
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

Ba
ch

el
or
op

pg
av

e

Henrik August Burmann
Marcus Johannessen

Fullstack application for people in
need looking for food

Bacheloroppgave i Dataingeniør
Veileder: Donn Morrison
Mai 2023

Henrik August Burmann
Marcus Johannessen

Fullstack application for people in
need looking for food

Bacheloroppgave i Dataingeniør
Veileder: Donn Morrison
Mai 2023

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk

Abstract

This report provides an overview of the development process involved in creating a minimal viable
product full-stack application for Matsentralen Trøndelag, aimed at enhancing the accessibility of
food assistance for individuals in need. The primary objective behind the application was to make
the services of non-profit organizations more available to the public. Additionally, the application
aimed to streamline the administration of organization data.

The developed application encompasses three distinct interfaces or portals, each serving specific
functions. Firstly, the user interface enables individuals to search for and identify various non-
profit organization by employing search and filtering capabilities based on divers criteria.

Secondly, the organization portal empowers organizations to register themselves by providing rel-
evant information, ensuring accurate and up-to-date data within the system.

Lastly, the regional portal caters to the different Matsentralen branches located across Norway,
serving as a central hub for viewing requests from organizations seeking registration as partner
organizations. This portal facilitates the management of organizations details, allowing for editing
of information and granting the ability to accept or decline registration requests.

In the development of the application, the team utilized modern frameworks and technology stan-
dards to ensure the attainment of the desired outcomes outlined by the clients at Matsentralen.
Notably, Spring Boot with Gradle, Next.Js, and OAuth 2.0 were instrumental in enabling the
creation of a robust and feature-rich application that aligned with the specified requirements.

The achieved result is a minimal viable product that effectively lets the user look for organizations
providing food help near them, fitting the user’s needs. The application successfully streamlines the
process of storing organization data, which has the potential to serve as a solution to Matsentralen’s
scaling problem.

2

Sammendrag

Denne rapporten presenterer en oversikt over utviklingsprosessen bak utviklingen av et enklest
brukbart produkt for Matsentralen Trøndelag. Denne applikasjonen hadde som mål å gjøre mat-
tjenester mer tilgjengelige for mennesker som av ulike årsaker ikke har råd til mat. I tillegg var et
mål med applikasjonen å effektivisere administreringen av organisasjonsdata.

Den utviklede applikasjonen består av tre ulike deler, hvor hver del har en spesifikk funksjon.
Den første retter seg mot mennesker som trenger mathjelp. Her kan brukere søke etter og filtrere
ideelle organisasjoner basert på ulike kriterier som har et samarbeid med Matsentralen.

Den andre delen lar organisasjoner søke om samarbeid med Matsentralen og vedlikeholde infor-
masjon om organisasjonen etter godkjenning.

Den siste delen er rettet mot de ansatte i de ulike seksjonene av Matsentralen lokalisert rundt
i Norge. Denne fungerer som en plattform for Matsentralen til å behandle søknader og ha en
ryddig oversikt over organisasjoner i deres seksjon.

I utviklingen av applikasjonen benyttet gruppen seg av moderne rammeverk og teknologistan-
darder for å sikre at kravene satt av Matsentralen ble tilfredsstilt. Viktige teknologier brukt er
Spring Boot med Gradle og OAuth 2.0. Disse teknologiene var essensielle for å kunne bygge en
robust og funksjonsrik applikasjon.

Sluttresultatet er et enklest brukbart produkt som effektivt lar brukeren finne ideelle organisas-
joner som tilbyr mat-hjelp og oppfyller brukerens behov. Applikasjonen effektiviserer prosessen
med lagring av organisasjonsdata og har potensial til å være en løsning på Matsentralens proble-
mer knyttet til organisasjonens vekst ved videre utvikling.

3

Preface

This report is the result of the system development project for the final bachelor thesis of the
study Software Engineering at the department of Computer Science at the Norwegian University
of Science and Technology in Trondheim. The project is an assignment provided by Matsentralen
Trøndelag, a non-profit organization, providing food aid to people in need. The students chose
the assignment with a wish of developing a full-stack system. The process of working with this
assignment has given the team valuable insight into system development and communication with
client, to provide a system that meets their need. Further, it has provided the team with challenges
that the team had no prior experience of. We would like to thank Jort Reitsman and Marte
Bjørnsund for providing valuable feedback during the project period and for inviting us to their
headquarters in Trondheim. Finally we would like to thank our supervisor Donn Morrison for the
feedback considering questions and problems during our project.

4

Assignment

Original assingment

Matsentralen is a non-profit organisation that collects surplus food from grocery suppliers and
donates it to charity organisations who help people in need. We are a national network of eight
food banks. Our mission is to reduce food waste and simultaneously help people in need in our
society.

The aim of this project is to develop an intuitive web application to connect people in need
with charitable organisations that fit their situation. Additionally, the application should have a
management back-end to allow easy maintenance by Matsentralen.

A successful design will help people in need get access to food more efficiently, as well as re-
duce the resources Matsentralen uses to achieve this with the tool we currently use. The current
tool can be found here: https://www.matsentralen.no/matkartet

Clarifications

The final assignment is very similar to the original assignment text. However, the original text is
somewhat vague, mainly because of some misconceptions on Matsentralen’s side, which have been
unraveled during meetings.

The confusion mainly comes from a misunderstanding over the meaning of the terms backend
and frontend. What Matsentralen is asking for is rather a "admin portal" for administration of or-
ganizations and information. A functioning backend is of course still necessary for the application
to work, but not in they way asked for by Matsentralen.

5

Abbrivations

• API - Application Programming Interface

• REST - Representational Programming Interface

• URI - Uniform Resource Identifier

• MVP - Minimal Viable Product

• WCAG - Web Content Accessibility Guidelines

• ICT - Information and Communications Technology

• CI/CD - Continuous Integration and Continuous Delivery

• DVCS - Distributed Version Control Systems

6

Contents

1 Introduction of Matsentralen and Problem Statement 1
1.1 What is Matsentralen . 1
1.2 Current digital solution . 2
1.3 Matsentralen’s desired solution . 2
1.4 Problem Statement . 3
1.5 Thesis structure . 3

2 Theory 5
2.1 Working Methods . 5

2.1.1 Scrum . 5
2.1.2 Wireframes . 5
2.1.3 Universal Design . 5
2.1.4 WCAG . 6
2.1.5 MVP . 6

2.2 Technological Concepts . 6
2.2.1 REST . 6
2.2.2 Dependency Injection . 6
2.2.3 Server Side Rendering . 7
2.2.4 Continuous Integration . 7
2.2.5 Version Control . 7

3 Method and Choice of Technology 9
3.1 Research Method . 9
3.2 Development Method . 10

3.2.1 Agile Development with based on Scrum . 10
3.2.2 Wireframes . 10
3.2.3 Wireframes - People in need of food help 10
3.2.4 Wireframes - Organizations and Admins . 10
3.2.5 Development - Sprints . 10
3.2.6 Version Control during development . 11

3.3 Choice of Technology . 11
3.3.1 Back-end . 11
3.3.2 Front-end . 13

4 Results 15
4.1 Scientific Results . 15

4.1.1 Wireframes . 15
4.1.2 The finished application . 18

4.2 Engineering results . 29
4.2.1 Functional features . 29
4.2.2 Non-functional features . 30

4.3 Administrative Results . 31
4.3.1 Planning . 31
4.3.2 Time Management . 32

5 Discussion 33
5.1 Scientific Results . 33

5.1.1 Wireframes . 33
5.1.2 Application Views . 33
5.1.3 Validation of fields . 34

7

5.1.4 Documentation of code . 34
5.2 Engineering Results . 34

5.2.1 Functional features . 34
5.2.2 Non-functional features . 35
5.2.3 The setup of the project . 35
5.2.4 Choices of technology . 36

5.3 Administrative Results . 36
5.3.1 Planning . 36
5.3.2 Time Management . 36

6 Conclusion and further work 38
6.1 Conclusion . 38
6.2 Further work . 38

6.2.1 Multiple Languages . 38
6.2.2 Allowing users to search for cities and district 38
6.2.3 Donation Map . 38
6.2.4 Divide the application in multiple application 39

6.3 Attachment B - Pre-work plan . 42

List of Figures

1 Example Matkartet . 2
2 Chosen method of research . 9
3 Sprint development . 11
4 Wireframe - Startpage . 15
5 Wireframe - Organization overview . 15
6 Wireframe - Organization registration . 16
7 Wireframe - Organization info views . 16
8 Wireframe - Organization Matkartet and Donasjonskartet 16
9 Wireframe - Admin - Organizationlist . 16
10 Wireframe - Admin organization details . 17
11 Wireframe - Admin- Application List . 17
12 Wireframe - Admin - Application . 17
13 Product - User - Start page . 18
14 Product - User - Start page mobile . 18
15 Product - User - Organization Detail page . 19
16 Product - User - Organization Detail page mobile 19
17 Product - Log in . 20
18 Product - Organization - First Time Application 20
19 Product - Organization - Second Time Application 21
20 Product - Organization - Home View . 21
21 Product - Organization - Edit home page data . 22
22 Product - Organization - Service View . 22
23 Product - Organization - Service Edit . 23
24 Product - Organization - Service Edit . 23
25 Product - Organization - Service Edit . 23
26 Product - Organization - Donation View . 24
27 Product - Organization - Donation Edit . 24
28 Product - Admin - Overview organizations . 25
29 Product - Admin - Application overview . 25
30 Product - Admin - First Time Application View 26

8

31 Product - Admin - First Time Application Edit . 26
32 Product - Admin - Second Time Application View 27
33 Product - Admin - Second Time Application Edit 27
34 Product - Admin - Add and delete shared fields . 28
35 Hourly graph of hours worked . 32
36 Hours of work for each category . 32

List of Tables

1 Functional features . 30

9

1 Introduction of Matsentralen and Problem Statement

1.1 What is Matsentralen

Matsentralen is an umbrella organization for eight food banks spread across Norway. The food
banks receives surplus food and beverage from partners in the food industry, that for different
reasons cannot be sold in store, but is still of high quality and safe to consume. Matsentralen
redistributes these products to non-profit organizations in their area. The non-profits use these
products to help people in need.

Matsentralen has as big user base, consisting of many different types of people in different life
situations. In common is that they are in need of food help. The users of Matsentralen’s services
are among many others, people who struggle with alcohol or drug addictions, poor families, people
reintegrating to society after serving a sentence and asylum seekers. Matsentralen’s partner orga-
nizations often have distinct target groups they focus on helping and different ways of providing
the food.

Matsentralen has partnerships with over 480 non-profit organizations. The group of partners con-
tains both organizations belonging to big national non-profit organizations such as Frelsesarmeen
and Røde Kors and smaller independent organizations such as Omsorgskaffeen i Trondheim. [15].

There are three main ways the surplus food is used by the partner organizations: home deliv-
ery of food, distribution of groceries and serving of meals. The organizations themselves choose
how they use the food.

Matsentralen has many partners in the food industry. This includes grocery wholesalers as Rema
1000 and Norgesgruppen, and others like Bama and Tine [10]. The food provided from these
partners is as mentioned surplus food that for various reason cannot be sold in stores, but is still
of high quality. This could be products that have the wrong packaging or are seasonal products.
The products also often are a result of overproduction, where the businesses would not be able to
sell all of the products before the expiration date.

By distributing food that otherwise would have gone to waste, to people in need, Matsentralen
achieves their two main goals: To reduce hunger and poverty and to reduce food waste. In 2018
Matsentralen won prizes for both cases [12].

Overall Matsentralen contributes to 7 of the 17 of the UN’s Sustainable Development Goals. [11]
These are:

• 1. No poverty.

• 2. No hunger.

• 3. Good health and well being.

• 10. Reduced inequalities.

• 11. Sustainable cities and communities.

• 12. Responsible consumption and production

• 17. Partnership for the goals.

1

1.2 Current digital solution

Matkartet is Matsentralen’s current tool to display all their partner organizations for people in need
looking to find food. It is a custom Google map, where all Matsentralen’s partner organizations
are manually plotted in. When a point is clicked, information about that organization appears on
the left side of the screen. Below is an example taken from Matkartet.

Figure 1: Example Matkartet

As for storage of data, each section of Matsentralen is responsible for storing and maintaining
the information of their own local partners. Several organizations, including Matsentralen Trond-
heim, does this through an spreadsheet document, operating as a database, that has to be manually
updated by the employees of Matsentralen.

As Matsentralen has grown a lot the last years, today’s solution leads to some challenges. With
every organization having to be manually plotted into Matkartet it creates a lot overhead for the
employees of Matsentralen when new organizations become partners or information has to be up-
dated.

Further, Matkartet itself is not easy to use for a lot of users. After navigating to Matkartet
users are presented with a large map without any information except for the plots of each orga-
nization. There is no way for the user to filter on target groups nor the form of food help the
organizations provides. Matsentralen spends a lot of time answering phone calls and emails from
people in need looking for food help - time that could be spent on further developing Matsentralen.
This could be improved with a better tool.

Since Matsentralen’s current way of storing data is a static spreadsheet document, more overhead
arises for the Matsentralen employees. If an organization for example wants to update opening
hours or way of food usage, they have to contact Matsentralen and have them manually update the
spreadsheet document. A lot of time could be saved if the organizations themselves could update
their own information.

1.3 Matsentralen’s desired solution

To face the challenges discussed above Matsentralen wanted a solution that would make it easier
for people in need of food help to find organizations that fit their needs, as well to reduce some
manual labor for the employees at Matsentralen.

2

To satisfy these needs a fullstack web application was needed. A database was also needed to
replace the spreadsheet documents. There was no architecture to work build on, and everything
therefore had to be built from scratch.

The application will have three different types of users: people looking for food help, the partner
organizations and the employees of Matsentralen. Therefore the application needed to be split in
three. The main points of each part is described below. More detailed requirement specifications
are described in the system requirements.

• The first mentioned part of the application could be seen as a 1-to-1 replacement for Matkartet.
Here Matsentralen wanted an interface where it was easier for users to browse through and
search for different organizations. The users should also have the opportunity to filter orga-
nizations based on different criteria such as target groups and location.

• Further, there was need for the organizations themselves to have their own part of the appli-
cation. The main requirements for this part was the organizations themselves should be able
to apply for a partnership with Matsentralen through an application and have the ability to
view and update their own information. They should get to choose what information they
want to display for users and what only Matsentralen should see. A successful implantation
of this would reduce a lot of the time Matsentralen spends on keeping track of all new data.

• The employees of Matsentralen themselves also needed their own portal. Here the wish
was that the employees of Matsentralen could be administrators of their own section. They
needed to have the ability to review and edit applications from organizations, view and edit all
organizations in their sections and export wanted organization information to an spreadsheet
document.

1.4 Problem Statement

Given the challenges and needs described earlier in the chapter the problem statement has evolved
to be:

"How can a minimal viable product, full-stack application, be developed to help people in need
find food help, while fixing the scaling problem of Matsentralen"

1.5 Thesis structure

The report is structured as follows:

Theory:
In this section relevant theory required to understand the theoretical background of the project.

Method and Choice of Technology
This section presents the research method chosen, work methodology used and choices of technol-
ogy taken.

Results
In this section the results of the project are presented. The results are split in three: scientific,
engineering and administrative results

Discussion
This section discussed the result presented

Conclusion and further work

3

In the conclusion the project is summarized and further work is discussed.

Societal Influence At the end the application’s societal impact is discussed.

4

2 Theory

During the development of a fullstack application there are many concepts, both technical and
non-techincal a team will have to use. In this chapter concepts essential to the team’s work will
be described.

2.1 Working Methods

This section will cover non-technical concepts of the process described, as far as possible, in a
chronological order.

2.1.1 Scrum

In the beginning of the project a team needs to agree on a how they want to work and therefore
choose a development framework. A popular framework used is Scrum. Scrum is a framework for
an iterative, agile work process[21]. The idea of Scrum is to split the working period into cycles
called sprints, with every sprint having a set amount of tasks to finish.

A scrum project often involves daily morning meetings, called stand-up meeting. In these meetings
the team members explain what they have done since the last meeting, and what they plan to do
until the next meeting. In larger teams, stand-up meetings are especially useful to ensure that all
team members have good overview of the entire project, while avoiding wasting time by having
multiple people unknowingly working on the same task.

After each sprint there is often a larger meeting called a Sprint Retrospective. In this meet-
ing the team reflects on the how the last sprint went and how they can improve in future sprints.
The meeting is also used to plan what is to be done during the next sprint.

2.1.2 Wireframes

Early in a project it is important for a software engineer to understand what the client envisions.
A client often has a lot of ideas and dreams of how a product should look like and, without neces-
sarily being able to describe them in detail. Therefore Wireframes are common to use by software
developers in the start phase of a project.

Wireframes are visual, 2D illustrations of how a web application or app can look. This way
developers can show their client how they have interpreted the client’s wishes and get feedback.
Wireframes are non-functional, meaning it is easy to change direction if the client does not like
what the developers have made.

When working in larger teams, where there are both designers and developers, wireframes are
a good tool for communicating how the product should function and look.

Fidelity varies in wireframes. Wireframes can have low, medium- and high-fidelity. [19]. The
level of fidelity in this context defines to what degree the wireframes are an exact representation of
how the product should look. Low-fidelity wireframes have a minimal amount of color and design,
leaving the developer to interpret the wireframes. While high-fidelity wireframes will look very
similar to the developed website.

2.1.3 Universal Design

When developing a product of any kind, one must consider universal design. Universal design is
a collective term used for designing a product in a way that it can be used by as many people as

5

possible, considering different disabilities [23]. Examples of such disabilities can be blindness and
loss of lower extremity motor control.

2.1.4 WCAG

Universal design includes the design of websites. Norwegian law states that both public and private
organizations must follow universal design for ICT solutions [9]. To help developers comply with
universal design the are a set of guidelines called WCAG. In Norway as per February 1.st, the
public sector must follow 49 of the 78 of the WCAG 2.1 guidelines [3]. For the private sector that
number is 35. [17]

Important rules to remember when developing a website are having clear colour contrasts, not
having to small of a text size and present the contents in a meaningful order [17]

2.1.5 MVP

MVP (Minimal Viable Product) is, similarly to wireframes, useful early in development to get an
indication of if a product idea is going to work or if product is working as a client wants[13]. An
MVP has the features needed to fulfill the basic requirements for the product, but a lot of extra
features still is to be implemented. This gives the team an opportunity to get early feedback, and
change direction if the feedback is negative.

2.2 Technological Concepts

This section covers several technical concepts used during the project.

2.2.1 REST

REST, first introduced in 2000 by Dr. Roy Fielding, is a set of architectural design rules used
for developing web services [18].In a REST project the client only needs to know the URI for the
resource needed to request a resource. Therefore, the server and the client are independent of each
other, making it possible to develop the applications separately. The client and server should not
be able to in any way modify or change the other.

With a HTTP request the client can add HTTP verbs, specifying what it wished to do, where
the most common are the GET, POST, PUT, and DELETE verbs. These are used for getting
requesting resources, posting a new resource, changing a resource and deleting a resource respec-
tively. With the HTTP request body, headers and parameters are often added to provide additional
information of what it wants the server to do or return.

Since the client and server are independent, all communication must be stateless. This means
that a new request has no memory of the the last request, and all needed information needs to be
passed in each request.

Using REST APIs are very popular currently for flexibility and the possibility to develop ap-
plications independently. [18]

2.2.2 Dependency Injection

Dependency injection is a design pattern in object orientated programming where the goal is to
achieve loose coupling in a program and/or make a class independent of its dependencies, resulting
in reusable and testable code [20]. There are four main points essential to dependency injection:

6

• A service class: This is a standard model class, for example a class for a book with object
variables.

• A client: This class uses the service to develop different functions.

• An interface: The interface works breaks the dependency between the client and the service,
rather making the client dependent on the interface. The advantage with decoupling the
client and services, is that changes to the service will not affect the client to the same degree.

• Last of all is the injector. The injector makes it so the service is not dependent of a specific
type of interface and dependencies can be swapped easily.

Because the decoupling of dependencies between classes, dependency injection also makes it easier
for developers to work on different classes separately.

2.2.3 Server Side Rendering

Server side rendering is a way of rendering a web page, where the HTML file is rendered on the
web server, rather than the by the client. The HTML file is then sent to the web browser from the
server. This way the client does not spend time waiting for JavaScript and CSS files, decreasing
load time [22]. This can improve the user experience drastically.

Another advantage with server side rendering is that it helps search engines like Google index
the HTML based website, making it more available for users. This is something search engines
usually struggles with, where indexing for websites based on JavaScript can take a lot of time [14].

Since the page is already rendered by the server this also makes the page better to share via social
media platforms, since it allows for the social media showing a preview of your page to the user. [14]

When the rendering is moved from the browser to the server this of course results in extra work
for the server and may therefore be a more expensive solution [22].

2.2.4 Continuous Integration

Continuous Integration (CI) is the practise of that involves regularly integrating code changes
from multiple developers into a shared repository. The main goal of CI is to detect and address
integration issues and conflicts early in the development process. Each integration triggers an
automated pipeline which may involve testing the code, building and compiling the code. The
pipelines aims to ensure that integrated changes do not introduce errors or breaking functionality.

2.2.5 Version Control

Version Control Systems (VCS) is a fundamental practice in software development aimed at ef-
fectively managing the various iterations of software code. These systems facilitate the recording
and tracking of changes made to different files within the code base, enabling developers to re-
view previous functional versions if errors or issues arise during the implementation of new features.

The primary mechanism employed by VCS is the concept of commits, whereby each commit rep-
resents a snapshot of the code base at a specific point in time. By associating a unique identifier
with each commit, VCS systems establish historical record of the software’s evolution. This enables
developers to refer back to earlier versions ensuring code stability [4].

Furthermore, VCS supports collaborative development by allowing developers to work concur-
rently on a shared code base. This is achieved through the creation of branches, which are distinct

7

versions of the code base that can be developed independently. These branches serve as sepa-
rate lines of development and can include the implementation of specific features, bug fixes, or
experimental changes. Ultimately, these branches can be merged back into the main code base,
combining the changes with the latest updates.

In scenarios where multiple developers modify the same file or section of code, VCS systems
are equipped to handle merge conflicts. These conflicts arise when conflicting changes need to be
adapted during the merging process. VCS provides mechanisms for developers to resolve conflicts
safely, ensuring that changes from different contributors are integrated seamlessly.

8

3 Method and Choice of Technology

This section is split into three subsections: research method, development method and the reasons
behind our choices of technology. Combined the section covers how the team worked to fulfill the
problem statement given in the introduction.

3.1 Research Method

At the beginning of the project, neither team member had any knowledge of Matsentralen’s work
nor structure. Therefore there was a need for research to explore the research question / problem
statement created. Multiple in-person interviews with Matsentralen were conducted. In these
meetings the team’s main contact at Matsentralen described, in detail, the problems they were
having while the organization is growing bigger, and what they would need from the new system.
This data analysis was therefore qualitative.

Even though Matsentralen Trøndelag is the client of this project, this application will be used
by all eight sections, and a more quantitative approach was also taken to involve more people in
the collection of data. A spreadsheet was created where all sections could fill out needs and wishes
they had. This was important since the different sections face their own challenges.

As the prototype was created there was a need of a lot of in depth input from Matsentralen. Here
two sets of interviews with meetings were held where a representative of Matsentralen Vestland
was included in one, to get more data of higher quality. Generally data was continually collected
by designing and developing and changing adaption to the responses gotten from Matsentralen.

Figure 2: Illustration of chosen form of research. Template taken from compendium on Blackboard

A challenge encountered was that Matsentralen did not have a clear idea of what they specifi-
cally wanted and needed of the application. The initial ask of the project was something to replace
Matkartet, as well as a solution to store and administer organizations. This research process was
therefore integral for the team to gradually understand what Matsentralen needed to form the
requirement specification. Understanding the the biggest strength of chosen research process.

Initially in the project there was a wish to perform user test on people not related to Matsen-
tralen to get larger quantity of data for the part of the application. However, such user tests were
not conducted because of time constraints. This is a clear weakness in the research done during
the project as the application will be used by people that do not have in depth knowledge of
Matsentralen.

9

3.2 Development Method

In this subsection the choices of development method while developing the minimal viable product
will be described.

3.2.1 Agile Development with based on Scrum

Starting of the project the team needed to decide on the method to use, and went for a Scrum
based method. Since the team only consists of two members, not all principles in Scrum were
followed. Daily stand-up meetings were dropped as the team members communicated on a daily
basis anyway.

The project as a whole was split into five sprints, stretching from the start of January until
due date in May. This involved all mandatory assignments, not just the development itself. This
is shown in the Gantt chart found in pre-project. The time estimation in this chart will differ from
other time estimations in this document, as a result of time optimism early in during the project.

3.2.2 Wireframes

Before starting the development, Wireframes were needed. This was of great importance since the
design was to be built completely from scratch were Matsentralen’s official logo and colors where
the only things pre-decided.

The tool used for the Wireframes was Figma, a very popular tool among designers. [2]. With
non of the team members being experienced in the development of design, Figma’s easy to use
tools made it easy to make decent wireframes.

The wireframes for the application were split into the three sections discussed in 1.3. In the
part for people in need of food help, the focus was slightly different compared to the latter two.

3.2.3 Wireframes - People in need of food help

Since many of these users will be people that often may have limited computer skills, it was
important to have a design that was intuitive to use. Considerable amount of time was invested
to make wireframes of medium to high fidelity. This was to ensure that a lot of information was
presented without overwhelming the user. As there only were two main pages connected to this
user view there were time for this.

3.2.4 Wireframes - Organizations and Admins

Further there were a lot more views related to the organization and admin views. In these sections
the main purpose of the wireframes were to map how all the information and options were to be
displayed. The detailed design were therefore less importance. Hence was a more low-medium
fidelity approach was chosen for these parts.

3.2.5 Development - Sprints

The development of the application was split into three sprints, with the whole period stretching
from March 21st to May 18th. Of early priority of was to build the essential parts of the server,
with the ability to create and store organizations. Further, with the assignment emphasising that
the application’s goal was to help people in need find food help, that part was prioritized first on
the front-end. Organizations were created using the API tool Postman to create organizations to
view on the page early in the project. The rough structure of the sprints can be view in the image
below.

10

Figure 3: Sprints development: P - People in need of food help related view, O - For organization,
A - For admins

3.2.6 Version Control during development

Throughout the developmental phase of the application, the team used Distributed Version Control
Systems (DVCS) using Github to effectively manage and track distinct versions of both the back-
end and front-end. Unlike traditional centralized version control systems, DVCS ensured that each
team member possessed a copy of the entire code base rather than having access to fragmented
portions. This allows the developers to have the same overview of project structure.

3.3 Choice of Technology

3.3.1 Back-end

Spring Boot
The first and most import technology based decision the team had to make, was how to develop the
back-end. To have a fast as possible development tempo, a framework that allowed for developing
the server and client separately was needed. The choice was therefore Spring Boot.

Spring Boot is a popular Java based framework used for developing REST APIs, as described
in 2.2.1 allows applications to be developed separately since the client only needs to know the URI
of the requested resource.

Spring boot offers a lot of annotations making development easier and offers extra information
to the compiler of a class, variable or function. They can among other things be used to make
a parameter required or not required in a function or define a path for an API endpoint. Other
annotations describes a class’ role in a REST API. Some of these are @Controller, @Service and
@Entity. For example, will a class with the @Entity tag will if written correctly be added to the
database.

11

Auto configuration is also offered in Spring Boot. This can be done in different ways, but in
this project the annotation @SpringBootApplication is used[16]. Auto configuration configures
many of the dependencies for the developer, which could be very complicated for the developer in
a project with a lot of classpaths and dependencies.

Further Spring Boot allows for dependency injection, a big advantage with this framework. This
is easily done by adding the "Autowired" annotation.

Gradle
When building a Spring Boot project the developer has a choice between two build tools: Apache
Maven and Gradle. Gradle was chosen for this project for two main reasons:

• In contrast to Maven, Gradle does not use a XML file to hold it’s plugins and dependencies..
Both team members had a lot of experience with Maven and the POM (Project Object
Model) file. As the project gets bigger, this XML file gets very hard to navigate in. Gradle’s
"build.gradle.kts" file achieves the same as the POM file, but in significantly fewer lines [1].

• Gradle also allows for incremental building. This means if the output of already compiled
files have not changed, these files will not be compiled again [6]. This can save considerable
compile time.

Kotlin
Spring Boot is as mentioned a Java based framework. The team therefore had to decide which Java
based programming language to use. Kotlin became the chosen language. Kotlin is very similar to
Java in most ways, but has some advantages.

Kotlin implements the "data class". This is a class that auto-generates get and set methods,
as well as constructors. In this project there are a lot of entity classes where only variables are
defined. Therefore many fewer lines of code has had to be written. These classes are again used
in the repository interfaces.

In addition to being an object oriented language, Kotlin is also a functional programming lan-
guage. This also makes it easier to limit the amount of lines needed in the code base.

OAuth 2.0
Concerning security OAuth 2.0 was chosen for authorization. The reasoning behind the choice
was its ability to support multiple authentication protocols and grant types. Furthermore, OAuth
2.0 provides a standarized authorization flow and token-based authentication, which simplifies the
management of access controls and ensures the privacy and security of user data. The protocol is
also compatible with external authentication providers like Google, Facebook and Github. This
allows users to authorize themselves without exposing user credentials.

Google Cloud
The team opted to utilize two main features of the Google Cloud platform, specifically, Google
Cloud Run and Google Cloud SQL. Google Cloud run was used for deployment and continuous
integration (CI) for pipeline management. This was done to have a running backend available that
was integrated with the teams main branch in Github. The CI pipeline was triggered every time
there was a merge to this branch, and if successful, the backend would be updated with the latest
features. Additionally, Google Cloud’s support for MySql 8 was utilized to establish a database
connection for the project.

12

MySql
For the choice of a database management system MySQL was chosen. The team wanted to use
SQL because of its flexibility with queries. MySQL was the chosen since it integrates well with
Google Cloud.

Cloudinary
Images were not an integral part of the application, however each organization has the opportu-
nity to add an organization image. These images were saved using the image database Cloudinary.
With Cloudinary it was easy to upload and fetch images. When uploading an image, Cloudinary
returns the full URI for the image, which is saved in the SQL database. When fetching the im-
age, the application uses the NextJs Image component and passes the component the URI for the
image.

3.3.2 Front-end

NextJs
After deciding the backend stack, the team had to choose a frontend framework. The team wanted
a flexible framework and both team members had experience with both Vue and some experience
with React. For flexibility the team agreed on using React.

Considering React, in contrast to Vue, only being a library, the team also had the opportunity to
choose a framework for React. NextJs was chosen for two main reasons for this:

• NextJs implements server side rendering, discussed in 2.2.3. Therefore NextJs could ensure
faster loading time, than plain React.

• With NextJs being a framework and not just a library, it also offers pagination. The developer
can define dynamic routes, making it a lot easier to get parameters from the URI, than in
plain React. In this application there are a lot of dynamic routes using an organizations ID.
To acquire the ID in NextJs it was only to ask for the specific parameter.

NextJs is a framework in rapid development. A recent update to NextJs is the new app directory
architecture, implementing new strategies for routing and rendering, as well as giving the developer
more tools related to the layout [5].

The team chose to use this new app directory architecture for these reasons and as well as to
ensure the application technology was as modern as possible to deliver a long lasting product to
Matsentralen.

Next-Auth
In order to facilitate authentication on the front-end, the implementation of Next-Auth was uti-
lized. Next-Auth is an open source authentication framework designed specifically for Next.js
applications. The reasoning behind selecting this particular solution stemmed from its compre-
hensive support for various authentication mechanisms, including OAuth 2.0, Json Web Tokens
(JWT), and a multitude of sign-in services, such as Google [8].

TypeScript
When working with NextJs, the user can choose between two programming languages: Javascript
and Typescript. Since TypeScript requires the user to identify the type of the variable being used,
the group chose to use TypeScript to easily be able to debug errors.

TailwindCSS
For the design of the frontend, the team needed a tool that integrated well with NextJs. The

13

team went for TailwindCSS. Tailwind is a tool that allows the developer to insert CSS directly into
HTML components, using the "className" property. The language is made more compact, making
it easier to read and write. In the tailwind.config file developers can set all values of colors, sizes
and fonts, to be used in the application. This way the team did not have to style the application
through a normal CSS file, resulting in both saved time and a better result.

14

4 Results

4.1 Scientific Results

This section will display some of the wireframes made early in the project and show all pages from
the finished application.

4.1.1 Wireframes

Figure 4: The start page of the application. Here users can search for and filter organizations.

Figure 5: User view of information about an organization

15

Figure 6: Some of the pages related to the registration of an organization

Figure 7: Organization view of data with the opportunity to update

Figure 8: Organization view with options to set what the organization wants to be visible on
Matkartet and Donasjonskartet

Figure 9: Admin view of the organizations in their section

16

Figure 10: Admin view of an organization in their section

Figure 11: Adminview of new application to their section

Figure 12: Admin view an application to their section

17

4.1.2 The finished application

The views of the application will be shown in three parts:

• The two view for people in need of food help, as well as the log in page.

• All view related to an organization - from application to editing your existing organization

• All views related to an admin user. This includes the page for the super admin.

Views for people in need of food help

Figure 13: Start page - the matkartet replacement. The user can filter organizations based on
organization name and parent organization name using the search bar and filter on the target
groups the organizations focus on, the services they provide and which section they belong to

Figure 14: Start page for mobile

18

Figure 15: Organization information - When clicking "se informasjon" on the start page this opens

Figure 16: Organization detail page for mobile user

19

Figure 17: Log in page - Organizations, admins and managers all use the same login portal

Views for organization

Figure 18: First time application

20

Figure 19: Second time application

Figure 20: Home View Organization

21

Figure 21: Home view organization edit page

Figure 22: The organization’s view of the services they provide

22

Figure 23: Edit page for organization service information

Figure 24: Organization view for which fields are shown on the Matkartet replacement

Figure 25: Organization view for editing which fields are to be shown

23

Figure 26: Organization view for which fields are to be shown when a similar version of Matkartet
for businesses looking for organization is implemented

Figure 27: Organization view for editing which fields are to be shown on the donation map

24

Admin Views

Figure 28: Admin’s view of the approved organizations in their section

Figure 29: Admin’s view first and second time applications in their sections

25

Figure 30: Admin’s view of a first time application

Figure 31: Admin’s view to edit first time application

26

Figure 32: Admin’s view of a second time application

Figure 33: Admin’s view for editing a second time application

27

Figure 34: Admin’s view adding and removing targetgroups and adding parent organizations.
These could be used by all users of the applications

28

4.2 Engineering results

As seen on the given slides, most of the features put in the vision document have been fulfilled.
Here, the results of both functional and non-functional features will be described.

4.2.1 Functional features

The following table describes the status of the functional requirements of the project. More de-
tailed descriptions of the requirements can be found in the vision document.

29

Feature Priority Status
Functionality for
storage of data in
database

High Completed

Functionality for
people in need of food
help to view partner
organizations of
Matsentralen.

High Completed

Functionality for
people in need to view
detailed organization
information.

High Completed

Authentication and
authorization
functionality for
organizations, admins
and system
administrators.

High Completed

Functionality for
partner organization
applications

High Completed

Functionality for
organizations to
administer their data

High Completed

Functionality for
admins to edit
organization
information

Medium Completed

Functionality for food
providers to find
volunteer
organizations.

Medium Implemented on the
backend, but not

frontend

Functionality for
multiple languages

Low Dropped because of
time constraints

Functionality to
export organizations
to spreadsheet

Low Completed

Functionality for
monthly surveys for
service stats.

Low Dropped by
Matsentralen

Table 1: Functional features

4.2.2 Non-functional features

Security
For security, it was important that the application followed basic security measures described in
OWASP top 10, including Cross Site Scripting and SQL injection. Next.Js, which is a React
framework renders data through JSX rather than HTML. This means that it escapes any values
embeded in the JSX and validates the input as a string, preventing an attacker from inserting

30

"<script></script>" tag to execute Javascript code making it vulnerable to cross site scripting.
However, the application is not safe from cross site scripting attacks if it mutates the DOM directly
using for example innerHTML [7]. Furthermore, as for SQL injection Spring Boot JPA prevents it
by generating SQL queries and given that custom queries is placed in a @Query() annotation the
application run no risk of security breached through SQL injection.

Usability
Usability was important, with different focus points for the different parts of the application. In
the part of the application for people in need of food help, WCAG principles were followed to make
the application as easy to use as possible: All elements are wrapped in elements corresponding
to their task in application, allowing for text-to-speech tools to interpret the site for people with
visual impairments. Further, large font sizes is used and many fields have an additional icons, help-
ing people that may struggle to read or have limited knowledge of Norwegian, to understand the
basic information. As for the organization and admin parts of the application, a minimal amount
of colors are used. The black text with a white background ensures a maximum amount of contrast.

Hosting of the application
Early in the project hosting of the application was set up in Google Cloud. The server was con-
nected to the main branch of the Github repository. In addition an SQL database was used in
Google Cloud. At delivery the Google Cloud is taken down, but there will only be need to change
propriety names to host it in another cloud. The main reason for the termination of the cloud was
the price of the service, which was not a price worth to pay while developing. At the moment of
delivery the application therefore runs locally with a local SQL database.

Supportability
As discussed, a third party is set to continue development of the application after delivery. There-
fore the application is developed allowing for the further features and adjustments. On the front-end
components are extensively used. This will make it easy to change both design and functionality
in the future without having to change a lot of files.

On the back-end further implementation of tables and entities are made simple by using the
created Spring Boot functionality. Due to the loose coupling, the entities can easily be given more
attributes without having to restructure code.

Physical Requirements
For the application to be accessible to as many people as possible, the interface for people in need
of food help also needed to be fit for mobile screens. The design of the mobile version manages
to present the same information as the design for computer screens, while being easy to use. This
can be seen in figures 14 and 16 .The rest of the application is fit for various sizes of computer
screens.

4.3 Administrative Results

4.3.1 Planning

To ensure sufficient tracking of tasks and milestones during the project the team adapted a Scrum
based methodology for agile development. A Gannt diagram was developed in the start phase of
the project to give a roughly overview of the tasks distributed between different sprints. However,
due to the small amount of information in the Gannt diagram, Scrum boards were utilized to give
a more comprehensive overview of the tasks. Using boards and backlogs provided by Jira Software
made it easier to customize task and divide them in smaller tasks. This approach resulted in more
flexibility and opportunity to view all future tasks and all tasks relevant for the current sprint.

31

4.3.2 Time Management

The team continuously documented all time spent each day during the project in a timetable. The
time table gave an overview of what each team member had worked on during the week, distributed
between different categories such as development, research, main report and documentation. In
addition, each team member wrote a weekly log explaining what had been worked on, what went
great and not so great. The goal of the time management was to be within the required 500 ± 50
hours, to secure consistent workload throughout the project. The figures below give an overview
of the time management for each member and for each category.

Figure 35: Hourly graph of hours worked

Figure 36: Hours of work for each category

32

5 Discussion

The team is extremely satisfied with the results of the application. The problem thesis of "How
can a minimal viable product, full-stack application, be developed to help people in need find food
help, while fixing the scaling problem of Matsentralen", has, in the opinion of the team, successfully
been completed. In this section the results achieved will be discussed, as well as challenges that
occurred and what is still to be implemented.

5.1 Scientific Results

As detailed in chapter 3.1, Matsentralen did not have a clear vision of what they wanted to achieve
going into the project. Therefore the time spent on research took considerably more time than
expected. During the project as the team had many interviews with Matsentralen, Matsentralen
got a clearer view of what they wanted. Including the other sections of Matsentralen also helped
in the achieve this.

Because of this time consume, the design of the wireframes was completed later than excepted.
Therefore, the team did not have time to conduct quantitative users tests on the views for people
in need of food help, however multiple of Matsentralen’s employees gave their opinion on the wire-
frames for the whole application. This testing was integral to help Matsentralen define what they
wanted of features.

5.1.1 Wireframes

At the time of the completion of the prototype, wireframes were made for nearly all views needed
to complete the functional requirements. There were no existing design to base the wireframes on,
and all the wireframes therefore had to be made fully from scratch. As the requirements changed
during development, some views are missing and some of the wireframes are no longer relevant.
The wireframes for the people in need of food help are very similar to the end product, as a result
of using a high-fidelity approach. The other wireframes are in a larger degree different from the
finished application when it comes to design, because of the low fidelity approach. Setting the
structure for these pages were of larger importance, hence the structure and flow is similar to the
final product.

5.1.2 Application Views

As in section 4.1.2 the discussion of the application views is split into three parts.

For people in need of food help
In this part of the application it was integral to easily allow the user to find organizations that fit
their needs. Therefore the user can filter by organization name, parent organization name, target
groups, service methods and Matsentralen sections at the same time. The organization cards dis-
play the most important information about an organization.36

Further, when viewing the detailed information about an organization the team chose a simple
as possible design to not overwhelm the user. 15

Organization views
The views made for organizations presents the structure in an understandable way, where the
organization first is presented with a first time application the organization must fill out. The
application contains only a few fields with the most important information about an organization.
18

33

The second time application and other pages contains considerably more fields, which made it
more challenging to present the entire form for the user. However, using simplistic design and
informative descriptions the pages the elements are presented in an understandable way. 19

When the organization is approved the, four different information sorts organization informa-
tion, service information, and what is to be shown to the public is split up to not push to much
information on the user.

Admin views
The admin portal gives the employees of Matsentralen a well organized system to view, edit and
review applications and existing organizations28.Data that in the current solution has to be lo-
cated and updated in multiple spreadsheets are now more simple to locate and read through the
application.

5.1.3 Validation of fields

For Matsentralen it was important that data registered by the organizations was properly validated
to ensure information was correct. Validation through React is therefore implemented for all
necessary fields.

5.1.4 Documentation of code

As the project is to be inherited by a third party after delivery, documentation of code has been
implemented on the back-end. Entities and relevant methods are documented to ensure to help
the new developers understand the role of each entity.

5.2 Engineering Results

5.2.1 Functional features

Most of the features listed in the vision document have been implemented. These include all
features of high importance and that fulfil the thesis statement. In general the completed features
can be summarized to:

• People in need of food help can find and view organizations that provide food help.

• Matsentralen’s various ways of storing and handling of organizations are centralized into one
system that can handle Matsentralen’s up scaling problems

Some features were though not completed.

Missing features
The exclusion of the interface for the donation site is the most notable missing features. There
is full back-end support for this feature. Organizations are also able to set which fields are to be
shown, similarly to the Matkartet replacement solution. However, because of time constraints, the
team prioritized to finish features of higher priority instead of implementing this interface.

Furthermore, during the research phase the team suggested that a feature to support multiple
languages for parts of the application would make the site more available to a larger audience.
This was an idea Matsentralen were enthusiastic about. This feature was dropped since it would
be very time consuming.

34

At last there initially a plan to implement a feature where admins could post surveys for or-
ganizations to answer, about how many people they have helped and how much food they had
distributed. The idea was that it would be easier for Matsentralen to keep track of how the food
they passed on was used. However, the features was moved to another of Matsentralen’s running
project as the feature was in many ways unrelated to the problem statement.

5.2.2 Non-functional features

Security
Considering security the use of standardized frameworks and technologies reduce the amount of se-
curity features a developer has to implement to deal with security issues. The application utilizes
these implementations to prevent vulnerabilities such as SQL injection and cross site scripting.
Furthermore, the front-end part of the application do not mutate the DOM by for example calling
functions as innerHTML, preventing cross site scripting vulnerabilities. Because the scope of the
project was to develop a working MVP the security issues had reduced priority, focusing rather
on usability and features instead of conducting an extensive security assessment. The use of social
login through Google, using OAuth 2.0 standards removed the need for storing user password in a
database. However, for deployment to production a greater security assessment would be needed
to detect security vulnerabilities not detected by the developers of the application.

Usability
Usability is an important part of the application given that most of the user mass may be people
with limited technical knowledge. One of the goals of the project was to reduce the amount of
manual labor for the employees at Matsentralen. This includes one problem the client addressed
through a meeting saying that a lot of people call Matsentralen’s offices to clarify questions that
the website did not provide any answer to. With great usability on the website users are able to
navigate through the website clarifying any questions the may have. Furthermore, the application
was designed using already existing color palettes used on Matsentralen’s main website securing
consistency between sites and following WCAG principles.

MVP
By developing an MVP there was an idea that third party would build upon the project to even-
tually make it an production ready application. This was later confirmed by the client during one
meeting. Therefore, it was important that that the code would support this transition to a third
party by structured code through components and file structure. Furthermore, the team offered
to provide support for the third party, clarifying questions that they may have.

5.2.3 The setup of the project

There was no existing technology nor architecture to build on. Therefore, all architecture had to
be built from scratch. This involved the NextJs front-end project, the REST API, database and
hosting as well as the image database. The time invested in the architecture setup resulted in
development starting nearly a month later than planned.

The setup of the architecture did however pay off when done. As described in 2.2.1, building
a REST API allowed the team to develop the frontend and backend separately. This increased
development speed substantially.

Though it must be mentioned that the time spent on setting up the Google Cloud did not match
the value the project got from it as the cloud had to be taken down.

35

5.2.4 Choices of technology

The choices of technology were in general very good and made it possible to develop the finished
application. Many of the technologies were new to one or both team members, which lead to a
steep learning curve during development.

Spring Boot
The selection of Spring Boot as the framework for constructing the API proved to be very suc-
cessful. With Spring Boot’s auto configurations and provided services, the team managed to build
a well functioning REST API, that will be highly expandable for the developers inheriting the
project. Further, Spring Boot’s security features helped the team build a backend that fulfills the
security demands.

Using Kotlin for Spring Boot worked well. The data classes provided in Kotlin reduced the amount
of lines code that had to be written. As neither team member was experienced in Kotlin some
time was spent getting used to the language.

NextJs
NextJs was a useful React framework. The dynamic routing offered in NextJs made routing better
than the hard coded paths the user must set up in plane React. Further the application has a very
fast respond time, which partly can be attributed to NextJs server side rendering.

Though the choice of NextJs itself was unproblematic, an unexpected complication occurred re-
lated to the version of NextJs that was chosen. The team chose to use the experimental NextJs
app directory that was introduced late 2022. As detailed in 3.3.1 this new implementation offers
many useful features, however as the implementation was very new, it did not exist many sources
to that explained the differences between the old and new solution. Therefore a lot of time was
spent finding solutions that were not deprecated.

5.3 Administrative Results

5.3.1 Planning

Planning a system development project presents several challenges due to the complexity. The
initial phase of the project demanded a substantial investment of time in acquiring a understand-
ing of the project’s scope, involving both system requirements and the technological framework.
One noteworthy challenge regarding time estimation stemmed from the considerable workload
associated with developing a system from scratch. Notably, considerable time was dedicated to
activities beyond direct coding, such as engaging in client communication, designing the system
architecture, establishing the database structure, and implementing the front-end and back-end
architecture. These essential pre-coding tasks, although not immediately involving the actual cod-
ing process, were crucial for laying the foundation of the project and, consequently, demanded
substantial time allocation.

Furthermore, the team decided that most of the work should be in person accommodating for
better communication and planning.

5.3.2 Time Management

In the beginning of the semester the team had to account for another course running parallel with
the bachelor project. The plan was to devote most of the time Thursday and Friday working about
8 hours each day. In addition, the team also had to accommodate for submissions for the other
curriculum which resulted in the necessity for flexibility in managing the workload. After the exam

36

of March 20th the team had more time working on the project as shown in figure 35 after week 11.

The plan after this exam was to devote weekdays to project work. However, recognizing the po-
tential time constraints caused by work commitments and other external factors, the team reached
a agreement that it might be necessary to extend working hours and allocate weekends to com-
pensate for any potential time loss.

Furthermore, even though the team had planned an initial time frame for each task during devel-
opment the team deemed it more important to complete the tasks rather than to comply with the
time estimates. This allowed the team to rather move tasks back to the backlog or move it forward
to another sprint.

37

6 Conclusion and further work

The goal of the project addressed in the problem statement "How can a minimal viable product,
full-stack application, be developed to help people in need find food help, while fixing the scaling
problem at Matsentralen" was based on the wish from Matsentralen to have a system that make
it easier for people to locate non-profit organizations providing food services. Furthermore, this
included relieving the employees from a lot of manual labor of register and updating organiza-
tions. This report presents the work of developing a MVP that would meet Matsentralens’s needs,
technological choices and findings obtained during the project work.

6.1 Conclusion

The developed product resulted in a successful MVP that met the requirements provided by Mat-
sentralen. The MVP has been the result of great cooperation with Matsentralen giving the team
valuable feedback about a lot that was uncertain in the start phase of the project. Furthermore, the
achievement of the project can be contributed to key factors including time management, choices
of technology, team work and agile development methodology.

The result of the project will be a system that can be built upon to eventually become a pro-
duction ready application that Matsentralen can utilize, both improving efficiency and reducing
the amount of manual labor. Furthermore, a production ready application will hopefully help
people in need find food help by introducing a more user friendly user interface that lets users
navigate and search on specific requests.

Throughout the course of the project, the team has gained valuable knowledge and expertise
of various aspects of system development, client communication, and agile development method-
ologies. By creating a system from scratch, that includes communication with client, designing,
architecture setup and developing both the frontend and backend of the application, has introduced
the team to challenges that we have never encountered before.

6.2 Further work

For the MVP to become a fully functional application there are some features the team believes
the third party inheriting the project should focus on.

6.2.1 Multiple Languages

Given that a lot of users who look for food help are non-Norwegian speakers, support for multiple
languages on the website should be a focus point during further development. In this project for
multiple languages was not implemented due to time constraints and low priority.

6.2.2 Allowing users to search for cities and district

To help users locate organizations in their proximity, search for cities and districts within larger
cities should be implemented. This will be especially important as Matsentralen acquires more
partner organization.

6.2.3 Donation Map

The implementation of the donation map will be a complicated task, as there is full back-end
support for the feature, however the interface will need to be implemented. This will let businesses
in the food industry find non-profit organization seek their products.

38

6.2.4 Divide the application in multiple application

For practical reasons the application may need to be split into three smaller applications. Having
people in need of food help, organizations and admins all using the same web page will not be
sustainable in a long time perspective. In addition to the login being unnecessary complicated,
this makes the site more vulnerable to downtime.

39

Social Impact

The potential societal impact of this application is substantial. As already discussed in the intro-
duction Matsentralen positively contributes to 7 of the 17 UN Sustainability Goals. By further
distributing food to people in need, that otherwise would have gone to waste, Matsentralen has a
large societal impact both environmentally and economically.

The role of this application in this environment is to make Matsentralen’s services available to
a larger user mass. If the application succeeds with this goal, Matsentralen will have be able to
provide their service on a larger scale, and therefore have a larger social impact.

As the application does not store nor process any sensitive data there are no larger ethical problems
that the group have identified. However, as the application has a big potential to do good, we as
developers also has a responsibility to make the application usable for as many people as possible.
Though the application takes multiple vision impairments into account there are as discussed other
factors to consider.

40

References

[1] Alexandra Altvater. Gradle vs. Maven: Performance, Compatibility, Speed, & Builds. en-US.
June 2017. url: https://stackify.com/gradle-vs-maven/ (visited on 05/01/2023).

[2] Sean Dexter. Figma continues to skyrocket — 63% reported it was their primary UI tool.
en. Dec. 2021. url: https : / / uxdesign . cc / figma - continues - to - skyrocket - 63 -
reported-it-was-their-primary-ui-design-tool-in-2021-bb9390a8b96b (visited
on 04/24/2023).

[3] EUs webdirektiv (WAD) | Tilsynet for universell utforming av ikt. nb. url: https://www.
uutilsynet.no/webdirektivet-wad/eus-webdirektiv-wad/265 (visited on 04/19/2023).

[4] Git - About Version Control. url: https://git-scm.com/book/en/v2/Getting-Started-
About-Version-Control (visited on 05/20/2023).

[5] https://www.smashingmagazine.com/author/atila-fassina. Understanding App Directory Ar-
chitecture In Next.js. en. Section: General. 0. url: https : / / www . smashingmagazine .
com / 2023 / 02 / understanding - app - directory - architecture - next - js/ (visited on
05/02/2023).

[6] Incremental build. url: https://docs.gradle.org/current/userguide/incremental_
build.html (visited on 05/01/2023).

[7] Introducing JSX – React. en. url: https://legacy.reactjs.org/docs/introducing-
jsx.html (visited on 05/20/2023).

[8] Introduction | NextAuth.js. en. Apr. 2023. url: https://next-auth.js.org/getting-
started/introduction (visited on 05/22/2023).

[9] Lov om endringer i likestillings- og diskrimineringsloven mv. (universell utforming av IKT-
løsninger) - Lovdata. url: https://lovdata.no/dokument/LTI/lov/2021-06-11-77
(visited on 04/19/2023).

[10] Matbransjen. url: https://www.matsentralen.no/matbransjen (visited on 04/26/2023).

[11] Matsentralen Norge - FNs Bærekraftsmål. url: https://www.matsentralen.no/baerekraftsmal
(visited on 04/27/2023).

[12] Matsentralen Norge - Om Oss. url: https://www.matsentralen.no/om-oss (visited on
03/29/2023).

[13] Minimum Viable Product (MVP). en-US. url: https://www.productplan.com/glossary/
minimum-viable-product/ (visited on 04/18/2023).

[14] Prerender. Server-Side Rendering - Pros & Cons for Your SEO and Budget. en-US. Feb.
2021. url: https://prerender.io/blog/what-is-srr-and-why-do-you-need-to-know/
(visited on 04/20/2023).

[15] Samarbeid med ideelle organisasjoner - Matsentralen. url: https://www.matsentralen.
no/ideelle-organisasjoner (visited on 04/26/2023).

[16] Spring Boot Auto-configuration - javatpoint. url: https://www.javatpoint.com/spring-
boot-auto-configuration (visited on 05/01/2023).

[17] WCAG-standarden | Tilsynet for universell utforming av ikt. nb. url: https : / / www .
uutilsynet.no/wcag-standarden/wcag-standarden/86 (visited on 04/19/2023).

[18] What is a REST API? | IBM. en-us. url: https://www.ibm.com/topics/rest-apis
(visited on 04/17/2023).

[19] What is a Wireframe? Guide With Types, Benefits & Tips (2023). en-US. Apr. 2023. url:
https://visme.co/blog/what-is-a-wireframe/ (visited on 04/18/2023).

41

https://stackify.com/gradle-vs-maven/
https://uxdesign.cc/figma-continues-to-skyrocket-63-reported-it-was-their-primary-ui-design-tool-in-2021-bb9390a8b96b
https://uxdesign.cc/figma-continues-to-skyrocket-63-reported-it-was-their-primary-ui-design-tool-in-2021-bb9390a8b96b
https://www.uutilsynet.no/webdirektivet-wad/eus-webdirektiv-wad/265
https://www.uutilsynet.no/webdirektivet-wad/eus-webdirektiv-wad/265
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://www.smashingmagazine.com/2023/02/understanding-app-directory-architecture-next-js/
https://www.smashingmagazine.com/2023/02/understanding-app-directory-architecture-next-js/
https://docs.gradle.org/current/userguide/incremental_build.html
https://docs.gradle.org/current/userguide/incremental_build.html
https://legacy.reactjs.org/docs/introducing-jsx.html
https://legacy.reactjs.org/docs/introducing-jsx.html
https://next-auth.js.org/getting-started/introduction
https://next-auth.js.org/getting-started/introduction
https://lovdata.no/dokument/LTI/lov/2021-06-11-77
https://www.matsentralen.no/matbransjen
https://www.matsentralen.no/baerekraftsmal
https://www.matsentralen.no/om-oss
https://www.productplan.com/glossary/minimum-viable-product/
https://www.productplan.com/glossary/minimum-viable-product/
https://prerender.io/blog/what-is-srr-and-why-do-you-need-to-know/
https://www.matsentralen.no/ideelle-organisasjoner
https://www.matsentralen.no/ideelle-organisasjoner
https://www.javatpoint.com/spring-boot-auto-configuration
https://www.javatpoint.com/spring-boot-auto-configuration
https://www.uutilsynet.no/wcag-standarden/wcag-standarden/86
https://www.uutilsynet.no/wcag-standarden/wcag-standarden/86
https://www.ibm.com/topics/rest-apis
https://visme.co/blog/what-is-a-wireframe/

[20] What is dependency injection in object-oriented programming (OOP)? – TechTarget Defi-
nition. en. url: https://www.techtarget.com/searchapparchitecture/definition/
dependency-injection (visited on 04/25/2023).

[21] What is Scrum? en. url: https://www.scrum.org/learning-series/what-is-scrum
(visited on 04/17/2023).

[22] What is server side rendering: pros and cons | EPAM SolutionsHub. en. url: https://
solutionshub.epam.com/blog/post/what- is- server- side- rendering (visited on
04/19/2023).

[23] What is Universal Design? en-US. url: https://universaldesign.org/definition (vis-
ited on 04/19/2023).

Vedlegg

Attachment A - Source code

6.3 Attachment B - Pre-work plan

Attachment C - Vision Document

Attachment D - Project Manual

Attachment E - Requirement specifications

Attachment F - System Documentation

42

https://www.techtarget.com/searchapparchitecture/definition/dependency-injection
https://www.techtarget.com/searchapparchitecture/definition/dependency-injection
https://www.scrum.org/learning-series/what-is-scrum
https://solutionshub.epam.com/blog/post/what-is-server-side-rendering
https://solutionshub.epam.com/blog/post/what-is-server-side-rendering
https://universaldesign.org/definition

