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Abstract

This thesis covers the development of a hand gesture detector, developed for Pexip.

There are two main parts of this process, namely an object detection model, as well as a

GStreamer element with a detection processing algorithm. The hand gesture detection

model was made with prominently recognized object detection architectures. Among

the architectures explored were YOLO, SSD and Faster R-CNN. All of the object detection

models were trained on the HaGRID dataset, which includes 18 different gestures.

Some of the trained models achieved a mAP@50 score of over 0.9, while also main-

taining a sufficient framerate. The final selection of models consisted only of different

versions of YOLO models. These models had framerates ranging from 3.3 FPS to 26.3

FPS.

The second part of this thesis was the development of a GStreamer element with a

detection processing algorithm. As Pexip requires high performance, this was done in

C++. This element was responsible for emitting a "raised hand" signal, which would

trigger a "raised hand" functionality within the Pexip webapp, raising a banner and noti-

fying other participants. It was also important that this element had high performance,

as responsiveness and minimal resource use in terms of CPU and memory was desired.

This element also contained debugging features, allowing quick and easy experimenta-

tion.

The final result was a gesture detector, which is currently in one of Pexip’s GitHub

branches. The detector notifies other users within a video call that a participant has

raised their hand. As the model contains a multitude of hand gestures, the gesture

detector is easily extensible to help provide additional desired features. The detector

serves as a strong foundation for not only using the "raise hand" feature, but can also

be extended for a multitude of other use cases.
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Sammendrag

Denne oppgaven omfatter utviklingen av en håndgests-detektor, som ble utviklet for

Pexip. Det er to hoveddeler til denne prosessen, en objektdetekteringsmodell og et

GStreamer element med en prosesseringsalgoritme for deteksjoner. Håndgest-modellen

ble laget med bredt anerkjente objekt-detektsjons arkitekturer. Arkitekturene som ble

utforsket var YOLO, SSD og Faster R-CNN. Alle objektdeteksjonsmodellene ble trent på

HaGRID datasettet, som inneholder 18 forskjellige håndgester.

Resultatet av å trene disse modellene var flere modeller med mAP@50 resultater over

0.9, som også hadde akseptabel eller god ytelse. De fullstendig implementerte model-

lene hadde rammerater fra 3.3 FPS til 26.3 FPS.

Den andre delen av denne oppgaven var utviklingen av et GStreamer element med

en prosesseringsalgoritme for deteksjoner. Dette var hovedsakelig implementert i C og

C++, ettersom god ytelse var et krav. Dette elementet var ansvarlig for å sende ut et

"oppreist hånd" signal, som igjen kunne bli vist i Pexips webapplikasjon. Det var viktig

at dette elementet hadde god ytelse, ettersom responsivitet og minimal ressursbruk

var foretrukket. I tillegg til dette ble elementet utviklet med en håndfull av debuggings-

funksjoner, slik at å eksperimentere, debugge og endre på parametere var så enkelt

som mulig.

Sluttresultatet var en "håndgest" detektor, som for tiden er i en branch i Pexips GitHub

repository. Detektoren varsler andre deltakende i en videokonferanse om at en deltaker

har løftet hånden sin. Siden modellen har flere håndgester, er den lett å utvide dersom

flere funksjoner skulle ønskes.
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Project description

Thesis question How can one leverage machine learning to create a seamless solu-

tion for various hand gestures in video conferences, allowing them to be used to interact

with different features on relevant platforms?

Project description This project aims to use machine learning to create a solution

that can recognize hand gestures in real-time, such that it can be used to interact with

functionality available within the video-conference solution that Pexip provides. The so-

lution will run as a background process during video conferences.

The goal is to develop a module that can be added to the Pexip video-conference plat-

form. This module should be able to emit different signals based on detected hand

gestures from participants in video conferences. The module should also be optimized

enough to avoid causing performance issues for the servers that processes data from

conferences.
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Chapter 1

Introduction

1.1 Background

In a Pexip video call, video and audio undergoes transcoding on the server-side to pro-

vide the best experience for each client. This gives Pexip a unique opportunity to ana-

lyze, interpret and optimize video and audio from each participant without utilizing the

users limited resources, such as Central Processing Units (CPUs) and battery.

1.2 Motivation

In meetings, or in conferences and classrooms, a participant may raise their hand to get

attention. In a Pexip video conference call, this is emulated by clicking a "raise hand"

button. This will notify other participants that you want to speak. To further expand upon

this concept, it is possible to utilize machine learning to detect and recognize hands and

gestures. By detecting certain gestures, Pexip may be able to create a more seamless

and interactive experience for their users by implementing a system that can trigger the

same functionality as clicking the "raise hand" button when detecting a raised hand on

live video. This can create a more immersive experience for a user who wants to speak,

so they can naturally raise their hand to perform the "raise hand" functionality in a video

conference. Additionally, not all devices which can be used in a Pexip call has the ability

to display the user interface (UI) which allows a user to click the "raise hand" button.

Detecting raised hands on video calls can directly help circumvent this obstacle.

Pexip is also capable of interoperating with other platforms, such as Zoom and Microsoft

Teams. By detecting hands on live video, Pexip may be able to use their own "raise hand"

functionality to trigger the same features on the other platforms, given that they acquire

permission to do this.
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1.3 Objectives

1.3.1 Primary

These are the main goals that were expected to be completed for the final solution.

• Integrate a machine learning model with Pexip’s video conference platform.

• Create a basic gesture detection module capable of detecting specific gestures.

• Detect a raised hand with one video participant.

• Detect a raised hand with multiple video participants.

1.3.2 Secondary

In order to create the final solution, the following goals were not necessary, but were

still important goals that could improve the overall solution.

• Find and train an object detection model that performs well.

• Integrate the model with good levels of optimization with respect to memory and

CPU computation.



Chapter 2

Theory

This chapter gives an overview of various theoretical means which have been employed.

It seeks to introduce, and help understand, the base for methodology in section 3.

2.1 Machine learning

Machine learning is a subset of artificial intelligence which is related to systems and

algorithms that are able to learn from data and make predictions from said data [2].

These algorithms iteratively attempt to identify patterns within given data and learn

from them. As the algorithm is exposed to more data, it is expected to perform better,

given that there are patterns within the data. A popular and more formal definition for

algorithms within the machine learning space was provided by Tom M. Mitchell:

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P if its performance at tasks in T,

as measured by P, improves with experience E. [3]

Supervised learning, unsupervised learning, and reinforcement learning are the primary

types of machine learning approaches. Machine learning is useful for tasks that would be

hard or borderline impossible to solve with traditional programming. Machine learning

algorithms are capable of being highly complex, and have enormous amounts of appli-

cations, such as computer vision [4, 5], natural language processing [6], and robotics

[7].

2.1.1 Classification

Classification is a subset of machine learning which aims to predict the correct label of

given input data. Classification is a supervised machine learning method, which means

that classification algorithms uses labeled data sets to train and measure performance

of the model [8] . Data is often split into training and test sets, where the model will train

on the training set and then be measured on its accuracy in the test set to ensure it is

predicting accurately.
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The application of classification is widespread. It is employed in tasks such as image

recognition, text recognition, spam detection, and fraud detection, among others [8].

For instance, in image recognition, a classifier can be trained to detect the presence of

an object in an image. Similarly, in natural language processing, a classifier can be used

to classify the text into different topics or sentiments. The application of classification

has enhanced the accuracy and efficiency of automated systems, making it an essential

tool for many fields [9–11] .

2.1.2 Deep learning

Deep learning is a subset of machine learning which uses 2.1.3 Artificial Neural Networks

(ANNs) with multiple layers to simulate the way the human brain behaves [2]. This type

of learning is exceptionally valuable as it can interpret unstructured data, such as im-

ages, audio and unstructured text such as websites or articles [12]. Deep learning has

drastically improved object recognition and object detection techniques, among many

other fields [13]. Deep learning is used in a multitude of everyday challenges, such

as providing digital assistants or preventing fraud. Deep learning algorithms continue

to evolve, leading to noteworthy recent advancements in the field. Some examples of

this is the emergence of tools capable of generating images from textual prompts (e.g.,

MidJourney [14], Dall-E [15], Stable diffusion [16]), and AI language models capable of

generating human-like text, such as Chat Generative Pre-trained Transformer (ChatGPT)

[17].

2.1.3 Artifical Neural Networks

An Artificial Neural Network (ANN), also occasionally shortened to just Neural Network

(NN) is a fundamental component of modern machine learning algorithms. ANNs seek

to replicate neural pathways in the human brain and are composed of three types of

layers: input, hidden, and output [18]. A traditional ANN is visualized in Figure 2.1.
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Figure 2.1: Simplified visualization of an ANN, showing inputs flowing through neurons

that are all connected, resulting in an output [19].

The number of neurons present in a hidden layer and the quantity of hidden layers

within ANNs exhibit significant variations. Certain ANNs consist of a single hidden layer

with tens of neurons, while others have multiple hidden layers comprising of hundreds

of neurons, depending on the complexity of the task and the desired performance of

the NN. The purpose of the hidden layers is to identify the relevant features of the input

data that influence the output. Each neuron in the current hidden layer is connected

to all neurons from the previous layer, and the neural networks attempt to predict the

output. The ANNs results are then compared to the actual output, generating a loss

function. The neural network then seeks to minimize this loss by adjusting the weights

of the neurons, often using a gradient descent optimization algorithm [20]. It is worth

noting that recently, there are many optimization algorithms for ANNs. Among the most

popular are SGD, ADAM [21], RMSprop [22] and AdaGrad [23], as well as variations of

these.

One significant issue with ANNs is overfitting, which occurs when the network becomes

too specialized to the training data and performs poorly on test data or the real data you

seek to employ it for.

"Overfitting occurs when the gap between the training error and test error

is too large." (Goodfellow et al., 2016, p. 110) [2]

Various techniques can be used to reduce overfitting, such as 2.1.5 data augmentation

and early stopping [24]. Early stopping means halting training when the network’s per-

formance is deemed adequate.

Another slightly less common issue is underfitting, which happens when an ANN is not

able to recognize patterns in the training data.

"Underfitting occurs when the model is not able to obtain a sufficiently low

error value on the training set." (Goodfellow et al., 2016, p. 109) [2]



To combat this, one can introduce more neuron layers to make a deeper and more com-

plex ANN. Another way to combat underfitting is by expanding the size of the training

dataset, or to utilize 2.1.6 transfer learning.

2.1.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are an important part of computer vision models.

A CNN is a type of an ANN that seeks to extract features from images through convolu-

tion and pooling layers [13]. Usually there are multiple convolutional and pooling layers,

which produce the full scale model. A simplified CNN is visualized in Figure 2.2.

Figure 2.2: Simplified visualization of a CNN, showing how an image gets scanned and

downsampled for feature extraction, before it is flattened and passed through a fully con-

nected layer, resulting in a probability distribution of what animal the network thinks it is

looking at [25].

Convolution

Convolution operates by applying a filter to an input image, where the filter is super-

imposed onto the input image and systematically shifted to generate a feature map.

Figure 2.3 provides a simplified representation of this process. The filter encompasses

various adjustable parameters, including kernel size, padding, and stride. Convolutional

neural networks employ multiple filters concurrently on an input image. The amount of

filters varies greatly. However, it is not unusual to use anything between 32 and 512

filters on a single input image.



Chapter 2: Theory 7

Figure 2.3: A simplified representation of convolution [26]

Pooling

The CNN then processes the convolved feature with a pooling layer. This is used to re-

duce the feature map [13], such that further convolution layers will compute faster.

There are multiple techniques for pooling, with the most common being average pool-

ing, and max pooling. These are visualized in Figure 2.4 and Figure 2.5 respectively.

Average pooling works by computing the average of the convolved feature, to reduce a

convolved feature from a n x n matrix to a single number. These numbers are combined

to create a new, smaller feature map. This process is often repeated multiple times, as

most CNNs have multiple convolution and pooling layers.

Figure 2.4: Average pooling with a 2x2 input and a number output [27]



Figure 2.5: Max pooling visualization with a 2x2 input and a number output [28]

Stride

Stride refers to the number of steps which the kernel shifts across the input image dur-

ing the convolutional operation. A larger stride value corresponds to a greater spatial

displacement of the kernel, resulting in a reduced feature map size. A smaller stride

value leads to a more fine-grained analysis with a larger feature map. This is illustrated

in Figure 2.6.

Figure 2.6: Visualization of 3x3 kernel(filter) with stride=1 and stride=2 [27]

Padding

Padding refers to the procedure of augmenting the input image with one or more layers

of zero values, as depicted in Figure 2.7. This process is done to ensure the dimensions

of the output feature map are adjusted appropriately during the convolution process [2].

Figure 2.7: Image with one layer of zero-padding added [27]
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Activation functions

CNNs and other types of NNs utilize activation functions to be able to introduce non-

linearity to their calculations. This allows them to learn complex tasks, providing more

advanced models. One such activation function often used, is the rectified linear unit

(ReLU) activation function, first introduced in 1969 [29]. The ReLU is often used because

it introduces non-linearity, and because it is simple and efficient. Given a variable x , the

ReLU function is defined as:

ReLU(x) =

�

x , if x > 0

0, otherwise

2.1.5 Data augmentation

Data augmentation is a technique commonly employed to reduce overfitting, by arti-

ficially expanding the number of samples in the dataset by providing slightly adjusted

copies of the original data [30]. Some examples of data augmentation can be rotating or

adding blur to images. A model will generally perform better on new unseen data as it

becomes more generalized due to more variations in the data set. Data augmentation is

especially useful when training on smaller datasets, because they lack the quantity and

diversity necessary for effectively training a model.

2.1.6 Transfer learning

Transfer learning refers to the concept of training a model for one specific problem, and

then applying it to a different, but related, problem. One such example would be train-

ing a model to recognize dogs, and then employ said model to attempt to recognize

cats. The concept of transfer learning has shown that it can greatly increase model ef-

ficiency by reusing and transferring the knowledge from one problem to similar one [31].

A number of models, such as ResNet [32], are often provided with weights that are

pretrained on the ImageNet dataset [33]. Due to the large amount of images and vari-

ations of the dataset, it provides a rich source of visual information which can often be

applied. By utilizing this technique, developers do not need to train models all the way

from scratch, which may cause it to reach a better performance earlier.

In the context of object detection, models are often pretrained on the MS COCO dataset

[34–36] to provide the model with a base of object detection. Some object detection

models, such as SSD [36], contain a backbone to extract features, which are often pre-

trained on the ImageNet dataset.

2.1.7 Tensors

Tensors are data structures which are used to represent and manipulate multi-dimensional

arrays of values. They can be seen as extensions to arrays and matrices, allowing for



data to be represented in various dimensions. Scalars can be seen as 0-dimensional ten-

sors, arrays as 1-dimensional, matrices as 2-dimensional and so on. Tensors are highly

utilized in the field of machine learning, as they are exceptionally flexible, and allow

efficient computations on GPUs.

2.2 Image processing

2.2.1 Image layout

Image layout refers to the arrangement of pixels within an image. The layout determines

the spatial arrangement of pixels, which influences the interpretation of the underlying

data. Two commonly used layouts are the HWC (Height, Width, Channel) and CHW (Chan-

nel, Height, Width) formats. The channels refer to the color channels, such as RGB (Red,

Green, Blue). A visualization of these two formats are shown in Figure 2.8.

Given a 1-dimensional array, which represents an image img, to find the pixel value

at a given X and Y coordinate and channel C, the following indexing functions can be

used:

• CHW: (C · imgheight + Y ) · imgwid th + X
• HWC: (Y · imgwid th + X ) · imgchannels + C

Figure 2.8: Visualization of RGB data with different layouts. The top layout uses HWC,

and the bottom uses CHW.

2.2.2 Resizing

Resizing is an operation that involves changing the dimensions of an image. It is com-

monly used to adjust the size of an image for various purposes, such as display, printing,

storage, or analysis. When resizing, interpolation methods are used to estimate pixel val-

ues based on the original image. The simplest method is nearest neighbour, which sets

the value of the new image to the nearest pixel in the original image.
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2.3 Evaluation metrics

2.3.1 True positive

A true positive (TP) is a result from an evaluation that correctly identifies a label.

2.3.2 False positive

A false positive (FP) is a result from an evaluation that incorrectly identifies a label.

2.3.3 True negative

A true negative (TN) is a result from an evaluation that correctly identifies the absence

of a label.

2.3.4 False negative

A false negative (FN) is a result from an evaluation that incorrectly identifies the absence

of a label.

2.3.5 Precision

Precision is a common metric within machine learning to determine the correctness of

positives, and can be defined as

Precision=
TP

TP+ FP

Precision measures the rate of true positives among all the positive predictions, and

gives a score between 0.0 and 1.0, where a higher score is better and means that more

of the positive predictions are accurate predictions.

2.3.6 Recall

In machine learning, recall is a measurement of the true positives correctly determined

by the model, defined as:

Recall=
TP

TP+ FN

In the context of object detection, a high recall score indicates that the model correctly

identifies a large proportion of the objects that should be detected, while a lower score



indicates that the model is missing some or all of the relevant instances, resulting in

false negatives.

2.3.7 Accuracy

Accuracy is a known metric within classification, which is the number of correct predic-

tions, divided by the number of total predictions. Accuracy is a number between 0.0 and

1.0, with 0.0 being the worst, and 1.0 being the best. The mathematical formula for ac-

curacy is as follows:

Accuracy=
TP+ TN

TP+ TN+ FP+ FN

2.3.8 IoU

Intersection over Union (IoU), also known as the Jaccard index, is a metric which de-

scribes the similarity of two sets [37]. The larger the value, the more similar they are. In

the context of this thesis, the sets are rectangles. When comparing two sets, the IoU is

evaluated to a value between 1.0 and 0.0. It is derived by dividing the area of the inter-

secting region by the area of the union of said rectangles. The IoU function is defined as

follows:

IoU =
Area of Overlap

Area of Union

An IoU of 1.0 means that the shapes completely overlap each other, meaning they are

exactly the same shape and in the same location. Similarly, an IoU of 0 means that there

is no overlap between the two areas. A sample of IoU scores are visualized in Figure 2.9.
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Figure 2.9: Various IoU scores with their respective visual overlaps [38].

This metric is widely employed in the field of computer vision, as it provides a straight-

forward means of identifying true positives, true negatives, false positives, and false

negatives. This can then be used to determine the accuracy of a model. Additionally, it

can be used in object tracking by determining if an object is located at the same position

over time in a video.

2.3.9 AP

Average Precision (AP) is the area under the precision/recall curve, and is calculated by

doing an integral on the precision/recall curve. This is illustrated in Figure 2.10.

Figure 2.10: An example of a PR curve which is used to calculate AP [39]

The precision/recall curve is created by varying the classification threshold and calculat-

ing the corresponding precision and recall values. The precision/recall curve illustrates



the trade-off between precision and recall at different thresholds. The AP value ranges

between 0 and 1, where a higher value indicates better performance. An example of

how AP is calculated, is shown in Figure 2.11

Figure 2.11: An example of how AP is calculated [39]

The mathematical formula for AP is:

AP=

∫ 1

r=0

p(r) dr

2.3.10 mAP

Mean Average Precision (mAP) is a metric to determine how well a computer vision

model performs. AP values can be calculated for each class and can then be used to

calculate Mean Average Precision (mAP) for the whole model. mAP is the mean of AP

across all the classes. As AP scores are between 0 and 1, mAP is also a value between 0

and 1, where 0 is least accurate, and 1 is most accurate. This metric is highly regarded

due to incorporating both precision and recall, enabling a evaluation of the model’s com-

pleteness across all classes.

The mAP metric is often specified with an accompanying value, such as mAP@50 or

mAP@75. This numerical value defines the threshold for classifying an object as de-

tected, based on the IoU. For instance, mAP@50 indicates that the AP algorithm uses an

IoU threshold of 0.5 to determine if an object has been successfully detected. There is

also a mAP@[.5:0.95] value, which is the average of the mAP values over the range of

IoU’s from 0.5 through 0.95, step 0.5, as can be seen in COCO source code [40].

The formula for calculating the mAP is presented as follows:
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mAP=
1
N

N
∑

i=1

APi

In this equation, the variable N represents the total number of classes to which an object

can be assigned.

In COCO context, AP is defined as the same as mAP [41].

2.4 Object detection

Object detection, an important aspect of computer vision, revolves around the identifi-

cation and localization of specific objects within images or videos. It enables machine

learning models to recognize and classify objects with a bounding box and label. This

technology has extensive applications in various areas, such as Tesla’s self-driving cars,

surveillance [42], and wildlife protection [43].

Deep learning techniques, particularly CNNs, are used to increase the performance of

object detection algorithms. CNNs can be used to learn certain patterns. When layers of

these learned patterns are found and learned, they can be used to effectively deal with

image data.

Object detection algorithms vary in the techniques they use. One architecture known

as Region Based Convolutional Neural Networks (R-CNN) uses region-based methods,

where a set amount of potential regions are selected, and tries to classify objects within

those regions [34]. The other primary approach is called single-shot. Methods like these

try to predict objects directly in one pass of the input image. These techniques are

faster, but can sacrifice some accuracy. Some examples are Single Shot MultiBox Detec-

tor (SSD) [36] and You Only Look Once (YOLO) [35].

2.4.1 Non Maximum Suppression

Non Maximum Suppression (NMS) is a technique used in computer vision to select a

single entity, such as bounding boxes, out of many overlapping entities. After sorting

all input bounding boxes, the algorithm proceeds to choose the boxes with the high-

est confidence levels. However, if their Intersection over Union (IoU) score surpasses a

predetermined threshold when compared to another previously selected bounding box,

they are disregarded. It then repeats this until every box has been inspected, leaving

only the remaining selected bounding boxes [44].

2.4.2 SSD

Single Shot MultiBox Detector (SSD) is an object detection architecture that consists of

two primary components, namely a backbone and a detection head [36]. The backbone



typically refers to a pre-trained image classification network, such as ResNet, wherein

the final fully connected layer is omitted. The SSD head component has the responsibility

of classifying the detections. The architecture of SSD model is illustrated in Figure 2.12.

Figure 2.12: A visual representation of how SSD works [36]

Single Shot MultiBox Detector (SSD) works by dividing an image into a grid, and then

having each grid cell responsible for finding objects within its boundaries. Grid cells that

fail to identify any objects treat themselves as background regions of no interest and

are consequently disregarded. Grid cells that successfully identify objects determine

the corresponding region using the anchor box with the highest IoU.

Given that an object can potentially span multiple grid cells, the SSD model compen-

sates for this by adjusting the scale of the anchor boxes. In addition, the SSD architec-

ture incorporates multiple grid matrices to handle objects of varying sizes. For instance,

it may initially employ a smaller grid, such as an 8x8 feature map, to detect and localize

smaller objects, followed by a larger grid, such as a 2x2 feature map, to identify and

locate larger objects.
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Figure 2.13: A visual representation of how the anchor boxes within SSD works [36]

In Figure 2.13, one can see the predetermined anchor boxes, and how the model selects

the anchor box that overlaps the most with the given object. One can also see that

the architecture has used different grid sizes/feature map sizes to detect different sized

objects.

2.4.3 YOLO

The YOLO algorithm consists of a single Neural Network (NN) grid which takes an in-

put image and outputs a set of bounding boxes and class probabilities for the objects

detected in the image [45]. The network is composed of two main parts: a feature ex-

tractor and a detection head.

The feature extractor is a CNN that processes the input image and extracts a set of

high-level features. These features are then fed into the detection head, which predicts

the bounding boxes and class probabilities for the objects in the image.

To predict the bounding boxes, the detection head divides the input image into a grid of

cells. Each cell is responsible for predicting a set of bounding boxes the grid have their

centers inside the cell. For each bounding box, the detection head predicts the center

coordinates, width, height, and confidence score.

The confidence score indicates how likely it is that the bounding box contains an ob-

ject. This score is based on the IoU between the predicted box and the ground truth box.

If the IoU is above a certain threshold, the box is considered to contain an object.

In addition to the bounding boxes, the detection head also predicts the class probabili-

ties for each cell. These probabilities indicate the likelihood that an object of a particular

class is present in the cell. The number of classes that can be detected depends on the

dataset used for training the model.

Once the bounding boxes and class probabilities have been predicted for each cell, the



final set of detections is obtained by applying NMS to the set of predicted boxes.

YOLOv5

YOLOv5, released in 2020 by Ultralytics, is a highly efficient object detection algorithm

that employs a deep neural network composed of a CSPNet-based feature extractor

[46]. This feature extractor enhances YOLOv5’s ability to extract more detailed features

from input images, leading to improved object detection accuracy. The algorithm also

utilizes a dynamic scaling approach and a multi-scale prediction strategy to detect ob-

jects of varying sizes. With the capability to detect up to 80 object categories, YOLOv5

outperforms previous versions and achieves state-of-the-art performance on the COCO

dataset.

YOLOv5 offers five versions with varying model sizes. The smallest of which is YOLOv5n

(1.9 million model parameters), to YOLOv5x (86.7 million model parameters). The larger

models provide better mAP scores, at the expense of time required to run inference.

YOLOv7

YOLOv7 is an object detection algorithm that builds upon previous successes [45]. It in-

cludes small improvements to speed up inference and prioritizes accuracy during train-

ing without sacrificing speed. With models available in different sizes, YOLOv7 offers

flexibility in balancing accuracy and computational efficiency.

YOLOv8

YOLOv8 is another object detection algorithm developed by Ultralytics, which released

in January 2023 [47]. It features a CNN that consists of a module that handles feature

extraction, referred to as a feature extractor, and a detection head. The latter predicts

the bounding boxes and class probabilities for detected objects. YOLOv8 enhances effi-

ciency by reducing box predictions and accelerating NMS. It introduces a modified loss

function calculation compared to YOLOv5. Additionally, during training, YOLOv8 employs

mosaic augmentation, except for the last ten epochs when it is disabled.

Like YOLOv5, YOLOv8 provides different versions with varying model sizes, ranging from

YOLOv8n (3.2 million model parameters), to YOLOv8x (68.2 million model parameters).

2.4.4 Faster R-CNN

Faster R-CNN is an advanced object detection architecture built upon the previous R-CNN

[48] and Fast R-CNN [49] networks. This model is designed to identify objects within an

image and locate them using bounding boxes. The model operates by first proposing

region of interests (ROIs) using a Region Proposal Network (RPN) [50], followed by clas-

sifying and refining these regions by using a Fast R-CNN network [49].
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The RPN generates proposals by sliding a small network over the convolutional feature

map of an image, and then scores the proposals based on their objectness. These pro-

posals are then refined and classified using a Fast R-CNN network [49]. This approach

allows for much faster object detection compared to the previous R-CNN and Fast R-CNN

models, as the RPN can share convolutional features with the Fast R-CNN network [50].

This results in a more efficient and accurate object detection system.

2.5 HaGRID

HaGRID (Hand Gesture Recognition Image Dataset) is a dataset that contains 716 GB of

hand gesture images with corresponding annotations [51]. HaGRID is split into 18 dif-

ferent gestures, and a "no_hand_gesture" class. The "no_hand_gesture" class is used

when there is a hand in the picture that does not belong to the other gestures. The ges-

tures contained within the dataset is visualized in Figure 2.14

Figure 2.14: The gestures contained within the HaGRID dataset [51]

HaGRID’s images are taken in various lighting conditions and with different backgrounds.

In addition, the subjects’ hand gestures are photographed from different distances be-

tween 0.5 meters to 4 meters away from the camera [51]. In Figure 2.15 one can see

some images from the dataset with poor lighting conditions.



Figure 2.15: Some images with poor lighting conditions from the HaGRID dataset [51]

2.6 Data Formatting

Object detection models need specific inputs and outputs. Different models have differ-

ent formatting on these values. There is a plethora of different dataset formatting for

keypoints, landmarks and other points of interest. Most interest lies in bounding boxes

as they both identify the object and provide them with a specific location in each image.

During the investigation of the different models, a lot of different data formatting was

used. A description of each of them are given below.

2.6.1 YOLO Formatting

You Only Look Once (YOLO) formatting is widely used for object detection tasks in com-

puter vision. In YOLO, an image is divided into a grid, and each grid cell is responsible

for predicting bounding boxes for objects within its region. The bounding box is repre-

sented by four values: the coordinates of the top-left corner, the width, and the height.

Additionally, each bounding box is assigned a class label, indicating the object category

it represents [52]. For example, in the YOLO format, a bounding box for a car in an image

may be represented as follows:

car 0.65 0.32 0.20 0.45

Here, "car" denotes the object class, while the subsequent four values represent the

coordinates and dimensions of the bounding box.
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2.6.2 COCO formatting

Common Objects in Context (COCO) formatting is widely adopted for various computer

vision tasks such as object detection, instance segmentation, and keypoint detection.

COCO utilizes a JavaScript Object Notation (JSON) file to store the annotations for each

image. The annotations include information such as bounding box coordinates, segmen-

tation masks, and category labels [53]. For example, a COCO annotation for an object

detection task may look like this:

{
"image_id": 123,
"category_id": 2,
"bbox": [100, 200, 150, 100]

}

In this example, image_id refers to the unique identifier of the image, category_id rep-

resents the class label, and bbox denotes the bounding box coordinates in the format [x,

y, width, height].

2.6.3 PASCAL VOC Formatting

Pascal Visual Object Classes (VOC) formatting is commonly used for object detection

and segmentation tasks. It employs eXtensible Markup Language (XML) files to store

annotations for each image. The annotations include bounding box coordinates, object

labels, and flags for difficult or truncated objects [53]. For instance, a Pascal bounding

box annotation for a bounding box may look like this:

<object>
<name>car</name>
<bndbox>

<xmin>100</xmin>
<ymin>200</ymin>
<xmax>250</xmax>
<ymax>300</ymax>

</bndbox>
</object>

In this example, "name" represents the object class, while "xmin," "ymin," "xmax," and

"ymax" denote the coordinates of the bounding box.

2.6.4 TensorRecords

TensorRecords is a labeling and data serialization format designed for efficient storage

and processing of large-scale datasets. It is used in the popular machine learning frame-

work TensorFlow. TensorRecords provide a unified format to organize diverse data types

such as images, audio, and text. The format allows for efficient streaming and shuffling

of data, making it suitable for training large-scale models [54].



2.7 Technologies

2.7.1 Roboflow

Roboflow is a computer vision platform that has a labeling tool which is used to annotate

and label objects in a an image [55]. The tool is equipped with an integrated feature that

enables automatic labeling of images. This makes manual labeling a lot faster, as one

only has to add missing annotations or make minor adjustments to existing annotations.

After the images are labeled, one can download the dataset with labeling in different

formats, such as, but not limited to: yolo, coco and tensorflow format.

2.7.2 Git and GitHub

Git is a version control system created in 2005. It tracks changes in files, which allows

developers to manage code [56]. Git is often used in collaborative projects with multiple

developers. Git accomplishes this by making snapshots of the files, storing them, and

referecing them. Git also provides functionality to merge, branch out, rebase, pull and

push changes to projects.

GitHub is a web-based platform that utilizes Git, and provides a centralized location for

code repositories, making it easier for developers to manage their projects [57]. GitHub

also provides their own features, such as issue tracking, automated testing and deploy-

ment, which streamlines the software development process.

2.7.3 Docker

Docker is an open-source platform, which facilitates development, deployment, and

management of applications through containers [58]. Containers are lightweight and

portable images, which encapsulate an application and its dependencies. This ensures

that execution is consistent regardless of deployment environment. Docker consists of

the Docker Engine, a core component responsible for building and running containers,

and Docker Hub, a cloud-based registry for storing and sharing container images. By

isolating applications in containers, Docker streamlines the continuous integration (CI)

and continuous deployment (CD) process, and encourages a more efficient and reliable

approach to application management.

2.7.4 C and C++

C is a general-purpose programming language. It provides low-level access to system

memory, thus making it exceedingly fast. It does not provide garbage collection, and

expects the developer to explicitly allocate and deallocate memory. C++ is an object-

oriented programming language, which makes it convenient to structure applications.

C++ was developed as an extension of C, thus, it shares a lot of the same syntax as C.

The main difference between the two is that C++ deals with objects and classes, while

C does not support this [59] [60].
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2.7.5 GStreamer

GStreamer is an open-source multimedia framework which enables development of ap-

plications which can process, create, and manipulate multimedia content, such as audio

or video [61]. The framework is designed to facilitate a modular and pipeline-based ap-

proach. GStreamer is written in C. GStreamer provides a vast amount of plugins which

can be downloaded and used, such as scaling images, or grab video from webcams. A

pipeline can be launched in the command line using gst-launch-1.0, followed by any

GStreamer elements, which are the basic building blocks of any pipeline. However, us-

ing many GStreamer elements to dynamically solve different tasks can be challenging

and error-prone. To address this issue, the concept of "bins" [62] can be implemented.

Bins are containers that can contain other elements. The use of bins enables the han-

dling of complex architectures and the testing of a subset of functionality to ensure that

it performs correctly. To make GStreamer elements work, they utilize "pads", which are

their interfaces to the outside world. The pads mainly describe their direction, which is

either "sink" or "source". Sink pads bring data inside an element, and source pads send

data out of an element.

2.7.6 OpenVINO

OpenVINO is an open-source toolkit developed to facilitate deep learning model opti-

mization and deployment [63]. It provides a large suite of tools and libraries for high

performance model inference. Some relevant tools provided, are the OpenVINO Runtime

and Model Optimizer. The OpenVINO Runtime is responsible for loading the provided

models and executing inference requests within said models. The Model Optimizer is

a tool which aims to convert ONNX models from .onnx files, to an Intermediate Rep-

resentation (IR), consisting of a .bin- and .xml file, which the OpenVINO Runtime can

efficiently process.

2.7.7 Python

Python is a high-level, interpreted, general-purpose programming language. It focuses

on easy to read- and write code. It has an extensive standard library, which makes it

simple to make all kinds of applications. In addition, one can use libraries made by other

developers by utilizing pip [64], which is a package manager for Python [65].

2.7.8 PyTorch and TensorFlow

PyTorch and TensorFlow are open-source Python frameworks for developing and train-

ing machine learning models and doing tensor math. They have well documented APIs,

which makes it easy to develop and train models. The two frameworks make up a huge

portion of used technologies used in machine learning projects, research, and ecosys-

tem [66] [67].



2.7.9 ONNX

Open Neural Network Exchange (ONNX), is an open-source platform that enables inter-

operability between machine learning frameworks [68]. ONNX aims to be a standard-

ized representation for trained models from different frameworks, such as PyTorch and

TensorFlow. It allows those models to be seamlessly converted and utilized across plat-

forms. By providing a common format for the representation of machine learning mod-

els, ONNX provides optimization of model performance across hardware platforms and

makes the deployment process easy. With the standardized model representation, a file

format .onnx is used. ONNX defines a common set of operators, and the .onnx file format

utilizes it. The operators are versioned, with their versions being referred to as operator

sets.

2.7.10 Cloud GPU clusters

A cloud GPU cluster is a cluster of GPUs hosted in an online environment, which facil-

itates the ability for users to utilize the resources they provide, such that they do not

need to buy their own hardware. These clusters usually provide hardware that is ex-

ceptionally powerful compared to regular consumer hardware for GPU computing, and

allows a user to utilize multiple of them. GPU clusters are, for that reason, very useful for

training machine learning models. NTNU provides one such cluster to use for students,

Idun [69]. Alternatively, multiple online services provide cloud computing as a service,

and can be rented.

2.8 Test-driven development

Test-driven development (TDD) is a software development practice that revolves around

creating unit tests before software functionality. TDD makes it easier to write robust,

bug-free and maintainable code by continuously refactoring code to make it better, while

constantly testing the code to make sure that it still works.

2.9 Pexip Codebase

The company’s codebase is built using GStreamer, a multimedia framework that sup-

ports the construction of complex multimedia applications. The codebase consists of

thousands of dynamically linked elements, with each element performing a specific func-

tional task.

2.9.1 Mama

Mama is one of the main bins in the Pexip codebase that manages audio and video

processing in a complex system. Mama is the highest level of bin, containing hundreds

of other GStreamer elements in different hierarchies, and it manages all audio and video

processing in the media stack.
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2.9.2 PMX

PMX is a C API that provides a high-level interface with inputs and outputs of different

types that can be connected together. PMX abstracts away the details of GStreamer and

configures Mama, which have complex APIs, to offer simpler functionality. In essence,

PMX simplifies the configuration process for Mama and other large bins, by providing an

easier-to-use interface built on top of their complex APIs.

2.9.3 Web Application

The web application refers to the overarching software that makes it possible to partici-

pate in video conferences. The web application utilizes the PMX API for various function-

alities and purposes.

The web application provides a server which users can connect to. There are various

types of users that can join, which have different capabilities, and are treated differ-

ently. For example, a user who participates through a link on a browser will be different

from a user who participates through a Cisco touchpad.





Chapter 3

Methodology

The objective was to develop an efficient gesture detection system for video calls. A

suitable dataset encompassing relevant gestures for video call interactions was chosen.

The dataset was utilized to train various object detection models. Subsequently, differ-

ent models were evaluated, considering factors such as framerate and mAP scores.

Lastly, the implementation of the gesture detection model within the Pexip code base

will be discussed. The models were integrated into the existing application, incorporat-

ing necessary modifications and implementing safeguards to ensure seamless opera-

tion. The specific steps taken to incorporate the models, adapt to application require-

ments, and optimize performance within the Pexip environment will be covered.

The utilization of the technologies mentioned in the theory section were necessary ei-

ther due to required workflows by Pexip, such as Docker and the Pexip provided devel-

opment image, or were essential to effectively produce other components. Not only one

machine learning framework was utilized. The reason for not utilizing only one machine

learning framework, was due to each implementation’s ease of use. This also led to the

usage of ONNX to create standardized representations between every framework.

3.1 Gesture Detection Model

The objective was to develop a gesture detection model that treated each gesture as a

distinct object, characterized by a bounding box and a confidence score. To accomplish

this, various models were explored that aligned with the requirements. The models con-

sidered included SSD, YOLOv5, YOLOv8, and Faster R-CNN. These models were chosen

for their ability to capture and localize gestures effectively and accurately.

3.1.1 Dataset

For training data, the test set from HaGRID was utilized as the primary dataset. The test

set had a considerable size of over 60.4 GB and included a diverse range of pictures with
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different lighting conditions, ethnicities, and resolutions. The extensive variability found

in the HaGRID test set made it an ideal choice for training purposes. The predefined

subset of HaGRID, comprising 100 pictures for each class, was utilized as the test set.

This subset comprised around 2.5 GB of data. Despite its relatively small size, the test

set demonstrated a satisfactory level of diversity, encompassing various backgrounds,

noise, and contextual variations in each picture. Therefore, this dataset was considered

suitable and adequate for training the gesture detection model.

Figure 3.1: Composition of 10 images from HaGRID dataset [51]

3.1.2 Model selection

The selection of the models was based on a combination of factors, including ease of

implementation, training efficiency, evaluation capability, final model size on disk, and

inference speed. The models that were chosen were YOLOv5s, YOLOv8m, SSD ResNet50

V1 FPN 640x640 and Faster R-CNN ResNet50 V1 640x640 [67].

The YOLO models were chosen for their user-friendly documentation, state-of-the-art

performance in terms of high mAP scores on the COCO dataset, and fast inference. The

YOLOv5s exhibited fast inference times, but had lower mAP scores on the COCO dataset

compared to YOLOv8m. Additionally, a pre-trained YOLOv7 model was fetched from the

HaGRID repository in the early stages, which allowed working on a base implementation

while waiting for further models to be trained.

As this thesis revolves around detecting and distinguishing objects that are quite simi-

lar, we did not want to exclude the possibility that other models may have produced sat-

isfactory results. We chose SSD and Faster R-CNN models because they demonstrated

desirable precision scores and efficient inference speeds. Specifically, the SSD ResNet50

V1 FPN 640x640 achieved a mAP of 0.46 with an inference speed of 34.3 ms, while the



Chapter 3: Methodology 29

Faster R-CNN ResNet50 V1 640x640 achieved an mAP of 0.55 with an inference speed

of 31.8 ms on the COCO dataset [67].

3.1.3 Formatting

HaGRID is formatted following the COCO format, which was incompatible with models

that had been selected. However, HaGRID’s GitHub repository [51] provided a conve-

nient solution in the form of the coco_toYolo.py script, enabling the conversion of an-

notations to the YOLO format. This allowed training the two YOLO models that had been

selected.

To utilize the SSD and Faster R-CNN models, the input required TFRecord files. These

models were sourced from TensorFlow’s model zoo [70]. Initially, a script called YOLO-convert-txt-2-xml
developed by the GitHub user chanjooLee [71] was used to convert the YOLO formatting

to Pascal VOC formatting. Next, a script was created to convert this formatting into CSV

format. Finally, a modified version of the generate tfrecord.py code from the Tensor-

Flow Object Detection API, originally modified by Dat Tran [72], was employed to gener-

ate the necessary TFRecord files.

This multi-stage formatting process allowed us to create a train.record file contain-

ing all the training data, as well as a test.record file with the test data. These TFRecord

files ensured compatibility with the SSD and Faster R-CNN models, facilitating the train-

ing and evaluation processes effectively.

3.1.4 Model training

The training of the YOLO models took place on the Idun GPU cluster provided by NTNU.

The YOLOv5 model training involved utilizing the YOLOv5 repository from ultralytics [46].

The training process consisted of executing the training script training.py and adjust-

ing parameters. The batch size was adjusted to 30 and the image size to 480. The initial

plan was to train the model for 200 epochs. However, the training ended prematurely at

96 epochs due to the lack of significant improvement in the mAP scores over a consid-

erable number of epochs. This training process took approximately 4 days.

The training process for the YOLOv8 model followed a similar approach. The ultralyt-

ics pip package [73] was utilized, and the train command was employed. Initially, the

training was set to run for 100 epochs. However, it was decided to conclude it at epoch

57 due to the absence of significant improvement in the mAP score beyond this point.

The YOLOv8 model underwent training with an image size of 640 and a batch size of 8.

Notably, the training of this model took approximately 6 days to complete.

During the training process, the YOLO models conducted real-time evaluation and gen-

erated a result.csv file. The metrics included in this file were utilized to assess the



performance of the model.

The SSD model was trained using the TensorFlow (TF) Object Detection API. The training

was done by using their model_main_tf2.py script. To configure the training, we speci-

fied the batch size, step number, number of classes,label map, as well as the paths to

the training and test data in a configuration file [74]. The model was trained for a total

of 15,000 steps.

Similarly, the Faster R-CNN model training followed a similar process using the Tensor-

Flow Object Detection API [74]. The training process was halted at 9,000 steps.

The evaluation of TF models took place after completing their training. This approach

involved running the training script again, but with specific flags indicating the intention

to evaluate a particular model. The mAP scores for these models were measured at the

end of their training, using the evaluation script. Real-time monitoring of the total loss

of the model was utilized to determine when to halt the training process.

For detailed configuration files used in these trainings, please refer to the code listings

in appendix B.

3.1.5 Exporting to ONNX

To be able to make further use of the models, they were required to be .onnx files. The

implementations of each architecture had their own export scripts, which could be run

with Python. The scripts expected to find completely trained models which they could

export. The scripts allows users to define the operator set versions of the output file.

While exporting, the operator set version was set to 13.

3.2 GStreamer element

To be able to utilize trained models with Mama and PMX, a GStreamer element must be

created, and then plugged into Mama. Said element must be responsible for emitting

signals with labels that correspond to different gestures that are identified throughout

its lifetime. It has to load and initialize a specified and compatible model, accept image

data, transform it so that the model can use the data, run inference on the said data,

and tell Mama and PMX when it has detected a gesture with high confidence. The full

GStreamer element consists of the main element itself, an inference class to interact

with the OpenVINO Runtime that runs the model, and some helper classes. Further in

this section is the in-depth explanation of the full GStreamer element.

3.2.1 Gesture detection element

A C++ class was needed to contain various instances and variables. To let our class act

as a GStreamer element, it must inherit from a GStreamer base class GstVideoFilter.
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Then some boilerplate code is required. This includes some C and C++ definitions and

macro definitions, a source and sink pad, initialization functions for the class itself and

instantiation of the class, a dispose function, and a function which takes in image data.

To get this done quickly, help was provided by Pexip. Further, the element will be used

to refer to this GStreamer element.

To work comfortably in this setting, it is very helpful to have at least basic experience

with C and C++ code.

The element must be defined with a number of class members which act as configura-

tions. These configurations are responsible for giving the user a variety of final settings,

allowing different use cases. These configurations must be tunable to simplify experi-

menting, without compiling new values each time. To accomplish this, some additional

GStreamer functions must be added [75]. An enum must be created, with a value for

every property one desires to be able to easily change. These enum values are then

"installed" into the element class within the class initialization function, with minimum,

maximum and default values. Further, two more functions must be created, to get and

set the properties at any time. For our element, the configuration properties are listed

below:

• debug: Enables drawing detection boxes on the screen.

• debug_overlay: Enables drawing an overlay, which displays the data that is handed

to the detector, after preprocessing.

• confidence_threshold: The minimum required value for a detection to not be

discarded.

• iou_threshold: The minimum required IoU required for a compared detection to

not be discarded.

• min_detections: The minimum amount of consecutive, similar detections required

to emit a signal.

By utilizing the GStreamer object properties, a user can specify desired values for said

properties through code, or adding values directly when running it in the command line.

For the element to be able to notify Mama and PMX that a gesture has been found,

it must utilize GStreamer signals. An enum must be created, with a value which rep-

resents the event "a gesture has been detected". This signal, with the metadata it is

expected to provide, is defined in the class initialization function.

When data is passed to the detection element, we want to process it. This data is an

object which contains frame data from the video-stream. To process the current frame,

it becomes necessary to extract the RGB pixel data, height, and width from the frame.

When this is complete, said data is passed to a detection method defined on a separate



detector class. Since the frame data is structured as a 1-dimensional array of values,

the height and width is required as additional context, because the 1-dimensional array

alone cannot convey the height and width of the frame. Inference is run on the data by

the detection class, and returns an array of gestures it found, which may be empty. Sec-

tion 3.2.2 contains further details about the detection class. After inference, the results

undergo a layer of postprocessing to ensure higher quality detections. This postprocess-

ing consists of an algorithm designed to monitor gestures with the same label within

a similar region of the frame. A signal is emitted only if a gesture has remained in the

same area with the same label throughout a given amount frames in the video-stream.

This amount corresponds to the min_detections property. The algorithm is explained

and illustrated in 3.2.1.

Result classes

Representations for the detections were created, to be able to easily work with them.

Some classes were created. The relationship between these classes are visualized in

Figure 3.2.

Bounding boxes A class for bounding boxes. This class represents the X and Y coor-

dinates of their top left corner, and the height and width of the box. Additionally, it also

contains necessary methods to calculate the IoU between itself and another bounding

box.

Result A class to represent a full detection. This consists of a bounding box, a confi-

dence value, and a label. This class will be referred to as a Result.

Result with lifespan A helper class for the algorithm in 3.2.1, which class contains a

Result, and an integer lifespan. The lifespan represents the number of consecutive

detections in which a Result with the same label, and same general area has been de-

tected. This class will be referred to as a ResultWithLifespan (RWL).
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Figure 3.2: The three necessary result classes and their relationships.

Detection processing algorithm

To ensure high quality detections, an algorithm which attempts to track detections was

made. This is to reduce the amount of false positives, such as a person walking in the

background with their hands up, participants scratching their nose, or flailing their arms

around. This can only be done through multiple iterations. Thus, it has to process detec-

tions across several frames, as the video-stream progresses. The pseudocode for this al-

gorithm is shown in Algorithm 1. The algorithm uses the iou_threshold, confidence_threshold,

and min_detections parameters in the GStreamer element. Additionally, it requires the

element to track valid detections from the previous frame. These detections are stored

as a vector of RWL.

The algorithm incorporates a vector of Result and inspects all of them. If the confi-

dence values are below the threshold, they are discarded. Otherwise, they are com-

pared against every RWL from the previous frame. During comparison, if the Result has

the same label, and is above the iou_threshold as the RWL it is compared against, it

is considered the RWL’s successor. If this is the case, the Result that the RWL contains

is replaced by the current Result, and it’s lifespan is increased by 1. This effectively

moves the RWL bounding box, such that a new Result is not compared against the very

first bounding box for the RWL in question, but the most recent one. If the Result is not

considered a successor, it will become a new RWL, with a lifespan set to 1.

During the comparisons, a check was made to examine if the lifespan of any RWL be-

comes equal to min_detections. If that is the case, a signal is emitted, containing the

label of the detection. This is checked for every comparison, such that the algorithm

can emit several signals for every frame, in case there are multiple gestures found. The

algorithm is visualized with 3 frames, and min_detections set to 3, in Figure 3.3.



Figure 3.3: Visualization of processing algorithm. The boxes represent RWLs, at the end

of the algorithm, formatted as [LABEL, LIFESPAN]. Frame 1: 3 new detections (blue).

Frame 2: 3 new detections (green). Top left green is below the IoU threshold. Bottom left

has a different label. Top right is above IoU threshold and has same label, thus, it’s lifespan

is increased to 2. Frame 3: 2 new detections. Top left is now within the IoU threshold and

label. No new detection for bottom left. Top right is above IoU threshold and has same

label, thus, it’s lifespan is increased to 3. As it’s lifespan reaches 3, a signal is emitted.
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Algorithm 1 Temporal result detection algorithm

Require: Detnew: a vector of Result
Require: Detold : a reference to a vector of RWL

Require: TIoU : an IoU threshold

Require: Tcon f : a confidence threshold

Require: M : minimum RWL lifespan for signal emission

Ensure: Temporal result detection

1: tmp_resul ts← empty RWL vector

2: for all det ∈ Detnew do

3: if det.con f idence < Tcon f then

4: continue

5: end if

6: overlapping ← new RWL with det.bbox and l i f espan= −1
7: for all old_det ∈ Detold do

8: if det.label ̸= old_det.label then

9: continue

10: end if

11: if IoU(det, old_det)< TIoU then

12: continue

13: end if

14: overlapping ← new RWL with old_det.bbox and old_det.l i f espan+ 1
15: end for

16: if overlapping.l i f espan== −1 then

17: overlapping ← new RWL with det.bbox and l i f espan= 1
18: end if

19: tmp_resul ts.push(overlapping)

20: if overlapping.l i f espan== M then

21: emit (det.label)
22: end if

23: end for

24: Detold ← tmp_resul ts

Debugging

For easier development and comprehension, two debugging features were added. First,

drawing an overlay at the top left of the video-stream. This overlay displays the image

data which is fed directly into the object detection model. It means the user can easily

see the image data after preprocessing. E.g. resizing the image. To do this, an array is

created with the same size as the array that the model itself accepts, and populated

with the preprocessed data, and lastly drawn on top of the main video-stream.

Second, drawing boxes on top of the image. This allows users to see the bounding

boxes of detections in real-time. This requires the Result for the detections. It draws

the bounding box of each detection on top of the video-stream. The bounding boxes are



colored either red, yellow or green, based on the confidence level of the detection they

represent. Given a confidence x , then the color is given by the function

f (x) =







Green, if x > 0.9

Yellow, if x > 0.5

Red, otherwise

These two debugging features are visualized in Figure 3.4. Additionally, labels and con-

fidence values can be logged to the console for each detection. This can be achieved by

setting the debug level to DEBUG when launching the GStreamer pipeline.

Figure 3.4: Visualization of the overlay and box drawing debug features.

3.2.2 Inference class

To separate the GStreamer functionality from the object detection functionality, another

C++ class was created to handle the latter. It’s purpose is to control all aspects of run-

ning a trained model with the OpenVINO Runtime, such as processing image input, run-

ning inference, transforming the raw output, and postprocessing.

The class must contain a number of OpenVINO InferenceEngine members, namely InferenceEngine::Core,

InferenceEngine::ExecutableNetwork, and InferenceEngine::CNNNetwork. It also con-

tains a Model enum, to make it explicit which model is being used, e.g. YOLOv5, YOLOv7.

Lastly, it must also keep a confidence threshold and the input width and height which a

loaded model accepts.

Several methods were also defined. These include the detection method itself, which

branches out to private detection methods, which are used dependent on the selected
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model, and a heap of preprocessing and postprocessing helper methods. The GStreamer

element calls the detection function.

Model loading

The detector class initially loads an OpenVINO Runtime plugin .xml-file, which has to be

located. This attempts to initialize a backend, and throws an exception if it cannot be

initialized. If successful, it provides information about available devices, such as CPUs

or GPUs, and their properties. Depending on which model is specified to be used, an

absolute file path is set for each model file, which are .onnx files. The operator sets

must be version 13, otherwise it does not load, and crashes. If the model successfully

loads, it populates the rest of the class members, and grabs the input height and width

that the model requires. The network that is loaded can then be further configured,

allowing users to specify the image layout and floating point precision it should accept

and output. It also allows preprocessing to be specified, but this does not work if OpenCV

is not installed.

Image preprocessing

The loaded models usually accept data in a format that is different from what is pro-

duced from a video-stream. To handle this, preprocessing is necessary to transform the

data to an accepted format. As mentioned in 3.2.1, the GStreamer element passes data

to a detection method. The data consists of an array representing the image input, the

height and width of the input image, and an empty array that may be populated at the

end of the preprocessing, which is the data that allows the drawing of the debug overlay.

To make the input image data compatible with the model, it has to go through a series

of transformations. Firstly, it must be resized to match the resolution of the images that

the model was trained on. These values can be variable, but are provided by the .onnx
files when a model is loaded. The resizing used was the nearest-neighbour interpolation

algorithm. Further, an image cannot be simply resized. It must also keep its aspect ratio,

such that it does not become distorted. A letterboxing effect is used to achieve this. The

scaling values from resizing and letterboxing is stored to be able to reverse the down-

scaled size of any detections bounding box. Lastly, the input image data will be in the

HWC image layout, and must be converted to CHW.

To accomplish this, a loop is utilized to swap the layout by iterating through the data

by their channels, height and width, and then indexing into an input and output array

of the same size for both HWC and CHW respectively, then setting the pixel in the CHW

layout to the corresponding pixel in the HWC layout.

When these modifications were done, the processed input images were unflattened to

a 4-dimensional tensor which the model accepts. The dimensions of this tensor must be

[1, C, H, W]. The 1 must be added as the model accepts a batch of several images, but in



this case, the batch size is 1. The H and W refers to the height and width that the model

expects.

When preprocessing is complete, the processed image may look as the top left over-

lay shown earlier in Figure 3.4.

Model outputs and postprocessing

Different models have different implementations. Currently, only YOLOv5 and YOLOv7

are fully implemented. Even though they are both YOLO models, they have different

outputs. This means they require different implementations. The outputs for both of

these models are tensors consisting of multiple detections, but the underlying values

are different.

For v5, only 1
3 of the detections had to be examined due to anchor box calculations.

Detections in v5 could have multiple labels, thus, each detection had a list of 24 values,

5 of them describing location and objectness, while remaining values describe the con-

fidence values for each gesture label.

Detections in v7 had only 7 values, since it did not have multiple labels per detection.

The consisted of objectness, location, confidence for the best label, and index of the

best label. For v5, the label with the highest confidence was chosen and the rest were

discarded. For both implementations, the values for each detection were collected and

transformed into Result instances. Transformation was handled by a helper method,

which required the previously mentioned scaling values from the resizing and letterbox-

ing done in the preprocessing step. The values are used to inverse the downscaling,

resizsing the bounding boxes such that they fit the full-size input image. This helper

method required per-model implementations, as the X and Y coordinates of the bound-

ing boxes produced by v5 represent the center coordinates, while the X and Y coordi-

nates in v7 represent the top left corner.

The YOLOv5 model did not apply its own NMS, but v7 did. The v5 results were filtered

through NMS to make them consistent.

3.3 Integration into Pexip codebase

With a complete GStreamer element, it was plugged into Mama and PMX. This had to be

done to complete the several goals, such as joining a video conference and letting the

users talk and raise their hands. To do this, supervision from Pexip was needed.

Firstly, the detection element was plugged into Mama, allowing gestures to be emitted

from the detector to Mama. Secondly, the emission needed to be brought from Mama

to PMX to allow PMX to be notified if a signal is emitted. As PMX allows functions to

be called when certain events happen, aka. callbacks, the web application could inform
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PMX functions it should call when a signal is emitted. This was the exact functionality

that was used for the web application to trigger the "raised hand" functionality when a

gesture was detected.

As the webapp allows different types of users to participate in a meeting, such as normal

users or e.g. Cisco touchpads, some additional code had to be written to ensure that all

types of participants would be able to utilize the detection element, and thus, the "raise

hand" functionality. As the gesture detection element emits a label for any gesture it

detects, it is important to filter out the labels that are unwanted. Thus, when a user

raises their hand, it is not desired to use e.g. a "thumbs up" gesture to trigger the "raise

hand" functionality. For that reason, only some gestures were selected to be capable of

triggering the "raise hand" functionality:

• Stop

• Palm

• One finger

• Two fingers

• Four fingers

• Peace

For reference, these gestures are visualized in Figure 2.14. Additionally, for demo pur-

poses, a "fist" gesture was added to allow a participant to use the "lower hand" func-

tionality, which can be used after they have raised their hand.

3.4 Usage and performance

To run the GStreamer pipeline with the detection element, gst-launch-1.0 pipelines

were utilized for different usecases. To simply use the element and have it log when

a signal is emitted, the command shown in code listing 3.1 was used. For testing and

debugging, adding debug flags could be used, and is shown in code listing 3.2.

Code listing 3.1: Base gst-launch-1.0 pipeline to use the element.

$ gst-launch-1.0 v4l2src ! jpegdec ! gesturedetect ! videoconvert ! ximagesink
async=0 sync=0

Code listing 3.2: gst-launch-1.0 pipeline utilized when debugging.

$ gst-launch-1.0 --gst-debug=gesturedetect:INFO v4l2src ! jpegdec ! gesturedetect
debug=1 debug-overlay=1 ! videoconvert ! ximagesink async=0 sync=0

During the developmental phase, we conducted experiments using various models fea-

turing distinct input sizes. The models employed were Faster R-CNN, YOLO, and SSD,

each exhibiting varying speeds, measured by the time taken to run inference on one im-

age. The input size represents the image dimensions utilized for detection by the model,

with larger images generally providing better accuracy, albeit with a corresponding in-

crease in time taken to run inference. It is important to note that the models were ran on



Central Processing Units (CPUs) instead of Graphical Processing Units (GPUs), as Pexip

runs everything on Central Processing Units (CPUs). Our aim was to achieve a detection

rate of twice per second.

Performance was measured in FPS, and the data was gathered using a GStreamer plugin

fpsdisplaysink [76]. Examples from it’s documentation show how it can be utilized.

By using the plugin, it logged the current and average FPS to the console. The exact

pipeline utilized to test and read outputs is shown in code listing 3.3, which contains

several GStreamer plugins, and the gesture detection element.

Code listing 3.3: gst-launch-1.0 pipeline utilized to collect FPS info.

$ gst-launch-1.0 v4l2src ! jpegdec ! gesturedetect ! videoconvert !
fpsdisplaysink video-sink=ximagesink sync=0 -v 2>&1

In the full webapp integration, it was possible to dictate how often the element would

receive video data. This interval is easily tweaked, along with the other properties of

the element. This allowed rapid experimentation, such that it was possible to produce a

better user experience in terms of how long it would take for a gesture to be detected

and how strict the detector was.

3.5 Optimizations

Pexip requires optimization in terms of CPU and memory. To prevent unnecessary com-

putation, the entirety of the detector preprocessing, referring to the image resizing,

letterboxing, and layout reordering, is done in a single pass, instead of separating them

into 3 methods. As the input images become larger, preproccesing may take too long,

so it is important to use as few passes as possible.

3.6 Testing

3.6.1 Pexip codebase

Pexip heavily utilizes test-driven development, and because of this, a test suite for the

detection element was created in the early stages, before any actual code was written.

The test was slightly altered as the specifications for the element changed. Tests were

written for the detection element itself, as well as it’s integration in Mama, and a final

test for it’s integration with PMX. Every test utilized a specified set image, and tested

whether the detector could detect a predefined gesture that was present on the image.

The differences were only specific to the specific integration that was tested.

3.6.2 Model testing

Testing of the different completed models were conducted, though in a smaller scale,

due to time constraints.
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Distance

A test was conducted for all YOLO models to try and see at what distances their results

deteriorate. Deterioration in this test is defined as when the models can no longer:

• See any gestures.

• Classify gestures with confidence scores above 0.5.

The test would evaluate each model at increasing distances, starting at 2 meters and

increasing by 2 meters for each step, up to 8 meters. A sample from the test is shown in

Figure 3.5. Every test participant was asked to hold a "peace" sign in the air. Raw result

values were gathered on a video, then averaged to produce the end result for each test.

(a) 2 meters (b) 4 meters

(c) 6 meters (d) 8 meters

Figure 3.5: A sample of the distance test. It shows the test subject holding a "peace" sign

in the air. The images visualize detected gestures at their respective distances. For all but

8 meters, a "peace" gesture is detected.

User experience

Multiple smaller, casual tests were conducted to find the optimal duration a user would

like to keep their hands raised to trigger the "raised hand" feature. This value had to be

balanced between a good user experience, as well as being able to produce good de-

tections to avoid false positives. These were conducted in several meeting rooms, and

in home office settings with several users. The users would be within different distances

to the camera, using different cameras, angles, and models. The results were individual

preferences regarding what each test participant considered the optimal duration. Not



every result from this test was recorded. Instead, they were used for rapid experimen-

tation, aiding in finding the optimal values for the meeting room environment in which

it was conducted.



Chapter 4

Results

4.1 Model performance

The training of each model was conducted until either the mAP scores ceased to im-

prove, or the total loss score exhibited minimal changes at a slow pace. Although these

models could potentially yield better results with longer training durations, we made the

decision to stop training considering the diminishing performance gains in relation to

the additional training time required.

The primary evaluation metrics used were the mAP@50, mAP@[0.5:.95] scores, and

inference times of the models.

4.1.1 Training results

As illustrated in Table 4.1, both YOLO models achieved notable mAP values. However,

given their similar and high mAP@50 scores, we turned our attention to the mAP@[.5:.95]

scores to see any substantial performance distinctions. The YOLOv8m model exhibited

significantly higher accuracy at the higher IoU thresholds.

A significant disparity in loss values can be observed Table 4.2, where the YOLOv5

model produced a substantially lower total loss compared to YOLOv8.

In Table 4.1, the training results for the SSD and Faster R-CNN models are presented. It

Model mAP@50 mAP@[.5:.95] Recall

YOLOv5s 0.987 0.839 0.979

YOLOv8m 0.988 0.877 0.990

SSD 0.491 0.313 0.521

Faster-RCNN 0.964 0.726 0.778

Table 4.1: mAP@50,mAP@[.5:.95] scores, and recall for models
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Model Box Loss Class loss

YOLOv5s 0.017 0.004

YOLOv8m 0.606 0.330

Table 4.2: Training loss for YOLO models

is evident that the SSD model achieved significantly lower values compared to the other

models. The loss graphs in Figure 4.1 and Figure 4.2 for the two models outlines that the

training was stopped when the significant changes in loss had stopped. We also see a

artifact in the Faster R-CNN graph. This is due to that the training was halted, and then

resumed.

Figure 4.1: Graph of total loss versus steps for Faster R-CNN where loss is plotted against

steps

Figure 4.2: Graph of total loss versus steps for SSD where loss is plotted against steps

4.1.2 Distance test results

Referring to the distance test mentioned in Section 3.6.2, the results are shown in Table

4.3. The values in the distance columns are average values from 3 tests with 3 individu-

als. The results from the individual tests can be found in Appendix A. None of the models

managed to detect anything at 8 meters, so this column was omitted. At 2 meters, all

models performed similarly. At 4 meters, YOLOv5 and v8 performed similarly, while v7
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Model Avg. FPS Input size 2m 4m 6m

YOLOv5 15.7 480 x 480 0.92 0.84 0.64

YOLOv7 26.3 320 x 320 0.88 0.59 >0.5

YOLOv8 3.3 640 x 640 0.88 0.81 0.61

Table 4.3: FPS performance of YOLO models running on a AMD Ryzen 7 PRO 4750U CPU

in the GStreamer pipeline. Test results from a distance test is also shown, displaying the

model confidence for the "peace" gesture at various distances.

had a significant drop in confidence. At 6 meters, v5 and v8 performed similarly, and

v7’s results had deteriorated to a degree that it could no longer detect any gesture with

a confidence score of 0.5 or above.

4.2 GStreamer performance

As mentioned in 3.4, performance was measured in FPS. Both the video-stream and

OpenVINO Runtime model inference were processed on an AMD Ryzen 7 PRO 4750U.

GPUs were not available, and were not relevant as Pexip do not use GPUs. YOLOv5,

YOLOv7, and YOLOv8 were tested with GStreamer and OpenVINO. Only YOLOv5 and

YOLOv7 were fully implemented. The training of the YOLOv8 model was not completed

in time to allow spending resources on it’s full implementation. It was only partially

implemented, allowing monitoring of it’s framerate. YOLOv5 resulted in an average of

15.7 FPS, YOLOv7 displayed an average FPS of 26.3, and YOLOv8 displayed an average

FPS of 3.3. The detailed results can be seen in Table 4.3.

4.3 Video call user experience

No real metric was found to measure the user experience in a video call. However, mul-

tiple informal tests were conducted as mentioned in Section 3.6.2.

It was found that most users were content with holding their hands still in the air for

about 1.5 seconds, corresponding to a configuration of minimum 3 detections and 2 de-

tections per second to trigger the raise hand function. Some of the test subjects thought

this speed was too slow. However this was considered the optimal configuration to avoid

false positives. The quality of the camera and the background in which one raised their

hands were found to be important. Raising hands against plainer backgrounds with less

noise, such as a white background and minimal sunlight pointing directly at the camera,

performed better.

As users moved further away from the camera, the quality of the detections deterio-

rated, causing the "palm" and "stop" gestures to be mistaken for another if users did not

make it very clear which gesture they wanted to exhibit. Unless the users clearly spread



their fingers, or held them firmly together, when at a further distance, the models could

mistake the "palm" for a "stop" or vice versa.

4.4 Pexip video conference

As a product of everything previously mentioned, it was possible to launch an instance

of the Pexip webapp, and join as participants. Then, using minimum 3 detections, with 2

detections per second, it was possible to raise a hand into the air, and trigger the "raised

hand" functionality, without clicking any buttons. This was made clear by a banner pop-

ping up. We could then lower our hand using the "fist" gesture. Figure 4.3 shows a video

call using one of Pexip’s video conference webapps, where the "raised hand" banner

is shown as a result of having triggered the "raise hand" functionality by utilizing the

gesture detector.

Figure 4.3: A Pexip call with the "raised hand" banner raised, shown within the red box,

after triggering it with a "palm" gesture.
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Discussion

5.1 Interpretation of results

5.1.1 Trained models

Looking at the raw results from Section 4.1.1, it is clear that the YOLO models had

the best metrics. Due to low mAP scores on the SSD’s, it was not implemented in the

GStreamer element. Faster R-CNN performed slightly worse at mAP@50, but had a sig-

nificant drop within mAP@[.5:.95] and recall, compared to the YOLO model. This resulted

in Faster R-CNN also not being implemented into the GStreamer element.

The reasoning for why SSD performed as badly as it did, is still unknown. The signifi-

cantly lower mAP scores were unexpected. The mAP scores were almost 50% lower than

the YOLO models. Generally, the results from SSD and Faster R-CNN can be expected to

be within the same range. The reasoning for the bad scores was not investigated thor-

oughly because of time constraints.

The large loss disparity between YOLOv5 and v8, can be explained by a different loss

calculation within the two versions.

5.1.2 Model usage

For model usage, SSD and Faster R-CNN is omitted, due to their lack of good comparative

performance against YOLO models. Additionally, the pre-trained v7 model mentioned in

3.1.2 was used in the comparison, which allowed us to compare it against our own mod-

els.

The results show that there is a connection between the input image sizes and the model

inference speed. The larger the input images are, the slower the algorithms will run. The

average FPS for each model allowed us to consider whether each one could even be

considered to be used in a real scenario. With v8 displaying an average FPS of only 3.3,
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it is not sufficient.

The distance tests show a positive correlation between image input size, and the ability

of the model to detect objects further away. YOLOv7 was unable to detect any gestures

at a distance of 6 meters, while v5 and v8 were able to do so, with confidence scores

above 0.5. It is indicative that this is due to v7’s smaller input image size (320 x 320),

compared to v5 and v8, which used larger input image sizes (480 x 480 and 640 x 640 re-

spectively). Despite YOLOv8 using an input image size of 640 x 640, it performed worse

than YOLOv5, despite consisting of newer technology. This was unexpected, as it should

have been an improvement to v5. At every distance, YOLOv5 had the best performance,

even though it’s image input size was not the largest.

It is worth noticing the difference in performance scores of v8 and v5. The metrics of

v8 were lower, and came with the drawback of significantly more time spent running in-

ference, and produced a lower average FPS. In comparison, v5 produced better metrics

with a 475% increase in FPS.

YOLOv5 is recommended to utilize of the models that were trained, because it had the

best overall performance. YOLOv8 had a lack of performance, and YOLOv7 was unable

to detect gestures from a 6 meter distance.

5.1.3 User experience

It is important to note that the results from the informal user experience tests, reflect the

personal preferences of each individual. Therefore, these results should be interpreted

cautiously, considering that user preferences may vary. The tests showed an optimal

duration required to display a gesture, of 1.5 seconds. This duration may be suitable, as

it shaves off a lot of possible false positives. It also means that a user must have a clear

intention of raising their hands if they want to utilize the "raised hand" feature.

The observation that certain gestures may be confused by the detector, illustrates that

a user may have to, in some cases, clearly delineate the intended gesture. An example

would be the "palm" and "stop" gestures. The detector may sometimes confuse these

two gestures, which can cause detections to be disposed due to different labels, de-

spite the user expressing the same intended gesture. Therefore, it could be reasonable

to combine these gestures into groups. These groups would enable the detection algo-

rithm to allow all gestures within individual groups to be considered equal. Then, instead

of comparing only the individual labels, it would compare these groups. This would help

to provide a more seamless and less confusing user experience.
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5.2 Alternative approach

An alternative approach was also experimented with. This approach was proposed in

the early stages of the project, before extensive research in different object detection

architecture was done, and resembles the architecture of Faster R-CNN. The approach

involved using a model to detect all the different gestures. The model would create a

bounding box around the hands in a picture and then send the proposed regions to a

classifier model.

To develop an effective hand gesture detection model, obtaining a suitable dataset was

necessary. Datasets that could detect hands or hand gestures were searched for. Ini-

tially, several smaller datasets were found and tested using the YOLOv5s model.

These datasets proved sufficient for individual cases, but they lacked quantity and di-

versity, rendering them unsuitable for a general solution.

After conducting further research, a dataset that aligned better with the project require-

ments was discovered. Arpit Mittal, Andrew Zisserman, and Philip H. S. Torr compiled

this dataset by capturing snapshots from movies [77]. It featured a wide range of pic-

tures and was sufficiently large for the project’s needs. Permission to utilize this dataset

was obtained from the creators, and approximately 1500 pictures were extracted from it.

To streamline the labeling process, the dataset underwent relabeling as it was found

that converting the labeling from MATLAB [78] was more challenging than manually

relabeling it. The relabeling task was accomplished using the internal labeling tool pro-

vided by Roboflow. To enhance the dataset’s diversity, it was merged with two publicly

available datasets [79, 80]. The initial models trained on the dataset showed poor perfor-

mance when dealing with close-ups of hands. This led to the incorporation of additional

datasets. In total, the dataset comprised around 2000 images and yielded promising re-

sults with limited training time using YOLOv5. One can see a snippet of this dataset with

annotations in Figures 5.1a and 5.1b .



(a) Image from movie dataset (b) Image from public dataset

Figure 5.1: Figure contains two pictures from our dataset. Both with bounding boxes on

their hands.

5.2.1 Classifier

During the research process, a multitude of gesture classification datasets were discov-

ered. However, the majority of these datasets were deemed unsuitable for the project

due to various limitations. Certain datasets had insufficient data, while others focused

on video-based action gestures, which did not align with the objective of static hand

gesture classification. Furthermore, a few datasets were designed specifically for ges-

ture recognition from a first-person perspective.

Later, we settled on a classifier dataset [81] to experiment with, even though it looked

rather lacking in variety of the pictures. The dataset incorporated contrast masking of

the hand gestures as depicted in Figure 5.3a.

5.2.2 Model training

The hand detection model employed YOLOv5, chosen for its comprehensive documen-

tation and satisfactory mAP scores on the COCO dataset. The training process occurred

on the Idun cluster [69]. The model underwent training and was subsequently evaluated

using mAP scores. The training process utilized the "train.py" script from the Ultralytics

repository [46], with adjustments made to parameters like batch size and image size.

Satisfactory mAP scores were achieved, leading to the continuation of the planned de-

velopment of the classifier. Additionally, real-time demonstrations were performed on

local systems

The classifier was designed using a basic neural network that accepted a 40x40 black

and white input, as required by the classifier’s specific format. The classifier was trained

using data augmentation to introduce noise, enhancing its generalizability and robust-
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ness. A snippet of the dataset after augmentations can be seen in Figure 5.3b. The model

underwent training for a few minutes until it achieved a high level of accuracy on the

dataset as seen in Figure 5.2.

Figure 5.2: Accuracy of classifier [81].

(a) Image from the classifer dataset [81]. (b) Augmentation of classifier dataset [81].

Figure 5.3: Figure displaying the dataset snippet, and the same snippet after various

augmentations.

5.2.3 Results

The bounding boxes generated by the hand detection model were extracted, and the

hands were cropped and resized to the appropriate dimensions. These resized hands

were then fed into the classifier, as seen in Figure 5.4a. Unfortunately, even after altering

the training data with different transformations, the model was unable to detect the right

gestures, as seen in Figure 5.4b. This might have been more successful if we had a larger



dataset or applied more transformations to it. However, upon further consideration, this

approach could have larger overhead compared to the approach that was ultimately

selected.

(a) Image of hand cropped from the hand

detection model and resized to fit the clas-

sifier model.

(b) classifier predictions versus actual val-

ues, where the numbers symbolize the type

of gesture it predicts the image contains.

5.3 Implementation challenges

5.3.1 Idun / GPU cluster challenges

We conducted training on the Idun GPU cluster, which proved to be effective for the

YOLO models. However, when it came to the TensorFlow models, we encountered vari-

ous issues. Specifically, there were two problems that we struggled to address.

Firstly, we encountered segmentation errors during the startup of the training script.

This type of error typically arises when a program attempts to write to read-only mem-

ory. It’s possible that these errors were triggered by different user configurations or

similar factors, but we could not pinpoint the exact cause.

Secondly, we encountered intermittent CORE DUMP errors at different intervals. These

errors occurred consistently after running the models for a maximum of 1000 steps. As

a result, we were unable to continue training the TensorFlow models on the Idun GPU

cluster.

Consequently, we made the decision to train all further TensorFlow models using an-

other service named Lambda Labs [82], which is a service that provides cloud GPU clus-

ters. This alternative service helped us overcome the issues we encountered on the Idun

cluster, enabling us to complete the training successfully.
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5.3.2 GStreamer element

Moving from C to C++

It was found that using the OpenVINO C API was not ideal, as every attempt to load

any model was unsuccessful. The documentation for the C API for this version of Open-

VINO was not found to be helpful. In most cases, it only had relevant documentation for

Python or C++. As there was no apparent solution to this issue, another attempt was

made using C++ instead, which did not have the same issue. Using C++, OpenVINO

successfully loaded a test model. Due to this, a switch and quick rewrite was made from

C to C++ for all relevant files.

OpenVINO and ONNX versioning

Initially, we used the OpenVINO Model Optimizer to convert our .onnx-files to .bin and

.xml-files. Through several experiments, we found that it was not possible to convert a

number of .onnx-files, because the version of the Model Optimizer was not compatible

with the operator set version of the files. We made attempts with several Python scripts,

setting the versions manually and loading the models directly and then changing them.

However, it did not work. We found later that it was possible to simply load .onnx files,

but only if the ONNX operator set version were compatible with the OpenVINO Runtime.

After training the models themselves, their implementations allowed us to specify the

operator set that we wanted. After testing multiple operator sets, we found that operator

set version 13 was compatible.

5.3.3 Time constraints

If the amount of model parameters, size of input images, and architecture complexity

increases, so does the time it takes to train models using these architectures. We faced

some time constraints due to the sheer time it took to train a number of the models due

to this, and time spent on setting up individual training environments. As we desired to

benchmark the performance of several models, we faced bottlenecks due to the time it

took to upload datasets to the servers they were trained on, and the time it took to train

them. There was more to this thesis than training models, so we could not spend all our

time on it. This left us with a smaller gap to undergo the training. To counteract this,

some shortcuts were taken. Only a subset of HaGRID was used. This caused less time

spent waiting for the transfer of data, as well as training time. This allowed for training of

multiple models within a decent timeframe. If more time had been available, the whole

dataset would have been used. Preferably, it would be attempted to gather image data

from specific environments, such as meeting rooms or offices, in addition using HaGRID.

Detectron2 [83] was also tested. Due to an issue with inconsistent labeling on the dif-

ferent models from the Detectron2 Model Zoo and time constraints, we were not able to

train enough models with this to include it in our thesis.



5.3.4 Corrupt training data

When formatting HaGRID, one of the TFRecord files crashed the training. It took some

time to troubleshoot because the reason behind it was an extra space character in the

label names, this caused the correlated label annotations not to match up, and gave

us an extra bit error when training the SSD and Faster R-CNN models. Determining the

cause of the additional bit errors we encountered was a time-consuming task since there

were no clear indicators suggesting that this error was the underlying reason.

5.3.5 Usage in commercial setting

Early on, we were trying to make sure everything we used was accepted to use in a

commercial setting. As the due date came closer, we figured out that we did not have

time to ensure all datasets and architectures had licenses that allowed for free use in

a commercial setting. If Pexip wants to use this feature in a commercial setting, it is

recommended to inspect the relevant licenses.

5.3.6 Poor documentation

A large amount of the repositories with implementations of object detection models had

poor documentation. The recurring problems were often that there was little to no docu-

mentation on how to train with a custom data set, despite parts of their documentation

specifying that this was possible. A lot of time was spent trying to make sense of this,

and a lot of trial and error went into making them work.

Some major issues were also that some implementations needed a different annota-

tion format than the one we had available. Attempts were made to try and find any

reasonable converters, but this proved to be difficult. We did not find any converters

that worked adequately. This issue was especially prominent with Single Shot MultiBox

Detector (SSD) implementations. However, with TensorFlow Object Detection API this

was not an issue due to them using TFRecords for all model training.

5.3.7 Uncertainty of requirements

Due to uncertainties regarding the requirements on our part, we lacked clarity on whether

to prioritize performance (framerate) or accuracy (mAP). Furthermore, we did not re-

ceive sufficient information regarding the intended use case, resulting in a potential

optimization for different use cases than the intended one. Our hypothesis was that en-

suring functionality under poor conditions, such as participants with inadequate lighting

or cluttered backgrounds, was crucial. During our visit to their office, we recognized that

one of the desirable conditions for our gesture detector was a meeting room setting. In

meeting rooms, we observed a notable issue wherein the detector’s performance was

unsatisfactory when participants were not directly facing the camera. This issue could

potentially be mitigated through the utilization of data augmentations, such as perspec-

tive transformation, during the training process.
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5.4 Limitations

5.4.1 Dataset classes

HaGRID was embodied as the final dataset in which all our models were trained on.

However, it is important to note that, while the gestures it contains are plentiful, there

are a magnitude of possible gestures that one could desire to have access to, which are

not available. An example of this could be sign language. It is not available in HaGRID,

so other datasets would have to be explored. Regardless, due to the context, the sheer

size of the dataset, and lack of other similar datasets, HaGRID was regarded as the best

choice.

5.4.2 Assumptions and constraints

OpenVINO version and OpenCV In early stages, we were notified that usage of

OpenCV [84] was not allowed. This was a major constraint, because of the vast image

processing capabilities OpenCV provides. It made it impossible to use several prepro-

cessing capabilities of OpenVINO, which required OpenCV. However, the development

was manageable without OpenCV.

As we were informed that we could not use OpenCV, we made the assumption that

we could not change or update other software within the Pexip development Docker

container. One such software was OpenVINO. As of now, the OpenVINO version utilized

is 2021.4, while the latest is 2022.4. The latest version contains a multitude of quality-

of-life features with a new API version, with better documentation.





Chapter 6

Conclusion and further work

In conclusion, this thesis has explored the creation and implementation of a "raised

hand" detector which can be utilized within a Pexip conference call. Widely known ob-

ject detection architectures were used and trained with the HaGRID dataset, specializ-

ing them for gesture recognition. These highly performant models were then employed

to enhance user interactivity during Pexip video conference calls. With optimization in

mind, it provides the full capability to detect a user raising their hand, and have it trig-

ger the "raised hand" functionality, without consuming vast amounts of CPU or memory

resources.

Through a comprehensive analysis of different object detection architectures and their

implementations, it has been established that the YOLO models provide the best overall

performance. The most useful model was found to be YOLOv5, with an input image size

of 480x480. By utilizing YOLOv5 and raising a gesture for 1.5 seconds, it allowed for

seamless interactivity within a video call, relieving the users of the need to touch their

computers if they want to raise their hands.

Multiple approaches were attempted and discussed to find the optimal solution to de-

tecting hand gestures. The stepwise approach in which hands are detected and then put

through a classifier, and simply considering gestures as different objects and employing

state-of-the-art object detection algorithms. The latter was found to be the better, and

was expanded further upon and finally completely implemented into the Pexip code-

base.

While we consider our solution as a strong foundation for a module which Pexip can

utilize, it is important to remember that there is room for expanding the set of available

gestures, if more gesture datasets appear, or are created.

In terms of future work, it is recommended to further research several aspects of the

current solution, such that it can be considered a commercially viable product. The use-

cases can be increased, the detection algorithm can be expanded upon, and tinkering
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with larger model input sizes and parameters can improve the detector. These ideas are

explored more in Section 6.1.

Overall, the successful implementation of the gesture detection module into Pexip’s

video conference platform offers promising opportunities for improved user interactivity.

By refining the detector and conducting more formal usability tests, it can provide more

immersive and effective means of communication between the conference participants.

6.1 Future work

6.1.1 Future models

Due to the active field of object detection, technological advancements in the form of

new architectures will keep surfacing. As newer architectures appear, they have the po-

tential to possess enhanced complexity, which may produce better performance com-

pared to old architectures. By keeping up with these advancements, it is possible to

re-train the gesture detection model with these new architectures. If newer models are

found to be better, it ensures a high quality product. As an example, near the end of

writing, a new YOLO architecture (YOLO-NAS) appeared, which, according to Deci.ai,

outperforms previous architectures [85].

6.1.2 Gesture detection usecases

As of this thesis, the gesture detection’s only purpose is to trigger the raised hand func-

tionality. However, as there are multiple other gestures available, and due to the fact

that humans may raise their hands for multiple reasons, some additional future use

cases could be considered. Some features that are suggested are muting yourself with

the "mute" gesture, and incorporating a voting feature with the thumbs up (like) and

thumbs down (dislike) gestures.

Counting raised hands

If a user wants to gather a quick response about e.g. they agree to something, they may

create an event in which detector counts the raised hands for participants. E.g. "raise

your hand if you agree we should do this", followed by users raising their hands, then

the server can compute the amount of raised hands, and display it. This can also be

combined with a face detector to make sure that someone is not cheating by raising two

hands, despite being only one person on the video.

Polls

The data set contains both a thumbs up and a thumbs down. With these gestures imple-

mented, it is possible to create simple polls, where the users can simply raise a thumbs

up or thumbs down to respond to the poll in real-time.
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Add visuals for raised hand to video

If there are participants from several video-conference platforms that are in a call, those

platforms may not have given Pexip the ability to interoperate the raised hand function-

ality between their platforms. One way to work around this is to add video visuals that a

user has raised their hands, such as an icon on their video.

6.1.3 Detection algorithm

The detection algorithm can be easily extended and changed. As it’s purpose is to de-

tect high quality gestures and reduce false positives, it may become too strict for some

cases. Thus, some changes can be considered.

Combining certain gestures

The algorithm strictly requries that gesture labels are the same. However, if a gesture

is further away, it may be hard to distinguish some of them, causing the labels to jump

back and forth. By mapping some gestures together in groups, the user experience may

improve. One such example are the palm and stop gestures. Allowing the algorithm to

consider these as the same gesture could cause detections to be smoother.

Supermajority voting

Instead of requiring every individual detection before a signal can be emitted to be the

same, a voting system can be considered. If 10 consecutive detections are required, it

will as of now require all 10 to be contain the same label. By changing this such that it

requires a fraction instead, it may improve the user experience. E.g. the 10 consecutive

detections require at least 8 out of the 10 detections to be of the same label. This may

prevent some false negatives if the detector is confusing two similar labels.

6.1.4 Other

More usability tests

While we found a set of optimal values for the duration in which a user must keep their

hand raised, we only conducted casual tests. It would be very beneficial to perform more

formal usability tests to ensure the best configuration for the userbase of the product.

Input image size

The underlying models may be changed to improve the accuracy. We did not have the

resources, both time and money, to be able to train a large-scale model. By training the

models on higher resolutions, they have a better ability to detect smaller objects. There-

fore, a possible improvement is to train a model with a larger input size to improve the

accuracy of gestures from further away. Balancing the desired accuracy of a model and

the CPU resources needed for a more complex model is required. As shown in results,



running a model at 640 x 640 compared to 320 x 320 will show a significant increase in

inference time.

Model parameter size

The detection models may be trained on networks with more model parameters. In-

creasing the model size will cause it to be slower, which means some balancing will be

required.

6.1.5 Input image splitting

A letterboxing effect is used on the input data to the detection models, which may cause

large parts of the input images to become black bars to help maintain the aspect ratio.

A possible alternative could be splitting the input images into smaller images and pass

those through the model instead of the full letterboxed and resized image. This could

prevent some of the loss of image quality, and maybe improve the overall model metric

performance. However, it would likely increase the inference time.

6.1.6 Combine detector with a motion detector

A motion detector is simply a module which detects motion. This could be useful to

detect only the moving parts of a video, such as the motion of raising a hand. The

motion detector would pass the movement region to the gesture detector, such that

it only runs inference on the smaller region. This could decrease the size of images

passed to the gesture detector, making it less expensive to use. However, it could be

challenging to detect consecutive detections, as the motion detector would only detect

the initial movement. A possible solution could be to track the moving regions, then run

future detections on areas based on the previous regions, ± some margin of error.



Broader impact

Environment For resource-intensive applications, such as real-time video transcod-

ing, the workload may contribute to increased energy consumption and costs. It should

be a primary objective to ensure that energy consumed comes from a clean source,

and to use energy-efficient components to lessen the energy needed to do the same

computations.

GPU clusters As the field of AI has recently experienced rapid development, espe-

cially with large language models and data processing, it has been found that train-

ing some AI models can create nearly five times the lifetime emissions of the average

American car [86]. These models are often trained on large GPU clusters. These clus-

ters consume massive amounts of electricity and create additional electronic waste. It is

important for engineers to create sustainable systems, and for those who do train said

models to be responsible for possible carbon emissions. Due to the extreme capabilities

of GPUs within AI, researching the services beforehand is advised to be aware of how

their services consume power.

Privacy concerns The use of object detection has the potential to cause privacy con-

cerns, due to its possible use within surveillance. Utilizing such algorithms in certain

spaces can raise concerns about collection and use of personal user data, without the

user explicitly complying.

Automation and job displacement With more automation, comes the ability to re-

place human workers to do labor in various industries. While automation can improve

efficiency and productivity, it may also cause human workers to become unemployed,

which then can cause socio-economic challenges.

Accessibility Object detection can be employed to create more accessible environ-

ments, such as assistive technology which can be used to detect gestures or sign lan-

guage for mute individuals.
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Appendix A

Result CSV tables

Sample/Distance 2m 4m 6m

Test 1. 0.94 0.86 0.55

Test 2. 0.89 0.81 0.81

Test 3. 0.94 0.86 0.55

Average 0.92 0.84 0.64

Table A.1: YOLOv5 distance test results

Sample/Distance 2m 4m 6m

Test 1. 0.82 0.64 >0.5

Test 2. 0.87 0.61 >0.5

Test 3. 0.89 0.52 >0.5

Average 0.88 0.59 >0.5

Table A.2: YOLOv7Tiny distance test results

Sample/Distance 2m 4m 6m

Test 1. 0.89 0.82 0.55

Test 2. 0.85 0.78 0.74

Test 3. 0.89 0.82 0.55

Average 0.88 0.81 0.61

Table A.3: YOLOv8m distance test results
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Appendix B

Model training configuration

files

B.1 SSD

model {
ssd {

num_classes: 19
image_resizer {

fixed_shape_resizer {
height: 640
width: 640

}
}
feature_extractor {

type: "ssd_resnet50_v1_fpn_keras"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams {

regularizer {
l2_regularizer {

weight: 0.00039999998989515007
}

}
initializer {

truncated_normal_initializer {
mean: 0.0
stddev: 0.029999999329447746

}
}
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activation: RELU_6
batch_norm {

decay: 0.996999979019165
scale: true
epsilon: 0.0010000000474974513

}
}
override_base_feature_extractor_hyperparams: true
fpn {

min_level: 3
max_level: 7

}
}
box_coder {

faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0

}
}
matcher {

argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true

}
}
similarity_calculator {

iou_similarity {
}

}
box_predictor {

weight_shared_convolutional_box_predictor {
conv_hyperparams {

regularizer {
l2_regularizer {

weight: 0.00039999998989515007
}

}
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initializer {
random_normal_initializer {

mean: 0.0
stddev: 0.009999999776482582

}
}
activation: RELU_6
batch_norm {

decay: 0.996999979019165
scale: true
epsilon: 0.0010000000474974513

}
}
depth: 256
num_layers_before_predictor: 4
kernel_size: 3
class_prediction_bias_init: -4.599999904632568

}
}
anchor_generator {

multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
scales_per_octave: 2

}
}
post_processing {

batch_non_max_suppression {
score_threshold: 9.99999993922529e-09
iou_threshold: 0.6000000238418579
max_detections_per_class: 100
max_total_detections: 100
use_static_shapes: false

}
score_converter: SIGMOID

}
normalize_loss_by_num_matches: true
loss {

localization_loss {



weighted_smooth_l1 {
}

}
classification_loss {

weighted_sigmoid_focal {
gamma: 2.0
alpha: 0.25

}
}
classification_weight: 1.0
localization_weight: 1.0

}
encode_background_as_zeros: true
normalize_loc_loss_by_codesize: true
inplace_batchnorm_update: true
freeze_batchnorm: false

}
}
train_config {

batch_size: 16
data_augmentation_options {

random_horizontal_flip {
}

}
data_augmentation_options {

random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0

}
}
sync_replicas: true
optimizer {

momentum_optimizer {
learning_rate {

cosine_decay_learning_rate {
learning_rate_base: 0.03999999910593033
total_steps: 25000
warmup_learning_rate: 0.013333000242710114
warmup_steps: 2000
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}
}
momentum_optimizer_value: 0.8999999761581421

}
use_moving_average: false

}
fine_tune_checkpoint: "pre-trained-models/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8/checkpoint/ckpt-0"
num_steps: 15000
startup_delay_steps: 0.0
replicas_to_aggregate: 8
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
fine_tune_checkpoint_type: "detection"
use_bfloat16: false
fine_tune_checkpoint_version: V2

}
train_input_reader {

label_map_path: "annotations/label_map.pbtxt"
tf_record_input_reader {

input_path: "annotations/train.record"
}

}
eval_config {

metrics_set: "coco_detection_metrics"
use_moving_averages: false

}
eval_input_reader {

label_map_path: "annotations/label_map.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {

input_path: "annotations/test.record"
}

}

B.2 Faster R-CNN

model {
faster_rcnn {
num_classes: 19
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 640



max_dimension: 640
pad_to_max_dimension: true
}
}
feature_extractor {
type: ’faster_rcnn_resnet50_keras’
batch_norm_trainable: true
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
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regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
share_box_across_classes: true
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
use_static_shapes: true
use_matmul_crop_and_resize: true
clip_anchors_to_image: true
use_static_balanced_label_sampler: true
use_matmul_gather_in_matcher: true
}
}

train_config: {
batch_size: 64
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 8
num_steps: 25000
optimizer {
momentum_optimizer: {



learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: .04
total_steps: 15000
warmup_learning_rate: .013333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
fine_tune_checkpoint_version: V2
fine_tune_checkpoint: "pre-trained-models/faster_rcnn_resnet50_keras/checkpoint/ckpt-0"
fine_tune_checkpoint_type: "detection"
data_augmentation_options {
random_horizontal_flip {
}
}

max_number_of_boxes: 100
unpad_groundtruth_tensors: false
use_bfloat16: true # works only on TPUs
}

train_input_reader: {
label_map_path: "annotations/train.record"
tf_record_input_reader {
input_path: "annotations/train.record"
}
}

eval_config: {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
batch_size: 1;
}

eval_input_reader: {
label_map_path: "annotations/train.record"
shuffle: false
num_epochs: 1
tf_record_input_reader {
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input_path: "annotations/test.record
}
}

B.3 YOLOv5s

weights: runs/train/exp26/weights/last.pt
cfg: ’’
data: datasets/hagrid/data.yaml
hyp:

lr0: 0.01
lrf: 0.01
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 0.05
cls: 0.5
cls_pw: 1.0
obj: 1.0
obj_pw: 1.0
iou_t: 0.2
anchor_t: 4.0
fl_gamma: 0.0
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.1
scale: 0.5
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 1.0
mixup: 0.0
copy_paste: 0.0

epochs: 200
batch_size: 30
imgsz: 480
rect: false
resume: true



nosave: false
noval: false
noautoanchor: false
noplots: false
evolve: null
bucket: ’’
cache: null
image_weights: false
device: 0,1
multi_scale: false
single_cls: false
optimizer: SGD
sync_bn: false
workers: 8
project: runs/train
name: exp
exist_ok: false
quad: false
cos_lr: false
label_smoothing: 0.0
patience: 100
freeze:
- 0
save_period: 10
seed: 0
local_rank: -1
entity: null
upload_dataset: false
bbox_interval: -1
artifact_alias: latest
save_dir: runs/train/exp26

B.4 YOLOv8m

task: detect
mode: train
model: yolov8m.pt
data: datasets/hagrid/data.yaml
epochs: 100
patience: 50
batch: 8
imgsz: 640
save: true
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save_period: 2
cache: false
device: null
workers: 8
project: null
name: null
exist_ok: false
pretrained: false
optimizer: SGD
verbose: true
seed: 0
deterministic: true
single_cls: false
image_weights: false
rect: false
cos_lr: false
close_mosaic: 10
resume: false
overlap_mask: true
mask_ratio: 4
dropout: 0.0
val: true
split: val
save_json: false
save_hybrid: false
conf: null
iou: 0.7
max_det: 300
half: false
dnn: false
plots: true
source: null
show: false
save_txt: false
save_conf: false
save_crop: false
hide_labels: false
hide_conf: false
vid_stride: 1
line_thickness: 3
visualize: false
augment: false
agnostic_nms: false



classes: null
retina_masks: false
boxes: true
format: torchscript
keras: false
optimize: false
int8: false
dynamic: false
simplify: false
opset: null
workspace: 4
nms: false
lr0: 0.01
lrf: 0.01
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 7.5
cls: 0.5
dfl: 1.5
fl_gamma: 0.0
label_smoothing: 0.0
nbs: 64
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.1
scale: 0.5
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 1.0
mixup: 0.0
copy_paste: 0.0
cfg: null
v5loader: false
tracker: botsort.yaml
save_dir: runs/detect/train12
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