisciplinary Wome's and Gender Studies."

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

Class label: Human

Example 2:

Text: "Karin Flaake (born 1944 in Schwerin, in then East Germany)

is a German historian and politician. She has been a member of

the German Bundestag since 1994, and was elected as the

parliamentary group leader of the Social Democratic Party of

Germany (SPD) in February 2006.

↩→

↩→

↩→

↩→

Flaake has also served as Minister for Family Affairs in the

Cabinet of Chancellor Angela Merkel from 2005 to 2009. As

Minister for Family Affairs, she was responsible for a wide

range of social policy issues, including child and family

welfare, elderly care, and unemployment benefits.

↩→

↩→

↩→

↩→

Flaake studied history at the universities of Berlin and Tübingen,

earning her doctorate in 1984. She later worked as a research

associate at the Institute for Contemporary History in Berlin.

From 1990 to 1994, she served as director of the Berlin-based

historical journal "Zeitschrift für Geschichte Osteuropas".

↩→

↩→

↩→

↩→

Flaake is married to historian Bernd Rüther, with whom she has two

children."↩→

Class label: Machine

Example 3:

87



Text: "Camaleón (born 1979) is a Mexican luchador enmascarado, or

masked professional wrestler currently working for the Mexican

professional wrestling promotion Consejo Mundial de Lucha Libre

(CMLL) portraying a tecnico ("Good guy") wrestling character.

Camaleón's real name is not a matter of public record, as is
often the case with masked wrestlers in Mexico where their

private lives are kept a secret from the wrestling fans.

Professional wrestling career

↩→

↩→

↩→

↩→

↩→

↩→

↩→

The wrestler known under the ring name Camaleón has on a few

occasions stated that he began his wrestling career in 1999,

but never revealed what ring name he worked under from 1999

until 2007 when he began working for Consejo Mundial de Lucha

Libre (CMLL) as Súper Camaleón ("Super Chameleon). The secrecy

about former masked identities is not uncommon in Mexico where

the private lives of the masked wrestlers is kept secret. Early

in his CMLL career he would often form a tag team with a

wrestler known as Super Tri and worked in the low ranked

matches. His contract with CMLL allowed him to work for a

number of other promoters' including Último Dragón's Toryumon

promotion since they had a close working relationship with

CMLL. On December 14, 2008 he competed in the annual Young

Dragons Cup in a torneo cibernetico, multi-man elimination

match that also included Adam Bridle, Miedo, Ministro,

Disturbio, Trauma I and Trauma II and was won by Satoshi

Kajiwara. Later on he would team with Ministro to face Los

Traumas (Trauma I and Trauma II) on subsequent Toryumon shows

in Mexico City."

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

Class label: Human

Example 4:

Text: "Camaleón (born 1979) is a Mexican luchador, professional

wrestler and actor. He is best known for his time working for

Consejo Mundial de Lucha Libre (CMLL) as Último Guerrero's
enmascarado, or masked persona, Camaleón, which he used from

2006 until Guerrero's death in 2013.

↩→

↩→

↩→

↩→

Camaleón was born in 1979 in the state of Puebla, Mexico. He

started training to become a professional wrestler at the age

of 16, and made his professional wrestling debut in 1997. He

worked for various promotions before joining CMLL in 2006 where

he would use the persona of Camaleón. In 2009, Camaleón won the

CMLL World Light Heavyweight Championship. In 2013, he lost the

title to Mı́stico. In 2014, he won the CMLL World Middleweight

Championship. In 2016, he lost the title to La Máscara."

↩→

↩→

↩→

↩→

↩→

↩→

↩→

Class label: Machine

Example 5:
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Text: "Boreal woodland caribou (Rangifer tarandus caribou) are a

species of caribou and subspecies of North American reindeer.

Boreal woodland caribou are also known as southern mountain

caribou, woodland caribou, and forest-dwelling caribou.

Mountain caribou are uniquely adapted to live in old-growth

forests. The mountain caribou diet consists of tree-dwelling

lichens predominantly. They are unique in this aspect as in the

far northern regions of their habitat zones, the snowpack is

shallow enough that the boreal woodland caribou can paw through

the snow to eat the ground-dwelling lichens. In the inland

Pacific Northwest Rainforests of eastern British Columbia,

where the snowpack can reach upwards of five meters, the

mountain caribou rely predominantly on the tree-dwelling

lichens such as Bryoria spp. and Alectoria spp., hanging above

the snowpack. As a result, these mountain caribou are reliant

upon the old growth forests, which have been logged for

centuries and continue to dwindle. History of conservation

efforts

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

Conservation efforts began in the mid-50s with the southward

expansion of the Wells Gray Provincial Park north of Kamloops,

British Columbia and west of Jasper National Park with the

focus to protect the dwindling herds of mountain caribou. The

areas set aside by further Canadian National Parks { Glacier

National Park (Canada), the Purcell Wilderness Conservancy

Provincial Park and Protected Area, Valhalla Provincial Park {

are not as conducive for the specially adapted caribou as these

areas are mostly ice, rock, alpine meadows and sub-alpine

parkland and are lacking in the old-growth forests which

provide the tree-dwelling lichens pivotal to the mountain

caribou diet."

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

Class label: Human

Example 6:

Text: "Boreal woodland caribou (Rangifer tarandus caribou) are a

subspecies of caribou found in the Canadian provinces of

British Columbia, Alberta, Saskatchewan, and Manitoba. The

animals are typically smaller than their tundra-dwelling

cousins, but have a more robust build with longer legs and a

thicker coat. They are the only caribou population in North

America that migrates across large tracts of open terrain in

search of food.

↩→

↩→

↩→

↩→

↩→

↩→

↩→

89



The Boreal woodland caribou is threatened by a number of factors,

including hunting, habitat loss and fragmentation, and climate

change. In British Columbia and Alberta, the animals are

protected under provincial legislation, while in Manitoba they

are protected under the Migratory Bird Treaty Act. Efforts are

being made to protect the Boreal woodland caribou throughout

its range, and to educate the public about the importance of

conserving these animals."

↩→

↩→

↩→

↩→

↩→

↩→

↩→

Class label: Machine

---

Input text: "Raúl Argemı́ (1946{present) is an Argentinean writer,

journalist, and television presenter. He is considered one of

the most important contemporary Argentine authors. Argemı́'s work
has been praised for its lyrical and atmospheric quality.

↩→

↩→

↩→

Argemı́ was born in 1946 in Buenos Aires, Argentina. He studied at

the University of Buenos Aires and later worked as a journalist

for various publications, including El Paı́s and La Nación. He

has been a television presenter since 1987, most notably for

the show Periodismo Para Todos. Argemı́ has also written several

books, including El abrazo de la muerte (1981), Los ángeles

(1987), and La voz de la tierra (1997). He currently lives in

Barcelona, Spain."

↩→

↩→

↩→

↩→

↩→

↩→

↩→

---

Labeled examples of machine-generated texts from

"gpt-3.5-turbo-0301" (class label: Machine) and real texts

written by human's (class label: Human) are given above in
addition to an input text. I am going to perform zero-shot and

few-shot in-context learning with text-davinci-003. For this I

need a well suited input text with a precise instruction prompt

that resonates well with the model's understanding of the task.
The input text should include the example texts, their class

labels, the text be predicted and an instruction prompt. I

also want text-davinci-003 to only answer with the predicted

class label. Write two input texts for this purpose. The first

one for the zero-shot setting which does not provide labeled

examples, and the second one for the few-shot setting which

does provide labeled examples.

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

- You are free to change the class label names if you think there

are better alternatives which resonates better with

text-davinci-003.

↩→

↩→
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- Do note write the example texts or the text to be classified,

simply use JSON-insertion brackets instead for displaying their

position: "{human_text_1}", "{generated_text_1}" or

"{classification_text}" etc.

↩→

↩→

↩→

- The examples must provide the class labels. You are free to

present this in the manner you think is the clearest for

text-davinci-003.

↩→

↩→

- To be able to compare the two settings, the instruction prompts

should be as similar as possible, while being optimized for

their respective approaches."""

↩→

↩→

}

F Confusion matrices with accuracy optimized GCS thresholds

(a) Human-zero-shot (b) Human-few-shot

(c) Inductive-zero-shot (d) Inductive-few-shot

Figure E.1: Confusion matrices for each of the in-context learning approaches when
accuracy-wise optimal GCS threshold values are applied.
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G Hyperparameters for fine-tuning

1 hyperparams = {

2 "num_train_epochs": 1,

3 "adam_beta1": 0.9,

4 "adam_beta2": 0.999,

5 "batch_size": 8,

6 "adam_epsilon": 1e-08

7 "optim": "adamw_torch" # the optimizer (AdamW)

8 "learning_rate": 5e-05, # (LR)

9 "lr_scheduler_type": "linear", # scheduler

type for LR↩→

10 "seed": 42, # seed for PyTorch RNG-generator.

11 }

Listing 5: Hyperparameters used for the fine-tuning experiments in PyDict-format, with
descriptions.
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H SLRUM-script for fine-tuning on HPC-cluster

1 #!/bin/sh

2 #SBATCH --partition=GPUQ

3 #SBATCH --account=share-ie-idi

4 #SBATCH --time=20:00:00

5 #SBATCH --nodes=1

6 #SBATCH --ntasks-per-node=1

7 #SBATCH --mem=50G

8 #SBATCH --gres=gpu:A100m80:1

9 #SBATCH --constraint=A100

10 #SBATCH --job-name="560m-wiki-100" # "model-dataset-size"

(size as inverse, e.g. 1/100)↩→

11 #SBATCH --output="./logs/res-%x.out"

12 #SBATCH --mail-type=end

13 #SBATCH --mail-user=xx@xx.xx

14

15 WORKDIR=${SLURM_SUBMIT_DIR}
16 cd ${WORKDIR}
17 uname -a

18 echo "===================================================="

19 echo "Working div: $SLURM_SUBMIT_DIR"

20 echo "Job name: $SLURM_JOB_NAME"

21 echo "Job ID: $SLURM_JOB_ID"

22 echo "Nodes used: $SLURM_JOB_NODELIST"

23 echo "Num nodes: $SLURM_JOB_NUM_NODES nodes"

24 echo "Num CPUs on node: $SLURM_CPUS_ON_NODE cores"

25 echo "Num GPUs on node: $SLURM_GPUS_ON_NODE"

26 echo "CUDA visible devices: $CUDA_VISIBLE_DEVICES"

27 echo "Total of $SLURM_NTASKS cores"

28 echo "Starting job..."

29 echo "------------------------------"

30 echo ""

31

32 module purge

33 module load fosscuda/2020b

34 module load Anaconda3/2020.07

35

36 python ../main.py $SLURM_JOB_NAME

37

38 echo ""

39 echo "------------------------------"

40 echo "Job $SLURM_JOB_ID finished!"

Listing 6: SLURM-script for requesting hardware resources, used for fine-tuning experi-
ments.
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