
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
th

es
is

Amundsen, Trygve Sunde
Helmersen, Martin Dolmen

Microsoft Outlook add-in for
VisBook's property management
system

A system development project for simplifying
workflow between systems

Bachelor’s thesis in Dataingeniør
Supervisor: Ali Alsam
May 2023

Amundsen, Trygve Sunde
Helmersen, Martin Dolmen

Microsoft Outlook add-in for VisBook's
property management system

A system development project for simplifying
workflow between systems

Bachelor’s thesis in Dataingeniør
Supervisor: Ali Alsam
May 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

It is with great pleasure that we present this bachelor project in Computer Engineering, which

marks the completion of our three-year study at NTNU. Throughout this journey, we have acquired

invaluable friendships, gained a wealth of knowledge, and developed a passion and drive for software

development and engineering.

First and foremost, we would like to express our sincere gratitude to our guidance counselor, Ali

Alsam, for his invaluable support, guidance, and expertise throughout this project. We want to

thank VisBook for their support, trust, guidance and for the welcoming nature of every employee

we have crossed paths with throughout this project.

We would also like to give thanks to all our friends, both on and off campus, and also a special

thank you to our families, who has motivated and shown support throughout this project.

This project has provided us an invaluable opportunity to apply the knowledge and skills acquired

during our academic journey. It has been challenging but also exciting. We have gained profound

experience in software development and academic writing. We are both eagerly anticipating the

future endeavors and challenges that lie ahead.

i

abstract

In our study, we addressed the following problem: ”How can the communication between users of

a property management system, hotels as an example, and their guests be enhanced through the

implementation of a Microsoft Outlook add-in?”. This report presents an analysis of the findings

obtained from interviews, literature, and usability tests conducted during the design and develop-

ment of the add-in. In our case, the add-in is a tool to search and connect email correspondence and

their related data. Our main objective was to streamline the communication process and provide

hotel management with easy access to the information necessary for effective correspondence with

their guests directly within Outlook. By eliminating the need for users to switch between multiple

programs to gather relevant information, our solution enables prompt responses to guest requests.

ii

Sammendrag

I v̊ar studie tok vi for oss følgende problemstilling: ”Hvordan kan kommunikasjonen mellom brukere

av et eiendomsadministrasjonssystem, hoteller som et eksempel, og deres gjester forbedres gjennom

implementering av et Microsoft Outlook-tillegg?”. Denne rapporten presenterer en analyse av

funnene fra intervjuer, litteratur og brukervennlighetstester utført under design og utvikling av

tillegget. I v̊art tilfelle er tillegget et verktøy for å søke og koble sammen e-postkorrespondanse

og tilhørende data. V̊art hovedm̊al var å strømlinjeforme kommunikasjonsprosessen, samt gi

hotellledelsen enkel tilgang til informasjonen som er nødvendig for effektiv korrespondanse med

gjestene deres direkte i Outlook. Ved å eliminere behovet for brukere å bytte mellom flere pro-

grammer for å samle relevant informasjon, muliggjør løsningen v̊ar raske svar p̊a gjesteforespørsler.

iii

Table of Contents

Preface vi

Abstract vi

Summary vi

List of Figures vi

1 Introduction 1

2 problem description 1

2.1 Background . 1

2.2 Structure . 2

3 Theory 3

3.1 Property Management System . 3

3.2 Software Development Life Cycle . 3

3.3 Human-Computer interaction . 5

3.4 Development Process . 6

3.4.1 Version Control . 6

3.4.2 Objectives and Key Results . 6

3.5 Kanban Board . 7

3.6 Usability Testing . 8

4 Methodology 8

4.1 Scientific approach . 8

4.2 Development Methodology . 9

4.2.1 OKR with Kanban . 9

4.2.2 Gitlab . 9

4.3 Usability Testing . 10

4.4 Choice of Technology . 11

4.4.1 Frontend . 11

4.4.2 Backend . 11

4.4.3 Design Tools . 12

iv

5 Result 13

5.1 Scientific Result . 13

5.1.1 Pre-development phase . 13

5.1.2 Result from Usability Tests . 21

5.2 Engineering Result . 22

5.2.1 Functional Demands . 22

5.2.2 Non-Functional Demands . 23

5.2.3 Workflow . 24

5.3 Administrative Result . 24

5.3.1 Project Plan . 24

5.3.2 Time management . 25

5.3.3 Development Methodology . 26

6 Discussion 27

6.1 Scientific Result . 28

6.1.1 Interview . 28

6.1.2 Sources of Error . 28

6.2 Engineering Result . 28

6.2.1 Functional Demands . 28

6.2.2 Non-Functional Demands . 29

6.3 Administrative Result . 30

6.3.1 Project Plan . 30

6.3.2 Time management . 30

6.3.3 Development Methodology . 30

7 Conclusion and Further Work 31

7.1 Conclusion . 31

7.2 Further Work . 32

7.2.1 Email Correspondence . 32

7.2.2 Sent/Received Attachments . 32

7.2.3 Additional . 32

8 Social Impact 33

8.1 Sustainability . 33

v

Bibliography 34

Appendicx 35

Appendix A Vision Document 35

Appendix B Demand Spesification 43

Appendix C System Documentation 49

Appendix D Interview Collection 66

Appendix E Process Documentation 66

Appendix F OKR 66

List of Figures

1 Software Development Life Cycle figure . 4

2 Centralized Version Control System vs Distributed Version Control System 6

3 Kanban board[26] . 7

4 Burndown and burnup charts . 10

5 Add-in visible on the right side of the figure, displayed within the Microsoft Outlook

email browser . 13

6 Upon activation of the add-in, users are met with this Login page, which responds

to the selected theme of outlook with a dark or light theme 14

7 Upon login, if the credentials input into the fields aren’t correct, Failure to authen-

ticate will result in an error message that is displayed 15

8 Header with Information anchored at the top, displaying data from a client-card that

is pulled from VisBook. In the case of no recognized client-card existing, data from

outlook mail will be displayed. 16

9 Navigational tabs routing user throughout the add-in 16

10 The pane displaying information of email is shown when activation and login of the

add-in has been completed. 17

11 Booking with and without previous bookings list expanded, which displays the rel-

evant data. 18

12 In the example, we can see that the file is a .pdf 19

13 Statistics are displayed both numerical and within a donut chart 19

14 No statistics are displayed if no client card data exists 20

vi

15 Notes tab . 20

16 WebAIM contrast score, describes the contrast between foreground and background

in a numbered ratio. 24

17 WebAIM contrast check, displays that the two colors conforms to WCAG AA stand-

ard for Graphical Components and User Interface. 24

18 Old and New Workflow . 25

19 Pie chart over hours on category . 26

20 Linechart over hours per week . 26

21 Kanban board in week 19 . 27

1

1 Introduction

A Property Management System or PMS for short, is a software application that lets accom-

modation businesses manage their operations and guest related activities. The accommodation

businesses could be real estate companies, hotels, resorts, restaurants or camping sites[18].

A PMS is designed to automate tasks such as booking reservations, managing room rates, tracking

inventory and supplies, handling billing and accounting, generating reports, and communicating

with guests. The system can also provide tools for managing maintenance and repairs, scheduling

cleaning services, and tracking property inspections. Overall, a property management system helps

property owners and managers to efficiently and effectively manage their properties, reduce costs,

increase revenue, and enhance the guest experience.

VisBook is a company that was founded in 1995 and specialises in delivering a property manage-

ment system that, as of today, serves over a thousand customers in the Nordic countries. The

majority of VisBook’s customers are hotels and accommodation businesses. In addition to the

standard functionalities of a PMS, VisBook provides solutions for integration with third-party

software and services, such as payment gateways, accounting software and online travel booking.

To aid the explanation of this project, let us consider an example where the customer of Visbook

is a hotel. Further, let us envisage a case where the hotel management sends special offers to their

guest list. In this example, the hotel personnel would make use of the property management system

to send the offers which are received by the guests as an email. If a guest wishes to make use of

the offer, she/he would then respond by sending an email to the hotel. The reply is received by the

hotel’s email client, without being registered by the property management system. Knowing that

VisBooks’ PMS and the hotel’s email client are two non-connected programs, the hotel’s personnel

are forced to spend a considerable amount of time connecting guest information across two separate

platforms.

To improve the workflow, alleviate the pressure on the hotel’s personnel (in our example), and

reduce human error it is advantageous to connect the email correspondence, between the hotel and

the guests, with the property management system. To this end, VisBook wishes to develop an

add-in that retrieves all guest’s information, related email correspondence and displays them to

the end user in an organised and user friendly fashion.

An add-in, otherwise known as a plug-in, is a software component that adds extra features and

functionality to a program. VisBook desires an add-in that is connected to Microsoft Outlook,

which is the email client that is typically used by VisBook’s customers. Specifically, VisBook desires

the functionality to display information from their PMS and Microsoft Outlook, that includes email

correspondence, bookings, statistics, sent attachments, and reviews within this add-in.

The task of this Bachelor project is to develop a Microsoft Outlook add-in that includes the

functionalities specified by VisBook. To optimize the design of such an add-in, we have researched

required tools and conducted usability tests.

2 problem description

2.1 Background

In response to the challenges faced by their customers who were using two separate and non-

connected platforms, Microsoft Outlook and the property management system, Visbook developed

1

a Microsoft Outlook add-in as a supplementary feature to their property management system. The

add-in whose sole function was archiving email correspondence between the users of the PMS and

their guests in Microsoft Outlook was an attempt to simplify the users’ experience and workflow.

Unfortunately, due to limitations in development-resources, this add-in is no longer available to

VisBook customers.

The idea behind the discontinued add-in was to store all communication between the customers

and their guests on the digital client-card which is initialized in the PMS for each guest/client

the moment they use the service. The digital card includes information such as: email, statistics,

preferences, and expenditures.

Customer feedback received by VisBook indicates that they deeply miss the functionality provided

by the discontinued add-in. In response to this feedback and their commitment to customer

satisfaction, VisBook has embarked on a new project to develop a Microsoft Outlook add-in that

not only replaces the old version, but also includes additional features. These new functionalities

include visualized statistics, an overview of attachments from email correspondence, and a booking

history, all aimed at enhancing the user experience and meeting the evolving needs of VisBook’s

valued customers.

We undertook this bachelor project, which involves research and system development, with the aim

of establishing a Minimal Viable Product (MVP) for VisBook. This entails building the found-

ational structure, data, and system, as well as conducting relevant research, to provide VisBook

with a solid foundation for further development.

The problem description for this bachelor thesis is : ”How can the communication between users

of a property management system, hotels as an example, and their guests be enhanced through

the implementation of a Microsoft Outlook add-in?”

2.2 Structure

3 Theory and relevant literature:

An overview of relevant literature and technologies tied to development of a Microsoft Outlook

add-in.

4 Methodology and process:

Within this section we’ll go through our choices of technology, work methodology, and scientific

approach.

5 Results:

Here we will present the results of this project. Scientific, Engineering and Administrative results.

6 Discussion:

The groups implementation and final results from the project will be discussed within this chapter.

7 Conclusion and further work:

Finally we will explain if the project answered the problem description and if the solution, or

foundation, that we’ve built will be a sustainable solution. At the same time, we will put this into

perspective with regards to further development.

8 Societal Impact:

This last section details the societal impact by implementation of our solution.

2

3 Theory

3.1 Property Management System

Property management systems first appeared in the late 1970s, they then gained traction in the

hotel industry throughout the 1980s and 90s. Despite vast improvements in technology over the

years, the original intentions behind the PMS remain the same 40 years later: helping hotels run

more efficiently by automating manual and paper-based administrative tasks[6].

The core functions of the PMS include managing workflows for both back office and front office

day operations, like reservations and guest profiles, room inventory and occupancy, pricing and

Revenue Per Available Room (RevPAR), check-inn and check-out, housekeeping, invoicing, and

reporting. Over the years, new functions have been either built into the PMS or integrated as

third-party applications[6].

3.2 Software Development Life Cycle

A software life cycle model (also termed process model) is a pictorial and diagrammatic repres-

entation of the software life cycle. A life cycle model represents all methods required to make a

software product transit through its life cycle stages. It also captures the structure in which these

methods are to be undertaken.

The Software Development Life Cycle, or SDLC, refers to a methodology with clearly defined

processes for ensuring quality software. In detail, the SDLC methodology focuses on following the

phases of software development:

• Requirement analysis

• Planning

• Software design

• Software development

• Testing

• Deployment

• Maintenance

The software development process typically consists of seven distinct phases, of which the initial five

pertain to planning and developing the software. The final two phases, are dedicated to establishing

a connection between the software and its end-users and managing the software over the long term.

In the specific case of our project, the development was unable to progress beyond the development

phase due to the unavailability of production and deployment pipelines at VisBook. Moreover,

certain functionality needed to be incorporated into the core systems of VisBook to facilitate the

retrieval of certain data.

The requirement analysis and planning of the development process were drafted through the initial

meetings with VisBook, while also setting the boundaries and formulating the specifications from

which we were to operate within. This ensured that the SDLC phases following these meetings,

see 1, would progress without mishaps.

SDLC’s stages:[2]:

3

Figure 1: Software Development Life Cycle figure

• Identify the current problems.

This stage involves getting input from all stakeholders, those in the case of our project were

customers of VisBook, industry experts, and VisBook employees, which help us learn the strengths

and weaknesses of the current system with improvements as the goal.

• Plan

In this stage, the team determines the cost and resources required for implementing the analyzed

requirements. It also details the risks involved and provides sub-plans for softening those risks. In

other words, the team should determine the feasibility of the project and how they can implement

the project successfully with the lowest risk in mind.

• Design

This phase starts by turning the software specifications into a design plan called the Design Spe-

cifications. All stakeholders can then review this plan and offer feedback and suggestions. It’s

crucial to have a plan for collecting and incorporating stakeholders input into this document. Fail-

ure at this stage will almost certainly result in cost overruns at best and the total collapse of the

project at worst.

• Build

Here is where the actual development starts. It’s important that every developer sticks to the

agreed blueprint. Also, make sure you have proper guidelines in place about the code style and

practices.

For example, define a variable naming style such as ”camelCase”. This will help your team to

produce organized and consistent code that is easier to understand but also test during the next

phase.

4

• Code Test

This is where we test for defects and deficiencies. We fix those issues until the product meets the

required specifications. In short, we want to verify if the code meets the defined requirements.

3.3 Human-Computer interaction

Human-computer interaction (HCI) is a multidisciplinary field of study which combines research in

computer science, psychology and design. Specifically, it is the study of how people interact with

technology. A few of HCI main focus areas are user experience (UX), interface and interaction

design.

The interaction between the the user and the computer occurs through a process where the user

provides instructions to the computer through the interface, and then is subsequently served with

the result[7].

In this Paper of ‘Usability Heuristics as an Assessment Parameter”, Jakob Nielsen has the following

definition of usability ‘’Usability is a quality attribute that assesses how easy user interfaces are

to use”. Further, Nielsen defined five quality components that measures the usability of a product

[14].

• Learnability

How easy is it to learn the application and do different tasks.

• Efficiency

Once you are familiar with the design, how quickly can a task be completed.

• Memorability

Does the application have a intuitive design and is it easy to recall the required steps to perform

a task.

• Error

How many and how often do user error occur, and how easily can they recover from the errors.

• Satisfaction

How pleasant the application is to use.

5

3.4 Development Process

3.4.1 Version Control

A widely employed collaborative tool in the software industry is the Version Control System (VCS).

The VCS allows teams to manage and monitor multiple versions of source code by enabling each

member to work simultaneously on different segments of the code. The tool facilitates this process

by allowing developers to work on different branches, which are essentially copies of the code

base that can be modified without affecting the primary codebase. Following the coding phase,

developers can merge their work with the original codebase, allowing for the implementation of

new functionalities without disrupting the work of other team members.

There are two types of version control systems, namely centralized and distributed. Distributed

VCS allow developers to have their copy of the repository (code base). Changes can be made

locally before being merged with the central repository. Centralized VCS stores the code in a

single repository, requiring developers to check out and check in code in order to make changes.

[13]. Distributed VCS is the most commonly used by developer teams; it is also used in this project

due to its benefits of backups, fast merging, and flexible branching.

Figure 2: Centralized Version Control System vs Distributed Version Control System

3.4.2 Objectives and Key Results

Objectives and Key Results is a collaborative goal-setting methodology used by teams, companies,

and individuals. The approach comprises two components: objectives and key results. The ob-

jectives to be attained must be significant, concrete, and measurable. The key results are smaller

goals that should contribute to the completion of the objectives. Effective key results are specific,

verifiable, and time-bound and should be measurable indicators of progress toward the objective.

The terms ”Monday commit” and ”Friday wins” are often associated with the OKR framework.

The former refers to a weekly practice wherein the team identifies the desired key results for the

week and sets specific, attainable goals (3-5) aimed at advancing towards those results. On the

other hand, ”Friday wins” is a weekly review process that assesses the team’s progress towards the

objectives established on Monday. During this process, the team reflects on both successes and

shortcomings, evaluates what went as planned and what did not, and discusses potential future

complications.[29].

6

3.5 Kanban Board

The Kanban board is a workflow visualization tool. ’Kanban’ is a Japanse term that translates

to ’Visual cards’. Kanban’s main purpose is to create visual cards that list details about a task

and organize them into different columns. The columns represent different stages in a production

cycle; the stages could be ’To-do’, ’Doing’, ’For review’, ’Reviewed’ and ’Done’. The board could

be physical on a whiteboard with different colored sticky notes or digital. There are multiple

websites and programs that offer this functionality, such as Github, Gitlab, KanBanize, and Miro.

In the systematic literature review, ’Kanban in Software development’ [1], the authors found the

following critical features pertaining to the use of Kanban in modern software development.

• Motivations for implementing Kanban were simplicity, focus on workflow, and efficiency.

• The benefits of using Kanban were improved software quality, reduced project delivery time,

improved stakeholder communication, and improved customer satisfaction.

Figure 3: Kanban board[26]

7

3.6 Usability Testing

Usability testing is a crucial process that seeks to assess how actual users interact with and em-

ploy a product. This evaluation provides valuable insights into user performance and the level

of acceptance of the product. Through usability testing, potential pitfalls can be identified, and

practical solutions can be proposed to address them. Conducting usability tests early in the devel-

opment process proves immensely beneficial, as it enables the identification of potential roadblocks

and challenges that, if left unaddressed until the final stages of production, could be prohibitively

expensive to overcome.

A prototype or a wireframe of the product is needed to conduct early testing. A wireframe is a

visual blueprint of the designed User Interface (UI) for the product; it focuses on space allocation,

layout, functionality, and intended behaviors. Modifying a wireframe is more straightforward and

require less time than changing production code at a later stage.

In this project, wireframes were created using a web-based platform called Figma. This platform

allows for the generation of clickable prototypes that facilitate user navigation and interaction with

the product. Such prototypes help highlight navigation issues and elements that need clarification.

4 Methodology

4.1 Scientific approach

There are two prominent scientific methodologies employed in data collection, namely qualitative

and quantitative approaches. These approaches differ in the type of collected data. Qualitative data

are typically descriptive, conveying information through language, rather than numerical values.

Conversely, quantitative data are a collection of observations that can be quantified, counted, or

measured, and thus represented through numerical values [24].

While both quantitative and qualitative approaches offer valuable insights into research questions,

the nature of the information sought for this particular project necessitated the use of qualitative

methodology. This was determined based on a thorough consideration of the type of knowledge

and data that were needed to gain insight into the research question, as well as the significance of

the data.

The selection of a qualitative research approach involved recruiting representatives from VisBook-

affiliated businesses, utilizing established customer relationships to facilitate data collection through

interviews. The study participants consisted of hotel managers and receptionists, possessing extens-

ive knowledge and work experience in using VisBook’s property management system and Outlook

in their daily operations. During the interviews, the research team explored the technical exper-

iences of the participants, as well as their expectations and desired functionalities of the add-in

under development in the project. The data obtained through these interviews provided crucial

insights into the users’ business and technological expertise.

In this project, we utilized semi-structured interviews which are a qualitative approach that in-

volves a set of open-ended questions designed to facilitate a conversational flow while enabling

the researcher to maintain a level of control over the general topic areas under discussion. This

approach allows research participants to articulate their thoughts and experiences freely, without

the constraints imposed by rigid questioning protocols, providing the researcher with the flexib-

ility to explore unanticipated topics that may emerge during the interview [25]. Semi-structured

interviews are typically recorded for subsequent transcription and analysis. In the present project,

8

the data obtained from the interviews, which also incorporated a usability test, were deemed suffi-

ciently informative to be utilized during the second and third phases of the Systems Development

Life Cycle.

4.2 Development Methodology

4.2.1 OKR with Kanban

To establish a systematic and professional workflow, we adopted an agile development methodology

throughout the project duration [4]. While we had prior experience with Scrum and Kanban,

we recognized that these methodologies may not be suitable for our team’s size. Scrum and

Kanban involve formally defined roles and ceremonies, such as daily stand-ups, sprint planning,

and retrospectives, which can be overly time-consuming. Therefore, after careful consideration of

our team size and time constraints, we chose to implement Objectives and Key Results (OKR)

methodology, complemented by a Kanban board for our development process [22] [12].

As described in the theoretical framework, OKR is a goal-setting methodology that helps users

focus on objectives and key results. In our case, the goal was to create a ’Minimal Viable Product

of an add-in.’ The team’s use of a Kanban board in conjunction with OKR facilitated tracking

progress towards the stated objective and key results, while also providing a centralized location

for monitoring all available tasks and their respective stages of production [19].

In practice, we created the OKRs in an external Word document, along with the key results. Every

week, we added commits and wins, which resulted in a complete list of achievements and goals for

the entire project duration. Regarding the Kanban board, we utilized Gitlab’s built-in issue board

to organize tasks and production stages.

4.2.2 Gitlab

The project’s source code was managed by GitLab, an open-source software development plat-

form that supports end-to-end development processes. Other optional platforms for hosting were

Microsoft Azure and Amazon Web Service (AWS). The decision to use Gitlab was motivated by

it being VisBook’s main development platform. To access the project repository, the team was

required to use a Virtual Private Network (VPN)[28].

In addition to hosting source code, Gitlab was utilized for managing our Kanban board with

tasks, creating milestones, and handling branching and merging processes. Additionally, the team

adhered to standard protocols for merge requests and reviews, as outlined in [9]. Finally, Gitlab

provides digital graphs known as burndown charts, which are commonly used by project managers,

for project time estimates, code production, issue completion, and milestone progress. In our

project, we utilized these charts as a visual and numerical aid, where progress is shown as a graph

with a timeline[8]. Our graph can be seen in figure 4.

9

Figure 4: Burndown and burnup charts

4.3 Usability Testing

As stated in the theoretical framework 3, incorporating usability testing early in the development

process can yield several advantages in terms of minimizing unnecessary revisions and identifying

potential obstacles. Usability testing involves four core elements: the facilitator, the tasks, the

participants, and the product.

In our project, the facilitator played two distinct roles. One team member was responsible for

monitoring the participant’s behavior, while the other member tracked task completion. During

one usability interview, a participant was asked to perform specific tasks, such as using the add-in

to search for current and past guest reservations. The facilitators split responsibilities for this

task, with one reading the task instructions to the participant, and the other carefully observing

the process. This included monitoring ease of use, completion time, and the participant’s body

language.

Prior to commencing the usability tests, it was imperative to identify and recruit participants

who were appropriate for the study. Accordingly, individuals who were either interested in a new

add-in or had prior experience with the previous version were selected among VisBook’s business

affiliates. Digital meetings were arranged with personnel from three hotels to participate in the

study. To accommodate for geographical restrictions, the usability tests were conducted over

Microsoft Teams. Details pertaining to the test participants, along with the associated results, can

be found in the usability test document provided in Appendix E.

The usability test was divided into three distinct sections, namely preliminary questions, specific

tasks, and post-task review questions. The purpose of the preliminary questions was to establish a

baseline understanding of the test subject’s knowledge and usage of VisBook’s PMS. The specific

tasks consisted of a series of activities related to the clickable prototype, which had been created

and published in Figma, as previously mentioned in the theoretical framework 3. Test subjects were

granted access to the prototype and instructed to share their screen while conducting the tests.

Two facilitators were responsible for observing and analyzing the subject’s behavior. The post-task

questions were employed to summarize the test subjects’ overall experience with the product. Both

the preliminary and post-task questions comprised semi-structured qualitative interviews. Prior

to commencing the interviews, an interview guide was carefully formulated. To ensure the quality

of the questions, a guideline from sociology at Harvard[17] was used. A comprehensive list of the

preliminary and post-questions can be found in the test documentation provided in Appendix D.

10

4.4 Choice of Technology

4.4.1 Frontend

Vue

After analyzing the project’s demand specifications (Appendix B), it was determined that Vue

would be the optimal front-end framework for the development of the application. Vue is an

open-source JavaScript-based framework that is widely used in building interfaces and single-page

applications. It is built on standard HTML, CSS, and JavaScript and offers a component-based

programming model that is similar to other frameworks such as React or Flutter. Since its initial

release in 2014, Vue has gained popularity among developers due to its flexibility and rendering

performance [27]. Its widespread adoption has also resulted in a vast network of resources and

support, which facilitates swift resolution of errors and technical challenges. The decision to

select Vue for the add-in development was further reinforced by the team’s and Visbook’s previous

experience with the framework.

Yeomen-generator (Yo-Office)

In order to integrate the Vue application with Microsoft Outlook, it was necessary to create and

upload a dedicated manifest file. A Microsoft Outlook add-in manifest file, is an XML file that con-

tains crucial information about the add-in, including its functionality, user interface, settings, and

permissions. In this project, the manifest file was generated using the ”Yo-office” package, which

is a component of the Yeoman-generator tool. The default manifest file that was automatically

generated was then customized to align with the specific requirements of the project. [16].

Vuetify

Vuetify is an open-source framework that offers a complete package of reusable User Interface

components. Each component is easily customizable to multiple layouts and themes. Vuetify is

easily integrated into Vue.js and is built upon the material design principles, making the design

user-friendly and modern [15].

Npm

The Node Package Manager (Npm) for Node.js was created in 2009 as an open source project

to help JavaScript developers share packaged modules easily. In 2014, Npm was founded as a

standalone company, and in 2020, it was acquired by GitHub.

The Npm registry is a public collection of open source packages that cover a wide range of applic-

ations, including Node.js, front-end web apps, mobile apps, robots, routers, and more.[20].

Npm is the command line client that allows developers to install and publish packages. In this pro-

ject we use Npm for installing, and maintaining the packaged modules needed for our development.

This is because we use different packages like Vuetify and Material Icon design.

4.4.2 Backend

ASP.NET Core web API

Based on the technical requirements of the project, and an analysis of Visbook’s primary tech

stack, we decided to use the following backend technologies:

• ASP.NET core

• C#

• SOAP API

11

• RESTful API

ASP.NET Core web API is a well-known framework for building RESTful web services using

the Microsoft .NET Core platform with C#. The decision to adopt ASP.NET Core Web API

for the backend application was made based on several technical requirements. Specifically, the

backend application needed to connect to a SOAP API - an acronym for Simple Object Access

Protocol Application Programming Interface akin to an API. Notably, Microsoft developed SOAP

API; therefore, ASP.NET Core Web API provides well-documented features for connecting and

utilizing SOAP APIs. In addition, Visbook’s primary tech stack includes ASP.NET and C#, which

further reinforces the selection of the framework above [11].

Swagger

To facilitate the publication of the endpoints required for the retrieval of data from VisBook’s

database, a RESTful API with Swagger was utilized for the backend. Swagger is a set of tools and

associated specifications that seamlessly integrates into an ASP.NET Core application, generating

API documentations and thus enabling developers to build and consume API’s more efficiently.

Furthermore, Swagger follows standard protocols for security and generates examples of responses

and requests, which enabled us to test all required responses securely.

4.4.3 Design Tools

Figma

Figma is a cloud-based design and collaboration tool that facilitates the creation of digital designs

among teams, designers, and developers. This browser-based platform enables smooth collabora-

tion and sharing of project design, as well as robust interface design, wireframing, and usability

testing.

In our project, we found Figma to be highly useful for creating a clickable prototype that was

essential for testing and client interviews. The ability to share a clickable prototype with remote

users proved to be an efficient way of conducting usability testing, as we were able to share our

prototype with VisBook clients while conducting the interviews on Teams.

Additionally, having a mock-up design of the application proved useful as a reference point, helping

to unify the vision of the client and team members. Utilizing Figma to create the prototype and

explore potential new features prior to implementation in production code helped streamline the

development process and minimize the likelihood of unforeseen issues. Overall, Figma proved to

be an indispensable tool for enhancing the design and development process of our project.

12

5 Result

This section is divided into three parts, namely: scientific, engineering, and administrative results.

In the scientific results, we review the results gained from the interviews done with VisBook clients.

The engineering results include: Functional and design demands. Finally, the administrative results

outline: project plan, time management, and development methodology.

Before introducing detailed results, we wish to give the reader a visual overview of the developed

add-in the way it appears in Microsoft Outlook. In figure 5, we see the add-in which is located to

the right of the user screen. We note the clean design of the add-in with a clear VisBook header.

The user interacts with the add-in through the active mail window, specifically, with the option

symbol(...) where the add-in is initially activated. Upon activating the add-in, it will appear to

the right of the active mail window, as per default positioning of Microsoft Outlook add-ins. In

practice, the add-in, which is a taskpane, will only be available for VisBook users who choose to

make use of the functionalities offered by the add-in.

Figure 5: Add-in visible on the right side of the figure, displayed within the Microsoft Outlook

email browser

5.1 Scientific Result

5.1.1 Pre-development phase

Prior to commencing the development of the add-in, a pre-development phase was required to

acquire the necessary skills, design the add-in, create the prototype, and conduct usability tests.

This phase aligns with the ’Planning’ and ’Software design’ found in the Software development life

cycle, as outlined in the theory framework 3.

During the planning phase, the project timeline was divided into smaller segments and visualized

using a Gantt chart. This approach facilitated the tracking of important milestones and enabled

effective planning of different project phases. Key documents, including the Vision Document and

demand specifications, were prioritized as initial deliverables. Subsequently, the team embarked on

acquiring the prerequisite skills to fulfill the demands specified in the Vision Document. This phase

involved engaging with various learning resources such as tutorials, guides, and documentation on

multiple technologies, namely: C#, .NET Core, RESTful API, Vue, Vuetify, and SOAP API.

Once the necessary skills were acquired, a prototype of the add-in was developed using Figma,

which enabled the creation of a clickable prototype. This process involved careful analysis of the

project requirements, engaging in meetings with employees of Visbook, and adhering to design

guidelines provided by Microsoft. Following the design approval received from the product owner

13

at Visbook, the team proceeded to conduct usability testing through interviews with customers of

Visbook.

Design

The interface exhibits a minimalistic and user-friendly design. The team has deliberately minim-

ized the presence of extraneous components on the page, aiming to diminish visual clutter and

highlight the prominent features. A coherent design methodology has been employed, incorporat-

ing consistent shapes and color combinations throughout the entire add-in. However, it should be

noted that the color scheme of the top header of the add-in remains subject to the chosen system

theme of Microsoft Outlook. The visual representation in Figure 6 portrays our application within

the contexts of both dark and light themes inherent to Microsoft Outlook.

Figure 6: Upon activation of the add-in, users are met with this Login page, which responds to

the selected theme of outlook with a dark or light theme

14

Login

The login page, shown in Figure 6, comprises the presence of the Visbook logo along with two input

fields and a button. Upon submission of the provided username and password, the authentication

process is triggered. If the credentials are successfully authenticated, the user is subsequently

redirected to the home page. However, in the event of a failed authentication request, the user is

presented with an error message, as illustrated in Figure 7.

Figure 7: Upon login, if the credentials input into the fields aren’t correct, Failure to authenticate

will result in an error message that is displayed

15

Header

The purpose of the header bar is to give the add-in user concise information pertaining to the

relevant guest, whom the user is interacting with. As depicted in figure 8, the header bar contains

the name and email address of the guest. Note that for new guests, where no information is

available in the user’s system, the header will show the email address and the account name. For

example, the left side of figure 8 shows an email sent by Adobe Creative Cloud while the right side

figure shows the name and email of an existing user.

Figure 8: Header with Information anchored at the top, displaying data from a client-card that is

pulled from VisBook. In the case of no recognized client-card existing, data from outlook mail will

be displayed.

Navigation bar The purpose of the navigation bar is to provide the user with a consistent and

intuitive way of navigating through our add-in. The active tab is marked with a subtle blue

background, see figure 9. Upon selection of a tab, data for the corresponding tab is displayed.

Every tab has an icon and color scheme that follows directives for WCAG and VisBooks color

palette.

Figure 9: Navigational tabs routing user throughout the add-in

16

Email

The email tab highlighted in the add-in, see figure 10, contains a dynamic list, which retrieves its

data from the Microsoft Office Outlook API, from which the mail item and it’s associated data gets

fetched. The email tab is automatically connected to the Outlook’s email item currently selected.

Figure 10: The pane displaying information of email is shown when activation and login of the

add-in has been completed.

17

Bookings

Within the booking’s tab, highlighted in figure 11, users are offered three expandable menus:

Previous, Active, and Future bookings. When expanded, these menus provide users with a detailed

listing of information pertaining to each respective booking. As seen in figure 11, the user is

provided with structured information about the guest including booking number, name, date, and

service cost. To enhance visual separation and facilitate ease of navigation, an alternating color

scheme has been implemented for every other booking entry.

Figure 11: Booking with and without previous bookings list expanded, which displays the relevant

data.

18

Attachment

The attachments tab, highlighted in figure 12, displays a dynamic list of all attachments associated

with a given mail item. The attachment data are grabbed from the current selected mail item,

and displayed using the filename and format.

Figure 12: In the example, we can see that the file is a .pdf

Statistics

The statistics tab, see 13, is comprised of two elements, namely the guest’s total spending during

their previous visits, and their latest booking. The guest spending’s are visualised in a donut chart

with corresponding labels. The purpose of the statistics pertaining to the guests expenditures are

to tailor offers in accordance with the guests interests. Furthermore, if no client card for the guest

exists, the contents of the statistics page will default to a string informing the user of this, see 14.

Figure 13: Statistics are displayed both numerical and within a donut chart

19

Figure 14: No statistics are displayed if no client card data exists

Notes

The notes tab, see figure 15, is a tab that displays note data that originates from within the

client-card that exists within VisBooks’ system. The note is a text-box, where the user might for

example write information about their guest, such as dietary requirements or special needs.

Figure 15: Notes tab

20

5.1.2 Result from Usability Tests

As outlined in the methodology section 4, usability tests were conducted as part of semi-structured

interviews. In total we had three subjects for the interviews. For two of the participants, navigating

the add-in according to our directions and questions was straightforward. However, the third

participant experienced some difficulty, which was attributed to a language barrier between the

researchers and the subject, as well as issues with peripheral equipment, on the interview subjects

side, such as the headset and microphone. Nevertheless, the instructions were conveyed effectively

after some back and forth, resulting in successful navigation.

Constructive feedback was provided by the participants, focusing on their state of mind when using

the PMS system during work. As a result of the interviews, we revised the symbols, colors, and

text, to align our color scheme with the design of the parent application (VisBook PMS), making

it recognizable for new users and clearly indicating that this is an addition to VisBook’s PMS.

All test participants expressed a desire for the add-in, particularly an add-in that replicated the

functionality of the discontinued version. Interestingly, despite initially expressing this preference,

every test participant demonstrated a strong interest in the new add-in after completing their

respective interviews, and recognized that the new version offers enhanced functionality and a

foundation for growth based on their feedback.

It was observed that some participants encountered difficulty in navigating to specific sections of

the add-in, primarily due to their lack of familiarity with add-in’s and limited guidance provided

beforehand. Furthermore, one subject suggested the option of having the add-in in their own

language, which could be considered for future work.

The results gathered from these interviews can also found in its entirety below, see appendix D.

21

5.2 Engineering Result

5.2.1 Functional Demands

The previous add-in developed by VisBook had a single function, namely: storing email corres-

pondence from Microsoft Outlook into VisBook’s PMS. To implement this single function into the

new add-in several technical requirements need to be met. Specifically, VisBook must incorporate

the functionality into their existing API, create a SOAP element template, and solve the authen-

tication problem. Additionally, these requirements needs to be met in a fashion that does not

create a processing time bottleneck.

In table 1, the functional demands of the current add-in are tabulated. We note that some demands

have been met in this project, while other remain as future work. Further, we note that some of

the requirements are subject to extending the existing VisBook system to include the necessary

functionality.

For further details regarding the specific functionality or user story, see Demand Specifications in

Appendix B.

As a user, i want to Achieved Not

Achieved

Reasoning

Enable the add-in. x This is done through receiving a

Manifest.xml file from VisBook

that the end-user will have to in-

stall

Disable the add-in. x

navigate with navigational tabs. x

See guest information in a over-

view at the top.

x Will be displayed with inform-

ation conditionally gotten from

VisBooks database

See guest relations. x Deemed not important and given

low priority

See guest name. x

See guest email address. x

See if the guest has an existing

client card.

x Displays information about

guest from Client card, but does

not show ”if” a client card exists.

See a guest expenditure tab. x

See guest expenditure visualized

with graphical statistics.

x

See an email tab. x

See previous email correspond-

ence.

x Microsoft Outlook API does

not support access to all email

items. Further implementation

with Microsoft Graph API is re-

quired.

See a booking tab. x

See information about previous

bookings.

x

See information about future

bookings.

x

22

See attachments tab. x

See sent and received attach-

ments.

x User can see all attachments

within the ”active” email win-

dow (selected email). But here

the issue is the same as with the

previous email correspondence.

See feedback tab. x Changed from feedback window

to ”notes” window, as per re-

quest through usability test feed-

back.

Table 1: User stories table

5.2.2 Non-Functional Demands

The most prevalent Non-Functional Requirements encompass performance, scalability, compat-

ibility, reliability, availability, maintainability, security, and usability, as well as localization and

portability to a lesser extent [3]. Within the scope of this project, we have successfully addressed all

of these Non-Functional Requirements except for localization and portability. Moreover, we made

concerted efforts to adhere to the Web Content Accessibility Guidelines (WCAG), which provide a

framework to ensure inclusive accessibility for all users [5]. The WCAG guidelines emphasize the

importance of:

WCAG 2.1 has four main guiding principles (abbreviated as POUR):

• Perceivable

– Users must be able to perceive the information being presented.

• Operable

– Interface forms, controls, and navigation are operable.

• Understandable

– Information and the operation of user interface must be understandable to all users.

• Robust

– Users must be able to access the content as technologies advance.

We followed the WCAG principles, while also incorporating preferences that VisBook desired.

Specifically, VisBook wished to have a color and design that fit the general outlook of their PMS.

The color palette and contrast between foreground and background elements were controlled using

the webAIM [10] contrast checker, seen in figure 16 and 17. Furthermore, we used Vuetify and

Vue, which have built in accessibility (a11y), and follows the design guidelines of WCAG.

Vue, as a web development framework, adheres to established guidelines that prioritize accessibility

best practices. These guidelines encompass various aspects such as labeling, linking, headers,

placeholder usage, and content visibility control, among others. By emphasizing these practices,

23

Figure 16: WebAIM contrast score, describes the contrast between foreground and background in

a numbered ratio.

Figure 17: WebAIM contrast check, displays that the two colors conforms to WCAG AA standard

for Graphical Components and User Interface.

Vue aims to facilitate the creation of accessible web applications by providing developers with the

necessary tools and frameworks. This approach ensures that developers can readily incorporate

accessibility features into their web apps, thereby enhancing the overall accessibility and usability

of the applications.

As mentioned in the 3, Vuetify is a library of ready made components, that have built in function-

ality and design and conforms to the standard WCAG guidelines.

5.2.3 Workflow

One of the goals of this project was to determine how the development of the add-in could help

users streamline their workflow and increase their effectiveness. Visbook wanted to reduce the

need to open the product management systems to find information regarding the guest. In figure

18, we have created a flowchart, visualizing that our solution has removed one key component in

Visbook’s user workflow. Note that in the figure, we have included ’login’; if the user is already

authenticated, this component would also be removed.

5.3 Administrative Result

5.3.1 Project Plan

To ensure adherence to the project plan and effective tracking of significant milestones, a Gantt

chart was developed in the early stages of the project. The Gantt chart, provided in Appendix E,

is organized into four distinct segments: ”Planning,” ”Research and Development,” ”Poster,” and

”Report.” Key dates, such as the due date for the ”Pre-project Plan” and ”Poster Presentation,”

are clearly indicated. Considering the project’s requirements, additional subdivisions within the

Gantt chart were deemed unnecessary. Instead, the team adopted an Objectives and Key Results

(OKR) system to manage weekly tasks. This approach enabled flexibility in the development

process, allowing for changes in direction as needed, aligning with the agile workflow methodology.

24

Figure 18: Old and New Workflow

5.3.2 Time management

Efficient time management and optimal task distribution were crucial factors in the successful

development of the add-in. The team’s goal was to maintain an even workload throughout the

project period, limiting workdays to a maximum of eight hours and the total to approximately

500 hours ±50 per team member. However, the team members were aware that additional hours

might be necessary during later stages to achieve the desired functionalities in the add-in.

As evident in the timetable summary, see appendix E, the team primarily worked together at school,

with an almost identical workload. Appendix E provides a complete overview of the timetables

and status report. Although there were instances of travel and illness resulting in remote work,

good communication and planning prevented any significant complications.

To document the timetable, the team categorized the activities into 11 groups: documentation,

programming, report writing, preparation, review, presentation, meeting, usability testing, reading,

and attending lectures. This approach enabled a visual view of the number of hours allocated to

each category, as illustrated in Figure 19. The pie chart indicates that programming, report writing,

and documentation were the most time-consuming activities. The pie chart in Figure 19 shows a

total of 979.5 hours for both team members, well within the margin of 500 hours each ± 50.

Figure 20 shows a graph representing number of hours spent on the project per week. As seen in

the figure, there is an increase in the working hours as the team got closer to delivery date.

25

Figure 19: Pie chart over hours on category

Figure 20: Linechart over hours per week

5.3.3 Development Methodology

The project team utilized a combination of Objectives and Key Results (OKRs) and the Kanban

board methodology throughout the entire duration of the project.

Every user story derived from the vision document was incorporated into GitLab’s integrated issue

board, where it was subsequently transitioned across various production stages, namely ’Open’,

’Doing’, ’For Review’, and ’Done’. In cases where it was deemed suitable, a user story was further

subdivided into two distinct tasks. For instance, the user story ”As a user, I want to login” was

divided into ”Implement authentication backend” and ”Create login view”. This division facilitated

concurrent work on a single user story.

Task selection was linked to the team’s weekly objectives as determined during the Monday Commit

process 4. Each Monday, the team reviewed the project’s original objectives and key results, and

26

identified three to five goals to achieve by Friday. The selection of the user story was naturally

aligned with the goals established during this process. Any necessary adjustments to objectives or

tasks were quickly made, including reordering tasks within the production stages.

Figure 21: Kanban board in week 19

In this section, the objective and key results (OKRs) that were obtained by the team during the

early phases of this project and their alignment with the desired accomplishments are outlined.

In total we had 28 Monday Commits and 24 Friday Wins, to see complete list of the OKR and

commits, see appendix F.

Our Objective and key results were:

Create a user friendly Microsoft Outlook add-in MVP

• Key Result: Implement over 70 percent of the desired user stories

As mentioned in the engineering result, we managed to incorporate 11 of the original 15 user

stories, bringing the overall completion rate to 73 percent.

• Key Result: Conduct at least three usability tests with a clickable prototype

Referring to usability test result, see appendix D, we conducted three usability tests with personnel

from three different hotels.

• Key Result: Invest at least 200 programming hours on the product

Shown in figure 19 we have well over 200 hours in production of the add-in (detaljer om timer)

• Key Result: Have meetings with Visbook representatives two times a month for feedback

and review of progress

The team had regular meetings with Visbook every two weeks. In addition, the team had multiple

discussions pertaining to design and functionalities with different individuals in Visbook. See

process Appendix E for details about all meetings and the corresponding meeting notices.

6 Discussion

Through this section, we will discuss the results from the previous chapter.

27

6.1 Scientific Result

6.1.1 Interview

As outlined in the result 5 and methodology 4 sections, our research approach involved conducting

interviews and usability tests, which served as the primary means of gathering information during

the initial stages of the development process. We engaged in meetings with three willing parti-

cipants, utilizing Microsoft Teams as the communication platform. While conducting additional

interviews could have provided further valuable insights for our project, it was necessary to consider

the associated time commitments for post-interview analysis and meeting logistics. Therefore, we

concluded that the three interviews conducted were sufficient for our research purposes.

During the review of our pre-interview process, we recognized the potential for further improvement

by incorporating a test-interview phase. This would have involved selecting a participant from

Visbook or associates to provide feedback on the overall interview process. Such a test-interview

could have been beneficial in refining our interview guide and formulating more effective interview

questions, leading to enhanced data collection and insights.

6.1.2 Sources of Error

The primary sources of error in the scientific findings undoubtedly stem from the underlying data

foundation. Conducting interviews during the early phase of development led us to rely on the res-

ults obtained from the clickable Figma model, rather than conducting interviews where respondents

directly interacted with the Minimal Viable Product (MVP). Consequently, it would have been

more appropriate to initially conduct a more general interview to determine the requirements and

then follow up with a mid-project interview phase, where participants would engage with the early-

stage MVP to obtain more accurate and comprehensive responses. This iterative approach would

have helped mitigate potential errors and yielded more reliable scientific results.

It is important to consider that the selected subjects represented active users of VisBook’s system

(PMS). This fact introduces the possibility of preconceived opinions, which could potentially affect

the users responses and result in biased data. Simultaneously, it is worth noting that the users,

whom we interviewed, have valuable insight and experiences based on their usage which mitigates

the data bias.

Through the interview process, we have gained valuable insights into the time-consuming and

demanding nature of conducting interviews. We acknowledge that preparation plays a vital role

in ensuring the effectiveness of semi-structured interviews and the quality of the responses.

Reflecting upon our process, conducting interviews at multiple stages in the software development

life cycle (see SDLC 4) could have been beneficial, as it would have generated more feedback and

insight into the add-in. However, we did not incorporate multiple interview stages due to time

constraints and the potential to delay the development of the add-in.

6.2 Engineering Result

6.2.1 Functional Demands

During the initial meeting, a comprehensive list of functional requirements and their corresponding

priorities were meticulously documented in conjunction with VisBook. This process established a

28

baseline that determined the priority order in which tasks needed to be completed to attain the

desired state of the add-in.

As described in the 5 section, the primary functional requirement, pertains to the capacity to

store the email exchanges between guests and hotel employees. Due to the lack of support for this

functionality in VisBook’s system at the development stage, its implementation was unfeasible. The

issue of incorporating this feature into their system was subsequently addressed with the VisBook

team, who would oversee the implementation of the necessary requirements, security considerations,

and overhead analysis. Consequently, the MVP of the new add-in does not currently possess the

capacity to store email correspondence.

The selection of the technology stack for the project presented us with several challenges. Mi-

crosoft’s interaction with elements such as email items made it essential to choose a suitable tech-

nology stack. Following discussions with VisBook, we initially selected Blazor WebAssembly[23]

as the development framework. Blazor, a Single Page Application (SPA) framework, would have

been ideal for our project, given its extensive capabilities. However, we encountered difficulties as

Blazor WebAssembly did not support the Service connection with the SOAP API that was required

for consumption. Consequently, we attempted to implement the project using the Blazor Server

solution. Unfortunately, the scarcity of well-documented information on the capacity of the Blazor

Server in combination with Microsoft Outlook add-in required us to look into alternate solutions.

Subsequently, the project was revamped, and a Vue frontend was implemented alongside a .NET

C backend. To establish a connection with Outlook and consume the SOAP API, we incorporated

the Yo-office package from Yeoman-generator, as illustrated in the 4.4.1 section. The adoption

of this approach ensured that we could effectively acquire the essential data from VisBook, and

access data through Microsoft’s Outlook API.

Throughout the entirety of this project we have gained valuable knowledge of software development

and integration towards existing solutions. We have encountered first hand, how difficult it is

combine old and new technologies. Being dependant on external solutions that effect and dedicate

how we develop our solution has proved very educational. We have interacted with both employees

of Visbook and their users to develop the add-in, utilizing the domain knowledge and experience

of Visbook’s employees has been crucial.

6.2.2 Non-Functional Demands

The design and color scheme was selected based on the knowledge gathered from the interviews

along with knowledge shared by VisBook pertaining to this subject.

As per the results from the interviews, there are a lot of users of the PMS, which in turn means

there are a lot of users of the add-in. Therefore, we had to keep simplicity in mind when designing

the visuals, as well as the User Interaction. This was done through familiar icons and colors. Since

the users of today are familiar with VisBook and Outlook, we chose similar symbols. Although,

a final rendition of the add-in would be more familiar with symbols that are similar to the PMS,

and for this to happen, the add-in would first need to be deployed, tested, and then a design on

the required icons should be done.

Furthermore, the add-in itself is required to conform to a level of privacy when dealing with VisBook

and mail data. This should, under no circumstance, be divulged. Therefore, authentication for

each user of the add-in, in accordance with VisBook’s standards were implemented.

29

6.3 Administrative Result

The Administrative results provide an account of the project’s progress, a progress timeline, and

showcases the team’s adaptability in implementing their prescribed work methodology and planned

activities.

6.3.1 Project Plan

During the project’s initiation, a Gantt chart was constructed to effectively oversee project mile-

stones and temporal phases. As explained in the results section, the team collectively determined

that committing to an excessive number of activities was disadvantageous, instead opting to fo-

cus on smaller weekly objectives using the OKR (Objectives and Key Results) framework. This

strategic choice afforded the team the flexibility to adapt and plan tasks based on their perceived

benefits. It is noteworthy that all activities listed in the original Gantt chart were accomplished.

While a few milestones were shifted by a slight margin in terms of days, the overall impact on the

project remained negligible.

6.3.2 Time management

Recognizing the potential challenges associated with diligently adhering to the Gantt chart, the

team acknowledged the importance of devising a method to monitor and track hours spent across

different categories. The document titled ”Timetables w Report,” presented in process-documentation

in appendix D, provides a comprehensive overview of all activities undertaken by the team mem-

bers, accompanied by their corresponding hours and concise descriptions. The document, created

in Excel, features individual sheets dedicated to each week with a brief summary of the week.

Additionally, a supplementary chart (refer to Figure 19) was developed to visually depict the

distribution of hours among various categories.

In this project, an estimated total of 1000 hours, equating to 500 hours per team member, was

initially established. These estimations were formulated with limited prior knowledge of the domain

of the project, and the project tasks. Consequently, slight disparities arose between the estimated

and actual time expended in the different categories. To highlight an example, our estimate on

’programming’ and ’report’ where 250 and 320 hours, actual time spent on these categories were

228 and 370 hours.

The team focused on solving the assigned tasks, not on attaining the time estimates outline early

in the project. However, it is worth noting that the discrepancies between the planning and reality

were minor in nature, affirming the team’s realistic projection and planning capabilities based on

their collective knowledge and experience in software development.

6.3.3 Development Methodology

The objectives and key results combined with the Kanban board suited the team well. We had

no significant issues with our development methodology of choice. This development methodology

allowed us to focus more on programming by excluding time consuming ceremonies and activities.

By having weekly meetings discussing goals and achievements (Monday Commit, and Friday Wins),

the team was able to swiftly adapt to new tasks or directions from Visbook. The team managed

to create weekly goals in a good fashion, but could sometimes struggle with relating them to the

original key results. This process was a good exercise as it reminded us what our original goal was.

30

During the initial phase of the project (Week 2 to Week 12), an obligatory study course was taken

concurrently with the project. As a consequence, the team had limited availability, with only two

days per week allocated for project work. In order to accommodate this constrained schedule, the

decision was made to defer from the full implementation of Objectives and Key Results (OKR)

until Week 13. During the period spanning Week 2 to Week 12, the team effectively managed their

time and task by setting goals on a four-week basis. See appendix F to see complete list of OKR’s.

The user stories outlined in the vision document were promptly incorporated into our Kanban

board, providing a visual representation of the completed user stories and enabling progress mon-

itoring. Primarily the programming tasks derived from the initial user stories and aligned with

weekly objectives, the Kanban board served as a valuable tool for task management. The team

adhered to established protocols for conducting peer reviews of each other’s work prior to merging

with the main branch, thus ensuring code quality and minimizing the likelihood of errors.

7 Conclusion and Further Work

In our study (see Section 2), we addressed the following problem: ”How can the communication

between users and guests be enhanced through the implementation of a Microsoft Outlook add-in?”.

This report presents an analysis of the findings obtained from interviews, literature, and usability

tests conducted during the development of the add-in. Our main objective was to streamline the

communication process and provide users with easy access to the information necessary for effective

correspondence with guests directly within Outlook. By eliminating the need for users to switch

between multiple windows to gather relevant information, our solution enables prompt responses

to guest requests.

7.1 Conclusion

The development and successful implementation of our add-in progressed smoothly following the

identification of a technology stack that aligned with the requirements of VisBook and our team.

The success of the project, seen from the point of view of the different stakeholders, VisBook,

supervisor, and the team, can be attributed to several key factors, including our selection of an

appropriate work methodology, effective prioritization, a robust research approach, and efficient

time management. During the later stages of the project, we conducted a comprehensive review of

the Minimal Viable Product (MVP) with the project owners at VisBook, receiving highly valuable

feedback that validated our prudent decisions regarding technology choices and design considera-

tions.

The conducted interviews yielded valuable feedback from individuals with extensive experience

in the hotel business, providing profound insights into the daily operations of users within the

property management system. These interviews not only aroused our interest as developers but

also proved to be an invaluable resource during the development of the add-in. Notably, one

interviewee expressed that, ”In the span of one month, this (add-in) might actually save up to

several days of work” emphasizing the potential time-saving benefits of our solution.

For the duration of the project, we as a team, have gained knowledge about system design, and

team work, as well as integration towards existing solutions. Furthermore, we have experienced

that this project has required us to combine a multitude of technologies (see 3) to comply with

the requirements and demands from VisBook’s system. As such, the team has been through a

comprehensive learning process, which has allowed us to develop a functioning Microsoft Outlook

31

add-in.

Upon reflection of the initial problem description, we can assert that a properly implemented Mi-

crosoft Outlook add-in, integrated with VisBook’s property management system, has the potential

to significantly reduce the time spent on each guest interaction through email.

7.2 Further Work

For the further work of this add-in, it would be natural to first implement the functional demands

in their entirety before exploring additional functionalities.

7.2.1 Email Correspondence

The user story ’See previous email correspondence’ was not implemented during the project dur-

ation. It was not possible to gather emails already sent via Visbook’s PMS due to limitations in

Visbook’s API, nor was it possible to send emails from Microsoft Outlook into Visbook’s systems.

The system limitations regarding Visbook’s integration API would have to be fixed before this

functionality could be integrated into the add-in. One functionality that could be resolved without

updating Visbook’s system would be to collect and visualize all email correspondence between

users and guests already listed in Microsoft Outlook; this is possible with the use and integration

of Microsoft’s Graph API.

7.2.2 Sent/Received Attachments

Connected to the previously mentioned missing functionality of email correspondence, it was de-

sired to visualize all sent attachments between the guest and the user; this includes booking con-

firmations, invoices, receipts, etc. This has also not been included for the same reasons, limitations

in Visbook’s systems, and no implementation of Microsoft Graph API.

7.2.3 Additional

Multiple additional functionalities have arisen upon developing the add-in; these include the option

to choose the desired text language of the application, the possibility to add text to the notes

section, and the option to see full details of the relevant email, booking, and attachments in full.

For the project as a whole, it would be desirable to integrate this add-in in an environment that

handles continuous integration and continuous development (CI/CD). Incorporating CI/CD would

allow Visbook to deploy updates quickly and efficiently.

32

8 Social Impact

Our developed add-in enhances and streamlines the workflow within Visbook’s product manage-

ment system, offering potential benefits in terms of time efficiency and reduced workload for users.

Such an add-in can have valuable impacts on society and the environment.

Visbook serves a substantial customer base of over 1000 customers in the Nordic countries, with

multiple employees utilizing their systems on a daily basis. Our usability testing yielded feedback

from a hotel manager, who stated, ”Over the course of a month, this add-in could potentially

save several days of work”. If this statement holds true for all Visbook users, our add-in has the

potential to reduce thousands of working days annually.

By reducing several days of work per month, VisBook’s customers gain valuable time, allowing

them to serve more guests within the same time frame. The add-in optimizes resource utilization

by minimizing repetitive tasks and streamlining workflows. Consequently, the reduced time spent

on computers, tablets, or phones leads to decreased energy consumption, resulting in lowered

total energy usage and carbon emissions per guest, thereby generating positive environmental

implications.

Moreover, the economic impacts of this add-in on various businesses should be considered. In-

creased efficiency and productivity may result in cost savings that can be reinvested in develop-

ment, job creation, or research, fostering financial and economic growth within the business and

society.

8.1 Sustainability

Analyzing the United Nation’s seventeen Sustainable Development Goals (SDG), we want to high-

light two of them in alignment with our developed add-in. [21]

SDG number 8, Decent work and Economic growth, by reducing time required for repetitive task,

our add-in could help reduce cost and shift focus to more important and innovative work that

could lead to financial growth.

SDG number 12, Responsible consumption and Production, by reducing activities and time spent

on power-consuming appliances, such as computers, tablets or phones, we could argue that this

would be a more responsible use of electricity and electrical hardware. With reduction in usage,

we contribute to longer lifespan in the hardware and a reduction in electrical waste.

33

Bibliography

[1] Muhammad Ovais {Ahmad, Jouni Markkula and Markku Oivo. ‘Kanban in software devel-

opment: A systematic literature review’. In: 2013, pp. 9–16. url: https://ieeexplore.ieee.org/

abstract/document/6619482?casa token=rC8Gg9naFVwAAAAA:eCjkYkSB2NLs8B4wJQ4BM0SfRqk4wFu1u0VeGdVuXZUEtI2qTN4j3D5WLhyKJnLXNG8TQZlnCrw.

[2] Alexandra. What is SDLC? Understand the Software Development Life Cycle. English. Apr.

2020. url: https://stackify.com/what-is-sdlc/ (visited on 18th Apr. 2023).

[3] Altexsoft. Non-functional Requirements: Examples, Types, How to Approach. English. Blog.

July 2022. url: https://www.altexsoft.com/blog/non- functional- requirements/ (visited on

9th May 2023).

[4] Atlassian. What is Agile? url: atlassian.com/agile (visited on 9th May 2023).

[5] Ben Caldwell et al. Web Content Accessibility Guidelines (WCAG) 2.0. English. June 2018.

url: https://www.w3.org/TR/WCAG21/ (visited on 9th May 2023).

[6] Richard Castle. PMS Technology: The evolution and future of the hospitality platform. Eng-

lish. Dec. 2021. url: https://www.cloudbeds.com/articles/hotel-property-management-system-

guide/ (visited on 26th Apr. 2023).

[7] Gong Chao. ‘Human-Computer Interaction: Process and Principles of Human-Computer In-

terface Design’. In: IEEE, 2009, pp. 230–233. (Visited on 22nd Mar. 2023).

[8] GitLab. Burndown and burnup charts. url: https : / / docs . gitlab . com/ ee / user / project /

milestones/burndown and burnup charts.html (visited on 8th May 2023).

[9] Gitlab Merge Requests. url: https://docs.gitlab.com/ee/user/project/merge requests/.

[10] Institute for Disability Research, Policy, and Practice. Contrast checker. url: https://webaim.

org/resources/contrastchecker (visited on 9th May 2023).

[11] Jedox. SOAP (WSDL) Connection. English. Apr. 2023. url: https://knowledgebase.jedox.

com/integration/connections/soap-connection.htm (visited on 3rd May 2023).

[12] Kanbanize. What is Kanban? Explained for beginners. English. url: https://kanbanize.com/

kanban-resources/getting-started/what-is-kanban (visited on 9th May 2023).

[13] Nasraldeen Khleel and Károly Nehéz. ‘Comparison of version control system tools’. In:

10.Multidiszciplináris Tudományok (2020), pp. 61–69. issn: 2062-9737. url: https://www.

researchgate.net/publication/342740384 COMPARISON OF VERSION CONTROL SYSTEM

TOOLS.

[14] Afifa Lodhi. ‘Usability Heuristics as an assessment parameter: For performing Usability Test-

ing’. In: Usability Heuristics as an assessment parameter. Vol. V2. IEEE, 2007, pp. 256–259.

url: https://ieeexplore.ieee.org/document/5608809 (visited on 22nd Mar. 2023).

[15] Material design. 2014. url: https://m3.material.io/ (visited on 9th May 2023).

[16] Microsoft. OffiveDev/generator-office. Mar. 2023. url: https : / / github . com / OfficeDev /

generator-office (visited on 27th Apr. 2023).

[17] Timothy Nelson. Some strategies for qualitative interviews guide. English. May 2012. url:

https ://sociology. fas .harvard . edu/files/sociology/files/ interview strategies .pdf (visited on

13th Apr. 2023).

[18] Oracle. What is a Hotel Property Management System(PMS) ? English. url: https://www.

oracle.com/be/industries/hospitality/what-is-hotel-pms/ (visited on 17th Apr. 2023).

[19] ProductPlan.Minimum Viable Product (MVP). url: https://www.productplan.com/glossary/

minimum-viable-product/ (visited on 9th May 2023).

34

https://ieeexplore.ieee.org/abstract/document/6619482?casa_token=rC8Gg9naFVwAAAAA:eCjkYkSB2NLs8B4wJQ4BM0SfRqk4wFu1u0VeGdVuXZUEtI2qTN4j3D5WLhyKJnLXNG8TQZlnCrw
https://ieeexplore.ieee.org/abstract/document/6619482?casa_token=rC8Gg9naFVwAAAAA:eCjkYkSB2NLs8B4wJQ4BM0SfRqk4wFu1u0VeGdVuXZUEtI2qTN4j3D5WLhyKJnLXNG8TQZlnCrw
https://stackify.com/what-is-sdlc/
https://www.altexsoft.com/blog/non-functional-requirements/
atlassian.com/agile
https://www.w3.org/TR/WCAG21/
https://www.cloudbeds.com/articles/hotel-property-management-system-guide/
https://www.cloudbeds.com/articles/hotel-property-management-system-guide/
https://docs.gitlab.com/ee/user/project/milestones/burndown_and_burnup_charts.html
https://docs.gitlab.com/ee/user/project/milestones/burndown_and_burnup_charts.html
https://docs.gitlab.com/ee/user/project/merge_requests/
https://webaim.org/resources/contrastchecker
https://webaim.org/resources/contrastchecker
https://knowledgebase.jedox.com/integration/connections/soap-connection.htm
https://knowledgebase.jedox.com/integration/connections/soap-connection.htm
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://www.researchgate.net/publication/342740384_COMPARISON_OF_VERSION_CONTROL_SYSTEM_TOOLS
https://www.researchgate.net/publication/342740384_COMPARISON_OF_VERSION_CONTROL_SYSTEM_TOOLS
https://www.researchgate.net/publication/342740384_COMPARISON_OF_VERSION_CONTROL_SYSTEM_TOOLS
https://ieeexplore.ieee.org/document/5608809
https://m3.material.io/
https://github.com/OfficeDev/generator-office
https://github.com/OfficeDev/generator-office
https://sociology.fas.harvard.edu/files/sociology/files/interview_strategies.pdf
https://www.oracle.com/be/industries/hospitality/what-is-hotel-pms/
https://www.oracle.com/be/industries/hospitality/what-is-hotel-pms/
https://www.productplan.com/glossary/minimum-viable-product/
https://www.productplan.com/glossary/minimum-viable-product/

[20] Isaac Schlueter, Laurie Voss and Rod Boothby. npm. Jan. 2014. url: https://www.crunchbase.

com/organization/npm (visited on 8th May 2023).

[21] Sustainable Development Goals. English. org. url: https ://sdgs .un.org/goals (visited on

18th May 2023).

[22] Tekna. Hva er OKR, og hvorfor er det viktig for bedrifter? Oct. 2022. url: https://www.

tekna .no/kurs/ innhold/hva- er - okr - og- hvorfor - er - det - sa - viktig - for - bedrifter/ (visited on

9th May 2023).

[23] The .NET Foundation. Blazor WebAssembly. url: https://blazor-university.com/overview/

what-is-blazor/ (visited on 14th May 2023).

[24] The fullstory education team. Qualitative vs. quantitative data: what’s the difference? Eng-

lish. Oct. 2021. url: https://www.fullstory.com/blog/qualitative-vs-quantitative-data/ (visited

on 2nd May 2023).

[25] Aksel Tjora. Kvalitative forskningsmetoder i praksis. Norsk. 2nd ed. Gyldendal Norsk Forlag

AS, 2021. isbn: 9788205546530. url: https ://www.akademika.no/realfag/naturvitenskap-

filosofi - teori - og - metode / kvalitative - forskningsmetoder - i - praksis / 9788205546530 ? gclid =

Cj0KCQjwu-KiBhCsARIsAPztUF3T4mCnGTilUBpAMSGEit0KfQ mpKMBgO5FrdBwExOVYcUfXmvsrYaAh37EALw

wcB (visited on 9th May 2023).

[26] Oliver Trunkett. SDLC methodologies: From waterfall to agile. Aug. 2020. url: https://www.

virtasant.com/blog/sdlc-methodologies (visited on 1st May 2023).

[27] Evan You. Vue.js. 2014. url: https://vuejs.org/about/faq.html (visited on 10th Apr. 2023).

[28] Dmitriy Zaporozhets and Valeriy Sizov. GitLab. Oct. 2011. url: https://about.gitlab.com/

company/history/ (visited on 8th May 2023).

[29] Hao ZHOU and Yu-Ling HE. ‘Comparative Study of OKR and KPI’. In: 2018. isbn: 978-1-

60595-552-0. url: http://u.camdemy.com/sysdata/doc/4/4a6b816a1fb5cebb/pdf.pdf.

Appendix A Vision Document

35

https://www.crunchbase.com/organization/npm
https://www.crunchbase.com/organization/npm
https://sdgs.un.org/goals
https://www.tekna.no/kurs/innhold/hva-er-okr-og-hvorfor-er-det-sa-viktig-for-bedrifter/
https://www.tekna.no/kurs/innhold/hva-er-okr-og-hvorfor-er-det-sa-viktig-for-bedrifter/
https://blazor-university.com/overview/what-is-blazor/
https://blazor-university.com/overview/what-is-blazor/
https://www.fullstory.com/blog/qualitative-vs-quantitative-data/
https://www.akademika.no/realfag/naturvitenskap-filosofi-teori-og-metode/kvalitative-forskningsmetoder-i-praksis/9788205546530?gclid=Cj0KCQjwu-KiBhCsARIsAPztUF3T4mCnGTilUBpAMSGEit0KfQ__mpKMBgO5FrdBwExOVYcUfXmvsrYaAh37EALw_wcB
https://www.akademika.no/realfag/naturvitenskap-filosofi-teori-og-metode/kvalitative-forskningsmetoder-i-praksis/9788205546530?gclid=Cj0KCQjwu-KiBhCsARIsAPztUF3T4mCnGTilUBpAMSGEit0KfQ__mpKMBgO5FrdBwExOVYcUfXmvsrYaAh37EALw_wcB
https://www.akademika.no/realfag/naturvitenskap-filosofi-teori-og-metode/kvalitative-forskningsmetoder-i-praksis/9788205546530?gclid=Cj0KCQjwu-KiBhCsARIsAPztUF3T4mCnGTilUBpAMSGEit0KfQ__mpKMBgO5FrdBwExOVYcUfXmvsrYaAh37EALw_wcB
https://www.akademika.no/realfag/naturvitenskap-filosofi-teori-og-metode/kvalitative-forskningsmetoder-i-praksis/9788205546530?gclid=Cj0KCQjwu-KiBhCsARIsAPztUF3T4mCnGTilUBpAMSGEit0KfQ__mpKMBgO5FrdBwExOVYcUfXmvsrYaAh37EALw_wcB
https://www.virtasant.com/blog/sdlc-methodologies
https://www.virtasant.com/blog/sdlc-methodologies
https://vuejs.org/about/faq.html
https://about.gitlab.com/company/history/
https://about.gitlab.com/company/history/
http://u.camdemy.com/sysdata/doc/4/4a6b816a1fb5cebb/pdf.pdf

IDATT2900 - Bachelor project

Vision Document
Project 64

Author:
Amundsen, Trygve
Helmersen, Martin

Date 20.05.2023

Revision History
Date Version Description Author
13.02.2023 1.0 First submission Martin Helmersen,

Trygve Amundsen
20.05.2323 1.1 Revision before de-

livery
Martin Helmersen,
Trygve Amundsen

Table 1: Revision history

Table of Contents

1 Introduction 1

2 Summary of Product and Problem 1

2.1 Background . 1

2.2 Problem summary . 1

2.3 Product summary . 2

3 Stakeholders and Users 3

3.1 Stakeholders . 3

3.2 Users . 3

3.3 User Environment . 3

3.4 Summary of user needs . 3

3.5 Alternative products . 3

4 Product 4

4.1 Products role in user environment . 4

4.2 Dependencies and prerequisites . 4

5 Product functionality 4

6 Non functional requirements 5

i

1 Introduction

The intent with this document is to describe the vision regarding the following bachelor assignment
for the subject IDATT2900-064. The bachelor assignment is written in the spring period from
January to May.

2 Summary of Product and Problem

2.1 Background

Visbook is a PMS (Property Management System). PMS is a system to organize, schedule and
handle the day-to-day transactions and events in an accommodation business. They have existed
since 1995 and has over 1000 customers in the Nordic countries.

Visbook customers are accommodation businesses such as hotels, camping sites, resorts, bars or
spa’s. Visbook offers a system to do bookings, check-in and check-outs, Point of sale (POS), Event
planning and Food and Beverage sales (Restaurant/Bar). Visbook handles all the services needed
for the particular accommodation.

Visbooks customers have information about their guests within the product management system
(PMS). Information about the guest get stored in a digital client-card, a digital client-card is an
electronic registry of information, which contains specific personal information about the guest, re-
cords of bookings, planned events and other transactions made. Additionally all sent attachments,
documents, e-mails and followups get stored on the card.

The data is stored to improve the experiences for the guest, but also to improve Visbooks marketing
strategies.

When employees of the accommodation business, henceforth referred to as users, communicate
with guests by e-mail, it is important for them to have the correct information about the guest
available.

2.2 Problem summary

The problem from Visbook was presented such; Our customers (hotels) send offers to their guests
through Visbook´s PMS. If a guest is to respond to the offer or send an email to the hotel, the
communication is continued through Microsoft Outlook. Since Microsoft Outlook and the PMS are
two different programs, the user (manager, receptionist, owner) is forced to switch between Outlook
and the PMS to retrieve necessary information. The switching in programs is time consuming and
could result in the guest receiving faulty answer or wrong information.

To resolve this problem, visbook desires a Microsoft Outlook add-in that shows guest information
from the PMS into Outlook. Relevant information could be (not limited) to name, email, book-
ings, expenditure statistics and notes. The add-in should also be able to store emails received in
Microsoft Outlook to the Visbook´s product management system.

Visbook has an previous developed a Microsoft Office Outlook add-in which they want remade.
They want an entirely new and modernised add-in with a simplistic look. The add-in should have
en easy to learn User Interface (UI) to ensure that any user of the add-in, young or old, will be
able to use it and understand it without being overloaded with buttons and options. For getting
information about the guest, this add-in would need to be connected to Visbook´s system via their
integration application programming interface (API).

1

Todays Problem Is that Visbook don’t have a sufficient add-in for dis-
playing information about the guest in Microsoft Of-
fice Outlook. The correspondence made in Outlook
is also not stored in the PMS.

Touches Users, guests and developers of the PMS.
As a result Any user of the platform will have to open several

programs/windows and switch between them to en-
sure that they have up-to-date information to make
the necessary decisions.

A successful solu-
tion will

Give all users the needed information about any
guest within a single platform which will increase
and simplify the learning and usage of said platform.

Table 2: Problem summary

2.3 Product summary

For Users of Visbooks property management system
That Use the system for day-to-day transactions and

events
Visbook
mail plugin
and api in-
tegration

Is a system that handles any and all guest interaction
prior to their booking and all interaction needed with
the guest under their stay, within the same system.

Which Enables the users to easily stay within the same pro-
gram/browser to do any task required by them to
while handling a guest.

Unlike Their system today which does not include the avail-
ability of all information in a simple manner within
the same system.

Our product Incorporates the full circle of communication and in-
formation, making the platform a more stand alone
platform regarding e-mail and information.

Table 3: Product summary

2

3 Stakeholders and Users

3.1 Stakeholders

Name Description Role
Visbook Company contact Sofie

Moene, Otto Meisingset,
and Peter Haza

Technical guidance and
specifications

NTNU Ali Alsam Report guidance

Table 4: Stakeholders

3.2 Users

Name Description Role under development Represented by
The Group Developers of the add-in Get familiar with devel-

oping within frameworks,
and use this to develop the
requested tools and soft-
ware

Martin Helmersen, Trygve
Amundsen

Survey subject Gives feedback concern-
ing existing application
and requests for the new
concept

Tests the plug-in and gives
feedback under develop-
ment

Employees of Hotels or
similar bookable services

Visbook Employees Visbook representatives Directs us according to
technical and systemical
requirements and needs

Sofie Moene, Otto Meis-
ingset, Peter Haza

Table 5: Users

3.3 User Environment

The designated user environment for our product is reception area, office, customer service center
and other locations where bookings or management takes place. The system is designed to link
two systems together, the outlook email platform and Visbook’s PMS.

3.4 Summary of user needs

3.5 Alternative products

As Visbook mentioned in the meeting we had (see appendix for minutes of meeting), there are no
complete PMS (Property Management System) which encapsulates all in a ”one package” kind of
deal. This means that no PMS system can be seen as the same kind of system as they offer. This
means that there are no related alternative products, but there are companies that offer solutions
that while modular can be made into a product that resembles Visbooks’ platform.

3

Needs Priority Influences Todays Solution Proposed Solution
Gather feedback Critical Design and

development
of the solu-
tion

- -

Filter duplicates of
information cards

High The plug-in
data

Non existent Handles duplicates
through a unique
key

Integration with
API

Critical Ensures that
everything
will run on
one platform

Non Existent Use Visbooks’ In-
tegration API to
seamlessly auto-
mate the e-mail
process

Dashboard with in-
formation card de-
tails

High User interac-
tion

Non Existent Side panel with all
necessary informa-
tion regarding the
guest

Table 6: Stakeholders

4 Product

4.1 Products role in user environment

The teams product is meant as an addition to Visbooks’ system. Where there is a computer
running Visbook’s product management system, the add-in system should be able to run. The
products role is to make the communication between end-user (hotel employee) and their guests
good, available and clear.

4.2 Dependencies and prerequisites

To use the product it will be required to have the latest version of Outlook and Visbooks’ product
management system available. Since the product is closely linked to Visbooks’ systems and the
integration platform, certain changes in their systems could potentially reduce the functionality of
our add-in. This is also the case for Outlook and how they handle add-ins.

5 Product functionality

The Microsoft Outlook Add-in should include the following functionalities:

• The add-in should be placed in a side panel.

• The add-in should display information about the guest.

• The add-in should retrieve information from Visbook´s system.

• The add-in should store email correspondence from Outlook, into the PMS.

• The add-in should store attachments from Outlook, into the PMS.

• The add-in should display (if) multiple client-cards are connected to a guest.

4

6 Non functional requirements

Our non functional abilities are base on the FURPS model. FURPS stands for Functionality,
Usability, Reliability, Performance and Support-ability.

• Functionality

The product should have required features. Parts of the product should be reusable and secure
(not prone to security breaches and exploiting)

• Usability

The product should have an consistency in design with focus on responsiveness and documentation.

• Reliability

The product should be durable with low failure frequency. The products cycles should be predict-
able with high recover ability.

• Performance

The product should a low response time, be efficient with high throughput and capacity.

• Support-ability

The product should be easy to maintain and service. The product should be modifiable and
installability should be prioritized.

5

Appendix B Demand Spesification

43

IDATT2900 - Bachelor project

Demand Specifications
Project 064

Author:
Amundsen, Trygve
Helmersen, Martin

Date 20.05.2023

Table of Contents

List of Figures i

1 Introduction 1

2 User Stories 1

3 Domain Model 3

4 Prototypes 3

List of Figures

1 Domain model of Visbook´s architecture, with our implementation in dotted lines. 3

i

1 Introduction

The intention of this document is to describe, in depth, the functions and the technological aspects
of our product.

2 User Stories

In the following user stories, a user is referred to someone using Visbooks property management
system. This could be an receptionist, hotel owner, back office employees, camping site manager
or other personnel responsible for day-to-day tasks.

• As a user, i want to enable the application at any given time, so that i can use it when
necessary.

– If not logged in, no email list is shown, and enabling add-in is not applicable

– If logged in, email list is shown, enabling add-in displays the add-in window

• As a user, i want to disable the application at any given time, so that i can minimize visual
disturbance when necessary.

– The application should be able to close immediately on exit click.

• As a user, i want to have a navigation bar, so that i can efficiently look up information.

– The navigation bar should include 5 tabs.

– Each tab should change background color when hovering.

– Each tab should have a tooltip when hovering.

– Each tab should change background color when clicked (marked).

• As a user, i want to see a header displaying personnel information in the application, so that
i can see stored information about the guest.

– The header should have a ’show more’ button which expands the window.

• As a user, i want to see important customer relations, so that i can accurately provide service.

– Display customer relations information if exist

• As a user, i want to see the guest name in the application, so that i can accurately provide
service.

– If user not in digital client-card, show stock name.

• As a user, i want to see the guest email address in the application, so that i can accurately
provide service.

– Guest email should always be visible.

– If email is clicked, new email is drafted in outlook.

• As a user, i want to see if the guest has a digital client card in the application, so that i can
accurately provide service.

– Should display ’yes’ or ’no’ corresponding to if the designated email has an digital client
card.

– If the email has multiple, should display ’mult’.

– If ’mult’ is clicked, action to change which digital client is displayed should start.

• As a user, i want to see a expenditure tab in the application, so that i can see the expense
history for the guest.

1

• As a user, i want to see graphical statistics on the guests expenditure, so that i can accurately
provide service.

– Show statistics on latest stay and payments if the guest has some.

– Should include details about receipts and outstanding payments.

• As a user, i want to see a mail tab in the application, so that i view mailing history.

• As a user, i want to see previous email correspondence, so that i can accurately provide
service.

– List over all emails sent between guest and user, should include sender, receiver, date,
subject and if-attachments.

• As a user, i want to to see a booking tab in the application, so that i can see bookings from
previous and future bookings.

• As a user, i want to see information about previous bookings, so that i can accurately provide
service.

– List over all previous bookings, should include location, type, addition information,
date, time and price.

• As a user, i want to see information about future bookings, so that i can accurately provide
service.

– List over all previous bookings, should include location, type, addition information,
date, time and price.

• As a user, i want to to see a attachments tab in the application, so that i can sent and receives
attachments.

• As a user, i want to see sent and received attachments, so that i can accurately provide
service.

– The attachments should be displayed in chronological order.

– Each attachments should include information about sender, filename, date and location
of attachment.

• As a user, i want to see a feedback tab in the application, so that i can see feedback from
earlier stays.

2

3 Domain Model

Figure 1: Domain model of Visbook´s architecture, with our implementation in dotted lines.

4 Prototypes

The clickable prototype was created and published in Figma, it can be found HERE.
Complete link below:

https://www.figma.com/proto/b346evIu8eHliQCJkqJI9h/BA64?node-id=88-250&starting-point-node-id=88%3A250

3

Appendix C System Documentation

49

IDATT2900 - Bachelor project

System Documentation
Project 064

Author:

Amundsen, Trygve

Helmersen, Martin

Date: 20.05.2023

Table of Contents

List of Figures ii

1 Introduction 1

2 Architecture 1

2.1 Components . 1

2.2 Workflow . 1

3 Structure 2

3.1 Manifest . 2

3.2 Vue . 3

3.3 ASP.NET Core . 5

4 Class Diagram 6

5 Server Services 6

6 Security 7

7 Installation 7

7.1 Step-by-Step installation guide for end user . 7

8 Documentation 11

8.1 Frontend . 11

8.2 Backend . 11

9 CI/CD and Testing 12

Bibliography 13

i

List of Figures

1 Components in this project . 1

2 Intended workflow . 2

3 Structure for Manifest Project . 2

4 Structure for Vue Project . 3

5 Structure for Vue Project . 4

6 Structure for Vue Project . 4

7 Structure for ASP.NET Core project . 5

8 Class diagram depicting the connectivity between the different classes within the

add-in backend . 6

9 Picture of our swagger endpoints . 6

10 The manifest file you will receive from VisBook. 7

11 Select a mail from window will initialize the context window where you view the

email contents. 8

12 Select the Get add-in option within the drop-down 8

13 Window for browsing add-in’s, note we’re inside the ”my add-ins” tab 9

14 Caption . 9

15 Select the manifest file where it’s located in your directory 9

16 Warning window caused by add-in being a custom add-in selected through a Manifest

file . 10

17 The add-in displayed within the add-in browser window. If the ”VisBook” add-in

is visible, the process was a success. 11

18 Dropdown from options will now display the add-in ”VisBook” 11

19 Login page of the VisBook add-in . 12

20 Documentation of BookingController . 12

ii

1 Introduction

The purpose of this document is to give a comprehensive system documentation for out developed

Microsoft Outlook add-in. This includes architecture, project structure, class diagram, REST-

server description, security considerations, an installation guide and documentation of source code.

2 Architecture

2.1 Components

The key components in our project are visualised in figure 1. The manifest file is uploaded into

Microsoft Outlook, this lets our Vue.js frontend application run inside Outlook. The Vue.js applic-

ation communicates with our RESTful API delivered by our ASP.NET CORE server application.

Figure 1: Components in this project

2.2 Workflow

In figure 2, our intended user behaviour is displayed. The diagram is split into three different

segments, highlighting where the process is handled / started.

1

Figure 2: Intended workflow

3 Structure

3.1 Manifest

The Manifest project contains the manifest file, a package.json configure file and an asset folder

with icons, see figure 3.

Figure 3: Structure for Manifest Project

2

3.2 Vue

In the Vue project we have followed Vue’s folder structure guidelines. Including store, views,

router, assets, services and components in different folders. This project also includes important

configuration files to connect to Microsoft Outlook and the API. See figure 4, 5, and 6.

Figure 4: Structure for Vue Project

3

Figure 5: Structure for Vue Project

Figure 6: Structure for Vue Project

4

3.3 ASP.NET Core

For the backend projection we have divided into model, controllers and service. See figure 7. Every

service class has a corresponding interface.

Figure 7: Structure for ASP.NET Core project

5

4 Class Diagram

Figure 8: Class diagram depicting the connectivity between the different classes within the add-in

backend

5 Server Services

Figure 9: Picture of our swagger endpoints

By the figure 9, we have created and utilized four different endpoints for our add-in. Booking,

Customer, Login, and Statistics.

• Booking, to collect all bookings from a guest.

• Customer, to get digial client-card for a specific guest.

• Login, endpoint to login and authenticate into the add-in.

6

• Statistics, to get various statistics from a guest.

6 Security

Sine the add-in was developed as an MVP, it was not prioritized to implement comprehensive

security measures such as SQL-injection or cross site scripting. However, it was desire from Visbook

to implement token based authentication with Json Web Token (JWT). This feature has been

implemented.

To use our add-in, users are required to be registered in the Visbook system. We do not provide

functionality for user registration within the add-in itself. Instead, individuals who wish to utilize

our add-in should already have registered credentials in the Visbook System. These credentials

will be used for logging in to the add-in.

When the login process is initalised, a request will be send to our backend, the backend application

will then (if user credentials are correct) create and store the token. The token is stored in the

backend via MemoryCache, the user then gets a token as a response from the backend. This

token is further used for any future request towards the server. See figure 2 to see intended user

workflow.

7 Installation

7.1 Step-by-Step installation guide for end user

• Receive Manifest file from VisBook

This Manifests file represents the add-in, and all it’s connections to Outlook.

Figure 10: The manifest file you will receive from VisBook.

• Select an email within your inbox

The selection of the email opens up the email viewer window. You will only be able to open the

add-in within this window.

• Upon opening the email view window, select the options ”...” dots in the upper right.

The selection of the three ”...” dots, will display a dropdown window, see figure 12.

7

Figure 11: Select a mail from window will initialize the context window where you view the email

contents.

Figure 12: Select the Get add-in option within the drop-down

• Navigate to ”Get add-ins”

After locating the add-ins browser, click on ”my add-ins”, scroll down to you see a ”+” icon, and

click it.

8

Figure 13: Window for browsing add-in’s, note we’re inside the ”my add-ins” tab

• Click the + icon, then select from file.

Upon selecting from file, the file browser should open. Locate your Manifest.xml file and select it,

then press open.

Figure 14: Caption

Figure 15: Select the manifest file where it’s located in your directory

• Upon opening the Manifest.xml file, you will receive a pop-up notifying you about trusting

files. Click ”Install”.

Upon selecting that you trust the contents of the Manifest, you should now see the VisBook add-in

at the bottom, next to the ”+” icon.

9

Figure 16: Warning window caused by add-in being a custom add-in selected through a Manifest

file

To open Add-in after installation After the end-user has installed the add-in. To open the

add-in and make use of it, the user needs to click (select) an email, upon the email viewer window

will appear. From here, the user will then have to press the three dots ”...” in the upper right

corner of the email view window, where the a drop-down menu will display.

The add-in, labeled as VisBook, will appear near the bottom of this drop-down.

Upon clicking the VisBook add-in within the menu, you will be presented with the Login page of

the add-in.

10

Figure 17: The add-in displayed within the add-in browser window. If the ”VisBook” add-in is

visible, the process was a success.

Figure 18: Dropdown from options will now display the add-in ”VisBook”

8 Documentation

8.1 Frontend

For the frontend application, the team decided to only comment /document vital parts of the code.

The team has adhered to best practices and followed consistent naming conventions, making the

code easy to read and understand.

8.2 Backend

For the server application, the team used DocFX 2023 for the documentation. DocFX enables us

to generate and publish the code to a .html file which is viewable in the browser. To generate and

view the documentation:

When located inside the outlook-backend project folder, run:

docfx docfx_project/docfx.json --serve

11

Figure 19: Login page of the VisBook add-in

This command will automatically build and run the documentation, go to http://localhost:8080/

to see result. Reference figure 20 for example.

Figure 20: Documentation of BookingController

Disclaimer!

For this project, all related source code is owned by VisBook, and will therefore be disclosed

separately to ensure privacy. This, along with other permissions and access to API, results in a

source code that will not run outside of the source code owners’ environment. As such images from

running code will be documented within the main report.

9 CI/CD and Testing

Due to time limitations, the implementation of continuous integration and continuous deployment

(CI/CD) was not included in this project.

Unit testing and end-to-end testing were not prioritized in this project, instead the team decided

to focus on the desired user stories from Visbook.

12

Bibliography

DocFX (2023). url: https://dotnet.github.io/docfx/ (visited on 20th May 2023).

13

Appendix D Interview Collection

This appendix was not included in the report on the grounds of sensitive information. Can be

found in the .zip folder.

Appendix E Process Documentation

This appendix was not included in the report on the grounds of sensitive information. Can be

found in the .zip folder.

Appendix F OKR

Can be found in the .zip folder.

66

	Preface
	Abstract
	Summary
	List of Figures
	Introduction
	problem description
	Background
	Structure

	Theory
	Property Management System
	Software Development Life Cycle
	Human-Computer interaction
	Development Process
	Version Control
	Objectives and Key Results

	Kanban Board
	Usability Testing

	Methodology
	Scientific approach
	Development Methodology
	OKR with Kanban
	Gitlab

	Usability Testing
	Choice of Technology
	Frontend
	Backend
	Design Tools

	Result
	Scientific Result
	Pre-development phase
	Result from Usability Tests

	Engineering Result
	Functional Demands
	Non-Functional Demands
	Workflow

	Administrative Result
	Project Plan
	Time management
	Development Methodology

	Discussion
	Scientific Result
	Interview
	Sources of Error

	Engineering Result
	Functional Demands
	Non-Functional Demands

	Administrative Result
	Project Plan
	Time management
	Development Methodology

	Conclusion and Further Work
	Conclusion
	Further Work
	Email Correspondence
	Sent/Received Attachments
	Additional

	Social Impact
	Sustainability

	Bibliography
	Appendicx
	Appendix Vision Document
	Appendix Demand Spesification
	Appendix System Documentation
	Appendix Interview Collection
	Appendix Process Documentation
	Appendix OKR

